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to correct any errors contained herein or to advise any user of this document 
of any correction if such be made. LSC recommends its customers obtain the 
latest version of the relevant information to establish, before ordering, that the 
information being relied upon is current.

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type 
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[ ] Optional items in syntax descriptions. In bus specifications, the 
brackets are required.

( ) Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.
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1
Introduction

This manual discusses aspects of design with Lattice Semiconductor FPGAs. 
You can find more tips in the technical notes on Lattice Semiconductor’s Web 
site at www.latticesemi.com.

This manual addresses the following topics.

Moving Designs from Altera or Xilinx FPGAs Moving a design from one 
brand of FPGA to another offers many challenges. “Moving Designs from 
Altera ” on page 3 (for former users of Altera software) and “Moving Designs 
from Xilinx” on page 13 (for former users of Xiinx software) provide a variety 
of guidelines and tips for modifying existing designs to work with the 
ispLEVER software and Lattice Semiconductor FPGAs.

Incremental and Modular Design Small changes do not have to involve 
synthesizing and testing the entire design again. “Incremental and Modular 
Design Methods” on page 33 describes incremental and modular design 
methods. It begins with the benefits of this design approach, followed by 
instructions and guidelines for specific tasks, such as logic partitioning, device 
floorplanning, and simulation. A design example is provided to illustrate the 
strategies in practice.

Design Guidelines Whether you are new to FPGA design or just new to 
Lattice Semiconductor FPGAs, there are many considerations involved in 
producing an effective design. The next few chapters provide guidelines, with 
Verilog HDL and VHDL code examples, for getting the best performance and 
resource utilization from your design:

“Logic Synthesis Guidelines” on page 51 provides a design flow for 
creating register-transfer-level (RTL) designs.

“HDL Synthesis Coding Guidelines” on page 57 discusses useful Verilog 
HDL and VHDL coding styles for Lattice Semiconductor FPGAs. It 
includes design guidelines for both novice and experienced FPGA 
designers.

http://www.latticesemi.com
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“Attributes and Preferences for FPGA Designs” on page 85 describes the 
most common ispLEVER attributes used with RTL designs. This chapter 
also describes popular compiler directives, attributes, and library 
components for non-RTL (or non-algorithmic) code.

“Synthesis Tips for Higher Performance” on page 111 provides tips on 
improving design performance by applying synthesis techniques for both 
Mentor Graphics® Precision® RTL Synthesis and Synplicity® Synplify® for 
Lattice Semiconductor synthesis software.

Strategies for Timing Closure “Strategies for Timing Closure” on page 135 
describes placement and routing strategies that help achieve timing closure 
for the most aggressive design requirements. It begins with a brief description 
of the seven steps for successful placement and routing, followed by 
instructions for implementing each of these steps using the ispLEVER 
software. It discusses the following topics:

Seven Steps to Successful Placement and Routing

Constraining Designs

Using the Place and Route Software (PAR)

Analyzing Timing Reports

Controlling Place and Route

Floorplanning the Design
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2
Moving Designs from 
Altera 

The guidelines in this chapter provide practical advice for Altera users who 
want to migrate designs originally created for Altera FPGAs to Lattice 
Semiconductor devices. Given the relative FPGA capacity and feature set 
offered by both vendors, this chapter emphasizes replacement of Cyclone 
and Cyclone II devices with LatticeECP or LatticeEC devices. However, much 
of the advice is applicable to any Lattice Semiconductor FPGA family.

This chapter is based on Lattice Semiconductor ispLEVER software, version 
5.1, and Altera Quartus II software, version 4.2.

For more information, see the ispLEVER Help and the Lattice Semiconductor 
Web site, www.latticesemi.com. The Help provides extensive information on 
process flows and on how to use the tools. It also provides tutorials, reference 
manuals, and user manuals for the Mentor Graphics and Synplicity simulation 
tools, which are included in the ispLEVER software. The Lattice 
Semiconductor Web site provides a large collection of white papers and 
application notes.

To gain some quick experience with the ispLEVER software and design flow, 
try the “FPGA Design with ispLEVER Tutorial” in the Help.

Conversion Guidelines
Converting a design originally targeted to an Altera Cyclone device to a 
LatticeECP/EC FPGA involves several steps:

Replace Quartus II project-wide constraints and options with equivalent 
ispLEVER preferences and process properties.

Replace Altera megafunctions with modules from ispLEVER IPexpress.

http://www.latticesemi.com
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Replace component- or signal-specific Quartus II timing and location 
constraints with corresponding ispLEVER constraints.

Replace any Altera-specific library with the LatticeECP/EC library.

Replace Altera-specific primitives, such as I/O and global clock buffers, by 
equivalent Lattice Semiconductor primitives or behavioral HDL code and 
preferences.

Optimize HDL-inferred modules such as shift registers, counters, and 
multipliers.

Converting Design Constraints
Like the Quartus II design style, the ispLEVER software does not require you 
to add special components or attributes to your HDL design to establish the 
correct signal I/O buffer or interface standards. Instead, the Design Planner 
and preference language allow you to define these physical implementation 
details. The Lattice Semiconductor sysI/O buffer of the LatticeECP/EC device 
family supports a variety of standards, including SSTL, PCI, and LVDS.

If it is necessary to introduce device-specific elements, the FPGA Libraries 
Guide documents many atomic design elements. IPexpress produces 
medium- to large-scale components.

Table 1 lists the ispLEVER equivalents to Quartus II design constraints.

Table 1: Lattice Semiconductor Equivalents of Typical Quartus II Design Constraints

Constraint Quartus II Software ispLEVER Software

Device Project Navigator: Assignments > Device Project Navigator: Source > Set New 
Device

Synthesis options Project Navigator: Assignments > 
Settings > Analysis & Synthesis Settings

Third-party synthesis tool

Project Navigator: Build Database > 
Properties

Fitter options Project Navigator: Assignments > 
Settings > Fitter Settings

Project Navigator: Map Design > 
Properties

Project Navigator: Place & Route Design 
> Properties

I/O location and types Project Navigator: Assignments > Pins Project Navigator: Pre-Map Design 
Planner

Timing options Project Navigator: Assignments > Timing 
Settings

Project Navigator: Pre-Map or Post-Map 
Design Planner

EDA tool settings Project Navigator: Assignments > 
Settings > EDA Tool Settings

Project Navigator: Options > Select RTL 
Synthesis

Project Navigator: Generate Timing 
Simulation Files



Moving Designs from Altera Conversion Guidelines

FPGA Design Guide 5

Table 2 compares Altera constraints and Lattice Semiconductor preferences.

Table 3 compares Synopsys SDC constraints and Lattice Semiconductor 
preferences.

Table 2: Lattice Semiconductor Equivalents of Altera Constraints

Altera Constraints  Lattice Semiconductor 
Preference

Maximum Delay assignment in Assignment Editor. 
Overrides any clock settings, if the assignment is 
applied to a path between two registers. However, an 
fMAX constraint can be used. If the net is purely 
combinatorial, a tPD assignment can be made.

MAXDELAY

Maximum Data Arrival Skew or Maximum Clock Arrival, 
depending on the net, in the Assignment Editor.

MAXSKEW

tSU in the Assignment Editor. INPUT_SETUP to specify 
the setup time at input port.

tCO in the Assignment Editor. OFFSET OUT

fMAX can be specified in the Timing Settings dialog box. 
Make individual and global clock setting using the 
Timing Settings dialog box (Project menu).

PERIOD

Current Strength in the Option field in the Assignment 
Editor.

Edit ASIC I/O in Design 
Planner

Slow Slew Rate in the Option field in the Assignment 
Editor.

Edit ASIC I/O in Design 
Planner

Fast Input Register or Fast Output Register in the 
Option field in the Assignment Editor.

 LOCATE

Adjust Input Delay to Input Register. Adjust the delay of 
the input pin to the input register. Turned to either ON or 
OFF in the Option field in the Assignment Editor

INDELAY/FIXEDDELAY 
attribute in Design Planner

I/O standards in the Assignment Editor. Edit ASIC I/O in Design 
Planner

An LCELL between two nets prevents either net from 
being synthesized out.

LOCK

Table 3: Conversion of Synopsys SDC Constraints

Synopsys SDC Constraints Description Lattice 
Semiconductor 
Preferences

create_clock Creates a base clock with the given name and waveform, 
and applies the clock to specified clock pin list.

FREQUENCY PORT/
NET PERIOD PORT/
NET

set_clock_latency Inserts a source latency into an existing base clock. NA
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set_false_path Specifies that the timing paths that start from a designated 
start node and end at a designated destination node be 
false paths.

BLOCK

set_input_delay Specifies the external input delay of a set of input or 
bidirectional pins with respect to the designated clock.

INPUT_SETUP 
INPUT_DELAY

remove_clock Removes all clocks that are used in the current design if the 
all option is specified.

NA

create_generated_clock Creates a derived or generated clock from the given clock 
source. A generated clock can be derived only from a base 
clock. The generated clock is always assumed to be 
propagated.

NA

get_clocks Returns the list of clock pins as specified in the 
<clock_pin_list>. The input list is returned as the output. 
When <no_port_list> is specified, the command returns 
nothing.

Use Design Planner

remove_input_delay Removes the specified input delay assignments from the 
current design.

Remove the specific 
preference from the 
Design Planner or 
preference file.

remove_output_delay Removes the specified output delay assignments from the 
current design.

Remove the specific 
preference from the 
Design Planner or 
preference file.

reset_path Removes the specified timing path assignments from the 
current design. If neither the setup or hold option is 
specified, both setup and hold paths are removed.

BLOCK RESETPATHS

set_max_delay Specifies the maximum delay for the timing paths from the 
designated <from_pin_list> to <to_pin_list>.

MAXDELAY

set_min_delay Specifies the minimum delay for the timing paths from the 
designated <from_pin_list> to <to_pin_list>.

Use hld in command 
line for MIN analysis.

set_multicycle_path Specifies that the given timing paths have multicycle setup 
or hold delays with the number of cycles specified by 
<path_multiplier>. 

MULTICYCLE

set_output_delay Specifies tCO, which is the external output delay of a set of 
output or bidirectional pins with respect to the designated 
clock. The delay applies to both the positive and negative 
edges of the clock. 

CLOCK_TO_OUT or 
OFFSET OUT

set_propagated_clock Specifies that a given clock be propagated using the actual 
clock network delays. 

NA

get_ports Returns the list of ports as specified in the <port list>. Use the Design 
Planner.

Table 3: Conversion of Synopsys SDC Constraints (Continued)

Synopsys SDC Constraints Description Lattice 
Semiconductor 
Preferences
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Table 4 shows some examples of converting Synplify and Precision RTL 
Synthesis timing constraints to Lattice Semiconductor preferences. Always 
put: Block RESETPATHS; Block ASYNCPATHS.

Converting Memory Blocks
Cyclone devices contain embedded RAM blocks organized into 4-kilobit 
structures. LatticeECP/EC devices contain sysMEM embedded block RAMs 
(EBRs) consisting of 9-kilobit RAMs with dedicated input and output registers. 
Use IPexpress to configure EBRs with the features, width, and depth desired, 
and produce Verilog HDL or VHDL output for your project. The sysMEM EBRs 
can be configured to support a variety of memory types, such as FIFO, ROM, 
and DPRAM.

Unlike Altera’s Cyclone, LatticeECP/EC devices also support distributed 
memory based on PFUs.

Other factors to consider are the following:

Generate an equivalent Lattice Semiconductor EBR module.

Enable the output register, if required. Check that the clock latency from 
data input to data output is equivalent.

defparam ram.REGMODE = "OUTREG";

Cyclone memory outputs are cleared on power-up. For LatticeECP/EC 
devices, the output status is user-defined.

Instead of the cyclone read-during-write mode, use the EBR read-before-
write mode. Additional logic may be required.

Always turn on the EBR pipelining register, for it improves the tCO, 
especially when the EBR is in the critical path. The unregistered clock-to-

Table 4: Converting Synplify and Precision RTL Synthesis Timing Constraints

Synplify (.sdc File Command) Precision (.tcl File Command) Lattice Semiconductor ispLEVER 
.prf File command

define_clock -name {CLK_TX}  
-freq 400 -rise 1.0 -fall 
2.5

create_clock -design rtl 
-name CLK_TX -freq 400 
-waveform {1 2.5}

FREQUENCY 400.0 MHz;

define_input_delay 2.00 
-clock CLK_TX {d0[7:0]} 

set_input_delay -design rtl 
-clock CLK_TX 2 d0(7:0)

INPUT_SETUP ALLPORTS 2.0 ns 
CLKPORT "clk" 

define_output_delay 2.00 
-clock CLK_TX {Q[7:0]} 

set_output_delay -design 
rtl -clock CLK_TX 2 Q(7:0)

CLOCK_TO_OUT ALLPORTS 2.0 
ns CLKNET "clk_int" 

define_path_delay -from 
{{p:RESET}} -to 
{{i:Q[7:0]}} -max 5.000

set_max_delay 11.0 -from 
{input_ A input_ B} -to 
Y_output

MAXDELAY FROM PORT "a" TO 
CELL "reg_Q" 5.0 ns; 

define_multicycle_path 2 
-from [get-pins reg_alu/Q]  
-to [get_pins reg_mult/D]

 set_multicycle_ path 2 
-from reg_alu* -to reg_mult

MULTICYCLE FROM CELL 
"reg_Q" CLKNET "clk_int" 
5.0 ns;

define_false_path -from 
RESET

 set_false_path -from RESET BLOCK RESETPATHS; 
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Q delay for Lattice Semiconductor’s EBRs is approximately 3.5 ns, and 
their registered clock-to-Q delay is approximately 0.76 ns.

Converting EBRs to distributed memory mapping when running out of 
EBRs:

SPRAM and DPRAM can only be mapped to distributed RAM.

True dual-port RAMs must be mapped to EBR.

The Altera memory compiler produces a parameterizable altsyncram 
primitive. Write an RTL wrapper to connect an equivalent SCUBA-
generated module.

The following M4K features are not supported by the sysMEM EBR and may 
require additional logic to implement:

Parity bits

Byte enable

Embedded shift register

The following tables map the ports of various Altera RAM configurations to 
their LatticeECP/EC equivalents. (At Lattice Semiconductor, a simple dual-
port RAM is called pseudo-dual-port RAM.)

Table 5: Single-Port RAM Port Equivalents

Port Description Altera Lattice Semiconductor

Data input data DI

Data output q Q

Address address Address

Write enable wren WE

Clock enable inclocken ClockEn

Clock input inclock Clock

Table 6: Simple Dual-Port RAM Port Equivalents

Port Description Altera Lattice Semiconductor

Data input data DI

Data output q Q

Write address wraddress ADW

Read address rdaddress ADR

Write enable wren WE

Read enable rden

In clock enable inclocken CEW

Out clock enable outclocken CER
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For more information on designing LatticeECP/EC memory, see the “How to 
Design with FPGA Memories” topic in the online Help.

Converting FIFO
Because synthesis does not infer FIFO, use IPexpress to generate and 
instantiate FIFO in RTL. Lattice Semiconductor does not have inherent 
hardware support for different read and write widths for FIFO in LatticeEC and 
LatticeXP devices. Implement the control logic in RTL. Be aware that the 
Lattice Semiconductor FIFO_DC has two clock latencies for the de-assertion 
of FIFO status flags.

MachXO 1K and 2K have built-in FIFO logic: primitive FIFO8KA.

Inferring Memory
Write in generic RTL to infer memory. See Figure 1 and Figure 2 for 
examples. Synthesis inferencing is not available for FIFO. Use the SCUBA 
FIFO memory compiler.

Converting PLL Blocks
Cyclone devices contain up to two analog phase-locked loops (PLLs) for clock 
management. LatticeECP/EC devices contain two to four analog PLLs called 
sysCLOCK PLLs. Use IPexpress to configure PLLs with operating frequency, 
phase controls, and duty cycle.

Table 8 maps the ports of the Altera altpll megafunction to the Lattice 
Semiconductor sysCLOCK PLL.

Set/reset inaclr, outaclr Reset

Read clock outclock CLKR

Clock input inclock CLKW

Table 7: True Dual-Port RAM Port Equivalents

Port Description Altera Lattice Semiconductor

Data input dataA, dataB DataInA, DataInB

Data output qA, qB QA, QB

Address addressA, addressB AddressA, AddressB

Write enable wrenA, wrenB WrA, WrB

Clock enable inclockenA, inclockenB ClockEnA, ClockEnB

Set/reset aclrA, aclrB ResetA, ResetB

Clock input clockA, clockB ClockA, ClockB

Table 6: Simple Dual-Port RAM Port Equivalents

Port Description Altera Lattice Semiconductor
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For more information on designing LatticeECP/EC PLLs, see the “How to 
Design with sysCLOCK PLLs and DLLs” topic in the online Help.

Figure 1: Inferring Single-Port RAM in Precision RTL Synthesis Verilog 
HDL

module sync_ram_singleport (clk, we, addr, data_in, data_out); 
parameter addr_width = 10; 
parameter data_width = 32; 
input clk; 
input we; 
input [addr_width - 1:0] addr; 
input [data_width - 1:0] data_in; 
output[data_width - 1:0] data_out; 
reg [addr_width - 1:0] addri; 
reg [data_width - 1:0] mem [(32'b1 << addr_width):0];

always @ (posedge clk) 
begin 

if (we) 
  mem[addr] = data_in; 

addri = addr; 
end

assign data_out = mem[addri]; 

endmodule

Figure 2: Inferring Pseudo-Dual-Port RAM in Precision RTL Synthesis 
Verilog HDL

module sync_ram_dualport (clk_in, clk_out, we, addr_in, 
addr_out, data_in, data_out);
parameter data_width = 16;
parameter addr_width = 16;
input clk_in;
input clk_out;
input we;
input [addr_width - 1:0] addr_in;
input [addr_width - 1:0] addr_out;
input [data_width - 1:0] data_in;
output[data_width - 1:0] data_out;
reg [data_width - 1:0] data_out;
reg [data_width - 1:0] mem [(32'b1 << addr_width) - 1:0];

always @ (posedge clk_in) begin
if (we)

  mem[addr_in] <= data_in;
end

always @ (posedge clk_out) begin
data_out <= mem[addr_out];

end

endmodule
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Converting DDR Interfaces
The key trick for the interface is shifting the DQS strobe-in pin by 90 degrees 
by the time it reaches the register. Like Cyclone II and Stratix, the LatticeEC 
and LatticeXP devices have a DQS shift circuit built in, so no changes to the 
design are needed.

Table 8: PLL Port Equivalents

Port Description Altera Lattice Semiconductor

Clock input inclk0 CLKI

Clock feedback input None, feedback path is 
internal

CLKFB (PLL output, 
clock net, routing, ext)

Asynchronous reset areset RST (set to 1 to reset 
input clock divider)

Combined enable and reset, 
active high

pllena

Clock outputs driving the internal 
global clock network

c[1..0] CLKOS (phase/duty)
CLKOP (no phase)
CLKOK (second divider)

Clock output driving the single-
ended or LVDS external clock 
outputs

e0 Any PLL clock outputs 
through normal routing

Enable for up/down output from 
the phase frequency detector 
(PFD)

pfdena

PLL lock status locked LOCK (1 indicates 
locked to CLKI)
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3
Moving Designs from 
Xilinx 

This chapter compares Xilinx FPGA software design tools and flows with 
Lattice Semiconductor software, provides device migration information for 
targeting Xilinx FPGA devices to comparable Lattice Semiconductor devices, 
and provides alternate reference sources for device and package selection. 
Although much of the advice is applicable to all device families, this chapter 
provides mostly specific information for Xilinx Spartan-3 device migration to 
LatticeEC devices. This chapter also includes a small section on Virtex II 
conversion guidelines.

This chapter assumes that you are familiar with the Spartan family and 
features. Familiarity with VHDL or Verilog HDL and third-party synthesis tools 
is also assumed. This chapter is based on Lattice Semiconductor ispLEVER 
software, version 5.1, and Xilinx ISE software, version 6.1i.

For more information, see the ispLEVER online Help and the Lattice 
Semiconductor Web site at www.latticesemi.com. The Help provides 
extensive information on process flows and on how to use the tools. It also 
provides tutorials, reference manuals, and user manuals for the Mentor 
Graphics and Synplicity synthesis tools, which are included in the ispLEVER 
software. The Lattice Semiconductor Web site provides a large collection of 
white papers and application notes.

Lattice Semiconductor provides information to assist you in deciding what 
device and package best fits your requirements. In the Product Selector 
Guide, you can view technical specifications for all of Lattice Semiconductor's 
product families, including available devices, packages, speed grades, design 
requirements, and feature support. In addition, you can use the Package 
Selector Card to find the information you need to determine what package is 
best for your device. 

http://www.latticesemi.com/lit/docs/generalinfo/prod_selector.pdf
http://www.latticesemi.com/lit/docs/generalinfo/prod_selector.pdf
http://www.latticesemi.com/lit/docs/brochures/pkgsel.pdf
http://www.latticesemi.com/lit/docs/brochures/pkgsel.pdf
http://www.latticesemi.com
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Migrating Xilinx Spartan Designs to LatticeECP/EC
This section compares Xilinx Spartan-3 hardware features and suggests 
specific steps and strategies for conversion to comparable LatticeEC and 
LatticeECP-DSP devices.

In general, you must:

Comment out any Xilinx-specific library and add the LatticeECP/EC 
library, if required.

Replace Xilinx-specific primitives, such as I/O buffers and global clock 
buffers, with Lattice Semiconductor primitives or behavioral HDL code and 
preferences.

Replace Xilinx core modules, such as DCM, memory, and multipliers, with 
Lattice Semiconductor modules.

Replace the Xilinx timing and device constraints (.ucf) file with a Lattice 
Semiconductor source constraints or preferences file (.prf).

Optimize HDL-inferred modules such as shift registers, counters, and 
multipliers.

Replacing Commonly Used Xilinx Primitives
Table 9 shows commonly used Xilinx primitives and their Lattice 
Semiconductor counterparts. 

Table 9: Xilinx Primitives and Lattice Semiconductor Equivalents

Xilinx Primitive Description Lattice Equivalent

BUF, 4, 8, 16 General purpose buffer Primitive BUFBA or HDL 
attribute

BUFG Global clock buffer Location assignment, 
Preference USE PRIMARY

FD D Flip Flop Lattice primitives or 
behavioral HDL

IBUF_<I/O_standard> Input buffer with selectable 
I/O standard

Primitives IB, IBM, and 
related; IO_TYPE attribute

IOBUF_<I/O_standard> Bidirectional buffer with 
selectable I/O standard

Primitives BB, BBW and 
related; IO_TYPE attribute

OBUF_<I/O_standard> Output buffer with selectable 
I/O standard

Primitives OB, OBZ, and 
related; IO_TYPE attribute

SRL16 LUT-based 16-bit shift 
register

HDL, use distributed RAM or 
EBR
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Xilinx I/O Buffer Conversion
Input, output, and bidirectional buffers are automatically inserted by the 
Lattice Semiconductor ispLEVER compiler. As a result, all the I/O buffers in a 
Xilinx design can be removed. The output signal of the buffer can be replaced 
by the I/O signal or assigned to it. Figure 3 shows a Verilog HDL example of a 
buffer being removed.

You can convert Xilinx I/O standard primitives into Lattice Semiconductor 
primitives, or you can specify them in I/O Type attributes. Figure 4 and 
Figure 5 show how to specify I/O primitives using I/O Type (IO_TYPE) 
attributes. Table 10 shows the supported I/O types for the various Lattice I/O 
buffers. 

Figure 3: Removing I/O Buffer

module top (a, b, c, clk);
input a, b, clk;
output c;
reg c;
wire clk_out;

// BUFG inst1 (.I(clk), .O(clk_out)); No need for buffer.
// Assign buffer’s clk_out directly to module’s input, clk.
assign clk_out = clk;

always @ (posedge clkout)
begin

c <= a & b;
end

endmodule

Figure 4: Syntax for I/O Type Attributes in VHDL

ATTRIBUTE IO_TYPE : string;
ATTRIBUTE IO_TYPE OF [PinName]: SIGNAL IS "[Type]";

=> See Below I/O type table
ATTRIBUTE PULLMODE : string;
ATTRIBUTE PULLMODE OF [PinName]: SIGNAL IS "[Type]";

=> NONE, KEEPER, UP, DOWN
ATTRIBUTE DRIVE : string;
ATTRIBUTE DRIVE OF [PinName]: SIGNAL IS "[Type]";

=> 2,4,6,8,12,16,20
ATTRIBUTE SLEWRATE : string;
ATTRIBUTE SLEWRATE OF [PinName]: SIGNAL IS "[Type]";

=> FAST, SLOW

Figure 5: Syntax for I/O Type Attributes in Synplify Verilog HDL

PinType [PinName] /* synthesis IO_TYPE="[Type]" DRIVE="[Type]" 
PULLMODE="[Type]" SLEWRATE="[Type]"*/;
// DRIVE [Type] = 2, 4, 6, 8, 12, 16, 20
// PULLMODE [Type] = NONE, KEEPER, UP, DOWN
// SLEWRATE [Type] = FAST, SLOW
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You can quickly and easily generate the necessary syntax for your I/O type 
assignments by using the Design Planner. You can also do so manually in the 
preference (.prf) file.

MUXCY, XORCY, and MULT_AND Clusters
You can map MUXCY, XORCY, and MULT_AND clusters to combinations of 
FADD2, FSUB2, and MULT2 primitives, for example:

MUXCY(DI,CI,S,O) mapped to MUX21(D0,D1,SD,Z)

BUFGMUX(I0,I1,S,O) mapped to DCS(CLK0,CLK1,SEL,DCSOUT)

SRL16 Shift Register Conversion
You can configure each LUT as a 16-bit shift register without using a flip-flop 
in each slice. The SRL16 is slower than the flip-flop and is susceptible to soft-
error upset. The SRL16 is automatically inferred by the software tool.

Use the following guidelines for converting a Xilinx SRL16 element to a viable 
Lattice Semiconductor function:

For a small one-bit shift register, use a flip-flop-based shift register.

For a large multi-bit shift register, use a circular buffer to emulate a shift 
register.

Data is written at clock 0. After n clock cycles, the data is clocked out of 
the buffer while the new data is written into the same location.

The dual-port RAM is set to Read_Before_Write mode.

The in and out ports can be different widths.

Table 10: Supported I/O Types for LatticeECP/EC I/O Buffers

I/O Type Input Buffer Output 
Buffer

Bidirectional 
Buffer

LVTTL, LVCMOS33, LVCMOS25, 
LVCMOS18, LVCMOS15, 
LVCMOS12, PCI33

X X X

LVTTL_OD, LVCMOS33_OD, 
LVCMOS25_OD, LVCMOS18_OD, 
LVCMOS15_OD, LVCMOS12_OD

X X

LVDS25E, LVDS25, BLVDS25, 
LVPECL33

X X X

HSTL18_I, HSTL18_II, HSTL18_III, 
HSTL15_I, HSTL15_III

X X X

HSTL18D_I, HSTL18D_II, 
HSTL18D_III, HSTL15D_I, 
HSTL15D_III

X X

SSTL33_I, SSTL33_II, SSTL25_I, 
SSTL25_II, SSTL18_I

X X X

SSTL33D_I, SSTL33D_II, 
SSTL25D_I, SSTL25D_II, SSTL18D_I

X X
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Use the following guidelines for converting a shift register in a FIR filter 
design:

In the FIR filter design, each tap of the shift register must be multiplied. 
Separate Write and Read address controls are required.

Use a pseudo-dual-port RAM in an EBR or distributed RAM to emulate a 
multi-bit shift register in a FIR filter.

Replacing DCM/DLL Elements
DCM is a digital clock manager that implements a clock delay-locked loop 
(DLL), digital frequency synthesizer (DFS), and digital phase shift (DPS) 
functions. Table 11 shows Lattice Semiconductor equivalents of Xilinx DCM 
ports. 

Table 11: Lattice Equivalents for Xilinx DCM Ports

Xilinx DCM Port Description Lattice PLL Port

CLKIN Clock input to DCM CLKI

CLKFB Clock feedback input to DCM 
(from CLK, CLK2x)

CLKFB (PLL output, clocknet, 
routing, ext)

RST Asynchronous Reset RST (1 to reset input clock 
divider)

PSEN Dynamic phase shift enable (1 = 
enable)

DDAMODE (1: pin control – 
dynamic)

PSINCDEC Increment/decrement phase 
shift (0 = inc, 1 = dec)

DDAILAG (1 = lag, 0 = lead)

PSCLK Clock input to dynamic phase 
shifter

CLKI

PSDONE Dynamic phase shift complete 
(1 = done)

CLK0, CLK90, 
CLK180, 
CLK270, 
CLK2X, 
CLK2X180

Same or double frequency as 
CLKIN, phase shift 0, 90, 180 
and 270 degree

CLKOS: phase/duty
CLKOP: no phase
CLKOK: second divider

CLKDV Divided clock output, CLKDV = 
CLKIN / CLKDV_DIVIDE

Any PLL clock outputs

CLKFX, 
CLKFX180

Synthesized clock output, 
CLKFX = CLKIN x 
CLKFX_MULTIPLY / 
CLKFX_DIVIDE

Any PLL clock outputs

STATUS[0:2] [0]: Phase shift overflow
[1]: CLKIN in not toggling
[2]: CLKFX output stop

LOCLKED DCM locked to CLKIN, clock 
outputs are valid

LOCK (1 = lock to CLKI)



Moving Designs from Xilinx Migrating Xilinx Spartan Designs to LatticeECP/EC

FPGA Design Guide 18

Note the following when converting this element:

Digital spread spectrum (DSS) mode is not supported, so the DSSEN pin 
must be tied to GND.

The CLK90, CLK270, CLK2X, and CLK2X180 outputs are not available if 
PLL_FREQUENCY_MODE is set to high.

CLKFB must be sourced from CLK0 and CLK2X.

Unlike Xilinx DCM, which requires a specific input buffer to feed into 
CLKIN, such as IBUFG or BUFGMUX, PLLs in Lattice Semiconductor 
devices do not require input buffers.

Customize Lattice Semiconductor PLLs in the IPexpress.

Do not replace DCM with DQSDLL, which is dedicated to the DDR 
interface.

Comparing Xilinx and Lattice Semiconductor 
Block Memory
This section compares Xilinx Spartan and LatticeECP/EC block memories. 
See Table 12 for block memory feature comparison. Table 13 shows a port 
mapping comparison between Xilinx Spartan-3 and LatticeECP/EC single-
port RAM. Table 14 shows a port-mapping comparison between the Xilinx 
Spartan-3 and the LatticeECP/EC dual-port RAM.

Table 12: Block Memory Feature Comparison

Feature Xilinx SelectRAM Lattice sysMEM

Total RAM bits 18,432 9,216

Performance ~200 MHz ~300 MHz

Single-port Yes Yes

Pseudo-dual-port Yes Yes

True dual-port Yes Yes

FIFO, FIFO_DC Yes Yes

CAM Yes

ROM, initial RAM contents Yes Yes

Mixed data port width Yes Yes

Power-up condition User data defined/default 
=zero

User data defined/default 
=zero

Table 13: Port Mapping for Single-Port RAM

Signal Description Xilinx Port Name Lattice Equivalent

Data input bus DI Data

Parity data input bus DIP Data
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When converting Xilinx Spartan-3 block memory to LatticeECP/EC memory, 
observe the following guidelines:

Lattice EBR does not support a separate DIP bus. The parity data input 
and parity data output buses are integrated into the data input/output 
buses.

The EN, WE, and SSR Xilinx block RAM is configurable and active high 
by default. Lattice Semiconductor ClockEn, WE, and reset are always 
active high, so you can change the polarity outside the EBR instantiation.

Xilinx supports synchronous set/reset. When SSR is asserted, the DO/
DOP outputs are synchronously set to initial values defined by the 
SSRVAL parameter. Lattice Semiconductor does not support this feature. 
Lattice Semiconductor supports synchronous or asynchronous resets.

The Xilinx GSR is automatically connected. For Lattice Semiconductor, 
you can enable or disable the GSR in IPexpress.

Data output bus DO Q

Parity data output bus DOP Q

Address bus Addr Address

Write enable WE WE

Clock enable EN ClockEn

Synchronous set/reset SSR Reset

Clock input CLK Clock

Table 13: Port Mapping for Single-Port RAM (Continued)

Signal Description Xilinx Port Name Lattice Equivalent

Table 14: Port Mapping for Dual-Port RAM

Signal Description Xilinx Dual Port Lattice Equivalent

Port A Port B Port A Port B

Data input bus DIA DIB DataInA DataInB

Parity data input DIPA DIPB DataInA DataInB

Data output bus DOA DOB QA QB

Parity data output DOPA DOPB QA QB

Address bus ADDRA ADDRB AddressA AddressB

Write enable WEA WEB WrA WrB

Clock enable ENA ENB ClockEnA ClockEnB

Synchronous set/reset SSRA SSRB ResetA ResetB

Clock CLKA CLKB ClockA ClockB
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You must generate an equivalent Lattice Semiconductor EBR module 
using IPexpress or instantiate the EBR by utilizing the Parameterizable 
Module Inference (PMI).

Enable output registers when required. Check that the clock latency from 
data input to data output is equivalent.

defparam ram.REGMODE = "OUTREG";

Select the proper write mode (see Table 15).

Always turn on the EBR pipelining register, because it improves the tCO, 
especially when the EBR is in the critical path. The Lattice Semiconductor 
EBR unregistered clock-to-Q delay is approximately 3.5 ns, and the 
registered clock-to-Q delay is approximately 0.76 ns.

Converting EBR to distributed memory mapping when running out of 
EBRs:

SPRAM and DPRAM can only be mapped to distributed RAM.

True dual-port RAMs must be mapped to EBR.

Mapping from larger block RAM (16 kb in Spartan-3) to 9 kb in LatticeEC 
and LatticeXP:

If the EBR uses less than 9 kb of the 16-kb EBR block, it can be 
mapped to a Lattice Semiconductor EBR.

If the EBR uses more than 9 kb of the 16-kb Xilinx EBR, you can:

Use the Module Manager to create it. The multiplexer is created 
automatically. Two Lattice EBRs are generated, with the 2:1 
multiplexer using one address bit for control. 

Code in generic RTL and allow synthesis to infer the memory.

When converting distributed RAM:

Map RAM16X1S through RAM16X8S to multiple instances of the 
SPR16X2B primitive.

Map RAM16X1D to the DPR16X2B primitive.

Use the SCUBA memory compiler to generate equivalent cells for all 
other Xilinx distributed RAM primitives, such as RAM64X1S.

Table 15: Xilinx and Lattice Semiconductor Write Modes

Xilinx Write Mode Lattice Semiconductor Write Mode

Write_First (default) Write Through

Read_First (recommended) Read Before Write

No_Change Normal
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Converting FIFO
Because synthesis does not infer FIFO, use IPexpress to generate and 
instantiate in RTL. Lattice Semiconductor does not have inherent hardware 
support for different read and write widths for FIFO in LatticeEC and LatticeXP 
devices. Implement the control logic in RTL. Be aware that the Lattice 
Semiconductor FIFO_DC has two clock latencies for the de-assertion of FIFO 
status flags.

MachXO 1K and 2K have built-in FIFO logic: primitive FIFO8KA.

Inferring Memory
Write in generic RTL to infer memory. See Figure 6 and Figure 7 for 
examples. Synthesis inferencing is not available for FIFO. Use the SCUBA 
FIFO memory compiler.

Figure 6: Inferring Single-Port RAM in Precision RTL Synthesis Verilog 
HDL

module sync_ram_singleport (clk, we, addr, data_in, data_out); 
parameter addr_width = 10; 
parameter data_width = 32; 
input clk; 
input we; 
input [addr_width - 1:0] addr; 
input [data_width - 1:0] data_in; 
output[data_width - 1:0] data_out; 
reg [addr_width - 1:0] addri; 
reg [data_width - 1:0] mem [(32'b1 << addr_width):0];

always @ (posedge clk) 
begin 

if (we) 
  mem[addr] = data_in; 

addri = addr; 
end

assign data_out = mem[addri]; 

endmodule
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Xilinx Multiplier Versus the Lattice 
Semiconductor DSP Block
This section compares the capabilities of Xilinx’s multiplier to those of the 
LatticeECP block function. Note the following when comparing these device 
functions:

Xilinx Spartan-3 devices are limited to offering only embedded multipliers 
to provide multiplication.

You can configure the Lattice Semiconductor DSP block to perform any of 
the following functions:

Simple multiply

Multiply accumulate

Multiply add/subtract

Multiply add/subtract SUM

The Lattice DSP block supports x9, x18, and x36 modes.

The Lattice DSP block supports options for input, output, and pipeline 
registers, clock, clock enable, and reset.

When converting to LatticeECP from Xilinx Spartan-3, you can convert 
Xilinx LUT-based shift registers by utilizing Lattice Semiconductor EBR or 
distributed RAM.

Figure 7: Inferring Pseudo-Dual-Port RAM in Precision RTL Synthesis 
Verilog HDL

module sync_ram_dualport (clk_in, clk_out, we, addr_in, 
addr_out, data_in, data_out);
parameter data_width = 16;
parameter addr_width = 16;
input clk_in;
input clk_out;
input we;
input [addr_width - 1:0] addr_in;
input [addr_width - 1:0] addr_out;
input [data_width - 1:0] data_in;
output[data_width - 1:0] data_out;
reg [data_width - 1:0] data_out;
reg [data_width - 1:0] mem [(32'b1 << addr_width) - 1:0];

always @ (posedge clk_in) begin
if (we)

  mem[addr_in] <= data_in;
end

always @ (posedge clk_out) begin
data_out <= mem[addr_out];

end

endmodule
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Converting DDR Interfaces
The key trick for the interface is shifting the DQS strobe-in pin by 90 degrees 
by the time it reaches the register. Unlike Spartan-3, the LatticeEC and 
LatticeXP devices have a DQS shift circuit built in, so remove the DQS LUT-
based logic.

Implement the interface with IPexpress to avoid errors. The DQS is generated 
from DCM. You have to manually shift the clock because it does not 
dynamically adjust.

Figure 8 compares DDR interface code for Spartan-3 and LatticeEC devices.

Figure 8: Comparison of DDR Interface Code

Spartan-3 LatticeEC

library ieee;
use ieee.std_logic_1164.all;
entity ddr_dqs_sp3 is
port(

clk : in std_logic;
rd_clk         : in std_logic;
DDR_DQS_reset  : in std_logic;
DDR_DQS_enable : in std_logic;
DDR_DQS        : inout std_logic;
DQS            : out std_logic);

end ddr_dqs_sp3;

architecture V of ddr_dqs_sp3 is
begin

VCC <= '1';
GND <= '0';
clk_b <= not clk;
...

U1 : FD port map (D => DDR_DQS_enable, 
Q => DDR_DQS_enable1, C => clk);

U2 : FDDRRSE port map (Q => DQS_q, 
C0 => clk, C1 => clk_b, CE => VCC, 
D0 => VCC, D1 => GND, 
R => DDR_DQS_reset, S => GND);

U3 : OBUFT  port map (I => DQS_q, 
T => DDR_DQS_enable1 ,O => DDR_DQS);

U4 : IBUF port map (I => DDR_DQS, 
O => DQS_in);

U6 : FD port map (D => DQS_in, Q => DQS, 
C => rd_clk);

U5 : keeper port map (o => DDR_DQS);

end V;

library ieee;
use ieee.std_logic_1164.all;
entity ddr_dqs_ec is
port(
clk : in std_logic;
rd_clk         : in std_logic;
DDR_DQS_reset  : in std_logic;
DDR_DQS_enable : in std_logic;
DDR_DQS        : inout std_logic;
ddrclkpol_sig  : out std_logic;

end ddr_dqs_ec;

architecture V of ddr_dqs_ec is
begin
GND <= '0';
clk_b <= not clk;

process(clk)
begin
if rising_edge(clk) then
DDR_DQS_enable1 <= DDR_DQS_enable;

end if;
end process;

U2 : ODDRXB port map (DA => VCC, 
DB => GND, CLK => clkLSR => 
DDR_DQS_reset, Q => DQS_q);

U3 : BB port map (I => DQS_q, 
T => DDR_DQS_enable1, O => DQS_in, 
B => DDR_DQS);

DQSBUF_inst : DQSBUFB port map (
DQSI => DQS_in, CLK => clk, 
READ => rd_clk, DQSDEL => dqsdel, 
DQS => dqs, DDRCLKPOL => ddrclkpol_sig, 
DQSC => dqsc, PRMBDET => prmbdet);

DQSDLL_inst : DQSDLL port map (
CLK => clk, RST => DDR_DQS_reset, 
UDDCNTL => '1', LOCK => dll_lock, 
DQSDEL => dqsdel);

end V;



Moving Designs from Xilinx Migrating Xilinx Spartan Designs to LatticeECP/EC

FPGA Design Guide 24

Replacing Constraints
Replace the Xilinx timing and device constraints (.ucf) file with a Lattice 
Semiconductor source constraints or preferences file (.prf). See Table 16 for 
equivalent Lattice Semiconductor preferences.

Table 17 shows some examples of converting Synplify and Precision RTL 
Synthesis timing constraints to Lattice Semiconductor preferences. Always 
put: Block RESETPATHS; Block ASYNCPATHS.

Table 16: Lattice Semiconductor Equivalents of Xilinx Constraints

Xilinx Constraint Constraint Function Lattice Preference

MAXDELAY Specifies the maximum delay in a net. MAXDELAY

MAXSKEW Specifies the maximum skew in a net. MAXSKEW

NODELAY Reduces setup time at the cost of 
positive hold time.

INPUT_SETUP to 
specify the setup time at 
input port or input 
register.

OFFSET Specifies correlation between a global 
clock and its associated data in and 
data out pin. Specifies tSU and tCO on 
data registers.

OFFSET

Period Specifies the timing relationship of a 
global clock, such as an fMAX 
requirement.

PERIOD

DRIVE Controls the output pin current value. Edit ASIC I/O in Design 
Planner

FAST Turns on Fast Slew Rate Control. Edit ASIC I/O in Design 
Planner

IOB Specifies whether a register should be 
placed within the IOB of the device.

 LOCATE

IOBDELAY Specifies a delay before an input pad 
feeds the IOB, or an external element, 
from the IOB. The input pad can either 
feed the local IOB flip-flop or an 
external element from the IOB.

INDELAY/FIXEDDELAY 
attribute in Design 
Planner

IOSTANDARD Specifies the I/O standard for an I/O 
pin.

Edit ASIC I/O in Design 
Planner

KEEP Prevents a net from being absorbed by 
a block or synthesized out.

LOCK
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Figure 9 shows a Perl script for converting a Xilinx .ucf into a Lattice 
Semiconductor .lpf.

Table 17: Converting Synplify and Precision RTL Synthesis Timing Constraints

Synplify (sdc File Command) Precision (tcl Command) Lattice ispLEVER .prf

define_clock -name {CLK_TX} 
-freq 400 -rise 1.0 -fall 
2.5

create_clock -design rtl 
-name CLK_TX -freq 400 
-waveform {1 2.5}

FREQUENCY 400.0 MHz; 

define_input_delay 2.00 
-clock CLK_TX {d0[7:0]} 

set_input_delay -design rtl 
-clock CLK_TX 2 d0(7:0)

INPUT_SETUP ALLPORTS 2.0 ns 
CLKPORT "clk" 

define_output_delay 2.00 
-clock CLK_TX {Q[7:0]} 

set_output_delay -design 
rtl -clock CLK_TX 2 Q(7:0)

CLOCK_TO_OUT ALLPORTS 2.0 
ns CLKNET "clk_int" 

define_path_delay -from 
{{p:RESET}} -to 
{{i:Q[7:0]}} -max 5.000

set_max_delay 11.0 -from 
{input_ A input_ B} -to 
Y_output

MAXDELAY FROM PORT "a" TO 
CELL "reg_Q" 5.0 ns; 

define_multicycle_path 2 
-from [get-pins reg_alu/Q]  
-to [get_pins reg_mult/D]

set_multicycle_ path 2 
-from reg_alu* -to reg_mult

MULTICYCLE FROM CELL 
"reg_Q" CLKNET "clk_int" 
5.0 ns;

define_false_path -from 
RESET

set_false_path -from RESET BLOCK RESETPATHS; 

Figure 9: .ucf to .lpf Conversion Script

#ucf2lpf.pl 
# Version 1.0, April 23, 2007, thscott 
# Converts Xilinx UCF format to Lattice LPF format. I/O Placement Constraints. 
# 
#Potential enhancements?: 
# -PERIOD TIME-SPEC 
# -TIMING IGNORE 
# -PATH EXCEPTIONS 
# 
#Input: 
# Xilinx ucf format 
# 
#Output: 
# Lattice lpf format 
# 
#Substitution rules: 
# 1) Placement Constraints for I/O 
# UCF: NET io_net_name LOC=P111; # PLCC/PQFP type 
# LPF: LOCATE COMP "io_net_name" SITE "111"; 
# UCF: NET io_net_name LOC=A11; # PGA/BGA type 
# LPF: LOCATE COMP "io_net_name" SITE "A11"; 
# 
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#Header 
if ($#ARGV == -1) { 

print "\nucf2lpf.pl: Version 1.0\n"; 
print "Usage: ucf2lpf.pl [options] input > output\n"; 
print " -plcc PLCC/PQFP type package (Default PGA/BGA type).\n"; 
print " -lat Lattice style underscore __ bus delimiter.\n"; 
print " -prtl Precision RTL style parens () bus delimiter.\n"; 
print " Default Synplify style underscore _ bus delimiter.\n"; 
print "Converts Xilinx UCF LOC to Lattice LPF LOCATE format.\n\n"; 
die; 

}

#Sort arguments 
foreach $arg (@ARGV) { 

if ($arg eq "-plcc") { $plcc="TRUE";} 
if ($arg eq "-lat") { $lat="TRUE"; } 
if ($arg eq "-prtl") { $prtl="TRUE";} 

}

#Access csv input file 
$file = $ARGV[$#ARGV]; # Name the file 
open(INFO, $file) or die "File $file not found"; # Open the file 
@ucffile = ; # Read it into an array 
close(INFO); # Close the file 
#print "@ucffile"; # Print the array

foreach $ucfconstraint (@ucffile) { 

if ($ucfconstraint =~ /#/ ) { next; } # Skip ucf comment lines 

# Process I/O Placement Type Constraints 
if ($ucfconstraint =~ /NET.*LOC/) { 
$lpfconstraint = $ucfconstraint; 
$lpfconstraint =~ s/NET/LOCATE COMP/; 

if ($lat eq "TRUE") { 
$lpfconstraint =~ s/ $lpfconstraint =~ s/>/_/; 

} elsif ($prtl eq "TRUE") { 
$lpfconstraint =~ s/ $lpfconstraint =~ s/>/)/; 

} else { 
$lpfconstraint =~ s/ $lpfconstraint =~ s/>//; 

} 

if ($plcc eq "TRUE") { 
# Detect string "LOC" then zero or more whitepace characters then character =. 
# Replace with string "SITE".
$lpfconstraint =~ s/LOC\s*=/SITE/; 
$lpfconstraint =~ s/SITE\s*"P/SITE "/; 
$lpfconstraint =~ s/SITE\s*P/SITE /; 

} else { 
$lpfconstraint =~ s/LOC\s*=/SITE /; 

}; 
print "$lpfconstraint"; 

}; 

}

Figure 9: .ucf to .lpf Conversion Script (Continued)
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Converting Xilinx Virtex II to LatticeECP/EC Devices
Take the following steps when converting Xilinx Virtex II to LatticeECP/EC 
devices:

Convert DLL to PLL.

Create MUXCY and MUXCY_L Verilog HDL modules.

Create RAMB16_S36_S36 Verilog HDL modules.

Converting Xilinx DLL to Lattice Semiconductor 
PLL
This section illustrates the guidelines that you should follow when converting 
Xilinx DLL in Virtex II to Lattice Semiconductor PLL in LatticeECP/EC devices. 
Figure 10 and Figure 11 show how a DLL element is instantiated in Xilinx 
software and how the replacement would then look in Lattice Semiconductor 
software.

Figure 10: Xilinx Code – DLL Instantiation

//PCIXCLK input pad
IBUFG_LVCMOS33 PCIXCLK_IBUFG (

.O(PCIXCLI_in),

.I(PCIXCLK));

//PCIXCLK DLL
CLKDLL PCIXCLK_DLL (

.CLKIN(PCIXCLK_in),

.CLKFB(clock),

.RST(1'b0),

.CLK0(PCIXCLK_dll));

// PCIXCLK global clock buffer
BUFG PCIXCLK_BUFG (

.O(clock),

.I(PCIXCLK_dll));
PULLUP P1 (FFE_CRDY_N;
PULLUP P2 (NFL_CRDY_N;

Figure 11: Lattice Replacement Code – PLL Instantiation

/*Start
input PCIXCLK; //PCI-X clock - 133 MHz */
input PCIXCLK /* synthesis IO_TYPE="LVCMOS33" */

/* End

PCIX_CLK_PLL PCIXCLK_PLL (
.CLKI(PCIXCLK),
.CLKFB(clock),
.CLKOP(clock));
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Creating MUXCY and MUXCY_L Verilog HDL 
Modules
The second step is to create MUXCY and MUXCY_L Verilog HDL modules in 
the example. Figure 12 shows how you would instantiate the MUXCY module 
for Virtex II.

Wide Multiplexing
Map the Xilinx MUXF5 (I0, I1, S, O) to the Lattice Semiconductor PFUMUX 
(BLUT, ALUT, CO, Z).

Map the Xilinx MUXF6 (I0, I1, S, O) through MUXF8 (I0, I1, S, O) to the 
Lattice Semiconductor L6MUX21 (D0, D1, SD, Z).

Optimal Carry-Chain Handling
In LatticeECP/EC, LatticeXP, and MachXO devices, the non-registered carry-
sum cannot bypass the transparent latch, so it incurs a TLATCH delay of 
~0.9 ns. If this becomes the critical path, use a workaround, such as carry-
save or other LUT-logic operation.

The alternative is to always modify RTL to use registered carry-sum.

Figure 12: Verilog HDL Code – MUXCY and MUXCY_L

module MUXCY ( // or MUXCY_L
output reg O,
input S, DI, SI);

always @ (*)
/* full_case, parallel_case */
case ({S, DI, SI})

3'b000: O = 1'b0;
3'b001: O = 1'b0;
3'b100: O = 1'b0;
3'b110: O = 1'b0;
default: O = 1'b1;

endcase
endmodule
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Converting Xilinx RAMB16_S36_S36 to Verilog 
HDL
This section illustrates the conversion with a series of figures that show 
instantiations of modules in Verilog HDL. See Figure 13, Figure 14, and 
Figure 15.

Figure 13: Original Instantiation – RAMB16_S36_S36

// 512x36 block RAM
RAMB16_S36_S36 bram1  (

.ADDRA(read_addr), .ADDRB(write_addr),

.DIB(write_data[63:32]), .DIA(32'b0), 

.WEA(1'b0), .WEB(write_allow), 

.CLKA(read_clock), .CLKB(write_clock), 

.SSRA(1'b0), .DIPA(4'b0), .SSRB(1'b0), .DIPB(4'b0),

.ENA(read_enable), .ENB(1'b1), 

.DOA(read_data[63:32]));

// 512x36 block RAM
RAMB16_S36_S36 bram0  (

.ADDRA(read_addr), .ADDRB(write_addr),

.DIB(write_data[31:0]), .DIA(32'b0), 

.WEA(1'b0), .WEB(write_allow), 

.CLKA(read_clock), .CLKB(write_clock), 

.SSRA(1'b0), .DIPA(4'b0), .SSRB(1'b0), .DIPB(4'b0),

.ENA(read_enable), .ENB(1'b1), 

.DOA(read_data[31:0]));

Figure 14: Replacement Instantiation – RAMB16_S36_S36

// 512x36 block RAM
RAMB16_S36_S36 bram1  (

.ADDRA(read_addr), .ADDRB(write_addr),

.DIB(write_data[63:32]), .DIA(32'b0), 

.WEA(1'b0), .WEB(write_allow), 

.CLKA(read_clock), .CLKB(write_clock), 

.SSRA(1'b0), .SSRB(1'b0), 

.ENA(read_enable), .ENB(1'b1), 

.DOA(read_data[63:32]));

 // 512x36 block RAM
RAMB16_S36_S36 bram0  (

.ADDRA(read_addr), .ADDRB(write_addr),

.DIB(write_data[31:0]), .DIA(32'b0), 

.WEA(1'b0), .WEB(write_allow), 

.CLKA(read_clock), .CLKB(write_clock), 

.SSRA(1'b0), .SSRB(1'b0), 

.ENA(read_enable), .ENB(1'b1), 

.DOA(read_data[31:0]));
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Some considerations when converting Virtex II to LatticeECP/EC are that you 
must delete the Xilinx Verilog HDL source file from your project, insert tick 
marks instead of single quotation marks with include statements, timing 
considerations of MUXCY versus MUXCY_L, and overall timing of the design.

Figure 15: Replacement Code – RAMB16_S36_S36 

module RAMB16_S36_S36 (
input [8:0] ADDRA,
input [8:0] ADDRB,
input [31:0] DIB,
input [31:0] DIA,
input WEA,
input WEB,
input CLKA,
input CLKB,
input SSRA,
input SSRB,
input ENA,
input ENB,
output [31:0] DOA,
output [31:0] DOB,);

wire [31:0] DataInB, DataInA;
assign DataInB[31:0] = DIB;
assign DataInA[31:0] = DIA;
wire [31:0] QA;
wire [31:0] QB;
assign DOA = QA;
assign DOB = QB;

// 512x16 EBR1
RAMB16_S16_S16 Inst1_RAMB16_S16_S16 (
.AddressA(ADDRA), .AddressB(ADDRB), 
.DataInB(DIB[15:0]), .DataInA(DIA[15:0]), 
.WrA(WEA), .WrB(WEB), 
.ClockA(CLKA), .ClockB(CLKB), 
.ResetA(SSRA), .ResetB(SSRB), 
.ClockEnA(ENA), .ClockEnB(ENB), 
.QA(DOA[15:0]), .QB(DOB[15:0]));

// 512x16 EBR2
RAMB16_S16_S16 Inst2_RAMB16_S16_S16 (
.AddressA(ADDRA), .AddressB(ADDRB), 
.DataInB(DIB[31:6]), .DataInA(DIA[31:6]), 
.WrA(WEA), .WrB(WEB), 
.ClockA(CLKA), .ClockB(CLKB), 
.ResetA(SSRA), .ResetB(SSRB), 
.ClockEnA(ENA), .ClockEnB(ENB), 
.QA(DOA[31:6]), .QB(DOB[31:6]));

endmodule
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Converting DDR Interfaces
The key trick for the interface is shifting the DQS strobe-in pin by 90 degrees 
by the time it reaches the register. Unlike Virtex II, the LatticeEC and 
LatticeXP devices have a DQS shift circuit built in, so remove the DQS LUT-
based logic.

Implement the interface with IPexpress to avoid errors. The DQS is generated 
from DCM. You must manually shift the clock because it does not dynamically 
adjust.
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4
Incremental and Modular 
Design Methods

This chapter describes the strategies of incremental and modular design 
methods. It begins with the necessity for and benefits of this design approach, 
followed by instructions and guidelines for specific tasks and steps, such as 
logic partitioning, device floorplanning, and simulation. A design example is 
provided to illustrate the strategies in practice.

Necessity and Benefits
In conventional FPGA designs, a hierarchical design is flattened into a single 
netlist before logic synthesis and downloading, and the entire design must be 
recompiled for each small change. With incremental and modular design 
methods, you can keep part of your design unchanged as you make changes 
elsewhere in the design.

This approach works best for large designs that can be partitioned easily into 
self-contained modules on the chip. It requires good communication between 
design team members to ensure successful final assembly of the partitions. It 
also requires sound preliminary planning and iterative experimentation.

Figure 16 illustrates the team scenario that the modular design approach 
enables.The architect creates the top-level design. The rest of the design 
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team works on constituent designs that are to be merged into one cohesive 
design in the final assembly stage.

Refinement feedback loops between team members and the architect are 
required to meet the budget. During those loops, incremental changes can be 
performed. The feedback loops should also accommodate incremental 
verification of the design at the RTL or gate levels.

Typical Work Flow and Data Flow
Here is the typical work flow of the incremental and modular design approach:

1. Partitioning and budgeting

2. Independent implementation of each module

3. Assembly of the modules

4. Incremental change or expansion

Figure 16: Team Scenario
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Figure 17 shows a typical data flow of the incremental and modular design 
approach. 

First, the top-level RTL is partitioned to ease optimization, lower interconnect, 
and isolate critical paths. Then a top-level module budget is defined according 
to floorplanning and timing constraints. Usually this can be done concurrently 
with submodule synthesis, where each team member writes and simulates 
HDL sources. Ideally they can deliver area utilization (reported by synthesis 
tools) to the architect. The architect can then budget enough resources for 
each module. Finally all implemented modules are assembled with other 
external logic at the top level. The architect can control the degree of a 
submodule implementation for the final assembly.

Major Advantages
Here are the major advantages of the modular design methods:

You can leverage the best people for the job, no matter where they are or 
in what area they are specialized.

You can have multiple engineers work on a large-scale design to shorten 
the design period.

Your incremental changes will have low impact to the entire design. 

Modular design complements your field upgrade strategy. For example, 
Lattice Semiconductor’s MachXO and LatticeXP devices, along with the 
Lattice TransFR technology, enable you to make field upgrades with 
minimal down time.

You can accommodate platform-oriented products that have different 
component combinations for certain markets. You can also support a 
family of products with different feature sets.

Figure 17: Typical Data Flow
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Incremental Changes
Modular design methods reduce the impact of incremental changes to earlier 
revisions of a design. Figure 18 illustrates some typical incremental change 
scenarios.

In the original revision, each module requires a synthesis, MPAR (map, place, 
and route), and verification flow, which is typically the most time-consuming 
flow. 

In the first revision, only module C is to be corrected, optimized, or changed. 
This change should have a very low impact on other modules since only 
module C requires a new synthesis, MPAR, and verification pass. 

In the second revision, two modules are to be added. Given a bus-oriented 
platform design, this again has a low impact on the entire design using the 
modular approach.

Identify Design Candidates
Here are some guidelines on how to identify design candidates for a modular 
design approach: 

The design should be large enough to warrant the extra effort of logic 
partitioning and floorplanning.

The design should have clearly defined functional partitions.

The design team must be well prepared for intense cooperation.

The architect should be familiar with the device architecture and locality of 
certain resources like embedded blocks, specialized PIOs, and logic 
fabric.

You can run your block modular design project with the help of ispLEVER's 
Block Modular Design Wizard or entirely from the command line. Incremental 
changes can be easily realized at various stages of the ispLEVER design 
flow.

Figure 18: Incremental Change Scenarios
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Block Modular Design Flow 
The BMD (Block Modular Design) Wizard in the ispLEVER software assists 
distributed teams in collaborating on large FPGA designs. When used with 
incremental design strategy, it is especially effective in limiting changes to a 
design and minimizing impact to other modules in the design. The major 
process steps in the BMD design flow in ispLEVER include:

Step 1. Top-Level Design Entry

A top-level model is created in HDL with constituent design modules as 
black boxes, using good logic partitioning guidelines. 

Step 2. Block Module Synthesis 

The HDL design files for each block are synthesized. The utilization 
estimates reported by synthesis guide the top-level architect to budget 
enough resources for that module. Synthesis can be performed on blocks 
in any order. 

Step 3. Block Module Configuration

In this step, the top-level architect budgets the resources and the timing 
target for each submodule. Each module is allocated a region with an 
anchor point and border. In the ispLEVER design flow, the top-level 
architect generates projects to archive and deploy to each team member.

Step 4. Block Module Implementation

This step implements each block and applies the top-level design 
constraints. This must be completed before final assembly. The top-level 
floorplan with region constraints must already be completed before this 
step. 

Successful implementation of blocks depends largely on the preferences 
assigned for area budgeting and reservation and I/O placement 
determined in the previous step. If incorrect, steps 3 and 4 must be 
repeated. 

Step 5. Assembly

In this final step, all the blocks are merged into one cohesive design. 

You can refer to the “Block Modular Design Step Guide” in the ispLEVER 
online Help for more detailed information on each step.
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Logic Partitioning
Good results from the modular design approach begin with good logic 
partitioning of your RTL design to simplify the coding, synthesis, simulation, 
floorplanning, and optimization phases of the design. 

Resource partitioning and budgeting is an iterative process. You should be 
aware of the required resources in terms of size and performance of each 
submodule. When assembling submodules that are already implemented, 
you can take advantage of the post-map results to guide your resource 
budgeting.

Figure 19 illustrates a partitioned FPGA design. The convention for most 
FPGA tools today is to allocate a branch of the design hierarchy to each 
module, along with a budget for timing and device resources. In a team 
environment, each team member can establish a logical user hierarchy to the 
degree appropriate for that design module.

Partitioning Guidelines
Commonly recommended partitioning guidelines include the following:

Submodules should be synchronous with registered I/Os. Registering the 
I/Os of a module isolates critical paths and helps the synthesis tool to 
implement the combinatorial logic and registers in the same module.

Related combinatorial and arithmetic logic should be collected in the 
same module. Keeping related combinatorial terms and arithmetic in the 
same design module allows logic hardware resources to be shared. It also 
allows a synthesis tool to optimize the entire critical path in a single 
operation.

Pieces of logic with different optimization goals should be separated. 
Separating critical paths from non-critical paths makes logic synthesis 
more efficient. If one portion of a design module must be optimized for 
size and a second portion must be optimized for speed, the two portions 
should be separated into two design modules.

Interconnect between modules should be minimized to avoid routing 
congestion later when the design is assembled and routed.

Figure 19: Sample Partitioned FPGA Design
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Use separate files as a housekeeping measure to avoid unnecessary 
recompiling of logic during incremental synthesis.

Directory Structure
Once logic partitioning is completed, you should create a proper directory 
structure for your top-module and submodule projects. If you use the Project 
Navigator and Block Modular Design Wizard tools to manage the design, the 
top-level design module is created in the default project directory, and each 
submodule is written to a subdirectory of the project directory. The Block 
Modular Design Wizard handles your directory structure automatically as you 
create the top-level and constituent submodules in the Wizard interface. In the 
command-line flow, you must define a root directory that contains a 
subdirectory of the root for submodule files. 

Device Floorplanning
After the logic partitioning stage, you define a top-level module budget in 
terms of a floorplan and timing constraints. Usually you can define this budget 
when you synthesize the submodules. Each team member writes and 
simulates HDL and should be far enough along to deliver area utilization 
numbers reported by the synthesis tools to the architect, so they can budget 
enough resources for that module.

Device floorplanning is used in two contexts in the modular design flow: in the 
physical partitioning of modules and, optionally, in a module itself to achieve 
timing closure. The top-level floorplan should consider both the FPGA 
elements required per module and the relative data flow between modules.

Top-Level Floorplanning Procedures
Top-level floorplanning for modules is a critical task in the block module 
configuration step of the ispLEVER BMD flow. It typically includes the 
following procedures:

Determine the best relative position of each module. 

The best way to visualize this is from the RTL schematic view commonly 
available from your synthesis tool, as well as a floorplan view where you 
can see PIO interconnect. 

Lock global resources like PIOs and PLL/DLLs. 

FPGAs may provide specialized I/O drivers for double data rate (DDR) or 
serializer/deserializer (SERDES) interfaces at specific locations of the 
device package, so you must allow for these locations in the floorplan.

Allow for embedded FPGA blocks.

The logic fabric of Lattice FPGAs is commonly split by rows of embedded 
blocks like memory or DSP functions. These also influence the position of 
modules.

Allow for irregular shapes.
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Apply prohibit or reserve regions within a module to create irregular 
shapes for FPGA systems with rectangular module shapes.

Allow for future upgrades.

Allow some regions for future upgrades. For products with long life cycles, 
such as aerospace or medical equipment, you may want to keep some 
unused resources for future field upgrades.

Taking Architectures into Account
The logic fabric of modern FPGAs is commonly split by rows of embedded 
blocks like memory or DSP functions, as shown in Figure 20. 

Sometimes a segmented FPGA architecture makes it difficult to create a 
floorplan with a good data flow using rectangular module shapes. To address 
this problem, ispLEVER supports both resource sharing by module 
overlapping and the ability to mask off overlapped regions that are reserved 
for other modules.

Block-Level Implementation
Module implementation and block-level placement and routing is normally 
carried out in the block module implementation step of the BMD flow. The 
place-and-route tools use the floorplan established earlier to constrain the 
results to a particular area of the device. In an ideal team environment, this 
can be done largely in parallel. Synthesis and simulation tasks can be 
performed on individual modules or as part of an integrated build.

Since the success of the top-level budget is closely related to block-level size 
and timing reports generated from synthesis, these reports serve the architect 
as a guide for floorplanning and timing budgeting. This bottom-up approach is 
the fastest way to arrive at a good physical partition.

Figure 20: Modern FPGA Device Architecture (LatticeECP)
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Top-Level Assembly
Top-level assembly stitches submodules together according to annotated 
data. Some FPGA vendors allow different degrees of annotation ability but 
usually placement is the most common. Often a global reroute on assembly is 
a necessary and beneficial technique to meet timing. After top-level assembly, 
you can perform the final timing analysis and simulation.

Here are some troubleshooting tips:

At this stage, module overlaps designed earlier may cause resource 
conflicts. You may need to adjust modules to obtain a fit.

The biggest side effect of a partitioned and floorplanned design often 
occurs after assembly when critical paths may cross module boundaries. 
This effect is usually the result of unsuccessful floorplanning of the 
module itself to account for the data flow.

Simulation Scenarios
You might employ the following simulation scenarios when you use a modular 
design approach.

Figure 21 shows a hierarchical view of a modular design with test bench and 
alternative implementations superimposed. You can see the \top top-level 
design with submodule_1 through _n. Each submodule can employ its own 
test bench to verify the functionality of the RTL and timing using the gate-level 
implementation. Another option is to leverage the RTL for surrounding 
modules to serve as drivers or loads.

Figure 21: Simulation Scenarios
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Incremental Design Methods
The benefits of modular FPGA design become apparent when an incremental 
change or expansion of a design is required. Until modular methods were 
widely available from within the FPGA implementation tools, incremental 
changes were largely done on the flattened FPGA design that increased the 
run time for each change made. Now you can see how modular methods 
extend the options for incremental changes to a design.

The changes required determine the best place to start:

If the model behavior must be changed, you must modify the HDL source 
and then trigger a re-synthesis.

If you want to change an option after synthesis, like PAR optimization, 
timing, or location constraints, you can start from the PAR stage.

Some device characteristics like memory initialization or PLL parameters 
can be changed after placement and routing. This is usually done with an 
ECO (engineering change order) post-processor or device editor utility. 
Changes taken at this point must be carefully documented because your 
physical implementation is out of synchronization with your original HDL 
source and preferences.

Some of the incremental design tools available in the FPGA design flow 
include the following:

Incremental synthesis 

Incremental synthesis is available from most FPGA synthesis tools like 
Precision RTL Synthesis and Synplify. They allow you to create logical 
partitions and to compile and synthesize each partition independent of 
other partitions. You can benefit from isolated changes, and you can 
distribute the changes among other designers.

Device editor

You can use a device editor like ispLEVER's EPIC or a batch interface to 
update database parameters. These sorts of editors are best employed if 
you need to make a small, precise change very quickly and you are willing 
to have the physical implementation differ from the source files. 

ECO (engineering change order) post-processing

Examples of ECO changes include changes to I/O buffer configuration, 
memory initialization, a PLL parameter, or additional routing to feed 
internal signals to a PIO for the sake of troubleshooting.
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Design Example
This section provides a design example to better understand the ideas and 
tools involved in incremental and modular design methods.

Logic Partitions and Data Flow 
Figure 22 shows the RTL view of the entire design example. It is a data-path 
intensive design with several pipelined data channels. These data channels 
are multiplexed and controlled by an internal timing circuit. The schematic of 
the blocks and interconnect generated from Precision RTL Synthesis is a 
good way to determine logic partitions. The partitioning is illustrated with 
black-, red-, and green-colored frames in the figure.

For a modular approach, it is recommended that you adjust logic synthesis to 
optimize module size and retain the hierarchy, which makes identification and 
grouping of logic easier for the implementation tools. 

The example demonstrates a bottom-up approach in which you have all the 
RTL available as a guide to establish a module area budget. In practice, a 
design architect is likely to apply both bottom-up and top-down approaches, 
and budget modules with both accurate and inaccurate information. 

Figure 22: Logic Partitions of the Design Example
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Figure 23 shows a block diagram of the design data flow. The data flow 
influences the external PIO placement and the relative placement of the 
submodules.

Floorplan Sketch
Figure 24 shows the floorplan of the design example. In this design, most of 
the PIOs are input channels that feed the No.1 black block in the center 
bottom. The blue arrows illustrate the relative data flow among blocks. These 
connections influence any additional floorplanning within each module. The 
white empty region illustrates logic resources reserved for later expansion or 
changes of the design.

Figure 23: Data Flow Illustrated

Figure 24: Floorplan Sketch of the Design Example
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Flat Implementation
In this design example, all the RTL is available. You can perform a flat 
implementation to gain a preliminary understanding of the relative placement 
and area consumption of each logic partition. In Figure 25, the four blocks are 
highlighted in white, red, and green. Blocks are placed adjacent to certain 
physical resources. Their relative positions are based on connectivity and 
critical paths. In this way, you can obtain an early prototype of the device 
floorplan.

Figure 25: Flat Implementation of the Design Example
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Submodule Floorplan
Figure 26 shows the design example in the ispLEVER Block Modular Design 
Wizard tool, where you can anchor and resize each module. The four module 
regions are allocated in black, red, and green. The Wizard reads the top-level 
design netlist, where each module is a black box.

The BMD Wizard in ispLEVER makes the design flow much easier. As the 
position of each module is anchored and the size of each module is decided, 
the resources of each module are reported in real time. Once a module is 
created, the design architect can archive the top- and submodule project for 
team members to perform placement and routing. 

The BMD Wizard in ispLEVER also eases design migration. If the target 
device, package, or speed grade is updated, all the projects are updated with 
this information. And the device floorplan can be quickly validated, given a 
new resource set.

I/O Connectivity
At an early implementation stage, you can check the relative data flow 
between the modules and the PIO connections. In this example, the 
submodules are only placed, but not routed, for the sake of speed. So at the 
final assembly stage, you can inspect the utilization, placement, and 
connections. 

Figure 27 shows the design example in the ispLEVER Design Planner with 
the Package View on the left and the Floorplan View on the right. You can 

Figure 26: Submodule Floorplan
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cross-probe between the external I/Os and the floorplan. The yellow flywires 
show logical connections.

Figure 27: Design Example in ispLEVER Design Planner
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Critical Paths
Figure 28 shows the results of the fully placed and routed design in the 
Design Planner. It illustrates a side effect of floorplanning: new critical paths 
now cross submodule boundaries. The critical paths are shown as flywires 
here again, running from the corners of the red modules up to the green 
module in the center. Even with these critical side effects, the design is 
already very close to meeting the timing constraints. With some more 
floorplanning to re-orient the output driver branch of the submodules on the 
left and right, you can easily exceed the goals.

Figure 28: Critical Paths
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Sample Design Implementation
Figure 29 compares the utilization, performance, and run time of the 
conventional flat design methods with those of the modular design methods. 
The first column is for a basic flat and unfloorplanned implementation. 
Utilization is around 47 percent, with speed optimization selected with 
Precision RTL synthesis. Although you get quick results with about 6 minutes 
of PAR run time, the target frequency is not met. The multiplier with question 
marks indicates that there are likely multiple runs to close timing. Different 
placement seeds or routing delay reduction must be conducted to improve the 
design implementation results.

The second column shows the implementation results, using the block 
modular design methods. Area utilization is a bit larger than that of the flat 
implementation. But you have achieved better target frequency. What is more 
important is that the design is now in a much better state for expansion or 
updating in future revisions.

Conclusion
New modular FPGA design techniques provide major advantages to 
distributed design teams. Portions of an entire design can be processed 
independently, allowing multiple designers to work in parallel. The timing of 
each constituent functional module is preserved because each module can be 
assigned to a particular region on the device, and the tools are constrained to 
use resources from that region. 

To get the best results from a modular approach, quality logic partitioning and 
quality floorplanning are needed to ease optimization, device usage, and 
timing closure.

Figure 29: Comparison of Design Implementation Results
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Table Notes:
1. PAR: Placement effort=5, Routing iterations=6
2. Synthesis: Area optimized with “firm” hierarchy
3. LPF: Frequency=160 MHz
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Related Documentation
To supplement the information provided in this chapter, see the following 
documentation for related topics and guidelines:

“Block Modular Design Step Guide” in the ispLEVER software online Help

FPGA Block Modular Design Tutorial
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5
Logic Synthesis 
Guidelines

This chapter provides general guidelines for creating register-transfer-level 
(RTL) designs. It also provides syntax examples for VHDL and Verilog HDL in 
Synplify and Precision RTL Synthesis.

Synthesis Design Flow and Guidelines
The largest influence you have over the performance and utilization of an 
FPGA is how your logic design is expressed and synthesized. Lattice 
Semiconductor recommends following the guidelines and flow described in 
this section. It also recommends that you study the synthesis style topics 
provided in the Precision RTL Synthesis Style Guide or the Synplicity FPGA 
Synthesis Reference Manual to write the best RTL source possible.

The following steps outline the general logic synthesis design flow 
recommended for Lattice Semiconductor FPGAs: 

1. Create a design in Verilog HDL or in VHDL. The designs can be 
technology-independent or contain family-specific modules or IP cores; 
however, they cannot contain instances of library elements from other 
technology libraries. Refer to the Lattice Semiconductor FPGA Libraries 
Manual for module names that are reserved by Lattice Semiconductor for 

Note

You can view the Precision RTL Synthesis Style Guide and the Synplicity FPGA 
Synthesis Reference Manual by clicking the appropriate links in the “Third-Party 
Manuals” topic in the ispLEVER software online Help. You must install the synthesis 
tools to be able to view the manuals.
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each device family. 

Consider using the following HDL coding styles to obtain the best results:

Hierarchical coding style

Design partitioning 

Design registering and pipelining

Avoiding gated clocks

Avoiding unintentional latches

State machine encoding

2. When possible, use the IPexpress tool in the ispLEVER software to create 
a module. The output from IPexpress can be in EDIF, VHDL, or Verilog 
HDL. Since the modules generated are optimized for Lattice 
Semiconductor device architectures, they often provide speed and area 
benefits over netlists produced by a synthesis tool. The output from 
IPexpress (VHDL or Verilog HDL only) include an instantiation template 
that can be included directly in your design.

3. Verify that the design description is correct by simulating the HDL 
description with the ModelSim software or any HDL-compliant simulator.

4. Create a synthesis project by using the Precision RTL Synthesis software 
or Synplify software. Consider using the following synthesis mapping 
options to obtain the best results:

Fan-out limit: High-fan-out signals (greater than 100) can cause large 
delays and routability problems within an FPGA unless that signal can 
be assigned to specialized routing resources of the device. These 
“clock-spine”-type resources are ideal for clock, set/reset, or clock-
enable signals. For other signals, most synthesis mappers try to keep 
the fan-out under a predefined fan-out limit. 

Guidelines for Precision RTL Synthesis: To limit fan-out, Precision 
RTL Synthesis is guided by technology libraries that specify a 
global fan-out value. The default fan-out limit is 100. Specific cells 
like global buffers that are designed for high-fan-out situations 
carry a larger fan-out limit. Precision RTL Synthesis allows you to 
override the library default value on a per-net basis, using the 
max_fanout attribute. Precision RTL Synthesis addresses fan-out 
violations by splitting the net and replicating the driving cell. If 
replication is not possible, Precision RTL Synthesis will add 
buffers.

Guidelines for Synplify: The Synplify fan-out guide option uses the 
number specified as a guideline, and not as a hard limit. Synplify 
first reduces fan-out by replicating the driver of the high-fan-out net 
and splitting the net into segments. If replication is not possible, 
Synplify buffers the signals. Buffering is expensive both in terms of 

Note
You can view the FPGA Libraries Manual by clicking the appropriate link in the 
ispLEVER online Help “Software User Manuals” topic.
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intrinsic delay and consumption of resources, so it is not used 
unless a slightly higher fan-out limit is specified.

Mapping to GSR resources: Lattice Semiconductor FPGA devices 
provide a dedicated prerouted resource for a global set/reset (GSR) 
that is connected to the set/reset of each flip-flop in the FPGA. The 
GSR is connected, regardless of any other set or reset defined by your 
design. Most synthesis mappers attempt to associate a common reset 
or set of your design with the GSR resource.

Guidelines for Precision RTL Synthesis: During the synthesis 
process, Precision RTL Synthesis analyzes the design to detect 
global set/reset signals and map to a GSR buffer. By default, if 
there is a single reset used in the design, Precision RTL Synthesis 
will connect that reset signal to a GSR instance, even if some flip-
flops have no reset at all.

Guidelines for Synplify: Synplify creates a GSR block to access 
the GSR resource for Lattice Semiconductor FPGAs if it is 
appropriate for the design. By default, if there is a single reset 
used in the design, Synplify will connect that reset signal to a GSR 
instance, even if some flip-flops have no reset at all. Usually, flip-
flops without set or reset can be safely initialized because the 
reset is only used when the device is turned on. If this is not the 
case, you must turn off the Force GSR Usage option. When this 
option is turned off, Synplify requires that all flip-flops have resets 
and that the resets be the same before it uses GSR.

Disable I/O mapping: In some design scenarios, such as incremental 
or block modular design, you may wish to suppress the addition of I/O 
buffers to the EDIF output for your project. Synthesis mappers 
typically provide the option to override the I/O technology cell targeted.

Guidelines for Precision RTL Synthesis: The Add IO Pads option 
controls whether I/O buffers are added to the output EDIF netlist. 
The Pad Type port constraint directs what IO pad is applied.

Guidelines for Synplify: The Synplify Disable I/O Insertion option 
controls whether I/O buffers are added to the output EDIF netlist. 

5. Perform logic synthesis of the design description, using Precision RTL 
Synthesis or Synplify to meet a desired area and timing target. If you are 
within 5 to 10 percent of your desired goal, you can map, place, and route 
the design. If not, return the design with additional constraints, recode, or 
both until you achieve the desired results. You should consider using the 
following synthesis optimizations to obtain the best results:

Timing constraints: These constraints should include a period or 
frequency target for all clocks, multi-cycle relationships, false paths, 
and I/O timing.

Area versus timing optimization: You can set this option globally or on 
a module-by-module basis, if this approach can help achieve timing 
closure by reducing signal congestion.

State machine encoding: You can set this option on a machine-by-
machine basis to influence timing or area results.
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Guidelines for Precision RTL Synthesis: Precision RTL Synthesis 
provides area, timing, and timing violation reports based on your 
constraints. Schematic views are available to examine synthesis 
results. If you know the delays outside your chip for inputs and 
outputs, set them with input or output delay port constraints.

Guidelines for Synplify: Basic area and timing analysis reports are 
produced by Synplify. For more complete review and analysis, use 
Synplify HDL Analyst to examine the RTL or technology 
schematics and critical paths. If you know the delays outside your 
chip for inputs and outputs, set them with SCOPE or the 
define_input_delay and define_output_delay timing constraints.

6. Complete an iteration of the map, placement, and routing design flow 
through ispLEVER. Examine the static timing analysis results. The output 
of the TRACE program reports delay through one or more critical delay 
paths.

Guidelines for Synplify: If you do not meet your timing goals, you can 
resynthesize your design with code changes or add or subtract route 
delay differences using the –route option with the define_input_delay 
and define_output_delay timing constraints defined earlier. To have 
Synplify restructure your design to speed up paths, add the –improve 
option to the timing constraints.

7. Using timing closure techniques, use ispLEVER to map, place, and route 
the design. 

8. Verify that the post-route, gate-level design description is correct by 
simulating the HDL output from ispLEVER with the ModelSim software or 
any HDL-compliant simulator.

Reports Produced by Synthesis
Report files created by the synthesis phase provide essential information for 
you to understand the eventual timing and device utilization of the design.

Both Precision RTL Synthesis and Synplify create a resource usage report 
that lists the number of each type of cell used, including the number of look-up 
tables, registers, memories, and DSP blocks. 

Timing reports created by Precision RTL Synthesis and Synplify typically 
show all instances and connections in the design that are near the critical 
path. “Near” means within one “level” of the most critical path. The reported 
instances are sorted by the arrival time at their pins, with the path ends at the 
top of the report and the path beginnings at the bottom. Each connection is 
listed with the delay to the connection and the length of the longest path 
passing through the connection.

Typically, path ends are inputs to flip-flops or primary output cells. Path 
beginnings are flip-flop outputs and primary input cells. You can trace paths 
through the report by matching net names on connections. Timing reports by 
synthesis are an estimate. The actual timing of the design depends heavily on 
placement and routing, the device, and speed grade.
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To obtain a better estimate of the logic delays, run the Map TRACE Report 
process in the Project Navigator (trce) on the mapped design. After this step, 
go through one iteration of Place & Route Design process (PAR) and the 
Place & Route TRACE Report process (trce) to obtain an estimate of the 
routing delays and the critical paths in the design. The final frequency of the 
design depends on a number of factors: the number of logic levels in the 
design, the number of connections and number of nets in the design, the 
packing factor (also number of inputs to a PFU), utilization of tristate buffers, 
number of I/Os (and number of tristatable I/Os and the number of controls), 
the device size, and speed grade. 

Related Documentation
To supplement the information provided in this chapter, see the following 
documentation for related topics and guidelines: 

The ispLEVER online Help

TN1056 - LatticeECP/EC and LatticeXP sysIO Usage Guide

Precision RTL Synthesis Style Guide

Synplicity FPGA Synthesis Reference Manual

FPGA Libraries Manual

http://www.latticesemi.com/lit/docs/technotes/tn1008.pdf
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6
HDL Synthesis Coding 
Guidelines

Coding style has a considerable impact on how an FPGA design is 
implemented and ultimately how it performs. Although many popular 
synthesis tools have significantly improved optimization algorithms for 
FPGAs, it is still the designer’s responsibility to generate HDL code that 
guides the synthesis tools and achieves the best result for a given 
architecture. This chapter provides VHDL and Verilog HDL design guidelines 
for both novice and experienced designers.

The synthesis software itself has a significant effect on implementation. The 
style of the code that you employ in one synthesis tool for one outcome can 
vary greatly from that in another tool. Synthesis tools optimize HDL code for 
logic utilization and performance, but they do so in a way that might not be 
close to your intended design. Knowing the effects of these synthesis tools, as 
well as knowing the most efficient HDL code for your design, are both 
important. 

This chapter also shows how to employ the “linting” technology of the HDL 
Explorer software to produce higher quality code. This analysis tool detects 
common design rule faults that can cause mismatches between pre-synthesis 
and post-synthesis behavior. 
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General HDL Practices
The following recommendations for common HDL coding styles will help you 
generate robust and reliable FPGA designs.

Hierarchical Coding
An HDL design can either be synthesized as a flat module or as many small 
hierarchical modules. Each methodology has its advantages and 
disadvantages. Since designs in smaller blocks are easier to keep track of, 
applying a hierarchical structure to large and complex FPGA designs is 
preferable. Hierarchical coding methodology allows a group of engineers to 
work on one design at the same time. It speeds up design compilation, makes 
changing the implementation of key blocks easier, and reduces the design 
period by allowing the re-use of design modules for current and future 
designs. In addition, it produces designs that are easier to understand.

However, if the design mapping into the FPGA is not optimal across 
hierarchical boundaries, it leads to lower device utilization and design 
performance. You can overcome this disadvantage with careful design 
consideration when choosing the design hierarchy.

Here are some tips for building hierarchical structures:

The top level should only contain instantiation statements to call all major 
blocks.

Any I/O instantiations should be at the top level.

Any signals going into or out of the devices should be declared as input, 
output, or bidirectional pins at the top level.
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Design Partitioning
By effectively partitioning the design, you can reduce overall run time and 
improve synthesis results. Here are some recommendations for design 
partitioning. In the following descriptions, sub-blocks and blocks refer to either 
Verilog HDL modules or VHDL design units.

Maintain Synchronous Sub-Blocks by Registering All 
Outputs
Arrange the design boundary so that the outputs in each block are registered. 
Registering outputs helps the synthesis tool implement the combinatorial logic 
and registers in the same logic block. Registering outputs also makes the 
application of timing constraints easier since it eliminates possible problems 
with logic optimization across design boundaries. Using a single clock for 
each synchronous block significantly reduces the timing consideration in the 
block. It leaves the adjustment of the clock relationships of the whole design 
at the top level of the hierarchy. Figure 30 shows an example of synchronous 
blocks with registered outputs.

Keep Related Logic Together in the Same Block
Keeping related logic and sharable resources in the same block allows the 
sharing of common combinatorial terms and arithmetic functions within the 
block. It also allows the synthesis tools to optimize the entire critical path in a 
single operation. Since synthesis tools can only effectively handle 
optimization of certain amounts of logic, optimization of critical paths pending 
across the boundaries may not be optimal. The example in Figure 31 merges 

Figure 30: Synchronous Blocks with Registered Outputs
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sharable resource in the same block.

Separate Logic with Different Optimization Goals
Separating critical paths from non-critical paths may achieve efficient 
synthesis results. At the beginning of the project, you should consider the 
design in terms of performance requirements and resource requirements. If a 
block contains two portions, one that needs to be optimized for area and a 
second that needs to be optimized for speed, they should be separated into 
two blocks. By doing this, you can apply different optimization strategies for 
each module without the two modules being limited by one another.

Keep Logic with the Same Relaxation Constraints in the 
Same Block
When a portion of the design does not require high performance, you can 
apply this portion with relaxed timing constraints, such as Multicycle, to 
achieve high utilization of a device area. Relaxation constraints help to reduce 
overall run time. They can also help to efficiently save resources, which can 
be used on critical paths. Figure 32 shows an example of grouping logic with 
the same relaxation constraint in one block.

Keep Instantiated Code in Separate Blocks
Leave the RAM block in the hierarchy in a separate block, as shown in 
Figure 33, to enable easy swapping between the RAM behavioral code for 
simulation and the code for technology instantiation. In addition, this coding 
style facilitates the integration of the ispLEVER IPexpress tool into the 

Figure 31: Merging Sharable Resource in the Same Block

Figure 32: Logic with the Same Relaxation Constraint
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synthesis process.

Keep the Number of FPGA Gates at 30 to 80 PFU Per Block
This range varies on the basis of the computer configuration, the time 
required to complete each optimization run, and the targeted FPGA routing 
resources. Although a smaller block methodology allows more control, it may 
not produce the most efficient design, since it does not provide the synthesis 
tool enough logic to apply “resource sharing” algorithms. On the other hand, 
having a large number of gates per block gives the synthesis tool too much to 
work on and causes changes that affect more logic than necessary in an 
incremental or multi-block design flow.

Design Registering
Pipelining can improve design performance by restructuring a long data path 
with several levels of logic and breaking it up over multiple clock cycles. This 
method allows a faster clock cycle by relaxing the clock-to-output and setup 
time requirements between the registers. It is usually an advantageous 
structure for creating faster data paths in register-rich FPGA devices. 
Knowledge of the FPGA’s architecture helps in planning pipelines at the 
beginning of the design cycle. When the pipelining technique is applied, 
special care must be taken for the rest of the design to account for the 
additional data path latency. The following illustrates the same data path 
before (Figure 34) and after pipelining (Figure 35).

Figure 33: Separate RAM Block

Figure 34: Before Pipelining

Figure 35: After Pipelining
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Before pipelining, the clock speed is determined by the clock-to-out time of 
the source register, the logic delay through four levels of combinatorial logic, 
the associated routing delays, and the setup time of the destination register. 
After pipelining is applied, the clock speed is significantly improved by 
reducing the delay of four logic levels to one logic level and the associated 
routing delays, even though the rest of the timing requirements remain the 
same. Check the placement and routing timing report to ensure that the 
pipelined design gives the desired performance.

Comparing If-Then-Else and Case Statements
Case and if-then-else statements are common for sequential logic in HDL 
designs. The if-then-else statement generally generates priority-encoded 
logic, whereas the case statement implements balanced logic. An if-then-else 
statement can contain a set of different expressions, but a case statement is 
evaluated against a common controlling expression. Both statements give the 
same functional implementation if the decode conditions are mutually 
exclusive, as shown in Figure 36.

Figure 36: Case and If-Then-Else Statements with Mutually Exclusive Conditions

Case Statement If-Then-Else

process (s, x, y, z) 
begin

O1 <= '0';
O2 <= '0';
O3 <= '0';

case (s) is
 when "00" => O1 <= x;

 when "01" => O2 <= y;
 when "10" => O3 <= z;

when others => O1 <= '0'; O2 <= '0'; 
O3 <= '0';

end case;

end process;

process (s, x, y, z) 
begin
O1 <= '0';
O2 <= '0';
O3 <= '0';

if s = "00" then O1 <= x;
elsif s = "01" then O2 <= y;
elsif s = "10" then O3 <= z;
else O1 <= '0'; O2 <= '0'; O3 <= '0';
end if;

end process;
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However, the use of the if-then-else construct could make the design more 
complex than necessary, because extra logic is needed to build a priority tree. 
Consider the examples in Figure 37.

If the decode conditions are not mutually exclusive, the if-then-else construct 
causes the last output to be dependent on all the control signals. The 
equation for O3 output in example A is:

O3 <= z and (s3) and (not (s1 and s2));

If the same code can be written as in example B, most of synthesis tools 
remove the priority tree and decode the output as:

O3 <= z and s3;

This reduces the logic requirement for the state machine decoder. If each 
output is indeed dependent of all of the inputs, it is better to use a case 
statement, since case statements provide equal branches for each output.

Avoiding Unintentional Latches
Synthesis tools infer latches from incomplete conditional expressions, such as 
an if-then-else statement without an else clause. To avoid unintentional 
latches, specify all conditions explicitly or specify a default assignment. 
Otherwise, latches are inserted into the resulting RTL code, requiring 
additional resources in the device or introducing combinatorial feedback loops 
that create asynchronous timing problems. Unintentional latches can be 
avoided by using clocked registers or by employing any of the following 
coding techniques:

Assign a default value at the beginning of a process.

Assign outputs for all input conditions.

Use else (when others) as the final clause.

Another way to avoid unintentional latches is to check the synthesis tool 
outputs. Most of the synthesis tools give warnings whenever there are latches 

Figure 37: If-Then-Else Statement With Lower Logic Requirement
Complex O3 Equations Simplified O3 Equations

process (s1, s2, s3, x, y, z)
begin

O1 <= '0';
O2 <= '0';
O3 <= '0';

if s1 = '1' then O1 <= x;
elsif s2 = '1' then O2 <= y;
elsif s3 = '1' then O3 <= z;
end if;

end process;

process (s1, s2, s3, x, y, z)
begin
O1 <= '0';
O2 <= '0';
O3 <= '0';

if s1 = '1' then O1 <= x;
end if;
if s2 = '1' then O2 <= y;
end if;
if s3 = '1' then O3 <= z;
end if;

end process;
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in the design. Checking the warning list after synthesis saves a tremendous 
amount of effort in trying to determine why a design is so large later in the 
place-and-route stage.

Register Control Signals
The general-purpose latches and flip-flops in the PFU are used in a variety of 
configurations, depending on the device family.

For example, in the LatticeEC family of devices, you can apply clock, clock-
enable, and LSR control to the registers on a slice basis. Each slice contains 
two LUT4 lookup tables feeding two registers (programmed to be in flip-flop or 
latch mode) and some associated logic that allows the LUTs to be combined 
to perform functions, such as LUT5, LUT6, LUT7, and LUT8. Control logic 
performs set/reset functions (programmable as synchronous/asynchronous), 
clock-select, chip-select, and wider RAM/ROM functions.

When writing design codes in HDL, keep the architecture in mind to avoid 
wasting resources in the device. Here are several points for consideration:

If the register number is not a multiple of 2 or 4 (dependent on device 
family), try to code the registers in such a way that all registers share the 
same clock, and in a way that all registers share the same control signals.

Lattice Semiconductor FPGA devices have multiple dedicated clock 
enable signals per PFU. Try to code the asynchronous clocks as clock 
enables, so that PFU clock signals can be released to use global low-
skew clocks.

Try to code the registers with local synchronous set/reset and global 
asynchronous set/reset.

For more detailed architecture information, refer to the Lattice Semiconductor 
FPGA data sheets.
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Clock Enable
Figure 38 shows an example of gated clocking. Gating clocks is not 
encouraged in digital designs because it may cause timing issues, such as 
unexpected clock skews. The structure of the PFU makes the gating clock 
even more undesirable since it uses up all the clock resources in one PFU 
and sometimes wastes the flip-flop and latch resources in the PFU. By using 
the clock enable in the PFU, you can achieve the same functionality without 
worrying about timing issues, since only one signal is controlling the clock. 
Since only one clock is used in the PFU, all related logic can be implemented 
in one block to achieve better performance. Figure 39 shows the design using 
the clock enable signal.

Samples of the VHDL and Verilog HDL code for clock enable are shown in 
Figure 40.

The following are guidelines for coding the clock enable in Lattice 
Semiconductor FPGAs:

Clock enable is only supported by flip-flops, not latches.

Flip-flop pairs inside a slice block share the same clock enable.

Figure 38: Asynchronous: Gated Clocking

Figure 39: Synchronous: Clock Enabling

Figure 40: Clock Enable Coding

VHDL Verilog HDL

Clock_Enable: process (clk, clken, din)
begin

if (clk'event and clk = '1') then
if (clken = '1') then
qout <= din;

end if;
end if;

end process Clock_Enable;

always @(posedge clk)
qout <= clken ? din : qout;



HDL Synthesis Coding Guidelines General HDL Practices

FPGA Design Guide 66

All flip-flops have a positive clock enable input.

The clock-enable input has higher priority than the synchronous set/reset 
by default. However, you can program the synchronous LSR to have a 
higher priority than the clock enable by instantiating the library element in 
the source code. For example, the library element FD1P3IX is a flip-flop 
that allows the synchronous clear to override the clock enable. You can 
also specify the priority of generic coding by setting the priority of the 
control signals differently.

The examples in Figure 41 and Figure 42 demonstrate coding methodologies 
to help the synthesis tools set the priorities of the clock enable and the 
synchronous LSR.

Figure 41: Clock Enable over Synchronous LSR

VHDL Verilog HDL

COUNT8: process (CLK, GRST)
begin

if (GRST = '1') then
cnt <= (others => '0');

elsif (CLK'event and CLK = '1') then
if (CKEN = '1') then

cnt <= cnt + 1;
elsif (LRST = '1') then

cnt <= (others => '0');
endif;

endif;
end process COUNT8;

always @(posedge CLK or posedge GRST)
begin
if (GRST)
cnt = 4'b0;

else if (CKEN)
cnt = cnt + 1'b1;

else if (LRST)
cnt = 4'b0;

end

Figure 42: Synchronous LSR over Clock Enable

VHDL Verilog HDL

COUNT8: process (CLK, GRST)
begin

if (GRST = '1') then
cnt <= (others => '0');

elsif (CLK'event and CLK = '1') then
if (LRST = '1') then

cnt <= (others => '0');
elsif (CKEN = '1') then

cnt <= cnt + 1;
endif;

endif;
end process COUNT8;

always @(posedge CLK or posedge GRST)
begin
if (GRST)
cnt = 4'b0;

else if (LRST)
cnt = 4'b0;

else if (CKEN)
cnt = cnt + 1'b1;

end
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Local Asynchronous and Synchronous Sets 
and Resets
Lattice Semiconductor FPGAs contain two types of set/reset functions: global 
(GSR) and local (LSR). The GSR signal is asynchronous and is used to 
initialize all registers during configuration. It can be activated either by an 
external dedicated pin or from the internal logic after configuration. The local 
set/reset signal may be synchronous or asynchronous. GSR is pulsed at 
power-up to set or reset the registers, depending on the configuration of the 
device. Since the GSR signal has dedicated routing resources that connect to 
the set and reset pin of the flip-flops, it saves general-purpose routing and 
buffering resources and improves overall performance. If asynchronous reset 
is used in the design, use the GSR for this function, if possible. The reset 
signal can be forced to be GSR by the instantiation library element. Synthesis 
tools automatically infer GSR if all registers in the design are asynchronously 
set or reset by the same wire.

When only one reset exists, always infer GSR. When more than one reset 
exists, pick the one that makes most sense to use as GSR. Disable the GSR 
for other resets.

Alternatively, you can manually instantiate GSRs. For multiple NGO flows, 
you must instantiate a GSR for every synthesis group. The ispLEVER 
mapping process removes redundant GSRs.
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Figure 43 show the correct syntax for instantiating GSR in the VHDL and 
Verilog HDL codes.

Multiplexers
The flexible configurations of LUTs within slice blocks can realize any 4-, 5-, 
6-, 7-, or 8-input logic function like 2-to-1, 3-to-1, 4-to-1, or 5-to-1 multiplexers.

You can efficiently create larger multiplexers by programming multiple 4-input 
LUTs. Synthesis tools can automatically infer Lattice Semiconductor FPGA 
optimized multiplexer library elements according to the behavioral description 
in the HDL source code. This provides the flexibility to the mapper and place-

Figure 43: Clock Enable Coding
VHDL Verilog HDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all

entity gsr_test is
port (rst, clk: in std_logic;
cntout : out std_logic_vector(1 downto 0));

end gsr_test;

architecture behave of gsr_test is
signal cnt : std_logic_vector(1 downto 0);
begin

u1: GSR port map (gsr => rst);

process (clk, rst)
begin
if rst = '1' then

cnt <= "00";
elsif rising_edge (clk) then

cnt <= cnt + 1;
end if;

end process;

cntout <= cnt;
end behave;

module gsr_test (clk, rst, cntout);
input clk, rst;
output[1:0] cntout;

reg[1:0] cnt;

GSR u1 (.GSR(rst));

always @(posedge clk or negedge rst)
begin
if (!rst)
cnt = 2'b0;

else
cnt = cnt + 1;

end

assign cntout = cnt;
endmodule
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and-route tools to configure the LUT mode and connections in an optimal 
fashion.

Finite State Machine Guidelines
A finite state machine is a hardware component that advances from the 
current state to the next state at the clock edge. This section discusses 
methods and strategies for state machine encoding.

State Encoding Methods for State Machines
There are several ways to encode a state machine, including binary encoding, 
gray-code encoding, and one-hot encoding. State machines with binary or 
gray-code encoded states have minimal numbers of flip-flops and wide 
combinatorial functions. However, most FPGAs have many flip-flops and 
relatively narrow combinatorial function generators. Binary or gray-code 
encoding schemes can result in inefficient implementation in terms of speed 
and density for FPGAs. On the other hand, a one-hot encoded state machine 
represents each state with one flip-flop. As a result, it decreases the width of 
combinatorial logic, which matches well with FPGA architectures. For large 
and complex state machines, one-hot encoding usually is the preferable 
method for FPGA architectures. For small state machines, binary encoding or 
gray-code encoding may be more efficient.

There are many ways to ensure the state machine encoding scheme for a 
design. You can hard code the states in the source code by specifying a 
numerical value for each state. This approach ensures the correct encoding of 
the state machine but is more restrictive in the coding style. The enumerated 
coding style leaves the flexibility of state machine encoding to the synthesis 

Figure 44: 16:1 Multiplexer
process (sel, din)
begin

if (sel = "0000") then muxout <= din(0);
elsif (sel = "0001") then muxout <= din(1);
elsif (sel = "0010") then muxout <= din(2);
elsif (sel = "0011") then muxout <= din(3);
elsif (sel = "0100") then muxout <= din(4);
elsif (sel = "0101") then muxout <= din(5);
elsif (sel = "0110") then muxout <= din(6);
elsif (sel = "0111") then muxout <= din(7);
elsif (sel = "1000") then muxout <= din(8);
elsif (sel = "1001") then muxout <= din(9);
elsif (sel = "1010") then muxout <= din(10);
elsif (sel = "1011") then muxout <= din(11);
elsif (sel = "1100") then muxout <= din(12);
elsif (sel = "1101") then muxout <= din(13);
elsif (sel = "1110") then muxout <= din(14);
elsif (sel = "1111") then muxout <= din(15);
else muxout <= '0';
end if;

end process;
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tools. Most synthesis tools allow you to define encoding styles either through 
attributes in the source code or through the tool’s user interface. Each 
synthesis tool has its own synthesis attributes and syntax for choosing the 
encoding styles. Refer to your synthesis tool’s documentation for details about 
attributes syntax and values.

The following syntax defines an enumeration type in VHDL:

type type_name is (state1_name,state2_name,......,stateN_name)

Here is a VHDL example of enumeration states:

type STATE_TYPE is (S0,S1,S2,S3,S4);
signal CURRENT_STATE, NEXT_STATE : STATE_TYPE;

The following is an example of Synplify VHDL synthesis attributes:

attribute syn_encoding : string;
attribute syn_encoding of <signal_name> : type is "value ";
-- The syn_encoding attribute has 4 values:
-- sequential, onehot, gray and safe.

The following is an example of Precision RTL Synthesis VHDL synthesis 
attributes:

-- Declare TYPE_ENCODING_STYLE attribute
-- Not needed if the exemplar_1164 package is used
type encoding_style is (BINARY, ONEHOT, GRAY, RANDOM, AUTO);
attribute TYPE_ENCODING_STYLE : encoding style;
...
attribute TYPE_ENCODING_STYLE of <typename> : type is ONEHOT;

In Verilog HDL, you must provide explicit state values for states by using a bit 
pattern, such as 3'b001, or by defining a parameter and using it as the case 
item. The latter method is preferable. The following is an example using 
parameter for state values:

Parameter state1 = 2'h1, state2 = 2'h2;
...
current_state = state2; setting current state to 2'h2

The attributes in the source code override the default encoding style assigned 
during synthesis. Since Verilog HDL does not have predefined attributes for 
synthesis, attributes are usually attached to the appropriate objects in the 
source code as comments. The attributes and their values are case-sensitive 
and usually appear in lower case. The following example uses attributes in 
the Synplify Verilog HDL source code to specify state machine encoding style:

Reg[2:0] state; /* synthesis syn_encoding = "value" */;
// The syn_encoding attribute has 4 values:
// sequential, onehot, gray and safe.

In Precision RTL Synthesis, it is also recommended that you define a Verilog 
HDL parameter and use it as the case item. The setup_design_encoding 
command in Precision RTL Synthesis is used to specify the encoding style.

In general, synthesis tools select the optimal encoding style that takes into 
account the target device architecture and size of the decode logic. You can 
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always apply synthesis attributes to override the default encoding style if 
necessary.

Coding Styles for State Machines
As mentioned earlier, the preferred scheme for FPGA architectures is one-hot 
encoding. This section discusses some common issues that you may 
encounter when constructing state machines, such as initialization and state 
coverage and special case statements in Verilog HDL.

General State Machine Description
Generally, there are two approaches to describing a state machine. One 
approach is to use one process or block to handle both state transitions and 
state outputs. The other is to separate the state transition and the state 
outputs into two different processes or blocks. The latter approach is more 
straightforward, because it separates the synchronous state registers from 
the decoding logic that is used in the computation of the next state and the 
outputs. This not only makes the code easier to read and modify but makes 
the documentation more efficient. If the outputs of the state machine are 
combinatorial signals, the second approach is almost always necessary 
because it prevents the accidental registering of the state machine outputs.

The examples in Figure 45 and Figure 46 describe a simple state machine in 
VHDL and Verilog HDL. In the VHDL example, a sequential process is 
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separated from the combinatorial process. In the Verilog HDL code, two 
always blocks are used to describe the state machine in a similar way.

Figure 45: VHDL Example for State Machine
architecture lattice_fpga of dram_refresh is
type state_typ is (s0, s1, s2, s3, s4);
signal present_state, next_state : state_typ;

begin
-- process to update the present state
registers: process (clk, reset) 
begin
if (reset = '1') then

present_state <= s0;
elsif clk'event and clk='1' then

present_state <= next_state;
end if;

end process registers;

-- process to calculate the next state & outputs
transitions: process (present_state, refresh, cs)
begin
ras <= 'X'; cas <= 'X'; ready <= 'X';
case present_state is
when s0 =>

if (refresh = '1') then 
next_state <= s3;
ras <= '1'; cas <= '0'; ready <= '0';

elsif (cs = '1') then 
next_state <= s1;
ras <= '0'; cas <= '1'; ready <= '0';

else 
next_state <= s0;
ras <= '0'; cas <= '1'; ready <= '1';

end if;
when s1 =>

next_state <= s2;
ras <= '0'; cas <= '0'; ready <= '0';

when s2 =>
if (cs = '0') then 
next_state <= s0;
ras <= '1'; cas <= '1'; ready <= '1';

else 
next_state <= s2;
ras <= '0'; cas <= '0'; ready <= '0';

end if;
when s3 =>

next_state <= s4;
ras <= '1'; cas <= '0'; ready <= '0';

when s4 =>
next_state <= s0;
ras <= '0'; cas <= '0'; ready <= '0';

when others =>
next_state <= s0;
ras <= '0'; cas <= '0'; ready <= '0';

  end case;
end process transitions;
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Figure 46: Verilog HDL Example for State Machine

parameter s0 = 0, s1 = 1, s2 = 2, s3 = 3, s4 = 4;

reg[2:0] present_state, next_state;
reg ras, cas, ready;

// always block to update the present_state
always @(posedge clk or posedge reset)
begin

if (reset) present_state = s0;
else present_state = next_state;

end

// always block to calculate the next state & outputs
always @ (present_state or refresh or cs)
begin

next_state = s0;
ras = 1'bX; cas = 1'bX; ready = 1'bX;
case (present_state) 

s0 : if (refresh) begin
next_state = s3;
ras = 1'b1; cas = 1'b0; ready = 1'b0;

end
else if (cs) begin

next_state = s1;
ras = 1'b0; cas = 1'b1; ready = 1'b0;

end
else begin

next_state = s0;
ras = 1'b0; cas = 1'b1; ready = 1'b1;

end
s1 : begin

next_state = s2;
ras = 1'b0; cas = 1'b0; ready = 1'b0;

end
s2 : if (~cs) begin

next_state = s0;
ras = 1'b1; cas = 1'b1; ready = 1'b1;

end
else begin

next_state = s2;
ras = 1'b0; cas = 1'b0; ready = 1'b0;

end
s3 : begin

next_state = s4;
ras = 1'b1; cas = 1'b0; ready = 1'b0;

end
s4 : begin

next_state = s0;
ras = 1'b0; cas = 1'b0; ready = 1'b0;

end
default : begin

next_state = s0;
ras = 1'b0; cas = 1'b0; ready = 1'b0;

end
endcase

end
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Initialization and Default State
A state machine must be initialized to a valid state after power-up. You can 
initialize it at the device level during power-up or by including a reset 
operation to bring it to a known state. For all Lattice Semiconductor FPGA 
devices, the global set/reset (GSR) is pulsed at power-up, regardless of the 
function defined in the design source code. In the examples in Figure 45 and 
Figure 46, an asynchronous reset can be used to bring the state machine to a 
valid initialization state.

In the same manner, a state machine should have a default state to ensure 
that the state machine does not go into an invalid state if not all the possible 
combinations are clearly defined in the design source code. VHDL and Verilog 
HDL have different syntax for default state declaration. In VHDL, if a case 
statement is used to construct a state machine, “when others” should be used 
as the last statement before the end of the statement. If an if-then-else 
statement is used, “else” should be the last assignment for the state machine. 
In Verilog HDL, use “default” as the last assignment for a case statement, and 
use “else” for the if-then-else statement. See the examples in Figure 47.

Figure 47: Initialization and Default State Example

When Others in VHDL Default Clause in Verilog HDL

architecture lattice_fpga of FSM1 is
type state_typ is 

(deflt, idle, read, write);
signal next_state : state_typ;

begin
process (clk, rst)
begin
if (rst = '1') then

next_state <= idle; dout <= '0';
elsif (clk'event and clk = '1') then

case next_state is
when idle =>

next_state <= read;
dout <= din(0);

when read =>
next_state <= write;
dout <= din(1);

when write =>
next_state <= idle;
dout <= din(2);

when others =>
next_state <= deflt;
dout <= '0';

end case;
end if;

end process;

// Define state labels explicitly
parameter deflt = 2'bxx;
parameter idle = 2'b00;
parameter read = 2'b01;
parameter write = 2'b10;

reg[1:0] next_state;
reg dout;

always @(posedge clk or posedge rst)
if (rst) begin
next_state <= idle;
dout <= 1'b0;

end
else begin
case (next_state)
idle: begin
next_state <= read;
dout <= din[0];

end
read: begin
next_state <= write;
dout <= din[1];

end
write: begin
next_state <= idle;
dout <= din[2];

end
default: begin

next_state <= deflt;
dout <= 1'b0;

end
end
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Full Case and Parallel Case Specification in Verilog HDL
Verilog HDL has additional attributes for defining the default states without 
writing it specifically in the code. You can use “full_case” to achieve the same 
performance as “default.” Figure 48 shows the attribute usage for Precision 
RTL Synthesis and Synplify. 

The “parallel_case” attribute makes sure that all the statements in a case 
statement are mutually exclusive. It is used to inform the synthesis tools that 
only one case can be true at a time. Figure 49 shows the attribute usage 
when used in conjunction with the “full_case” attribute.

HDL Coding for Distributed and Block Memory
Although an RTL description of RAM is portable and the coding is 
straightforward, it is not recommended, because the structure of RAM blocks 
in every architecture is unique. Synthesis tools are not optimized to handle 
RAM implementation, and so they generate inefficient netlists for device 
fitting. For Lattice Semiconductor FPGA devices, generate RAM blocks 
through IPexpress in ispLEVER.

When implementing large memories, use the embedded block RAM (EBR) 
components found in every Lattice Semiconductor FPGA device. When 
implementing small memories, use the resources in the PFU. Using 
ispLEVER IPexpress, you can target a memory module to the PFU-based 
distributed memory or to the sysMEM EBR block.

Lattice Semiconductor FPGAs support many different memory types, 
including synchronous dual-port RAM, synchronous single-port RAM, 
synchronous FIFO, and synchronous ROM. For more information on 

Figure 48: full_case versus default in Verilog HDL

Using full_case Using default

case (current_state)
/* synthesis full_case */
// pragma full_case

2'b00 : next_state = 2'b01;
2'b01 : next_state = 2'b11;
2'b11 : next_state = 2'b00;

endcase

case (current_state)
2'b00 : next_state = 2'b01;
2'b01 : next_state = 2'b11;
2'b11 : next_state = 2'b00;
default : next_state = 2'bxx;

endcase

Figure 49: parallel_case in Verilog HDL

case (current_state) 
/* synthesis full_case parallel_case */ 
// pragma full_case parallel_case 

2'b00 : next_state = 2'b01;
2'b01 : next_state = 2'b11;
2'b11 : next_state = 2'b00;

endcase



HDL Synthesis Coding Guidelines Synthesis Control of High-Fan-Out Nets

FPGA Design Guide 76

supported memory types per FPGA architecture, consult the Lattice 
Semiconductor FPGA data sheets.

Synthesis Control of High-Fan-Out Nets
Lattice Semiconductor FPGA device architectures are designed to handle 
high signal fan-outs. When you use clock resources, there are no hindrances 
on fan-outs. However, synthesis tools tend to replicate logic to reduce fan-out 
during logic synthesis. For example, if the code implies clock enable and is 
synthesized with speed constraints, the synthesis tool might replicate the 
clock-enable logic. This kind of logic replication occupies more resources in 
the devices and makes performance checking more difficult. Control the logic 
replication in the synthesis process by using attributes for a high-fan-out limit.
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Bidirectional Buffers
You can instantiate bidirectional buffers in the same manner as regular I/O 
buffers or infer them from the HDL source, as shown in Figure 50 and 
Figure 51.

Figure 50: Verilog HDL RTL for Bidirectional Buffer

module bireg (datain, clk, en_o, Qo1, Qio);
   input  [7:0] datain;
   input  clk, en_o;
   output [7:0] Qo1;
   inout  [7:0] Qio;
   reg  [7:0] Q_reg;
   reg  [7:0] Qio_int;
   wire [7:0] Qo1;
   wire [7:0] Qio;
   always @(posedge clk)
   begin 
      Q_reg = datain;
   end
   always @(en_o or Q_reg) 
   begin
      if (en_o) 
         Qio_int <= Q_reg; 
      else 
         Qio_int <= 8'hz; 
   end
   assign Qio = Qio_int;
   assign Qo1 = Qio;
endmodule
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Figure 51: VHDL RTL for Bidirectional Buffer

library ieee;
use ieee.std_logic_1164.all;

entity bireg is port (
   datain : in std_logic_vector (7 downto 0);
   clk,en_o : in std_logic; 
   Qo1 : out std_logic_vector (7 downto 0);
   Qio : inout std_logic_vector (7 downto 0));
end bireg;
architecture beh of bireg is
   signal Q_reg   : std_logic_vector (7 downto 0);
   signal Qio_int : std_logic_vector (7 downto 0);
begin
   process(clk,datain) begin 
      if clk'event and clk = '1' then 
         Q_reg <= datain; 
      end if; 
   end process;
   process(Q_reg,en_o) begin 
      if en_o = '1' then 
         Qio_int <= Q_reg ; 
      else 
         Qio_int <= (others=>'Z'); 
      end if; 
   end process;
   Qio <= Qio_int;
   Qo1 <= Qio;
end;
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Coding to Avoid Simulation/Synthesis Mismatches
Certain coding styles can lead to pre-synthesis simulation that differs from 
post-synthesis gate level simulations. This problem is caused by HDL models 
that contain information that cannot be passed to the synthesis tool because 
of style or pragmas that are ignored by a simulator. Many error-prone coding 
styles will be detected by the HDL Explorer tool. This tool, which is included 
with the ispLEVER software, should be used to detect RTL design flaws as 
part of your verification strategy.

Figure 52: HDL Explorer Transcript Window
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The examples in this section illustrate common mistakes to avoid. Where 
possible, examples of best-known-method (BKM) messages issued by HDL 
Explorer are also provided.

Sensitivity Lists
In Verilog and VHDL, combinational logic is typically modeled using a 
continuous assignment. Combinational logic can also be modeled when using 
a Verilog always statement or a VHDL process statement in which the 
event sensitivity list does not contain any edge events (posedge/negedge 
or `event). The event sensitivity list does not affect the synthesized netlist. 
Therefore, it might be necessary to include all the signals read in the event 
sensitivity list to avoid mismatches between simulation and synthesized logic.

In following Verilog example, module code1b uses a style that leads to a 
mismatch due to an incomplete sensitivity list. During pre-synthesis 
simulation, the always statement is only activated when an event occurs on 
variable a. However, the post-synthesis result will infer a 2-input and gate. 

module code1b (o, a, b);
  output o;
  input a, b;
  reg o;

  always @(a)
    o = a & b;

endmodule
// Supported, but simulation mismatch may occur.
// To assure the simulation will match the synthesized logic, 
// add variable b to the event list so the event list 
// reads: always @(a or b).

The synthesis-related BKM check reported by HDL Explorer is:

WARNING: (ST-6003) Always Block 'code1b.@( a)' has the 
following blocking assignment with driving signals that are not 
in the sensitivity list. Possible Simulation/Synthesis 
mismatch.
// o = (a & b) ;

Not all variables that appear in the right-hand side of an assignment are 
required to appear in the event sensitivity list. For example, Verilog variables 
that are assigned values inside the always statement body before being 
used by other expressions do not have to appear in the sensitivity list.

Blocking/Nonblocking Assignments in Verilog
A subtle Verilog coding style that can lead to unexpected results is the 
blocking/nonblocking style of variable assignment. The following guidelines 
are recommended:

Use blocking assignments in always blocks that are written to generate 
combinational logic.

Use nonblocking assignments in always blocks that are written to 
generate sequential logic.
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Use nonblocking assignments with register models to avoid race 
conditions.

Execution of blocking assignments can be viewed as a one-step process:

Evaluate the RHS (right-hand side equation) and update the LHS (left-
hand side expression) of the blocking assignment without interruption 
from any other Verilog statement. 

A blocking assignment "blocks" trailing assignments in the same always 
block, meaning that it prevents them from occurring until after the current 
assignment has been completed. 

A problem with blocking assignments occurs when the RHS variable of one 
assignment in one procedural block is also the LHS variable of another 
assignment in another procedural block and both equations are scheduled to 
execute in the same simulation time step, such as on the same clock edge. If 
blocking assignments are not properly ordered, a race condition can occur. 
When blocking assignments are scheduled to execute in the same time step, 
the order execution is unknown.

According to the IEEE Verilog Standard for the language itself (not the 
synthesis standard), the two always blocks can be scheduled in any order. 

In the following example, if the first always block executes first after a reset, 
both y1 and y2 will take on the value of 1. If the second always block 
executes first after a reset, both y1 and y2 will take on the value 0. This 
clearly represents a race condition.

module fbosc1 (y1, y2, clk, rst);
  output y1, y2;
  input clk, rst;

  reg y1, y2;

  always @(posedge clk or posedge rst)
    if (rst) y1 = 0; // reset
    else y1 = y2;

  always @(posedge clk or posedge rst)
    if (rst) y2 = 1; // preset
    else y2 = y1;

endmodule

The HDL Explorer will also report potential problems given the combination of 
an edge-based sensitivity list with blocking assignments. For example:

// WARNING: (SUNBURST-0001) Always Block 'lfsrb1.@(posedge clk 
or negedge pre_n)' has a edge based sensitivity list, but has 
the following blocking assignments. Possible Simulation/
Synthesis mismatch.
// q3 = 1'b1 ;
// q2 = 1'b1 ;
// q1 = 1'b1 ;
// q3 = q2 ;
// q2 = n1 ;
// q1 = q3 ;
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In Verilog, a variable assigned in an always statement cannot be assigned 
using both a blocking assignment (=) and a non-blocking assignment (<=) in 
the same always block.

always @ (IN1 or IN2 or SEL) begin
  OUT = IN1; 
  if (SEL)
    OUT <= 2; 
end

Synthesis Pragmas: full_case/parallel_case
The synthesis tool directive full_case gives more information about the 
design to the synthesis tool than is provided to the simulation tool. This 
particular directive is used to inform the synthesis tool that the case statement 
is fully defined and that the output assignments for all unused cases are “don’t 
cares.” The functionality between pre-synthesis and post-synthesis designs 
might remain the same when using this directive, or it might not. 

Additionally, although this directive is telling the synthesis tool to use the 
unused states as “don’t cares,” it will sometimes make designs larger and 
slower than designs that omit it.

In the following module sample code4, a case statement is coded using the 
full_case synthesis directive. Without the full_case directive, the 
resultant design is a decoder built from 3-input and gates and inverters. The 
pre-synthesis and post-synthesis simulations will match. However, when the 
full_case directive is added, the en input is optimized away during synthesis 
and left as a dangling input. This is another case where pre-synthesis 
simulator results of modules will not match the post-synthesis simulation 
results.

module code4 (en, a, y);
  input        en;
  input  [1:0] a;
  output [3:0] y;
  reg    [3:0] y;
  always @(a or en) begin
    y = 4'h0;
    case ({en,a}) //pragma full_case
      3'b1_00: y[a] = 1'b1;
      3'b1_01: y[a] = 1'b1;
      3'b1_10: y[a] = 1'b1;
      3'b1_11: y[a] = 1'b1;
    endcase
  end
endmodule

The synthesis tool directive parallel_case also gives more information 
about the design to the synthesis tool than is provided to the simulation tool. 
This particular directive is used to inform the synthesis tool that all cases 
should be tested in parallel, even if there are overlapping cases, which would 
normally cause a priority encoder to be inferred.
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Signal Fanout
Signal fanout refers to the number of inputs that can be connected to an 
output before the current required by the inputs exceeds the current that can 
be delivered by the output while maintaining correct logic levels or 
performance requirements. FPGA logic synthesis will automatically maintain 
reasonable fanout levels by replicating drivers or buffering a signal. Because 
of this behavior, the resulting FPGA route might be slower due to the 
additional intrinsic delays.

Signal fanout control is available with logic synthesis to maintain reasonable 
fanouts by controlling to what degree drivers are replicated. You should 
anticipate the availability of FPGA routing resources that are reserved for high 
fanout, low-skew networks like clocks, clock-enables, resets, and others. HDL 
Explorer can be configured to detect high fanout conditions as in the following 
example:

WARNING: (ST-5002) Net 'sc_dist_dpram.dec_wre1' violates Max 
Fanout Rule with a load of '8' pins.
sc_dist_dpram.v(71,72-71,86): Input:mem_0_0.WRE
sc_dist_dpram.v(81,72-81,86): Input:mem_0_1.WRE
sc_dist_dpram.v(151,72-151,86): Input:mem_4_0.WRE
sc_dist_dpram.v(161,72-161,86): Input:mem_4_1.WRE
sc_dist_dpram.v(231,72-231,86): Input:mem_8_0.WRE
sc_dist_dpram.v(241,72-241,86): Input:mem_8_1.WRE
sc_dist_dpram.v(311,72-311,86): Input:mem_12_0.WRE
sc_dist_dpram.v(321,72-321,86): Input:mem_12_1.WRE
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7
Attributes and 
Preferences for FPGA 
Designs

This chapter describes the usage of the most common ispLEVER attributes 
used with register-transfer-level (RTL) designs.

In addition to syntax examples for VHDL and Verilog HDL (Synplify and 
Precision RTL Synthesis) code, this chapter gives examples of non-RTL or 
(non-algorithmic) code, such as compiler directives, attributes, and library 
components, that enable you to specify Lattice Semiconductor FPGA-specific 
constraints and design elements in your HDL source. There are dozens of 
ispLEVER HDL attributes that you can include in RTL source code, 
depending on the application. This chapter discusses a subset of the two 
most popular classes of constraints used by designers: sysIO buffer and 
floorplanning constraints.

This style of design has both advantages and disadvantages that you should 
consider before adding device-specific constraints to your HDL code. As an 
advantage, it helps unify the logical and physical design documentation and 
can be an easy way to infer many physical preferences from the concise 
logical description. For example, HGROUP/UGROUP attributes within RTL 
infer groups of many physical slices and embedded blocks. 

As disadvantages, it makes the source code device-specific and less 
portable, and it may require a coding style specific to a synthesis vendor.

You may notice that some attributes have redundant functionality. For 
example, Precision RTL Synthesis’ attributes for I/O locking include “loc” and 
“pin_number” as a result of synthesis tool support of both vendor-specific and 
cross-vendor attributes. You should consider the best choice for the sake of 
maintaining your source code over time. The samples shown in this chapter 
typically use the most concise form possible or the one that closely matches 
the naming conventions of ispLEVER attributes.
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For more information on vendor-specific synthesis attributes and directives, 
refer to the Precision RTL Synthesis Style Guide or the Synplicity FPGA 
Synthesis Reference Manual.

About Attributes
An attribute is a value, constant, string, or so forth that can be associated with 
certain names in an HDL or EDIF description. In the Lattice Semiconductor 
FPGA design flow, there are two classes of attributes: those related to 
ispLEVER and those related to the synthesis vendor.

ispLEVER Attributes
ispLEVER attributes are typically used on library elements or signals in the 
EDIF netlist as EDIF properties and are interpreted by the mapping, 
placement, and routing tools. Most ispLEVER attributes are used in 
conjunction with the Lattice Semiconductor library elements documented in 
the FPGA Library online Help and are usually generated automatically by 
IPexpress in ispLEVER. 

A subset of ispLEVER attributes is also helpful to write within RTL HDL. 
These attributes are most often used to direct the mapping, placement, and 
routing tools, but in some cases they can influence logic synthesis or targeting 
algorithms. 

The main advantage of adding ispLEVER attributes to the RTL source code is 
to unify the design documentation and take advantage of the ability to infer 
many gate-level properties from the abstract RTL description. Examples of 
ispLEVER attributes include: “LOC,” “FREQUENCY,” and “UGROUP.”

The ispLEVER attributes are supported by both Precision RTL Synthesis and 
Synplify and are typically documented as “user-defined” attributes.

For more information on ispLEVER attributes, refer to the “HDL Attributes” 
topic in the ispLEVER online Help.

Vendor Attributes
Vendor attributes are typically used to control the optimization and targeting 
algorithms of logic synthesis and in some cases to infer ispLEVER attributes. 
For example, Precision RTL Synthesis’ “pin_number” attribute infers the 
ispLEVER LOC attribute for pin assignments. Common vendor attributes 
include “don't optimize/touch,” “fan-out limit,” and “use IO registers.”

For more information on vendor attributes, refer to the Precision RTL 
Synthesis Style Guide or the Synplicity FPGA Synthesis Reference Manual.
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About Compiler Directives
A compiler directive controls the way a design is analyzed, optimized, and 
mapped by logic synthesis. In the Lattice Semiconductor FPGA design flow, 
compiler directives are an important tool to help you achieve device area and 
speed goals. Common compiler directives include “FSM encoding,” “translate 
on/off,” and “black box.”

Using Attributes and Compiler Directives in HDL 
In Verilog HDL, attributes and compiler directives are attached to the 
appropriate objects by special comments. The syntax differs from vendor to 
vendor. In VHDL, they appear as VHDL attributes and are typically pre-
defined within a VHDL package, for example, exemplar_1164 in Precision 
RTL Synthesis or synplify in Synplify. Both Precision RTL Synthesis and 
Synplify support user-defined attributes.

For more information on compiler directives, refer to the Precision RTL 
Synthesis Style Guide or the Synplicity FPGA Synthesis Reference Manual.

sysIO Buffer Constraints
The sysIO buffer feature of Lattice Semiconductor FPGAs and CPLDs is a 
programmable I/O cell organized into banks around the periphery of the 
device. SysIO buffers have several programmable options, including signal 
interface standard, drive strength, slew rate, and bus maintenance. It is a 
common practice to specify the programming of sysIO buffers as constraints 
within the RTL source. This section describes the most common attributes.

For large packages with many programming options, banks, and reference 
voltages, Lattice Semiconductor recommends using the I/O Assistant 
methodology to place and program I/Os. After you arrive at a legal placement, 
place the ispLEVER preferences back into the RTL source by using the 
guidelines in this section.

I/O Buffer Insertion
You can use two ways to insert I/O buffers or pads into the EDIF netlist 
produced by logic synthesis: 

Insert them by default during synthesis.

Instantiate I/O buffers (automatic I/O insertion by synthesis must be 
disabled).

To minimize the amount of code required to design with I/O buffers, Lattice 
Semiconductor provides a Verilog HDL and a VHDL synthesis header library 
file for each major FPGA device family. Refer to the “Lattice Synthesis Header 
Libraries” topic in the ispLEVER online Help for details. 
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Because of Verilog HDL’s case sensitivity, you must follow the conventions 
used by the synthesis header libraries when you describe module and port 
names. In general, names are in upper case.

The source code shown in Figure 53 in Verilog HDL and in Figure 54 in VHDL 
illustrates I/O buffer instantiation.

Figure 53: Instantiating I/O Buffers in Verilog HDL

 module example(data, clock, out_put);
   input  [1:0] data;
   input        clock;
   output [1:0] out_put;

   wire   [1:0] data_in, data_out;
   wire clk;

   // LatticeEC I/O buffers
   IB u0(.I(data[1]),.O(data_in[1]));
   IB u1(.I(data[0]),.O(data_in[0]));
   IB u2(.I(clock),.O(clk));
   OB u3(.I(data_out[1]),.O(out_put[1]));
   OB u4(.I(data_out[0]),.O(out_put[0]));
   
   // logical description goes here...
endmodule

Figure 54: Instantiating I/O Buffers in VHDL

library IEEE, ec;
use ec.components.all;  -- Component package for LatticeEC
use IEEE.std_logic_1164.all; 

entity example is port( 
   data    : in  std_logic_vector(1 DOWNTO 0); 
   clock   : in  std_logic; 
   out_put : out std_logic_vector(1 DOWNTO 0) ); 
end example; 

architecture io_buf of example is 
   signal data_in, data_out:std_logic_vector(1 DOWNTO 0); 
   signal clk : std_logic; 

begin 

   -- LatticeEC I/O buffers
   u0 : IB port map(I=>data(1),O=>data_in(1)); 
   u1 : IB port map(I=>data(0),O=>data_in(0)); 
   u2 : IB port map(I=>clock,O=>clk); 
   u3 : OB port map(I=>data_out(1),O=>out_put(1)); 
   u4 : OB port map(I=>data_out(0),O=>out_put(0)); 

   -- logical description goes here...

end;
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I/O Buffer Configuration
The programmable sysIO buffer provides a variety of configurations controlled 
by preferences or HDL-based constraints. For a complete description of 
sysIO buffer usage, see the related Lattice Semiconductor application notes 
for your target device family.

Constraints can be used along with buffer instantiation, as shown in “I/O 
Buffer Insertion” on page 87, or by automatic insertion by logic synthesis.

The source code shown in Figure 55 in Verilog HDL and in Figure 56 in VHDL 
illustrates the usage of some common attributes: IO_TYPE, DRIVE, 
PULLMODE, and SLEWRATE. These attributes are technology-dependent.

Figure 55: I/O Constraints in Verilog HDL

module example(data, clock, out_put);
   input  [1:0] data;
   input        clock;
   output [1:0] out_put
   /* synthesis 
   IO_TYPE ="LVTTL33" 
   DRIVE   ="16" 
   PULLMODE="UP" 
   SLEWRATE="FAST" */ ;
   //pragma attribute out_put IO_TYPE  LVTTL33 
   //pragma attribute out_put DRIVE    16 
   //pragma attribute out_put PULLMODE UP 
   //pragma attribute out_put SLEWRATE FAST 

   wire   [1:0] data_in, data_out;
   wire clk;

   // logical description goes here...

endmodule
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Overriding Default I/O Buffer Type
Logic synthesis automatically inserts input/output (I/O) buffers or pads into the 
synthesized design. The default input and output pads are “IB” and “OB,” 
respectively (“BB” for bidirectional), which are generic buffers that optionally 
carry attributes to specify such things as I/O type, drive, and pull mode. The 
pad type mapped by Precision RTL Synthesis or Synplify logic synthesis can 
be overridden for a particular I/O by using synthesis attributes within HDL, 
constraint files, or GUI controls. 

In Precision RTL Synthesis, the “pad” attribute is a string attribute that 
must be attached to a top-level port to override the I/O cell used by 
Precision RTL Synthesis when it synthesizes the I/O cell.

In Synplify, the “orca_padtype” attribute is a string attribute that must be 
attached to a top-level port to override the I/O cell used by Synplify when it 
synthesizes the I/O cell. 

Figure 56: I/O Constraints in VHDL

library IEEE, ec;
use ec.components.all;  -- Component package for LatticeEC
use IEEE.std_logic_1164.all; 

entity example is port( 
   data    : in  std_logic_vector(1 DOWNTO 0); 
   out_put : out std_logic_vector(1 DOWNTO 0) ); 
end example; 

architecture io_buf of example is 
   signal data_in, data_out:std_logic_vector(1 DOWNTO 0); 
   -- LatticeEC I/O buffer constraints
   attribute IO_TYPE : string;  
   attribute DRIVE : string;  
   attribute PULLMODE : string;  
   attribute SLEWRATE : string;  
   attribute IO_TYPE  OF out_put: SIGNAL IS "LVTTL33";  
   attribute DRIVE    OF out_put: SIGNAL IS "16";  
   attribute PULLMODE OF out_put: SIGNAL IS "UP";  
   attribute SLEWRATE OF out_put: SIGNAL IS "FAST";  

begin 

   -- logical description goes here...

end;
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The source code shown in Figure 57 in Verilog HDL and in Figure 58 in VHDL 
illustrates how to override a pad type.

Locking I/O Pins
There are two methods for locking I/O pins in the ispLEVER design flow for 
FPGAs: 

HDL-based attributes

The ispLEVER preference file

Both Precision RTL Synthesis and Synplify support HDL-based attributes to 
lock I/O pins based on a port name from within source code. The synthesis 
mapper then converts the port to a specific I/O buffer and adds the pin 
number as an attribute to the cell instance in the EDIF netlist. When 
ispLEVER maps, places, and routes the design, it uses the attribute to lock 
the PIC/IOB site in the FPGA. 

In Precision RTL Synthesis, the “array_pin_number” (VHDL only), 
“pin_number,” or “loc” attribute is a string attribute that must be attached to 
a top-level port to assign pin numbers.

In Synplify, the “loc” attribute is a string attribute that must be attached to a 
top-level port to assign pin numbers. 

Figure 57: Override of Buffer Type in Verilog HDL
module example(data, clock, out_put);
   // Choose padtype IBPD to select an input buffer with pull-
down
   input data /* synthesis orca_padtype="IBPD" */; 
   //pragma attribute data pad IBPD 
   // logical description goes here...
endmodule

Figure 58: Overriding of Buffer Type in VHDL

-- declare the Precision RTL pad attribute
   attribute pad: string; 
   -- declare the Synplify orca_padtype attribute
   attribute orca_padtype: string; 

   -- Choose padtype IBPD to select an input buffer with pull-
down
   attribute pad of data: signal is "IBPD"; 
   attribute orca_padtype of data: signal is "IBPD"; 
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The source code in Figure 59 in Verilog HDL and in Figure 60 in VHDL 
illustrates how to lock I/O pins.

Optimization Constraints
Logic optimization by logic synthesis can dramatically influence the gate-level 
implementation of your design. This section describes common optimization 
controls used within the RTL source. For complete information on controls 
available for Precision RTL Synthesis or Synplify, refer to the respective user 
and style reference guides.

Black-Box Module Instances
By default, logic synthesis elaborates the design hierarchy until all leaf nodes 
are represented by a Lattice Semiconductor library macro or expression that 
infers one or more macros. However, in some cases you may want to treat 
some module instances as black boxes that cause the logic optimizer to stop 
elaboration at that point and pass the module as is into the EDIF 2 0 0 netlist. 
The most common application for black-box modules is when you use an 
incremental or block modular design technique.

In Precision RTL Synthesis, the “dont_touch” attribute is a Boolean 
attribute that must be declared as a Verilog HDL comment near the 
module instance or as a VHDL attribute of a component declaration.

In Synplify, the “syn_black_box” directive is a Boolean attribute that must 
be attached to a Verilog HDL module declaration or as a VHDL attribute of 
a component declaration. 

Figure 59: Pin Locking in Verilog HDL
// Lock I/O assignment for port: datain
   input  [7:0] datain /* synthesis 
loc="43,36,83,52,91,45,84,78" */; 
   //pragma attribute datain pin_number 
"43,36,83,52,91,45,84,78"

Figure 60: Pin Locking in VHDL

-- Lock clock port to pad p10
   attribute loc : string;
   attribute loc of clock : signal is "p10";
   attribute pin_number : string;
   attribute pin_number of clk : signal is "90";
   type mentor_string_array is array (natural range <>, 
      natural range <>) of character ;
   attribute array_pin_number : mentor_string_array ;
   attribute array_pin_number of datain: signal is 
      ("43","36","83","52","91","45","84","78");
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The source code in Figure 61 in Verilog HDL and in Figure 62 in VHDL 
illustrates the usage of the black-box concept.

Figure 61: Black-Box Module Instances in Verilog HDL
// ------------------------------------------------------------
// Controls to switch between RTL, "black box", and mixed RTL and 
// gate-level versions of the top-level design module.
// ------------------------------------------------------------
   `define BBox_mode; // Comment out for RTL_mode simulation.
//   `define RTL_mode;// Comment out to exclude module definitions.

   `ifdef BBox_mode // then bind to empty modules for synthesis,

      module multreg16(q, dataa, datab, datac, sel, clk, rst)
  /* synthesis syn_black_box */;  

        output [15:0] q;
        input   [7:0] dataa, datab, datac;
        input         clk /* synthesis syn_isclock = 1 */;
        input         sel, rst;
        reg    [15:0] q;
      endmodule

      module rotate(q, data, clk, r_l, rst)
  /* synthesis syn_black_box */;

        output [15:0] q;
        input  [15:0] data;
        input         clk /* synthesis syn_isclock = 1 */;
        input         r_l, rst;
      endmodule

   `else 

      `ifdef RTL_mode

        `include "multreg16/multreg16.v"
        `include "rotate/rotate.v"

      `else 

// Do not provide module definitions - instead rely on
//gate-level models created by ispLEVER.

      `endif

   `endif

// ------------------------------------------------------------
// Top-level design. 
// ------------------------------------------------------------

   module verilog_hierarchical_design(q, a, b, c, sel, r_l, pllclk, 
rst);
     output [15:0] q;
     input   [7:0] a, b, c;
     input         sel, r_l, pllclk, rst;
     wire   [15:0] reg_out;
     wire          clk, rst_l;
     //pragma attribute clk preserve_signal true
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assign rst_l = !rst;
     // Global set/reset and power up reset signal drivers
     GSR GSR_INST 
     (.GSR (rst_l));
     PUR PUR_INST 
     (.PUR (rst_l));
   
     // LatticeEC sysCLOCK PLL
     /* Verilog module instantiation template generated by SCUBA 
ispLever_v50_SP1_Build (12) */
     /* Wed May 25 11:53:58 2005 */
     /* parameterized module instance */
     LatticeEC_66MHz_PLL PLL_1 (.CLK(pllclk), .RESET(rst), 
.CLKOP(clk), .LOCK( ));

 //pragma attribute PLL_1 dont_touch

     // multiplexer/multiply/register   
     multreg16 multreg16_1 
     (.q(reg_out), 
      .dataa(a), 
      .datab(b), 
      .datac(c), 
      .sel(sel),
      .clk(clk),
      .rst(rst));
     //pragma attribute multreg16_1 dont_touch 
   
     // register or rotate
     rotate rotate_1 
     (.q(q), 
      .data(reg_out), 
      .clk(clk), 
      .r_l(r_l), 
      .rst(rst));
     // pragma attribute rotate_1 dont_touch

   endmodule

Figure 61: Black-Box Module Instances in Verilog HDL (Continued)
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Figure 62: Black-Box Component Instances in VHDL

---------------------------------------------------------------
--      Top level--
---------------------------------------------------------------
library ieee,ec;
use ec.components.all;
use ieee.std_logic_1164.all;

entity vhdl_hierarchical_design is
port (
q                    : out std_logic_vector (15 downto 0);
a, b, c              : in  std_logic_vector (7 downto 0);
sel, r_l, pllclk, rst: in  std_logic
);

end vhdl_hierarchical_design;

architecture arch of vhdl_hierarchical_design is
  -- parameterized module component declaration
  component LatticeEC_66MHz_PLL
    port (CLK: in std_logic; RESET: in std_logic; CLKOP: out 
std_logic; 
        LOCK: out std_logic);
  end component;

component multreg16  -- component declaration for multreg16
port (

q     : out std_logic_vector (15 downto 0);
dataa : in  std_logic_vector (7 downto 0);
datab : in  std_logic_vector (7 downto 0);
datac : in  std_logic_vector (7 downto 0);
clk   : in  std_logic;
sel   : in  std_logic;

rst   : in  std_logic);
  end component;

  component rotate  -- component declaration for rotate
port (

q    : out std_logic_vector (15 downto 0);
data : in  std_logic_vector (15 downto 0);
clk  : in  std_logic;

r_l  : in  std_logic;

rst  : in  std_logic);
  end component;

  -- declare the internal signals here
  signal reg_out: std_logic_vector (15 downto 0);

  signal clk, rst_l: std_logic; 
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Preserving Signals
To ensure that an internal design signal is preserved by logic optimization, 
both Precision RTL Synthesis and Synplify provide a “preserve”-type 
constraint. 

In Precision RTL Synthesis, the “preserve_signal” attribute is a Boolean 
attribute that is declared as a Verilog HDL comment near a wire or reg 
declaration or as a VHDL attribute of a signal.

-- Precision RTL compiler directives
  attribute preserve_signal : boolean;
  attribute preserve_signal of reg_out : signal is true;
  attribute dont_touch : boolean;
  attribute dont_touch of multreg16_1: label is true;
  attribute dont_touch of rotate_1   : label is true;

  -- Synplify compiler directives
  attribute syn_black_box : boolean;
  attribute syn_black_box of multreg16: component is true;
  attribute syn_black_box of rotate   : component is true;
  attribute syn_noprune : boolean;
  attribute syn_noprune of GSR_INST: label is true;
  attribute syn_noprune of PUR_INST: label is true;

begin  

  rst_l <= not(rst);
  -- Global set/reset and power up reset signal drivers
  GSR_INST: GSR port map(GSR => rst_l);
  PUR_INST: PUR port map(PUR => rst_l);

  -- VHDL module instantiation generated by SCUBA 
ispLever_v50_SP1_Build (12)
  -- Wed May 25 11:53:41 2005
  -- parameterized module component instance
  PLL_1 : LatticeEC_66MHz_PLL
    port map (CLK=>pllclk, RESET=>rst, CLKOP=>clk, LOCK=>open);

  multreg16_1:  multreg16 port map (
    q    => reg_out, 
    dataa=> a,
    datab=> b, 
    datac=> c, 
    sel  => sel,

clk  => clk,
rst  => rst);

  rotate_1: rotate port map (
    q    => q,
    data => reg_out,
    clk  => clk,
    r_l  => r_l,
    rst  => rst); 

end arch;

Figure 62: Black-Box Component Instances in VHDL (Continued)
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In Synplify, the “syn_keep” directive is a Boolean attribute that is declared 
as a Verilog HDL comment within a wire or reg declaration or as a VHDL 
attribute of a signal declaration. 

The source code in Figure 63 in Verilog HDL and in Figure 64 in VHDL 
illustrates the usage of the preserve signal concept. 

Floorplanning Constraints
Device floorplanning constraints in the HDL source are a powerful means of 
directing placement of design logic from a logical abstract level. It is a 
common practice in a timing closure methodology to iterate between the 
Design Planner application and the place-and-route program, PAR, to arrive 
at a superior implementation, then use the guidelines in this section to place 
the physical floorplanning constraints into the RTL code as logical constraints.

The floorplanning strategy is usually part of a timing closure or block modular 
design style. Before you attempt floorplanning techniques, Lattice 
Semiconductor recommends that you review “Floorplanning the Design” on 
page 173 and the “Block Modular Design Step Guide” section of the 
ispLEVER FPGA Flow Help in the online Help to understand whether your 
design could benefit from these methods.

Logic synthesis passes constraints into the target EDIF 2 0 0 netlist, where 
they appear as EDIF properties. The design mapper program, MAP, then 
converts the logical references, such as signals and module instances, into 
physical references, such as slices, EBR blocks, and DSP blocks, and writes 
the FPGA preferences into the ispLEVER preference (.prf) file. Table 18 

Figure 63: VHDL for Preserve Signal

 // Preserve signal load
   wire load /* synthesis syn_keep=1 */; 
   //pragma attribute load preserve_signal true

Figure 64: Verilog HDL for Preserve Signal

Verilog HDL for Preserve Signal

-- Preserve signal load (Precision RTL)
   attribute preserve_signal:boolean;
   attribute preserve_signal of load: signal is true;

   -- Preserve signal load (Synplify)
   attribute syn_keep:boolean;
   attribute syn_keep of load: signal is true;
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shows the conversion from constraints based on the logical HDL to 
constraints based on the physical preference file.

Floorplanning constraints are written as VHDL attributes or as Verilog HDL 
embedded comments. A common VHDL style can be used between Precision 
RTL Synthesis and Synplify; however, Verilog HDL requires that vendor-
specific keywords precede each comment. The source code examples in this 
section show both styles.

This section describes the most common attributes used by designers.

Locating a Block to a Device Site 
The simplest floorplanning technique from within HDL is to anchor a logic 
block to a particular device site by using the LOC HDL attribute. Blocks can 
be anchored independently of a group or region floorplan. The most common 
type of “block” to locate is PIOs, as shown in “sysIO Buffer Constraints” on 
page 87.

This section illustrates how to specify the anchor points of a slice- or 
embedded-block-type logic in the FPGA array.

If you intend to floorplan design elements that will be mapped to slice device 
sites, you must add the COMP=comp_name HDL attribute to each module 
instance in the HDL source, as in the following Verilog HDL sample:

REG2 REG2inst (<port_list>) /* synthesis COMP=regpair 
LOC=R10C20D */;

Table 18: Logical and Physical Floorplanning Constraints 
HDL Constraint Post-Map Preference Purpose

UGROUP PGROUP Group logic

HGROUP PGROUP Group logic (grouped 
elements retain 
hierarchical path)

PBBOX PGROUP BBOX Bounding box of a 
PGROUP

PLOC LOCATE PGROUP Anchor point of a 
PGROUP

PREGION REGION User-defined REGION 
name 

PRLOC REGION “RnCm” Anchor point of REGION

PRBBOX REGION Y X Bounding box of REGION

COMP Used with PGROUP or 
LOCATE

User-defined name for 
slice-based logic

LOC LOCATE COMP Device site for a block
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In this sample, the design mapper (MAP) applies the “regpair” COMP name to 
all elements that can be covered by a single slice and assigns it to the 
R10C20D device site. If the logic overflows a single slice, MAP appends a 
“.number” to the name for the post-map netlist, and the placer automatically 
chooses the site locations for the remaining slices. 

To floorplan design elements that will be mapped to embedded blocks, such 
as PLL/DLL, EBR, or DSP sites, the LOC=<device_site> HDL attribute is 
added to each module instance in the HDL source, as in the following Verilog 
HDL samples:

ebr1 ram_dq_16 (<port_list>) /* synthesis LOC=EBR_R6C6  */;
pll1 pll66MHz  (<port_list>) /* synthesis LOC=PLL3_R6C1 */;

The graphical floorplan views of the Design Planner or EPIC provide device 
site addresses for slices or embedded blocks. 

Grouping Logic
The HGROUP (Hierarchical Group) or UGROUP (Universal Group) can be 
used as an attribute in VHDL and Verilog HDL source code to bound and 
locate sections of a design for grouping in the FPGA array. For details on this 
method and the application of HGROUPs and UGROUPs, refer to 
“Floorplanning the Design” on page 173 and “Design Performance 
Enhancement Strategies” on page 193.

The source code in Figure 65 in Verilog HDL and in Figure 66 in VHDL 
illustrates the usage of the UGROUP constraint. The design mimics the 
hierarchy shown in the example in “Floorplanning the Design” on page 173 
and illustrates the scenario in which the critical path is between the 
REGISTER_FILE and the STATE_MACHINE modules. Both modules are 
grouped into a UGROUP named “CRITICAL_GROUP.”

Note

COMP/LOC attributes for slice-based logic can be included as part of a logic grouping 
strategy described in the floorplanning preferences section by specifying a device site 
relative to the anchor point of a PGROUP. This approach is not supported for 
embedded blocks.

Note

Design elements such as PIO, EBR, DSP, PLL/DLL, and MACO blocks do not require 
the COMP attribute because MAP retains the original name used in the native generic 
(.ngd) database.

Note
In some cases, such as when using Precision RTL Synthesis, you may need to use 
“preserve hierarchy” compiler directives on module instances that you want to group to 
prevent logic optimization from flattening the design. 
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Note

By default, groups are placed into the smallest square available on the device 
floorplan. See “Design Performance Enhancement Strategies” on page 193 for 
information about group bounding boxes and anchors and for details on how to specify 
an alternative area shape and position.

Note

Groups that are composed of both slice-based and embedded block logic, such as 
EBR- and DSP-type blocks, must be anchored. Groups composed solely of slice-
based logic, such as LUTs and registers, can float. For more information, see 
“Floorplanning the Design” on page 173.

Figure 65: Grouping Constraints in Verilog HDL

module STATE_MACHINE (clk, reset, cs, refresh, ras, cas, ready) 
/* synthesis UGROUP="CRITICAL_GROUP" */;
   input  clk;
   input  reset;
   input  cs;
   input  refresh;
   output ras;
   output cas;
   output ready;

   parameter /* exemplar enum gray */ s0 = 0, s1 = 1, s2 = 2, 
s3 = 3, s4 = 4;

   reg [2:0] /* exemplar enum gray */ present_state, next_state 
;
   reg                                ras, cas, ready;

// logical description goes here…

endmodule //

module CONTROLLER (clk, reset, cs, regdata, ras, cas, ready, 
load);
   input        clk;
   input        reset;
   input        cs;
   input [15:0] regdata;
   output       ras;
   output       cas;
   output       ready;
   input        load;

   wire [15:0]  count;
   wire         refresh;

   COUNTER       b1 (clk, reset, cs, regdata, refresh, load);
   STATE_MACHINE b2 (clk, reset, cs, refresh, ras, cas, ready);
   //pragma attribute b2 UGROUP CRITICAL_GROUP 
   //pragma attribute b2 hierarchy preserve

endmodule //
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module REGISTER_FILE (clk, reset, cs, data, regdata) 
/* synthesis UGROUP="CRITICAL_GROUP" */;
   input         clk;
   input         reset;
   input         cs;
   input  [15:0] data;
   output [15:0] regdata;
   
   reg    [15:0] regdata;

// logical description goes here…

end

endmodule //

module TOP (clk, reset, cs, ras, cas, ready, data, load);
   input        clk;
   input        reset;
   input        cs;
   output       ras;
   output       cas;

output       ready;
   input [15:0] data;
   input        load;

   wire [15:0] regdata;

CONTROLLER    b1 (clk, reset, cs, regdata, ras, cas, ready, 
load);
REGISTER_FILE b2 (clk, reset, cs, data, regdata);
//pragma attribute b2 UGROUP CRITICAL_GROUP 
//pragma attribute b2 hierarchy preserve

endmodule //

Figure 65: Grouping Constraints in Verilog HDL (Continued)
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Figure 66: Grouping Constraints in VHDL

-- Precision RTL package 
-- library exemplar;
-- use exemplar.exemplar_1164.all;

-- Synplify package 
library synplify;
use synplify.attributes.all;

library ieee;
use ieee.std_logic_1164.all;

entity STATE_MACHINE is 
port (
clk          : in std_logic;
reset        : in std_logic;
cs           : in std_logic;
refresh      : in std_logic;
ras          : out std_logic;
cas          : out std_logic;
ready        : out std_logic);

end STATE_MACHINE;

architecture ARCH of STATE_MACHINE is
   -- Precision RTL attributes for encoding style
   -- attribute TYPE_ENCODING_STYLE : encoding_style;
   -- Declare the state machine enumeration type
   type state_typ is (s0, s1, s2, s3, s4);
   -- Set the type_encoding_style of the state type
   -- attribute TYPE_ENCODING_STYLE of state_typ : type is 
GRAY;

   signal present_state, next_state : state_typ;

   -- Synplify attributes for encoding style
   -- Set the type_encoding_style of the state signal
   attribute syn_encoding of present_state, next_state : signal 
is "gray";
   attribute syn_keep     of present_state, next_state : signal 
is true;

begin
   -- logical description goes here…

end ARCH;

library ieee;
use ieee.std_logic_1164.all; 

entity CONTROLLER is 
port (
clk      : in  std_logic;
reset    : in  std_logic;
cs       : in  std_logic;
regdata  : in  std_logic_vector(15 downto 0);
ras      : out std_logic;
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cas      : out std_logic;
ready    : out std_logic;
load     : in  std_logic);

end CONTROLLER;

architecture ARCH of CONTROLLER is
component COUNTER
port (
clk                 : in  std_logic;
reset               : in  std_logic;
cs                  : in  std_logic;
regdata             : in  std_logic_vector(15 downto 0);
refresh             : out std_logic;
load                : in  std_logic);
end component;

component STATE_MACHINE
port (
clk          : in std_logic;
reset        : in std_logic;
cs           : in std_logic;
refresh      : in std_logic;
ras          : out std_logic;
cas          : out std_logic;
ready        : out std_logic);
end component;

signal count   : std_logic_vector(15 downto 0);
   signal refresh : std_logic;

   attribute hierarchy : string ;
   attribute hierarchy of b2: label is "preserve";   

   -- LatticeEC Floorplan Constraints
   attribute ugroup    : string ;
   attribute ugroup    of b2: label is "CRITICAL_GROUP";   

begin
   b1 : COUNTER       port map (clk, reset, cs, regdata, 
refresh, load);
   b2 : STATE_MACHINE port map (clk, reset, cs, refresh, ras, 
cas, ready);

end ARCH;

library ieee;
use ieee.std_logic_1164.all;

entity REGISTER_FILE is 
port (
clk      : in  std_logic;
reset    : in  std_logic;
cs       : in  std_logic;
data     : in  std_logic_vector(15 downto 0);
regdata  : out std_logic_vector(15 downto 0));

end REGISTER_FILE;

Figure 66: Grouping Constraints in VHDL (Continued)
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architecture ARCH of REGISTER_FILE is
   signal regdata_n: std_logic_vector(15 downto 0);

begin
   -- logical description goes here…

end ARCH;

library ieee;
use ieee.std_logic_1164.all; 

entity TOP is 
port (
clk      : in  std_logic;
reset    : in  std_logic;
cs       : in  std_logic;
ras      : out std_logic;
cas      : out std_logic;
ready    : out std_logic;
data     : in  std_logic_vector(15 downto 0);
load     : in  std_logic
);

end TOP;

architecture ARCH of TOP is
   component CONTROLLER

port (
clk      : in  std_logic;
reset    : in  std_logic;
cs       : in  std_logic;
regdata  : in  std_logic_vector(15 downto 0);
ras      : out std_logic;
cas      : out std_logic;
ready    : out std_logic;
load     : in  std_logic);

   end component;

component REGISTER_FILE
port (
clk      : in  std_logic;
reset    : in  std_logic;
cs       : in  std_logic;
data     : in  std_logic_vector(15 downto 0);
regdata  : out std_logic_vector(15 downto 0));

   end component;

signal regdata : std_logic_vector(15 downto 0);

   attribute hierarchy : string ;
   attribute hierarchy of b2: label is "preserve";   

   -- ispLEVER attributes for flooplanning
   attribute UGROUP    : string ;
   attribute UGROUP    of b2: label is "CRITICAL_GROUP";   

Figure 66: Grouping Constraints in VHDL (Continued)
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Group Bounding Boxes and Anchors
You can further control the HGROUP (Hierarchical Group) or UGROUP 
(Universal Group) by adding an optional bounding box to specify the shape 
and size of the floorplan area (PBBOX) allocated to the logic and an optional 
anchor point (PLOC) that provides a specific row and column address that 
indicates the anchor point of the upper left corner of the bounding box. For 
details on this method, refer to “Floorplanning the Design” on page 173 and 
“Design Performance Enhancement Strategies” on page 193.

The source code in Figure 67 in Verilog HDL and in Figure 68 in VHDL 
illustrates the usage of the PBBOX and PLOC constraints in conjunction with 
the UGROUP constraint shown in “Grouping Logic” on page 99.

begin
   b1: CONTROLLER    port map (clk, reset, cs, regdata, ras, 
cas, ready, load);
   b2: REGISTER_FILE port map (clk, reset, cs, data, regdata);

end ARCH;

Figure 67: Group Bounding Boxes and Anchors in Verilog HDL

// Comment for Synplify-style Verilog HDL
module REGISTER_FILE (clk, reset, cs, data, regdata) 
/* synthesis ugroup="CRITICAL_GROUP" PBBOX="5,5" PLOC="R7C7D" 
*/;
// Comment for Precision-style Verilog HDL
REGISTER_FILE b2 (clk, reset, cs, data, regdata);
//pragma attribute b2 ugroup CRITICAL_GROUP PBBOX 5,5 PLOC 
R7C7D

Figure 68: Group Bounding Boxes and Anchors in VHDL

 attribute UGROUP    : string ;
   attribute PBBOX     : string;
   attribute PLOC      : string;
   attribute UGROUP    of b2: label is "CRITICAL_GROUP";   
   attribute PBBOX     of b2: label is "5,5";
   attribute PLOC      of b2: label is "R7C7D";begin

begin
   b1: CONTROLLER    port map (clk, reset, cs, regdata, ras, 
cas, ready, load);

   b2: REGISTER_FILE port map (clk, reset, cs, data, regdata);

Figure 66: Grouping Constraints in VHDL (Continued)
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Regional Groups
You can optionally assign the HGROUP (Hierarchical Group) or UGROUP 
(Universal Group) to a user-defined, named area of the device floorplan by 
using region constraints. PREGION is a user label for the region, PRBBOX is 
the bounding box definition, and PRLOC is the row and column address that 
indicates the anchor point for the upper left corner of the bounding box. For 
details on this method, refer to “Floorplanning the Design” on page 173 and 
“Design Performance Enhancement Strategies” on page 193.

The source code in Figure 69 in Verilog HDL and in Figure 70 in VHDL 
illustrate the usage of the PREGION, PRBBOX, and PRLOC constraints in 
conjunction with a UGROUP constraint shown in “Grouping Logic” on 
page 99.

Note

Regional groups can contain any number and combination of floating (unanchored), 
bounded or unbounded (PBBOX) HGROUP/UGROUPs. Regions themselves must be 
anchored and bounded.

Figure 69: Regional Groups in Verilog HDL

// Comment for Synplify-style Verilog HDL
module REGISTER_FILE (clk, reset, cs, data, regdata) 
/* synthesis ugroup="CRITICAL_GROUP" PREGION="CENTER_REGION" 
PRLOC="R5C5D" PRBBOX="7,10" */;

// Comment for Precision-style Verilog HDL
REGISTER_FILE b2 (clk, reset, cs, data, regdata);
//pragma attribute b2 ugroup CRITICAL_GROUP PREGION 
CENTER_REGION PRLOC R5C5D PRBBOX 7,10

Figure 70: Regional Groups in VHDL

attribute ugroup    : string ;
   attribute PBBOX     : string;
   attribute PLOC      : string;
   attribute PREGION   : string;
   attribute PRLOC     : string;
   attribute PRBBOX    : string;

   attribute ugroup    of b2: label is "CRITICAL_GROUP";   
   attribute PBBOX     of b2: label is "5,5";
   attribute PLOC      of b2: label is "R7C7D";
   attribute PREGION   of b2: label is "CENTER_REGION";
   attribute PRLOC     of b2: label is "R5C5D";
   attribute PRBBOX    of b2: label is "7,10";

begin
   b1: CONTROLLER    port map (clk, reset, cs, regdata, ras, 
cas, ready, load);
   b2: REGISTER_FILE port map (clk, reset, cs, data, regdata);
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Figure 71 illustrates the floorplan that results in the context of an LFEC1E.

Register-Oriented Groups (Synplify Only)
In Synplify, you can specify that the registers driving a particular signal be 
grouped. This style can be beneficial to establish groups along pipeline 
stages of a data-path-style design.

You can use the floorplanning constraints described in this section on 
registered signals of Verilog HDL “reg” or VHDL signal declarations. On the 
basis of the signal attributes, Synplify adds PGROUP properties to all 
registers inferred by the RTL.

The source code in Figure 72 in Verilog HDL and in Figure 73 in VHDL 
illustrates the use of the register-oriented UGROUP constraint.

Figure 71: Anchored PGROUP Within a Region

Note

In some cases, you may need to use “preserve signal” compiler directives on signal or 
register elements that you want to group to prevent logic optimization from eliminating 
them.
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Figure 72: Register-Oriented Groups in Verilog HDL

module COUNTER (clk, reset, cs, regdata, refresh, load);
input clk;
input reset;
input cs;
input [15:0] regdata;
output refresh;
input load;

reg [15:0] count /* synthesis syn_keep=1 ugroup="COUNTER_GROUP" 
PBBOX="3,3" PREGION="COUNTER_REGION" PRLOC="R5C10D" 
PRBBOX="5,5" */;

always @ (posedge clk or posedge reset)
if (reset)

count <= 1'b0;
else if (cs) begin

if (load)
count <= regdata;

else begin
count[15:1] <= count[14:0];
count[0] <= ~count[15];

end
end

assign refresh = count[0];

endmodule //
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Related Documentation
To supplement the information provided in this chapter, see the following 
documentation for related topics and guidelines:

The ispLEVER software online Help

FPGA Libraries Online Help

Figure 73: Register-Oriented Groups in VHDL

library ieee;
use ieee.std_logic_1164.all;
entity COUNTER is
port (

clk : in std_logic;
reset : in std_logic;
cs : in std_logic;
regdata : in std_logic_vector(15 downto 0);
refresh : out std_logic;
load : in std_logic
);

end COUNTER;

architecture ARCH of COUNTER is
signal count: std_logic_vector(15 downto 0);
-- ispLEVER attributes for flooplanning
attribute UGROUP : string;
attribute PBBOX : string;
attribute PREGION : string;
attribute PRLOC : string;
attribute PRBBOX : string;
attribute UGROUP of count : signal is "counter_group";
attribute PBBOX of count : signal is "3,3";
attribute PREGION of count : signal is "counter_region";
attribute PRLOC of count : signal is "R5C10D";
attribute PRBBOX of count : signal is "5,5";

begin
process (clk, reset, regdata)
begin

if (reset='1') then
count <= (others=>'0');

elsif clk'event and clk='1' then
if (load='1') then

count <= regdata;
else

count(15 downto 1) <= count(14 downto 0);
count(0) <= not(count(15));

end if;
end if;

end process;

refresh <= count(0);

end ARCH;
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TN1056 - LatticeECP/EC and LatticeXP sysIO Usage Guide

TN1102 - LatticeECP2 sysIO Usage Guide

TN1088 - LatticeSC PURESPEED I/O Usage Guide 

TN1091 - MachXO sysIO Usage Guide

Precision RTL Synthesis Style Guide

Synplicity FPGA Synthesis Reference Manual



FPGA Design Guide 111

8
Synthesis Tips for Higher 
Performance

This chapter provides tips on applying synthesis techniques for both Mentor 
Graphics Precision RTL Synthesis and Synplicity Synplify to improve design 
performance when you target LatticeECP/EC, LatticeXP, and MachXO 
devices.

Depending on your design, one tool could provide slightly better results than 
the other, so you may want to try both tools to see which one yields the best 
results.



Synthesis Tips for Higher Performance Register Balancing and Pipelining

FPGA Design Guide 112

Register Balancing and Pipelining
You can use several techniques for register balancing and pipelining to 
improve the maximum frequency (fMAX).

Retiming
Retiming logic optimization can be used to balance the logic levels among 
register pairs to maximize clock rate. In fully synchronized designs, the logic 
between the registers determines the fMAX. Keep this in mind during design 
synthesis. Although synthesis tools offer retiming as an option, you should 
attempt to balance register pairs between critical paths whenever possible.

Pipelining
Another design techniques is pipelining, which is the insertion of an additional 
pipeline register to achieve better clock frequency. Clock latency is introduced 
by pipelining. If the logic levels in-between registers cannot be reduced or 
balanced, try adding allowable pipeline registers. Another way to improve 
fMAX is to turn on the retiming feature in the synthesis tool.

Always use the pipeline register available in the module generator for 
modules such as RAM and DSP blocks. DSP blocks contain input, pipeline, 
and output registers. The recommendation is to use all these registers for 
best system performance, as long as system latency is allowed.

As shown in Figure 74, adding allowable registers can significantly increase 
fMAX by creating shorter tSU and tCO delays. The pipeline to output will be the 
fMAX. This fMAX for the DSP is not in the report since it is implied. A warning 
note reports that pipeline to output is the critical path. If there is another 
register after the output, this fMAX will be reported if it is the critical path.

Figure 74: Fully Pipelining the DSP Block for Best Performance
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Figure 75 shows the HDL code used to achieve this result.

The following examples show how to reduce or eliminate TLATCH delays. 
Figure 76 shows a block diagram of a sample design that causes TLATCH 
delay. From this design, the data path goes through two adders, LUT logic, 
and pipeline registers. The critical path is from the adders to the LUTs.

Figure 75: HDL Code for Fully Pipelining the DSP Block for Best Performance

always @(posedge clock or posedge reset)
    begin
begin
                dataa_reg = dataa; //input register
                datab_reg = datab; //input register
                qout_p = dataa_reg * datab_reg; //pipeline register
                out = qout_p; //output register
           end
    end

Figure 76: Sample Design That Causes TLATCH Delay
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Figure 77 shows the timing report of the design shown in Figure 76.

Figure 78 shows the implementation in sample code.

Because of hardware limitations, two TLATCH delays of about 1 ns each have 
been introduced. If arithmetic outputs are not registered, the carryout goes to 
a transparent latch. 

Adding registers to the output of the adders eliminates these delays. There is 
now registered balancing with no more TLATCH delays, as shown in 
Figure 77. By adding registers in RTL, the design that previously ran at 80 
MHz now runs at 200 MHz.

Figure 77: Timing Report showing TLATCH Delay

 Name    Fanout   Delay (ns)          Site               Resource
C2OUT_DEL   ---     0.496   IOL_T42B.CLK to  IOL_T42B.INFF dataa(3)_MGIOL (from 

clock_int)
ROUTE         1     2.442  IOL_T42B.INFF to      R2C36B.A1 dataa_reg(3)
A1TOFCO_DE  ---     0.694      R2C36B.A1 to     R2C36B.FCO SLICE_9
ROUTE         1     0.000     R2C36B.FCO to     R2C36C.FCI rtlc12_49_add_2/nx2247z6
TLATCH_DEL  ---     1.093     R2C36C.FCI to      R2C36C.Q0 SLICE_10
ROUTE         1     2.110      R2C36C.Q0 to      R2C34C.B0 sumx(4)
B0TOFCO_DE  ---     0.801      R2C34C.B0 to     R2C34C.FCO SLICE_2
ROUTE         1     0.000     R2C34C.FCO to     R2C34D.FCI rtlc12_48_add_1/nx2247z5
FCITOFCO_D  ---     0.129     R2C34D.FCI to     R2C34D.FCO SLICE_3
ROUTE         1     0.000     R2C34D.FCO to     R2C35A.FCI rtlc12_48_add_1/nx2247z4
FCITOFCO_D  ---     0.129     R2C35A.FCI to     R2C35A.FCO SLICE_4
ROUTE         1     0.000     R2C35A.FCO to     R2C35B.FCI rtlc12_48_add_1/nx2247z3
FCITOFCO_D  ---     0.129     R2C35B.FCI to     R2C35B.FCO SLICE_5
ROUTE         1     0.000     R2C35B.FCO to     R2C35C.FCI rtlc12_48_add_1/nx2247z2
FCITOFCO_D  ---     0.129     R2C35C.FCI to     R2C35C.FCO SLICE_6
ROUTE         1     0.000     R2C35C.FCO to     R2C35D.FCI rtlc12_48_add_1/nx2247z1
TLATCH_DEL  ---     1.093     R2C35D.FCI to      R2C35D.Q0 SLICE_7
ROUTE         1     1.758      R2C35D.Q0 to      R2C33C.B0 sumz(14)
CTOF_DEL    ---     0.337      R2C33C.B0 to      R2C33C.F0 SLICE_26
ROUTE         1     1.038      R2C33C.F0 to      R2C33B.A0 nx6365z3
CTOF_DEL    ---     0.337      R2C33B.A0 to      R2C33B.F0 SLICE_25
ROUTE         1     0.000      R2C33B.F0 to     R2C33B.DI0 rtlc5n12 (to clock_int)
                  --------

                   12.715   (42.2% logic, 57.8% route), 11 logic levels.

assign sumz = sumx + sumy;

assign sumx = dataa_reg + datab_reg;

Figure 78: HDL Code used For Redistributing the Register to Reduce the 
“TLATCH_DEL” Delay

assign sumx = dataa_reg + datab_reg;
  assign sumy = datac_reg + datad_reg;

  @always (clock,reset)
             ………………..
        q_int1 <= sumz
        q <= q_int1

            …………………….
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Figure 79 shows a block diagram that eliminates the TLATCH delay by 
redistributing the registers.

Figure 80 shows the HDL code used to achieve these results.

Figure 81 shows the result of the register redistribution.

Always register the output of the arithmetic functions to avoid the extra 
“TLATCH_DEL” delay.

Figure 79: Redistribute the Register to Reduce the TLATCH_DEL Delay

Figure 80: HDL Code Used to Redistribute the Register to Reduce the 
“TLATCH_DEL” Delay

@always (clock,reset)
              sumz <= sumx + sumy;
              sumx <= dataa_reg + datab_reg;
              sumy <= datac_reg + datad_reg;

Assign q <= ^Q_int1;

Figure 81: Result of Register Redistribution

  Name    Fan-out   Delay (ns) Site               Resource
REG_DEL     ---     0.508    R48C31B.CLK to     R48C31B.Q1 SLICE_1 (from clock_int)
ROUTE         1     2.708     R48C31B.Q1 to     R34C31B.A1 sumx(3)
A1TOFCO_DE  ---     0.694     R34C31B.A1 to    R34C31B.FCO SLICE_18
ROUTE         1     0.000    R34C31B.FCO to    R34C31C.FCI rtlc8_16_add_2/nx2247z6
FCITOFCO_D  ---     0.129    R34C31C.FCI to    R34C31C.FCO SLICE_19
ROUTE         1     0.000    R34C31C.FCO to    R34C31D.FCI rtlc8_16_add_2/nx2247z5
FCITOFCO_D  ---     0.129    R34C31D.FCI to    R34C31D.FCO SLICE_20
ROUTE         1     0.000    R34C31D.FCO to    R34C32A.FCI rtlc8_16_add_2/nx2247z4
FCITOFCO_D  ---     0.129    R34C32A.FCI to    R34C32A.FCO SLICE_21
ROUTE         1     0.000    R34C32A.FCO to    R34C32B.FCI rtlc8_16_add_2/nx2247z3
FCITOFCO_D  ---     0.129    R34C32B.FCI to    R34C32B.FCO SLICE_22
ROUTE         1     0.000    R34C32B.FCO to    R34C32C.FCI rtlc8_16_add_2/nx2247z2
FCITOFCO_D  ---     0.129    R34C32C.FCI to    R34C32C.FCO SLICE_23
ROUTE         1     0.000    R34C32C.FCO to    R34C32D.FCI rtlc8_16_add_2/nx2247z1 (to 

clock_int)
                  --------
                    4.555   (40.5% logic, 59.5% route), 7 logic levels.
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Using Dedicated Resource GSR for fMAX Improvement
If your design contains set/reset high-fan-out nets, it is recommended that you 
use the dedicated hardwired GSR resource. This will result in less routing 
congestion and could improve routability and performance. 

If no GSR is used, the design will use the resources of the local set/reset that 
can be used for other purposes. Synthesis can automatically infer GSR 
whenever possible.

When only one reset exists, always infer GSR.

When more than one reset exists, pick the one that makes the most 
sense, especially the one with the biggest fan-out. Then disable the GSR 
for others.

Do not infer more than one GSR cell from the RTL.

A mapping error is caused if the GSR comes from different sources. If the 
GSR comes from the same source, they can be merged.

GSR can be instantiated in the RTL code to ensure usage. GSR can be 
assigned to any source, whether or not it has a small or large fan-out, 
depending on whether you want to use the GSR on a low- or high-fan-out 
signal. This should be considered during simulation.

Instantiating Dedicated Resource GSR in RTL 
Code
The following is a Verilog HDL example that instantiates dedicated resource in 
RTL code:

GSR GSR_INST( reset_sig)

Next is a VHDL example that instantiates dedicated resource in RTL code:

GSR_INST : GSR 
 port map (GSR=>reset_sig)

Improving Timing Through the I/O Register
You can improve the tSU and tCO timing by turning the I/O register on or off. 
Turning on the input register can improve the setup. Turning on the output 
register can improve the clock-to-out time.

There are different levels of control in synthesis. You can control synthesis:

Note
You must name the instance GSR_INST in order for the simulator to recognize the 
global implied connections to all sequential components in the design. The GSR cell is 
active low (when GSR = ‘0’ reset). In the software, GSR is active low by default. If you 
choose active high, you must tie an inverter before it goes to the GSR for correct 
simulation.
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In the RTL code

In the synthesis tool

Globally or locally

After turning on the input/output register, ensure that the timing can still meet 
setup time, as well as fMAX requirements.

Example Coded in Precision RTL Synthesis
Figure 82 shows a Verilog HDL example that turns the I/O register on and off, 
using the Precision RTL Synthesis tool. Note the code in bold.

Figure 82: Precision RTL Synthesis Verilog HDL Example Turning the I/O Register On and Off

module io_flops(q, dataa, datab, clk, rst);
    output [15:0] q;            //pragma attribute q outff true (or false)
    input   [7:0] dataa;       //pragma attribute dataa inff true (or false)
    input   [7:0] datab;       //pragma attribute datab inff true (or false)
    input   clk, rst;
    reg    [15:0] q;
    reg    [15:0] dataa_reg, datab_reg;
    wire   [7:0] mux_out;

   always @(posedge clk or posedge rst)
    begin
        if (rst)
             begin
                dataa_reg = 0;
                datab_reg = 0;
             end
        else
             begin
                dataa_reg = dataa;
                datab_reg = datab;
             end
    end
    assign mux_out = dataa_reg + datab_reg;
    always @(posedge clk or posedge rst)
    begin
        if (rst)
                q = 0;
        else
                q = mux_out;
    end

  endmodule
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Figure 83 shows a VHDL example that turns the I/O register on and off, using 
the Precision RTL Synthesis tool. Note the code in bold.

Figure 83: Precision RTL Synthesis VHDL Example Turning the I/O 
Register On and Off

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity io_flops is
port (        q : out std_logic_vector (7 downto 0);
          dataa : in std_logic_vector (7 downto 0);
          datab : in std_logic_vector (7 downto 0); 
            clk : in std_logic);
-- default is turn on the io flops.

attribute inff  : boolean;
attribute outff : boolean;
attribute outff of q : signal is true;
attribute inff of dataa : signal is true;
attribute inff of datab : signal is true;

end io_flops;
architecture rtl of io_flops is 
signal dataa_reg : std_logic_vector(7 downto 0 ) ;
signal datab_reg : std_logic_vector(7 downto 0 ) ;
signal q_int     : std_logic_vector(7 downto 0 ) ;
begin 
reg_input : process (clk) 
begin 
   if (clk'event and clk = '1') then 
               dataa_reg <= dataa ; 
               datab_reg <= datab ; 
   end if ; 
end process reg_input ; 
q_int <= dataa_reg + datab_reg;
reg_output : process (clk) 
begin 
   if (clk'event and clk = '1') then 
       q <= q_int; 
   end if ; 
end process reg_output;

end rtl;
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Examples Coded in Synplify
Figure 84 shows a Verilog HDL example that turns the I/O register on and off, 
using the Synplify synthesis tool. Its effect is similar to that of the DIN and 
DOUT attribute. But “syn_useioff” can be used for both inputs and outputs. 
Note the code in bold.

Figure 85 shows a VHDL example that turns the I/O register on and off, using 

Figure 84: Synplify Verilog HDL Example Turning the I/O Register On 
and Off

module io_flops(q, dataa, datab, clk, rst);
    output [15:0] q;  // synthesis syn_useioff = 1  (or 0)
    input   [7:0] dataa; //synthesis syn_useioff = 1 (or 0)
    input   [7:0] datab; //synthesis syn_useIoff = 1 (or 0)
    input   clk, rst;
    reg    [15:0] q;
    reg    [15:0] dataa_reg, datab_reg;
    wire   [7:0] mux_out;

   always @(posedge clk or posedge rst)
    begin
        if (rst)
             begin
                dataa_reg = 0;
                datab_reg = 0;
             end
        else
             begin
                dataa_reg = dataa;
                datab_reg = datab;
             end
    end
    assign mux_out = dataa_reg + datab_reg;
    always @(posedge clk or posedge rst)
    begin
        if (rst)
                q = 0;
        else
                q = mux_out;
    end
  endmodule
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the Synplify synthesis tool. Note the code in bold.

Figure 85: Synplicity VHDL Example Turning the I/O Register On and Off
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity io_flops is
port (        q : out std_logic_vector (7 downto 0);
          dataa : in std_logic_vector (7 downto 0);
          datab : in std_logic_vector (7 downto 0); 
            clk : in std_logic);
    attribute syn_useioff : boolean;
    attribute syn_useioff of q : signal is true;
    attribute syn_useioff of dataa : signal is true;
    attribute syn_useioff of datab : signal is true;
end io_flops;
architecture rtl of io_flops is 
signal dataa_reg : std_logic_vector(7 downto 0 ) ;
signal datab_reg : std_logic_vector(7 downto 0 ) ;
signal q_int     : std_logic_vector(7 downto 0 ) ;
begin 
reg_input : process (clk) 
begin 
   if (clk'event and clk = '1') then 
               dataa_reg <= dataa ; 
               datab_reg <= datab ; 
   end if ; 
end process reg_input ; 
   q_int <= dataa_reg + datab_reg;
reg_output : process (clk) 
begin 
   if (clk'event and clk = '1') then 
       q <= q_int; 
   end if ; 
end process reg_output;
end rtl;
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Adding Delays to Input Registers
Designs that have registered inputs can incur hold-time violations if the clock 
path is too fast. Therefore, a feature was added in silicon to give this fixed 
delay on the input register. Input registered must be inferred before the fixed 
delay can be turned on.

Examples Coded in Precision RTL Synthesis
Figure 86 shows a Verilog HDL example that adds delays to the input register, 
using the Precision RTL Synthesis tool. Note the code in bold.

Figure 86: Precision RTL Synthesis Verilog HDL Example of Adding Delays to Input Register

module io_flops(q, dataa, datab, clk, rst);
    output [15:0] q;            
    input   [7:0] dataa;       //pragma attribute dataa inff true 

//pragma attribute dataa fixeddelay
    input   [7:0] datab;       
    input   clk, rst;
    reg    [15:0] q;
    reg    [15:0] dataa_reg, datab_reg;
    wire   [7:0] mux_out;

   always @(posedge clk or posedge rst)
    begin
        if (rst)
             begin
                dataa_reg = 0;
                datab_reg = 0;
             end
        else
             begin
                dataa_reg = dataa;
                datab_reg = datab;
             end
    end
    assign mux_out = dataa_reg + datab_reg;
    always @(posedge clk or posedge rst)
    begin
        if (rst)
                q = 0;
        else
                q = mux_out;
    end
  endmodule
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Figure 87 shows a VHDL example that adds delays to the input register, using 
the Precision RTL Synthesis tool. Note the code in bold.

Figure 87: Precision RTL Synthesis VHDL Example Adding Delays to Input Register
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity io_flops is
port (        q : out std_logic_vector (7 downto 0);
          dataa : in std_logic_vector (7 downto 0);
          datab : in std_logic_vector (7 downto 0); 
            clk : in std_logic);
       attribute fixeddelay  : string;
       attribute fixeddelay of dataa : signal is “true”;
end io_flops;
architecture rtl of io_flops is 
signal dataa_reg : std_logic_vector(7 downto 0 ) ;
signal datab_reg : std_logic_vector(7 downto 0 ) ;
signal q_int     : std_logic_vector(7 downto 0 ) ;
begin 
reg_input : process (clk) 
begin 
   if (clk'event and clk = '1') then 
               dataa_reg <= dataa ; 
               datab_reg <= datab ; 
   end if ; 
end process reg_input ; 
q_int <= dataa_reg + datab_reg;
reg_output : process (clk) 
begin 
   if (clk'event and clk = '1') then 
       q <= q_int; 
   end if ; 
end process reg_output;
end rtl;
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Examples Coded in Synplify
Figure 88 shows a Verilog HDL example that adds delays to the input register, 
using the Synplify synthesis tool. Note the code in bold.

Figure 88: Synplify Verilog HDL Example of Adding Delays to Input Register

module io_flops(q, dataa, datab, clk, rst);
    output [15:0] q; 
    input   [7:0] dataa; //synthesis syn_useioff = 1 FIXEDDELAY=TRUE
    input   [7:0] datab; 
   input   clk, rst;
    reg    [15:0] q;
    reg    [15:0] dataa_reg, datab_reg;
    wire   [7:0] mux_out;

   always @(posedge clk or posedge rst)
    begin
        if (rst)
             begin
                dataa_reg = 0;
                datab_reg = 0;
             end
        else
             begin
                dataa_reg = dataa;
                datab_reg = datab;
             end
    end
    assign mux_out = dataa_reg + datab_reg;
    always @(posedge clk or posedge rst)
    begin
        if (rst)
                q = 0;
        else
                q = mux_out;
    end

  endmodule
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Figure 89 shows a VHDL example that adds delays to the input register, using 
the Synplify synthesis tool. Note the code in bold.

Maximum Fan-Out Control for fMAX Improvement
Maximum fan-out can be selectively applied to the critical path to reduce fan-
out. This attribute in the design will override the global maximum fan-out 
control.

In most cases, if registers are duplicated to reduce the maximum fan-out, it 
will increase the register count in the design. 

Figure 89: Synplify VHDL Example of Adding Delays to Input Register
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity io_flops is
port (        q : out std_logic_vector (7 downto 0);
          dataa : in std_logic_vector (7 downto 0);
          datab : in std_logic_vector (7 downto 0); 
            clk : in std_logic);
    attribute syn_useioff : boolean;
    attribute FIXEDDELAY: string;
    attribute syn_useioff of dataa : signal is true;
    attribute FIXEDDELAY of dataa : signal is “TRUE”;

end io_flops;
architecture rtl of io_flops is 
signal dataa_reg : std_logic_vector(7 downto 0 ) ;
signal datab_reg : std_logic_vector(7 downto 0 ) ;
signal q_int     : std_logic_vector(7 downto 0 ) ;
begin 
reg_input : process (clk) 
begin 
   if (clk'event and clk = '1') then 
               dataa_reg <= dataa ; 
               datab_reg <= datab ; 
   end if ; 
end process reg_input ; 
   q_int <= dataa_reg + datab_reg;
reg_output : process (clk) 
begin 
   if (clk'event and clk = '1') then 
       q <= q_int; 
   end if ; 
end process reg_output;
end rtl;
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Examples Coded in Synplify
Figure 90 shows a Verilog HDL example of maximum fan-out control coded 
with the Synplify synthesis tool. Note the code in bold.

Figure 91 shows a VHDL example of maximum fan-out control coded with the 
Synplify synthesis tool. Note the code in bold.

Examples Coded in Precision RTL Synthesis
Figure 92 shows a Verilog HDL example of maximum fan-out control coded in 
the Precision RTL Synthesis tool. Note the code in bold.

Figure 93 shows a VHDL example of maximum fan-out control coded with the 
Precision RTL Synthesis tool. Note the code in bold.

Figure 90: Synplify Verilog HDL Example of MAX Fan-Out Control

module test (registered_ data_ out, clock, data_ in); 
output [31: 0] registered_ data_ out;
input clock; 
input [31: 0] data_ in /* synthesis syn_ maxfan= 1000 */; 
reg [31: 0] registered_ data_ out /* synthesis syn_ maxfan= 1000 */;

Figure 91: Synplify VHDL Example of Maximum Fan-Out Control

entity test is 
port( clock : in bit; 
         data_in : in bit_vector( 31 downto 0); 
          egistered_data_out: out bit_ vector( 31 downto 0) ) 

          attribute syn_maxfan : integer; 
          attribute syn_maxfan of data_in : signal is 1000;

Figure 92: Precision RTL Synthesis Verilog HDL Example of Maximum Fan-Out Control

module test (registered_data_out, clock, data_ in); 
output [31: 0] registered_data_out;
input clock; 
input [31: 0] data_in
reg [31: 0] registered_ data_out //pragma attribute max_fanout 100;

Figure 93: Precision RTL Synthesis VHDL Example of Maximum Fan-Out Control

entity test is 
port( clock : in bit; 
         data_in : in bit_vector( 31 downto 0); 
          egistered_data_out: out bit_ vector( 31 downto 0) ) 

          attribute max_fanout : integer; 
          attribute max_fanout of data_in : signal is 10;
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Clock-Enable Control for fMAX Improvement
The clock-enable net is typically a high-fan-out net driving several D flip-flops.

The placement and routing process uses the fan-out to decide whether to 
implement the clock enable by using a secondary clock resource, which 
sometimes incurs a larger delay (approximately 3 ns). You can specify a 
constraint to avoid using the secondary clock.

If some clock enables are in the critical path, you can identify them in the 
source code, and you can set the clock enable off to avoid a delay.

Examples Coded in Synplify
Figure 94 shows a Verilog HDL example of clock-enable control coded with 
the Synplify synthesis tool. Note the code in bold.

Figure 95 shows a VHDL example of clock-enable control coded with the 
Synplify synthesis tool. Note the code in bold.

Figure 94: Synplify Verilog HDL Example of Clock_Enable Control

reg [3: 0] q /* synthesis syn_useenables = 0 */; 
always @( posedge clk) 
if (enable) 
q <=d;

Figure 95: Synplify VHDL Example of Clock_Enable Control

signal q_int : std_logic_vector( 3 downto 0); 
Attribute syn_useenables : boolean;
attribute syn_useenables of q_int : signal is false;
process( clk) 
begin 
if (clk'event and clk = '1') then 
           if (enable = '1') then 
                 q_int <= d; 
           end if; 
end if; 
end process;
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Examples Coded in Precision RTL Synthesis
Figure 96 shows a Verilog HDL example of clock-enable control coded with 
the Precision RTL Synthesis tool. Note the code in bold.

Figure 97 shows a VHDL example of clock-enable control coded with the 
Precision RTL Synthesis tool. Note the code in bold.

General Constraint Considerations
General constraint considerations include the following:

Synthesis constraints are sometimes different from those in placement 
and routing.

ispLEVER tools cannot “merge” the timing constraints from synthesis.

For Synplify, over-constraining generally produce better results.

Do not over-constrain the placement and routing.

Under-constrain the design the first time. Try to estimate the design 
performance, then try to optimize it. 

Precision retiming is very sensitive to timing constraints.

For multiple clock designs, put adequate constraint on each clock, and do 
not put same constraints on all clocks. For example, in a design with two 
clocks, clock 1 can operate at 100 MHz, and the requirement is 40 MHz; 
clock 2 can operate at 80 MHz, and the requirement is 120 MHz. It is 

Figure 96: Precision RTL Synthesis Verilog HDL Example of Clock-
Enable Control

reg [3: 0] q // pragma attribute q use_dffenables false; 
always @( posedge clk) 
if (enable) 
q <=d;

Figure 97: Precision RTL Synthesis VHDL Example of Clock-Enable 
Control

signal q_int : std_logic_vector( 3 downto 0); 
Attribute use_dffenables : boolean;
attribute use_dffenables of q_int : signal is false;
 ... 
begin 
... 
process( clk) 
begin 
if (clk'event and clk = '1') then 
           if (enable = '1') then 
                 q_int <= d; 
end if; 
end if; 
end process;
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better to set clock 1 to 50 MHz and clock 2 to 140, instead of setting both 
to 140 MHz.

Block-Level Synthesis Methods in Synplify
As designs become bigger, such as designs with multiple interfaces between 
blocks, it is recommended that you modularize them. In Synplify, block-level 
synthesis methods are needed to keep the modules intact. 

I/Os are not inserted on the top level. They are treated as a macro and not 
optimized at compilation.

You can control I/O insertion globally or on a port-by-port basis. You can use 
the appropriate attribute before synthesizing an entire design to check the 
area requirements. If you disable automatic I/O insertion, the design will not 
have any I/O pads, unless you instantiate them manually.

Compile the block with no I/O buffer insertion by:

Setting syn_force_pad to 0

Attaching the syn_hier = macro property or setting syn_black_box to true

You can compile this as part of your larger design.

Block-Level Synthesis Methods in Precision 
RTL Synthesis
In Precision RTL Synthesis, block-level synthesis methods are needed to 
keep the modules intact.

Compile the block with no I/O buffer insertion:

Set nopad to true on each port.

Attach the dont_touch property to the module.

You can compile this as part of your bigger design.

Note

For some cores with pre-inserted IO pads, such as PCI, you must apply 
black_box_pad_pin to avoid aditional I/O insertion.
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Turning Off Mapping DSP Multipliers in RTL
The following examples show how to turn off mapping DSP multipliers in the 
Synplify and Precision RTL Synthesis tools.

Examples Coded with Synplify
Figure 98 shows a Verilog HDL example, coded in the Synplify synthesis tool, 
that turns off mapping DSP multipliers. Note the code in bold.

Figure 98: Synplify Verilog HDL Example Turning Off Mapping DSP Multiplier

module multi_resource(qout, dataa, datab, clock, reset);
 
    input [17:0] dataa, datab;
    input clock, reset;
    output [17:0] qout;

    reg    [35:0] qout;
    reg    [35:0] qout_p;
    reg    [35:0] dataa_reg;
    reg    [35:0] datab_reg;
   wire [35:0] qout_mult /*  Synthesis syn_multstyle="logic" */;
    assign qout_mult = dataa_reg * datab_reg ;
    always @(posedge clock or posedge reset)
    begin

if (reset)
                                 begin 
                                        dataa_reg = 0;
                                        datab_reg = 0;
                                        qout = 0;
                                 end

else
                                    begin
                                         dataa_reg = dataa;
                                         datab_reg = datab;
                                         qout = qout_mult;

        end
    end
  endmodule
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Figure 99 shows a VHDL example, coded with the Synplify synthesis tool, that 
turns off mapping DSP multipliers. Note the code in bold.

Figure 99: Synplify VHDL Example Turning Off Mapping DSP Multiplier
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity multi_resource is
port (        q : out std_logic_vector (35 downto 0);
          dataa : in std_logic_vector (17 downto 0);
          datab : in std_logic_vector (17 downto 0); 

    rst : in std_logic;
            clk : in std_logic);
end multi_resource;
architecture rtl of multi_resource is 
signal dataa_reg : std_logic_vector(17 downto 0 ) ;
signal datab_reg : std_logic_vector(17 downto 0 ) ;
signal q_int     : std_logic_vector(35 downto 0 ) ;
attribute syn_multstyle : string;
attribute syn_multstyle of q_int : signal is "logic";

begin 
reg_input : process (clk) 
begin 
   if (clk'event and clk = '1') then 
               dataa_reg <= dataa ; 
               datab_reg <= datab ; 
   end if ; 
end process reg_input ; 
   q_int <= dataa_reg * datab_reg;
reg_output : process (clk) 
begin 
   if (clk'event and clk = '1') then 
       q <= q_int; 
   end if ; 
end process reg_output;
end rtl;
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Examples Coded with Precision RTL Synthesis
Figure 100 shows a Verilog HDL example, coded with the Precision RTL 
Synthesis tool, that turns off mapping DSP multipliers. Note the code in bold.

Figure 100: Precision RTL Synthesis Verilog HDL ExampleTurning Off Mapping DSP Multiplier

module multi_resource(qout, dataa, datab, clock, reset); 
    input [17:0] dataa, datab;
    input clock, reset;
    output [35:0] qout; 
    reg    [35:0] qout;
    reg    [35:0] dataa_reg;
    reg    [35:0] datab_reg;
    wire [35:0] qout_mult; 
   assign qout_mult = dataa_reg * datab_reg;

//pragma attribute qout_mult dedicated_mult OFF
// Currently does not work, need to work around in setting the operator in the GUI

    always @(posedge clock or posedge reset)
    begin
        if (reset)
             begin
                    dataa_reg = 0;
                    datab_reg = 0
                     qout = 0;
           end
        else
                begin
                     dataa_reg = dataa;
                     datab_reg = datab
                     qout = qout_mult;
           end
    end
  endmodule
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Figure 101 shows a VHDL example, coded with the Precision RTL Synthesis 
tool, that turns off mapping DSP multipliers. Note the code in bold.

Achieving Improved Synthesis Results by Assigning 
Black-Box Timing to Large Embedded Blocks 

If you instantiate a large embedded block like DSP or EBR, synthesis will treat 
the large block as a “black-box.” The timing information will be ignored in the 
synthesis tool, and sometimes a warning message will be displayed during 
synthesis. 

If the large block is part of the critical path, you can assign timing delay 
properties to the black-box so that the synthesis tool can apply the correct 
timing for the synthesis and mapping processes.

Figure 101: Precision RTL Synthesis VHDL Example Turning Off 
Mapping DSP Multiplier

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity multi_resource is
port (        q : out std_logic_vector (35 downto 0);
          dataa : in std_logic_vector (17 downto 0);
          datab : in std_logic_vector (17 downto 0); 

    rst : in std_logic;
            clk : in std_logic);
end multi_resource;
architecture rtl of multi_resource is 
signal dataa_reg : std_logic_vector(17 downto 0 ) ;
signal datab_reg : std_logic_vector(17 downto 0 ) ;
signal q_int     : std_logic_vector(35 downto 0 ) ;
attribute dedicated_mult : string;
attribute dedicated_mult of q_int : signal is "OFF";
begin 
reg_input : process (clk) 
begin 
   if (clk'event and clk = '1') then 
               dataa_reg <= dataa ; 
               datab_reg <= datab ; 
   end if ; 
end process reg_input ; 
   q_int <= dataa_reg * datab_reg;
reg_output : process (clk) 
begin 
   if (clk'event and clk = '1') then 
       q <= q_int; 
   end if ; 
end process reg_output;
end rtl;
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You can make changes to these timing delays on the black-box to over-
compensate or under-compensate timing in the remaining portion of the 
critical path.

Table 19 shows supported Synplicity syntax that allows you to apply black-
box timing to instantiated blocks.

Figure 102 shows an example of applying black-box timing in VHDL using 
Synplify.

Table 19: Synplicity Syntax for Black-Box Timing

Syntax Description

syn_isclock Specifies a clock port on a black-box.

syn_tpd<n> Timing propagation for combinational delay through the 
black box.

syn_tsu<n> Timing setup delay required for input pins relative to the 
clock. 

syn_tco<n> Timing clock to output delay through the black-box.

Figure 102: VHDL Black-Box Timing Example Using Synplify

COMPONENT spr16x4a
PORT(
        di0  : IN std_logic;
        di1  : IN std_logic;
        di2  : IN std_logic;
        di3  : IN std_logic;
        ck  : IN std_logic;
        wre  : IN std_logic;
        ad0 : IN std_logic;
        ad1 : IN std_logic;
        ad2 : IN std_logic;
        ad3 : IN std_logic;
        do0 : OUT std_logic;
        do1 : OUT std_logic;
        do2 : OUT std_logic;
        do3 : OUT std_logic);
END COMPONENT;

attribute syn_tpd1 of rcf16x4z : component is
   "ado,ad1,ad2,ad3 -> do0,do1,do2,do3 = 1.1";
attribute syn_tsu1 of rcf16x4z : component is
   "ado,ad1,ad2,ad3 -> ck = 0.5";
attribute syn_tsu2 of rcf16x4z : component is
   "wre -> ck = 0.5";
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Figure 103 shows an example of applying black-box timing in Verilog using 
Synplify.

Figure 103: Verilog Black-Box Timing Example Using Synplify
module SPR16X4A (DI0, DI1, DI2, DI3, AD0, AD1, AD2, AD3, WRE, CK,
                 DO0, DO1, DO2, DO3) 
/* synthesis black_box
syn_tpd1="AD0,AD1,AD2,AD3->DO0,DO1,DO1,DO3 =1.4"
syn_tsu1="AD0,AD1,AD2,AD3->CK = 0.5"
syn_tsu2="WRE->CK = 0.5" */;
 
  input AD0,AD1,AD2,AD3,DI0, DI1, DI2, DI3, CK, WRE;
  output DO0, DO1, DO2, DO3;
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9
Strategies for Timing 
Closure

This chapter describes strategies that will help achieve timing closure for the 
most aggressive design requirements. It begins with a brief description of the 
seven steps for timing closure, followed by instructions for implementing each 
of these steps using the ispLEVER software. 

Seven Steps to Timing Closure
A timing closure strategy always begins with the creation of meaningful and 
efficient HDL code. For information about coding techniques for FPGA 
designs, see “HDL Synthesis Coding Guidelines” on page 57. 

After writing FPGA-friendly code, use the following seven-step strategy to 
help achieve timing closure:

1. Set FPGA preferences to achieve timing goals.

Along with a good functional design, a good set of FPGA timing 
preferences are crucial for meeting timing goals. 

See “Constraining Designs” on page 136.

2. Run an initial Place & Route (PAR) Design process.

Select timing-driven placement and specify a low placement effort level for 
this first PAR process. 

See “Using the Place and Route Software (PAR)” on page 151.

3. Analyze timing.

Run the Timing Reporter and Circuit Evaluator (TRACE) after you run the 
initial Place & Route Design process. Examine the  timing information in 
the TRACE report, Map report, Place and Route report, and PAD report.

See “Performing Static Timing Analysis” on page 152.
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4. Modify timing preferences.

Assign primary and secondary clocks, tune I/O timing with PLLs, and 
group components along critical paths.

See “Adding and Modifying Timing Preferences” on page 145

5. Run a second Place & Route Design process. 

Use timing-driven placement, and experiment with increased placement 
effort and multiple routing passes. 

See “Controlling Placement and Routing” on page 165.

6. Analyze timing.

Identify high-fan-out nets, critical path nets, and long delay paths.

7. Floorplan to direct the physical layout of the circuit.

For designs that do not meet performance goals, use groups and regions 
to place components closer together and shorten routing distances. Use 
reiterative floorplanning, repeating steps 5 through 7 until performance 
goals are achieved.

See “Floorplanning the Design” on page 173.

Constraining Designs
FPGA designs require effective constraints in order to optimize the usage of 
resources. For Lattice FPGA devices, such design constraints are referred to 
as preferences. 

You can set and edit design preferences at multiple points in the FPGA design 
flow. New and modified preferences are saved to the logical preference file 
(.lpf).The logical equivalents of physical preferences, such as groups, regions, 
and pin assignments, are also saved to the logical preference file with the 
Save command in the Design Planner. During the Map Design process, these 
physical preferences are written to the physical preference file (.prf).

Logical Preference File (.lpf)
The logical preference file (.lpf) contains all the design constraints that you 
specify for an FPGA design after the Build Database process. All preferences 
that are created or modified are written to the .lpf. You can add or modify 
preferences before mapping, after mapping, or after placement and routing. 
Post-map or post-PAR changes are implemented by rerunning the Map 
Design process.

HDL-based attributes are a potential source for preferences. HDL attributes 
are converted to EDIF properties by logic synthesis, and in some cases they 
are converted into preferences by the design mapper. After the Build 
Database process, you can view some attributes as preferences in the Design 
Planner. After they are modified, they are also listed in the .lpf, and these 
modified preferences take precedence over the HDL. 
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For more information about using HDL attributes, refer to the “HDL Attributes” 
section of the ispLEVER FPGA Design online Help. 

Figure 104 shows a small example from an ASCII logical preference file.

You can apply two types of preferences: timing and location. Timing 
preferences control the timed paths in an FPGA design. Location preferences 
affix the placement of design components in the FPGA array and are most 
commonly used for setting the I/O pinout.

Figure 104: Sample Logical Preference File

FREQUENCY PORT "tx_clk" 50 MHz ;
FREQUENCY PORT "rx_clk" 50 MHz ;
INPUT_SETUP "port1" 1 NS CLKNET "tx_clk";
CLOCK_TO_OUT "port2" 8 NS CLKNET "rx_clk";
LOCATE COMP "port1" SITE "B17" ;
LOCATE COMP "port2" SITE "C16" ;
LOCATE COMP "tx_clk" SITE "B11" ;
LOCATE COMP "rx_clk" SITE "C13" ;
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How ispLEVER Uses the Logical Preference File
The ispLEVER software uses the logical preference file (.lpf) to guide the tools 
while implementing the functional design from the EDIF file. The ispLEVER 
Map Design process (MAP) reads the logical preference file to map the logical 
elements and generates a physical preference file (.prf) that is used by PAR 
and TRACE. This flow is illustrated in Figure 105.

MAP
The ispLEVER Map Design process (MAP) takes the logical design from the 
Build Database process and maps the logical elements to specific elements, 
such as slices and PIOs. The logical preference file (.lpf) is used as an input 
to MAP. The mapper filters the preference file to remove any syntax errors or 
invalid preferences. Invalid preferences are preferences that do not 
correspond to any logical or physical elements that are in the design. Invalid 
preferences are most often caused by a typographical error in the element 

Figure 105: Project Preferences Applied to MAP, PAR, and TRACE
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name.

MAP generates a physical preference file (.prf), which contains all of the valid 
preferences contained in the logical preference file, as well as all of the 
attributes that were included in the EDIF file through the HDL code. This file is 
used for placement, routing, and static timing analysis.

TRACE
You have the option, both after mapping and after placement and routing, of 
performing static timing analysis on the physical design (.ncd) file, using the 
Timing Reporter and Circuit Evaluator (TRACE). TRACE takes the physical 
preference file as input and uses the timing constraints contained in it to 
produce a report file.

To run TRACE for a pre-routed design: 

In the Project Navigator, select the target device, and double-click Map 
TRACE Report in the Processes pane. 

The Map TRACE report (.tw1 file) appears in the output pane on the 
bottom right. 

You should examine the results of the Map TRACE report before continuing 
on to placement and routing. Considerations include warnings, errors, and 
potential design issues; for example, a high number of logic levels might 
severely restrict design performance, and performance might benefit from a 
different partitioning or pipelining. Since no routing exists yet between logical 
connections, the Map TRACE delay report reflects an ideal situation—usually 
about twice the performance that will be shown in the PAR TRACE report (.twr 
file). Therefore, you should anticipate that routing delays will represent 40-50 
percent of the delay along combinatorial paths.

To run TRACE for a post-routed design:

In the Project Navigator, select the target device, and double-click Place 
& Route TRACE Report in the Processes pane.

The PAR TRACE report appears in the output pane.

Timing checkpoints are a feature of the Project Navigator where TRACE is 
automatically run before and after PAR and a report is output to the 
Automake.log file. To access checkpoint options, choose Tools > Timing 
Checkpoint Options and use the Timing Checkpoint Options dialog box to 
specify whether the forward progress should stop or continue when the 
checkpoint fails. 

For more information about TRACE, see “Performing Static Timing Analysis” 
on page 152.
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PAR
The Place and Route (PAR) process uses both location and timing 
preferences to drive the placement and routing of the design in the FPGA 
device. The output of PAR is a placed and routed design, as well as a report 
and I/O pinout file.

Creating and Editing Preferences
Creating design preferences is a process that continuously evolves 
throughout the design process. Certain preferences are used during the map 
phase, and others are applied during placement and routing. Finally, 
preferences are interpreted by reporting tools such as TRACE for static timing 
analysis to provide important information on the final design. Preferences can 
be applied at many points in the design flow process.

Place-and-Route Preference Format
Remember the following points about the preference file format:

The preference file can contain any number of preferences and any 
number of comments in any order.

Comments must be preceded by the pound sign (#) or double slashes (//).

The ispLEVER programs automatically comment or ignore illegal 
preferences.

Rules for Preferences
Observe the following precedence rules when setting preferences:

Preferences saved in the .lpf take precedence over HDL preferences.

When more than one preference applies to a net or path, more specific 
preferences are honored before less specific ones. For example, 
individual net or path preferences supersede group (bus) preferences, 
and group preferences supersede global preferences.

If there is more than one preference at the same level of specificity for a 
net or path object, the last such preference in the preference file takes 
precedence.

Note

Location preferences can be assigned as attributes in the HDL code for device 
floorplanning. Such preferences are included in the EDIF file after synthesis, and they 
are carried into the physical preference file created by MAP. See “Floorplanning the 
Design” on page 173.
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To illustrate, suppose that the preference file contains the following 
preferences:

MAXDELAY NET W 10 NS;
MAXDELAY ALLNETS 30 NS;
DEFINE BUS B NET Y NET Z;
DEFINE BUS A NET Y NET X NET W;
MAXDELAY BUS B 20 NS;
MAXDELAY BUS A 25 NS;
MAXDELAY NET W 15 NS;

Net W gets 15 nanoseconds because this preference is more specific than 
BUS or ALLNETS, and it comes after the 10-nanosecond preference.

Net X gets 25 nanoseconds because the BUS A preference is more specific 
than ALLNETS.

Net Y gets 25 nanoseconds because the BUS A preference comes after the 
Bus B preference.

Net Z gets 20 nanoseconds because the BUS preference is more specific 
than ALLNETS.

All other nets get 30 nanoseconds.

Logical and Physical Preferences
Timing preferences can be assigned in two design domains: logical and 
physical. The logical domain consists of the design element names of the 
EDIF netlist. These names are based on the hierarchy level and register 
names in the design. The physical domain consists of the physical elements 
that the mapper has selected for the device implementation. 

Location preferences in the preference file can only be applied to physical 
elements or components of the design. Location preferences are used by the 
place-and-route tool, which works on the mapped physical design. To make 
this process easier for you, the mapper keeps top-level port names the same 
as those found in the logical design (or EDIF netlist). Fixing I/O pinouts using 
location preferences can be based on known component names.

For logical preferences, the preference file also supports a feature known as 
“wildcards.” Wildcards enable you to assign preferences to multiple design 
elements without having to assign a preference to each element. For 
example, to apply a clock_to_out preference on an entire bus, outa(31:0), you 
could use the following preference:

CLOCK_TO_OUT "outa*" 8 NS CLKNET

In the preference file, it is possible to create conflicts between preferences. 
These conflicts typically occur when a global preference covers a path that is 
covered specifically by another preference. In this situation, the more specific 
preference is used for the specified path. If the situation arises where both 
preferences are at the same level, the ispLEVER software uses the 
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preference that is last in the file. Table 20 summarizes the differences 
between logical and physical preferences.

Preference Editing Tools
The ispLEVER software provides two tools for editing preferences: the ASCII 
logical preference file and the Design Planner.

ASCII Logical Preference File (.lpf)
The ASCII logical preference file enables you to edit preferences in a text 
editor after you build the database. 

To edit preferences in the ASCII logical preference file:

In the Project Navigator, double-click Edit Preferences (ASCII). 

The file opens in the default ispLEVER Text Editor or in the text editor that 
you have selected in the ispLEVER Environment Options dialog box.

Table 20: Logical vs. Physical Preferences
Logical Physical

Based on your design (registers, I/O 
ports)

Based on mapped design (PFUs, 
SLICES, and PIOs)

Can write in terms of register names, port 
names

Need to know component (PFU, SLICE, 
or PIO) names defined by the mapper

Wildcards allowed No wildcards allowed

Front-end oriented (EDIF) Back-end oriented (.ncd): nets, 
components

Figure 106: ASCII Logical Preference File
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Design Planner
The ispLEVER Design Planner enables you to create and edit preferences in 
the pre-map stage, as well as the post-map and post-PAR stages.

Pre-Map Design Planner In the pre-map stage, the Design Planner opens 
the Spreadsheet View and the Package View for setting timing and 
constraints and making pin assignments. Many of the FPGA preferences can 
be edited within the Spreadsheet View of the Design Planner, including global 
and component-specific preferences. The Design Planner provides a 
spreadsheet format for each preference and organizes them in individual tabs 
across the bottom of the right pane, as shown in Figure 107.

The Spreadsheet View toolbar launches dialog boxes for setting timing 
preferences, including Period and Frequency, Block, Input Setup/Clock-to-
Out, Multicycle/Maxdelay. New and modified preferences that are saved in the 
Design Planner are written to the logical preference file.

To run the pre-map Design Planner, select the targeted device in the Project 
Navigator, and then do the following:

Double-click Design Planner (Pre-Map). 

The Pre-Map Design Planner loads the logical design database (.ngd) and 
displays the Spreadsheet View and the Package View. 

Post-Map Design Planner The Post-Map Design Planner enables you to 
create and edit location, group, and region preferences and view the 
assignments in a floorplan layout. All design changes, including the logical 
equivalents of physical groups and regions, are saved to the logical 
preference file.

To run the post-map Design Planner, select the targeted device in the Project 
Navigator, and then do the following:

Figure 107: Pre-Map Design Planner Spreadsheet View
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Double-click Design Planner (Post-Map) or Design Planner (Post-
PAR). 

See “Using the Design Planner Interface” on page 192.

Preference Flow
The ispLEVER preference flow is designed to allow you to work with the 
FPGA design in terms of high-level logical elements, such as ports, nets, 
registers, and special Lattice Semiconductor blocks derived from the RTL 
source through logic synthesis. The ASCII logical preference file (.lpf) is the 
primary interface for defining timing and location constraints in terms of logical 
elements. This preference flow is shown in Figure 138 on page 192. 

The .lpf is interpreted by the design mapper (MAP) and converts, when 
necessary, preferences that are written in terms of logical elements into 
physical preferences, such as PIOs, slices, and ASIC blocks. These new 
preferences are written to an ASCII physical preference file (.prf), which is 
used by the placement and routing (PAR) and static timing analysis (TRACE) 
tools.

In some implementation scenarios, you may need to interact with the ASCII 
physical preference file (.prf) directly, using a text editor, Design Planner, or 
the EPIC Device Editor. The .prf file always stores preferences that refer to 
physical elements.

For each new project, the ispLEVER software creates a logical preference file 
(.lpf) for the design that includes some default preferences. However, most 
FPGA designs require additional timing and location constraints for placement 
and routing or static timing analysis. 

Preferences can originate from one of the preference editing tools just 
described, the input EDIF netlist, or as a direct output of your logic synthesis 
tool. 

The preferences that appear in the .lpf file depend on the process that was 
last executed and any modifications that you have made using a preference 
editing tool such as the Design Planner. 

Preference Flow Example
The following scenario illustrates a typical ispLEVER preference flow:

1. HDL-based attributes are produced by IPexpress for a sysCLOCK PLL as 
part of the module source code. Logic synthesis writes these attributes as 
EDIF properties into the netlist.

2. You run the Build Database process and then launch the Pre-Map Design 
Planner to lock PIO locations, define signal standards for sysIO buffers, 
and establish timing constraints. The editors write the new preferences to 
the .lpf.

3. You run the Map Design process. The .lpf is converted into a .prf. You run 
the Place & Route Design process and the Place & Route TRACE Report 
process to inspect the timing and utilization results.

4. On the basis of the analysis results, you decide to group physical 
elements along a critical path by using the Post-PAR Design Planner. You 
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modify the .prf and rerun the Place & Route Design process and Place & 
Route TRACE Report process.

General Strategy Guidelines
Observe the following general recommendations for setting preferences, 
analyzing timing, and running PAR:

Analyze timing results carefully in the Timing Reporter and Circuit 
Evaluator (TRACE) Map report (.tw1 file) and PAR report (.twr file).

Before you place and route a design, look at the mapped frequency in the 
preference file and check for errors and warnings. Also, check for logic 
depth, which is reported in the .tw1 files as logic levels (components).

Determine if design changes are required. A typical example design 
change is pipelining, or registering, the data path. This technique might be 
the only way to achieve high internal frequencies if the design’s logic 
levels are too deep.

Perform placement and routing early in the design phase, using a 
preliminary preference file, to gather information about the design.

Tune up your preference file to include all I/O and internal timing paths, as 
appropriate. See “Translating Board Requirements into FPGA 
Preferences” on page 148 for an appropriate preference file example.

Establish the pinout in the preference file. You can also locate I/O in the 
HDL, as well as in synthesis constraint files.

Push PAR when necessary by running multiple routing iterations and 
multiple placement iterations.

Revise the preference file as appropriate; use multi-cycle opportunities 
when possible.

Floorplan the design if necessary. See “Floorplanning the Design” on 
page 173.

Adding and Modifying Timing Preferences
Use the following guidelines for adding and modifying timing preferences.

Assign Primary or Secondary Clocks
For designs with many clocks, assign the clocks manually. 

Primary clock resources on a device are limited. Therefore, during PAR, 
the clock nets with the most loads are assigned the primary clock 
resources. You can override this default by using PRIMARY and 
SECONDARY preferences.

# Primary/secondary preference example
USE PRIMARY
USE SECONDARY

Note
In many cases, HDL-based attributes that refer to logical elements do not appear 
in the .lpf unless they are modified by the Pre-Map Design Planner. For example, 
UGROUP/HGROUP attributes are included in the .lpf only after they are modified.
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To get an accurate 90-degree phase shift, use two primary clock nets: one 
for the feedback path and one for the shifted clock. 

This strategy limits uncertainty to the insertion delay of sysCLOCK PLL 
(pad to input). The uncertainty can then be reconciled with FDEL settings 
in 250-picosecond increments.

Place the source of internally generated clocks (divider) as close to the 
center of the device as possible to reduce injection time. 

This step is especially important for secondary clocks, since they do not 
have feed lines.

Tune I/O Timing with PLLs
Tuning the I/O timing with PLLs reconciles internal timing to an external 
specification.

Group Components Along Critical Paths
UGROUP and PGROUP preferences direct the PAR software to place 
components close together, which shortens routing distances. 

Typical Design Preferences
The full preference language includes many different design constraints, from 
global preferences to very specific preferences. Listed here are the 
recommended preferences that you can apply to all designs. 

Block Asynchronous Paths

This preference prevents the timing tools from analyzing any paths from 
input pads to registers or from input pads to output pads.

Block RAM Reads During Write

If you are using PFU-based RAM, this preference will prevent timing 
analysis on a RAM read during a write on the same address in a single 
clock period.

Frequency/Period <net>

Each clock net in the design should contain a frequency or period 
preference.

Input Setup

Each synchronous input should have an Input Setup preference.

Clock-to-Out

Each synchronous output should have a Clock-to-Out preference.

Block <net>

All asynchronous reset nets in the design should be blocked.

Multicycle

The Multicycle preference allows you to relax a frequency or period 
constraint on selected paths.
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For more information about individual preferences, refer to the “Setting 
Preferences” section of the ispLEVER FPGA and Crossover Design online 
Help. 

Proper Preferences
Providing proper preferences is key to a successful design. Use the following 
recommendations to avoid a design that is either overconstrained or 
underconstrained.

Overconstraining
 If the constraints of a preference file are tighter than the system 
requirements, the design will become overconstrained, so PAR run times will 
be considerably longer. In addition, overconstraining non-critical paths forces 
PAR to waste unnecessary processing power in trying to meet these 
constraints, creating possible conflicts with real critical paths that ought to be 
optimized first.

Common causes of overconstrained timing preferences include the following:

Unspecified multi-cycle paths

Multi-cycle paths to or from I/Os with different specifications

Overconstrained designs also need a significantly larger amount of 
processing power and computing resources. As a result, it might be 
necessary to increase some of the allocated system resources, such as the 
PC virtual memory paging size.

Underconstraining
If a preference file is underconstrained compared to real system 
requirements, real timing issues not previously seen during dynamic timing 
simulations and static timing analysis could appear. These potential problems 
can be observed on a test board or during production.

Common causes of underconstrained timing preferences include:

Undefined I/O specifications

Asynchronous logic without MAXDELAY preferences

Internally generated or unintentional clocks not specified in the preference 
file

Critical paths blocked

To make sure that no critical paths were left out because of underconstraining, 
you should check for path coverage at the end of a TRACE report (.twr) file.



Strategies for Timing Closure Constraining Designs

FPGA Design Guide 148

An example of such an output is shown in Figure 108.

This particular example shows a 99.0 percent coverage. The way to find 
unconstrained paths is to run TRACE with the “Check Unconstrained Paths” 
option selected. This option gives a list of all of the signals that are not 
covered under timing analysis. In some designs, many of these signals are a 
common ground net that indeed does not need to be constrained. You should 
understand this and use TRACE to check unconstrained paths and ensure 
that no timing-critical design paths are being missed. 

Also, note the timing score shown in Figure 108. The timing score shows the 
total amount of error, in picoseconds, for all timing preferences constraining 
the design. PAR attempts to minimize the timing score; PAR does not attempt 
to maximize frequency.

The above explanation can be summarized by the following:

Quality of Preference File = Quality of PAR Results

For more helpful information about timing analysis and TRACE, see 
“Performing Static Timing Analysis” on page 152.

Translating Board Requirements into FPGA 
Preferences
Understanding the system-board-level timing and design constraints is the 
primary requirement for producing a complete preference file. As a result, 
major requirements, such as clock frequency, I/O timing, and loads, can be 
translated into the appropriate preference statements in a constraint file.

Following is an example showing how to extract preferences from system 
conditions.

Figure 108: TRACE Report (.twr) Timing Summary Example
Timing summary:
---------------
Timing errors: 4906    Score: 25326584
Constraints cover 36575 paths, 6 nets, and 8635 connections 
(99.0% coverage)
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Figure 109 shows an example system involving the interface between a port 
controller and a Lattice FPGA.

In this system, several parameters have already been provided:

System clock frequency: period (P): 30 ns

Port controller maximum output propagation delay (PDMAXp): 18 ns

Port controller minimum output propagation delay (PDMINp): 3 ns

Port controller input setup specification (TSp): 5 ns

Port controller input hold specification (THp): 3 ns

Maximum board propagation delay (PDMAXb): 6 ns

Minimum board propagation delay (PDMINb): 1 ns

Clock skew of the port controller to the FPGA device and vice versa 
(Tskew): 1 ns

Board trace AC loading (Cbac): 60 pF

Board trace parasitic capacitance (Cb): 5 pF

Port controller input capacitance (Cp): 9 pF

FPGA device input capacitance (Co): 9 pF

The information just given was specified under the following environmental 
conditions:

Maximum ambient temperature (Ta): 70 (C)

Estimated power consumption (Q): 2 W

680 PBGAM package thermal resistance (Φ j) at 0 feet per minute (fpm) 
airflow: 13.4 °C/W

Figure 109: Interface Timing Example
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The goal of this exercise is to compute the following device I/O constraints:

Input setup specification

Input hold specification

Maximum output propagation delay

Minimum output propagation delay

Output loading

Temperature

The only parameter that can be obtained from this information is the device 
junction temperature:

Tj = Φj * Q - Ta
    = 13.4 * 2 + 70
    = 96.8 ºC 

The required constraints can be computed as follows:

Input setup specification = P - PDMAXp - PDMAXb - Tskew
= 30 - 18 - 2 - 1
= 9 ns

Input hold specification = PDMINp + PDMINb - Tskew
= 3 + 1 - 1
= 3 ns

Output maximum propagation delay requirement
= P - TSp - PDMAXb - Tskew
= 30 - 5 - 6 - 1
= 18 ns

Output minimum propagation delay requirement
= Thp - PDMINb + Tskew
= 3 - 1 + 1
= 3 ns

Output loading = Cbac + Cb + Cp
= 60 + 5 + 9
= 74 pf

The preference file to use for this example is shown in Figure 110. 

Figure 110: Interface Timing Preference File Example

PERIOD PORT "clk" 30 NS ;
INPUT_SETUP "port_controller*" 9 NS HOLD 3 NS CLKNET "clk";
CLOCK_TO_OUT "port_controller*" 18 NS MIN 3 NS CLKNET "clk";
OUTPUT PORT "port_controller*" LOAD 74 PF ;
TEMPERATURE 96.8 C ;
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For more preference language syntax and examples, refer to the “Setting 
Preferences” section of the ispLEVER FPGA and Crossover Design online 
Help.

Using the Place and Route Software (PAR)
After a design has undergone the necessary translation to bring it into the 
mapped physical design (.ncd file) format, it is ready for placement and 
routing. This phase is handled by ispLEVER’s timing-driven PAR software 
program. You can invoke PAR from the Project Navigator or from the 
command line.

PAR performs the following tasks:

Takes a mapped physical design (.ncd file) and a preference file (.prf) as 
input files.

Places and routes the design, attempting to meet the location and timing 
preferences in the input .prf file.

Creates a file that can be processed by the ispLEVER design 
implementation tools.

Placement
The PAR process places the mapped physical design (.ncd file) in two stages: 
a constructive placement and an optimizing placement. PAR writes the 
physical design after each of these stages is complete.

During constructive placement, PAR places components into sites on the 
basisd of factors such as the following:

Constraints specified in the input file. For example, certain components 
must be in certain locations.

The length of connections

The available routing resources

Cost tables that assign random weighted values to each of the relevant 
factors. There are 100 possible cost tables.

Constructive placement continues until all components are placed. 

Optimizing placement is a fine-tuning of the results of the constructive 
placement.

Routing
Routing is also done in two stages: iterative routing and delay reduction 
routing (also called cleanup). PAR writes the physical design (.ncd file) only 
after iterations where the routing score has improved.

During iterative routing, the router attempts to converge on a solution that 
routes the design to completion or minimizes the number of unrouted nets. 
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During cleanup routing (also called delay reduction), the router takes the 
results of iterative routing and reroutes some connections to minimize the 
signal delays within the device. There are two types of cleanup routing that 
you can perform:

A faster cost-based cleanup routing, which makes routing decisions by 
assigning weighted values to the factors (such as the type of routing 
resources used) that affect delay times between sources and loads.

A more CPU-intensive, delay-based cleanup routing, which makes routing 
decisions on the basis of computed delay times between sources and 
loads on the routed nets.

If PAR finds timing preferences in the preference file, timing-driven placement 
and routing is automatically invoked.

Timing-Driven PAR Process
The ispLEVER software offers timing-driven placement and routing through 
the integrated static timing analysis utility (that is, it does not depend on input 
stimulus to the circuit). Placement and routing is executed according to the 
timing preferences that you specify up front in the design process. PAR 
attempts to meet these timing constraints without exceeding the timing 
constraints.

To use timing-driven PAR, you simply write timing preferences into the logical 
preference (.lpf) file and map the design. The mapping process then writes 
these preferences to the physical preference file (.prf), which serves as input 
to the integrated static timing analysis utility. 

See the “Setting Preferences” section of the ispLEVER FPGA and Crossover 
Design online Help for more information about the PAR software and 
ispLEVER design flow.

Performing Static Timing Analysis
Static timing analysis (STA) is a fast and powerful verification technique that 
you can rely on to validate design performance. It is one of the most important 
steps in the design flow and should be considered as important as the 
functional verification performed with a logic simulator. Static timing analysis 
tools verify circuit timing by totaling the propagation delays along paths 
between clocked or combinational elements in a circuit. The analysis can 
determine and report timing data, such as the critical path, setup- and hold-
time requirements, and the maximum frequency.

Static timing analysis tools enable you to:

Confirm that the timing constraints supplied to timing-driven place and 
route will be met

Examine the timing characteristics of any part of the design

Perform what-if scenarios with different device speed grades or timing 
objectives



Strategies for Timing Closure Performing Static Timing Analysis

FPGA Design Guide 153

Why Perform Static Timing Analysis?
With a traditional dynamic logic simulator, timing violations must be detected 
and reported by sensitizing a simulation model, using test vectors and 
assertions that you must write. Depending on the size of the design and the 
number of states that it represents, the simulation run time can be very long 
and require a very sophisticated test fixture to detect all potential problems. 
The static timing analysis approach is far faster compared to dynamic 
simulation and verifies all parts of the gate-level design for timing.

Static timing analysis provides the following types of analysis:

From primary input to primary output (tPD)

From input to register

From register to register

From register to output (tCO)

The following samples illustrate each analysis, using the ispLEVER 
preference language:

# STA analysis samples:
1. MAXDELAY FROM PORT "comb_in*" TO PORT "comb_out*" 16 ns;
2. INPUT_SETUP "comb_in*" 8 ns CLKPORT="clk"; 
3. PERIOD PORT "clk" 100 ns ;
4. CLOCK_TO_OUT ALLPORTS 8 ns CLKPORT "clk" ;

Timing-driven placement and routing (PAR) interprets these constraints as 
timing objectives, so you can selectively use preferences for PAR or static 
timing analysis, depending on your verification approach. For example, it is 
common for additional preferences to be added post-PAR exclusively for the 
sake of static timing analysis.

Figure 111: Types of Static Timing Analysis

Note

For details on the syntax and semantics of the preference language, see “Creating and 
Editing Preferences” on page 140.
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Analyzing Timing Reports Produced by TRACE
You can run the ispLEVER Timing Reporter and Circuit Evaluator (TRACE) on 
mapped designs, on completely placed and routed designs, or on designs 
that are placed, routed, or both to any degree of completion. The report 
issued by TRACE depends on the completeness of the placement and routing 
of the input design.

You can run TRACE automatically from the ispLEVER Project Navigator GUI 
or from the command line using the trce program.

To run TRACE from the Project Navigator:

1. In the Project Navigator, select the targeted device.

2. Double-click either the Map TRACE Report (.tw1) process or the Place & 
Route TRACE Report (.twr) process.

The software runs TRACE and generates a report based on the mapped 
or placed and routed design.

To modify TRACE options from the Project Navigator:

From the Project Navigator, choose Tools > TRACE Options to open the 
dialog box.

The Before Route options apply to the Map TRACE Report (.tw1) process. 
The After Route options apply to the Place & Route TRACE Report (.twr) 
process.

To run TRACE from the command line:

Type trce on the command line with, at minimum, the names of your 
input .ncd and .prf files, for example:

trce design.ncd design.prf

For more information about TRACE command-line options, see “Running 
TRACE from the Command Line” in the ispLEVER FPGA and Crossover 
Design online Help.

Note

By default, TRACE performs analysis for setup-time violations, using worst-case 
operating conditions and the speed grade specified for the target device. To perform 
hold-time analysis using best-case operating conditions, enable Check Hold Times 
and select m (minimum) from the Overrride Speed Grade list.
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Timing Exceptions
Timing exceptions are exceptions to preferences that are used to describe the 
special behavior of certain design paths. Most designs contain paths that 
require these additional preferences. Without timing exceptions, the static 
timing analysis performed by TRACE will likely assume worst-case timing 
scenarios and report lower design performance, and the place-and-route 
program, PAR, will spend an undue amount of effort optimizing the path.

There are two common path types that require timing exceptions: multi-cycle 
paths and false paths.

Multi-Cycle Paths
In most synchronous circuits, the receiving register captures data launched by 
a driving register within one clock cycle. A multi-cycle path refers to cases 
where this relationship is different. Since single-cycle behavior is assumed by 
PAR and static timing analysis, a multi-cycle type of preference is used to 
express the relationship. The amount of time taken by the data to reach a 
destination register is indicated by a multiplier value, as shown in this 
example:

# 2 X multicycle sample:
FREQUENCY NET "CLK" 66 MHZ ;
MULTICYCLE FROM CELL "REG1" TO CELL "REG2" 2 X ;

Note

The ispLEVER preference language allows you to portray most clock relationships that 
can be practically analyzed using STA algorithms. However, if there are asynchronous 
clock domain crossings in your design, STA can only report on those occurrences 
where the clock edges are coincident. In these scenarios, your verification strategy 
might need to rely on dynamic verification, using a traditional simulator or formal 
verification methods.
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Figure 112 illustrates a single-cycle versus a multi-cycle relationship. In the 
multi-cycle definition, a multiplier value of “2 X” is used to inform TRACE (and 
PAR) that the data latching occurs at REG2 after an additional clock pulse.

Example 1 – Multi-Cycle Between Two Different Clocks
You can also use the Multicycle preference to describe a design that uses 
separate clocks with different frequencies. This relationship is often referred 
to as frequency skew. In this design example for a LatticeECP/EC FPGA, 
wclk and rclk were assigned 132 MHz and 66 MHz frequencies, respectively. 

For this example, a variation of the Multicycle constraint is used to describe 
the relationship between the clocks in terms of a period instead of a frequency 
multiplier; you can choose either form for the sake of clarity and 
documentation:

FREQUENCY NET "wclk" 132 MHZ ;
FREQUENCY NET "rclk" 66 MHZ ;
MULTICYCLE FROM CLKNET "wclk" TO CLKNET "rclk" 30.30 NS ;

Figure 112: Single Versus Multi-Cycle Clock Relationship
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The block diagram and waveform for this example is shown in Figure 113.

The resulting TRACE report for this example is shown in Figure 114. Notice 
how the path is described in terms of “Logical Details.”

Figure 113: Multi-Cycle Clock Domains Block Diagram and Waveform
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Figure 114: TRACE Report for Multi-Cycle Clock Domains Example
 ================================================================================

Preference: MULTICYCLE FROM CLKNET "wclk" TO CLKNET "rclk" 30.300000 ns ;
            13 items scored, 0 timing errors detected.
--------------------------------------------------------------------------------
Passed:  The following path meets requirements by 23.540ns

 Logical Details:  Cell type  Pin type       Cell name  (clock net +/-)

   Source:         PDP8KA     Port           fifomem_RAM_DP_16X8_RAM_DP_16X8_0_0_0  
(from wclk +)
   Destination:    FF         Unknown        ioregout_reg_outdata(4)  (to rclk +)

   Delay:               7.202ns  (63.2% logic, 36.8% route), 1 logic levels.

 Constraint Details:

       7.202ns physical path delay fifomem_RAM_DP_16X8_RAM_DP_16X8_0_0_0 to 
rdata_p(4)_MGIOL meets
      30.300ns delay constraint less
      -0.200ns skew and 
       0.000ns feedback compensation and 
      -0.242ns ONEG0_SET requirement (totaling 30.742ns) by 23.540ns

 Physical Path Details:

   Name    Fanout   Delay (ns)          Site               Resource
C2Q_DEL     ---     4.554  EBR_R6C8.CLKR to   EBR_R6C8.DO4 
fifomem_RAM_DP_16X8_RAM_DP_16X8_0_0_0 (from wclk)
ROUTE         1     2.648   EBR_R6C8.DO4 to  IOL_T6A.ONEG0 rdata(4) (to rclk)
                  --------
                    7.202   (63.2% logic, 36.8% route), 1 logic levels.
Clock Skew Details:

 Source Clock Path: 

   Name    Fanout   Delay (ns)          Site               Resource
PADI_DEL    ---     0.667         19.PAD to       19.PADDI clk_p
ROUTE         1     0.000       19.PADDI to PLL3_R6C1.CLKI clk_p_int
CLK2OUT_DE  ---    -0.500 PLL3_R6C1.CLKI to LL3_R6C1.CLKOP fifo1_pll_fifo1_pll_0_0
ROUTE        24     2.517 LL3_R6C1.CLKOP to  EBR_R6C8.CLKR wclk
                  --------
                    2.684   (6.2% logic, 93.8% route), 2 logic levels.

PLL3_R6C1.CLKOP attributes: FDEL = -2

 Destination Clock Path: 

   Name    Fanout   Delay (ns)          Site               Resource
PADI_DEL    ---     0.667         19.PAD to       19.PADDI clk_p
ROUTE         1     0.000       19.PADDI to PLL3_R6C1.CLKI clk_p_int
CLK2SEC_DE  ---     0.066 PLL3_R6C1.CLKI to LL3_R6C1.CLKOK fifo1_pll_fifo1_pll_0_0
ROUTE        19     2.151 LL3_R6C1.CLKOK to    IOL_T6A.CLK rclk
                  --------
                    2.884   (25.4% logic, 74.6% route), 2 logic levels.
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This section shows both the source and destination registers using unmapped 
names from the EDIF file. This is a feature that allows you to recognize the 
type of logic being analyzed.

On the basis of the declared frequencies for both clocks, you already know 
the following:

wclk period = 9.6 ns.

rclk period = 15.15. ns.

No relative phase information exists between both clocks. As a result, 
TRACE does not factor in the skews on either clock. To add relative timing 
between two clocks, use the CLKSKEWDIFF preference:

CLKSKEWDIFF CLKPORT "rclk" CLKPORT "wclk" 0.2 NS;

This preference would mean that the clock arrives at rclk with a 0.2 ns 
delay after wrclk.

As a consequence, ignoring everything else (clock skews, register library 
setups, and so forth), you know that a single-cycle positive-edge-to-positive-
edge setup available from wrclk to rclk is 15.15 ns (refer to the waveforms in 
Figure 113). Therefore, with 2X multi-cycle, the resulting setup would be twice 
that number, or:

Ts = 30.30 ns

This is shown as a delay constraint in the Constraint Details section of the 
TRACE report. The notation used in the site details refers to the slice row/
column location in the device floorplan and the slice signal names.

The available setup margin (23.542 ns) is now calculated as follows:

M = (Ts - Td) – Tclkskew - Ds

Source Clock f/b: 

   Name    Fanout   Delay (ns)          Site               Resource
CLKOP_DEL   ---     0.000 LL3_R6C1.CLKFB to LL3_R6C1.CLKOP fifo1_pll_fifo1_pll_0_0
ROUTE        24     2.151 LL3_R6C1.CLKOP to LL3_R6C1.CLKFB wclk
                  --------
                    2.151   (0.0% logic, 100.0% route), 1 logic levels.

PLL3_R6C1.CLKOP attributes: FDEL = -2

 Destination Clock f/b: 

   Name    Fanout   Delay (ns)          Site               Resource
CLKOP_DEL   ---     0.000 LL3_R6C1.CLKFB to LL3_R6C1.CLKOP fifo1_pll_fifo1_pll_0_0
ROUTE        24     2.151 LL3_R6C1.CLKOP to LL3_R6C1.CLKFB wclk
                  --------
                    2.151   (0.0% logic, 100.0% route), 1 logic levels.

PLL3_R6C1.CLKOP attributes: FDEL = -2
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where:

Td = path delay from clock pin of source embedded block ram (EBR) to D 
pin of destination = 7.202 ns. This is shown in the Physical Path Details 
section of the TRACE report.

Tclkskew = TSB – TSA, where TSA is the delay on the source clock, and 
TSB is the delay on the destination clock.

Ds = destination cell library setup requirement = 0.242 ns. This matches 
ONEGO_SET (Output, Negative 0, Input Setup) under the Constraint 
Details section of the TRACE report.

The clock skews are:

TSA = delay or skew on source clock wclk = 2.684 ns. It is shown in the 
Clock Skew Details section of the TRACE report.

TSB = delay or skew on destination clock rclk = 2.884 ns. It is shown in 
the Clock Skew Details section of the TRACE report.

Therefore:

M = (30.30 – 7.202) – (-0.200) - (-0.242) = 23.542 ns. M matches the 
number in the PASSED section at the top of the TRACE report.

Example 2 – Clock-to-Output with PLL Feedback
In this example for a LatticeECP/EC FPGA, clk_p is assigned to 66 MHZ, and 
the clock-to-out propagation delays are constrained in the preference file:

CLOCK_TO_OUT ALLPORTS 7.000000 ns CLKPORT "clk_p" ;

The block diagram for this example is shown in Figure 115. The resulting 
TRACE report is shown in Figure 116.

Figure 115: CLOCK_TO_OUT with PLL
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Figure 116: TRACE Report for CLOCK_TO_OUT with PLL
================================================================================
Preference: CLOCK_TO_OUT ALLPORTS 7.000000 ns CLKPORT "clk_p" ;
            10 items scored, 0 timing errors detected.
--------------------------------------------------------------------------------

Passed:  The following path meets requirements by 1.629ns

 Logical Details:  Cell type  Pin type       Cell name  (clock net +/-)

   Source:         FF         Q              wptr_full_reg_wfull  (from wclk +)
   Destination:    Port       Pad            wfull

   Data Path Delay:     5.050ns  (54.4% logic, 45.6% route), 2 logic levels.

   Clock Path Delay:    2.472ns  (6.8% logic, 93.2% route), 2 logic levels.

 Constraint Details:

      2.472ns delay clk_p to SLICE_21 less
      2.151ns feedback compensation
      5.050ns delay SLICE_21 to wfull (totaling 5.371ns) meets
      7.000ns offset clk_p to wfull by 1.629ns

 Physical Path Details:

      Clock path clk_p to SLICE_21:

   Name    Fanout   Delay (ns)          Site               Resource
PADI_DEL    ---     0.667         19.PAD to       19.PADDI clk_p
ROUTE         1     0.000       19.PADDI to PLL3_R6C1.CLKI clk_p_int
CLK2OUT_DE  ---    -0.500 PLL3_R6C1.CLKI to LL3_R6C1.CLKOP fifo1_pll_fifo1_pll_0_0
ROUTE        24     2.305 LL3_R6C1.CLKOP to     R5C10B.CLK wclk
                  --------
                    2.472   (6.8% logic, 93.2% route), 2 logic levels.

PLL3_R6C1.CLKOP attributes: FDEL = -2

      Data path SLICE_21 to wfull:

   Name    Fanout   Delay (ns)          Site               Resource
REG_DEL     ---     0.436     R5C10B.CLK to      R5C10B.Q0 SLICE_21 (from wclk)
ROUTE         6     2.304      R5C10B.Q0 to       77.PADDO wfull_dup0
DOPAD_DEL   ---     2.310       77.PADDO to         77.PAD wfull
                  --------
                    5.050   (54.4% logic, 45.6% route), 2 logic levels.

      Feedback path:

   Name    Fanout   Delay (ns)          Site               Resource
CLKOP_DEL   ---     0.000 LL3_R6C1.CLKFB to LL3_R6C1.CLKOP fifo1_pll_fifo1_pll_0_0
ROUTE        24     2.151 LL3_R6C1.CLKOP to LL3_R6C1.CLKFB wclk
                  --------
                    2.151   (0.0% logic, 100.0% route), 1 logic levels.

PLL3_R6C1.CLKOP attributes: FDEL = -2

Report:    5.371ns is the minimum offset for this preference.
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The path measurements were obtained from the TRACE report as follows:

CPDEL = Clock Path Delay = 2.472 ns. It is shown under Physical Path 
Details -> Clock path in the timing report.

DPDEL = Data Path Delay = 5.050 ns. It is shown under Physical Path 
Details-> Data path in the timing report.

FBDEL0 = Feedback cell delay across PLL = 0.000 ns, which is the first 
entry value under Feedback Path.

FBDEL1 = Feedback routing delay from PLL output to PLL FB pin = 2.151 
ns, which is the second entry value under Feedback Path.

Notice the -0.500 ns CLK2OUT_DE delay under “Physical Path Details” of the 
report file. This delay (or in this case compensation) within the clock path is 
produced by a sysCLOCK PLL fine delay adjust step value (FDEL) of –2. 
Such a delay is a programmable attribute (FDEL) of the sysCLOCK PLL. This 
value is can be set to any step value from –8 to +8 to advance or retard the 
output clock in 250-picosecond steps. FDEL is assigned in the Design 
Planner’s Spreadsheet View or in the EPIC Device Editor.

To verify the available margin on the CLOCK_TO_OUT preference, the 
margin is reported as follows:

M = CLOCK_TO_OUT - (CPDEL - FBDEL + DPDEL)

= 7.000 - (2.472 – 2.151 + 5.050) = 1.629 ns

This value matches the one at the top of the report file (“Passed” section). It 
also matches the final value under “Constraint Details.”

Example 3 – Hold-Time Analysis
In this example for a LatticeECP/EC FPGA, the clock-to-output constraint is 
examined in terms of hold time. The TRACE report for this example is shown 
in Figure 117.
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Figure 117: CLOCK_TO_OUT Hold-Time Check
================================================================================
Preference: CLOCK_TO_OUT ALLPORTS 7.000000 ns CLKPORT "clk_p" ;
            10 items scored, 0 timing errors detected.
--------------------------------------------------------------------------------
Passed:  The following path meets requirements by 1.412ns

 Logical Details:  Cell type  Pin type       Cell name  (clock net +/-)

   Source:         FF         Q              ioregout_reg_outdata(1)  (from rclk +)
   Destination:    Port       Pad            rdata_p(1)

   Data Path Delay:     1.404ns  (100.0% logic, 0.0% route), 2 logic levels.

   Clock Path Delay:    0.904ns  (24.8% logic, 75.2% route), 2 logic levels.

 Constraint Details:

      0.904ns delay clk_p to rdata_p(1)_MGIOL less
      0.896ns feedback compensation
      1.404ns delay rdata_p(1)_MGIOL to rdata_p(1) (totaling 1.412ns) meets
      0.000ns hold offset clk_p to rdata_p(1) by 1.412ns

 Physical Path Details:

      Clock path clk_p to rdata_p(1)_MGIOL:

   Name    Fanout   Delay (ns)          Site               Resource
PADI_DEL    ---     0.200         19.PAD to       19.PADDI clk_p
ROUTE         1     0.000       19.PADDI to PLL3_R6C1.CLKI clk_p_int
CLK2SEC_DE  ---     0.024 PLL3_R6C1.CLKI to LL3_R6C1.CLKOK fifo1_pll_fifo1_pll_0_0
ROUTE        19     0.680 LL3_R6C1.CLKOK to    IOL_T2B.CLK rclk
                  --------
                    0.904   (24.8% logic, 75.2% route), 2 logic levels.

      Data path rdata_p(1)_MGIOL to rdata_p(1):

   Name    Fanout   Delay (ns)          Site               Resource
C2OUT_DEL   ---     0.644    IOL_T2B.CLK to  IOL_T2B.IOLDO rdata_p(1)_MGIOL (from 
rclk)
ROUTE         1     0.000  IOL_T2B.IOLDO to       98.IOLDO nx27852z1
DOPAD_DEL   ---     0.760       98.IOLDO to         98.PAD rdata_p(1)
                  --------
                    1.404   (100.0% logic, 0.0% route), 2 logic levels.

      Feedback path:

   Name    Fanout   Delay (ns)          Site               Resource
CLKOP_DEL   ---     0.000 LL3_R6C1.CLKFB to LL3_R6C1.CLKOP fifo1_pll_fifo1_pll_0_0
ROUTE        24     0.896 LL3_R6C1.CLKOP to LL3_R6C1.CLKFB wclk
                  --------
                    0.896   (0.0% logic, 100.0% route), 1 logic levels.

PLL3_R6C1.CLKOP attributes: FDEL = -2

Report:    1.412ns is the maximum offset for this preference.
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TRACE produces a hold-time check based on your timing preferences by 
using the –hld command-line option or by enabling the Check Hold Times 
option in the TRACE Options dialog box of the Project Navigator.

By default, TRACE analyzes designs for setup-time violations, using the 
worst-case operating conditions for the target speed grade. Speed grade (-sp) 
is a TRACE command-line option that you can adjust in the TRACE Options 
dialog box. In contrast to setup-time analysis, hold-time analysis should be 
done under best-case operating conditions. This approach of analyzing at 
both corners of the operating conditions establishes a well-defined range in 
which the device will operate successfully.

To specify the best-case operating condition for hold-time checks, use the –sp 
m (minimum) option from the TRACE command line or use the TRACE 
Options dialog box. In most cases, but not all, the minimum option represents 
the worst-case scenario for hold-time analysis. The most rigorous STA 
methodology would have you run TRACE against all speed grades.

The path related to rdata_p(1) is reported by TRACE as worst-case when a 
hold-time analysis is performed. The path measurements were obtained from 
the TRACE report as follows:

DPDEL = Data Path Delay = 1.404 ns. It is shown under Physical Path 
Details-> Data path in the timing report.

CPDEL = Clock Path Delay = 0.904 ns. It is shown under Physical Path 
Details-> Clock path in the timing report.

FBDEL0 = Feedback cell delay across PLL = 0.000 ns, which is the first 
entry value under Feedback Path.

FBDEL1 = Feedback routing delay from PLL output to PLL FB pin = 0.896 
ns, which is the second entry value under Feedback Path.

Now verify the available hold-time margin on the CLOCK_TO_OUT 
preference. The margin is reported as:

M = CPDEL – FBDEL + DPDEL

= 0.904 – 0.896 + 1.404 = 1.412 ns

This value matches the one at the top of the report file (“Passed” section). It 
also matches the final value under “Constraint Details.”
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False Paths
Many designs include paths that are asynchronous relative to the clocks of 
the design or connections that never propagate a signal state because of logic 
encoding. A false path illustration is shown in Figure 118. By default, STA is 
performed on all paths of the design so that timing reports include all path 
segments, including false ones. This condition can “mask” the violations of 
real timing paths and make the performance results overly pessimistic.

False paths are treated as unconstrained by TRACE and timing-driven PAR. If 
you can accurately describe false paths, design performance will usually be 
improved since a false path is treated by PAR as unconstrained. With 
“relaxed” timing objectives, PAR optimizes the true critical paths instead. In a 
similar manner, unconstrained paths are ignored by STA and true critical 
paths reported instead.

The ispLEVER Block preference allows you to identify false paths to the 
system and provides a variety of ways to isolate them. 

Controlling Placement and Routing
Extensive benchmark experiments have been performed to determine the 
optimum per-device default settings for all PAR options. At times, you can 
obtain improved timing results on a design-by-design basis by trying different 
variations of the PAR options. This section describes the techniques that you 
can use within the ispLEVER software to improve timing results from TRACE 
on placed and routed designs.

Running Multiple Routing Passes
You can obtain improved timing results by increasing the number of routing 
passes during the routing phase of PAR.

To open the PAR options dialog box:

1. In the Project Navigator Source window, select the targeted FPGA device.

2. In the Processes window, right-click the Place & Route Design process 
and select Properties to open the dialog box.

Figure 118: False Path Example
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As seen in Figure 119, the router routes the design for six routing iterations or 
until all the timing preferences are met, whichever comes first. For example, 
PAR stops after the second routing iteration if it hits a timing score of zero on 
the second routing iteration.

The highest selection in placement effort level results in longer PAR run times 
but may give better design timing results. A lower placement effort results in 
shorter PAR run times but will likely give less than optimal design timing 
results.

Figure 119: PAR Properties Dialog Box
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The place and route (.par) report file contains execution information about the 
PAR command run, as shown in Figure 120.

The PAR report also shows the steps taken as the program converges on a 
placement and routing solution. In the routing convergence example text in 
Figure 120, the number in parenthesis is the timing score after each iteration. 
In this example, timing was met after three routing iterations, as you can see 
from the (0) timing score.

Using Multiple Placement Iterations (Cost 
Tables)
You can specify multiple placement iterations in the Advanced Options of the 
PAR Properties dialog box.

As shown in Figure 119, the number of iterations is set to 10 and the 
placement start point is set to iteration 1 (cost table 1). Only the best .ncd file 
is to be saved, as seen in the following line. After PAR runs, the tool loops 
back through the PAR flow until the number of iterations has reached 10. In 
this example, the .ncd file with the best timing score is saved. 

Figure 120: Example PAR Report (.par) File, Routing Section
0 connections routed; 26590 unrouted.
Starting router resource preassignment
Completed router resource preassignment. Real time: 11 mins 31 secs
Starting iterative routing.
End of iteration 1
26590 successful; 0 unrouted; (151840) real time: 14 mins 29 secs
Dumping design to file
d:\ip\design.ncd.
End of iteration 2
26590 successful; 0 unrouted; (577) real time: 16 mins 23 secs
Dumping design to file
d:\ip\design.ncd.
End of iteration 3
26590 successful; 0 unrouted; (0) real time: 17 mins 39 secs
Dumping design to file
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The tool keeps track of the timing and routing performance for every iteration 
in a file called the multiple par report (.par). Such a file is shown in Figure 121.

Figure 121 indicates that:

The “5_” under the Level/Cost column means that the placement effort 
level was set to 5. The placement effort level can range from 1 (lowest) to 
5 (highest).

10 different iterations ran (10 cost tables).

Timing scores are expressed in the total number of picoseconds (ps) by 
which the design is missing constraints on all preferences. This number is 
additive for all paths in the design.

Iteration number 4 (cost table 4) achieved a 0 timing score, so it is the 
design that was saved. More than one .ncd file can be saved. You can 
control this by the “Placement Save Best Runs” value box shown in 
Figure 119.

Each iteration routed completely.

If “Placement Iterations (0=run until solved)” in Figure 119 is set to 0, the tool 
will run indefinitely through multiple iterations until a 0 timing score is reached. 
In a design that is known to have large timing violations, a 0 timing score is 
never reached. As a consequence, you must intervene and stop the flow at a 
given point in time.

In general, multiple placement iterations can help placement, but they can 
also use many CPU cycles. Multiple placement iterations should be used 
carefully because of system limitations and the uncertainty of results. It is 
better to fix the root cause of timing problems in the design stage.

Figure 121: Multiple PAR Report (.par)
Level/
Cost [ncd]
----------

Number
Unrouted
--------

Timing
Score
-------

Run
Time
-----

NCD
Status
--------

5_4
5_6
5_2
5_7
5_3
5_10
5_1
5_8
5_5
5_9

0
0
0
0
0
0
0
0
0
0

0
25
102
158
186
318
470
562
732
844

01:58
02:01
01:45
02:15
01:54
02:39
01:51
02:25
02:00
02:27

Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete
Complete

*  :  Design saved.

Note

You should save more than one .ncd file from a multi-PAR run and use TRACE on 
each example. Since the timing score is a composite of all timing constraints, a low 
score might not be ideal for your application.
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Re-Entrant Routing
In the Project Navigator, a Reentrant Route Design process is provided that 
allows you to run more routing iterations to try to achieve timing goals. The 
Reentrant Route Design process saves time by using the current routed 
design file (.ncd) as the starting point.

The Reentrant Route Design process also enables you to override the current 
.ncd file with a routed .ncd file from one of your project’s Revision Control 
directories:

1. In the Project Navigator, right-click Reentrant Route Design and select 
Properties.

2. Select NCD File Name in the Properties dialog box.

3. Type the complete path of the .ncd file that you want to use and click 
Close.

For further information on re-entrant flow, refer to the ispLEVER FPGA and 
Crossover Design online Help.

Clock Boosting
Clock boosting is the deliberate introduction of clock skew on a target flip-flop 
to increase the setup margin. Every programmable flip-flop in the device has 
programmable delay elements before clock inputs for this purpose. The 
automated clock-boosting tool attempts to meet setup constraints by 
introducing delays to as many target registers as needed to meet timing; in 
effect, it borrows register hold margins to meet register setup timing. Clock 
boosting is accomplished through the following features:

A 4-tap delay cell structure in front of the clock port of every flip-flop in the 
device (includes I/O flip-flops)

The ability to borrow clock cycle time from one easily met path and give 
this time to a difficult-to-meet path

Clock boosting is typically most useful in designs that are only missing timing 
on a few paths for one or two preferences. If the design is missing timing by 
over a few nanoseconds on any given path, clock boosting cannot schedule 
skew in a way that eliminates enough timing to make the critical preference. 
Clock boosting run times can be shortened by using a preference file that 
contains only the failing preferences.

The example illustrated in Figure 122 shows two register-to-register transfers 
that both need to meet the 10-ns period constraint. By using the DEL2 delay 
cell to delay the clock input on flip-flop FF_2, the first register transfer makes 
its period constraint with a new minimum period of approximately 9.7 ns, and 
the second register transfer makes its period constraint by approximately 8.3 
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ns. The D1, D2, and D3 delays shown vary, depending on the speed grade 
and FPGA device family. 

For complete timing information, refer to the timing data sheet included with 
ispLEVER for the desired Lattice Semiconductor FPGA device family

To perform clock boosting in the Project Navigator:

1. In the Project Navigator Sources window, select the targeted device. 

2. In the Processes window, right-click Clock Boosting and select 
Properties from the pop-up menu.

Figure 122: Clock Boosting Example
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3. In the dialog box, select the Clock Boosting Output Filename property 
from the property list, as shown in Figure 123, and type the name of the 
output file name in the edit region (<file_name>.ncd).

4. Click Close to exit the dialog box.

Selecting Maximize Frequency pushes the tool to improve the frequency 
beyond the input preference requirement. This feature is generally only useful 
for bench-marking.

Other important considerations on the practicality of using clock boosting:

Some circuits show much improvement, but others show no gain. Clock 
boosting results are very design-dependent.

Clock boosting uses minimum delay values that have not yet been 
validated at the system level.

Automatic clock boosting identifies skew and hold-time issues. However, 
after clock boosting is performed, it is recommended that you run TRACE 
twice: once with regular maximum delay analysis and again with minimum 
delays. Afterwards, read over both resultant .twr timing reports to make 
sure that there are no timing errors. The minimum delay analysis is done 
by checking the “Check Hold Times” check box in the TRACE Options 
dialog box.

Figure 123: Clock Boosting Property Dialog Box



Strategies for Timing Closure Controlling Placement and Routing

FPGA Design Guide 172

Map Register Retiming
Map register retiming is an optimization technique that moves registers 
across combinatorial logic to balance the timing according to the tSU 
(INPUT_SETUP), tCO (CLOCK_TO_OUT), and fMAX (FREQUENCY) 
constraints. 

To enable map register retiming in your design:

1. In the Project Navigator, select the targeted device.

2. In the Processes window, right-click Map Design and select Properties 
from the pop-up menu.

3. In the dialog box, under Advanced Options, select Register Retiming 
and change the setting to True.

4. Close the dialog box.

There is no guarantee that map register retiming will achieve a better fMAX, 
since the fMAX constraint activates retiming around all registers. The tSU and 
tCO constraints might deactivate retiming on I/O registers, depending on the 
balancing of tSU vs. fMAX and tCO vs. fMAX. However, register retiming can be 
very useful for optimization because it allows for more delay shifting.

Map Register Retiming vs. Clock Boosting
Map register retiming has the same goal as clock boosting, which adjusts the 
timing by introducing predefined clock delays. The following considerations 
should be taken into account when using either of these features for 
optimizing timing.

Optimizing with Map Register Retiming
Map register retiming can be either forward or backward. Forward retiming 
moves a set of registers that are the inputs of logic to a single register at its 
output. Backward retiming moves a register that is at the output of a logic to a 
set of registers at its input. Retiming works on a data path and has variable 
delay shift and variable area cost from design to design. A drawback to 
register retiming is that it changes your netlist, making debugging more 
difficult. It also has a minimum delay shift of one logic level (for example, one 
LUT).

Optimizing with Clock Boosting
Clock boosting works on clock paths and has a fixed delay, such as 0 ns, 1 ns, 
2 ns, or 3 ns, and it has a fixed area cost (on silicon). The delay shift is 
accurate after placement and routing and can be as fine as less than or equal 
to 1 ns. However, clock boosting requires the use of extra silicon area even if 
it is not used, and delay shift is limited to a few choices up to about 3 ns or 
more. 

For more information about map register retiming, refer to the “Mapping” 
section of the ispLEVER FPGA and Crossover Design online Help.
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Floorplanning the Design
If performance goals cannot be met with FPGA timing preferences and 
additional effort levels of the Place & Route Design process, you can improve 
performance by directing the physical layout of the circuit in the FPGA. This 
step, often referred to as floorplanning, is done by specifying FPGA location 
preferences.

Floorplanning Definition
Floorplanning is the physical or logical partitioning of design elements, which 
results in a change in the design’s physical placement or implementation.

With Lattice Semiconductor FPGAs, floorplanning is an optional methodology 
to help you improve the performance and density of a fully and automatically 
placed and routed design. Floorplanning is particularly useful in structured 
designs and data path logic. Design floorplanning is very powerful and 
provides a combination of automation and user control for design reuse and 
modular, hierarchical, and incremental design flows.

Complex FPGA Design Management
Lattice Semiconductor FPGAs can implement large system designs that 
contain millions of gates, hundreds of thousands of embedded memory bits, 
and intellectual property (IP) components. Design teams often work on large 
designs. The design complexity requires electronic design automation (EDA) 
tools to manage and optimize the design. Large design management is 
difficult, but performance optimization is even more difficult. Optimization 
requires many design iterations when adding or modifying components. 
Complex, large system designs require the following:

The use of modular, hierarchical, or incremental design methods

Software that makes management and optimization easier

The use of IP blocks

The reuse of previously optimized design elements

By controlling the placement of specified logic elements, design floorplanning 
methodologies help meet the requirements of large system design.

Floorplanning Design Flow
In both traditional and floorplanning FPGA design flows, you divide the 
system into modules. The modules can be individual circuits, parts of circuits, 
or parts of the design hierarchy. After module design and optimization, you 
integrate the modules into the system. Finally, you test and optimize the 
system.

In the traditional flow, the system might not meet performance requirements 
even if each module meets the requirements before integration. Even when 
timing requirements have been satisfied, changes to one module can affect 
the performance of others. Re-optimizing modules to meet system 
performance results in many design iterations.
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Floorplanning methodologies assist in the design, testing, and optimization of 
each individual module while retaining the optimized characteristics of the 
individual modules. Module integration into the system requires only system 
optimization between modules. The floorplanning methodologies provide 
additional flexibility by allowing the ispLEVER software to automatically place 
defined modules, or by allowing you to control the placement of specific 
modules.

When to Floorplan
Floorplanning methodologies are intended for users who require some degree 
of handcrafting of their designs. You must understand both the details of the 
device architectures and the ways floorplanning can be used to refine a 
design. Successful floorplanning is very much an iterative process, and it can 
take time to develop a floorplan that outperforms an automatic software-
processed design. Because of the nature of floorplanning and its interaction 
with the automatic MAP and PAR software tools, several prerequisites are 
necessary in order to floorplan a design successfully:

Detailed knowledge of the specific characteristics of the target 
architecture and device

Detailed knowledge of the specific characteristics of the design being 
implemented

A design that lends itself to floorplanning

A willingness to iterate a floorplan to achieve the desired results

Realistic performance and density goals

For Lattice Semiconductor FPGAs, the general rule of thumb is that 
floorplanning should be considered when the desired performance cannot be 
met and when routing delays account for over 60 percent of the critical path 
delays. This can be a problem with large designs in high-density FPGAs 
because of the possibilities of long-distance routes. As programmable logic 
design densities continue to escalate beyond 100,000 gates, traditional 
design flow—design entry to synthesis to placement and routing—sometimes 
does not yield predictable, timely, and optimized results.

The guidelines previously discussed only apply to designs that have been 
routed by the software for several routing iterations. The default number of 
routing iterations through the ispLEVER Project Navigator vary, depending on 
the selected Lattice Semiconductor FPGA device family.

Properly applied, design floorplanning not only preserves but improves design 
performance. You can use floorplanning methodologies to place modules, 
entities, or any group of logic into regions in a device’s floorplan. Because 

Note

Path delays in programmable devices are made up of two parts: logical delays and 
routing delays. Logical delays in this context are delays through components, such as 
a programmable function unit (PFU), a programmable input/output (PIO), a slice, or an 
embedded function, such as a block RAM, PLL, or FPSC ASIC. The routing delay is 
the delay of the interconnect between components. Figure 124 and Figure 125 show 
delay examples from timing wizard report files (.twr).
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floorplanning assignments can be hierarchical, you can have more control 
over the placement and performance of modules and groups of modules.

Floorplanning may be able to help bring the registers shown in Figure 124 
closer.

Floorplanning is not needed in Figure 125 because the routing is efficient.

In addition to hierarchical blocks, such as a group consisting of an entire 
VHDL entity or Verilog HDL module, you can floorplan individual nodes. For 
example, you can instantiate a library element for a function in the critical path 
and then group the library element. This technique is useful if the critical path 
spans multiple design blocks.

Floorplan to Preserve Module Performance
Floorplanning with design preferences maintains design performance by 
grouping the placement of nodes in a device, which ensures that the relative 
placement of logic within a grouped region remains constant. The ispLEVER 
software then places the grouped region into the top-level design with these 
preferences. When placing logic in a region, the ispLEVER software does not 
preserve the routing information. This approach provides more flexibility when 
the software imports the region into the top-level design, and it helps fitting.

Figure 124: Inefficient Routing

Logical Details:   Cell type    Pin type     Cell name (clock net +/-)

Source:            FF           Q            ibuf/reg_init_start (from clk_ib+)
Destination:       FF           Data in      ibuf/sd/reg_new_state (to clk_ib +)

Delay:                 8.062ns (18.2% logic, 81.8% route), 2 logic levels.

Figure 125: Efficient Routing

Logical Details:   Cell type    Pin type     Cell name (clock net +/-)

Source:            FF           Q            mem_if_tx_address_8 (from clk_c +)
Destination:       FF           Data in      mem_if_tx_address_17 (to clk_c +)

Delay:                 7.358ns (61.2% logic, 38.8% route), 4 logic levels.

Note

Although floorplanning can increase performance, it may also degrade performance if 
it is not applied correctly within software limitations.
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Floorplan for Design Reuse
Floorplanning facilitates design reuse by its ability to reproduce the 
performance of a module designed in a different project. For frequently used 
modules, you can create a library of verified designs that can be incorporated 
into other larger designs. The library must only contain the VHDL or Verilog 
HDL source code, along with grouping attributes and some comments 
detailing information useful to you, such as performance and size. With a 
parameterized module, in-code assignments can specify the module’s size 
and grouping assignments.

Targeting the same device used in the original design usually achieves the 
best results, although other devices in the same family will likely work well. 
When using a different device in the same family, the exact placement of the 
region might not be possible. Similar performance, however, might be 
achieved by moving or floating regions. A floating region groups the logic 
together and guides the ispLEVER software toward achieving a placement 
that meets the performance requirements of the module. A similar approach 
can also be taken if exact placement of a module is not applicable because of 
multiple instantiations of a module in a top-level design.

Floorplanning Preferences
Floorplanning preferences, such as logic groups and regions, can be set in 
the Verilog HDL or VHDL source through the use of HDL attributes; they can 
be set in the ASCII logical preference file (.lpf) through the Design Planner 
user interface; or they can be set through a combination of both methods. 

The Design Planner, with its graphical design views and its facility for querying 
timing paths, can be extremely useful for establishing floorplan preferences, 
such as logical groups, regions, and device site assignments. It is a common 
practice, in a timing closure methodology, to iterate between the Design 
Planner application and the place-and-route program (PAR) to arrive at a 
superior implementation, and afterwards, to migrate the physical constraints 
into the RTL code as logical constraints.

The ispLEVER software supports a logic grouping mechanism that enables 
you to direct the placement algorithm of the PAR program to pack logic 
elements in proximity to each other and, optionally, to place them within a 
particular region of the FPGA array.

Two main floorplanning preferences are available as group attributes in HDL:

HGROUP – hierarchical physical attribute. An HGROUP’s logical identifier 
is prepended with text that describes the identifier’s hierarchy. During the 
mapping process, the HGROUP is expanded into individual placement 
groups (PGROUPs). 

UGROUP – universal logical attribute. Prepending the hierarchy on the 
block instance identifier does not change a UGROUP’s logical identifier. In 
other words, an HGROUP enforces strict hierarchical control, but a 
UGROUP allows for a grouping of blocks in different hierarchies or a 
grouping of blocks with no hierarchy at all. During the mapping process, 
the UGROUP is expanded into individual placement groups (PGROUPs).
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The HGROUP attribute can be placed on multiple instantiations of modules—
for example, VHDL generate statements—and each instantiation has its own 
HGROUP. A UGROUP does not work in this case.

The Design Planner produces UGROUP preferences and saves the result in 
the logical preference file (.lpf).

The following FPGA device elements can be grouped using a PGROUP:

Slice/PFU

sysMEM memory

sysDSP blocks

In Figure 126 and Figure 127, the arrows represent control and data paths 
where there is interaction between different levels of hierarchy. The thick-lined 
arrow represents the critical path where the design fails to make performance.

Figure 126 illustrates a design hierarchy where the failing paths are the 
connections between COUNTER and STATE_MACHINE design blocks. The 
easiest implementation for this example is to HGROUP the CONTROLLER, 
which is the module in which the COUNTER and STATE_MACHINE are 
instantiated.

For example, if the following Synplify and RTL Precision Synthesis attribute is 
in the Verilog HDL file:

module CONTROLLER (<port_list>)
/* synthesis hgroup=”CONTROL_GROUP” */;
//pragma attribute CONTROLLER hgroup CONTROL_GROUP

the COUNTER and STATE_MACHINE will be grouped in the FPGA inside a 
boundary box. Now assume that the COUNTER is mapped into PFU_0 and 
PFU_1 and that the STATE_MACHINE is mapped into PFU_2. The resulting 
group generated by MAP and written to the physical preference file (.prf) will 
be:

PGROUP “TOP/CONTROLLER/CONTROL_GROUP”
COMP “PFU_0”
COMP “PFU_1”
COMP “PFU_2”;

Figure 126: PGROUP Same Hierarchy Example, PGROUP CONTROLLER
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Notice that the TOP/ hierarchy is prepended to the CONTROLLER PGROUP. 

Figure 127 shows an example design hierarchy where the failing paths are 
the connections between REGISTER_FILE and STATE_MACHINE modules. 
The simplest thing to do is UGROUP the REGISTER_FILE and 
STATE_MACHINE together.

For example, if the following Synplify and Precision attributes are in the 
Verilog HDL file:

module REGISTER_FILE (<port_list>) /*synthesis 
ugroup=”CRITICAL_GROUP” */;
//pragma attribute REGISTER_FILE ugroup CRITICAL_GROUP

and

module STATE_MACHINE (<port_list>) /*synthesis 
ugroup=”CRITICAL_GROUP” */;
//pragma attribute STATE_MACHINE ugroup CRITICAL_GROUP

the REGISTER_FILE and STATE_MACHINE will be grouped in the FPGA 
inside a default boundary box. 

Now assume that the REGISTER_FILE is mapped into PFU_4 and PFU_5 
and that the STATE_MACHINE is mapped into PFU_3. The resulting group 
generated by MAP and written to the .prf will be:

PGROUP “CRITICAL_GROUP”
COMP “PFU_3”
COMP “PFU_4”
COMP “PFU_5”;

The TOP/ hierarchy is not appended to the PGROUP identifier 
CRITICAL_GROUP. The UGROUP results in a PGROUP.

If HGROUP attributes instead of UGROUP attributes had been used for 
Figure 127:

module REGISTER_FILE (<port_list>) /*synthesis 
hgroup=”CRITICAL_GROUP” */;
//pragma attribute REGISTER_FILE hgroup CRITICAL_GROUP

Figure 127: UGROUP Different Hierarchy Example with UGROUP REGISTER_FILE and STATE 
MACHINE
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and

module STATE_MACHINE (<port_list>) /*synthesis 
hgroup=”CRITICAL_GROUP” */;
//pragma attribute STATE_MACHINE hgroup CRITICAL_GROUP

the resulting groups generated by MAP and written to the .prf  would be:

PGROUP “TOP/CONTROLLER/STATE_MACHINE/CRITICAL_GROUP”
COMP “PFU_3”

PGROUP “TOP/REGISTER_FILE/CRITICAL_GROUP”
COMP “PFU_4”
COMP “PFU_5”;

So with PGROUP attributes, the STATE_MACHINE module would be 
grouped together in one bounding box, and the REGISTER_FILE module 
would be grouped together separately in another bounding box. The critical 
path shown in Figure 127 would not be optimized.

These examples do not utilize all the possible tools available for floorplanning. 
For more small syntax examples, refer to the “HDL Attributes” section of the 
ispLEVER FPGA and Crossover Design online Help.

Implementation of Floorplan Preferences
Floorplan preferences set from within the HDL or the Design Planner GUI are 
validated, then they are translated by the design mapper (MAP) into physical 
preferences in terms of post-map physical components. Both hierarchical 
groups (HGROUPs) and universal groups (UGROUPs) refer to logical block 
references that you can easily recognize from the HDL source. The design 
mapper produces the native physical database (.ncd) and converts 
HGROUPs and UGROUPs into to placement groups (PGROUPs), which refer 
to post-map components of the .ncd file.

This section describes several examples of PGROUP and LOCATE 
preferences that are implemented by the place and route program into a 
LatticeEC LFEC1E FPGA.

Locating a Block to a Device Site 
The simplest floorplan technique in ispLEVER is to anchor a logic block to a 
particular device site, using the LOCATE preference. Blocks can be anchored 
independently of a group/region floorplan. The most common type of block to 
locate is a PIO.

The following procedure describes how to locate a block to a device site.

1. This step is optional. If you intend to floorplan design elements that will be 
mapped to slice or PFU device sites, you must add the COMP 
<comp_name> HDL attribute to each module instance in the HDL source, 
as shown in the following Verilog HDL sample. This sample illustrates 
attributes that are compatible with Precision RTL Synthesis and Synplify.

REG2 REG2inst (<port_list>) /* synthesis COMP=regpair */;
//pragma attribute REG2inst COMP regpair

In this sample, the COMP name regpair is applied by the design mapper 
(MAP) to all elements that can be covered by a single slice. If the logic 
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overflows a single slice, MAP appends a .number to the name for the 
post-map netlist. 

During the floorplanning steps that follow, you reference the comp_name 
of the Design Planner Post-Map View to assign it to a specific device site. 

2. Run the Design Planner (Post-Map) process to view the Post-Map 
Physical Netlist View and Floorplan View of the Design Planner tool.

You can use the graphical views of the Design Planner to assign one or 
more instances (PIO, PLL/DLL, slice, EBR, DSP, and so forth) to device 
sites. PIOs are typically assigned in the Package View or Spreadsheet 
View. Embedded blocks such as EBR and DSP blocks are typically 
assigned in the Floorplan View. Each post-map device element can be 
selected and assigned to a specific device site through a drag-and-drop 
action. The result of the action is a LOCATE COMP preference in the 
logical preference file (.lpf).

LOCATE COMP "FIFOinst/FIFOeab/syn_dpram_512x8" SITE 
"EBR_R23C5"; 

Note

Design elements such as PIO, EBR, DSP, PLL/DLL, and MACO blocks do not 
require the COMP attribute, because MAP retains the original name used in the 
native generic database (.ngd).

Note

Slice-type device elements must be named with the COMP attribute, as described 
in step 1. Otherwise, the physical references that result are not recognized by the 
design mapper in future runs.
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Anchored PGROUP 
An anchored PGROUP refers to a placement group that is affixed to a certain 
row and column site or anchor point. This fixed site or anchor point is defined 
at a specific slice site or PFU device site by a hard LOCATE preference. 
Placement grouping of the PGROUP elements are restricted to within the 
dimension of a bounding box (BBOX), as shown in Figure 128.

An anchored PGROUP has the following characteristics:

It is hard-located on the device with the LOCATE preference.

It is located at a slice site by means of an anchor point at the northwestern 
corner. 

A slice anchor point is made to the D slice of the 4-slice PFU.

A PGROUP’s bounding box (BBOX) defines a fixed area in row and 
column dimensions.

PGROUP components are located relatively in the BBOX definition, as 
shown in the following example.

PGROUP "my_pgroup" BBOX 6 6 DEVSIZE
COMP "SLICE_1" "R1C1A"
COMP "SLICE_2";
LOCATE PGROUP "my_pgroup" SITE "R7C7D";

Figure 128: Anchored PGROUP
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A PGROUP commonly contains a mix of slice-based and embedded block 
logic.

The my_pgroup PGROUP defines the user-defined PGROUP. The bounding 
box has the dimensions of 6 rows by 6 columns of contiguous device rows 
and columns (DEVSIZE), as defined by BBOX 6 6. The COMP name defines 
the slice members of the group after the BBOX definition. In the first line, the 
row and column dimension R1C1A is the relative anchor site or northwestern 
site of the BBOX with the SLICE_1 component occupying that corner. The 
LOCATE preference on the last line anchors the PGROUP to the R7C7D 
device site.

Placement grouping of a PGROUP that contains both slice and embedded 
block elements is also restricted to the dimension of a BBOX. The PGROUP 
anchor point must be at a slice-type device site, and the bounding box should 
encompass enough resources to accommodate all of the group elements. 
Figure 129 shows an example of both PFU- and EBR-based logic.

Note
Anchors must be at a slice or PFU-type device site. Embedded block type device 
sites cannot serve as group anchor points.

Note

The Design Planner does not support assignment of individual slices to device sites 
through the UGROUP preference, as shown in the examples.
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Regional PGROUPs
To specify regional PGROUPs, you use the REGION preference. REGION 
defines a rectangular area within which a PGROUP can float; that is, the 
PGROUP can be optionally placed anywhere within that specified region.

Regional PGROUPs have the following characteristics:

The region area is defined with a REGION preference.

The region’s northwestern site defines its anchor point.

The PGROUP is located to float within the defined region area.

No anchor point is defined for the PGROUP.

Figure 129: Anchored PGROUP with Slice and Embedded Blocks

Note

Groups that are composed of both slice-based and embedded block logic, such as 
EBR and DSP-type blocks, must be anchored. Groups composed solely of slice-based 
logic, such as LUTs and registers, can float. 
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A bounding box (BBOX) defines the size of the PGROUP.

Components are located relatively in the BBOX definition.

The following example places the PGROUP within the my_region REGION, 
which is a fixed rectangular area between R3C3 and R12C12, as illustrated in 
Figure 130.

REGION "my_region" "R2C2D" 10 10 DEVSIZE;
PGROUP "my_pgroup" BBOX 6 6 DEVSIZE
COMP "SLICE_1" "R1C1D"
COMP "SLICE_2";
LOCATE PGROUP "my_pgroup" REGION "my_region";

Completely Floating PGROUPs
A PGROUP can also completely float; that is, the PGROUP can be placed 
anywhere on the device. You can do this by precluding the LOCATE 
PGROUP.

The following example creates a completely floating PGROUP, as shown in 
Figure 131:

PGROUP "my_pgroup" BBOX 6 6 DEVSIZE

Note
Anchor points must be at a slice- or PFU-type device site. Embedded block type 
device sites cannot serve as region anchor points.

Figure 130: PGROUP Floating within a REGION
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COMP "SLICE_1" "R1C1D"
COMP "SLICE_2";

Note

Groups that are composed of both slice-based and embedded block logic, 
such as EBR and DSP-type blocks, must be anchored. Groups composed 
solely of slice-based logic, such as LUTs and registers, can float.

Figure 131: PGROUP Completely Floating on a Device
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Completely Floating PGROUP with Minimum BBOX
The previous examples all specify BBOX in the PGROUP. Since the BBOX 
parameter is optional, some PGROUPs’ definitions might not specify a BBOX. 
In such cases, a minimally sized BBOX is generated for the PGROUP 
internally by default. See Figure 132.

The following example defines a completely floating PGROUP with a 3 x 3 (3 
rows in height and 3 columns wide) or minimal BBOX, as shown in 
Figure 132.

PGROUP “my_pgroup"
COMP "SLICE_1" "R1C1A"
COMP "SLICE_2";

The R1C1A parameter in the COMP definition refers to the relative (not 
absolute) northwestern site, or origin, of the PGROUP’s bounding box and 
should not be confused with an anchor point. Anchor points use the LOCATE 
preference.

Note

Groups that are composed of both slice-based and embedded block logic, such as 
EBR and DSP-type blocks, must be anchored. Groups composed solely of slice-based 
logic, such as LUTs and registers, can float.

Figure 132: PGROUP Completely Floating with Minimal BBOX
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Setting Group Preferences in the Design 
Planner
The Design Planner user interface allows you to graphically view and modify 
any group preferences that were set in the HDL and to create additional 
groups to improve design performance. 

Pre-Mapped View for UGROUPs 
In the Pre-Map Logical Netlist View, shown in Figure 133, logical components 
from the pre-mapped netlist can be combined into UGROUPs. The Pre-Map 
Logical Netlist View also displays individual UGROUPs that were expanded 
from HGROUPs in the HDL during the Build Database process. Modified or 
newly created UGROUPs are written to the logical preference file (.lpf) with 
the Save command.

Post-Mapped View for PGROUPs 
Physical components are displayed in the Post-Mapped Physical Netlist View, 
shown in Figure 134, and they can be combined into PGROUPs and placed 
into regions. Since the mapping process translates UGROUPs to physical 
groups, any pre-map logical groups become PGROUPs in the post-mapped 
netlist.

Figure 133: Pre-Mapped View
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Figure 134:  Post-Mapped View
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Floorplan and Physical Views
After placement and routing (PAR), you can view and edit PGROUPs and 
regions in the Floorplan View (Figure 135) and in the Physical View 
(Figure 136).

Figure 135: Floorplan View
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You can draw regions in the Floorplan View and the Physical View layouts. 
This feature is especially useful for reserving areas of the floorplan for other 
modules.

Figure 136: Physical View
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Path Tracer 
The Design Planner’s Path Tracer, shown in Figure 137, enables you to query 
a timing path, identify the longest delay, and then group those components 
that are scattered around the fabric in order to reduce the delay. 

Saving Preferences
Design changes made in the Design Planner are written to the logical 
preference file (.lpf) when the design is saved. When new or modified 
PGROUPs and REGIONs are saved in the Design Planner, their logical 
equivalents are immediately written to the .lpf, and they will be written to the 
physical preference file (.prf) when the design is remapped.

HGROUP and UGROUP attributes from the HDL are not written to the .lpf 
until they are modified, after which the .lpf preferences take precedence.

Figure 137: Path Tracer
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Persistence of Preferences
Because the Design Planner saves all logical preferences in the .lpf, including 
the logical equivalents of physical preferences such as PGROUPs, the 
preferences persist through repeated modifications and design iterations. 
This makes the Design Planner a highly useful tool for setting preferences, 
since there is less need to go back and modify the HDL. The flow of 
preferences from the HDL, through the Design Planner and mapping, are 
shown in Figure 138.

Using the Design Planner Interface
To run the Design Planner, select the targeted device in the Project Navigator, 
and then select one of the following options:

Double-click Design Planner (Pre-Map) to open the Spreadsheet View 
and Package View. Define timing constraints and make pin assignments 
in the pre-mapped stage. 

Figure 138: Preference Flow
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Double-click Design Planner (Post-Map) to open the Post-Map Physical 
Netlist View, Pre-Map Logical Netlist View, and Floorplan View. Create or 
modify physical groups and regions. 

Double-click Design Planner (Post-PAR) to open the Post-Map Physical 
Netlist View, Pre-Map Logical Netlist View, and Floorplan View. Modify 
placement, query timing paths, and make further adjustments

From a command prompt window, type the flmainapp command, then 
open the desired pre-map (.ngd) or post-map (.ncd) database file from the 
Design Planner Control.

Design Performance Enhancement Strategies
The design strategies for performance enhancement depend on the structure 
of a particular circuit. Strategies include the following:

Defining regions based on design hierarchy, if the hierarchy closely 
resembles the structure of the circuit. Such designs typically consist of 
tightly integrated modules, where the logic for each module is self-
contained and the modules communicate through well-defined interfaces.

Use the Design Planner’s Pre-Map Logical Netlist View, shown in 
Figure 133, to create logical groups based on the design hierarchy.

Defining regions based on the critical path, if the critical path is long and 
spans multiple modules. 

Use the Design Planner’s Path Tracer, shown in Figure 137, to identify the 
critical path and keep the nodes in the critical path together by grouping 
the logical components. This can lead to improved performance. 

Defining regions based on connections by grouping nodes together that 
contain high fan-outs and high fan-ins. 

Use the Floorplan View, shown in Figure 135, and Physical View, shown 
in Figure 136, to view them on the physical design layout, and then group 
nodes together to reduce delays in connections and wiring congestion. 

It might be necessary to change the existing design hierarchy and structure to 
make the design more amenable to floorplanning, especially if modular 
hierarchy and structure were not considered at the beginning of design 
conception.

You can elect to optimize modules individually and can exercise varying 
amounts of control over the placement by using different types of regions. 
When bounding boxes and location anchors are used selectively, the 
ispLEVER software can automatically determine the best size and location for 
a region. 

Another approach is to optimize the top-level design without first optimizing 
the individual modules. This approach allows the ispLEVER software to place 
nodes within regions and move regions across the device. You assign 

Note

For more information about running the Design Planner from the command line, 
see the “Command Line” section of the Design Planner online Help.
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modules to regions, then compile the entire design. With this approach, you 
can place elements from different modules in a region. 

Special Floorplanning Considerations
The following sections describe the use of elements such as embedded block 
RAM and certain types of groupings that require special consideration.

Embedded Block RAM Placement
Block RAM placement can be done with simple LOCATE preferences. It is not 
always necessary to locate block RAMs. Do not use the PGROUPs, 
UGROUPs, or the Design Planner GUI to group Block RAMs.

I/O Grouping
There is a complete set of physical constraints for grouping I/O components. 
Refer to the “HDL Attributes” section of the ispLEVER FPGA and Crossover 
Design online Help.

Large Module Grouping
Larger PGROUPs and UGROUPs (with many logical elements) should be 
anchored and bounded by LOCATE and BBOX keywords. 

The BBOX should be strategically shaped and sized according to the module 
to be placed inside the BBOX. If the BBOX shape and size are not specified, 
the default BBOX size will be a square that is as small as possible. This is not 
the optimal BBOX for typical modules. 

You should shape the design with the data path in mind and size the BBOX to 
be larger than needed so that the ispLEVER placer can have more flexibility in 
placing logic elements inside the BBOX. You can determine the BBOX size by 
counting the number of slices from a grouped module that has already been 
mapped.

Carry Chains and Bus Grouping
Carry chains (used by ripple arithmetic functions like adders, counters, and 
multipliers) and logic modules connected by buses can easily be floorplanned 
inappropriately if you are not aware of the internal routing resources available 
for optimizing these carry chain and bus routes. Certain groupings can reduce 
the performance of a design compared to no floorplanning at all. 

An example of a broken carry chain is a 9-bit adder that is PGROUPed with 
no relative placement on the adder.

Logic elements such as PFUs might give worse performance because the 
adder carry-chain is broken.

Note
For more information about using the Design Planner user interface, see the 
ispLEVER Design Planner online Help.
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SLICs in Groups
Supplemental Logic and Interconnect Cells (SLICs), which are contained in 
some Lattice Semiconductor FPGA device families, are automatically 
removed from PGROUPs and UGROUPs by the ispLEVER software unless 
they are relatively placed. This is because SLICs are used by the tools for 
interconnects that you cannot foresee. If SLIC placement must be controlled 
for a design, you must instantiate and locate the SLICS in the preference or 
HDL files. It is recommended that you allow the ispLEVER software to place 
SLICs automatically.

Conclusion
For a placement and routing strategy that will meet timing objectives, start 
with a good set of FPGA timing preferences. For a design's first placement 
and routing, run PAR at the low placer effort level and with a low number of 
routing iterations. There is no point in running 100 cost tables if the design's 
logic depth is too high. Use TRACE to analyze timing, then modify 
preferences to help improve it. Experiment with different strategies for 
controlling placement and routing; use TRACE to analyze timing for each 
iteration. If performance goals still are not met, use floorplanning to group 
components along critical paths and shorten routing distances.

For hands-on training, see the “Achieving Timing Closure in FPGA Designs 
Tutorial.”
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