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to correct any errors contained herein or to advise any user of this document
of any correction if such be made. LSC recommends its customers obtain the
latest version of the relevant information to establish, before ordering, that the
information being relied upon is current.

Type Conventions Used in This Document

Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<ltalic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.
Omitted material in a line of code.
Omitted lines in code and report examples.

[1 Optional items in syntax descriptions. In bus specifications, the
brackets are required.

) Grouped items in syntax descriptions.

{3} Repeatable items in syntax descriptions.

A choice between items in syntax descriptions.
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Introduction

This manual discusses aspects of design with Lattice Semiconductor FPGAs.
You can find more tips in the technical notes on Lattice Semiconductor’s Web
site at www.latticesemi.com.

This manual addresses the following topics.

Moving Designs from Altera or Xilinx FPGAs Moving a design from one
brand of FPGA to another offers many challenges. “Moving Designs from
Altera ” on page 3 (for former users of Altera software) and “Moving Designs
from Xilinx” on page 13 (for former users of Xiinx software) provide a variety
of guidelines and tips for modifying existing designs to work with the
ispLEVER software and Lattice Semiconductor FPGAs.

Incremental and Modular Design  Small changes do not have to involve
synthesizing and testing the entire design again. “Incremental and Modular
Design Methods” on page 33 describes incremental and modular design
methods. It begins with the benefits of this design approach, followed by
instructions and guidelines for specific tasks, such as logic partitioning, device
floorplanning, and simulation. A design example is provided to illustrate the
strategies in practice.

Design Guidelines Whether you are new to FPGA design or just new to
Lattice Semiconductor FPGAS, there are many considerations involved in
producing an effective design. The next few chapters provide guidelines, with
Verilog HDL and VHDL code examples, for getting the best performance and
resource utilization from your design:

¢ ‘“Logic Synthesis Guidelines” on page 51 provides a design flow for
creating register-transfer-level (RTL) designs.

¢ “HDL Synthesis Coding Guidelines” on page 57 discusses useful Verilog
HDL and VHDL coding styles for Lattice Semiconductor FPGAs. It
includes design guidelines for both novice and experienced FPGA
designers.
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Introduction

¢ ‘“Attributes and Preferences for FPGA Designs” on page 85 describes the
most common ispLEVER attributes used with RTL designs. This chapter
also describes popular compiler directives, attributes, and library
components for non-RTL (or non-algorithmic) code.

¢ “Synthesis Tips for Higher Performance” on page 111 provides tips on
improving design performance by applying synthesis techniques for both
Mentor Graphics® Precision® RTL Synthesis and Synplicity® Synplify® for
Lattice Semiconductor synthesis software.

Strategies for Timing Closure “Strategies for Timing Closure” on page 135
describes placement and routing strategies that help achieve timing closure
for the most aggressive design requirements. It begins with a brief description
of the seven steps for successful placement and routing, followed by
instructions for implementing each of these steps using the ispLEVER
software. It discusses the following topics:

Seven Steps to Successful Placement and Routing
Constraining Designs

Using the Place and Route Software (PAR)
Analyzing Timing Reports

Controlling Place and Route

® & 6 o oo o

Floorplanning the Design
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Moving Designs from
Altera

The guidelines in this chapter provide practical advice for Altera users who
want to migrate designs originally created for Altera FPGAs to Lattice
Semiconductor devices. Given the relative FPGA capacity and feature set
offered by both vendors, this chapter emphasizes replacement of Cyclone
and Cyclone Il devices with LatticeECP or LatticeEC devices. However, much
of the advice is applicable to any Lattice Semiconductor FPGA family.

This chapter is based on Lattice Semiconductor ispLEVER software, version
5.1, and Altera Quartus Il software, version 4.2.

For more information, see the ispLEVER Help and the Lattice Semiconductor
Web site, www.latticesemi.com. The Help provides extensive information on
process flows and on how to use the tools. It also provides tutorials, reference
manuals, and user manuals for the Mentor Graphics and Synplicity simulation
tools, which are included in the ispLEVER software. The Lattice
Semiconductor Web site provides a large collection of white papers and
application notes.

To gain some quick experience with the ispLEVER software and design flow,
try the “FPGA Design with ispLEVER Tutorial” in the Help.

Conversion Guidelines

Converting a design originally targeted to an Altera Cyclone device to a
LatticeECP/EC FPGA involves several steps:

¢ Replace Quartus Il project-wide constraints and options with equivalent
ispLEVER preferences and process properties.

¢ Replace Altera megafunctions with modules from ispLEVER IPexpress.

FPGA Design Guide
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Conversion Guidelines

¢ Replace component- or signal-specific Quartus Il timing and location
constraints with corresponding ispLEVER constraints.

¢ Replace any Altera-specific library with the LatticeECP/EC library.

¢ Replace Altera-specific primitives, such as I/O and global clock buffers, by
equivalent Lattice Semiconductor primitives or behavioral HDL code and

preferences.

¢ Optimize HDL-inferred modules such as shift registers, counters, and

multipliers.

Converting Design Constraints

Like the Quartus Il design style, the ispLEVER software does not require you
to add special components or attributes to your HDL design to establish the
correct signal I/0 buffer or interface standards. Instead, the Design Planner
and preference language allow you to define these physical implementation
details. The Lattice Semiconductor sysl/O buffer of the LatticeECP/EC device
family supports a variety of standards, including SSTL, PCI, and LVDS.

If it is necessary to introduce device-specific elements, the FPGA Libraries
Guide documents many atomic design elements. IPexpress produces

medium- to large-scale components.

Table 1 lists the ispLEVER equivalents to Quartus Il design constraints.

Table 1: Lattice Semiconductor Equivalents of Typical Quartus Il Design Constraints

Constraint

Quartus Il Software

iSpLEVER Softw

are

Device

Project Navigator: Assignments > Device

Project Navigator
Device

: Source > Set New

Synthesis options

Project Navigator: Assignments >
Settings > Analysis & Synthesis Settings

Third-party synthesis tool

Project Navigator
Properties

: Build Database >

Fitter options

Project Navigator: Assignments >
Settings > Fitter Settings

Project Navigator
Properties

Project Navigator
> Properties

: Map Design >

: Place & Route Design

1/0O location and types

Project Navigator: Assignments > Pins

Project Navigator
Planner

: Pre-Map Design

Timing options

Project Navigator: Assignments > Timing
Settings

Project Navigator
Design Planner

: Pre-Map or Post-Map

EDA tool settings

Project Navigator: Assignments >
Settings > EDA Tool Settings

Project Navigator
Synthesis

Project Navigator
Simulation Files

: Options > Select RTL

: Generate Timing
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Conversion Guidelines

Table 2 compares Altera constraints and Lattice Semiconductor preferences.

Table 2: Lattice Semiconductor Equivalents of Altera Constraints

Altera Constraints

Lattice Semiconductor
Preference

Maximum Delay assignment in Assignment Editor.
Overrides any clock settings, if the assignment is
applied to a path between two registers. However, an
fmax constraint can be used. If the net is purely

combinatorial, a tpp assignment can be made.

MAXDELAY

Maximum Data Arrival Skew or Maximum Clock Arrival,
depending on the net, in the Assignment Editor.

MAXSKEW

tsy in the Assignment Editor.

INPUT_SETUP to specify
the setup time at input port.

tco in the Assignment Editor.

OFFSET OUT

fmax can be specified in the Timing Settings dialog box.

Make individual and global clock setting using the
Timing Settings dialog box (Project menu).

PERIOD

Current Strength in the Option field in the Assignment
Editor.

Edit ASIC 1/O in Design
Planner

Slow Slew Rate in the Option field in the Assignment

Edit ASIC 1/O in Design

Editor. Planner

Fast Input Register or Fast Output Register in the LOCATE

Option field in the Assignment Editor.

Adjust Input Delay to Input Register. Adjust the delay of INDELAY/FIXEDDELAY

the input pin to the input register. Turned to either ON or
OFF in the Option field in the Assignment Editor

attribute in Design Planner

1/0 standards in the Assignment Editor.

Edit ASIC I/O in Design
Planner

An LCELL between two nets prevents either net from
being synthesized out.

LOCK

Table 3 compares Synopsys SDC constraints and Lattice Semiconductor

preferences.

Table 3: Conversion of Synopsys SDC Constraints

Synopsys SDC Constraints Description

Lattice
Semiconductor
Preferences

create_clock Creates a base clock with the given name and waveform,
and applies the clock to specified clock pin list.

FREQUENCY PORT/
NET PERIOD PORT/
NET

set_clock_latency Inserts a source latency into an existing base clock.

NA
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Table 3: Conversion of Synopsys SDC Constraints (Continued)

Synopsys SDC Constraints Description Lattice
Semiconductor
Preferences
set_false_path Specifies that the timing paths that start from a designated BLOCK
start node and end at a designated destination node be
false paths.
set_input_delay Specifies the external input delay of a set of input or INPUT_SETUP
bidirectional pins with respect to the designated clock. INPUT_DELAY
remove_clock Removes all clocks that are used in the current design if the NA

all option is specified.

create_generated_clock Creates a derived or generated clock from the given clock  NA
source. A generated clock can be derived only from a base
clock. The generated clock is always assumed to be
propagated.

get_clocks Returns the list of clock pins as specified in the Use Design Planner
<clock_pin_list>. The input list is returned as the output.
When <no_port_list> is specified, the command returns

nothing.
remove_input_delay Removes the specified input delay assignments from the Remove the specific
current design. preference from the
Design Planner or
preference file.
remove_output_delay Removes the specified output delay assignments from the  Remove the specific
current design. preference from the
Design Planner or
preference file.
reset_path Removes the specified timing path assignments from the BLOCK RESETPATHS

current design. If neither the setup or hold option is
specified, both setup and hold paths are removed.

set_max_delay Specifies the maximum delay for the timing paths from the = MAXDELAY
designated <from_pin_list> to <to_pin_list>.

set_min_delay Specifies the minimum delay for the timing paths from the  Use hld in command
designated <from_pin_list> to <to_pin_list>. line for MIN analysis.

set_multicycle_path Specifies that the given timing paths have multicycle setup MULTICYCLE

or hold delays with the number of cycles specified by
<path_multiplier>.

set_output_delay Specifies tco, which is the external output delay of a set of CLOCK_TO_OUT or
output or bidirectional pins with respect to the designated =~ OFFSET OUT
clock. The delay applies to both the positive and negative
edges of the clock.

set_propagated_clock Specifies that a given clock be propagated using the actual NA
clock network delays.

get_ports Returns the list of ports as specified in the <port list>. Use the Design
Planner.

FPGA Design Guide 6



Moving Designs from Altera Conversion Guidelines

Table 4 shows some examples of converting Synplify and Precision RTL
Synthesis timing constraints to Lattice Semiconductor preferences. Always
put: Block RESETPATHS; Block ASYNCPATHS.

Table 4: Converting Synplify and Precision RTL Synthesis Timing Constraints

Synplify (.sdc File Command) Precision (.tcl File Command) Lattice Semiconductor ispLEVER
.prf File command

define_clock -name {CLK_TX} create_clock -design rtl FREQUENCY 400.0 MHz;

-freq 400 -rise 1.0 -fall -name CLK_TX -freq 400

2.5 -waveform {1 2.5}

define_input_delay 2.00 set_input_delay -design rtl INPUT_SETUP ALLPORTS 2.0 ns

—-clock CLK_TX {dO[7:01} -clock CLK_TX 2 d0(7:0) CLKPORT *clk™

define_output_delay 2.00 set_output_delay -design CLOCK_TO_OUT ALLPORTS 2.0

-clock CLK_TX {Q[7:01} rtl -clock CLK_TX 2 Q(7:0) ns CLKNET "clk_int"

define_path_delay -from set_max_delay 11.0 -from MAXDELAY FROM PORT "a™ TO

{{p:RESET}} -to {input_ A input_ B} -to CELL "reg_Q'" 5.0 ns;

{{i:Q[7:01}} -max 5.000 Y_output

define_multicycle_path 2 set_multicycle_ path 2 MULTICYCLE FROM CELL

-from [get-pins reg_alu/Q] -from reg_alu* -to reg_mult 'reg_Q" CLKNET "clk_int"

-to [get_pins reg_mult/D] 5.0 ns;

define_false_path -from set_false_path -from RESET BLOCK RESETPATHS;

RESET

Converting Memory Blocks

Cyclone devices contain embedded RAM blocks organized into 4-kilobit
structures. LatticeECP/EC devices contain sysMEM embedded block RAMs
(EBRSs) consisting of 9-kilobit RAMs with dedicated input and output registers.
Use IPexpress to configure EBRs with the features, width, and depth desired,
and produce Verilog HDL or VHDL output for your project. The sysMEM EBRs
can be configured to support a variety of memory types, such as FIFO, ROM,
and DPRAM.

Unlike Altera’s Cyclone, LatticeECP/EC devices also support distributed
memory based on PFUs.

Other factors to consider are the following:

¢ Generate an equivalent Lattice Semiconductor EBR module.

¢ Enable the output register, if required. Check that the clock latency from
data input to data output is equivalent.

defparam ram.REGMODE = "OUTREG";

¢ Cyclone memory outputs are cleared on power-up. For LatticeECP/EC
devices, the output status is user-defined.

¢ Instead of the cyclone read-during-write mode, use the EBR read-before-
write mode. Additional logic may be required.

& Always turn on the EBR pipelining register, for it improves the tc,
especially when the EBR is in the critical path. The unregistered clock-to-

FPGA Design Guide 7
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Conversion Guidelines

Q delay for Lattice Semiconductor’'s EBRs is approximately 3.5 ns, and
their registered clock-to-Q delay is approximately 0.76 ns.

¢ Converting EBRs to distributed memory mapping when running out of

EBRs:

¢ SPRAM and DPRAM can only be mapped to distributed RAM.

¢ True dual-port RAMs must be mapped to EBR.

¢ The Altera memory compiler produces a parameterizable altsyncram
primitive. Write an RTL wrapper to connect an equivalent SCUBA-

generated module.

The following M4K features are not supported by the sysMEM EBR and may

require additional logic to implement;
¢ Parity bits
¢ Byte enable

¢ Embedded shift register

The following tables map the ports of various Altera RAM configurations to
their LatticeECP/EC equivalents. (At Lattice Semiconductor, a simple dual-

port RAM is called pseudo-dual-port RAM.)

Table 5: Single-Port RAM Port Equivalents

Port Description Altera Lattice Semiconductor
Data input data DI

Data output q Q

Address address Address

Write enable wren WE

Clock enable inclocken ClockEn

Clock input inclock Clock

Table 6: Simple Dual-Port RAM Port Equivalents

Port Description Altera Lattice Semiconductor
Data input data DI

Data output q Q

Write address wraddress ADW

Read address rdaddress ADR

Write enable wren WE

Read enable rden

In clock enable inclocken CEW

Out clock enable outclocken CER

FPGA Design Guide
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Table 6: Simple Dual-Port RAM Port Equivalents

Port Description Altera Lattice Semiconductor
Set/reset inaclr, outaclr Reset
Read clock outclock CLKR
Clock input inclock CLKW

Table 7: True Dual-Port RAM Port Equivalents

Port Description Altera Lattice Semiconductor
Data input dataA, dataB DatalnA, DatalnB

Data output gA, qB QA, QB

Address addressA, addressB AddressA, AddressB
Write enable wrenA, wrenB WrA, WrB

Clock enable inclockenA, inclockenB  ClockEnA, ClockEnB
Set/reset aclrA, aclrB ResetA, ResetB

Clock input clockA, clockB ClockA, ClockB

For more information on designing LatticeECP/EC memory, see the “How to
Design with FPGA Memories” topic in the online Help.

Converting FIFO

Because synthesis does not infer FIFO, use IPexpress to generate and
instantiate FIFO in RTL. Lattice Semiconductor does not have inherent
hardware support for different read and write widths for FIFO in LatticeEC and
LatticeXP devices. Implement the control logic in RTL. Be aware that the
Lattice Semiconductor FIFO_DC has two clock latencies for the de-assertion
of FIFO status flags.

MachXO 1K and 2K have built-in FIFO logic: primitive FIFO8KA.

Inferring Memory

Write in generic RTL to infer memory. See Figure 1 and Figure 2 for
examples. Synthesis inferencing is not available for FIFO. Use the SCUBA
FIFO memory compiler.

Converting PLL Blocks

Cyclone devices contain up to two analog phase-locked loops (PLLs) for clock
management. LatticeECP/EC devices contain two to four analog PLLs called
sysCLOCK PLLs. Use IPexpress to configure PLLs with operating frequency,
phase controls, and duty cycle.

Table 8 maps the ports of the Altera altpll megafunction to the Lattice
Semiconductor sysCLOCK PLL.

FPGA Design Guide
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Figure 1: Inferring Single-Port RAM in Precision RTL Synthesis Verilog
HDL

module sync_ram_singleport (clk, we, addr, data_in, data_out);
parameter addr_width = 10;

parameter data_width = 32;

input clk;

input we;

input [addr_width
input [data_width 1:0] data_in;

output[data_width 1:0] data_out;

reg [addr_width - 1:0] addri;

reg [data_width - 1:0] mem [(32"bl << addr_width):0];

1:0] addr;

always @ (posedge clk)
begin
if (we)
mem[addr] = data_in;
addri = addr;
end

assign data_out = mem[addri];

endmodule

Figure 2: Inferring Pseudo-Dual-Port RAM in Precision RTL Synthesis
Verilog HDL

module sync_ram_dualport (clk_in, clk _out, we, addr_in,
addr_out, data_in, data_out);

parameter data_width = 16;

parameter addr_width = 16;

input clk_in;
input clk _out;
input we;

input [addr_width
input [addr_width
input [data_width 1:0] data_in;

output[data_width 1:0] data_out;

reg [data_width - 1:0] data_out;

reg [data_width - 1:0] mem [(32°bl << addr_width) - 1:0];

1:0] addr_in;
1:0] addr_out;

always @ (posedge clk_in) begin
if (we)
mem[addr_in] <= data_in;
end

always @ (posedge clk_out) begin
data_out <= mem[addr_out];
end

endmodule

For more information on designing LatticeECP/EC PLLs, see the “How to
Design with sysCLOCK PLLs and DLLs” topic in the online Help.

FPGA Design Guide
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Table 8: PLL Port Equivalents

Port Description

Altera

Lattice Semiconductor

Clock input

inclkO

CLKI

Clock feedback input

None, feedback path is
internal

CLKFB (PLL output,
clock net, routing, ext)

Asynchronous reset areset RST (setto 1 to reset
input clock divider)

Combined enable and reset, pllena

active high

Clock outputs driving the internal ¢[1..0] CLKOS (phase/duty)

global clock network CLKOP (no phase)
CLKOK (second divider)

Clock output driving the single- €0 Any PLL clock outputs

ended or LVDS external clock through normal routing

outputs

Enable for up/down output from pfdena

the phase frequency detector

(PFD)

PLL lock status locked LOCK (1 indicates

locked to CLKI)

Converting DDR Interfaces

The key trick for the interface is shifting the DQS strobe-in pin by 90 degrees
by the time it reaches the register. Like Cyclone Il and Stratix, the LatticeEC
and LatticeXP devices have a DQS shift circuit built in, so no changes to the

design are needed.

FPGA Design Guide

11



Moving Designs from Altera Conversion Guidelines

FPGA Design Guide 12
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Semiconductor
Corporation

Moving Designs from
Xilinx

This chapter compares Xilinx FPGA software design tools and flows with
Lattice Semiconductor software, provides device migration information for
targeting Xilinx FPGA devices to comparable Lattice Semiconductor devices,
and provides alternate reference sources for device and package selection.
Although much of the advice is applicable to all device families, this chapter
provides mostly specific information for Xilinx Spartan-3 device migration to
LatticeEC devices. This chapter also includes a small section on Virtex Il
conversion guidelines.

This chapter assumes that you are familiar with the Spartan family and
features. Familiarity with VHDL or Verilog HDL and third-party synthesis tools
is also assumed. This chapter is based on Lattice Semiconductor iSpLEVER
software, version 5.1, and Xilinx ISE software, version 6.1i.

For more information, see the ispLEVER online Help and the Lattice
Semiconductor Web site at www.latticesemi.com. The Help provides
extensive information on process flows and on how to use the tools. It also
provides tutorials, reference manuals, and user manuals for the Mentor
Graphics and Synplicity synthesis tools, which are included in the ispLEVER
software. The Lattice Semiconductor Web site provides a large collection of
white papers and application notes.

Lattice Semiconductor provides information to assist you in deciding what
device and package best fits your requirements. In the Product Selector
Guide, you can view technical specifications for all of Lattice Semiconductor's
product families, including available devices, packages, speed grades, design
requirements, and feature support. In addition, you can use the Package
Selector Card to find the information you need to determine what package is
best for your device.

FPGA Design Guide

13


http://www.latticesemi.com/lit/docs/generalinfo/prod_selector.pdf
http://www.latticesemi.com/lit/docs/generalinfo/prod_selector.pdf
http://www.latticesemi.com/lit/docs/brochures/pkgsel.pdf
http://www.latticesemi.com/lit/docs/brochures/pkgsel.pdf
http://www.latticesemi.com

Moving Designs from Xilinx

Migrating Xilinx Spartan Designs to LatticeECP/EC

Migrating Xilinx Spartan Designs to LatticeECP/EC

This section compares Xilinx Spartan-3 hardware features and suggests
specific steps and strategies for conversion to comparable LatticeEC and

LatticeECP-DSP devices.

In general, you must:

¢ Comment out any Xilinx-specific library and add the LatticeECP/EC

library, if required.

¢ Replace Xilinx-specific primitives, such as I/O buffers and global clock
buffers, with Lattice Semiconductor primitives or behavioral HDL code and

preferences.

¢ Replace Xilinx core modules, such as DCM, memory, and multipliers, with

Lattice Semiconductor modules.

¢ Replace the Xilinx timing and device constraints (.ucf) file with a Lattice
Semiconductor source constraints or preferences file (.prf).

¢ Optimize HDL-inferred modules such as shift registers, counters, and

multipliers.

Replacing Commonly Used Xilinx Primitives
Table 9 shows commonly used Xilinx primitives and their Lattice

Semiconductor counterparts.

Table 9: Xilinx Primitives and Lattice Semiconductor Equivalents

Xilinx Primitive Description Lattice Equivalent

BUF, 4, 8, 16 General purpose buffer Primitive BUFBA or HDL
attribute

BUFG Global clock buffer Location assignment,
Preference USE PRIMARY

FD D Flip Flop Lattice primitives or

behavioral HDL

IBUF_<I/O_standard> Input buffer with selectable
1/0O standard

Primitives 1B, IBM, and
related; I0_TYPE attribute

IOBUF_<I/O_standard> Bidirectional buffer with
selectable 1/0 standard

Primitives BB, BBW and
related; I0_TYPE attribute

OBUF_<I/O_standard> Output buffer with selectable

Primitives OB, OBZ, and

1/0O standard related; I0_TYPE attribute
SRL16 LUT-based 16-bit shift HDL, use distributed RAM or
register EBR

FPGA Design Guide
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Xilinx I/O Buffer Conversion

Input, output, and bidirectional buffers are automatically inserted by the
Lattice Semiconductor ispLEVER compiler. As a result, all the I/O buffersin a
Xilinx design can be removed. The output signal of the buffer can be replaced
by the 1/0 signal or assigned to it. Figure 3 shows a Verilog HDL example of a
buffer being removed.

Figure 3: Removing I/O Buffer

module top (a, b, c, clk);
input a, b, clk;
output c;
reg c;
wire clk out;

// BUFG instl (.1(clk), .0(clk_out)); No need for buffer.
// Assign buffer’s clk_out directly to module’s input, clk.
assign clk_out = clk;

always @ (posedge clkout)
begin
C <= a & b;
end
endmodule

You can convert Xilinx I/O standard primitives into Lattice Semiconductor
primitives, or you can specify them in 1/0O Type attributes. Figure 4 and
Figure 5 show how to specify I/O primitives using 1/0 Type (I0_TYPE)
attributes. Table 10 shows the supported 1/O types for the various Lattice /0
buffers.

Figure 4: Syntax for /O Type Attributes in VHDL

ATTRIBUTE I0_TYPE : string;

ATTRIBUTE I0_TYPE OF [PinName]: SIGNAL IS "[Type]":
=> See Below 1/0 type table

ATTRIBUTE PULLMODE : string;

ATTRIBUTE PULLMODE OF [PinName]: SIGNAL IS "[Type]";
=> NONE, KEEPER, UP, DOWN

ATTRIBUTE DRIVE : string;

ATTRIBUTE DRIVE OF [PinName]: SIGNAL IS "[Type]";
= 2,4,6,8,12,16,20

ATTRIBUTE SLEWRATE : string;

ATTRIBUTE SLEWRATE OF [PinName]: SIGNAL IS "[Type]";
=> FAST, SLOW

Figure 5: Syntax for I/O Type Attributes in Synplify Verilog HDL

PinType [PinName] /* synthesis 10_TYPE="[Type]" DRIVE="[Type]"
PULLMODE=""[Type]" SLEWRATE=""[Type]'*/;

// DRIVE [Type] = 2, 4, 6, 8, 12, 16, 20

// PULLMODE [Type] NONE, KEEPER, UP, DOWN

// SLEWRATE [Type] FAST, SLOW

FPGA Design Guide
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Table 10: Supported 1/0O Types for LatticeECP/EC I/O Buffers

110 Type Input Buffer Output Bidirectional
Buffer Buffer
LVTTL, LVCMOS33, LVCMOS25, X X X

LVCMOS18, LYCMOS15,
LVCMOS12, PCI33

LVTTL_OD, LVCMOS33_OD, X X
LVCMOS25_OD, LVCMOS18_OD,
LVCMOS15_OD, LVCMOS12_OD

LVDS25E, LVDS25, BLVDS25, X X X
LVPECL33

HSTL18_I, HSTL18 I, HSTL18_Ill, X X X
HSTL15_I, HSTL15_II

HSTL18D_I, HSTL18D I, X X

HSTL18D_lIl, HSTL15D |,

HSTL15D_lIl

SSTL33_I, SSTL33_II, SSTL25 |, X X X

SSTL25_II, SSTL18_|

SSTL33D_I, SSTL33D_II, X X
SSTL25D_|I, SSTL25D _II, SSTL18D |

You can quickly and easily generate the necessary syntax for your 1/O type
assignments by using the Design Planner. You can also do so manually in the
preference (.prf) file.

MUXCY, XORCY, and MULT_AND Clusters

You can map MUXCY, XORCY, and MULT_AND clusters to combinations of
FADD2, FSUB2, and MULT2 primitives, for example:

¢ MUXCY(DI,CI,S,0) mapped to MUX21(D0,D1,SD,Z)
¢ BUFGMUX(I0,I1,S,0) mapped to DCS(CLKO0,CLK1,SEL,DCSOUT)

SRL16 Shift Register Conversion

You can configure each LUT as a 16-bit shift register without using a flip-flop
in each slice. The SRL16 is slower than the flip-flop and is susceptible to soft-
error upset. The SRL16 is automatically inferred by the software tool.

Use the following guidelines for converting a Xilinx SRL16 element to a viable
Lattice Semiconductor function:
¢ For a small one-bit shift register, use a flip-flop-based shift register.

¢ For a large multi-bit shift register, use a circular buffer to emulate a shift
register.

¢ Data is written at clock 0. After n clock cycles, the data is clocked out of
the buffer while the new data is written into the same location.

¢ The dual-port RAM is set to Read_Before_Write mode.

¢ The in and out ports can be different widths.

FPGA Design Guide
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Use the following guidelines for converting a shift register in a FIR filter

design:

¢ Inthe FIR filter design, each tap of the shift register must be multiplied.
Separate Write and Read address controls are required.

¢ Use a pseudo-dual-port RAM in an EBR or distributed RAM to emulate a
multi-bit shift register in a FIR filter.

Replacing DCM/DLL Elements

DCM is a digital clock manager that implements a clock delay-locked loop
(DLL), digital frequency synthesizer (DFS), and digital phase shift (DPS)
functions. Table 11 shows Lattice Semiconductor equivalents of Xilinx DCM

ports.

Table 11: Lattice Equivalents for Xilinx DCM Ports

Xilinx DCM Port Description

Lattice PLL Port

CLKIN Clock input to DCM CLKI
CLKFB Clock feedback input to DCM CLKFB (PLL output, clocknet,
(from CLK, CLK2x) routing, ext)
RST Asynchronous Reset RST (1 to reset input clock
divider)
PSEN Dynamic phase shift enable (1= DDAMODE (1: pin control —
enable) dynamic)
PSINCDEC Increment/decrement phase DDAILAG (1 = lag, 0 = lead)
shift (0 =inc, 1 = dec)
PSCLK Clock input to dynamic phase CLKI
shifter
PSDONE Dynamic phase shift complete
(1 =done)
CLKO, CLK90, Same or double frequency as CLKOS: phase/duty
CLK180, CLKIN, phase shift 0, 90, 180 CLKOP: no phase
CLK270, and 270 degree CLKOK: second divider
CLK2X,
CLK2X180
CLKDV Divided clock output, CLKDV = Any PLL clock outputs
CLKIN / CLKDV_DIVIDE
CLKFX, Synthesized clock output, Any PLL clock outputs
CLKFX180 CLKFX = CLKIN x
CLKFX_MULTIPLY /
CLKFX_DIVIDE
STATUS|0:2] [0]: Phase shift overflow
[1]: CLKIN in not toggling
[2]: CLKFX output stop
LOCLKED DCM locked to CLKIN, clock LOCK (1 = lock to CLKI)

outputs are valid
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Note the following when converting this element:

L 4

Digital spread spectrum (DSS) mode is not supported, so the DSSEN pin
must be tied to GND.

The CLK90, CLK270, CLK2X, and CLK2X180 outputs are not available if
PLL_FREQUENCY_MODE is set to high.

CLKFB must be sourced from CLKO and CLK2X.

Unlike Xilinx DCM, which requires a specific input buffer to feed into
CLKIN, such as IBUFG or BUFGMUX, PLLs in Lattice Semiconductor
devices do not require input buffers.

Customize Lattice Semiconductor PLLs in the IPexpress.

Do not replace DCM with DQSDLL, which is dedicated to the DDR
interface.

Comparing Xilinx and Lattice Semiconductor
Block Memory

This section compares Xilinx Spartan and LatticeECP/EC block memories.
See Table 12 for block memory feature comparison. Table 13 shows a port
mapping comparison between Xilinx Spartan-3 and LatticeECP/EC single-
port RAM. Table 14 shows a port-mapping comparison between the Xilinx

Spartan-3 and the LatticeECP/EC dual-port RAM.

Table 12: Block Memory Feature Comparison

Feature Xilinx SelectRAM Lattice sysMEM

Total RAM bits 18,432 9,216

Performance ~200 MHz ~300 MHz

Single-port Yes Yes

Pseudo-dual-port Yes Yes

True dual-port Yes Yes

FIFO, FIFO_DC Yes Yes

CAM Yes

ROM, initial RAM contents Yes Yes

Mixed data port width Yes Yes

Power-up condition User data defined/default  User data defined/default
=zero =zero

Table 13: Port Mapping for Single-Port RAM

Signal Description Xilinx Port Name Lattice Equivalent
Data input bus DI Data
Parity data input bus DIP Data
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Table 13: Port Mapping for Single-Port RAM (Continued)

Signal Description

Xilinx Port Name

Lattice Equivalent

Data output bus DO Q

Parity data output bus DOP Q

Address bus Addr Address

Write enable WE WE

Clock enable EN ClockEn

Synchronous set/reset SSR Reset

Clock input CLK Clock
Table 14: Port Mapping for Dual-Port RAM
Signal Description Xilinx Dual Port Lattice Equivalent

Port A Port B Port A Port B
Data input bus DIA DIB DatalnA DatalnB
Parity data input DIPA DIPB DatalnA DatalnB
Data output bus DOA DOB QA QB
Parity data output DOPA DOPB QA QB
Address bus ADDRA ADDRB AddressA AddressB
Write enable WEA WEB WrA WrB
Clock enable ENA ENB ClockEnA ClockEnB
Synchronous set/reset SSRA SSRB ResetA ResetB
Clock CLKA CLKB ClockA ClockB

When converting Xilinx Spartan-3 block memory to LatticeECP/EC memory,

observe the following guidelines:

¢ Lattice EBR does not support a separate DIP bus. The parity data input
and parity data output buses are integrated into the data input/output

buses.

¢ The EN, WE, and SSR Xilinx block RAM is configurable and active high
by default. Lattice Semiconductor ClockEn, WE, and reset are always
active high, so you can change the polarity outside the EBR instantiation.

¢ Xilinx supports synchronous set/reset. When SSR is asserted, the DO/
DOP outputs are synchronously set to initial values defined by the
SSRVAL parameter. Lattice Semiconductor does not support this feature.
Lattice Semiconductor supports synchronous or asynchronous resets.

¢ The Xilinx GSR is automatically connected. For Lattice Semiconductor,
you can enable or disable the GSR in IPexpress.
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¢ You must generate an equivalent Lattice Semiconductor EBR module
using IPexpress or instantiate the EBR by utilizing the Parameterizable
Module Inference (PMI).

¢ Enable output registers when required. Check that the clock latency from
data input to data output is equivalent.

defparam ram.REGMODE = ""OUTREG";

¢ Select the proper write mode (see Table 15).

Table 15: Xilinx and Lattice Semiconductor Write Modes

Xilinx Write Mode Lattice Semiconductor Write Mode
Write_First (default) Write Through

Read_First (recommended) Read Before Write

No_Change Normal

& Always turn on the EBR pipelining register, because it improves the tcq,
especially when the EBR is in the critical path. The Lattice Semiconductor
EBR unregistered clock-to-Q delay is approximately 3.5 ns, and the
registered clock-to-Q delay is approximately 0.76 ns.

¢ Converting EBR to distributed memory mapping when running out of
EBRs:

¢ SPRAM and DPRAM can only be mapped to distributed RAM.
¢ True dual-port RAMs must be mapped to EBR.

¢ Mapping from larger block RAM (16 kb in Spartan-3) to 9 kb in LatticeEC
and LatticeXP:

¢ Ifthe EBR uses less than 9 kb of the 16-kb EBR block, it can be
mapped to a Lattice Semiconductor EBR.

¢ Ifthe EBR uses more than 9 kb of the 16-kb Xilinx EBR, you can:

¢ Use the Module Manager to create it. The multiplexer is created
automatically. Two Lattice EBRs are generated, with the 2:1
multiplexer using one address bit for control.

¢ Code in generic RTL and allow synthesis to infer the memory.
¢ When converting distributed RAM:

¢ Map RAM16X1S through RAM16X8S to multiple instances of the
SPR16X2B primitive.

¢ Map RAM16X1D to the DPR16X2B primitive.

¢ Use the SCUBA memory compiler to generate equivalent cells for all
other Xilinx distributed RAM primitives, such as RAM64X1S.
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Converting FIFO

Because synthesis does not infer FIFO, use IPexpress to generate and
instantiate in RTL. Lattice Semiconductor does not have inherent hardware
support for different read and write widths for FIFO in LatticeEC and LatticeXP
devices. Implement the control logic in RTL. Be aware that the Lattice
Semiconductor FIFO_DC has two clock latencies for the de-assertion of FIFO
status flags.

MachXO 1K and 2K have built-in FIFO logic: primitive FIFO8KA.

Inferring Memory

Write in generic RTL to infer memory. See Figure 6 and Figure 7 for
examples. Synthesis inferencing is not available for FIFO. Use the SCUBA
FIFO memory compiler.

Figure 6: Inferring Single-Port RAM in Precision RTL Synthesis Verilog
HDL

module sync_ram_singleport (clk, we, addr, data_in, data_out);
parameter addr_width = 10;

parameter data_width = 32;

input clk;

input we;

input [addr_width
input [data_width 1:0] data_in;

output[data_width 1:0] data_out;

reg [addr_width - 1:0] addri;

reg [data_width - 1:0] mem [(32"bl << addr_width):0];

1:0] addr;

always @ (posedge clk)
begin
it (we)
mem[addr] = data_in;
addri = addr;
end

assign data_out = mem[addri];

endmodule
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Figure 7: Inferring Pseudo-Dual-Port RAM in Precision RTL Synthesis
Verilog HDL

module sync_ram_dualport (clk_in, clk _out, we, addr_in,
addr_out, data_in, data_out);

parameter data_width = 16;

parameter addr_width = 16;

input clk_in;
input clk out;
input we;

input [addr_width
input [addr_width 1:0] addr_out;

input [data_width 1:0] data_in;

output[data_width - 1:0] data_out;

reg [data_width - 1:0] data_out;

reg [data_width - 1:0] mem [(32"bl << addr_width) - 1:0];

1:0] addr_in;

always @ (posedge clk_in) begin
it (we)
mem[addr_in] <= data_in;
end

always @ (posedge clk_out) begin
data_out <= mem[addr_out];
end

endmodule

Xilinx Multiplier Versus the Lattice
Semiconductor DSP Block

This section compares the capabilities of Xilinx’s multiplier to those of the
LatticeECP block function. Note the following when comparing these device
functions:

¢ Xilinx Spartan-3 devices are limited to offering only embedded multipliers
to provide multiplication.

¢ You can configure the Lattice Semiconductor DSP block to perform any of
the following functions:

¢ Simple multiply
¢ Multiply accumulate
¢ Multiply add/subtract
¢ Multiply add/subtract SUM
¢ The Lattice DSP block supports x9, x18, and x36 modes.

¢ The Lattice DSP block supports options for input, output, and pipeline
registers, clock, clock enable, and reset.

¢ When converting to LatticeECP from Xilinx Spartan-3, you can convert
Xilinx LUT-based shift registers by utilizing Lattice Semiconductor EBR or
distributed RAM.
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Converting DDR Interfaces

The key trick for the interface is shifting the DQS strobe-in pin by 90 degrees
by the time it reaches the register. Unlike Spartan-3, the LatticeEC and
LatticeXP devices have a DQS shift circuit built in, so remove the DQS LUT-

based logic.

Implement the interface with IPexpress to avoid errors. The DQS is generated
from DCM. You have to manually shift the clock because it does not

dynamically adjust.

Figure 8 compares DDR interface code for Spartan-3 and LatticeEC devices.

Figure 8: Comparison of DDR Interface Code

Spartan-3

LatticeEC

library ieee;
use ieee.std_logic_1164_all;
entity ddr_dgs_sp3 is

port(
clk in std_logic;
rd_clk in std_logic;
DDR_DQS_reset in std_logic;
DDR_DQS_enable : in std_logic;
DDR_DQS : inout std_logic;
DQS : out std_logic);

end ddr_dqgs_sp3;

architecture V of ddr_dqgs_sp3 is

begin
VCC <= "1°7;
GND <= "0";

clk_b <= not clk;

Ul : FD port map (D => DDR_DQS_enable,
Q => DDR_DQS_enablel, C => clk);

U2 : FDDRRSE port map (Q => DQS_dg,
CO => clk, C1 => clk_b, CE => VCC,
DO => VCC, D1 => GND,
R => DDR_DQS_reset, S => GND);

U3 : OBUFT port map (I => DQS_q,
T => DDR_DQS_enablel ,0 => DDR_DQS);

U4 - IBUF port map (1 => DDR_DQS,
0 => DQS_in);

U6 : FD port map (D => DQS_in, Q => DQS,
C => rd_clk);

U5 : keeper port map (o => DDR_DQS);

end V;

library ieee;
use ieee.std_logic_1164_all;
entity ddr_dqgs_ec is

port(
clk in std_logic;
rd_clk in std_logic;
DDR_DQS_reset in std_logic;
DDR_DQS_enable : in std_logic;

DDR_DQS : inout std_logic;
ddrclkpol_sig : out std_logic;
end ddr_dqgs_ec;

architecture V of ddr_dqgs_ec is
begin

GND <= "07;

clk_b <= not clk;

process(clk)
begin
it rising_edge(clk) then
DDR_DQS_enablel <= DDR_DQS_enable;
end if;
end process;

U2 : ODDRXB port map (DA => VCC,
DB => GND, CLK => clkLSR =>
DDR_DQS_reset, Q => DQS_q);

U3 : BB port map (I => DQS_q,
T => DDR_DQS_enablel, O => DQS_in,
B => DDR_DQS);

DQSBUF_inst : DQSBUFB port map (
DQSI => DQS_in, CLK => clk,
READ => rd_clk, DQSDEL => dqgsdel,
DQS => dqgs, DDRCLKPOL => ddrclkpol_sig,
DQSC => dgsc, PRMBDET => prmbdet);

DQSDLL_inst : DQSDLL port map (
CLK => clk, RST => DDR_DQS_reset,
UDDCNTL => "1", LOCK => dll_lock,
DQSDEL => dgsdel);

end V;

FPGA Design Guide

23



Moving Designs from Xilinx

Migrating Xilinx Spartan Designs to LatticeECP/EC

Replacing Constraints

Replace the Xilinx timing and device constraints (.ucf) file with a Lattice
Semiconductor source constraints or preferences file (.prf). See Table 16 for
equivalent Lattice Semiconductor preferences.

Table 16: Lattice Semiconductor Equivalents of Xilinx Constraints

Xilinx Constraint Constraint Function

Lattice Preference

MAXDELAY Specifies the maximum delay in a net. MAXDELAY

MAXSKEW Specifies the maximum skew in a net. MAXSKEW

NODELAY Reduces setup time at the cost of INPUT_SETUP to
positive hold time. specify the setup time at

input port or input
register.

OFFSET Specifies correlation between a global OFFSET
clock and its associated data in and
data out pin. Specifies tgy and tco on
data registers.

Period Specifies the timing relationship of a PERIOD
global clock, such as an fyyax
requirement.

DRIVE Controls the output pin current value.  Edit ASIC I/O in Design

Planner
FAST Turns on Fast Slew Rate Control. Edit ASIC I/O in Design
Planner

10B Specifies whether a register should be LOCATE
placed within the 10B of the device.

IOBDELAY Specifies a delay before an input pad  INDELAY/FIXEDDELAY
feeds the IOB, or an external element, attribute in Design
from the I0B. The input pad can either Planner
feed the local 10B flip-flop or an
external element from the 10B.

IOSTANDARD Specifies the 1/0 standard for an 1/0 Edit ASIC I/O in Design
pin. Planner

KEEP Prevents a net from being absorbed by LOCK

a block or synthesized out.

Table 17 shows some examples of converting Synplify and Precision RTL
Synthesis timing constraints to Lattice Semiconductor preferences. Always
put: Block RESETPATHS; Block ASYNCPATHS.
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Table 17: Converting Synplify and Precision RTL Synthesis Timing Constraints

Synplify (sdc File Command) Precision (tcl Command) Lattice ispLEVER .prf
define_clock -name {CLK_TX} create_clock -design rtl FREQUENCY 400.0 MHz;
-freq 400 -rise 1.0 -fall -name CLK_TX -freq 400

2.5 -waveform {1 2.5}

define_input_delay 2.00 set_input_delay -design rtl INPUT_SETUP ALLPORTS 2.0 ns
-clock CLK_TX {dO[7:01} -clock CLK_TX 2 do(7:0) CLKPORT "'clk"
define_output_delay 2.00 set_output_delay -design CLOCK_TO_OUT ALLPORTS 2.0
-clock CLK_TX {Q[7:01} rtl -clock CLK_TX 2 Q(7:0) ns CLKNET "clk_int"
define_path_delay -from set_max_delay 11.0 -from MAXDELAY FROM PORT *a'™ TO
{{p:RESET}} -to {input_ A input_ B} -to CELL "reg_Q" 5.0 ns;
{{i:Q[7:0]1}} -max 5.000 Y_output

define_multicycle_path 2 set_multicycle_ path 2 MULTICYCLE FROM CELL
-from [get-pins reg_alu/Q] -from reg_alu* -to reg_mult *reg_Q" CLKNET *"clk_int"
-to [get_pins reg_mult/D] 5.0 ns;

define_false_path -from set_false_path -from RESET BLOCK RESETPATHS;

RESET

Figure 9 shows a Perl script for converting a Xilinx .ucf into a Lattice
Semiconductor .Ipf.

Figure 9: .ucf to .Ipf Conversion Script

#uct2lpf._pl

# Version 1.0, April 23, 2007, thscott

# Converts Xilinx UCF format to Lattice LPF format. 1/0 Placement Constraints.
#

#Potential enhancements?:

# -PERIOD TIME-SPEC

# -TIMING IGNORE

# -PATH EXCEPTIONS

#

#Input:

# Xilinx ucf format

#

#Output:

# Lattice lIpf format

#

#Substitution rules:

# 1) Placement Constraints for 1/0

# UCF: NET io_net_name LOC=P111; # PLCC/PQFP type
# LPF: LOCATE COMP "io_net_name'"™ SITE "111";

# UCF: NET io_net_name LOC=All; # PGA/BGA type
# LPF: LOCATE COMP 'io_net_name'" SITE "All";

#
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Figure 9: .ucf to .Ipf Conversion Script (Continued)

#Header

it ($#ARGY == -1) {
print "\nucf2lpf.pl: Version 1.0\n";
print "Usage: ucf2lpf.pl [options] input > output\n";
print " -plcc PLCC/PQFP type package (Default PGA/BGA type)-\n"';
print " -lat Lattice style underscore __ bus delimiter.\n";
print " -prtl Precision RTL style parens () bus delimiter.\n";
print " Default Synplify style underscore _ bus delimiter.\n";
print "Converts Xilinx UCF LOC to Lattice LPF LOCATE format.\n\n";
die;

}

#Sort arguments

foreach $arg (@ARGV) {
if ($arg eq "-plcc'™) { $plcc="TRUE";}
if ($arg eq "-lat™) { $lat="TRUE"; }
if ($arg eq "-prtl'™) { $prtl="TRUE";}

}

#Access csv input file

$file = $SARGV[$#ARGV]; # Name the file

open(INFO, $Ffile) or die "File $file not found"; # Open the file
@ucffile = ; # Read It into an array

close(INFO); # Close the file

#print "@Qucffile"; # Print the array

foreach $ucfconstraint (Qucffile) {

if ($ucfconstraint =~ /#/ ) { next; } # Skip ucf comment lines

# Process 1/0 Placement Type Constraints

if ($ucfconstraint =~ /NET.*LOC/) {
$lpfconstraint = $ucfconstraint;
$lpfconstraint =~ s/NET/LOCATE COMP/;

if ($lat eq "TRUE™) {

$lpfconstraint =~ s/ $lpfconstraint =~ s/>/_/;
} elsif ($prtl eq "TRUE™) {

$lIpfconstraint =~ s/ $lpfconstraint =~ s/>/)/;
} else {

$lpfconstraint =~ s/ $lpfconstraint =~ s/>//;
}

ifT ($plcc eq "TRUE™) {
# Detect string "LOC" then zero or more whitepace characters then character =.
# Replace with string "SITE".
$lpfconstraint =~ s/LOC\s*=/SITE/;

$lpfconstraint =~ s/SITE\s*"P/SITE "/;
$lpfconstraint =~ s/SITE\s*P/SITE /;
} else {
$lpfconstraint =~ s/LOC\s*=/SITE /;
}:
print "$lpfconstraint';
};
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Converting Xilinx Virtex Il to LatticeECP/EC Devices

Take the following steps when converting Xilinx Virtex Il to LatticeECP/EC
devices:

¢ Convert DLL to PLL.

¢ Create MUXCY and MUXCY_L Verilog HDL modules.

¢ Create RAMB16_S36_S36 Verilog HDL modules.

Converting Xilinx DLL to Lattice Semiconductor
PLL

This section illustrates the guidelines that you should follow when converting
Xilinx DLL in Virtex Il to Lattice Semiconductor PLL in LatticeECP/EC devices.
Figure 10 and Figure 11 show how a DLL element is instantiated in Xilinx
software and how the replacement would then look in Lattice Semiconductor
software.

Figure 10: Xilinx Code — DLL Instantiation

//PCIXCLK input pad
IBUFG_LVCMOS33 PCIXCLK_IBUFG (
_.O(PCIXCLI_in),
-1 (PCIXCLK));

//PCIXCLK DLL

CLKDLL PCIXCLK_DLL (
-CLKIN(PCIXCLK_in),
-CLKFB(clock),
-RST(17"b0),
-CLKO(PCIXCLK_dIN));

// PCIXCLK global clock buffer
BUFG PCIXCLK_BUFG (
.0(clock),
-1 (PCIXCLK_dID));
PULLUP P1 (FFE_CRDY_Nj;
PULLUP P2 (NFL_CRDY_N;

Figure 11: Lattice Replacement Code — PLL Instantiation

/*Start

input PCIXCLK; //PCl1-X clock - 133 MHz */

input PCIXCLK /* synthesis I0_TYPE="LVCMOS33" */
/* End

PCIX_CLK_PLL PCIXCLK_PLL (
-CLKI(PCIXCLK),
-CLKFB(clock),
-CLKOP(clock));
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Creating MUXCY and MUXCY_L Verilog HDL

Modules

The second step is to create MUXCY and MUXCY _L Verilog HDL modules in
the example. Figure 12 shows how you would instantiate the MUXCY module
for Virtex Il.

Figure 12: Verilog HDL Code — MUXCY and MUXCY_L

module MUXCY ( // or MUXCY_L
output reg O,
input S, DI, SI);

always @ (*)
/* full_case, parallel_case */
case ({S, DI, SI})

3"b000: O = 1"b0;
3"b001: O = 1"b0;
3"b100: O = 1"b0;
3"b110: 0 = 1"b0;
default: 0 = 1%b1;
endcase
endmodule

Wide Multiplexing

Map the Xilinx MUXF5 (10, 11, S, O) to the Lattice Semiconductor PFUMUX
(BLUT, ALUT, CO, 2).

Map the Xilinx MUXF6 (10, 11, S, O) through MUXF8 (10, I1, S, O) to the
Lattice Semiconductor LBMUX21 (DO, D1, SD, Z).

Optimal Carry-Chain Handling

In LatticeECP/EC, LatticeXP, and MachXO devices, the non-registered carry-
sum cannot bypass the transparent latch, so it incurs a TLATCH delay of
~0.9 ns. If this becomes the critical path, use a workaround, such as carry-
save or other LUT-logic operation.

The alternative is to always modify RTL to use registered carry-sum.
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Converting Xilinx RAMB16_S36_S36 to Verilog
HDL

This section illustrates the conversion with a series of figures that show
instantiations of modules in Verilog HDL. See Figure 13, Figure 14, and
Figure 15.

Figure 13: Original Instantiation - RAMB16_S36_S36

// 512x36 block RAM

RAMB16_S36_S36 braml (
-ADDRA(read_addr), .ADDRB(write_addr),
.DIB(write_data[63:32]), .DIA(32"b0),
-WEA(1"b0), -WEB(write_allow),
-CLKA(read_clock), .CLKB(write_clock),
-SSRA(1"b0), .DIPA(47b0), .SSRB(1"b0), .DIPB(4°b0),
.ENA(read_enable), .ENB(1"bl),
_.DOA(read_data[63:32])):;

// 512x36 block RAM

RAMB16_S36_S36 bram0 (
-ADDRA(read_addr), -ADDRB(write_addr),
.DIB(write_data[31:0]), -DIA(32"b0),
_WEA(1"b0), -WEB(write_allow),
.CLKA(read_clock), .CLKB(write_clock),
-SSRA(1"b0), .DIPA(4"b0), .SSRB(1"b0), .DIPB(4"b0),
-ENA(read_enable), _ENB(1"bl),
-DOA(read_data[31:0]));

Figure 14: Replacement Instantiation — RAMB16_S36_S36

// 512x36 block RAM

RAMB16_S36_S36 braml (
-ADDRA(read_addr), -ADDRB(write_addr),
.DIB(write_data[63:32]), -DIA(327b0),
WEA(1"b0), .WEB(write_allow),
.CLKA(read_clock), .CLKB(write_clock),
-SSRA(1"b0), .SSRB(1"b0),
-ENA(read_enable), _ENB(1"bl),
-DOA(read_data[63:32]));

// 512x36 block RAM

RAMB16_S36_S36 bram0 (
-ADDRA(read_addr), .ADDRB(write_addr),
_DIB(write_data[31:0]), -DIA(32"b0),
-WEA(1"b0), -WEB(write_allow),
-CLKA(read_clock), .CLKB(write_clock),
-SSRA(1"b0), .SSRB(1°b0),
-.ENA(read_enable), .ENB(1"bl),
.DOA(read_data[31:0]));
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Figure 15: Replacement Code - RAMB16_S36_S36

module RAMB16_S36_S36 (

input
input
input
input
input
input
input
input
input
input
input ENA,

input ENB,

output [31:0] DOA,
output [31:0] DOB,);

[8:0] ADDRA,
[8:0] ADDRB,
[31:0] DIB,
[31:0] DIA,
WEA,

WEB,

CLKA,

CLKB,

SSRA,

SSRB,

wire [31:0] DatalnB,
assign DatalnB[31:0]
assign DatalnA[31:0]
wire [31:0] QA;

wire [31:0] QB;
assign DOA = QA;
assign DOB QB;

// 512x16 EBR1

DatalnA;
DIB;
DIA;

RAMB16_S16_S16 Instl RAMB16_S16_S16 (

-AddressA(ADDRA),

-DatalnB(DIB[15:0]),
-WrB(WEB),
-ClockB(CLKB),
-ResetB(SSRB),
-ClockEnB(ENB),

-QB(DOB[15:01));

-WrA(WEA),
-ClockA(CLKA),
-ResetA(SSRA),
-ClockEnA(ENA),
-QA(DOA[15:0]),

// 512x16 EBR2

-AddressB(ADDRB),
.DatalnA(DIA[15:0]),

RAMB16_S16_S16 Inst2_RAMB16_S16_S16 (

-AddressA(ADDRA),

-DatalnB(DIB[31:6]),
-WrB(WEB),
.ClockB(CLKB),
-ResetB(SSRB),
.ClockEnB(ENB),
.QB(DOB[31:61));

-WrA(WEA),
.ClockA(CLKA),
-ResetA(SSRA),
-ClockEnA(ENA),
-QA(DOA[31:6]),
endmodule

-AddressB(ADDRB),
-DatalnA(DIA[31:6]),

Some considerations when converting Virtex Il to LatticeECP/EC are that you
must delete the Xilinx Verilog HDL source file from your project, insert tick
marks instead of single quotation marks with include statements, timing
considerations of MUXCY versus MUXCY_L, and overall timing of the design.
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Converting DDR Interfaces

The key trick for the interface is shifting the DQS strobe-in pin by 90 degrees
by the time it reaches the register. Unlike Virtex I, the LatticeEC and
LatticeXP devices have a DQS shift circuit built in, so remove the DQS LUT-
based logic.

Implement the interface with IPexpress to avoid errors. The DQS is generated
from DCM. You must manually shift the clock because it does not dynamically
adjust.
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Incremental and Modular
Design Methods

This chapter describes the strategies of incremental and modular design
methods. It begins with the necessity for and benefits of this design approach,
followed by instructions and guidelines for specific tasks and steps, such as
logic partitioning, device floorplanning, and simulation. A design example is
provided to illustrate the strategies in practice.

Necessity and

Benefits

In conventional FPGA designs, a hierarchical design is flattened into a single
netlist before logic synthesis and downloading, and the entire design must be
recompiled for each small change. With incremental and modular design
methods, you can keep part of your design unchanged as you make changes
elsewhere in the design.

This approach works best for large designs that can be partitioned easily into
self-contained modules on the chip. It requires good communication between
design team members to ensure successful final assembly of the partitions. It
also requires sound preliminary planning and iterative experimentation.

Figure 16 illustrates the team scenario that the modular design approach
enables.The architect creates the top-level design. The rest of the design
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team works on constituent designs that are to be merged into one cohesive
design in the final assembly stage.

Figure 16: Team Scenario
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Refinement feedback loops between team members and the architect are
required to meet the budget. During those loops, incremental changes can be
performed. The feedback loops should also accommodate incremental
verification of the design at the RTL or gate levels.

Typical Work Flow and Data Flow

Here is the typical work flow of the incremental and modular design approach:
1. Partitioning and budgeting

2. Independent implementation of each module

3. Assembly of the modules
4

Incremental change or expansion
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Figure 17 shows a typical data flow of the incremental and modular design
approach.

Figure 17: Typical Data Flow
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First, the top-level RTL is partitioned to ease optimization, lower interconnect,
and isolate critical paths. Then a top-level module budget is defined according
to floorplanning and timing constraints. Usually this can be done concurrently
with submodule synthesis, where each team member writes and simulates
HDL sources. Ideally they can deliver area utilization (reported by synthesis
tools) to the architect. The architect can then budget enough resources for
each module. Finally all implemented modules are assembled with other
external logic at the top level. The architect can control the degree of a
submodule implementation for the final assembly.

Major Advantages
Here are the major advantages of the modular design methods:

¢ You can leverage the best people for the job, no matter where they are or
in what area they are specialized.

¢ You can have multiple engineers work on a large-scale design to shorten
the design period.

¢ Your incremental changes will have low impact to the entire design.

¢ Modular design complements your field upgrade strategy. For example,
Lattice Semiconductor’s MachXO and LatticeXP devices, along with the
Lattice TransFR technology, enable you to make field upgrades with
minimal down time.

¢ You can accommodate platform-oriented products that have different
component combinations for certain markets. You can also support a
family of products with different feature sets.
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Incremental Changes

Modular design methods reduce the impact of incremental changes to earlier
revisions of a design. Figure 18 illustrates some typical incremental change
scenarios.

Figure 18: Incremental Change Scenarios
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In the original revision, each module requires a synthesis, MPAR (map, place,
and route), and verification flow, which is typically the most time-consuming
flow.

In the first revision, only module C is to be corrected, optimized, or changed.
This change should have a very low impact on other modules since only
module C requires a new synthesis, MPAR, and verification pass.

In the second revision, two modules are to be added. Given a bus-oriented
platform design, this again has a low impact on the entire design using the
modular approach.

Identify Design Candidates

Here are some guidelines on how to identify design candidates for a modular
design approach:

¢ The design should be large enough to warrant the extra effort of logic
partitioning and floorplanning.

¢ The design should have clearly defined functional partitions.
The design team must be well prepared for intense cooperation.

The architect should be familiar with the device architecture and locality of
certain resources like embedded blocks, specialized PIOs, and logic
fabric.

You can run your block modular design project with the help of ispLEVER's
Block Modular Design Wizard or entirely from the command line. Incremental
changes can be easily realized at various stages of the ispLEVER design
flow.
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Block Modular Design Flow

The BMD (Block Modular Design) Wizard in the ispLEVER software assists
distributed teams in collaborating on large FPGA designs. When used with
incremental design strategy, it is especially effective in limiting changes to a
design and minimizing impact to other modules in the design. The major
process steps in the BMD design flow in ispLEVER include:

*

Step 1. Top-Level Design Entry

A top-level model is created in HDL with constituent design modules as
black boxes, using good logic partitioning guidelines.

Step 2. Block Module Synthesis

The HDL design files for each block are synthesized. The utilization
estimates reported by synthesis guide the top-level architect to budget
enough resources for that module. Synthesis can be performed on blocks
in any order.

Step 3. Block Module Configuration

In this step, the top-level architect budgets the resources and the timing
target for each submodule. Each module is allocated a region with an
anchor point and border. In the ispLEVER design flow, the top-level
architect generates projects to archive and deploy to each team member.

Step 4. Block Module Implementation

This step implements each block and applies the top-level design
constraints. This must be completed before final assembly. The top-level
floorplan with region constraints must already be completed before this
step.

Successful implementation of blocks depends largely on the preferences
assigned for area budgeting and reservation and 1/O placement
determined in the previous step. If incorrect, steps 3 and 4 must be
repeated.

Step 5. Assembly

In this final step, all the blocks are merged into one cohesive design.

You can refer to the “Block Modular Design Step Guide” in the ispLEVER
online Help for more detailed information on each step.
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Logic Partitioning

Good results from the modular design approach begin with good logic
partitioning of your RTL design to simplify the coding, synthesis, simulation,
floorplanning, and optimization phases of the design.

Resource partitioning and budgeting is an iterative process. You should be
aware of the required resources in terms of size and performance of each
submodule. When assembling submodules that are already implemented,
you can take advantage of the post-map results to guide your resource
budgeting.

Figure 19 illustrates a partitioned FPGA design. The convention for most
FPGA tools today is to allocate a branch of the design hierarchy to each
module, along with a budget for timing and device resources. In a team
environment, each team member can establish a logical user hierarchy to the
degree appropriate for that design module.

Figure 19: Sample Partitioned FPGA Design
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Partitioning Guidelines
Commonly recommended partitioning guidelines include the following:

¢ Submodules should be synchronous with registered I/Os. Registering the
I/Os of a module isolates critical paths and helps the synthesis tool to
implement the combinatorial logic and registers in the same module.

¢ Related combinatorial and arithmetic logic should be collected in the
same module. Keeping related combinatorial terms and arithmetic in the
same design module allows logic hardware resources to be shared. It also
allows a synthesis tool to optimize the entire critical path in a single
operation.

¢ Pieces of logic with different optimization goals should be separated.
Separating critical paths from non-critical paths makes logic synthesis
more efficient. If one portion of a design module must be optimized for
size and a second portion must be optimized for speed, the two portions
should be separated into two design modules.

¢ Interconnect between modules should be minimized to avoid routing
congestion later when the design is assembled and routed.
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¢ Use separate files as a housekeeping measure to avoid unnecessary
recompiling of logic during incremental synthesis.

Directory Structure

Once logic partitioning is completed, you should create a proper directory
structure for your top-module and submodule projects. If you use the Project
Navigator and Block Modular Design Wizard tools to manage the design, the
top-level design module is created in the default project directory, and each
submodule is written to a subdirectory of the project directory. The Block
Modular Design Wizard handles your directory structure automatically as you
create the top-level and constituent submodules in the Wizard interface. In the
command-line flow, you must define a root directory that contains a
subdirectory of the root for submodule files.

Device Floorplanning

After the logic partitioning stage, you define a top-level module budget in
terms of a floorplan and timing constraints. Usually you can define this budget
when you synthesize the submodules. Each team member writes and
simulates HDL and should be far enough along to deliver area utilization
numbers reported by the synthesis tools to the architect, so they can budget
enough resources for that module.

Device floorplanning is used in two contexts in the modular design flow: in the
physical partitioning of modules and, optionally, in a module itself to achieve
timing closure. The top-level floorplan should consider both the FPGA
elements required per module and the relative data flow between modules.

Top-Level Floorplanning Procedures

Top-level floorplanning for modules is a critical task in the block module
configuration step of the ispLEVER BMD flow. It typically includes the
following procedures:

¢ Determine the best relative position of each module.

The best way to visualize this is from the RTL schematic view commonly
available from your synthesis tool, as well as a floorplan view where you
can see PIO interconnect.

¢ Lock global resources like PIOs and PLL/DLLs.

FPGAs may provide specialized I/O drivers for double data rate (DDR) or
serializer/deserializer (SERDES) interfaces at specific locations of the
device package, so you must allow for these locations in the floorplan.

¢ Allow for embedded FPGA blocks.

The logic fabric of Lattice FPGAs is commonly split by rows of embedded
blocks like memory or DSP functions. These also influence the position of
modules.

¢ Allow for irregular shapes.
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Apply prohibit or reserve regions within a module to create irregular
shapes for FPGA systems with rectangular module shapes.

¢ Allow for future upgrades.

Allow some regions for future upgrades. For products with long life cycles,
such as aerospace or medical equipment, you may want to keep some
unused resources for future field upgrades.

Taking Architectures into Account

The logic fabric of modern FPGAs is commonly split by rows of embedded
blocks like memory or DSP functions, as shown in Figure 20.

Figure 20: Modern FPGA Device Architecture (LatticeECP)
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Sometimes a segmented FPGA architecture makes it difficult to create a
floorplan with a good data flow using rectangular module shapes. To address
this problem, ispLEVER supports both resource sharing by module
overlapping and the ability to mask off overlapped regions that are reserved
for other modules.

Block-Level Implementation

Module implementation and block-level placement and routing is normally
carried out in the block module implementation step of the BMD flow. The
place-and-route tools use the floorplan established earlier to constrain the
results to a particular area of the device. In an ideal team environment, this
can be done largely in parallel. Synthesis and simulation tasks can be
performed on individual modules or as part of an integrated build.

Since the success of the top-level budget is closely related to block-level size
and timing reports generated from synthesis, these reports serve the architect
as a guide for floorplanning and timing budgeting. This bottom-up approach is
the fastest way to arrive at a good physical partition.
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Top-Level Assembly

Top-level assembly stitches submodules together according to annotated
data. Some FPGA vendors allow different degrees of annotation ability but
usually placement is the most common. Often a global reroute on assembly is
a necessary and beneficial technique to meet timing. After top-level assembly,
you can perform the final timing analysis and simulation.

Here are some troubleshooting tips:

¢ At this stage, module overlaps designed earlier may cause resource
conflicts. You may need to adjust modules to obtain a fit.

¢ The biggest side effect of a partitioned and floorplanned design often
occurs after assembly when critical paths may cross module boundaries.
This effect is usually the result of unsuccessful floorplanning of the
module itself to account for the data flow.

Simulation Scenarios

You might employ the following simulation scenarios when you use a modular
design approach.

Figure 21 shows a hierarchical view of a modular design with test bench and
alternative implementations superimposed. You can see the \top top-level
design with submodule_1 through _n. Each submodule can employ its own
test bench to verify the functionality of the RTL and timing using the gate-level
implementation. Another option is to leverage the RTL for surrounding
modules to serve as drivers or loads.

Figure 21: Simulation Scenarios
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Incremental Design Methods

The benefits of modular FPGA design become apparent when an incremental
change or expansion of a design is required. Until modular methods were
widely available from within the FPGA implementation tools, incremental
changes were largely done on the flattened FPGA design that increased the
run time for each change made. Now you can see how modular methods
extend the options for incremental changes to a design.

The changes required determine the best place to start:

*

If the model behavior must be changed, you must modify the HDL source
and then trigger a re-synthesis.

If you want to change an option after synthesis, like PAR optimization,
timing, or location constraints, you can start from the PAR stage.

Some device characteristics like memory initialization or PLL parameters
can be changed after placement and routing. This is usually done with an
ECO (engineering change order) post-processor or device editor utility.
Changes taken at this point must be carefully documented because your
physical implementation is out of synchronization with your original HDL
source and preferences.

Some of the incremental design tools available in the FPGA design flow
include the following:

*

Incremental synthesis

Incremental synthesis is available from most FPGA synthesis tools like
Precision RTL Synthesis and Synplify. They allow you to create logical
partitions and to compile and synthesize each partition independent of
other partitions. You can benefit from isolated changes, and you can
distribute the changes among other designers.

Device editor

You can use a device editor like ispLEVER's EPIC or a batch interface to
update database parameters. These sorts of editors are best employed if
you need to make a small, precise change very quickly and you are willing
to have the physical implementation differ from the source files.

ECO (engineering change order) post-processing

Examples of ECO changes include changes to I/O buffer configuration,
memory initialization, a PLL parameter, or additional routing to feed
internal signals to a PIO for the sake of troubleshooting.
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Design Example

This section provides a design example to better understand the ideas and
tools involved in incremental and modular design methods.

Logic Partitions and Data Flow

Figure 22 shows the RTL view of the entire design example. It is a data-path
intensive design with several pipelined data channels. These data channels
are multiplexed and controlled by an internal timing circuit. The schematic of
the blocks and interconnect generated from Precision RTL Synthesis is a
good way to determine logic partitions. The partitioning is illustrated with
black-, red-, and green-colored frames in the figure.

Figure 22: Logic Partitions of the Design Example
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For a modular approach, it is recommended that you adjust logic synthesis to
optimize module size and retain the hierarchy, which makes identification and
grouping of logic easier for the implementation tools.

The example demonstrates a bottom-up approach in which you have all the
RTL available as a guide to establish a module area budget. In practice, a
design architect is likely to apply both bottom-up and top-down approaches,
and budget modules with both accurate and inaccurate information.
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Figure 23 shows a block diagram of the design data flow. The data flow
influences the external PIO placement and the relative placement of the
submodules.

Figure 23: Data Flow Illustrated

Floorplan Sketch

Figure 24 shows the floorplan of the design example. In this design, most of
the PIOs are input channels that feed the No.1 black block in the center
bottom. The blue arrows illustrate the relative data flow among blocks. These
connections influence any additional floorplanning within each module. The
white empty region illustrates logic resources reserved for later expansion or
changes of the design.

Figure 24: Floorplan Sketch of the Design Example
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Flat Implementation

In this design example, all the RTL is available. You can perform a flat
implementation to gain a preliminary understanding of the relative placement
and area consumption of each logic partition. In Figure 25, the four blocks are
highlighted in white, red, and green. Blocks are placed adjacent to certain
physical resources. Their relative positions are based on connectivity and
critical paths. In this way, you can obtain an early prototype of the device
floorplan.

Figure 25: Flat Implementation of the Desigh Example
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Submodule Floorplan

Figure 26 shows the design example in the ispLEVER Block Modular Design
Wizard tool, where you can anchor and resize each module. The four module
regions are allocated in black, red, and green. The Wizard reads the top-level
design netlist, where each module is a black box.

Figure 26: Submodule Floorplan
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The BMD Wizard in ispLEVER makes the design flow much easier. As the
position of each module is anchored and the size of each module is decided,
the resources of each module are reported in real time. Once a module is
created, the design architect can archive the top- and submodule project for
team members to perform placement and routing.

The BMD Wizard in ispLEVER also eases design migration. If the target
device, package, or speed grade is updated, all the projects are updated with
this information. And the device floorplan can be quickly validated, given a
new resource set.

I/O Connectivity

At an early implementation stage, you can check the relative data flow
between the modules and the PIO connections. In this example, the
submodules are only placed, but not routed, for the sake of speed. So at the
final assembly stage, you can inspect the utilization, placement, and
connections.

Figure 27 shows the design example in the ispLEVER Design Planner with
the Package View on the left and the Floorplan View on the right. You can
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cross-probe between the external I/Os and the floorplan. The yellow flywires
show logical connections.

Figure 27: Design Example in ispLEVER Design Planner
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Critical Paths

Figure 28 shows the results of the fully placed and routed design in the
Design Planner. It illustrates a side effect of floorplanning: new critical paths
now cross submodule boundaries. The critical paths are shown as flywires
here again, running from the corners of the red modules up to the green
module in the center. Even with these critical side effects, the design is
already very close to meeting the timing constraints. With some more
floorplanning to re-orient the output driver branch of the submodules on the
left and right, you can easily exceed the goals.

Figure 28: Critical Paths
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Sample Design Implementation

Figure 29 compares the utilization, performance, and run time of the
conventional flat design methods with those of the modular design methods.
The first column is for a basic flat and unfloorplanned implementation.
Utilization is around 47 percent, with speed optimization selected with
Precision RTL synthesis. Although you get quick results with about 6 minutes
of PAR run time, the target frequency is not met. The multiplier with question
marks indicates that there are likely multiple runs to close timing. Different
placement seeds or routing delay reduction must be conducted to improve the
design implementation results.

Figure 29: Comparison of Design Implementation Results

Flat * BMD 2

Utilization
SLICE | 47% | 51%
Performance 3 fMAX (Levels) fMAX (Levels)
CLK | 1406MHz(2) |  1607MHZ(2)
PAR Runtime
5m 58s x ??? 1.1m 20s
2.3m 58s
3.3m 58s
4.1m 40s
Assembly: 16m
Table Notes:

1. PAR: Placement effort=5, Routing iterations=6
2. Synthesis: Area optimized with “firm” hierarchy
3. LPF: Frequency=160 MHz

The second column shows the implementation results, using the block
modular designh methods. Area utilization is a bit larger than that of the flat
implementation. But you have achieved better target frequency. What is more
important is that the design is now in a much better state for expansion or
updating in future revisions.

Conclusion

New modular FPGA design techniques provide major advantages to
distributed design teams. Portions of an entire design can be processed
independently, allowing multiple designers to work in parallel. The timing of
each constituent functional module is preserved because each module can be
assigned to a particular region on the device, and the tools are constrained to
use resources from that region.

To get the best results from a modular approach, quality logic partitioning and
quality floorplanning are needed to ease optimization, device usage, and
timing closure.
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Related Documentation

To supplement the information provided in this chapter, see the following
documentation for related topics and guidelines:

¢ “Block Modular Design Step Guide” in the ispLEVER software online Help
¢ FPGA Block Modular Design Tutorial
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This chapter provides general guidelines for creating register-transfer-level
(RTL) designs. It also provides syntax examples for VHDL and Verilog HDL in
Synplify and Precision RTL Synthesis.

Synthesis Design Flow and Guidelines

The largest influence you have over the performance and utilization of an
FPGA is how your logic design is expressed and synthesized. Lattice
Semiconductor recommends following the guidelines and flow described in
this section. It also recommends that you study the synthesis style topics
provided in the Precision RTL Synthesis Style Guide or the Synplicity FPGA
Synthesis Reference Manual to write the best RTL source possible.

Note

You can view the Precision RTL Synthesis Style Guide and the Synplicity FPGA
Synthesis Reference Manual by clicking the appropriate links in the “Third-Party
Manuals” topic in the ispLEVER software online Help. You must install the synthesis
tools to be able to view the manuals.

The following steps outline the general logic synthesis design flow
recommended for Lattice Semiconductor FPGAS:

1. Create a design in Verilog HDL or in VHDL. The designs can be
technology-independent or contain family-specific modules or IP cores;
however, they cannot contain instances of library elements from other
technology libraries. Refer to the Lattice Semiconductor FPGA Libraries
Manual for module names that are reserved by Lattice Semiconductor for
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each device family.

Note

You can view the FPGA Libraries Manual by clicking the appropriate link in the
ispLEVER online Help “Software User Manuals” topic.

Consider using the following HDL coding styles to obtain the best results:
Hierarchical coding style

Design partitioning

Design registering and pipelining

Avoiding gated clocks

Avoiding unintentional latches

® & 6 o oo o

State machine encoding

2. When possible, use the IPexpress tool in the ispLEVER software to create
a module. The output from IPexpress can be in EDIF, VHDL, or Verilog
HDL. Since the modules generated are optimized for Lattice
Semiconductor device architectures, they often provide speed and area
benefits over netlists produced by a synthesis tool. The output from
IPexpress (VHDL or Verilog HDL only) include an instantiation template
that can be included directly in your design.

3. Verify that the design description is correct by simulating the HDL
description with the ModelSim software or any HDL-compliant simulator.

4. Create a synthesis project by using the Precision RTL Synthesis software
or Synplify software. Consider using the following synthesis mapping
options to obtain the best results:

¢ Fan-out limit: High-fan-out signals (greater than 100) can cause large
delays and routability problems within an FPGA unless that signal can
be assigned to specialized routing resources of the device. These
“clock-spine”-type resources are ideal for clock, set/reset, or clock-
enable signals. For other signals, most synthesis mappers try to keep
the fan-out under a predefined fan-out limit.

¢ Guidelines for Precision RTL Synthesis: To limit fan-out, Precision
RTL Synthesis is guided by technology libraries that specify a
global fan-out value. The default fan-out limit is 100. Specific cells
like global buffers that are designed for high-fan-out situations
carry a larger fan-out limit. Precision RTL Synthesis allows you to
override the library default value on a per-net basis, using the
max_fanout attribute. Precision RTL Synthesis addresses fan-out
violations by splitting the net and replicating the driving cell. If
replication is not possible, Precision RTL Synthesis will add
buffers.

¢ Guidelines for Synplify: The Synplify fan-out guide option uses the
number specified as a guideline, and not as a hard limit. Synplify
first reduces fan-out by replicating the driver of the high-fan-out net
and splitting the net into segments. If replication is not possible,
Synplify buffers the signals. Buffering is expensive both in terms of
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L 4

intrinsic delay and consumption of resources, so it is not used
unless a slightly higher fan-out limit is specified.

Mapping to GSR resources: Lattice Semiconductor FPGA devices
provide a dedicated prerouted resource for a global set/reset (GSR)
that is connected to the set/reset of each flip-flop in the FPGA. The
GSR is connected, regardless of any other set or reset defined by your
design. Most synthesis mappers attempt to associate a common reset
or set of your design with the GSR resource.

¢ Guidelines for Precision RTL Synthesis: During the synthesis
process, Precision RTL Synthesis analyzes the design to detect
global set/reset signals and map to a GSR buffer. By default, if
there is a single reset used in the design, Precision RTL Synthesis
will connect that reset signal to a GSR instance, even if some flip-
flops have no reset at all.

¢ Guidelines for Synplify: Synplify creates a GSR block to access
the GSR resource for Lattice Semiconductor FPGAs if it is
appropriate for the design. By default, if there is a single reset
used in the design, Synplify will connect that reset signal to a GSR
instance, even if some flip-flops have no reset at all. Usually, flip-
flops without set or reset can be safely initialized because the
reset is only used when the device is turned on. If this is not the
case, you must turn off the Force GSR Usage option. When this
option is turned off, Synplify requires that all flip-flops have resets
and that the resets be the same before it uses GSR.

Disable 1/0 mapping: In some design scenarios, such as incremental
or block modular design, you may wish to suppress the addition of /O
buffers to the EDIF output for your project. Synthesis mappers
typically provide the option to override the 1/O technology cell targeted.

¢ Guidelines for Precision RTL Synthesis: The Add IO Pads option
controls whether 1/O buffers are added to the output EDIF netlist.
The Pad Type port constraint directs what 10 pad is applied.

¢ Guidelines for Synplify: The Synplify Disable 1/O Insertion option
controls whether 1/O buffers are added to the output EDIF netlist.

5. Perform logic synthesis of the design description, using Precision RTL
Synthesis or Synplify to meet a desired area and timing target. If you are
within 5 to 10 percent of your desired goal, you can map, place, and route
the design. If not, return the design with additional constraints, recode, or
both until you achieve the desired results. You should consider using the
following synthesis optimizations to obtain the best results:

L 4

L 4

Timing constraints: These constraints should include a period or
frequency target for all clocks, multi-cycle relationships, false paths,
and /O timing.

Area versus timing optimization: You can set this option globally or on
a module-by-module basis, if this approach can help achieve timing
closure by reducing signal congestion.

State machine encoding: You can set this option on a machine-by-
machine basis to influence timing or area results.
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Reports Produced by Synthesis

¢ Guidelines for Precision RTL Synthesis: Precision RTL Synthesis
provides area, timing, and timing violation reports based on your
constraints. Schematic views are available to examine synthesis
results. If you know the delays outside your chip for inputs and
outputs, set them with input or output delay port constraints.

¢ Guidelines for Synplify: Basic area and timing analysis reports are
produced by Synplify. For more complete review and analysis, use
Synplify HDL Analyst to examine the RTL or technology
schematics and critical paths. If you know the delays outside your
chip for inputs and outputs, set them with SCOPE or the
define_input_delay and define_output_delay timing constraints.

6. Complete an iteration of the map, placement, and routing design flow
through ispLEVER. Examine the static timing analysis results. The output
of the TRACE program reports delay through one or more critical delay
paths.

¢ Guidelines for Synplify: If you do not meet your timing goals, you can
resynthesize your design with code changes or add or subtract route
delay differences using the —route option with the define_input_delay
and define_output_delay timing constraints defined earlier. To have
Synplify restructure your design to speed up paths, add the —improve
option to the timing constraints.

7. Using timing closure techniques, use ispLEVER to map, place, and route
the design.

8. Verify that the post-route, gate-level design description is correct by
simulating the HDL output from ispLEVER with the ModelSim software or
any HDL-compliant simulator.

Reports Produced by Synthesis

Report files created by the synthesis phase provide essential information for
you to understand the eventual timing and device utilization of the design.

Both Precision RTL Synthesis and Synplify create a resource usage report
that lists the number of each type of cell used, including the number of look-up
tables, registers, memories, and DSP blocks.

Timing reports created by Precision RTL Synthesis and Synplify typically
show all instances and connections in the design that are near the critical
path. “Near” means within one “level” of the most critical path. The reported
instances are sorted by the arrival time at their pins, with the path ends at the
top of the report and the path beginnings at the bottom. Each connection is
listed with the delay to the connection and the length of the longest path
passing through the connection.

Typically, path ends are inputs to flip-flops or primary output cells. Path
beginnings are flip-flop outputs and primary input cells. You can trace paths
through the report by matching net names on connections. Timing reports by
synthesis are an estimate. The actual timing of the design depends heavily on
placement and routing, the device, and speed grade.
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Related Documentation

To obtain a better estimate of the logic delays, run the Map TRACE Report
process in the Project Navigator (trce) on the mapped design. After this step,
go through one iteration of Place & Route Design process (PAR) and the
Place & Route TRACE Report process (trce) to obtain an estimate of the
routing delays and the critical paths in the design. The final frequency of the
design depends on a number of factors: the number of logic levels in the
design, the number of connections and number of nets in the design, the
packing factor (also number of inputs to a PFU), utilization of tristate buffers,
number of 1/0s (and number of tristatable I/Os and the number of controls),
the device size, and speed grade.

Related Documentation

To supplement the information provided in this chapter, see the following
documentation for related topics and guidelines:

The ispLEVER online Help
TN21056 - LatticeECP/EC and LatticeXP syslO Usage Guide

L 4

Precision RTL Synthesis Style Guide
Synplicity FPGA Synthesis Reference Manual
FPGA Libraries Manual
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Coding style has a considerable impact on how an FPGA design is
implemented and ultimately how it performs. Although many popular
synthesis tools have significantly improved optimization algorithms for
FPGAs, it is still the designer’s responsibility to generate HDL code that
guides the synthesis tools and achieves the best result for a given
architecture. This chapter provides VHDL and Verilog HDL design guidelines
for both novice and experienced designers.

The synthesis software itself has a significant effect on implementation. The
style of the code that you employ in one synthesis tool for one outcome can
vary greatly from that in another tool. Synthesis tools optimize HDL code for
logic utilization and performance, but they do so in a way that might not be
close to your intended design. Knowing the effects of these synthesis tools, as
well as knowing the most efficient HDL code for your design, are both
important.

This chapter also shows how to employ the “linting” technology of the HDL
Explorer software to produce higher quality code. This analysis tool detects
common design rule faults that can cause mismatches between pre-synthesis
and post-synthesis behavior.

FPGA Design Guide 57



HDL Synthesis Coding Guidelines General HDL Practices

General HDL Practices

The following recommendations for common HDL coding styles will help you
generate robust and reliable FPGA designs.

Hierarchical Coding

An HDL design can either be synthesized as a flat module or as many small
hierarchical modules. Each methodology has its advantages and
disadvantages. Since designs in smaller blocks are easier to keep track of,
applying a hierarchical structure to large and complex FPGA designs is
preferable. Hierarchical coding methodology allows a group of engineers to
work on one design at the same time. It speeds up design compilation, makes
changing the implementation of key blocks easier, and reduces the design
period by allowing the re-use of design modules for current and future
designs. In addition, it produces designs that are easier to understand.

However, if the design mapping into the FPGA is not optimal across
hierarchical boundaries, it leads to lower device utilization and design
performance. You can overcome this disadvantage with careful design
consideration when choosing the design hierarchy.

Here are some tips for building hierarchical structures:

¢ The top level should only contain instantiation statements to call all major
blocks.

¢ Any /O instantiations should be at the top level.

¢ Any signals going into or out of the devices should be declared as input,
output, or bidirectional pins at the top level.
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Design Partitioning

By effectively partitioning the design, you can reduce overall run time and
improve synthesis results. Here are some recommendations for design
partitioning. In the following descriptions, sub-blocks and blocks refer to either
Verilog HDL modules or VHDL design units.

Maintain Synchronous Sub-Blocks by Registering All
Outputs

Arrange the design boundary so that the outputs in each block are registered.
Registering outputs helps the synthesis tool implement the combinatorial logic
and registers in the same logic block. Registering outputs also makes the
application of timing constraints easier since it eliminates possible problems
with logic optimization across design boundaries. Using a single clock for
each synchronous block significantly reduces the timing consideration in the
block. It leaves the adjustment of the clock relationships of the whole design
at the top level of the hierarchy. Figure 30 shows an example of synchronous
blocks with registered outputs.

Figure 30: Synchronous Blocks with Registered Outputs

.-‘1\8 > B 8 C >
ol

SR NIEN:

Keep Related Logic Together in the Same Block

Keeping related logic and sharable resources in the same block allows the
sharing of common combinatorial terms and arithmetic functions within the
block. It also allows the synthesis tools to optimize the entire critical path in a
single operation. Since synthesis tools can only effectively handle
optimization of certain amounts of logic, optimization of critical paths pending
across the boundaries may not be optimal. The example in Figure 31 merges
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sharable resource in the same block.

Figure 31: Merging Sharable Resource in the Same Block
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Separate Logic with Different Optimization Goals

Separating critical paths from non-critical paths may achieve efficient
synthesis results. At the beginning of the project, you should consider the
design in terms of performance requirements and resource requirements. If a
block contains two portions, one that needs to be optimized for area and a
second that needs to be optimized for speed, they should be separated into
two blocks. By doing this, you can apply different optimization strategies for
each module without the two modules being limited by one another.

Keep Logic with the Same Relaxation Constraints in the
Same Block

When a portion of the design does not require high performance, you can
apply this portion with relaxed timing constraints, such as Multicycle, to
achieve high utilization of a device area. Relaxation constraints help to reduce
overall run time. They can also help to efficiently save resources, which can
be used on critical paths. Figure 32 shows an example of grouping logic with
the same relaxation constraint in one block.

Figure 32: Logic with the Same Relaxation Constraint
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Keep Instantiated Code in Separate Blocks

Leave the RAM block in the hierarchy in a separate block, as shown in
Figure 33, to enable easy swapping between the RAM behavioral code for
simulation and the code for technology instantiation. In addition, this coding
style facilitates the integration of the ispLEVER IPexpress tool into the
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synthesis process.

Figure 33: Separate RAM Block
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Keep the Number of FPGA Gates at 30 to 80 PFU Per Block

This range varies on the basis of the computer configuration, the time
required to complete each optimization run, and the targeted FPGA routing
resources. Although a smaller block methodology allows more control, it may
not produce the most efficient design, since it does not provide the synthesis
tool enough logic to apply “resource sharing” algorithms. On the other hand,
having a large number of gates per block gives the synthesis tool too much to
work on and causes changes that affect more logic than necessary in an
incremental or multi-block design flow.

Design Registering

Pipelining can improve design performance by restructuring a long data path
with several levels of logic and breaking it up over multiple clock cycles. This
method allows a faster clock cycle by relaxing the clock-to-output and setup
time requirements between the registers. It is usually an advantageous
structure for creating faster data paths in register-rich FPGA devices.
Knowledge of the FPGA's architecture helps in planning pipelines at the
beginning of the design cycle. When the pipelining technique is applied,
special care must be taken for the rest of the design to account for the
additional data path latency. The following illustrates the same data path
before (Figure 34) and after pipelining (Figure 35).

Figure 34: Before Pipelining

— I b ma—
FF1 | _, Comb. | _ ) Comb. | _ J Comb. FF1
Function Function Function
¢ b
Slow Clock
Figure 35: After Pipelining
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Before pipelining, the clock speed is determined by the clock-to-out time of
the source register, the logic delay through four levels of combinatorial logic,
the associated routing delays, and the setup time of the destination register.
After pipelining is applied, the clock speed is significantly improved by
reducing the delay of four logic levels to one logic level and the associated
routing delays, even though the rest of the timing requirements remain the
same. Check the placement and routing timing report to ensure that the
pipelined design gives the desired performance.

Comparing If-Then-Else and Case Statements

Case and if-then-else statements are common for sequential logic in HDL
designs. The if-then-else statement generally generates priority-encoded
logic, whereas the case statement implements balanced logic. An if-then-else
statement can contain a set of different expressions, but a case statement is
evaluated against a common controlling expression. Both statements give the
same functional implementation if the decode conditions are mutually
exclusive, as shown in Figure 36.

Figure 36: Case and If-Then-Else Statements with Mutually Exclusive Conditions

Case Statement

If-Then-Else

process (s, X, Y, 2)

process (s, X, Y, Z)

begin begin

01 <= "07; 01 <= "07;

02 <= "0"; 02 <= "0";

03 <= "0"; 03 <= "0";

case (s) is
when 00" => 01 <= X; if s = "00" then 01 <= x;
when "01" => 02 <= y; elsif s = "01" then 02 <= y;
when 10" => 03 <= z; elsif s = "10" then 03 <= z;
when others => 01 <= "0"; 02 <= "0"; else 01 <= "0"; 02 <= "0"; 03 <= "0";

03 <= "0"; end if;
end case;

end process;

end process;
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However, the use of the if-then-else construct could make the design more
complex than necessary, because extra logic is needed to build a priority tree.
Consider the examples in Figure 37.

Figure 37: If-Then-Else Statement With Lower Logic Requirement

Complex O3 Equations Simplified O3 Equations
process (sl1l, s2, s3, X, VY, 2) process (sl1l, s2, s3, X, VY, 2)
begin begin

01 <= "07; 01 <= "07;

02 <= "0"; 02 <= "0%;

03 <= "0"; 03 <= "0%;

if s1 = "1" then 01 <= Xx; if s1 = "1" then 01 <= Xx;

elsif s2 = "1° then 02 <= vy; end if;

elsif s3 = "1" then 03 <= z; if s2 = "1" then 02 <= y;

end if; end if;

if s3 = "1" then 03 <= z;

end process; end if;

end process;

If the decode conditions are not mutually exclusive, the if-then-else construct
causes the last output to be dependent on all the control signals. The
equation for O3 output in example A is:

03 <= z and (s3) and (not (sl and s2));

If the same code can be written as in example B, most of synthesis tools
remove the priority tree and decode the output as:

03 <= z and s3;

This reduces the logic requirement for the state machine decoder. If each
output is indeed dependent of all of the inputs, it is better to use a case
statement, since case statements provide equal branches for each output.

Avoiding Unintentional Latches

Synthesis tools infer latches from incomplete conditional expressions, such as
an if-then-else statement without an else clause. To avoid unintentional
latches, specify all conditions explicitly or specify a default assignment.
Otherwise, latches are inserted into the resulting RTL code, requiring
additional resources in the device or introducing combinatorial feedback loops
that create asynchronous timing problems. Unintentional latches can be
avoided by using clocked registers or by employing any of the following
coding techniques:

¢ Assign a default value at the beginning of a process.
¢ Assign outputs for all input conditions.
¢ Use else (when others) as the final clause.

Another way to avoid unintentional latches is to check the synthesis tool
outputs. Most of the synthesis tools give warnings whenever there are latches
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in the design. Checking the warning list after synthesis saves a tremendous
amount of effort in trying to determine why a design is so large later in the
place-and-route stage.

Register Control Signals

The general-purpose latches and flip-flops in the PFU are used in a variety of
configurations, depending on the device family.

For example, in the LatticeEC family of devices, you can apply clock, clock-
enable, and LSR control to the registers on a slice basis. Each slice contains
two LUT4 lookup tables feeding two registers (programmed to be in flip-flop or
latch mode) and some associated logic that allows the LUTs to be combined
to perform functions, such as LUT5, LUT6, LUT7, and LUT8. Control logic
performs set/reset functions (programmable as synchronous/asynchronous),
clock-select, chip-select, and wider RAM/ROM functions.

When writing design codes in HDL, keep the architecture in mind to avoid
wasting resources in the device. Here are several points for consideration:

¢ If the register number is not a multiple of 2 or 4 (dependent on device
family), try to code the registers in such a way that all registers share the
same clock, and in a way that all registers share the same control signals.

¢ Lattice Semiconductor FPGA devices have multiple dedicated clock
enable signals per PFU. Try to code the asynchronous clocks as clock
enables, so that PFU clock signals can be released to use global low-
skew clocks.

¢ Try to code the registers with local synchronous set/reset and global
asynchronous set/reset.

For more detailed architecture information, refer to the Lattice Semiconductor
FPGA data sheets.
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Clock Enable

Figure 38 shows an example of gated clocking. Gating clocks is not
encouraged in digital designs because it may cause timing issues, such as
unexpected clock skews. The structure of the PFU makes the gating clock
even more undesirable since it uses up all the clock resources in one PFU
and sometimes wastes the flip-flop and latch resources in the PFU. By using
the clock enable in the PFU, you can achieve the same functionality without
worrying about timing issues, since only one signal is controlling the clock.
Since only one clock is used in the PFU, all related logic can be implemented
in one block to achieve better performance. Figure 39 shows the design using
the clock enable signal.

Figure 38: Asynchronous: Gated Clocking
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Figure 39: Synchronous: Clock Enabling
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Samples of the VHDL and Verilog HDL code for clock enable are shown in
Figure 40.

Figure 40: Clock Enable Coding

VHDL Verilog HDL
Clock_Enable: process (clk, clken, din) always @(posedge clk)
begin qout <= clken ? din : qout;

if (clk"event and clk = "1%) then
if (clken = "1%) then
qout <= din;
end if;
end if;
end process Clock_Enable;

The following are guidelines for coding the clock enable in Lattice
Semiconductor FPGAs:

¢ Clock enable is only supported by flip-flops, not latches.

¢ Flip-flop pairs inside a slice block share the same clock enable.
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¢ Allflip-flops have a positive clock enable input.

¢ The clock-enable input has higher priority than the synchronous set/reset
by default. However, you can program the synchronous LSR to have a
higher priority than the clock enable by instantiating the library element in
the source code. For example, the library element FD1P3IX is a flip-flop
that allows the synchronous clear to override the clock enable. You can
also specify the priority of generic coding by setting the priority of the
control signals differently.

The examples in Figure 41 and Figure 42 demonstrate coding methodologies
to help the synthesis tools set the priorities of the clock enable and the

synchronous LSR.

Figure 41: Clock Enable over Synchronous LSR

VHDL

Verilog HDL

COUNT8: process (CLK, GRST)

always @(posedge CLK or posedge GRST)

begin begin
if (GRST = "17) then i (GRST)
cnt <= (others => "0%); cnt = 47b0;
elsif (CLK"event and CLK = "1%) then else if (CKEN)
if (CKEN = "1") then cnt = cnt + 1%bl;
cnt <= cnt + 1; else it (LRST)
elsift (LRST = "1") then cnt = 47b0;
cnt <= (others => "0%); end
endif;
endif;
end process COUNT8;
Figure 42: Synchronous LSR over Clock Enable
VHDL Verilog HDL

COUNT8: process (CLK, GRST)
begin
if (GRST = "1%) then
cnt <= (others => "0%);
elsif (CLK"event and CLK = "1%) then
if (LRST = "1") then
cnt <= (others => "07);
elsif (CKEN = "1%) then
cnt <= cnt + 1;
endif;
endif;
end process COUNT8;

always @(posedge CLK or posedge GRST)
begin
if (GRST)
cnt = 4°b0;
else if (LRST)
cnt = 47b0;
else it (CKEN)
cnt = cnt + 1°bl;
end
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Local Asynchronous and Synchronous Sets

and Resets

Lattice Semiconductor FPGAs contain two types of set/reset functions: global
(GSR) and local (LSR). The GSR signal is asynchronous and is used to
initialize all registers during configuration. It can be activated either by an
external dedicated pin or from the internal logic after configuration. The local
set/reset signal may be synchronous or asynchronous. GSR is pulsed at
power-up to set or reset the registers, depending on the configuration of the
device. Since the GSR signal has dedicated routing resources that connect to
the set and reset pin of the flip-flops, it saves general-purpose routing and
buffering resources and improves overall performance. If asynchronous reset
is used in the design, use the GSR for this function, if possible. The reset
signal can be forced to be GSR by the instantiation library element. Synthesis
tools automatically infer GSR if all registers in the design are asynchronously
set or reset by the same wire.

When only one reset exists, always infer GSR. When more than one reset
exists, pick the one that makes most sense to use as GSR. Disable the GSR
for other resets.

Alternatively, you can manually instantiate GSRs. For multiple NGO flows,
you must instantiate a GSR for every synthesis group. The ispLEVER
mapping process removes redundant GSRs.
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Figure 43 show the correct syntax for instantiating GSR in the VHDL and

Verilog HDL codes.

Figure 43: Clock Enable Coding

VHDL

Verilog HDL

library ieee;
use ieee.std_logic_1164_all;
use ieee.std_logic_unsigned.all

entity gsr_test is

port (rst, clk: in std_logic;

cntout : out std_logic_vector(1l downto 0));
end gsr_test;

architecture behave of gsr_test is
signal cnt : std_logic_vector(1l downto 0);
begin

ul: GSR port map (gsr => rst);

process (clk, rst)
begin
if rst = "1" then
cnt <= "00";
elsif rising_edge (clk) then
cnt <= cnt + 1;
end if;
end process;

cntout <= cnt;
end behave;

module gsr_test (clk, rst, cntout);
input clk, rst;

output[1:0] cntout;

reg[1:0] cnt;

GSR ul (-GSR(rst));

always @(posedge clk or negedge rst)

begin
if (Irst)
cnt = 2"b0;
else

cnt = cnt + 1;
end

assign cntout = cnt;
endmodule

Multiplexers

The flexible configurations of LUTs within slice blocks can realize any 4-, 5-,
6-, 7-, or 8-input logic function like 2-to-1, 3-to-1, 4-to-1, or 5-to-1 multiplexers.

You can efficiently create larger multiplexers by programming multiple 4-input
LUTs. Synthesis tools can automatically infer Lattice Semiconductor FPGA

optimized multiplexer library elements according to the behavioral description
in the HDL source code. This provides the flexibility to the mapper and place-
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and-route tools to configure the LUT mode and connections in an optimal
fashion.

Figure 44: 16:1 Multiplexer

process (sel, din)

begin
if (sel "'0000'") then muxout <= din(0);
elsif (sel "0001") then muxout <= din(1);

elsif (sel
elsift (sel
elsift (sel

""0010'") then muxout <= din(2);
"0011") then muxout <= din(3);
""0100') then muxout <= din(4);

elsif (sel ""0101"™) then muxout <= din(5);
elsif (sel ""0110'") then muxout <= din(6);
elsif (sel "0111'") then muxout <= din(7);

elsif (sel
elsift (sel
elsift (sel

"*1000') then muxout <= din(8);
"1001") then muxout <= din(9);
"1010") then muxout <= din(10);

elsif (sel "1011"™) then muxout <= din(1l);
elsif (sel "1100'") then muxout <= din(12);
elsif (sel "1101") then muxout <= din(13);

elsif (sel ""1110") then muxout <= din(14);
elsift (sel "1111") then muxout <= din(15);
else muxout <= "0°;
end if;

end process;

Finite State Machine Guidelines

A finite state machine is a hardware component that advances from the
current state to the next state at the clock edge. This section discusses
methods and strategies for state machine encoding.

State Encoding Methods for State Machines

There are several ways to encode a state machine, including binary encoding,
gray-code encoding, and one-hot encoding. State machines with binary or
gray-code encoded states have minimal numbers of flip-flops and wide
combinatorial functions. However, most FPGAs have many flip-flops and
relatively narrow combinatorial function generators. Binary or gray-code
encoding schemes can result in inefficient implementation in terms of speed
and density for FPGAs. On the other hand, a one-hot encoded state machine
represents each state with one flip-flop. As a result, it decreases the width of
combinatorial logic, which matches well with FPGA architectures. For large
and complex state machines, one-hot encoding usually is the preferable
method for FPGA architectures. For small state machines, binary encoding or
gray-code encoding may be more efficient.

There are many ways to ensure the state machine encoding scheme for a
design. You can hard code the states in the source code by specifying a
numerical value for each state. This approach ensures the correct encoding of
the state machine but is more restrictive in the coding style. The enumerated
coding style leaves the flexibility of state machine encoding to the synthesis
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tools. Most synthesis tools allow you to define encoding styles either through
attributes in the source code or through the tool’s user interface. Each
synthesis tool has its own synthesis attributes and syntax for choosing the
encoding styles. Refer to your synthesis tool’s documentation for details about
attributes syntax and values.

The following syntax defines an enumeration type in VHDL.:

type type_name is (statel_name,state2 name,...... ,StateN_name)

Here is a VHDL example of enumeration states:

type STATE_TYPE is (S0,S1,S2,S3,54);
signal CURRENT_STATE, NEXT STATE : STATE_TYPE;

The following is an example of Synplify VHDL synthesis attributes:

attribute syn_encoding : string;

attribute syn_encoding of <signal_name> : type is "value ";
-- The syn_encoding attribute has 4 values:

-- sequential, onehot, gray and safe.

The following is an example of Precision RTL Synthesis VHDL synthesis
attributes:

-— Declare TYPE_ENCODING_STYLE attribute

-- Not needed if the exemplar_1164 package is used

type encoding_style is (BINARY, ONEHOT, GRAY, RANDOM, AUTO);
attribute TYPE_ENCODING_STYLE : encoding style;

attribute TYPE_ENCODING_STYLE of <typename> : type is ONEHOT;

In Verilog HDL, you must provide explicit state values for states by using a bit
pattern, such as 3'b001, or by defining a parameter and using it as the case
item. The latter method is preferable. The following is an example using
parameter for state values:

Parameter statel = 2"hl, state2 = 2"h2;
current_state = state2; setting current state to 2"h2

The attributes in the source code override the default encoding style assigned
during synthesis. Since Verilog HDL does not have predefined attributes for
synthesis, attributes are usually attached to the appropriate objects in the
source code as comments. The attributes and their values are case-sensitive
and usually appear in lower case. The following example uses attributes in
the Synplify Verilog HDL source code to specify state machine encoding style:

Reg[2:0] state; /* synthesis syn_encoding = "value" */;
// The syn_encoding attribute has 4 values:
// sequential, onehot, gray and safe.

In Precision RTL Synthesis, it is also recommended that you define a Verilog
HDL parameter and use it as the case item. The setup_design_encoding
command in Precision RTL Synthesis is used to specify the encoding style.

In general, synthesis tools select the optimal encoding style that takes into
account the target device architecture and size of the decode logic. You can
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always apply synthesis attributes to override the default encoding style if
necessary.

Coding Styles for State Machines

As mentioned earlier, the preferred scheme for FPGA architectures is one-hot
encoding. This section discusses some common issues that you may
encounter when constructing state machines, such as initialization and state
coverage and special case statements in Verilog HDL.

General State Machine Description

Generally, there are two approaches to describing a state machine. One
approach is to use one process or block to handle both state transitions and
state outputs. The other is to separate the state transition and the state
outputs into two different processes or blocks. The latter approach is more
straightforward, because it separates the synchronous state registers from
the decoding logic that is used in the computation of the next state and the
outputs. This not only makes the code easier to read and modify but makes
the documentation more efficient. If the outputs of the state machine are
combinatorial signals, the second approach is almost always necessary
because it prevents the accidental registering of the state machine outputs.

The examples in Figure 45 and Figure 46 describe a simple state machine in
VHDL and Verilog HDL. In the VHDL example, a sequential process is

FPGA Design Guide

71



HDL Synthesis Coding Guidelines Finite State Machine Guidelines

separated from the combinatorial process. In the Verilog HDL code, two
always blocks are used to describe the state machine in a similar way.

Figure 45: VHDL Example for State Machine

architecture lattice_fpga of dram_refresh is
type state_typ is (sO0, sl1l, s2, s3, s4);
signal present_state, next_state : state_typ;

begin
-- process to update the present state
registers: process (clk, reset)
begin
if (reset = "1%) then
present_state <= s0O;
elsif clk"event and clk="1" then
present_state <= next_state;
end if;
end process registers;

-- process to calculate the next state & outputs
transitions: process (present_state, refresh, cs)
begin
ras <= "X"; cas <= "X"; ready <= "X";
case present_state is
when sO =>
if (refresh = "1%) then
next_state <= s3;
ras <= "1"; cas <= "0"; ready <= "0";
elsif (cs = "1") then
next_state <= s1;
ras <= "0"; cas <= "1"; ready <= "0";
else
next_state <= s0O;
ras <= "0"; cas <= "1"; ready <= "17;
end if;
when s1 =>
next_state <= s2;
ras <= "0"; cas <= "0"; ready <= "0";
when s2 =>
if (cs = "0") then
next_state <= sO;
ras <= "1"; cas <= "1"; ready <= "17;
else
next_state <= s2;
ras <= "0"; cas <= "0"; ready <= "0";
end if;
when s3 =>
next_state <= s4;
ras <= "1"; cas <= "0"; ready <= "0";
when s4 =>
next_state <= sO;
ras <= "0"; cas <= "0"; ready <= "0";
when others =>
next_state <= sO;
ras <= "0"; cas <= "0"; ready <= "0";
end case;
end process transitions;
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Figure 46: Verilog HDL Example for State Machine

parameter sO = 0, s1 =1, s2 = 2, s3 = 3, s4 = 4;

reg[2:0] present_state, next_state;
reg ras, cas, ready;

// always block to update the present_state
always @(posedge clk or posedge reset)
begin

if (reset) present _state = sO;

else present_state = next_state;
end

// always block to calculate the next state & outputs
always @ (present_state or refresh or cs)
begin
next_state = sO;
ras = 1"bX; cas = 1"bX; ready = 1"bX;
case (present_state)
sO : If (refresh) begin
next_state = s3;
ras = 1"b1l; cas = 1"b0; ready = 17°b0;
end
else if (cs) begin
next_state = sl;
ras = 1"b0; cas = 1"bl; ready = 17b0;
end
else begin
next_state = sO;
ras = 1"b0; cas = 1"bl; ready = 1"b1l;
end
sl : begin
next_state = s2;
ras = 1°b0; cas = 1"b0; ready = 17b0;
end
s2 : if (~cs) begin
next_state = sO;
ras = 1"bl1l; cas = 1"bl; ready = 1°b1l;
end
else begin
next_state = s2;
ras = 1"b0; cas = 1"b0; ready = 1"b0;
end
s3 : begin
next_state = s4;
ras = 1"b1l; cas = 1"b0; ready = 17°b0;
end
s4 : begin
next_state = sO;
ras = 1"b0; cas = 1"b0; ready = 17b0;
end
default : begin
next_state = sO;
ras = 1"b0; cas = 1"b0; ready = 1"b0;
end
endcase
end
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Initialization and Default State

A state machine must be initialized to a valid state after power-up. You can
initialize it at the device level during power-up or by including a reset
operation to bring it to a known state. For all Lattice Semiconductor FPGA
devices, the global set/reset (GSR) is pulsed at power-up, regardless of the
function defined in the design source code. In the examples in Figure 45 and
Figure 46, an asynchronous reset can be used to bring the state machine to a
valid initialization state.

In the same manner, a state machine should have a default state to ensure
that the state machine does not go into an invalid state if not all the possible
combinations are clearly defined in the design source code. VHDL and Verilog
HDL have different syntax for default state declaration. In VHDL, if a case
statement is used to construct a state machine, “when others” should be used
as the last statement before the end of the statement. If an if-then-else
statement is used, “else” should be the last assignment for the state machine.
In Verilog HDL, use “default” as the last assignment for a case statement, and

use “else” for the if-then-else statement. See the examples in Figure 47.

Figure 47: Initialization and Default State Example

When Others in VHDL

Default Clause in Verilog HDL

architecture lattice_fpga of FSM1 is
type state_typ is

(deflt, idle, read, write);
signal next_state : state_typ;

begin
process (clk, rst)
begin
if (rst = "1%) then

next_state <= idle; dout <= "0";
elsift (clk"event and clk = *"1%) then

case next_state is
when idle =>
next_state <= read;
dout <= din(0);
when read =>
next_state <= write;
dout <= din(1);
when write =>
next_state <= idle;
dout <= din(2);
when others =>
next_state <= deflt;
dout <= "0";
end case;
end if;
end process;

// Define state labels explicitly
parameter deflt = 2"bxx;

parameter idle = 2"b00;
parameter read = 2"b01;
parameter write = 2°b10;

reg[1:0] next_state;
reg dout;

always @(posedge clk or posedge rst)
if (rst) begin
next_state <= idle;
dout <= 17b0;
end
else begin
case (next_state)
idle: begin
next _state <= read;
dout <= din[0];
end
read: begin
next_state <= write;
dout <= din[1];
end
write: begin
next_state <= idle;
dout <= din[2];
end
default: begin
next _state <= deflt;
dout <= 1"bO;
end
end
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Full Case and Parallel Case Specification in Verilog HDL

Verilog HDL has additional attributes for defining the default states without
writing it specifically in the code. You can use “full_case” to achieve the same
performance as “default.” Figure 48 shows the attribute usage for Precision
RTL Synthesis and Synplify.

Figure 48: full_case versus default in Verilog HDL

Using full_case

Using default

case (current_state)
/* synthesis full_case
// pragma full_case
2°b00 : next_state
2"b01 : next_state
2"bl1l : next_state
endcase

case (current_state)

*/ 2"b00 : next_state = 2"b01;

2"b01 : next_state = 2"bll;
2"b01; 2"b11 : next_state = 2°b00;
2"b11; default : next _state = 2"bxx;
2"b00; endcase

The “parallel_case” attribute makes sure that all the statements in a case
statement are mutually exclusive. It is used to inform the synthesis tools that
only one case can be true at a time. Figure 49 shows the attribute usage
when used in conjunction with the “full_case” attribute.

Figure 49: parallel_case in Verilog HDL

case (current_state)
/* synthesis full_case parallel_case */
// pragma full_case parallel_case

2"b00 : next_state = 2"b01;
2"b01 : next_state = 2"bl1l;
2"bl1l : next_state = 2"b00;

endcase

HDL Coding for Distributed and Block Memory

Although an RTL description of RAM is portable and the coding is
straightforward, it is not recommended, because the structure of RAM blocks
in every architecture is unique. Synthesis tools are not optimized to handle
RAM implementation, and so they generate inefficient netlists for device
fitting. For Lattice Semiconductor FPGA devices, generate RAM blocks
through IPexpress in ispLEVER.

When implementing large memories, use the embedded block RAM (EBR)
components found in every Lattice Semiconductor FPGA device. When
implementing small memories, use the resources in the PFU. Using
ispLEVER IPexpress, you can target a memory module to the PFU-based
distributed memory or to the sysMEM EBR block.

Lattice Semiconductor FPGAs support many different memory types,
including synchronous dual-port RAM, synchronous single-port RAM,
synchronous FIFO, and synchronous ROM. For more information on
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supported memory types per FPGA architecture, consult the Lattice
Semiconductor FPGA data sheets.

Synthesis Control of High-Fan-Out Nets

Lattice Semiconductor FPGA device architectures are designed to handle
high signal fan-outs. When you use clock resources, there are no hindrances
on fan-outs. However, synthesis tools tend to replicate logic to reduce fan-out
during logic synthesis. For example, if the code implies clock enable and is
synthesized with speed constraints, the synthesis tool might replicate the
clock-enable logic. This kind of logic replication occupies more resources in
the devices and makes performance checking more difficult. Control the logic
replication in the synthesis process by using attributes for a high-fan-out limit.
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Bidirectional Buffers

You can instantiate bidirectional buffers in the same manner as regular I/O
buffers or infer them from the HDL source, as shown in Figure 50 and
Figure 51.

Figure 50: Verilog HDL RTL for Bidirectional Buffer

module bireg (datain, clk, en_o, Qol, Qio);

input [7:0] datain;
input clk, en_o;
output [7:0] Qo1l;
inout [7:0] Qio;
reg [7:0] Q_reg;
reg [7:0] Qio_int;
wire [7:0] Qo1;
wire [7:0] Qio;
always @(posedge clk)
begin

Q_reg = datain;
end
always @(en_o or Q_reg)
begin

if (en_o)

Qio_int <= Q_reg;
else
Qio_int <= 8"hz;
end
assign Qio
assign Qol
endmodule

Qio_int;
Qio;
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Bidirectional Buffers

Figure 51: VHDL RTL for Bidirectional Buffer

library ieee;

use ieee.std_logic_1164_all;

entity bireg is port (

datain : in std_logic_vector (7 downto 0);

clk,en_o : in std_logic;

Qol : out std_logic_vector (7 downto 0);
Qio : inout std_logic_vector (7 downto 0));

end bireg;

architecture beh of bireg is

signal Q_reg
signal Qio_int :
begin

: std_logic_vector (7 downto 0);
std_logic_vector (7 downto 0);

process(clk,datain) begin

if clk"event and clk = "1" then

Q_reg <= datain;

end if;
end process;

process(Q_reg,en_

ifeno="1"
Qio_int <=
else
Qio_int <=
end if;
end process;
Qio <= Qio_int;
Qol <= Qio;
end;

0) begin
then
Q_reg ;

(others=>"7%);
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Coding to Avoid Simulation/Synthesis Mismatches

Certain coding styles can lead to pre-synthesis simulation that differs from
post-synthesis gate level simulations. This problem is caused by HDL models
that contain information that cannot be passed to the synthesis tool because
of style or pragmas that are ignored by a simulator. Many error-prone coding
styles will be detected by the HDL Explorer tool. This tool, which is included
with the ispLEVER software, should be used to detect RTL design flaws as
part of your verification strategy.

Figure 52: HDL Explorer Transcript Window
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File Tools Yiew ‘Windows Help =8l =
=2 =1- EllE R i=lclEEiErE ==L
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e iy C:/ispTO0OLET_0/hdle/demo/ush/ush. w(308,13) ERROR: (8T-2001) Input Fin
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- AUt
.-" b BFM Check finished with (3} errors, and (24) warnings.
U . Time to process design: 1.529 seconds
[=-External Dependencies X s
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""" $HDLEDIR/demo/usti/ush definefH] 1 ¢~ poor 1. Umdefined 0. Insvances: 23. Number 0f Levels: 4. -
4] | |
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.2
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4 | || ltem Status | Find Results I

| |Instance: ush.memory_arbiter-Line: 309 Column: 1 I IEI_ Y
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The examples in this section illustrate common mistakes to avoid. Where
possible, examples of best-known-method (BKM) messages issued by HDL
Explorer are also provided.

Sensitivity Lists

In Verilog and VHDL, combinational logic is typically modeled using a
continuous assignment. Combinational logic can also be modeled when using
a Verilog always statement or a VHDL process statement in which the
event sensitivity list does not contain any edge events (posedge/negedge
or ~event). The event sensitivity list does not affect the synthesized netlist.
Therefore, it might be necessary to include all the signals read in the event
sensitivity list to avoid mismatches between simulation and synthesized logic.

In following Verilog example, module codelb uses a style that leads to a
mismatch due to an incomplete sensitivity list. During pre-synthesis
simulation, the always statement is only activated when an event occurs on
variable a. However, the post-synthesis result will infer a 2-input and gate.

module codelb (o, a, b);
output o;
input a, b;
reg o;

always @(a)
o =a & b;

endmodule

// Supported, but simulation mismatch may occur.

// To assure the simulation will match the synthesized logic,
// add variable b to the event list so the event list

// reads: always @(a or b).

The synthesis-related BKM check reported by HDL Explorer is:

WARNING: (ST-6003) Always Block “codelb.@( a)® has the
following blocking assignment with driving signals that are not
in the sensitivity list. Possible Simulation/Synthesis
mismatch.

// o = (aé&b);

Not all variables that appear in the right-hand side of an assignment are
required to appear in the event sensitivity list. For example, Verilog variables
that are assigned values inside the always statement body before being
used by other expressions do not have to appear in the sensitivity list.

Blocking/Nonblocking Assignments in Verilog

A subtle Verilog coding style that can lead to unexpected results is the
blocking/nonblocking style of variable assignment. The following guidelines
are recommended:

¢ Use blocking assignments in always blocks that are written to generate
combinational logic.

¢ Use nonblocking assignments in always blocks that are written to
generate sequential logic.
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¢ Use nonblocking assignments with register models to avoid race
conditions.

Execution of blocking assignments can be viewed as a one-step process:

¢ Evaluate the RHS (right-hand side equation) and update the LHS (left-
hand side expression) of the blocking assignment without interruption
from any other Verilog statement.

A blocking assignment "blocks" trailing assignments in the same always
block, meaning that it prevents them from occurring until after the current
assignment has been completed.

A problem with blocking assignments occurs when the RHS variable of one
assignment in one procedural block is also the LHS variable of another
assignment in another procedural block and both equations are scheduled to
execute in the same simulation time step, such as on the same clock edge. If
blocking assignments are not properly ordered, a race condition can occur.
When blocking assignments are scheduled to execute in the same time step,
the order execution is unknown.

According to the IEEE Verilog Standard for the language itself (not the
synthesis standard), the two always blocks can be scheduled in any order.

In the following example, if the first always block executes first after a reset,
both y1 and y2 will take on the value of 1. If the second always block
executes first after a reset, both y1 and y2 will take on the value 0. This
clearly represents a race condition.

module fboscl (yl, y2, clk, rst);
output yl, y2;
input clk, rst;

reg vl, y2;

always @(posedge clk or posedge rst)
if (rst) yl = 0; // reset
else yl1 = y2;

always @(posedge clk or posedge rst)
if (rst) y2 = 1; // preset
else y2 = yi;

endmodule

The HDL Explorer will also report potential problems given the combination of
an edge-based sensitivity list with blocking assignments. For example:

// WARNING: (SUNBURST-0001) Always Block "Ifsrbl.@(posedge clk
or negedge pre_n)" has a edge based sensitivity list, but has
the following blocking assignments. Possible Simulation/
Synthesis mismatch.

// g3 = 1°b1 ;
// g2 = 1°bl ;
// gl = 1°b1 ;
// g3 = g2 ;
// g2 = nl ;
// ql = g3 ;
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In Verilog, a variable assigned in an always statement cannot be assigned
using both a blocking assignment (=) and a non-blocking assignment (<=) in
the same always block.

always @ (IN1 or IN2 or SEL) begin
OUT = IN1;
if (SEL)
OUT <= 2;
end

Synthesis Pragmas: full _case/parallel _case

The synthesis tool directive ful I _case gives more information about the
design to the synthesis tool than is provided to the simulation tool. This
particular directive is used to inform the synthesis tool that the case statement
is fully defined and that the output assignments for all unused cases are “don’t
cares.” The functionality between pre-synthesis and post-synthesis designs
might remain the same when using this directive, or it might not.

Additionally, although this directive is telling the synthesis tool to use the
unused states as “don’t cares,” it will sometimes make designs larger and
slower than designs that omit it.

In the following module sample code4, a case statement is coded using the
ful l_case synthesis directive. Without the ful I _case directive, the
resultant design is a decoder built from 3-input and gates and inverters. The
pre-synthesis and post-synthesis simulations will match. However, when the
full_case directive is added, the en input is optimized away during synthesis
and left as a dangling input. This is another case where pre-synthesis
simulator results of modules will not match the post-synthesis simulation
results.

module code4 (en, a, y);
input en;
input [1:0] a;
output [3:0] vy;
reg [3:0] y:
always @(a or en) begin
y = 47hO;
case ({en,a}) //pragma full_case

3"b1 _00: y[a] = 1"b1;
3"b1 01: y[a] = 1"b1;
3"b1 _10: y[a] = 1"b1;
3"b1_11: y[a] = 17b1l;
endcase
end
endmodule

The synthesis tool directive paral lel _case also gives more information
about the design to the synthesis tool than is provided to the simulation tool.
This particular directive is used to inform the synthesis tool that all cases
should be tested in parallel, even if there are overlapping cases, which would
normally cause a priority encoder to be inferred.
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Signal Fanout

Signal fanout refers to the number of inputs that can be connected to an
output before the current required by the inputs exceeds the current that can
be delivered by the output while maintaining correct logic levels or
performance requirements. FPGA logic synthesis will automatically maintain
reasonable fanout levels by replicating drivers or buffering a signal. Because
of this behavior, the resulting FPGA route might be slower due to the
additional intrinsic delays.

Signal fanout control is available with logic synthesis to maintain reasonable
fanouts by controlling to what degree drivers are replicated. You should
anticipate the availability of FPGA routing resources that are reserved for high
fanout, low-skew networks like clocks, clock-enables, resets, and others. HDL
Explorer can be configured to detect high fanout conditions as in the following
example:

WARNING: (ST-5002) Net "sc_dist_dpram.dec_wrel® violates Max
Fanout Rule with a load of "8" pins.
sc_dist_dpram.v(71,72-71,86): Input:mem_0O_O.WRE
sc_dist_dpram.v(81,72-81,86): Input:mem_0O_1.WRE
sc_dist_dpram.v(151,72-151,86): Input:mem_4_0.WRE
sc_dist_dpram.v(161,72-161,86): Input:mem_4_1_WRE
sc_dist_dpram.v(231,72-231,86): Input:mem_8_ 0.WRE
sc_dist_dpram.v(241,72-241,86): Input:mem 8 1.WRE
sc_dist_dpram.v(311,72-311,86): Input:mem_12 O.WRE
sc_dist_dpram.v(321,72-321,86): Input:mem_12 1.WRE
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Designs

This chapter describes the usage of the most common ispLEVER attributes
used with register-transfer-level (RTL) designs.

In addition to syntax examples for VHDL and Verilog HDL (Synplify and
Precision RTL Synthesis) code, this chapter gives examples of non-RTL or
(non-algorithmic) code, such as compiler directives, attributes, and library
components, that enable you to specify Lattice Semiconductor FPGA-specific
constraints and design elements in your HDL source. There are dozens of
ispLEVER HDL attributes that you can include in RTL source code,
depending on the application. This chapter discusses a subset of the two
most popular classes of constraints used by designers: syslO buffer and
floorplanning constraints.

This style of design has both advantages and disadvantages that you should
consider before adding device-specific constraints to your HDL code. As an
advantage, it helps unify the logical and physical design documentation and
can be an easy way to infer many physical preferences from the concise
logical description. For example, HGROUP/UGROUP attributes within RTL
infer groups of many physical slices and embedded blocks.

As disadvantages, it makes the source code device-specific and less
portable, and it may require a coding style specific to a synthesis vendor.

You may notice that some attributes have redundant functionality. For
example, Precision RTL Synthesis’ attributes for I/O locking include “loc” and
“pin_number” as a result of synthesis tool support of both vendor-specific and
cross-vendor attributes. You should consider the best choice for the sake of
maintaining your source code over time. The samples shown in this chapter
typically use the most concise form possible or the one that closely matches
the naming conventions of ispLEVER attributes.
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For more information on vendor-specific synthesis attributes and directives,
refer to the Precision RTL Synthesis Style Guide or the Synplicity FPGA
Synthesis Reference Manual.

About Attributes

An attribute is a value, constant, string, or so forth that can be associated with
certain names in an HDL or EDIF description. In the Lattice Semiconductor
FPGA design flow, there are two classes of attributes: those related to
iSpLEVER and those related to the synthesis vendor.

ISpPLEVER Attributes

iISpLEVER attributes are typically used on library elements or signals in the
EDIF netlist as EDIF properties and are interpreted by the mapping,
placement, and routing tools. Most ispLEVER attributes are used in
conjunction with the Lattice Semiconductor library elements documented in
the FPGA Library online Help and are usually generated automatically by
IPexpress in ispLEVER.

A subset of ispLEVER attributes is also helpful to write within RTL HDL.
These attributes are most often used to direct the mapping, placement, and
routing tools, but in some cases they can influence logic synthesis or targeting
algorithms.

The main advantage of adding ispLEVER attributes to the RTL source code is
to unify the design documentation and take advantage of the ability to infer
many gate-level properties from the abstract RTL description. Examples of
iISpLEVER attributes include: “LOC,” “FREQUENCY,” and “UGROUP.”

The ispLEVER attributes are supported by both Precision RTL Synthesis and
Synplify and are typically documented as “user-defined” attributes.

For more information on ispLEVER attributes, refer to the “HDL Attributes”
topic in the ispLEVER online Help.

Vendor Attributes

Vendor attributes are typically used to control the optimization and targeting
algorithms of logic synthesis and in some cases to infer iSpLEVER attributes.
For example, Precision RTL Synthesis’ “pin_number” attribute infers the
iISpLEVER LOC attribute for pin assignments. Common vendor attributes
include “don't optimize/touch,” “fan-out limit,” and “use 1O registers.”

For more information on vendor attributes, refer to the Precision RTL
Synthesis Style Guide or the Synplicity FPGA Synthesis Reference Manual.
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About Compiler Directives

A compiler directive controls the way a design is analyzed, optimized, and
mapped by logic synthesis. In the Lattice Semiconductor FPGA design flow,
compiler directives are an important tool to help you achieve device area and
speed goals. Common compiler directives include “FSM encoding,” “translate
on/off,” and “black box.”

Using Attributes and Compiler Directives in HDL

In Verilog HDL, attributes and compiler directives are attached to the
appropriate objects by special comments. The syntax differs from vendor to
vendor. In VHDL, they appear as VHDL attributes and are typically pre-
defined within a VHDL package, for example, exemplar_1164 in Precision
RTL Synthesis or synplify in Synplify. Both Precision RTL Synthesis and
Synplify support user-defined attributes.

For more information on compiler directives, refer to the Precision RTL
Synthesis Style Guide or the Synplicity FPGA Synthesis Reference Manual.

syslO Buffer Constraints

The sysIO buffer feature of Lattice Semiconductor FPGAs and CPLDs is a
programmable 1/O cell organized into banks around the periphery of the
device. SyslO buffers have several programmable options, including signal
interface standard, drive strength, slew rate, and bus maintenance. It is a
common practice to specify the programming of syslO buffers as constraints
within the RTL source. This section describes the most common attributes.

For large packages with many programming options, banks, and reference
voltages, Lattice Semiconductor recommends using the 1/O Assistant
methodology to place and program 1/Os. After you arrive at a legal placement,
place the ispLEVER preferences back into the RTL source by using the
guidelines in this section.

I/O Buffer Insertion

You can use two ways to insert 1/O buffers or pads into the EDIF netlist
produced by logic synthesis:

¢ Insert them by default during synthesis.

¢ Instantiate I/O buffers (automatic 1/O insertion by synthesis must be
disabled).

To minimize the amount of code required to design with 1/O buffers, Lattice
Semiconductor provides a Verilog HDL and a VHDL synthesis header library
file for each major FPGA device family. Refer to the “Lattice Synthesis Header
Libraries” topic in the ispLEVER online Help for details.
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Because of Verilog HDL's case sensitivity, you must follow the conventions
used by the synthesis header libraries when you describe module and port
names. In general, names are in upper case.

The source code shown in Figure 53 in Verilog HDL and in Figure 54 in VHDL
illustrates 1/O buffer instantiation.

Figure 53: Instantiating I/O Buffers in Verilog HDL

module example(data, clock, out_put);
input [1:0] data;
input clock;
output [1:0] out_put;

wire [1:0] data_in, data_out;
wire clk;

// LatticeEC 1/0 buffers

IB u0(.I(data[1]), -O(data_in[11));

IB ul(.I1(data[0]), -0(data_in[0]));

IB u2(.1(clock),.0(clk));

OB u3(.l1(data_out[1]),-0Cout_put[1]));
OB u4(.I1(data_out[0]), -O(out_put[0]));

// logical description goes here...
endmodule

Figure 54: Instantiating 1/0 Buffers in VHDL

library 1EEE, ec;
use ec.components.all; -- Component package for LatticeEC
use IEEE.std_logic_1164._all;

entity example is port(
data : in std_logic_vector(l DOWNTO 0);
clock : in std_logic;
out_put : out std_logic_vector(l DOWNTO 0) );
end example;

architecture io_buf of example is
signal data_in, data_out:std_logic_vector(l DOWNTO 0);
signal clk : std_logic;

begin

-- LatticeEC 1/0 buffers

u0 : IB port map(l=>data(l),0=>data_in(1));

ul : IB port map(l=>data(0),0=>data_in(0));

u2 : IB port map(l=>clock,0=>clk);

u3 : OB port map(l=>data_out(l),0=>out_put(l));
u4 : OB port map(l=>data_out(0),0=>out_put(0));

—-- logical description goes here...

end;
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I/O Buffer Configuration

The programmable syslO buffer provides a variety of configurations controlled

by preferences or HDL-based constraints. For a complete description of
syslO buffer usage, see the related Lattice Semiconductor application notes

for your target device family.

Constraints can be used along with buffer instantiation, as shown in “I/O
Buffer Insertion” on page 87, or by automatic insertion by logic synthesis.

The source code shown in Figure 55 in Verilog HDL and in Figure 56 in VHDL

illustrates the usage of some common attributes: IO_TYPE, DRIVE,
PULLMODE, and SLEWRATE. These attributes are technology-dependent.

Figure 55: I/O Constraints in Verilog HDL

module example(data, clock, out_put);

input [1:0] data;

input clock;

output [1:0] out_put

/* synthesis
10_TYPE ="LVTTL33"
DRIVE  ="16"
PULLMODE=""UP""

SLEWRATE=""FAST" */ ;

//pragma attribute
//pragma attribute
//pragma attribute
//pragma attribute

out_put I0_TYPE LVTTL33
out_put DRIVE 16
out_put PULLMODE UP
out_put SLEWRATE FAST

wire [1:0] data_in, data_out;

wire clk;

/7 logical description goes here...

endmodule
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Figure 56: I/O Constraints in VHDL

library 1EEE, ec;
use ec.components.all; -- Component package for LatticeEC
use IEEE.std_logic_1164.all;

entity example is port(
data : in std_logic_vector(l DOWNTO 0);
out_put : out std_logic_vector(l DOWNTO 0) );
end example;

architecture io_buf of example is
signal data_in, data_out:std_logic_vector(l DOWNTO 0);
-- LatticeEC 1/0 buffer constraints
attribute 10_TYPE : string;
attribute DRIVE : string;
attribute PULLMODE : string;
attribute SLEWRATE : string;
attribute I0_TYPE OF out_put: SIGNAL 1S "LVTTL33";
attribute DRIVE OF out_put: SIGNAL IS "16";
attribute PULLMODE OF out_put: SIGNAL IS "UP";
attribute SLEWRATE OF out put: SIGNAL IS "FAST";

begin
-- logical description goes here...

end;

Overriding Default I/O Buffer Type

Logic synthesis automatically inserts input/output (1/0O) buffers or pads into the
synthesized design. The default input and output pads are “IB” and “OB,”
respectively (“BB” for bidirectional), which are generic buffers that optionally
carry attributes to specify such things as 1/O type, drive, and pull mode. The
pad type mapped by Precision RTL Synthesis or Synplify logic synthesis can
be overridden for a particular I/O by using synthesis attributes within HDL,
constraint files, or GUI controls.

¢ In Precision RTL Synthesis, the “pad” attribute is a string attribute that
must be attached to a top-level port to override the 1/O cell used by
Precision RTL Synthesis when it synthesizes the I/O cell.

¢ In Synplify, the “orca_padtype” attribute is a string attribute that must be
attached to a top-level port to override the 1/O cell used by Synplify when it
synthesizes the I/O cell.
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The source code shown in Figure 57 in Verilog HDL and in Figure 58 in VHDL
illustrates how to override a pad type.

Figure 57: Override of Buffer Type in Verilog HDL

module example(data, clock, out_put);

// Choose padtype IBPD to select an input buffer with pull-
down

input data /* synthesis orca_padtype="1BPD" */;

//pragma attribute data pad 1BPD

/7 logical description goes here...
endmodule

Figure 58: Overriding of Buffer Type in VHDL

-- declare the Precision RTL pad attribute
attribute pad: string;
-- declare the Synplify orca_padtype attribute
attribute orca_padtype: string;

-- Choose padtype IBPD to select an input buffer with pull-
down

attribute pad of data: signal is "IBPD";

attribute orca_padtype of data: signal is "IBPD";

Locking I/O Pins

There are two methods for locking 1/0 pins in the ispLEVER design flow for
FPGAs:

¢ HDL-based attributes
¢ The ispLEVER preference file

Both Precision RTL Synthesis and Synplify support HDL-based attributes to
lock I/O pins based on a port name from within source code. The synthesis
mapper then converts the port to a specific I/O buffer and adds the pin
number as an attribute to the cell instance in the EDIF netlist. When
ispLEVER maps, places, and routes the design, it uses the attribute to lock
the PIC/IOB site in the FPGA.

¢ In Precision RTL Synthesis, the “array_pin_number” (VHDL only),
“pin_number,” or “loc” attribute is a string attribute that must be attached to
a top-level port to assign pin numbers.

+ In Synplify, the “loc” attribute is a string attribute that must be attached to a
top-level port to assign pin numbers.
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The source code in Figure 59 in Verilog HDL and in Figure 60 in VHDL
illustrates how to lock 1/O pins.

Figure 59: Pin Locking in Verilog HDL

// Lock 1/0 assignment for port: datain
input [7:0] datain /* synthesis

loc="43,36,83,52,91,45,84,78" */;
//pragma attribute datain pin_number

''43,36,83,52,91,45,84,78"

Figure 60: Pin Locking in VHDL

-- Lock clock port to pad pl0

attribute loc : string;

attribute loc of clock : signal is "pl0";

attribute pin_number : string;

attribute pin_number of clk : signal is "90";

type mentor_string_array is array (natural range <>,
natural range <>) of character ;

attribute array_pin_number : mentor_string_array ;

attribute array_pin_number of datain: signal is
('43","36","83","52","91","45™, "84, 78™) ;

Optimization Constraints

Logic optimization by logic synthesis can dramatically influence the gate-level
implementation of your design. This section describes common optimization
controls used within the RTL source. For complete information on controls
available for Precision RTL Synthesis or Synplify, refer to the respective user
and style reference guides.

Black-Box Module Instances

By default, logic synthesis elaborates the design hierarchy until all leaf nodes
are represented by a Lattice Semiconductor library macro or expression that
infers one or more macros. However, in some cases you may want to treat
some module instances as black boxes that cause the logic optimizer to stop
elaboration at that point and pass the module as is into the EDIF 2 0 0 netlist.
The most common application for black-box modules is when you use an
incremental or block modular design technique.

¢ In Precision RTL Synthesis, the “dont_touch” attribute is a Boolean
attribute that must be declared as a Verilog HDL comment near the
module instance or as a VHDL attribute of a component declaration.

¢ In Synplify, the “syn_black_box” directive is a Boolean attribute that must
be attached to a Verilog HDL module declaration or as a VHDL attribute of
a component declaration.
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The source code in Figure 61 in Verilog HDL and in Figure 62 in VHDL
illustrates the usage of the black-box concept.

Figure 61: Black-Box Module Instances in Verilog HDL

/) ——

// Controls to switch between RTL, "black box', and mixed RTL and

// gate-level versions of the top-level design module.

/) ————
“define BBox_mode; // Comment out for RTL_mode simulation.

// “define RTL_mode;// Comment out to exclude module definitions.

~ifdef BBox_mode // then bind to empty modules for synthesis,

module multregl6(qg, dataa, datab, datac, sel, clk, rst)
/* synthesis syn_black_box */;
output [15:0] q;
input [7:0] dataa, datab, datac;

input clk /* synthesis syn_isclock = 1 */;
input sel, rst;
reg [15:0] q;

endmodule

module rotate(q, data, clk, r_1, rst)
/* synthesis syn_black_box */;
output [15:0] q;
input [15:0] data;

input clk /* synthesis syn_isclock = 1 */;
input r_l, rst;
endmodule
“else

~ifdef RTL_mode

~“include "multregl6/multregl6.v"
“include "rotate/rotate.v"

“else

// Do not provide module definitions - instead rely on
//gate-level models created by ispLEVER.

“endif
“endif
/) -
// Top-level design.
/) -

module verilog_hierarchical_design(q, a, b, c, sel, r_1, pllclk,
rst);
output [15:0] q;
input [7:0] a, b, c;

input sel, r_1, plliclk, rst;
wire [15:0] reg_out;
wire clk, rst_I;

//pragma attribute clk preserve_signal true
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Figure 61: Black-Box Module Instances in Verilog HDL (Continued)

assign rst_I = Irst;
// Global set/reset and power up reset signal drivers
GSR GSR_INST
(-GSR (rst_1));
PUR PUR_INST
(-PUR (rst_1));

// LatticeEC sysCLOCK PLL

/* Verilog module instantiation template generated by SCUBA
ispLever_v50_SP1_Build (12) */

/* Wed May 25 11:53:58 2005 */

/* parameterized module instance */

LatticeEC_66MHz_PLL PLL_1 (.CLK(pllclk), .RESET(rst),
.CLKOP(clk), .LOCK( ));

//pragma attribute PLL_1 dont_touch

// multiplexer/multiply/register
multregl6 multregl6_1
(-q(reg_out),
.dataa(a),
.datab(b),
.datac(c),
.sel(sel),
.clk(clk),
.rst(rst));
//pragma attribute multregl6_1 dont_touch

// register or rotate
rotate rotate_1
(-q(@.
.data(reg_out),
-clk(clk),
r_1(r_),
.rst(rst));
// pragma attribute rotate_1 dont_touch

endmodule
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Figure 62: Black-Box Component Instances in VHDL

library ieee,ec;

use ec.components.all;
use ieee.std_logic_1164._all;

entity vhdl_hierarchical_design is

port (

q

a, b, c

sel, r_1, plliclk,
);

out std_logic_vector (15 downto 0);
in std_logic_vector (7 downto 0);
in std_logic

rst

end vhdl_hierarchical_design;

architecture arch of vhdl_hierarchical_design is
-- parameterized module component declaration
component LatticeEC_66MHz_PLL
port (CLK: in std_logic; RESET: in std_logic; CLKOP: out

std_logic;

LOCK: out std_logic);

end component;

component multregl6

port (
q : out std_
dataa : in std_
datab : in std_
datac : in std_
clk > in std_
sel > in std_
rst :in std_

end component;

component rotate
port (

-- component declaration for multregl6

logic_vector (15 downto 0);
logic_vector (7 downto 0);

logic_vector (7 downto 0);

logic_vector (7 downto 0);

logic;

logic;

logic);

-- component declaration for rotate

q : out std_logic_vector (15 downto 0);
data : in std_logic_vector (15 downto 0);
clk : in std_logic;

r_1 - in std_logic;

rst : in std_logic);

end component;

-- declare the internal signals here
signal reg_out: std_logic_vector (15 downto 0);

signal clk, rst_I1: std_logic;
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Figure 62: Black-Box Component Instances in VHDL (Continued)

-- Precision RTL compiler directives
attribute preserve_signal : boolean;
attribute preserve_signal of reg_out : signal is true;
attribute dont_touch : boolean;
attribute dont_touch of multregl6_1: label is true;
attribute dont_touch of rotate_1 : label is true;

-- Synplify compiler directives
attribute syn_black box : boolean;

attribute syn_black box of multregl6: component is true;
attribute syn_black _box of rotate : component is true;

attribute syn_noprune : boolean;
attribute syn_noprune of GSR_INST: label is true;
attribute syn_noprune of PUR_INST: label is true;

begin

rst_1 <= not(rst);

-- Global set/reset and power up reset signal drivers
GSR_INST: GSR port map(GSR => rst_1);

PUR_INST: PUR port map(PUR => rst_1);

-- VHDL module instantiation generated by SCUBA
ispLever_v50_SP1_Build (12)

-- Wed May 25 11:53:41 2005

-- parameterized module component instance

PLL_1 : LatticeEC_66MHz_PLL

port map (CLK=>pllclk, RESET=>rst, CLKOP=>clk, LOCK=>open);

multregl6_1: multregl6 port map (
q => reg_out,
dataa=> a,
datab=> b,
datac=> c,
sel => sel,
clk => clk,
rst => rst);

rotate_1: rotate port map (

q =>dq,
data => reg_out,
clk => clk,

rl =r_l,
rst => rst);

end arch;

Preserving Signals

To ensure that an internal design signal is preserved by logic optimization,

both Precision RTL Synthesis and Synplify provide a “preserve”-type
constraint.

¢ In Precision RTL Synthesis, the “preserve_signal” attribute is a Boolean
attribute that is declared as a Verilog HDL comment near a wire or reg

declaration or as a VHDL attribute of a signal.
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¢ In Synplify, the “syn_keep” directive is a Boolean attribute that is declared
as a Verilog HDL comment within a wire or reg declaration or as a VHDL
attribute of a signal declaration.

The source code in Figure 63 in Verilog HDL and in Figure 64 in VHDL
illustrates the usage of the preserve signal concept.

Figure 63: VHDL for Preserve Signal

// Preserve signal load
wire load /* synthesis syn_keep=1 */;
//pragma attribute load preserve_signal true

Figure 64: Verilog HDL for Preserve Signal

Verilog HDL for Preserve Signal

-- Preserve signal load (Precision RTL)
attribute preserve_signal:boolean;
attribute preserve_signal of load: signal is true;

-- Preserve signal load (Synplify)
attribute syn_keep:boolean;
attribute syn_keep of load: signal is true;

Floorplanning

Constraints

Device floorplanning constraints in the HDL source are a powerful means of
directing placement of design logic from a logical abstract level. It is a
common practice in a timing closure methodology to iterate between the
Design Planner application and the place-and-route program, PAR, to arrive
at a superior implementation, then use the guidelines in this section to place
the physical floorplanning constraints into the RTL code as logical constraints.

The floorplanning strategy is usually part of a timing closure or block modular
design style. Before you attempt floorplanning techniques, Lattice
Semiconductor recommends that you review “Floorplanning the Design” on
page 173 and the “Block Modular Design Step Guide” section of the
iISpLEVER FPGA Flow Help in the online Help to understand whether your
design could benefit from these methods.

Logic synthesis passes constraints into the target EDIF 2 0 0 netlist, where
they appear as EDIF properties. The design mapper program, MAP, then
converts the logical references, such as signals and module instances, into
physical references, such as slices, EBR blocks, and DSP blocks, and writes
the FPGA preferences into the iSpLEVER preference (.prf) file. Table 18
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shows the conversion from constraints based on the logical HDL to
constraints based on the physical preference file.

Table 18: Logical and Physical Floorplanning Constraints

HDL Constraint Post-Map Preference Purpose
UGROUP PGROUP Group logic
HGROUP PGROUP Group logic (grouped

elements retain
hierarchical path)

PBBOX PGROUP BBOX Bounding box of a
PGROUP

PLOC LOCATE PGROUP Anchor point of a
PGROUP

PREGION REGION User-defined REGION
name

PRLOC REGION “RnCm” Anchor point of REGION

PRBBOX REGION Y X Bounding box of REGION

COMP Used with PGROUP or User-defined name for

LOCATE slice-based logic
LOC LOCATE COMP Device site for a block

Floorplanning constraints are written as VHDL attributes or as Verilog HDL
embedded comments. A common VHDL style can be used between Precision
RTL Synthesis and Synplify; however, Verilog HDL requires that vendor-
specific keywords precede each comment. The source code examples in this
section show both styles.

This section describes the most common attributes used by designers.

Locating a Block to a Device Site

The simplest floorplanning technique from within HDL is to anchor a logic
block to a particular device site by using the LOC HDL attribute. Blocks can
be anchored independently of a group or region floorplan. The most common
type of “block” to locate is PIOs, as shown in “syslO Buffer Constraints” on
page 87.

This section illustrates how to specify the anchor points of a slice- or
embedded-block-type logic in the FPGA array.

If you intend to floorplan design elements that will be mapped to slice device
sites, you must add the COMP=comp_name HDL attribute to each module
instance in the HDL source, as in the following Verilog HDL sample:

REG2 REG2inst (<port_list>) /* synthesis COMP=regpair
LOC=R10C20D */;
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In this sample, the design mapper (MAP) applies the “regpair’ COMP name to
all elements that can be covered by a single slice and assigns it to the
R10C20D device site. If the logic overflows a single slice, MAP appends a
“.number” to the name for the post-map netlist, and the placer automatically
chooses the site locations for the remaining slices.

Note

COMP/LOC attributes for slice-based logic can be included as part of a logic grouping
strategy described in the floorplanning preferences section by specifying a device site
relative to the anchor point of a PGROUP. This approach is not supported for
embedded blocks.

To floorplan design elements that will be mapped to embedded blocks, such
as PLL/DLL, EBR, or DSP sites, the LOC=<device_site> HDL attribute is
added to each module instance in the HDL source, as in the following Verilog
HDL samples:

ebrl ram _dqg_16 (<port_list>) /* synthesis LOC=EBR_R6C6 */;
plll pl166MHz (<port_list>) /* synthesis LOC=PLL3 R6C1 */;

The graphical floorplan views of the Design Planner or EPIC provide device
site addresses for slices or embedded blocks.

Note

Design elements such as PIO, EBR, DSP, PLL/DLL, and MACO blocks do not require
the COMP attribute because MAP retains the original name used in the native generic
(.ngd) database.

Grouping Logic

The HGROUP (Hierarchical Group) or UGROUP (Universal Group) can be
used as an attribute in VHDL and Verilog HDL source code to bound and
locate sections of a design for grouping in the FPGA array. For details on this
method and the application of HGROUPs and UGROUPs, refer to
“Floorplanning the Design” on page 173 and “Design Performance
Enhancement Strategies” on page 193.

The source code in Figure 65 in Verilog HDL and in Figure 66 in VHDL
illustrates the usage of the UGROUP constraint. The design mimics the
hierarchy shown in the example in “Floorplanning the Design” on page 173
and illustrates the scenario in which the critical path is between the
REGISTER_FILE and the STATE_MACHINE modules. Both modules are
grouped into a UGROUP named “CRITICAL_GROUP.”

Note

In some cases, such as when using Precision RTL Synthesis, you may need to use
“preserve hierarchy” compiler directives on module instances that you want to group to
prevent logic optimization from flattening the design.
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Note

By default, groups are placed into the smallest square available on the device
floorplan. See “Design Performance Enhancement Strategies” on page 193 for
information about group bounding boxes and anchors and for details on how to specify
an alternative area shape and position.

Note

Groups that are composed of both slice-based and embedded block logic, such as
EBR- and DSP-type blocks, must be anchored. Groups composed solely of slice-
based logic, such as LUTs and registers, can float. For more information, see
“Floorplanning the Design” on page 173.

Figure 65: Grouping Constraints in Verilog HDL

module STATE_MACHINE (clk, reset, cs, refresh, ras, cas, ready)
/* synthesis UGROUP="CRITICAL_GROUP" */;

input clk;

input reset;

input cs;

input refresh;

output ras;

output cas;

output ready;

parameter /* exemplar enum gray */ sO = 0, s1 =1, s2 = 2,
s3 = 3, s4 = 4;

reg [2:0] /* exemplar enum gray */ present_state, next_state
reg ras, cas, ready;
// logical description goes here..

endmodule 7/

module CONTROLLER (clk, reset, cs, regdata, ras, cas, ready,

load);
input clk;
input reset;
input CS;
input [15:0] regdata;
output ras;
output cas;
output ready;
input load;

wire [15:0] count;
wire refresh;

COUNTER bl (clk, reset, cs, regdata, refresh, load);
STATE_MACHINE b2 (clk, reset, cs, refresh, ras, cas, ready);
//pragma attribute b2 UGROUP CRITICAL_GROUP

//pragma attribute b2 hierarchy preserve

endmodule //
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Figure 65: Grouping Constraints in Verilog HDL (Continued)

module REGISTER_|

FILE (clk, reset, cs, data, regdata)

/* synthesis UGROUP="CRITICAL_GROUP™" */;

input
input
input

clk;
reset;
cs;

input [15:0] data;
output [15:0] regdata;

reg [15:0] regdata;

// logical description goes here..

end

endmodule //

module TOP (clk, reset, cs, ras, cas, ready, data, load);

input
input
input
output
output
output
input [15:0]
input

clk;
reset;
cSs;
ras;
cas;
ready;
data;
load;

wire [15:0] regdata;

CONTROLLER
load);

bl (clk, reset, cs, regdata, ras, cas, ready,

REGISTER_FILE b2 (clk, reset, cs, data, regdata);
//pragma attribute b2 UGROUP CRITICAL_GROUP
//pragma attribute b2 hierarchy preserve

endmodule //
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Figure 66: Grouping Constraints in VHDL

-- Precision RTL package
-- library exemplar;
-- use exemplar.exemplar_1164.all;

-- Synplify package
library synplify;
use synplify._attributes._all;

library ieee;
use ieee.std_logic_1164.all;

entity STATE_MACHINE is

port (

clk : in std_logic;
reset : in std_logic;
cs : in std_logic;
refresh > in std_logic;
ras : out std_logic;
cas : out std_logic;

ready : out std_logic);
end STATE_MACHINE;

architecture ARCH of STATE_MACHINE is

-- Precision RTL attributes for encoding style

-- attribute TYPE_ENCODING_STYLE : encoding_style;

-- Declare the state machine enumeration type

type state_typ is (sO, sl1l, s2, s3, s4);

-- Set the type_encoding_style of the state type

--— attribute TYPE_ENCODING_STYLE of state_typ : type is
GRAY;

signal present_state, next_state : state_typ;

-- Synplify attributes for encoding style
-- Set the type_encoding_style of the state signal

attribute syn_encoding of present_state, next_state : signal

i1s ''gray';

attribute syn_keep of present_state, next_state : signal

is true;

begin
-- logical description goes here..

end ARCH;

library ieee;
use ieee.std_logic_1164._all;

entity CONTROLLER is

port (

clk : in std_logic;

reset in std_logic;

cs : in std_logic;

regdata : in std_logic_vector(15 downto 0);
ras : out std_logic;
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Figure 66: Grouping Constraints in VHDL (Continued)

cas : out std_logic;
ready : out std_logic;
load : in std_logic);

end CONTROLLER;

architecture ARCH of CONTROLLER is
component COUNTER

port (
clk
reset
cs
regdata
refresh
load

std_logic;
std_logic;
std_logic;
std_logic_vector(15 downto 0);
std_logic;
std_logic);

-0 i o o
C 3 3335
ﬁ

=]

end component;

component STATE_MACHINE

port (
clk
reset
cs
refresh
ras

cas
ready

n std_logic;
n std_logic;
in std_logic;
n std_logic;
out std_logic;
out std_logic;
out std_logic);

end component;

signal count

: std_logic_vector(15 downto 0);

signal refresh : std_logic;

attribute hierarchy : string ;
attribute hierarchy of b2: label is "preserve’;

-- LatticeEC Floorplan Constraints
attribute ugroup . string ;
attribute ugroup of b2: label is "CRITICAL_GROUP";

begin
bl : COUNTER
refresh, load);

port map (clk, reset, cs, regdata,

b2 : STATE_MACHINE port map (clk, reset, cs, refresh, ras,

cas, ready);
end ARCH;

library ieee;

use ieee.std_logic_1164._all;

entity REGISTER FILE is

port (

clk 2 in
reset in
cs 2 in
data :in

std_logic;
std_logic;
std_logic;
std_logic_vector(15 downto 0);

regdata : out std_logic_vector(15 downto 0));
end REGISTER_FILE;
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Figure 66: Grouping Constraints in VHDL (Continued)

architecture ARCH of REGISTER_FILE is
signal regdata_n: std_logic_vector(15 downto 0);

begin
-- logical description goes here..

end ARCH;

library ieee;
use ieee.std_logic_1164.all;

entity TOP is

port (
clk in std_logic;
reset in std_logic;
cs : in std_logic;
ras : out std_logic;
cas : out std_logic;
ready : out std_logic;
data : in std_logic_vector(15 downto 0);
load : in std_logic
)

end TOP;

architecture ARCH of TOP is
component CONTROLLER

port (

clk : in std_logic;

reset : in std_logic;

cs : in std_logic;

regdata : in std_logic_vector(15 downto 0);
ras : out std_logic;

cas : out std_logic;

ready : out std_logic;

load : in std_logic);

end component;

component REGISTER_FILE

port (

clk : in std_logic;

reset in std_logic;

cs : in std_logic;

data : in std_logic_vector(15 downto 0);

regdata : out std_logic_vector(15 downto 0));
end component;

signal regdata : std_logic_vector(15 downto 0);

attribute hierarchy : string ;
attribute hierarchy of b2: label is "preserve’;

-— iSpLEVER attributes for flooplanning
attribute UGROUP . string ;
attribute UGROUP of b2: label is "CRITICAL_GROUP";
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Figure 66: Grouping Constraints in VHDL (Continued)

begin

bl: CONTROLLER port map (clk, reset, cs, regdata, ras,
cas, ready, load);

b2: REGISTER_FILE port map (clk, reset, cs, data, regdata);

end ARCH;

Group Bounding Boxes and Anchors

You can further control the HGROUP (Hierarchical Group) or UGROUP
(Universal Group) by adding an optional bounding box to specify the shape
and size of the floorplan area (PBBOX) allocated to the logic and an optional
anchor point (PLOC) that provides a specific row and column address that
indicates the anchor point of the upper left corner of the bounding box. For
details on this method, refer to “Floorplanning the Design” on page 173 and
“Design Performance Enhancement Strategies” on page 193.

The source code in Figure 67 in Verilog HDL and in Figure 68 in VHDL

illustrates the usage of the PBBOX and PLOC constraints in conjunction with
the UGROUP constraint shown in “Grouping Logic” on page 99.

Figure 67: Group Bounding Boxes and Anchors in Verilog HDL

// Comment for Synplify-style Verilog HDL

module REGISTER_FILE (clk, reset, cs, data, regdata)

/* synthesis ugroup="CRITICAL_GROUP" PBBOX="5,5" PLOC="R7C7D"
*/;

// Comment for Precision-style Verilog HDL

REGISTER_FILE b2 (clk, reset, cs, data, regdata);

//pragma attribute b2 ugroup CRITICAL_GROUP PBBOX 5,5 PLOC
R7C7D

Figure 68: Group Bounding Boxes and Anchors in VHDL

attribute UGROUP : string ;
attribute PBBOX > string;
attribute PLOC : string;
attribute UGROUP of b2: label is "CRITICAL_GROUP";
attribute PBBOX of b2: label i1s "5,5";
attribute PLOC of b2: label is "R7C7D";begin
begin

bl: CONTROLLER port map (clk, reset, cs, regdata, ras,
cas, ready, load);
b2: REGISTER_FILE port map (clk, reset, cs, data, regdata);
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Regional Groups

You can optionally assign the HGROUP (Hierarchical Group) or UGROUP
(Universal Group) to a user-defined, named area of the device floorplan by
using region constraints. PREGION is a user label for the region, PRBBOX is
the bounding box definition, and PRLOC is the row and column address that
indicates the anchor point for the upper left corner of the bounding box. For
details on this method, refer to “Floorplanning the Design” on page 173 and
“Design Performance Enhancement Strategies” on page 193.

The source code in Figure 69 in Verilog HDL and in Figure 70 in VHDL
illustrate the usage of the PREGION, PRBBOX, and PRLOC constraints in
conjunction with a UGROUP constraint shown in “Grouping Logic” on
page 99.

Note

Regional groups can contain any number and combination of floating (unanchored),
bounded or unbounded (PBBOX) HGROUP/UGROUPs. Regions themselves must be
anchored and bounded.

Figure 69: Regional Groups in Verilog HDL

// Comment for Synplify-style Verilog HDL

module REGISTER_FILE (clk, reset, cs, data, regdata)

/* synthesis ugroup="CRITICAL_GROUP'" PREGION="'CENTER_REGION"
PRLOC=""R5C5D" PRBBOX="'7,10" */;

// Comment for Precision-style Verilog HDL
REGISTER_FILE b2 (clk, reset, cs, data, regdata);
//pragma attribute b2 ugroup CRITICAL_GROUP PREGION
CENTER_REGION PRLOC R5C5D PRBBOX 7,10

Figure 70: Regional Groups in VHDL

attribute ugroup > string ;

attribute PBBOX . string;

attribute PLOC . string;

attribute PREGION . string;

attribute PRLOC > string;

attribute PRBBOX > string;

attribute ugroup of b2: label is "CRITICAL_GROUP";
attribute PBBOX of b2: label is "5,5";

attribute PLOC of b2: label is "R7C7D";
attribute PREGION of b2: label is "CENTER_REGION";
attribute PRLOC of b2: label is "R5C5D";
attribute PRBBOX of b2: label is "7,10";

begin

bl: CONTROLLER port map (clk, reset, cs, regdata, ras,
cas, ready, load);

b2: REGISTER_FILE port map (clk, reset, cs, data, regdata);
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Figure 71 illustrates the floorplan that results in the context of an LFECL1E.

Figure 71: Anchored PGROUP Within a Region
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Register-Oriented Groups (Synplify Only)

In Synplify, you can specify that the registers driving a particular signal be
grouped. This style can be beneficial to establish groups along pipeline
stages of a data-path-style design.

You can use the floorplanning constraints described in this section on
registered signals of Verilog HDL “reg” or VHDL signal declarations. On the
basis of the signal attributes, Synplify adds PGROUP properties to all
registers inferred by the RTL.

The source code in Figure 72 in Verilog HDL and in Figure 73 in VHDL
illustrates the use of the register-oriented UGROUP constraint.

Note

In some cases, you may need to use “preserve signal” compiler directives on signal or
register elements that you want to group to prevent logic optimization from eliminating
them.
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Figure 72: Register-Oriented Groups in Verilog HDL

module COUNTER (clk, reset, cs, regdata, refresh, load);
input clk;

input reset;

input cs;

input [15:0] regdata;

output refresh;

input load;

reg [15:0] count /* synthesis syn_keep=1 ugroup="COUNTER_GROUP"
PBBOX="3,3" PREGION=""COUNTER_REGION" PRLOC='"R5C10D"
PRBBOX="5,5" */;

always @ (posedge clk or posedge reset)
if (reset)
count <= 1"b0;
else if (cs) begin
if (load)
count <= regdata;
else begin
count[15:1] <= count[14:0];
count[0] <= ~count[15];
end
end

assign refresh = count[0];

endmodule //
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Figure 73: Register-Oriented Groups in VHDL

library ieee;
use ieee.std_logic_1164_all;
entity COUNTER is
port (
clk = in std_logic;
reset : in std_logic;
cs - iIn std_logic;
regdata : in std_logic_vector(15 downto 0);
refresh : out std_logic;
load : in std_logic
):
end COUNTER;

architecture ARCH of COUNTER 1is
signal count: std_logic_vector(15 downto 0);
-— isSpLEVER attributes for flooplanning
attribute UGROUP : string;
attribute PBBOX : string;
attribute PREGION : string;
attribute PRLOC : string;
attribute PRBBOX : string;

attribute UGROUP of count : signal is '"counter_group";

attribute PBBOX of count : signal is "3,3";

attribute PREGION of count : signal is '"counter_region";

attribute PRLOC of count : signal is "R5C10D";

attribute PRBBOX of count : signal is "5,5";

begin
process (clk, reset, regdata)
begin
if (reset="1") then
count <= (others=>"07);
elsift clk®event and clk="1" then
if (load="1") then
count <= regdata;
else

count(15 downto 1) <= count(14 downto 0);

count(0) <= not(count(15));
end if;
end if;
end process;

refresh <= count(0);

end ARCH;

Related Documentation

To supplement the information provided in this chapter, see the following

documentation for related topics and guidelines:
¢ The ispLEVER software online Help
¢ FPGA Libraries Online Help
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TN1056 - LatticeECP/EC and LatticeXP syslO Usage Guide
TN1102 - LatticeECP2 syslO Usage Guide

TN1088 - LatticeSC PURESPEED I/O Usage Guide
TN1091 - MachXO syslO Usage Guide

Precision RTL Synthesis Style Guide

Synplicity FPGA Synthesis Reference Manual

FPGA Design Guide

110



Lattice

Semiconductor
Corporation

Synthesis Tips for Higher
Performance

This chapter provides tips on applying synthesis techniques for both Mentor
Graphics Precision RTL Synthesis and Synplicity Synplify to improve design
performance when you target LatticeECP/EC, LatticeXP, and MachXO
devices.

Depending on your design, one tool could provide slightly better results than
the other, so you may want to try both tools to see which one yields the best
results.
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Register Balancing and Pipelining

You can use several techniques for register balancing and pipelining to
improve the maximum frequency (fyax)-

Retiming

Retiming logic optimization can be used to balance the logic levels among
register pairs to maximize clock rate. In fully synchronized designs, the logic
between the registers determines the fy ax. Keep this in mind during design
synthesis. Although synthesis tools offer retiming as an option, you should
attempt to balance register pairs between critical paths whenever possible.

Pipelining

Another design techniques is pipelining, which is the insertion of an additional
pipeline register to achieve better clock frequency. Clock latency is introduced
by pipelining. If the logic levels in-between registers cannot be reduced or
balanced, try adding allowable pipeline registers. Another way to improve
fuax is to turn on the retiming feature in the synthesis tool.

Always use the pipeline register available in the module generator for
modules such as RAM and DSP blocks. DSP blocks contain input, pipeline,
and output registers. The recommendation is to use all these registers for
best system performance, as long as system latency is allowed.

As shown in Figure 74, adding allowable registers can significantly increase
fuax by creating shorter tgy and tcg delays. The pipeline to output will be the
fuax- This fyax for the DSP is not in the report since it is implied. A warning
note reports that pipeline to output is the critical path. If there is another
register after the output, this fy ax will be reported if it is the critical path.

Figure 74: Fully Pipelining the DSP Block for Best Performance

Dataa | _|
input F
& P o Q o oo/
Datab o Fipeline output
input
tsu
Input register anky > tco >
_ _ tsu tco .
pipe register anly > »
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output register only » *
Al registers Y I > - mna - max o _fteo
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Figure 75 shows the HDL code used to achieve this result.

Figure 75: HDL Code for Fully Pipelining the DSP Block for Best Performance

always @(posedge clock or posedge reset)

begin
begin

end
end

dataa_reg = dataa; //input register

datab_reg = datab; //input register

qout_p = dataa_reg * datab_reg; //pipeline register
out = qout_p; //output register

The following examples show how to reduce or eliminate TLATCH delays.
Figure 76 shows a block diagram of a sample design that causes TLATCH
delay. From this design, the data path goes through two adders, LUT logic,
and pipeline registers. The critical path is from the adders to the LUTs.

Figure 76: Sample Design That Causes TLATCH Delay

Dataa_reg
Datab_reg + [ Q int1 0
D Q = D Q[ —
+ — A
Datac_reg FF1 FE2
Datad_reg + | Clock
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Figure 77 shows the timing report of the design shown in Figure 76.

Figure 77: Timing Report showing TLATCH Delay

assign sumz = sumx + sumy;

Name Fanout Delay (ns) Site
C20UT_DEL  --- 0.496 10L_T42B.CLK to
clock_int)

ROUTE 1 2.442 10L_T42B.INFF to
A1TOFCO_DE --- 0.694 R2C36B.A1 to
ROUTE 1 0.000 R2C36B.FCO to
TLATCH_DEL --- 1.093 R2C36C.FCI1 to
ROUTE 1 2.110 R2C36C.Q0 to
BOTOFCO_DE --- 0.801 R2C34C.BO to
ROUTE 1 0.000 R2C34C.FCO to
FCITOFCO_D --- 0.129 R2C34D.FCI1 to
ROUTE 1 0.000 R2C34D.FCO to
FCITOFCO_D --- 0.129 R2C35A.FCI1 to
ROUTE 1 0.000 R2C35A.FCO to
FCITOFCO_D --- 0.129 R2C35B.FCI1 to
ROUTE 1 0.000 R2C35B.FCO to
FCITOFCO_D --- 0.129 R2C35C.FCI1 to
ROUTE 1 0.000 R2C35C.FCO to
TLATCH_DEL --- 1.093 R2C35D.FCI1 to
ROUTE 1 1.758 R2C35D.Q0 to
CTOF_DEL -—- 0.337 R2C33C.BO to
ROUTE 1 1.038 R2C33C.FO to
CTOF_DEL - 0.337 R2C33B.A0 to
ROUTE 1 0.000 R2C33B.FO0 to

Resource
I0L_T42B. INFF dataa(3)_MGIOL (from

R2C36B.A1

R2C36B.
R2C36C.

FCO
FCI

R2C36C.Q0
R2C34C.BO

R2C34C.
R2C34D.
R2C34D.
R2C35A.
R2C35A.
R2C35B.
R2C35B.
R2C35C.
R2C35C.
R2C35D.

FCO
FCI
FCO
FCI
FCO
FCI
FCO
FCI
FCO
FCI

R2C35D.Q0
R2C33C.BO
R2C33C.FO
R2C33B.A0
R2C33B.FO

R2C33B.

D10

12.715 (42.2% logic, 57.8% route), 11

assign sumx = dataa_reg + datab_reg;

dataa_reg(3)

SLICE_9
rtlcl2_49_add_2/nx2247z6
SLICE_10

sumx(4)

SLICE_2
rtlcl2_48_add_1/nx2247z5
SLICE_3

rtlcl2_48 add_1/nx2247z4
SLICE_4
rtlcl2_48_add_1/nx2247z3
SLICE_5
rtlcl2_48_add_1/nx2247z2
SLICE_6

rtlcl2_48 add_1/nx2247z1
SLICE_7

sumz(14)

SLICE_26

nx6365z3

SLICE_25

rtlc5n12 (to clock_int)

logic levels.

Figure 78 shows the implementation in sample code.

Figure 78: HDL Code used For Redistributing the Register to Reduce the

“TLATCH_DEL" Delay

assign sumx = dataa_reg + datab_reg;
assign sumy = datac_reg + datad_reg;

@always (clock,reset)

q_intl <= sumz

q <= g_intl

Because of hardware limitations, two TLATCH delays of about 1 ns each have
been introduced. If arithmetic outputs are not registered, the carryout goes to

a transparent latch.

Adding registers to the output of the adders eliminates these delays. There is
now registered balancing with no more TLATCH delays, as shown in

Figure 77. By adding registers in RTL, the design that previously ran at 80
MHz now runs at 200 MHz.
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Figure 79 shows a block diagram that eliminates the TLATCH delay by
redistributing the registers.

Figure 79: Redistribute the Register to Reduce the TLATCH_DEL Delay

Dataa_reg Q
+ D
—_FF1 Q_int1 Q
Datab + b« |
atab_reg Q A
+ D FF2
— FF1
Clock

Figure 80 shows the HDL code used to achieve these results.

Figure 80: HDL Code Used to Redistribute the Register to Reduce the
“TLATCH_DEL" Delay

@always (clock,reset)
sumz <= sumx + sumy;
sumx <= dataa_reg + datab_reg;
sumy <= datac_reg + datad_reg;

Assign g <= ™Q_intl;

Figure 81 shows the result of the register redistribution.

Figure 81: Result of Register Redistribution

Name Fan-out Delay (ns) Site Resource
REG_DEL -—= 0.508 R48C31B.CLK to R48C31B.Q1 SLICE_1 (from clock_int)
ROUTE 1 2.708 R48C31B.Q1 to R34C31B.A1 sumx(3)
A1TOFCO_DE --- 0.694 R34C31B.Al to R34C31B.FCO SLICE_18
ROUTE 1 0.000 R34C31B.FCO to R34C31C.FCI rtlc8_16_add_2/nx2247z6
FCITOFCO_D --- 0.129 R34C31C.FCI to R34C31C.FCO SLICE_19
ROUTE 1 0.000 R34C31C.FCO to R34C31D.FCI rtlc8_16_add_2/nx2247z5
FCITOFCO_D --- 0.129 R34C31D.FCI1 to R34C31D.FCO SLICE_20
ROUTE 1 0.000 R34C31D.FCO to R34C32A.FCI rtlc8_16_add_2/nx2247z4
FCITOFCO_D --- 0.129 R34C32A.FCI to R34C32A.FCO SLICE_21
ROUTE 1 0.000 R34C32A.FCO to R34C32B.FCI rtlc8_16_add_2/nx2247z3
FCITOFCO_D --- 0.129 R34C32B.FCI to R34C32B.FCO SLICE_22
ROUTE 1 0.000 R34C32B.FCO to R34C32C.FCI rtlc8_16_add_2/nx2247z2
FCITOFCO_D --- 0.129 R34C32C.FCI1 to R34C32C.FCO SLICE_23
ROUTE 1 0.000 R34C32C.FCO to R34C32D.FCI rtlc8_16_add_2/nx2247z1 (to
clock_int)

4_555 (40.5% logic, 59.5% route), 7 logic levels.

Always register the output of the arithmetic functions to avoid the extra
“TLATCH_DEL” delay.
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Using Dedicated Resource GSR for fy ax Improvement

If your design contains set/reset high-fan-out nets, it is recommended that you
use the dedicated hardwired GSR resource. This will result in less routing
congestion and could improve routability and performance.

If no GSR is used, the design will use the resources of the local set/reset that
can be used for other purposes. Synthesis can automatically infer GSR
whenever possible.

¢ When only one reset exists, always infer GSR.

¢ When more than one reset exists, pick the one that makes the most
sense, especially the one with the biggest fan-out. Then disable the GSR
for others.

¢ Do not infer more than one GSR cell from the RTL.
¢ A mapping error is caused if the GSR comes from different sources. If the
GSR comes from the same source, they can be merged.

GSR can be instantiated in the RTL code to ensure usage. GSR can be
assigned to any source, whether or not it has a small or large fan-out,
depending on whether you want to use the GSR on a low- or high-fan-out
signal. This should be considered during simulation.

Instantiating Dedicated Resource GSR in RTL
Code

The following is a Verilog HDL example that instantiates dedicated resource in
RTL code:

GSR GSR_INST( reset_sigQ)

Next is a VHDL example that instantiates dedicated resource in RTL code:

GSR_INST : GSR
port map (GSR=>reset_sig)

Note

You must name the instance GSR_INST in order for the simulator to recognize the
global implied connections to all sequential components in the design. The GSR cell is
active low (when GSR = ‘0’ reset). In the software, GSR is active low by default. If you
choose active high, you must tie an inverter before it goes to the GSR for correct
simulation.

Improving Timing Through the I/O Register

You can improve the tg, and tcg timing by turning the I/O register on or off.
Turning on the input register can improve the setup. Turning on the output
register can improve the clock-to-out time.

There are different levels of control in synthesis. You can control synthesis:
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¢ Inthe RTL code
¢ In the synthesis tool

¢ Globally or locally

After turning on the input/output register, ensure that the timing can still meet
setup time, as well as fyyax requirements.

Example Coded in Precision RTL Synthesis

Figure 82 shows a Verilog HDL example that turns the I/O register on and off,
using the Precision RTL Synthesis tool. Note the code in bold.

Figure 82: Precision RTL Synthesis Verilog HDL Example Turning the I/0O Register On and Off

module io_flops(q, dataa, datab, clk, rst);

output [15:0] q; //pragma attribute g outff true (or false)
input [7:0] dataa; //pragma attribute dataa inff true (or false)
input [7:0] datab; //pragma attribute datab inff true (or false)

input clk, rst;

reg [15:0] q;

reg [15:0] dataa_reg, datab_reg;
wire [7:0] mux_out;

always @(posedge clk or posedge rst)

begin
if (rst)
begin
dataa_reg = 0;
datab_reg = 0;
end
else
begin
dataa_reg = dataa;
datab_reg = datab;
end
end

assign mux_out = dataa_reg + datab_reg;
always @(posedge clk or posedge rst)

begin
if (rst)
q = 0;
else
q = mux_out;
end
endmodule
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Figure 83 shows a VHDL example that turns the 1/O register on and off, using
the Precision RTL Synthesis tool. Note the code in bold.

Figure 83: Precision RTL Synthesis VHDL Example Turning the I/O
Register On and Off

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity io_flops is
port ( q : out std_logic_vector (7 downto 0);
dataa : in std_logic_vector (7 downto 0);
datab : in std_logic_vector (7 downto 0);
clk : in std_logic);
-- default is turn on the io flops.
attribute inff : boolean;
attribute outff : boolean;
attribute outff of g : signal is true;
attribute inff of dataa : signal is true;
attribute inff of datab : signal is true;
end io_flops;
architecture rtl of io_flops is
signal dataa_reg : std_logic_vector(7 downto 0 ) ;
signal datab_reg : std_logic_vector(7 downto 0 ) ;

signal qg_int : std_logic_vector(7 downto O ) ;
begin

reg_input : process (clk)

begin

if (clk"event and clk = "1") then
dataa_reg <= dataa ;
datab_reg <= datab ;
end if ;
end process reg_input ;
g_int <= dataa_reg + datab_reg;
reg_output : process (clk)

begin
if (clkevent and clk = "1") then
q <= g_int;
end if ;

end process reg_output;

end rtl;
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Examples Coded in Synplify

Figure 84 shows a Verilog HDL example that turns the I/O register on and off,
using the Synplify synthesis tool. Its effect is similar to that of the DIN and
DOUT attribute. But “syn_useioff” can be used for both inputs and outputs.
Note the code in bold.

Figure 84: Synplify Verilog HDL Example Turning the I/O Register On

and Off

module io_flops(q, dataa, datab, clk, rst);
output [15:0] q; // synthesis syn_useioff = 1 (or 0)
input [7:0] dataa; //synthesis syn_useioff = 1 (or 0)
input [7:0] datab; //synthesis syn_useloff = 1 (or 0)

input clk, rst;

reg [15:0] q;

reg [15:0] dataa_reg, datab_reg;
wire [7:0] mux_out;

always @(posedge clk or posedge rst)

begin
if (rst)
begin
dataa_reg = O;
datab_reg = 0O;
end
else
begin
dataa_reg = dataa;
datab_reg = datab;
end
end

assign mux_out = dataa_reg + datab_reg;
always @(posedge clk or posedge rst)

begin
it (rst)
q = 0;
else
q = mux_out;
end
endmodule

Figure 85 shows a VHDL example that turns the 1/O register on and off, using

FPGA Design Guide 119



Synthesis Tips for Higher Performance

Improving Timing Through the 1/O Register

the Synplify synthesis tool. Note the code in bold.

Figure 85: Synplicity VHDL Example Turning the I/O Register On and Off

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity io_flops is
: out std_logic_vector (7 downto 0);

port ( q

dataa :
datab :
clk :

in std_logic_vector (7 downto 0);
in std_logic_vector (7 downto 0);
in std_logic);

attribute syn_useioff : boolean;

attribute syn_useioff of q : signal is true;
attribute syn_useioff of dataa : signal is true;
attribute syn_useioff of datab : signal is true;

end io_flops;

architecture rtl of io_flops is

signal dataa_reg
signal datab_reg
signal ¢_int
begin

: std_logic_vector(7 downto 0 ) ;
: std_logic_vector(7 downto O ) ;
: std_logic_vector(7 downto O ) ;

reg_input : process (clk)

begin

if (clk"event and clk = "1") then
dataa_reg <= dataa ;
datab_reg <= datab ;

end if ;

end process reg_input ;
g_int <= dataa_reg + datab_reg;
reg_output : process (clk)

begin

if (clk"event and clk = "1") then

q <= g_int;

end if ;

end process reg_output;

end rtl;
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Adding Delays to Input Registers

Designs that have registered inputs can incur hold-time violations if the clock
path is too fast. Therefore, a feature was added in silicon to give this fixed
delay on the input register. Input registered must be inferred before the fixed
delay can be turned on.

Examples Coded in Precision RTL Synthesis

Figure 86 shows a Verilog HDL example that adds delays to the input register,
using the Precision RTL Synthesis tool. Note the code in bold.

Figure 86: Precision RTL Synthesis Verilog HDL Example of Adding Delays to Input Register

module io_flops(qg, dataa, datab, clk, rst);
output [15:0] q;
input [7:0] dataa; //pragma attribute dataa Inff true
//pragma attribute dataa fixeddelay
input [7:0] datab;
input clk, rst;
reg [15:0] q;
reg [15:0] dataa_reg, datab_reg;
wire [7:0] mux_out;

always @(posedge clk or posedge rst)

begin
if (rst)
begin
dataa_reg = 0O;
datab_reg = O;
end
else
begin
dataa_reg = dataa;
datab_reg = datab;
end
end

assign mux_out = dataa_reg + datab_reg;
always @(posedge clk or posedge rst)

begin
if (rst)
q = 0;
else
q = mux_out;
end
endmodule
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Figure 87 shows a VHDL example that adds delays to the input register, using
the Precision RTL Synthesis tool. Note the code in bold.

Figure 87: Precision RTL Synthesis VHDL Example Adding Delays to Input Register

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity io_flops is
port ( q : out std_logic_vector (7 downto 0);
dataa : in std_logic_vector (7 downto 0);
datab : in std_logic_vector (7 downto 0);
clk : in std_logic);
attribute fixeddelay : string;
attribute fixeddelay of dataa : signal is “true”;
end io_flops;
architecture rtl of io_flops is
signal dataa_reg : std_logic_vector(7 downto 0 ) ;
signal datab_reg : std_logic_vector(7 downto 0 ) ;

signal ¢_int : std_logic_vector(7 downto O ) ;
begin

reg_input : process (clk)

begin

if (clk®event and clk = "1%) then
dataa_reg <= dataa ;
datab_reg <= datab ;
end if ;
end process reg_input ;
g_int <= dataa_reg + datab_reg;
reg_output : process (clk)
begin
if (clk"event and clk = "1") then
q <= g_int;
end if ;
end process reg_output;
end rtl;
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Examples Coded in Synplify

Figure 88 shows a Verilog HDL example that adds delays to the input register,
using the Synplify synthesis tool. Note the code in bold.

Figure 88: Synplify Verilog HDL Example of Adding Delays to Input Register

module io_flops(q, dataa, datab, clk, rst);

output [15:0] q;

input [7:0] dataa; //synthesis syn_useioff = 1 FIXEDDELAY=TRUE
input [7:0] datab;
input clk, rst;

reg [15:0] qg;

reg [15:0] dataa_reg, datab_reg;

wire [7:0] mux_out;

always @(posedge clk or posedge rst)

begin
it (rst)
begin
dataa_reg = 0;
datab_reg = 0;
end
else
begin
dataa_reg = dataa;
datab_reg = datab;
end
end

assign mux_out = dataa_reg + datab_reg;
always @(posedge clk or posedge rst)

begin
if (rst)
q = 0;
else
q = mux_out;
end
endmodule
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Figure 89: Synplify VHDL Example of Adding Delays to Input Register

Figure 89 shows a VHDL example that adds delays to the input register, using

the Synplify synthesis tool. Note the code in bold.

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity io_flops is

port (

q - out std_logic_vector (7 downto 0);

dataa : in std_logic_vector (7 downto 0);
datab : in std_logic_vector (7 downto 0);
clk : in std_logic);

attribute
attribute
attribute
attribute

end i1o_flops;

syn_useioff : boolean;
FIXEDDELAY: string;

syn_useioff of dataa : signal is true;
FIXEDDELAY of dataa : signal is “TRUE”;

architecture rtl of io_flops is
signal dataa_reg : std_logic_vector(7 downto 0 ) ;
signal datab_reg : std_logic_vector(7 downto 0 ) ;

signal qg_int
begin

: std_logic_vector(7 downto O ) ;

reg_input : process (clk)

begin

if (clk"event and clk = "1") then

end if ;

dataa_reg <= dataa ;
datab_reg <= datab ;

end process reg_input ;
g_int <= dataa_reg + datab_reg;

reg_output :
begin

process (clk)

if (clk®event and clk = "1%) then
q <= g_int;

end if ;

end process reg_output;

end rtl;

Maximum Fan-Out Control for fy ax Improvement

Maximum fan-out can be selectively applied to the critical path to reduce fan-

out. This attribute in the design will override the global maximum fan-out

control.

In most cases, if registers are duplicated to reduce the maximum fan-out, it

will increase the register count in the design.
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Examples Coded in Synplify

Figure 90 shows a Verilog HDL example of maximum fan-out control coded
with the Synplify synthesis tool. Note the code in bold.

Figure 90: Synplify Verilog HDL Example of MAX Fan-Out Control

module test (registered_ data_ out, clock, data_ in);

output [31: 0] registered_ data_ out;

input clock;

input [31: 0] data_ in /* synthesis syn_ maxfan= 1000 */;

reg [31: 0] registered_ data_ out /* synthesis syn_ maxfan= 1000 */;

Figure 91 shows a VHDL example of maximum fan-out control coded with the
Synplify synthesis tool. Note the code in bold.

Figure 91: Synplify VHDL Example of Maximum Fan-Out Control

entity test is

port( clock : in bit;
data_in : in bit_vector( 31 downto 0);
egistered_data_out: out bit_ vector( 31 downto 0) )

attribute syn_maxfan : integer;
attribute syn_maxfan of data_in : signal is 1000;

Examples Coded in Precision RTL Synthesis

Figure 92 shows a Verilog HDL example of maximum fan-out control coded in
the Precision RTL Synthesis tool. Note the code in bold.

Figure 92: Precision RTL Synthesis Verilog HDL Example of Maximum Fan-Out Control

module test (registered_data_out, clock, data_ in);

output [31: 0] registered_data out;

input clock;

input [31: 0] data_in

reg [31: 0] registered_ data_out //pragma attribute max_fanout 100;

Figure 93 shows a VHDL example of maximum fan-out control coded with the
Precision RTL Synthesis tool. Note the code in bold.

Figure 93: Precision RTL Synthesis VHDL Example of Maximum Fan-Out Control

entity test is

port( clock : in bit;
data_in : in bit_vector( 31 downto 0);
egistered_data_out: out bit_ vector( 31 downto 0) )

attribute max_fanout : integer;
attribute max_fanout of data_in : signal is 10;
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Clock-Enable Control for fyyax Improvement

The clock-enable net is typically a high-fan-out net driving several D flip-flops.

The placement and routing process uses the fan-out to decide whether to
implement the clock enable by using a secondary clock resource, which
sometimes incurs a larger delay (approximately 3 ns). You can specify a
constraint to avoid using the secondary clock.

If some clock enables are in the critical path, you can identify them in the
source code, and you can set the clock enable off to avoid a delay.

Examples Coded in Synplify

Figure 94 shows a Verilog HDL example of clock-enable control coded with
the Synplify synthesis tool. Note the code in bold.

Figure 94: Synplify Verilog HDL Example of Clock_Enable Control

reg [3: 0] q /* synthesis syn_useenables = 0 */;
always @( posedge clk)

it (enable)

q <=d:

Figure 95 shows a VHDL example of clock-enable control coded with the
Synplify synthesis tool. Note the code in bold.

Figure 95: Synplify VHDL Example of Clock_Enable Control

signal g_int : std_logic_vector( 3 downto 0);
Attribute syn_useenables : boolean;

attribute syn_useenables of g_int : signal is false;
process( clk)

begin
if (clk"event and clk = "1") then
if (enable = "1%) then
g_int <= d;
end if;
end if;

end process;
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Examples Coded in Precision RTL Synthesis

Figure 96 shows a Verilog HDL example of clock-enable control coded with
the Precision RTL Synthesis tool. Note the code in bold.

Figure 96: Precision RTL Synthesis Verilog HDL Example of Clock-
Enable Control

General Constraint Considerations

reg [3: 0] q // pragma attribute q use_dffenables false;
always @( posedge clk)

it (enable)

q <=d;

Figure 97 shows a VHDL example of clock-enable control coded with the
Precision RTL Synthesis tool. Note the code in bold.

Figure 97: Precision RTL Synthesis VHDL Example of Clock-Enable
Control

signal qg_int : std_logic_vector( 3 downto 0);
Attribute use_dffenables : boolean;
attribute use_dffenables of g_int : signal is false;

begin

process( clk)

begin

if (clkevent and clk = "1%) then
if (enable = "1%) then

g_int <= d;
end if;
end if;

end process;

General Constraint Considerations

General constraint considerations include the following:

¢ Synthesis constraints are sometimes different from those in placement
and routing.

iSpLEVER tools cannot “merge” the timing constraints from synthesis.
For Synplify, over-constraining generally produce better results.

Do not over-constrain the placement and routing.

* & o o

Under-constrain the design the first time. Try to estimate the design
performance, then try to optimize it.

L 4

Precision retiming is very sensitive to timing constraints.

For multiple clock designs, put adequate constraint on each clock, and do
not put same constraints on all clocks. For example, in a design with two

clocks, clock 1 can operate at 100 MHz, and the requirement is 40 MHz;

clock 2 can operate at 80 MHz, and the requirement is 120 MHz. It is
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better to set clock 1 to 50 MHz and clock 2 to 140, instead of setting both
to 140 MHz.

Block-Level Synthesis Methods in Synplify

As designs become bigger, such as designs with multiple interfaces between
blocks, it is recommended that you modularize them. In Synplify, block-level
synthesis methods are needed to keep the modules intact.

I/Os are not inserted on the top level. They are treated as a macro and not
optimized at compilation.

You can control I/O insertion globally or on a port-by-port basis. You can use
the appropriate attribute before synthesizing an entire design to check the
area requirements. If you disable automatic I/O insertion, the design will not
have any I/O pads, unless you instantiate them manually.

Compile the block with no 1/0O buffer insertion by:

¢ Setting syn_force_pad to O

¢ Attaching the syn_hier = macro property or setting syn_black_box to true

You can compile this as part of your larger design.

Block-Level Synthesis Methods in Precision
RTL Synthesis

In Precision RTL Synthesis, block-level synthesis methods are needed to
keep the modules intact.

Compile the block with no 1/O buffer insertion:
¢ Setnopad to true on each port.

¢ Attach the dont_touch property to the module.

You can compile this as part of your bigger design.

Note

For some cores with pre-inserted IO pads, such as PCI, you must apply
black_box_pad_pin to avoid aditional I/O insertion.
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Turning Off Mapping DSP Multipliers in RTL

The following examples show how to turn off mapping DSP multipliers in the
Synplify and Precision RTL Synthesis tools.

Examples Coded with Synplify

Figure 98 shows a Verilog HDL example, coded in the Synplify synthesis tool,
that turns off mapping DSP multipliers. Note the code in bold.

Figure 98: Synplify Verilog HDL Example Turning Off Mapping DSP Multiplier

module multi_resource(qout, dataa, datab, clock, reset);

input [17:0] dataa, datab;
input clock, reset;
output [17:0] qout;

reg [35:0] gout;
reg [35:0] qout_p;
reg [35:0] dataa_reg;
reg [35:0] datab_reg;
wire [35:0] qout_mult /* Synthesis syn_multstyle="logic" */;
assign qout_mult = dataa_reg * datab_reg ;
always @(posedge clock or posedge reset)

begin
if (reset)
begin
dataa_reg = O;
datab_reg = 0;
qout = O;
end
else
begin
dataa_reg = dataa;
datab_reg = datab;
qout = qout_mult;
end
end
endmodule
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Figure 99 shows a VHDL example, coded with the Synplify synthesis tool, that
turns off mapping DSP multipliers. Note the code in bold.

Figure 99: Synplify VHDL Example Turning Off Mapping DSP Multiplier

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity multi_resource is
port ( q : out std_logic_vector (35 downto 0);
dataa : in std_logic_vector (17 downto 0);
datab : in std_logic_vector (17 downto 0);
rst - in std_logic;
clk : in std_logic);
end multi_resource;
architecture rtl of multi_resource is
signal dataa_reg : std_logic_vector(17 downto 0 ) ;
signal datab_reg : std_logic_vector(17 downto 0 ) ;
signal qg_int : std_logic_vector(35 downto 0 ) ;
attribute syn_multstyle : string;
attribute syn_multstyle of g_int : signal is "logic";

begin
reg_input : process (clk)
begin
if (clk"event and clk = "1") then
dataa_reg <= dataa ;
datab_reg <= datab ;
end if ;
end process reg_input ;
g_int <= dataa_reg * datab_reg;
reg_output : process (clk)
begin
if (clk"event and clk = "1") then
q <= g_int;
end if ;
end process reg_output;
end rtl;
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Examples Coded with Precision RTL Synthesis

Figure 100 shows a Verilog HDL example, coded with the Precision RTL
Synthesis tool, that turns off mapping DSP multipliers. Note the code in bold.

Figure 100: Precision RTL Synthesis Verilog HDL ExampleTurning Off Mapping DSP Multiplier

module multi_resource(qout, dataa, datab, clock, reset);

input [17:0] dataa, datab;

input clock, reset;

output [35:0] qout;

reg [35:0] gout;

reg [35:0] dataa_reg;

reg [35:0] datab_reg;

wire [35:0] qout_mult;
assign qout_mult = dataa_reg * datab_reg;

//pragma attribute qout_mult dedicated_mult OFF
// Currently does not work, need to work around in setting the operator in the GUI

always @(posedge clock or posedge reset)

begin
if (reset)
begin
dataa_reg = O;
datab_reg = 0
qout = O;
end
else
begin
dataa_reg = dataa;
datab_reg = datab
qout = qout_mult;
end
end
endmodule
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Figure 101 shows a VHDL example, coded with the Precision RTL Synthesis
tool, that turns off mapping DSP multipliers. Note the code in bold.

Figure 101: Precision RTL Synthesis VHDL Example Turning Off
Mapping DSP Multiplier

library ieee;
use ieee.std_logic_1164_all;
use ieee.std_logic_unsigned.all;
entity multi_resource is
port ( q : out std_logic_vector (35 downto 0);
dataa : in std_logic_vector (17 downto 0);
datab : in std_logic_vector (17 downto 0);
rst - in std_logic;
clk : in std_logic);
end multi_resource;
architecture rtl of multi_resource is
signal dataa_reg : std_logic_vector(17 downto 0 ) ;
signal datab_reg : std_logic_vector(17 downto 0 ) ;
signal qg_int : std_logic_vector(35 downto 0 ) ;
attribute dedicated_mult : string;
attribute dedicated_mult of g_int : signal is "OFF";
begin
reg_input : process (clk)
begin
if (clk®event and clk = "1%) then
dataa_reg <= dataa ;
datab_reg <= datab ;
end if ;
end process reg_input ;
g_int <= dataa_reg * datab_reg;
reg_output : process (clk)
begin
if (clk"event and clk = "1%) then
q <= g_int;
end if ;
end process reg_output;
end rtl;

Achieving Improved Synthesis Results by Assigning
Black-Box Timing to Large Embedded Blocks

If you instantiate a large embedded block like DSP or EBR, synthesis will treat
the large block as a “black-box.” The timing information will be ignored in the
synthesis tool, and sometimes a warning message will be displayed during
synthesis.

If the large block is part of the critical path, you can assign timing delay
properties to the black-box so that the synthesis tool can apply the correct
timing for the synthesis and mapping processes.
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Achieving Improved Synthesis Results by Assigning Black-

You can make changes to these timing delays on the black-box to over-
compensate or under-compensate timing in the remaining portion of the

critical path.

Table 19 shows supported Synplicity syntax that allows you to apply black-
box timing to instantiated blocks.

Table 19: Synplicity Syntax for Black-Box Timing

Syntax Description

syn_isclock Specifies a clock port on a black-box.

syn_tpd<n> Timing propagation for combinational delay through the
black box.

syn_tsu<n> Timing setup delay required for input pins relative to the
clock.

syn_tco<n> Timing clock to output delay through the black-box.

Figure 102 shows an example of applying black-box timing in VHDL using

Synplify.

Figure 102: VHDL Black-Box Timing Example Using Synplify

COMPONENT spril6x4a

PORT(
dio
dil
di2
di3
ck
wre

ado :
adl :
ad2 :
ad3 :
doO :
: OUT std_logic;
: OUT std_logic;

dol
do2
do3

END COMPONENT;

IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;

IN std_logic;

IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;
OUT std_logic;

OUT std_logic);

attribute syn_tpdl of rcfl6x4z : component is
"'ado,adl,ad2,ad3 -> do0O,dol,do2,do3 = 1.1";

attribute syn_tsul of rcfl6x4z : component is
""ado,adl,ad2,ad3 -> ck = 0.5";

attribute syn_tsu2 of rcfl6x4z : component is
"wre -> ck = 0.5";
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Achieving Improved Synthesis Results by Assigning Bla

ck-

Figure 103 shows an example of applying black-box timing in Verilog using
Synplify.

Figure 103: Verilog Black-Box Timing Example Using Synplify

module SPR16X4A (D10, DI1, DI2, DI3, ADO, AD1, AD2, AD3, WRE, CK,
DOO, DO1, DO2, DO3)

/* synthesis black_box

syn_tpd1="AD0,AD1,AD2,AD3->D00,D01,D01,D03 =1.4"

syn_tsul="AD0O,AD1,AD2,AD3->CK = 0.5"

syn_tsu2="WRE->CK = 0.5" */;

input ADO,AD1,AD2,AD3,D10, DI1, DI2, DI3, CK, WRE;
output DOO, DO1, DO2, DO3;
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Strategies for Timing
Closure

This chapter describes strategies that will help achieve timing closure for the
most aggressive design requirements. It begins with a brief description of the
seven steps for timing closure, followed by instructions for implementing each
of these steps using the ispLEVER software.

Seven Steps to Timing Closure

A timing closure strategy always begins with the creation of meaningful and
efficient HDL code. For information about coding techniques for FPGA
designs, see “HDL Synthesis Coding Guidelines” on page 57.

After writing FPGA-friendly code, use the following seven-step strategy to
help achieve timing closure:

1. Set FPGA preferences to achieve timing goals.

Along with a good functional design, a good set of FPGA timing
preferences are crucial for meeting timing goals.

See “Constraining Designs” on page 136.
2. Run an initial Place & Route (PAR) Design process.

Select timing-driven placement and specify a low placement effort level for
this first PAR process.

See “Using the Place and Route Software (PAR)” on page 151.
3. Analyze timing.

Run the Timing Reporter and Circuit Evaluator (TRACE) after you run the
initial Place & Route Design process. Examine the timing information in
the TRACE report, Map report, Place and Route report, and PAD report.

See “Performing Static Timing Analysis” on page 152.
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4. Modify timing preferences.

Assign primary and secondary clocks, tune 1/O timing with PLLs, and
group components along critical paths.

See “Adding and Modifying Timing Preferences” on page 145
5. Run a second Place & Route Design process.

Use timing-driven placement, and experiment with increased placement
effort and multiple routing passes.

See “Controlling Placement and Routing” on page 165.
6. Analyze timing.

Identify high-fan-out nets, critical path nets, and long delay paths.
7. Floorplan to direct the physical layout of the circuit.

For designs that do not meet performance goals, use groups and regions
to place components closer together and shorten routing distances. Use
reiterative floorplanning, repeating steps 5 through 7 until performance
goals are achieved.

See “Floorplanning the Design” on page 173.

Constraining Designs

FPGA designs require effective constraints in order to optimize the usage of
resources. For Lattice FPGA devices, such design constraints are referred to
as preferences.

You can set and edit design preferences at multiple points in the FPGA design
flow. New and modified preferences are saved to the logical preference file
(.Ipf).The logical equivalents of physical preferences, such as groups, regions,
and pin assignments, are also saved to the logical preference file with the
Save command in the Design Planner. During the Map Design process, these
physical preferences are written to the physical preference file (.prf).

Logical Preference File (.Ipf)

The logical preference file (.Ipf) contains all the design constraints that you
specify for an FPGA design after the Build Database process. All preferences
that are created or modified are written to the .Ipf. You can add or modify
preferences before mapping, after mapping, or after placement and routing.
Post-map or post-PAR changes are implemented by rerunning the Map
Design process.

HDL-based attributes are a potential source for preferences. HDL attributes
are converted to EDIF properties by logic synthesis, and in some cases they
are converted into preferences by the design mapper. After the Build
Database process, you can view some attributes as preferences in the Design
Planner. After they are modified, they are also listed in the .Ipf, and these
modified preferences take precedence over the HDL.
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For more information about using HDL attributes, refer to the “HDL Attributes”
section of the ispLEVER FPGA Design online Help.

Figure 104 shows a small example from an ASCII logical preference file.

Figure 104: Sample Logical Preference File

FREQUENCY PORT "tx_clk™ 50 MHz ;
FREQUENCY PORT “rx_clk™ 50 MHz ;
INPUT_SETUP “portl” 1 NS CLKNET "tx_clk";
CLOCK_TO_OUT “port2" 8 NS CLKNET "rx_clk";
LOCATE COMP *portl™ SITE "B17" ;
LOCATE COMP *port2" SITE “C16" ;
LOCATE COMP *tx_clk™ SITE "B11" ;
LOCATE COMP *rx_clk™ SITE "C13" ;

You can apply two types of preferences: timing and location. Timing
preferences control the timed paths in an FPGA design. Location preferences
affix the placement of design components in the FPGA array and are most
commonly used for setting the 1/0 pinout.
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How ispLEVER Uses the Logical Preference File

The ispLEVER software uses the logical preference file (.Ipf) to guide the tools
while implementing the functional design from the EDIF file. The ispLEVER
Map Design process (MAP) reads the logical preference file to map the logical
elements and generates a physical preference file (.prf) that is used by PAR
and TRACE. This flow is illustrated in Figure 105.

Figure 105: Project Preferences Applied to MAP, PAR, and TRACE

> MAP

project.Ipf Map Design

|—| project.prf —

— — —— —=| Map TRACE Report

I
I
I
I
I
I
I
I
|
|
'
I
I
I
|
I
I
I
I
I
I
I
I

PAR
Place & Route Design

Project.ncd

— — - | Place & Route TRACE Report

l

I Project.twr
MAP

The ispLEVER Map Design process (MAP) takes the logical design from the
Build Database process and maps the logical elements to specific elements,
such as slices and PIOs. The logical preference file (.Ipf) is used as an input
to MAP. The mapper filters the preference file to remove any syntax errors or
invalid preferences. Invalid preferences are preferences that do not
correspond to any logical or physical elements that are in the design. Invalid
preferences are most often caused by a typographical error in the element
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name.

MAP generates a physical preference file (.prf), which contains all of the valid
preferences contained in the logical preference file, as well as all of the
attributes that were included in the EDIF file through the HDL code. This file is
used for placement, routing, and static timing analysis.

TRACE

You have the option, both after mapping and after placement and routing, of
performing static timing analysis on the physical design (.ncd) file, using the
Timing Reporter and Circuit Evaluator (TRACE). TRACE takes the physical
preference file as input and uses the timing constraints contained in it to
produce a report file.

To run TRACE for a pre-routed design:

¢ In the Project Navigator, select the target device, and double-click Map
TRACE Report in the Processes pane.

The Map TRACE report (.tw1l file) appears in the output pane on the
bottom right.

You should examine the results of the Map TRACE report before continuing
on to placement and routing. Considerations include warnings, errors, and
potential design issues; for example, a high number of logic levels might
severely restrict design performance, and performance might benefit from a
different partitioning or pipelining. Since no routing exists yet between logical
connections, the Map TRACE delay report reflects an ideal situation—usually
about twice the performance that will be shown in the PAR TRACE report (.twr
file). Therefore, you should anticipate that routing delays will represent 40-50
percent of the delay along combinatorial paths.

To run TRACE for a post-routed design:

<+ In the Project Navigator, select the target device, and double-click Place
& Route TRACE Report in the Processes pane.

The PAR TRACE report appears in the output pane.

Timing checkpoints are a feature of the Project Navigator where TRACE is
automatically run before and after PAR and a report is output to the
Automake.log file. To access checkpoint options, choose Tools > Timing
Checkpoint Options and use the Timing Checkpoint Options dialog box to
specify whether the forward progress should stop or continue when the
checkpoint fails.

For more information about TRACE, see “Performing Static Timing Analysis”
on page 152.
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PAR

The Place and Route (PAR) process uses both location and timing
preferences to drive the placement and routing of the design in the FPGA
device. The output of PAR is a placed and routed design, as well as a report
and 1/O pinout file.

Creating and Editing Preferences

Creating design preferences is a process that continuously evolves
throughout the design process. Certain preferences are used during the map
phase, and others are applied during placement and routing. Finally,
preferences are interpreted by reporting tools such as TRACE for static timing
analysis to provide important information on the final design. Preferences can
be applied at many points in the design flow process.

Note

Location preferences can be assigned as attributes in the HDL code for device
floorplanning. Such preferences are included in the EDIF file after synthesis, and they
are carried into the physical preference file created by MAP. See “Floorplanning the
Design” on page 173.

Place-and-Route Preference Format
Remember the following points about the preference file format:

¢ The preference file can contain any number of preferences and any
number of comments in any order.

¢ Comments must be preceded by the pound sign (#) or double slashes (//).

¢ The ispLEVER programs automatically comment or ignore illegal
preferences.

Rules for Preferences
Observe the following precedence rules when setting preferences:

¢ Preferences saved in the .Ipf take precedence over HDL preferences.

¢ When more than one preference applies to a net or path, more specific
preferences are honored before less specific ones. For example,
individual net or path preferences supersede group (bus) preferences,
and group preferences supersede global preferences.

¢ If there is more than one preference at the same level of specificity for a
net or path object, the last such preference in the preference file takes
precedence.
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To illustrate, suppose that the preference file contains the following
preferences:

MAXDELAY NET W 10 NS;

MAXDELAY ALLNETS 30 NS;

DEFINE BUS B NET Y NET Z;
DEFINE BUS A NET Y NET X NET W;
MAXDELAY BUS B 20 NS;

MAXDELAY BUS A 25 NS;

MAXDELAY NET W 15 NS;

Net W gets 15 nanoseconds because this preference is more specific than
BUS or ALLNETS, and it comes after the 10-nanosecond preference.

Net X gets 25 nanoseconds because the BUS A preference is more specific
than ALLNETS.

Net Y gets 25 nanoseconds because the BUS A preference comes after the
Bus B preference.

Net Z gets 20 nanoseconds because the BUS preference is more specific
than ALLNETS.

All other nets get 30 nanoseconds.

Logical and Physical Preferences

Timing preferences can be assigned in two design domains: logical and
physical. The logical domain consists of the design element names of the
EDIF netlist. These names are based on the hierarchy level and register
names in the design. The physical domain consists of the physical elements
that the mapper has selected for the device implementation.

Location preferences in the preference file can only be applied to physical
elements or components of the design. Location preferences are used by the
place-and-route tool, which works on the mapped physical design. To make
this process easier for you, the mapper keeps top-level port names the same
as those found in the logical design (or EDIF netlist). Fixing 1/0O pinouts using
location preferences can be based on known component names.

For logical preferences, the preference file also supports a feature known as
“wildcards.” Wildcards enable you to assign preferences to multiple design
elements without having to assign a preference to each element. For
example, to apply a clock_to_out preference on an entire bus, outa(31:0), you
could use the following preference:

CLOCK_TO_OUT ™"outa*" 8 NS CLKNET

In the preference file, it is possible to create conflicts between preferences.
These conflicts typically occur when a global preference covers a path that is
covered specifically by another preference. In this situation, the more specific
preference is used for the specified path. If the situation arises where both
preferences are at the same level, the ispLEVER software uses the
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preference that is last in the file. Table 20 summarizes the differences
between logical and physical preferences.

Table 20: Logical vs. Physical Preferences

Logical Physical

Based on your design (registers, 1/0 Based on mapped design (PFUs,

ports) SLICES, and PIOs)

Can write in terms of register names, port Need to know component (PFU, SLICE,

names or PIO) names defined by the mapper

Wildcards allowed No wildcards allowed

Front-end oriented (EDIF) Back-end oriented (.ncd): nets,
components

Preference Editing Tools

The ispLEVER software provides two tools for editing preferences: the ASCII
logical preference file and the Design Planner.

ASCII Logical Preference File (.Ipf)
The ASCII logical preference file enables you to edit preferences in a text

editor after you build the database.
To edit preferences in the ASCII logical preference file:
¢ In the Project Navigator, double-click Edit Preferences (ASCII).

The file opens in the default ispLEVER Text Editor or in the text editor that
you have selected in the ispLEVER Environment Options dialog box.

Figure 106: ASCII Logical Preference File

¥ Teut Editor - [verilog_hierarchical_design.Ipf] 10l =|
File Edit WYiew Templates Tools Options Window Help - |ﬁ'|1|
rEEEEREERREEEE

COMMERCIAL ; =]

BLOCK ASYNCPATHS ;
BLOCK RESETFATHS ;
MULTICYCLE FROM CELL "rotate 1/q 4 Q" CLKNET "clk" TO CELL
UGRCUFP "Group 0"
BLIMAME rotate 1/q
BLIMAME rotate 1/q
BLIMAME rotate 1/q
BLIMAME rotate 1/q
UGRCUFP "Group 1"
BLKMAME rotate l/iq 7 Q
BLKMAME rotate l/igq & Q
BLIMAME rotate l/q 5 &
BLIMAME rotate 1/q 5 7;
LOCATE COMP "k 3" SITE "Wl0d" ;

Q
0
1
Q;

=R

LOCATE COMP "k 2" SITE "W1ll" ; -
QN : »
[Ln 1 Cal1 [45 [ [wR [Fec Off [No'wrap [DOS [INS [NOM [ [Document:
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Design Planner

The ispLEVER Design Planner enables you to create and edit preferences in
the pre-map stage, as well as the post-map and post-PAR stages.

Pre-Map Design Planner In the pre-map stage, the Design Planner opens
the Spreadsheet View and the Package View for setting timing and
constraints and making pin assignments. Many of the FPGA preferences can
be edited within the Spreadsheet View of the Design Planner, including global
and component-specific preferences. The Design Planner provides a
spreadsheet format for each preference and organizes them in individual tabs
across the bottom of the right pane, as shown in Figure 107.

Figure 107: Pre-Map Design Planner Spreadsheet View

H SpreadSheet Yiew 10l =|
File Edit Wiew Preference Tools Help
HER s m@Bo 2 DO =L £ a4 8
- fpga_demo PIf Type Ohject Type |  MetPort | TimefFrequency | PAR_ADJ |
54 Input Ports 1 |Freguency  |CLKNET pll_nclk 133.000000 MHZ |0.000000
= clk 2 |Frequency  |CLKNET ufl_ddr_pll_e... |133.000000 MHZ  |0.000000
= reset n 3 |Freguency CLKMNET Cclk_int 133.000000 MHZ  |D.000000
B sys_add(23:0)
= 5ys5_adsh

= sys_dly_200us
B sys_dmsel{1:0)
D Sys_r_wn

- # Output Ports
& Bidir Parts

H; Mets
@ Cells

FLL Aftributes

Elock
Port Aftributes |

InAout Clock MUltiCycleMaxDelay Derating
Met Attributes | Cell Atributes | Global |

Period/Fregquency
Clock Aftributes |

Ready |

The Spreadsheet View toolbar launches dialog boxes for setting timing
preferences, including Period and Frequency, Block, Input Setup/Clock-to-
Out, Multicycle/Maxdelay. New and modified preferences that are saved in the
Design Planner are written to the logical preference file.

To run the pre-map Design Planner, select the targeted device in the Project
Navigator, and then do the following:

¢ Double-click Design Planner (Pre-Map).

The Pre-Map Design Planner loads the logical design database (.ngd) and
displays the Spreadsheet View and the Package View.

Post-Map Design Planner The Post-Map Design Planner enables you to
create and edit location, group, and region preferences and view the
assignments in a floorplan layout. All design changes, including the logical
equivalents of physical groups and regions, are saved to the logical
preference file.

To run the post-map Design Planner, select the targeted device in the Project
Navigator, and then do the following:
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¢ Double-click Design Planner (Post-Map) or Design Planner (Post-
PAR).

See “Using the Design Planner Interface” on page 192.

Preference Flow

The ispLEVER preference flow is designed to allow you to work with the
FPGA design in terms of high-level logical elements, such as ports, nets,
registers, and special Lattice Semiconductor blocks derived from the RTL
source through logic synthesis. The ASCII logical preference file (.Ipf) is the
primary interface for defining timing and location constraints in terms of logical
elements. This preference flow is shown in Figure 138 on page 192.

The .Ipf is interpreted by the design mapper (MAP) and converts, when
necessary, preferences that are written in terms of logical elements into
physical preferences, such as PIOs, slices, and ASIC blocks. These new
preferences are written to an ASCII physical preference file (.prf), which is
used by the placement and routing (PAR) and static timing analysis (TRACE)
tools.

In some implementation scenarios, you may need to interact with the ASCII
physical preference file (.prf) directly, using a text editor, Design Planner, or
the EPIC Device Editor. The .prf file always stores preferences that refer to
physical elements.

For each new project, the ispLEVER software creates a logical preference file
(.Ipf) for the design that includes some default preferences. However, most
FPGA designs require additional timing and location constraints for placement
and routing or static timing analysis.

Preferences can originate from one of the preference editing tools just
described, the input EDIF netlist, or as a direct output of your logic synthesis
tool.

The preferences that appear in the .Ipf file depend on the process that was
last executed and any modifications that you have made using a preference
editing tool such as the Design Planner.

Preference Flow Example
The following scenario illustrates a typical ispLEVER preference flow:

1. HDL-based attributes are produced by IPexpress for a sysCLOCK PLL as
part of the module source code. Logic synthesis writes these attributes as
EDIF properties into the netlist.

2. You run the Build Database process and then launch the Pre-Map Design
Planner to lock PIO locations, define signal standards for syslO buffers,
and establish timing constraints. The editors write the new preferences to
the .Ipf.

3. You run the Map Design process. The .Ipf is converted into a .prf. You run
the Place & Route Design process and the Place & Route TRACE Report
process to inspect the timing and utilization results.

4. On the basis of the analysis results, you decide to group physical
elements along a critical path by using the Post-PAR Design Planner. You
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modify the .prf and rerun the Place & Route Design process and Place &
Route TRACE Report process.

Note

In many cases, HDL-based attributes that refer to logical elements do not appear
in the .Ipf unless they are modified by the Pre-Map Design Planner. For example,
UGROUP/HGROUP attributes are included in the .Ipf only after they are modified.

General Strategy Guidelines

Observe the following general recommendations for setting preferences,
analyzing timing, and running PAR:

*

Analyze timing results carefully in the Timing Reporter and Circuit
Evaluator (TRACE) Map report (.twl file) and PAR report (.twr file).

Before you place and route a design, look at the mapped frequency in the
preference file and check for errors and warnings. Also, check for logic
depth, which is reported in the .tw1l files as logic levels (components).

Determine if design changes are required. A typical example design
change is pipelining, or registering, the data path. This technique might be
the only way to achieve high internal frequencies if the design’s logic
levels are too deep.

Perform placement and routing early in the design phase, using a
preliminary preference file, to gather information about the design.

Tune up your preference file to include all I/O and internal timing paths, as
appropriate. See “Translating Board Requirements into FPGA
Preferences” on page 148 for an appropriate preference file example.

Establish the pinout in the preference file. You can also locate I/O in the
HDL, as well as in synthesis constraint files.

Push PAR when necessary by running multiple routing iterations and
multiple placement iterations.

Revise the preference file as appropriate; use multi-cycle opportunities
when possible.

Floorplan the design if necessary. See “Floorplanning the Design” on
page 173.

Adding and Modifying Timing Preferences

Use the following guidelines for adding and modifying timing preferences.

Assign Primary or Secondary Clocks
For designs with many clocks, assign the clocks manually.

L 4

Primary clock resources on a device are limited. Therefore, during PAR,
the clock nets with the most loads are assigned the primary clock
resources. You can override this default by using PRIMARY and
SECONDARY preferences.

# Primary/secondary preference example
USE PRIMARY
USE SECONDARY
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L 4

To get an accurate 90-degree phase shift, use two primary clock nets: one
for the feedback path and one for the shifted clock.

This strategy limits uncertainty to the insertion delay of sysCLOCK PLL
(pad to input). The uncertainty can then be reconciled with FDEL settings
in 250-picosecond increments.

Place the source of internally generated clocks (divider) as close to the
center of the device as possible to reduce injection time.

This step is especially important for secondary clocks, since they do not
have feed lines.

Tune I/O Timing with PLLs

Tuning the I/O timing with PLLs reconciles internal timing to an external
specification.

Group Components Along Critical Paths

UGROUP and PGROUP preferences direct the PAR software to place
components close together, which shortens routing distances.

Typical Design Preferences

The full preference language includes many different design constraints, from
global preferences to very specific preferences. Listed here are the
recommended preferences that you can apply to all designs.

L 4

Block Asynchronous Paths

This preference prevents the timing tools from analyzing any paths from
input pads to registers or from input pads to output pads.

Block RAM Reads During Write

If you are using PFU-based RAM, this preference will prevent timing
analysis on a RAM read during a write on the same address in a single
clock period.

Frequency/Period <net>

Each clock net in the design should contain a frequency or period
preference.

Input Setup

Each synchronous input should have an Input Setup preference.
Clock-to-Out

Each synchronous output should have a Clock-to-Out preference.
Block <net>

All asynchronous reset nets in the design should be blocked.
Multicycle

The Multicycle preference allows you to relax a frequency or period
constraint on selected paths.
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For more information about individual preferences, refer to the “Setting
Preferences” section of the ispLEVER FPGA and Crossover Design online
Help.

Proper Preferences

Providing proper preferences is key to a successful design. Use the following
recommendations to avoid a design that is either overconstrained or
underconstrained.

Overconstraining

If the constraints of a preference file are tighter than the system
requirements, the design will become overconstrained, so PAR run times will
be considerably longer. In addition, overconstraining non-critical paths forces
PAR to waste unnecessary processing power in trying to meet these
constraints, creating possible conflicts with real critical paths that ought to be
optimized first.

Common causes of overconstrained timing preferences include the following:
¢ Unspecified multi-cycle paths

¢ Multi-cycle paths to or from 1/0Os with different specifications
Overconstrained designs also need a significantly larger amount of
processing power and computing resources. As a result, it might be

necessary to increase some of the allocated system resources, such as the
PC virtual memory paging size.

Underconstraining
If a preference file is underconstrained compared to real system

requirements, real timing issues not previously seen during dynamic timing
simulations and static timing analysis could appear. These potential problems
can be observed on a test board or during production.

Common causes of underconstrained timing preferences include:

¢ Undefined I/O specifications

¢ Asynchronous logic without MAXDELAY preferences

¢ Internally generated or unintentional clocks not specified in the preference
file

¢ Critical paths blocked

To make sure that no critical paths were left out because of underconstraining,
you should check for path coverage at the end of a TRACE report (.twr) file.
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An example of such an output is shown in Figure 108.

Figure 108: TRACE Report (.twr) Timing Summary Example

Timing summary:

Timing errors: 4906 Score: 25326584

Constraints cover 36575 paths, 6 nets, and 8635 connections
(99.0% coverage)

This particular example shows a 99.0 percent coverage. The way to find
unconstrained paths is to run TRACE with the “Check Unconstrained Paths”
option selected. This option gives a list of all of the signals that are not
covered under timing analysis. In some designs, many of these signals are a
common ground net that indeed does not need to be constrained. You should
understand this and use TRACE to check unconstrained paths and ensure
that no timing-critical design paths are being missed.

Also, note the timing score shown in Figure 108. The timing score shows the
total amount of error, in picoseconds, for all timing preferences constraining
the design. PAR attempts to minimize the timing score; PAR does not attempt
to maximize frequency.

The above explanation can be summarized by the following:
Quality of Preference File = Quality of PAR Results

For more helpful information about timing analysis and TRACE, see
“Performing Static Timing Analysis” on page 152.

Translating Board Requirements into FPGA

Preferences

Understanding the system-board-level timing and design constraints is the
primary requirement for producing a complete preference file. As a result,
major requirements, such as clock frequency, I/O timing, and loads, can be
translated into the appropriate preference statements in a constraint file.

Following is an example showing how to extract preferences from system
conditions.
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Figure 109 shows an example system involving the interface between a port
controller and a Lattice FPGA.

Figure 109: Interface Timing Example

clk 5 ns setup, 3 ns hold

PCB traces
Board propagation
delay of 1 ns to 2 ns
/
Port / Lattice
Controller FPGA
—> >
\\ \\
9 pf input capacitance, 9 pf input capacitance

60 pf AC load
3 ns to 18 ns clk to out,

Chip to chip clock skew of 1 ns

In this system, several parameters have already been provided:

*

® & 6 6 ¢ 0o o

* & o o

System clock frequency: period (P): 30 ns

Port controller maximum output propagation delay (PDMAXp): 18 ns
Port controller minimum output propagation delay (PDMINp): 3 ns
Port controller input setup specification (TSp): 5 ns

Port controller input hold specification (THp): 3 ns

Maximum board propagation delay (PDMAXb): 6 ns

Minimum board propagation delay (PDMINb): 1 ns

Clock skew of the port controller to the FPGA device and vice versa
(Tskew): 1 ns

Board trace AC loading (Cbac): 60 pF
Board trace parasitic capacitance (Cb): 5 pF
Port controller input capacitance (Cp): 9 pF

FPGA device input capacitance (Co): 9 pF

The information just given was specified under the following environmental
conditions:

*

*

*

Maximum ambient temperature (Ta): 70 (C)

Estimated power consumption (Q): 2 W

680 PBGAM package thermal resistance (@ j) at O feet per minute (fpm)

airflow: 13.4 °C/W
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The goal of this exercise is to compute the following device I/O constraints:

Input setup specification

Input hold specification

Maximum output propagation delay
Minimum output propagation delay

Output loading

® & 6 o oo o

Temperature

The only parameter that can be obtained from this information is the device

junction temperature:

Tj=dj*Q-Ta
=13.4*2+70
=96.8°C

The required constraints can be computed as follows:

Input setup specification = P - PDMAXp - PDMAXDb - Tskew
=30-18-2-1
=9ns

Input hold specification = PDMINp + PDMIND - Tskew
=3+1-1
=3ns

Output maximum propagation delay requirement
=P - TSp - PDMAXbD - Tskew
=30-5-6-1
=18ns

Output minimum propagation delay requirement
= Thp - PDMINDb + Tskew
=3-1+1
=3ns

Output loading = Cbac + Cb + Cp
=60+5+9
=74 pf

The preference file to use for this example is shown in Figure 110.

Figure 110: Interface Timing Preference File Example

PERIOD PORT "clk™ 30 NS ;

INPUT_SETUP "port_controller*" 9 NS HOLD 3 NS CLKNET "clk";
CLOCK_TO_OUT "port_controller*" 18 NS MIN 3 NS CLKNET "clk"';
OUTPUT PORT "port_controller*" LOAD 74 PF ;

TEMPERATURE 96.8 C ;
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For more preference language syntax and examples, refer to the “Setting
Preferences” section of the ispLEVER FPGA and Crossover Design online
Help.

Using the Place and Route Software (PAR)

After a design has undergone the necessary translation to bring it into the
mapped physical design (.ncd file) format, it is ready for placement and
routing. This phase is handled by ispLEVER’s timing-driven PAR software
program. You can invoke PAR from the Project Navigator or from the
command line.

PAR performs the following tasks:

¢ Takes a mapped physical design (.ncd file) and a preference file (.prf) as
input files.

¢ Places and routes the design, attempting to meet the location and timing
preferences in the input .prf file.

¢ Creates a file that can be processed by the ispLEVER design
implementation tools.

Placement

The PAR process places the mapped physical design (.ncd file) in two stages:
a constructive placement and an optimizing placement. PAR writes the
physical design after each of these stages is complete.

During constructive placement, PAR places components into sites on the
basisd of factors such as the following:

¢ Constraints specified in the input file. For example, certain components
must be in certain locations.

¢ The length of connections

¢ The available routing resources

¢ Cost tables that assign random weighted values to each of the relevant
factors. There are 100 possible cost tables.

Constructive placement continues until all components are placed.

Optimizing placement is a fine-tuning of the results of the constructive
placement.

Routing

Routing is also done in two stages: iterative routing and delay reduction
routing (also called cleanup). PAR writes the physical design (.ncd file) only
after iterations where the routing score has improved.

During iterative routing, the router attempts to converge on a solution that
routes the design to completion or minimizes the number of unrouted nets.
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During cleanup routing (also called delay reduction), the router takes the
results of iterative routing and reroutes some connections to minimize the
signal delays within the device. There are two types of cleanup routing that
you can perform:

¢ A faster cost-based cleanup routing, which makes routing decisions by
assigning weighted values to the factors (such as the type of routing
resources used) that affect delay times between sources and loads.

¢ A more CPU-intensive, delay-based cleanup routing, which makes routing
decisions on the basis of computed delay times between sources and
loads on the routed nets.

If PAR finds timing preferences in the preference file, timing-driven placement
and routing is automatically invoked.

Timing-Driven PAR Process

The ispLEVER software offers timing-driven placement and routing through
the integrated static timing analysis utility (that is, it does not depend on input
stimulus to the circuit). Placement and routing is executed according to the
timing preferences that you specify up front in the design process. PAR
attempts to meet these timing constraints without exceeding the timing
constraints.

To use timing-driven PAR, you simply write timing preferences into the logical
preference (.Ipf) file and map the design. The mapping process then writes
these preferences to the physical preference file (.prf), which serves as input
to the integrated static timing analysis utility.

See the “Setting Preferences” section of the ispLEVER FPGA and Crossover
Design online Help for more information about the PAR software and
ispLEVER design flow.

Performing Static Timing Analysis

Static timing analysis (STA) is a fast and powerful verification technique that
you can rely on to validate design performance. It is one of the most important
steps in the design flow and should be considered as important as the
functional verification performed with a logic simulator. Static timing analysis
tools verify circuit timing by totaling the propagation delays along paths
between clocked or combinational elements in a circuit. The analysis can
determine and report timing data, such as the critical path, setup- and hold-
time requirements, and the maximum frequency.

Static timing analysis tools enable you to:

¢ Confirm that the timing constraints supplied to timing-driven place and
route will be met

¢ Examine the timing characteristics of any part of the design

¢ Perform what-if scenarios with different device speed grades or timing
objectives
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Why Perform Static Timing Analysis?

With a traditional dynamic logic simulator, timing violations must be detected
and reported by sensitizing a simulation model, using test vectors and
assertions that you must write. Depending on the size of the design and the
number of states that it represents, the simulation run time can be very long
and require a very sophisticated test fixture to detect all potential problems.
The static timing analysis approach is far faster compared to dynamic
simulation and verifies all parts of the gate-level design for timing.

Static timing analysis provides the following types of analysis:
¢ From primary input to primary output (tpp)

¢ From input to register

¢ From register to register
.

From register to output (tco)

Figure 111: Types of Static Timing Analysis
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The following samples illustrate each analysis, using the ispLEVER
preference language:

# STA analysis samples:

1. MAXDELAY FROM PORT "comb_in*" TO PORT '"comb_out*" 16 ns;
2. INPUT_SETUP *comb_in*" 8 ns CLKPORT="clk";

3. PERIOD PORT "'clk'"™ 100 ns ;

4. CLOCK_TO OUT ALLPORTS 8 ns CLKPORT "‘clk™ ;

Note

For details on the syntax and semantics of the preference language, see “Creating and
Editing Preferences” on page 140.

Timing-driven placement and routing (PAR) interprets these constraints as
timing objectives, so you can selectively use preferences for PAR or static
timing analysis, depending on your verification approach. For example, it is
common for additional preferences to be added post-PAR exclusively for the
sake of static timing analysis.
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Analyzing Timing Reports Produced by TRACE

You can run the ispLEVER Timing Reporter and Circuit Evaluator (TRACE) on
mapped designs, on completely placed and routed designs, or on designs
that are placed, routed, or both to any degree of completion. The report
issued by TRACE depends on the completeness of the placement and routing
of the input design.

You can run TRACE automatically from the ispLEVER Project Navigator GUI
or from the command line using the trce program.

To run TRACE from the Project Navigator:

1. Inthe Project Navigator, select the targeted device.

2. Double-click either the Map TRACE Report (.twl) process or the Place &
Route TRACE Report (.twr) process.

The software runs TRACE and generates a report based on the mapped
or placed and routed design.
To modify TRACE options from the Project Navigator:

¢ From the Project Navigator, choose Tools > TRACE Options to open the
dialog box.

The Before Route options apply to the Map TRACE Report (.twl) process.
The After Route options apply to the Place & Route TRACE Report (.twr)
process.

Note

By default, TRACE performs analysis for setup-time violations, using worst-case
operating conditions and the speed grade specified for the target device. To perform
hold-time analysis using best-case operating conditions, enable Check Hold Times
and select m (minimum) from the Overrride Speed Grade list.

To run TRACE from the command line:

¢ Type trce on the command line with, at minimum, the names of your
input .ncd and .prf files, for example:

trce design.ncd design.prf

For more information about TRACE command-line options, see “Running
TRACE from the Command Line” in the ispLEVER FPGA and Crossover
Design online Help.
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Timing Exceptions

Timing exceptions are exceptions to preferences that are used to describe the
special behavior of certain design paths. Most designs contain paths that
require these additional preferences. Without timing exceptions, the static
timing analysis performed by TRACE will likely assume worst-case timing
scenarios and report lower design performance, and the place-and-route
program, PAR, will spend an undue amount of effort optimizing the path.

There are two common path types that require timing exceptions: multi-cycle
paths and false paths.

Multi-Cycle Paths

In most synchronous circuits, the receiving register captures data launched by
a driving register within one clock cycle. A multi-cycle path refers to cases
where this relationship is different. Since single-cycle behavior is assumed by
PAR and static timing analysis, a multi-cycle type of preference is used to
express the relationship. The amount of time taken by the data to reach a
destination register is indicated by a multiplier value, as shown in this
example:

# 2 X multicycle sample:
FREQUENCY NET "CLK™ 66 MHZ ;
MULTICYCLE FROM CELL "REG1™ TO CELL "REG2™ 2 X ;

Note

The ispLEVER preference language allows you to portray most clock relationships that
can be practically analyzed using STA algorithms. However, if there are asynchronous
clock domain crossings in your design, STA can only report on those occurrences
where the clock edges are coincident. In these scenarios, your verification strategy
might need to rely on dynamic verification, using a traditional simulator or formal
verification methods.
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Figure 112 illustrates a single-cycle versus a multi-cycle relationship. In the
multi-cycle definition, a multiplier value of “2 X” is used to inform TRACE (and
PAR) that the data latching occurs at REG2 after an additional clock pulse.

Figure 112: Single Versus Multi-Cycle Clock Relationship
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Example 1 — Multi-Cycle Between Two Different Clocks

You can also use the Multicycle preference to describe a design that uses
separate clocks with different frequencies. This relationship is often referred
to as frequency skew. In this design example for a LatticeECP/EC FPGA,
wclk and rclk were assigned 132 MHz and 66 MHz frequencies, respectively.

For this example, a variation of the Multicycle constraint is used to describe
the relationship between the clocks in terms of a period instead of a frequency
multiplier; you can choose either form for the sake of clarity and
documentation:

FREQUENCY NET "wclk™ 132 MHZ ;
FREQUENCY NET "'rclk™ 66 MHZ ;
MULTICYCLE FROM CLKNET "wclk™ TO CLKNET "rclk™ 30.30 NS ;
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The block diagram and waveform for this example is shown in Figure 113.

Figure 113: Multi-Cycle Clock Domains Block Diagram and Waveform

Combinational
Logic

2.684 ns

welk

2.884 ns

relk

2.684ns 7.58ns

welk L

2.884 ns 15.15ns

|

relk

30.30 ns

Y

A
Y

The resulting TRACE report for this example is shown in Figure 114. Notice
how the path is described in terms of “Logical Details.”
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Figure 114: TRACE Report for Multi-Cycle Clock Domains Example

Preference: MULTICYCLE FROM CLKNET "wclk'™ TO CLKNET "'rclk'™ 30.300000 ns ;
13 items scored, O timing errors detected.

Passed: The following path meets requirements by 23.540ns

Logical Details: Cell type Pin type Cell name (clock net +/-)
Source: PDP8KA Port fifomem _RAM _DP_16X8 RAM_DP_16X8 0 0 O
(from wclk +)
Destination: FF Unknown ioregout_reg_outdata(4) (to rclk +)
Delay: 7.202ns (63.2% logic, 36.8% route), 1 logic levels.

Constraint Details:

7.202ns physical path delay fifomem_RAM_DP_16X8_RAM_DP_16X8_0_0_0 to
rdata_p(4)_MGIOL meets
30.300ns delay constraint less
-0.200ns skew and
0.000ns feedback compensation and
-0.242ns ONEGO_SET requirement (totaling 30.742ns) by 23.540ns

Physical Path Details:

Name Fanout Delay (ns) Site Resource
C2Q_DEL - 4.554 EBR_R6C8.CLKR to EBR_R6C8.D04
fifomem_RAM_DP_16X8_RAM_DP_16X8_0_0_0 (from wclk)
ROUTE 1 2.648 EBR_R6C8.D0O4 to I0OL_T6A.ONEGO rdata(4) (to rclk)

7.202 (63.2% logic, 36.8% route), 1 logic levels.
Clock Skew Details:

Source Clock Path:

Name Fanout Delay (ns) Site Resource
PADI_DEL - 0.667 19.PAD to 19._.PADDI clk_p
ROUTE 1 0.000 19_PADDI to PLL3_R6C1.CLKI clk_p_int
CLK20UT_DE --- -0.500 PLL3_R6C1.CLKI to LL3 R6C1.CLKOP fifol pll_fifol pll_0_ 0O
ROUTE 24 2.517 LL3_R6C1.CLKOP to EBR_R6C8.CLKR wclk

2.684 (6.2% logic, 93.8% route), 2 logic levels.
PLL3_R6C1.CLKOP attributes: FDEL = -2

Destination Clock Path:

Name Fanout Delay (ns) Site Resource
PADI_DEL - 0.667 19.PAD to 19._.PADDI clk_p
ROUTE 1 0.000 19_PADDI to PLL3_R6C1.CLKI clk_p_int
CLK2SEC_DE --- 0.066 PLL3_R6C1.CLKI to LL3_R6C1.CLKOK fifol_pll_fifol_pll_0_0O
ROUTE 19 2.151 LL3_R6C1.CLKOK to IOL_T6A.CLK rclk

2.884 (25.4% logic, 74.6% route), 2 logic levels.
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Source Clock f/b:

Name Fanout Delay (ns) Site
CLKOP_DEL  --- 0.000 LL3_R6C1.CLKFB to LL3_
ROUTE 24 2.151 LL3_R6C1.CLKOP to LL3

2.151  (0.0% logic, 100.0%
PLL3_R6C1.CLKOP attributes: FDEL = -2

Destination Clock f/b:

Name Fanout Delay (ns) Site
CLKOP_DEL  --- 0.000 LL3_R6C1.CLKFB to LL3_
ROUTE 24 2.151 LL3_R6C1.CLKOP to LL3_

2.151  (0.0% logic, 100.0%

PLL3_R6C1.CLKOP attributes: FDEL = -2

Resource
R6C1.CLKOP fifol pll_fifol pll _ 00
R6C1.CLKFB wclk

route), 1 logic levels.

Resource
R6C1.CLKOP fifol pll_fifol pll_0_0
R6C1.CLKFB wclk

route), 1 logic levels.

This section shows both the source and destination registers using unmapped
names from the EDIF file. This is a feature that allows you to recognize the

type of logic being analyzed.

On the basis of the declared frequencies for both clocks, you already know

the following:
¢ wclk period = 9.6 ns.

¢ rclk period = 15.15. ns.

¢ No relative phase information exists between both clocks. As a result,
TRACE does not factor in the skews on either clock. To add relative timing
between two clocks, use the CLKSKEWDIFF preference:

CLKSKEWDIFF CLKPORT *"'rclk™ CLKPORT "wclk™ 0.2 NS;

This preference would mean that the clock arrives at rclk with a 0.2 ns

delay after wrclk.

As a consequence, ignoring everything else (clock skews, register library

setups, and so forth), you know that a single-cycle positive-edge-to-positive-
edge setup available from wrclk to rclk is 15.15 ns (refer to the waveforms in
Figure 113). Therefore, with 2X multi-cycle, the resulting setup would be twice

that number, or:

Ts =30.30 ns

This is shown as a delay constraint in the Constraint Details section of the
TRACE report. The notation used in the site details refers to the slice row/
column location in the device floorplan and the slice signal names.

The available setup margin (23.542 ns) is now calculated as follows:

M = (Ts - Td) — Tclkskew - Ds
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where:

¢ Td = path delay from clock pin of source embedded block ram (EBR) to D
pin of destination = 7.202 ns. This is shown in the Physical Path Details
section of the TRACE report.

¢ Tclkskew = TSB — TSA, where TSA is the delay on the source clock, and
TSB is the delay on the destination clock.

¢ Ds = destination cell library setup requirement = 0.242 ns. This matches
ONEGO_SET (Output, Negative 0, Input Setup) under the Constraint
Details section of the TRACE report.

The clock skews are:

¢ TSA = delay or skew on source clock wclk = 2.684 ns. It is shown in the
Clock Skew Details section of the TRACE report.

¢ TSB = delay or skew on destination clock rclk = 2.884 ns. It is shown in
the Clock Skew Details section of the TRACE report.

Therefore:

M = (30.30 — 7.202) — (-0.200) - (-0.242) = 23.542 ns. M matches the
number in the PASSED section at the top of the TRACE report.

Example 2 — Clock-to-Output with PLL Feedback

In this example for a LatticeECP/EC FPGA, clk_p is assigned to 66 MHZ, and
the clock-to-out propagation delays are constrained in the preference file:

CLOCK_TO_OUT ALLPORTS 7.000000 ns CLKPORT "‘clk_p™" ;

The block diagram for this example is shown in Figure 115. The resulting
TRACE report is shown in Figure 116.

Figure 115: CLOCK_TO_OUT with PLL
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Figure 116: TRACE Report for CLOCK_TO_OUT with PLL

Preference: CLOCK_TO_OUT ALLPORTS 7.000000 ns CLKPORT *‘clk_p' ;
10 items scored, O timing errors detected.

Passed: The following path meets requirements by 1.629ns

Logical Details: Cell type Pin type Cell name (clock net +/-)
Source: FF Q wptr_full_reg_wfull (from wclk +)
Destination: Port Pad wfull
Data Path Delay: 5.050ns (54.4% logic, 45.6% route), 2 logic levels.
Clock Path Delay: 2.472ns (6.8% logic, 93.2% route), 2 logic levels.

Constraint Details:
2.472ns delay clk_p to SLICE_21 less
2.151ns feedback compensation
5.050ns delay SLICE_21 to wfull (totaling 5.371ns) meets
7.000ns offset clk_p to wfull by 1.629ns
Physical Path Details:

Clock path clk_p to SLICE_21:

Name Fanout Delay (ns) Site Resource
PADI_DEL - 0.667 19.PAD to 19.PADDI clk_p
ROUTE 1 0.000 19.PADDI to PLL3 R6C1.CLKI clk_p_int
CLK20UT DE --- -0.500 PLL3_R6C1.CLKI to LL3_R6C1.CLKOP fifol_pll fifol pll 0 0O
ROUTE 24 2.305 LL3_R6C1.CLKOP to R5C10B.CLK wclk

2.472 (6.8% logic, 93.2% route), 2 logic levels.
PLL3_R6C1.CLKOP attributes: FDEL = -2

Data path SLICE_21 to wfull:

Name Fanout Delay (ns) Site Resource
REG_DEL -—= 0.436 R5C10B.CLK to R5C10B.Q0 SLICE_21 (from wclk)
ROUTE 6 2.304 R5C10B.Q0 to 77 .PADDO wfull_dupO
DOPAD_DEL -— 2.310 77.PADDO to 77_.PAD wfull

5.050 (54.4% logic, 45.6% route), 2 logic levels.

Feedback path:

Name Fanout Delay (ns) Site Resource
CLKOP_DEL  --- 0.000 LL3_R6C1.CLKFB to LL3_R6C1.CLKOP fifol_pll_fifol_pll_0_0O
ROUTE 24 2.151 LL3_R6C1.CLKOP to LL3_R6C1.CLKFB wclk

2.151 (0.0% logic, 100.0% route), 1 logic levels.
PLL3_R6C1.CLKOP attributes: FDEL = -2

Report: 5.371ns is the minimum offset for this preference.

FPGA Design Guide 161



Strategies for Timing Closure

Performing Static Timing Analysis

The path measurements were obtained from the TRACE report as follows:

¢ CPDEL = Clock Path Delay = 2.472 ns. It is shown under Physical Path
Details -> Clock path in the timing report.

¢ DPDEL = Data Path Delay = 5.050 ns. It is shown under Physical Path
Details-> Data path in the timing report.

¢ FBDELO = Feedback cell delay across PLL = 0.000 ns, which is the first
entry value under Feedback Path.

¢ FBDEL1 = Feedback routing delay from PLL output to PLL FB pin = 2.151
ns, which is the second entry value under Feedback Path.

Notice the -0.500 ns CLK20UT_DE delay under “Physical Path Details” of the
report file. This delay (or in this case compensation) within the clock path is
produced by a sysCLOCK PLL fine delay adjust step value (FDEL) of —2.
Such a delay is a programmable attribute (FDEL) of the sysCLOCK PLL. This
value is can be set to any step value from —8 to +8 to advance or retard the
output clock in 250-picosecond steps. FDEL is assigned in the Design
Planner’s Spreadsheet View or in the EPIC Device Editor.

To verify the available margin on the CLOCK_TO_OUT preference, the
margin is reported as follows:

M = CLOCK_TO_OUT - (CPDEL - FBDEL + DPDEL)
= 7.000 - (2.472 — 2.151 + 5.050) = 1.629 ns

This value matches the one at the top of the report file (“Passed” section). It
also matches the final value under “Constraint Details.”

Example 3 — Hold-Time Analysis

In this example for a LatticeECP/EC FPGA, the clock-to-output constraint is
examined in terms of hold time. The TRACE report for this example is shown
in Figure 117.
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Figure 117: CLOCK_TO_OUT Hold-Time Check

Preference: CLOCK_TO_OUT ALLPORTS 7.000000 ns CLKPORT "clk_p*" ;
10 items scored, O timing errors detected.

Passed: The following path meets requirements by 1.412ns

Logical Details: Cell type Pin type Cell name (clock net +/-)
Source: FF Q ioregout_reg_outdata(l) (from rclk +)
Destination: Port Pad rdata_p(1)
Data Path Delay: 1.404ns (100.0% logic, 0.0% route), 2 logic levels.
Clock Path Delay: 0.904ns (24.8% logic, 75.2% route), 2 logic levels.

Constraint Details:
0.904ns delay clk_p to rdata_p(1)_MGIOL less
0.896ns feedback compensation
1.404ns delay rdata_p(1)_MGIOL to rdata p(1l) (totaling 1.412ns) meets
0.000ns hold offset clk_p to rdata p(1l) by 1.412ns
Physical Path Details:

Clock path clk_p to rdata_p(1)_MGIOL:

Name Fanout Delay (ns) Site Resource
PADI_DEL - 0.200 19.PAD to 19_PADDI clk_p
ROUTE 1 0.000 19.PADDI to PLL3_R6C1.CLKI clk_p_int
CLK2SEC_DE --- 0.024 PLL3_R6C1.CLKI to LL3_R6C1.CLKOK fifol_pll_fifol_pll_0_O
ROUTE 19 0.680 LL3_R6C1.CLKOK to I0L_T2B.CLK rclk

0.904 (24.8% logic, 75.2% route), 2 logic levels.

Data path rdata_p(1)_MGIOL to rdata_p(1):

Name Fanout Delay (ns) Site Resource
C20UT_DEL  --- 0.644 IOL_T2B.CLK to [IOL_T2B.IOLDO rdata _p(1)_MGIOL (from
rclk)
ROUTE 1 0.000 10L_T2B.10LDO to 98.10LDO nx27852z1
DOPAD_DEL  --- 0.760 98_10LDO to 98_PAD rdata_p(1)

1.404 (100.0% logic, 0.0% route), 2 logic levels.

Feedback path:

Name Fanout Delay (ns) Site Resource
CLKOP_DEL  --- 0.000 LL3_R6C1.CLKFB to LL3_R6C1.CLKOP fifol pll_fifol pll 0 0
ROUTE 24 0.896 LL3_R6C1.CLKOP to LL3 R6C1.CLKFB wclk

0.896 (0.0% logic, 100.0% route), 1 logic levels.
PLL3_R6C1.CLKOP attributes: FDEL = -2

Report: 1.412ns is the maximum offset for this preference.
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TRACE produces a hold-time check based on your timing preferences by
using the —hld command-line option or by enabling the Check Hold Times
option in the TRACE Options dialog box of the Project Navigator.

By default, TRACE analyzes designs for setup-time violations, using the
worst-case operating conditions for the target speed grade. Speed grade (-sp)
is a TRACE command-line option that you can adjust in the TRACE Options
dialog box. In contrast to setup-time analysis, hold-time analysis should be
done under best-case operating conditions. This approach of analyzing at
both corners of the operating conditions establishes a well-defined range in
which the device will operate successfully.

To specify the best-case operating condition for hold-time checks, use the —sp
m (minimum) option from the TRACE command line or use the TRACE
Options dialog box. In most cases, but not all, the minimum option represents
the worst-case scenario for hold-time analysis. The most rigorous STA
methodology would have you run TRACE against all speed grades.

The path related to rdata_p(1) is reported by TRACE as worst-case when a
hold-time analysis is performed. The path measurements were obtained from
the TRACE report as follows:

¢ DPDEL = Data Path Delay = 1.404 ns. It is shown under Physical Path
Details-> Data path in the timing report.

¢ CPDEL = Clock Path Delay = 0.904 ns. It is shown under Physical Path
Details-> Clock path in the timing report.

¢ FBDELO = Feedback cell delay across PLL = 0.000 ns, which is the first
entry value under Feedback Path.

¢ FBDEL1 = Feedback routing delay from PLL output to PLL FB pin = 0.896
ns, which is the second entry value under Feedback Path.

Now verify the available hold-time margin on the CLOCK_TO_OUT
preference. The margin is reported as:

M = CPDEL —- FBDEL + DPDEL
=0.904 — 0.896 + 1.404 = 1.412 ns

This value matches the one at the top of the report file (“Passed” section). It
also matches the final value under “Constraint Details.”
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False Paths

Many designs include paths that are asynchronous relative to the clocks of
the design or connections that never propagate a signal state because of logic
encoding. A false path illustration is shown in Figure 118. By default, STA is
performed on all paths of the design so that timing reports include all path
segments, including false ones. This condition can “mask” the violations of
real timing paths and make the performance results overly pessimistic.

Figure 118: False Path Example
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False paths are treated as unconstrained by TRACE and timing-driven PAR. If
you can accurately describe false paths, design performance will usually be
improved since a false path is treated by PAR as unconstrained. With
“relaxed” timing objectives, PAR optimizes the true critical paths instead. In a
similar manner, unconstrained paths are ignored by STA and true critical
paths reported instead.

The ispLEVER Block preference allows you to identify false paths to the
system and provides a variety of ways to isolate them.

Controlling Placement and Routing

Extensive benchmark experiments have been performed to determine the
optimum per-device default settings for all PAR options. At times, you can
obtain improved timing results on a design-by-design basis by trying different
variations of the PAR options. This section describes the techniques that you
can use within the ispLEVER software to improve timing results from TRACE
on placed and routed designs.

Running Multiple Routing Passes
You can obtain improved timing results by increasing the number of routing

passes during the routing phase of PAR.
To open the PAR options dialog box:
1. Inthe Project Navigator Source window, select the targeted FPGA device.

2. Inthe Processes window, right-click the Place & Route Design process
and select Properties to open the dialog box.
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As seen in Figure 119, the router routes the design for six routing iterations or
until all the timing preferences are met, whichever comes first. For example,
PAR stops after the second routing iteration if it hits a timing score of zero on

the second routing iteration.

Figure 119: PAR Properties Dialog Box
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The highest selection in placement effort level results in longer PAR run times
but may give better design timing results. A lower placement effort results in
shorter PAR run times but will likely give less than optimal design timing

results.
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The place and route (.par) report file contains execution information about the
PAR command run, as shown in Figure 120.

Figure 120: Example PAR Report (.par) File, Routing Section

0 connections routed; 26590 unrouted.

Starting router resource preassignment

Completed router resource preassignment. Real time: 11 mins 31 secs
Starting iterative routing.

End of iteration 1

26590 successful; 0 unrouted; (151840) real time: 14 mins 29 secs
Dumping design to file

d:\ip\design.ncd.

End of iteration 2

26590 successful; 0 unrouted; (577) real time: 16 mins 23 secs
Dumping design to file

d:\ip\design.ncd.

End of iteration 3

26590 successful; 0 unrouted; (0) real time: 17 mins 39 secs
Dumping design to file

The PAR report also shows the steps taken as the program converges on a
placement and routing solution. In the routing convergence example text in
Figure 120, the number in parenthesis is the timing score after each iteration.
In this example, timing was met after three routing iterations, as you can see
from the (0) timing score.

Using Multiple Placement Iterations (Cost
Tables)

You can specify multiple placement iterations in the Advanced Options of the
PAR Properties dialog box.

As shown in Figure 119, the number of iterations is set to 10 and the
placement start point is set to iteration 1 (cost table 1). Only the best .ncd file
is to be saved, as seen in the following line. After PAR runs, the tool loops
back through the PAR flow until the number of iterations has reached 10. In
this example, the .ncd file with the best timing score is saved.
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The tool keeps track of the timing and routing performance for every iteration
in a file called the multiple par report (.par). Such a file is shown in Figure 121.

Figure 121: Multiple PAR Report (.par)

Level/ Number Timing Run NCD

Cost [ncd] Unrouted Score Time Status

5 4 0 0 01:58 Complete
56 0 25 02:01 Complete
52 0 102 01:45 Complete
57 0 158 02:15 Complete
53 0 186 01:54 Complete
5 10 0 318 02:39 Complete
51 0 470 01:51 Complete
58 0 562 02:25 Complete
55 0 732 02:00 Complete
59 0 844 02:27 Complete

*

Design saved.

Figure 121 indicates that:

¢ The “5_" under the Level/Cost column means that the placement effort
level was set to 5. The placement effort level can range from 1 (lowest) to
5 (highest).

¢ 10 different iterations ran (10 cost tables).

¢ Timing scores are expressed in the total number of picoseconds (ps) by
which the design is missing constraints on all preferences. This number is
additive for all paths in the design.

< Iteration number 4 (cost table 4) achieved a 0 timing score, so it is the
design that was saved. More than one .ncd file can be saved. You can
control this by the “Placement Save Best Runs” value box shown in
Figure 119.

¢ Each iteration routed completely.

Note

You should save more than one .ncd file from a multi-PAR run and use TRACE on
each example. Since the timing score is a composite of all timing constraints, a low
score might not be ideal for your application.

If “Placement Iterations (O=run until solved)” in Figure 119 is set to 0, the tool
will run indefinitely through multiple iterations until a O timing score is reached.
In a design that is known to have large timing violations, a 0 timing score is
never reached. As a consequence, you must intervene and stop the flow at a
given point in time.

In general, multiple placement iterations can help placement, but they can
also use many CPU cycles. Multiple placement iterations should be used

carefully because of system limitations and the uncertainty of results. It is

better to fix the root cause of timing problems in the design stage.
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Re-Entrant Routing

In the Project Navigator, a Reentrant Route Design process is provided that
allows you to run more routing iterations to try to achieve timing goals. The
Reentrant Route Design process saves time by using the current routed
design file (.ncd) as the starting point.

The Reentrant Route Design process also enables you to override the current
.ncd file with a routed .ncd file from one of your project’s Revision Control
directories:

1. Inthe Project Navigator, right-click Reentrant Route Design and select
Properties.

2. Select NCD File Name in the Properties dialog box.

3. Type the complete path of the .ncd file that you want to use and click
Close.

For further information on re-entrant flow, refer to the ispLEVER FPGA and
Crossover Design online Help.

Clock Boosting

Clock boosting is the deliberate introduction of clock skew on a target flip-flop
to increase the setup margin. Every programmable flip-flop in the device has
programmable delay elements before clock inputs for this purpose. The
automated clock-boosting tool attempts to meet setup constraints by
introducing delays to as many target registers as needed to meet timing; in
effect, it borrows register hold margins to meet register setup timing. Clock
boosting is accomplished through the following features:

¢ A 4-tap delay cell structure in front of the clock port of every flip-flop in the
device (includes 1/O flip-flops)

¢ The ability to borrow clock cycle time from one easily met path and give
this time to a difficult-to-meet path

Clock boosting is typically most useful in designs that are only missing timing
on a few paths for one or two preferences. If the design is missing timing by
over a few nanoseconds on any given path, clock boosting cannot schedule
skew in a way that eliminates enough timing to make the critical preference.
Clock boosting run times can be shortened by using a preference file that
contains only the failing preferences.

The example illustrated in Figure 122 shows two register-to-register transfers
that both need to meet the 10-ns period constraint. By using the DEL2 delay
cell to delay the clock input on flip-flop FF_2, the first register transfer makes
its period constraint with a new minimum period of approximately 9.7 ns, and
the second register transfer makes its period constraint by approximately 8.3
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ns. The D1, D2, and D3 delays shown vary, depending on the speed grade
and FPGA device family.

Figure 122: Clock Boosting Example
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DELZ ~=1.3ns
Clock DEL3 ~=2.0ns

Target Performance: 10 ns period (100 MHz)

For complete timing information, refer to the timing data sheet included with
iSpLEVER for the desired Lattice Semiconductor FPGA device family

To perform clock boosting in the Project Navigator:

1. In the Project Navigator Sources window, select the targeted device.

2. Inthe Processes window, right-click Clock Boosting and select
Properties from the pop-up menu.
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3. Inthe dialog box, select the Clock Boosting Output Filename property
from the property list, as shown in Figure 123, and type the name of the
output file name in the edit region (<file_name>.ncd).

Figure 123: Clock Boosting Property Dialog Box
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4. Click Close to exit the dialog box.

Selecting Maximize Frequency pushes the tool to improve the frequency
beyond the input preference requirement. This feature is generally only useful
for bench-marking.

Other important considerations on the practicality of using clock boosting:

¢ Some circuits show much improvement, but others show no gain. Clock
boosting results are very design-dependent.

¢ Clock boosting uses minimum delay values that have not yet been
validated at the system level.

¢ Automatic clock boosting identifies skew and hold-time issues. However,
after clock boosting is performed, it is recommended that you run TRACE
twice: once with regular maximum delay analysis and again with minimum
delays. Afterwards, read over both resultant .twr timing reports to make
sure that there are no timing errors. The minimum delay analysis is done
by checking the “Check Hold Times” check box in the TRACE Options
dialog box.
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Map Register Retiming

Map register retiming is an optimization technique that moves registers
across combinatorial logic to balance the timing according to the tg
(INPUT_SETUP), tco (CLOCK_TO_OUT), and fyyax (FREQUENCY)
constraints.

To enable map register retiming in your design:
1. Inthe Project Navigator, select the targeted device.

2. Inthe Processes window, right-click Map Design and select Properties
from the pop-up menu.

3. Inthe dialog box, under Advanced Options, select Register Retiming
and change the setting to True.

4. Close the dialog box.

There is no guarantee that map register retiming will achieve a better fy;ax,
since the fyyax constraint activates retiming around all registers. The tg, and
tco constraints might deactivate retiming on I/O registers, depending on the
balancing of tg vs. fyax and teo vs. fyax. However, register retiming can be
very useful for optimization because it allows for more delay shifting.

Map Register Retiming vs. Clock Boosting

Map register retiming has the same goal as clock boosting, which adjusts the
timing by introducing predefined clock delays. The following considerations
should be taken into account when using either of these features for
optimizing timing.

Optimizing with Map Register Retiming

Map register retiming can be either forward or backward. Forward retiming
moves a set of registers that are the inputs of logic to a single register at its
output. Backward retiming moves a register that is at the output of a logic to a
set of registers at its input. Retiming works on a data path and has variable
delay shift and variable area cost from design to design. A drawback to
register retiming is that it changes your netlist, making debugging more
difficult. It also has a minimum delay shift of one logic level (for example, one
LUT).

Optimizing with Clock Boosting

Clock boosting works on clock paths and has a fixed delay, such as 0 ns, 1 ns,
2 ns, or 3 ns, and it has a fixed area cost (on silicon). The delay shift is
accurate after placement and routing and can be as fine as less than or equal
to 1 ns. However, clock boosting requires the use of extra silicon area even if
it is not used, and delay shift is limited to a few choices up to about 3 ns or
more.

For more information about map register retiming, refer to the “Mapping”
section of the ispLEVER FPGA and Crossover Design online Help.
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Floorplanning the Design

If performance goals cannot be met with FPGA timing preferences and
additional effort levels of the Place & Route Design process, you can improve
performance by directing the physical layout of the circuit in the FPGA. This
step, often referred to as floorplanning, is done by specifying FPGA location
preferences.

Floorplanning Definition

Floorplanning is the physical or logical partitioning of design elements, which
results in a change in the design’s physical placement or implementation.

With Lattice Semiconductor FPGAs, floorplanning is an optional methodology
to help you improve the performance and density of a fully and automatically
placed and routed design. Floorplanning is particularly useful in structured
designs and data path logic. Design floorplanning is very powerful and
provides a combination of automation and user control for design reuse and
modular, hierarchical, and incremental design flows.

Complex FPGA Design Management

Lattice Semiconductor FPGAs can implement large system designs that
contain millions of gates, hundreds of thousands of embedded memory bits,
and intellectual property (IP) components. Design teams often work on large
designs. The design complexity requires electronic design automation (EDA)
tools to manage and optimize the design. Large design management is
difficult, but performance optimization is even more difficult. Optimization
requires many design iterations when adding or modifying components.
Complex, large system designs require the following:

¢ The use of modular, hierarchical, or incremental design methods
¢ Software that makes management and optimization easier

¢ The use of IP blocks
.

The reuse of previously optimized design elements

By controlling the placement of specified logic elements, design floorplanning
methodologies help meet the requirements of large system design.

Floorplanning Design Flow

In both traditional and floorplanning FPGA design flows, you divide the
system into modules. The modules can be individual circuits, parts of circuits,
or parts of the design hierarchy. After module design and optimization, you
integrate the modules into the system. Finally, you test and optimize the
system.

In the traditional flow, the system might not meet performance requirements
even if each module meets the requirements before integration. Even when
timing requirements have been satisfied, changes to one module can affect
the performance of others. Re-optimizing modules to meet system
performance results in many design iterations.
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Floorplanning methodologies assist in the design, testing, and optimization of
each individual module while retaining the optimized characteristics of the
individual modules. Module integration into the system requires only system
optimization between modules. The floorplanning methodologies provide
additional flexibility by allowing the ispLEVER software to automatically place
defined modules, or by allowing you to control the placement of specific
modules.

When to Floorplan

Floorplanning methodologies are intended for users who require some degree
of handcrafting of their designs. You must understand both the details of the
device architectures and the ways floorplanning can be used to refine a
design. Successful floorplanning is very much an iterative process, and it can
take time to develop a floorplan that outperforms an automatic software-
processed design. Because of the nature of floorplanning and its interaction
with the automatic MAP and PAR software tools, several prerequisites are
necessary in order to floorplan a design successfully:

¢ Detailed knowledge of the specific characteristics of the target
architecture and device

¢ Detailed knowledge of the specific characteristics of the design being
implemented

¢ A design that lends itself to floorplanning
¢ A willingness to iterate a floorplan to achieve the desired results

¢ Realistic performance and density goals

For Lattice Semiconductor FPGAs, the general rule of thumb is that
floorplanning should be considered when the desired performance cannot be
met and when routing delays account for over 60 percent of the critical path
delays. This can be a problem with large designs in high-density FPGAs
because of the possibilities of long-distance routes. As programmable logic
design densities continue to escalate beyond 100,000 gates, traditional
design flow—design entry to synthesis to placement and routing—sometimes
does not yield predictable, timely, and optimized results.

The guidelines previously discussed only apply to designs that have been
routed by the software for several routing iterations. The default number of
routing iterations through the ispLEVER Project Navigator vary, depending on
the selected Lattice Semiconductor FPGA device family.

Note

Path delays in programmable devices are made up of two parts: logical delays and
routing delays. Logical delays in this context are delays through components, such as
a programmable function unit (PFU), a programmable input/output (P10), a slice, or an
embedded function, such as a block RAM, PLL, or FPSC ASIC. The routing delay is
the delay of the interconnect between components. Figure 124 and Figure 125 show
delay examples from timing wizard report files (.twr).

Properly applied, design floorplanning not only preserves but improves design
performance. You can use floorplanning methodologies to place modules,
entities, or any group of logic into regions in a device’s floorplan. Because
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floorplanning assignments can be hierarchical, you can have more control
over the placement and performance of modules and groups of modules.

Floorplanning may be able to help bring the registers shown in Figure 124
closer.

Figure 124: Inefficient Routing

Logical Details: Cell type Pin type Cell name (clock net +/-)

Source: FF Q ibuf/reg_init_start (from clk_ib+)
Destination: FF Data in ibuf/sd/reg_new_state (to clk_ib +)
Delay: 8.062ns (18.2% logic, 81.8% route), 2 logic levels.

Floorplanning is not needed in Figure 125 because the routing is efficient.

Figure 125: Efficient Routing

Logical Details: Cell type Pin type Cell name (clock net +/-)

Source: FF Q mem_if_tx_address_8 (from clk_c +)
Destination: FF Data in mem_if_tx_address_17 (to clk_c +)
Delay: 7.358ns (61.2% logic, 38.8% route), 4 logic levels.

In addition to hierarchical blocks, such as a group consisting of an entire
VHDL entity or Verilog HDL module, you can floorplan individual nodes. For
example, you can instantiate a library element for a function in the critical path
and then group the library element. This technique is useful if the critical path
spans multiple design blocks.

Note

Although floorplanning can increase performance, it may also degrade performance if
it is not applied correctly within software limitations.

Floorplan to Preserve Module Performance

Floorplanning with design preferences maintains design performance by
grouping the placement of nodes in a device, which ensures that the relative
placement of logic within a grouped region remains constant. The ispLEVER
software then places the grouped region into the top-level design with these
preferences. When placing logic in a region, the ispLEVER software does not
preserve the routing information. This approach provides more flexibility when
the software imports the region into the top-level design, and it helps fitting.
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Floorplan for Design Reuse

Floorplanning facilitates design reuse by its ability to reproduce the
performance of a module designed in a different project. For frequently used
modules, you can create a library of verified designs that can be incorporated
into other larger designs. The library must only contain the VHDL or Verilog
HDL source code, along with grouping attributes and some comments
detailing information useful to you, such as performance and size. With a
parameterized module, in-code assignments can specify the module’s size
and grouping assignments.

Targeting the same device used in the original design usually achieves the
best results, although other devices in the same family will likely work well.
When using a different device in the same family, the exact placement of the
region might not be possible. Similar performance, however, might be
achieved by moving or floating regions. A floating region groups the logic
together and guides the ispLEVER software toward achieving a placement
that meets the performance requirements of the module. A similar approach
can also be taken if exact placement of a module is not applicable because of
multiple instantiations of a module in a top-level design.

Floorplanning Preferences

Floorplanning preferences, such as logic groups and regions, can be set in
the Verilog HDL or VHDL source through the use of HDL attributes; they can
be set in the ASCII logical preference file (.Ipf) through the Design Planner
user interface; or they can be set through a combination of both methods.

The Design Planner, with its graphical design views and its facility for querying
timing paths, can be extremely useful for establishing floorplan preferences,
such as logical groups, regions, and device site assignments. It is a common
practice, in a timing closure methodology, to iterate between the Design
Planner application and the place-and-route program (PAR) to arrive at a
superior implementation, and afterwards, to migrate the physical constraints
into the RTL code as logical constraints.

The ispLEVER software supports a logic grouping mechanism that enables
you to direct the placement algorithm of the PAR program to pack logic
elements in proximity to each other and, optionally, to place them within a
particular region of the FPGA array.

Two main floorplanning preferences are available as group attributes in HDL.:

¢ HGROUP — hierarchical physical attribute. An HGROUP'’s logical identifier
is prepended with text that describes the identifier’s hierarchy. During the
mapping process, the HGROUP is expanded into individual placement
groups (PGROUPS).

¢ UGROUP — universal logical attribute. Prepending the hierarchy on the
block instance identifier does not change a UGROUP’s logical identifier. In
other words, an HGROUP enforces strict hierarchical control, but a
UGROUP allows for a grouping of blocks in different hierarchies or a
grouping of blocks with no hierarchy at all. During the mapping process,
the UGROUP is expanded into individual placement groups (PGROUPS).
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The HGROUP attribute can be placed on multiple instantiations of modules—
for example, VHDL generate statements—and each instantiation has its own
HGROUP. A UGROUP does not work in this case.

The Design Planner produces UGROUP preferences and saves the result in
the logical preference file (.Ipf).

The following FPGA device elements can be grouped using a PGROUP:

¢ Slice/PFU

¢ SysMEM memory

¢ sysDSP blocks

In Figure 126 and Figure 127, the arrows represent control and data paths

where there is interaction between different levels of hierarchy. The thick-lined
arrow represents the critical path where the design fails to make performance.

Figure 126: PGROUP Same Hierarchy Example, PGROUP CONTROLLER
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Figure 126 illustrates a design hierarchy where the failing paths are the
connections between COUNTER and STATE_MACHINE design blocks. The
easiest implementation for this example is to HGROUP the CONTROLLER,
which is the module in which the COUNTER and STATE_MACHINE are
instantiated.

For example, if the following Synplify and RTL Precision Synthesis attribute is
in the Verilog HDL file:

module CONTROLLER (<port_list>)
/* synthesis hgroup="CONTROL_GROUP” */;
//pragma attribute CONTROLLER hgroup CONTROL_GROUP

the COUNTER and STATE_MACHINE will be grouped in the FPGA inside a
boundary box. Now assume that the COUNTER is mapped into PFU_0 and
PFU_1 and that the STATE_MACHINE is mapped into PFU_2. The resulting
group generated by MAP and written to the physical preference file (.prf) will
be:

PGROUP “TOP/CONTROLLER/CONTROL_GROUP”
COMP “PFU_0O”
COMP “PFU_1~
COMP “PFU_277;
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Notice that the TOP/ hierarchy is prepended to the CONTROLLER PGROUP.

Figure 127 shows an example design hierarchy where the failing paths are
the connections between REGISTER_FILE and STATE_MACHINE modules.
The simplest thing to do is UGROUP the REGISTER_FILE and
STATE_MACHINE together.

Figure 127: UGROUP Different Hierarchy Example with UGROUP REGISTER_FILE and STATE

MACHINE

Top level
of hierarchy

Third level
of hierarchy

Second level
of hierarchy CONTROLLER
F 3 F 3

TOP

REGISTER_FILE

critical
path
h 4 v

STATE_MACHINE

h

h 4

Fy
v

COUNTER

For example, if the following Synplify and Precision attributes are in the
Verilog HDL file:

module REGISTER_FILE (<port_list>) /*synthesis
ugroup="CRITICAL_GROUP” */;
//pragma attribute REGISTER_FILE ugroup CRITICAL_GROUP

and

module STATE_MACHINE (<port_list>) /*synthesis
ugroup="CRITICAL_GROUP” */;
//pragma attribute STATE_MACHINE ugroup CRITICAL_GROUP

the REGISTER_FILE and STATE_MACHINE will be grouped in the FPGA
inside a default boundary box.

Now assume that the REGISTER_FILE is mapped into PFU_4 and PFU_5
and that the STATE_MACHINE is mapped into PFU_3. The resulting group
generated by MAP and written to the .prf will be:

PGROUP “CRITICAL_GROUP”
COMP “PFU_3~
COMP “PFU_4~
COMP “PFU_5";

The TOP/ hierarchy is not appended to the PGROUP identifier
CRITICAL_GROUP. The UGROUP results in a PGROUP.

If HGROUP attributes instead of UGROUP attributes had been used for
Figure 127:

module REGISTER_FILE (<port_list>) /*synthesis
hgroup=""CRITICAL_GROUP” */;
//pragma attribute REGISTER_FILE hgroup CRITICAL_GROUP
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and

module STATE_MACHINE (<port_list>) /*synthesis
hgroup="CRITICAL_GROUP” */;
//pragma attribute STATE_MACHINE hgroup CRITICAL_GROUP

the resulting groups generated by MAP and written to the .prf would be:

PGROUP “TOP/CONTROLLER/STATE_MACHINE/CRITICAL_GROUP”
COMP “PFU_3~

PGROUP “TOP/REGISTER_FILE/CRITICAL_GROUP”
COMP “PFU_4”
COMP “PFU_5";

So with PGROUP attributes, the STATE_MACHINE module would be
grouped together in one bounding box, and the REGISTER_FILE module
would be grouped together separately in another bounding box. The critical
path shown in Figure 127 would not be optimized.

These examples do not utilize all the possible tools available for floorplanning.
For more small syntax examples, refer to the “HDL Attributes” section of the
ispLEVER FPGA and Crossover Design online Help.

Implementation of Floorplan Preferences

Floorplan preferences set from within the HDL or the Design Planner GUI are
validated, then they are translated by the design mapper (MAP) into physical
preferences in terms of post-map physical components. Both hierarchical
groups (HGROUPs) and universal groups (UGROUPS) refer to logical block
references that you can easily recognize from the HDL source. The design
mapper produces the native physical database (.ncd) and converts
HGROUPs and UGROUPs into to placement groups (PGROUPSs), which refer
to post-map components of the .ncd file.

This section describes several examples of PGROUP and LOCATE
preferences that are implemented by the place and route program into a
LatticeEC LFEC1E FPGA.

Locating a Block to a Device Site

The simplest floorplan technique in ispLEVER is to anchor a logic block to a
particular device site, using the LOCATE preference. Blocks can be anchored
independently of a group/region floorplan. The most common type of block to
locate is a PIO.

The following procedure describes how to locate a block to a device site.

1. This step is optional. If you intend to floorplan design elements that will be
mapped to slice or PFU device sites, you must add the COMP
<comp_name> HDL attribute to each module instance in the HDL source,
as shown in the following Verilog HDL sample. This sample illustrates
attributes that are compatible with Precision RTL Synthesis and Synplify.

REG2 REG2inst (<port_list>) /* synthesis COMP=regpair */;
//pragma attribute REG2inst COMP regpair

In this sample, the COMP name regpair is applied by the design mapper
(MAP) to all elements that can be covered by a single slice. If the logic
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overflows a single slice, MAP appends a .number to the name for the
post-map netlist.

During the floorplanning steps that follow, you reference the comp_name
of the Design Planner Post-Map View to assign it to a specific device site.

Note

Design elements such as PIO, EBR, DSP, PLL/DLL, and MACO blocks do not
require the COMP attribute, because MAP retains the original name used in the
native generic database (.ngd).

Run the Design Planner (Post-Map) process to view the Post-Map
Physical Netlist View and Floorplan View of the Design Planner tool.

You can use the graphical views of the Design Planner to assign one or
more instances (PIO, PLL/DLL, slice, EBR, DSP, and so forth) to device
sites. PIOs are typically assigned in the Package View or Spreadsheet
View. Embedded blocks such as EBR and DSP blocks are typically
assigned in the Floorplan View. Each post-map device element can be
selected and assigned to a specific device site through a drag-and-drop
action. The result of the action is a LOCATE COMP preference in the
logical preference file (.Ipf).

LOCATE COMP "FIFOinst/FIFOeab/syn_dpram_512x8" SITE
"EBR_R23C5";

Note

Slice-type device elements must be named with the COMP attribute, as described
in step 1. Otherwise, the physical references that result are not recognized by the
design mapper in future runs.
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Anchored PGROUP

An anchored PGROUP refers to a placement group that is affixed to a certain
row and column site or anchor point. This fixed site or anchor point is defined
at a specific slice site or PFU device site by a hard LOCATE preference.
Placement grouping of the PGROUP elements are restricted to within the
dimension of a bounding box (BBOX), as shown in Figure 128.

Figure 128: Anchored PGROUP
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An anchored PGROUP has the following characteristics:

*
*

It is hard-located on the device with the LOCATE preference.

Itis located at a slice site by means of an anchor point at the northwestern
corner.

A slice anchor point is made to the D slice of the 4-slice PFU.

A PGROUP’s bounding box (BBOX) defines a fixed area in row and
column dimensions.

PGROUP components are located relatively in the BBOX definition, as
shown in the following example.

PGROUP ™my_pgroup™ BBOX 6 6 DEVSIZE
COMP "SLICE_1" "RI1C1A™

COMP "SLICE_2";

LOCATE PGROUP "my_pgroup™ SITE "R7C7D";
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¢ A PGROUP commonly contains a mix of slice-based and embedded block
logic.

Note

¢ Anchors must be at a slice or PFU-type device site. Embedded block type device
sites cannot serve as group anchor points.

The my_pgroup PGROUP defines the user-defined PGROUP. The bounding
box has the dimensions of 6 rows by 6 columns of contiguous device rows
and columns (DEVSIZE), as defined by BBOX 6 6. The COMP name defines
the slice members of the group after the BBOX definition. In the first line, the
row and column dimension R1C1A is the relative anchor site or northwestern
site of the BBOX with the SLICE_1 component occupying that corner. The
LOCATE preference on the last line anchors the PGROUP to the R7C7D
device site.

Note

The Design Planner does not support assignment of individual slices to device sites
through the UGROUP preference, as shown in the examples.

Placement grouping of a PGROUP that contains both slice and embedded
block elements is also restricted to the dimension of a BBOX. The PGROUP
anchor point must be at a slice-type device site, and the bounding box should
encompass enough resources to accommodate all of the group elements.
Figure 129 shows an example of both PFU- and EBR-based logic.

FPGA Design Guide

182



Strategies for Timing Closure

Floorplanning the Design

Figure 129: Anchored PGROUP with Slice and Embedded Blocks
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Regional PGROUPs

To specify regional PGROUPSs, you use the REGION preference. REGION
defines a rectangular area within which a PGROUP can float; that is, the
PGROUP can be optionally placed anywhere within that specified region.

Note

Groups that are composed of both slice-based and embedded block logic, such as
EBR and DSP-type blocks, must be anchored. Groups composed solely of slice-based
logic, such as LUTs and registers, can float.

Regional PGROUPs have the following characteristics:

L 4

*
*
*

The region area is defined with a REGION preference.

The region’s northwestern site defines its anchor point.

The PGROUP is located to float within the defined region area.
No anchor point is defined for the PGROUP.
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¢ A bounding box (BBOX) defines the size of the PGROUP.

¢ Components are located relatively in the BBOX definition.

Note

Anchor points must be at a slice- or PFU-type device site. Embedded block type
device sites cannot serve as region anchor points.

The following example places the PGROUP within the my_region REGION,
which is a fixed rectangular area between R3C3 and R12C12, as illustrated in
Figure 130.

REGION "my_region'™ "R2C2D" 10 10 DEVSIZE;
PGROUP "my_pgroup' BBOX 6 6 DEVSIZE

COMP *SLICE_1'" "R1C1D"

COMP "SLICE_2";

LOCATE PGROUP "my_pgroup' REGION "my_region';

Figure 130: PGROUP Floating within a REGION
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Completely Floating PGROUPs

A PGROUP can also completely float; that is, the PGROUP can be placed
anywhere on the device. You can do this by precluding the LOCATE
PGROUP.

The following example creates a completely floating PGROUP, as shown in
Figure 131:

PGROUP "my_pgroup™ BBOX 6 6 DEVSIZE
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COMP "'SLICE_1'" "R1C1D"
COMP "SLICE_2";

Note

Groups that are composed of both slice-based and embedded block logic,
such as EBR and DSP-type blocks, must be anchored. Groups composed
solely of slice-based logic, such as LUTs and registers, can float.

Figure 131: PGROUP Completely Floating on a Device
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Completely Floating PGROUP with Minimum BBOX

The previous examples all specify BBOX in the PGROUP. Since the BBOX
parameter is optional, some PGROUPs’ definitions might not specify a BBOX.
In such cases, a minimally sized BBOX is generated for the PGROUP
internally by default. See Figure 132.

Note

Groups that are composed of both slice-based and embedded block logic, such as
EBR and DSP-type blocks, must be anchored. Groups composed solely of slice-based
logic, such as LUTs and registers, can float.

Figure 132: PGROUP Completely Floating with Minimal BBOX
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The following example defines a completely floating PGROUP with a 3 x 3 (3
rows in height and 3 columns wide) or minimal BBOX, as shown in
Figure 132.

PGROUP “my_pgroup"
COMP "'SLICE_1" "R1C1A™
COMP "'SLICE_2";

The R1C1A parameter in the COMP definition refers to the relative (not
absolute) northwestern site, or origin, of the PGROUP’s bounding box and
should not be confused with an anchor point. Anchor points use the LOCATE
preference.
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Setting Group Preferences in the Design

Planner

The Design Planner user interface allows you to graphically view and modify
any group preferences that were set in the HDL and to create additional
groups to improve design performance.

Pre-Mapped View for UGROUPs

In the Pre-Map Logical Netlist View, shown in Figure 133, logical components
from the pre-mapped netlist can be combined into UGROUPs. The Pre-Map
Logical Netlist View also displays individual UGROUPSs that were expanded
from HGROUPs in the HDL during the Build Database process. Modified or
newly created UGROUPs are written to the logical preference file (.Ipf) with
the Save command.

Figure 133: Pre-Mapped View
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Post-Mapped View for PGROUPs

Physical components are displayed in the Post-Mapped Physical Netlist View,
shown in Figure 134, and they can be combined into PGROUPs and placed
into regions. Since the mapping process translates UGROUPs to physical
groups, any pre-map logical groups become PGROUPs in the post-mapped
netlist.
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File Wiew Tools Help

Figure 134: Post-Mapped View
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Floorplan and Physical Views

After placement and routing (PAR), you can view and edit PGROUPs and
regions in the Floorplan View (Figure 135) and in the Physical View

(Figure 136).

Figure 135: Floorplan View
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Figure 136: Physical View
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You can draw regions in the Floorplan View and the Physical View layouts.
This feature is especially useful for reserving areas of the floorplan for other
modules.
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Path Tracer

The Design Planner’s Path Tracer, shown in Figure 137, enables you to query
a timing path, identify the longest delay, and then group those components
that are scattered around the fabric in order to reduce the delay.

Figure 137: Path Tracer
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Saving Preferences

Design changes made in the Design Planner are written to the logical
preference file (.Ipf) when the design is saved. When new or modified
PGROUPs and REGIONSs are saved in the Design Planner, their logical

equivalents are immediately written to the .Ipf, and they will be written to the
physical preference file (.prf) when the design is remapped.

HGROUP and UGROUP attributes from the HDL are not written to the .Ipf
until they are modified, after which the .Ipf preferences take precedence.
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Persistence of Preferences

Because the Design Planner saves all logical preferences in the .Ipf, including
the logical equivalents of physical preferences such as PGROUPs, the
preferences persist through repeated modifications and design iterations.
This makes the Design Planner a highly useful tool for setting preferences,
since there is less need to go back and modify the HDL. The flow of
preferences from the HDL, through the Design Planner and mapping, are
shown in Figure 138.

Figure 138: Preference Flow
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Using the Design Planner Interface

To run the Design Planner, select the targeted device in the Project Navigator,
and then select one of the following options:

¢ Double-click Design Planner (Pre-Map) to open the Spreadsheet View
and Package View. Define timing constraints and make pin assignments
in the pre-mapped stage.
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¢ Double-click Design Planner (Post-Map) to open the Post-Map Physical
Netlist View, Pre-Map Logical Netlist View, and Floorplan View. Create or
modify physical groups and regions.

¢ Double-click Design Planner (Post-PAR) to open the Post-Map Physical
Netlist View, Pre-Map Logical Netlist View, and Floorplan View. Modify
placement, query timing paths, and make further adjustments

¢ From a command prompt window, type the flmainapp command, then
open the desired pre-map (.ngd) or post-map (.ncd) database file from the
Design Planner Control.

Note

For more information about running the Design Planner from the command line,
see the “Command Line” section of the Design Planner online Help.

Design Performance Enhancement Strategies

The design strategies for performance enhancement depend on the structure
of a particular circuit. Strategies include the following:

¢ Defining regions based on design hierarchy, if the hierarchy closely
resembles the structure of the circuit. Such designs typically consist of
tightly integrated modules, where the logic for each module is self-
contained and the modules communicate through well-defined interfaces.

Use the Design Planner’s Pre-Map Logical Netlist View, shown in
Figure 133, to create logical groups based on the design hierarchy.

¢ Defining regions based on the critical path, if the critical path is long and
spans multiple modules.

Use the Design Planner’s Path Tracer, shown in Figure 137, to identify the
critical path and keep the nodes in the critical path together by grouping
the logical components. This can lead to improved performance.

¢ Defining regions based on connections by grouping nodes together that
contain high fan-outs and high fan-ins.

Use the Floorplan View, shown in Figure 135, and Physical View, shown
in Figure 136, to view them on the physical design layout, and then group
nodes together to reduce delays in connections and wiring congestion.

It might be necessary to change the existing design hierarchy and structure to
make the design more amenable to floorplanning, especially if modular
hierarchy and structure were not considered at the beginning of design
conception.

You can elect to optimize modules individually and can exercise varying
amounts of control over the placement by using different types of regions.
When bounding boxes and location anchors are used selectively, the
ispLEVER software can automatically determine the best size and location for
a region.

Another approach is to optimize the top-level design without first optimizing
the individual modules. This approach allows the ispLEVER software to place
nodes within regions and move regions across the device. You assign
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modules to regions, then compile the entire design. With this approach, you
can place elements from different modules in a region.

Note

For more information about using the Design Planner user interface, see the
ispLEVER Design Planner online Help.

Special Floorplanning Considerations

The following sections describe the use of elements such as embedded block
RAM and certain types of groupings that require special consideration.

Embedded Block RAM Placement

Block RAM placement can be done with simple LOCATE preferences. It is not
always necessary to locate block RAMs. Do not use the PGROUPs,
UGROUPs, or the Design Planner GUI to group Block RAMSs.

I/0O Grouping

There is a complete set of physical constraints for grouping 1/O components.
Refer to the “HDL Attributes” section of the ispLEVER FPGA and Crossover
Design online Help.

Large Module Grouping

Larger PGROUPs and UGROUPs (with many logical elements) should be
anchored and bounded by LOCATE and BBOX keywords.

The BBOX should be strategically shaped and sized according to the module
to be placed inside the BBOX. If the BBOX shape and size are not specified,
the default BBOX size will be a square that is as small as possible. This is not
the optimal BBOX for typical modules.

You should shape the design with the data path in mind and size the BBOX to
be larger than needed so that the ispLEVER placer can have more flexibility in
placing logic elements inside the BBOX. You can determine the BBOX size by
counting the number of slices from a grouped module that has already been
mapped.

Carry Chains and Bus Grouping

Carry chains (used by ripple arithmetic functions like adders, counters, and
multipliers) and logic modules connected by buses can easily be floorplanned
inappropriately if you are not aware of the internal routing resources available
for optimizing these carry chain and bus routes. Certain groupings can reduce
the performance of a design compared to no floorplanning at all.

An example of a broken carry chain is a 9-bit adder that is PGROUPed with
no relative placement on the adder.

Logic elements such as PFUs might give worse performance because the
adder carry-chain is broken.
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SLICs in Groups

Supplemental Logic and Interconnect Cells (SLICs), which are contained in
some Lattice Semiconductor FPGA device families, are automatically
removed from PGROUPs and UGROUPs by the ispLEVER software unless
they are relatively placed. This is because SLICs are used by the tools for
interconnects that you cannot foresee. If SLIC placement must be controlled
for a design, you must instantiate and locate the SLICS in the preference or
HDL files. It is recommended that you allow the ispLEVER software to place
SLICs automatically.

Conclusion

For a placement and routing strategy that will meet timing objectives, start
with a good set of FPGA timing preferences. For a design's first placement
and routing, run PAR at the low placer effort level and with a low number of
routing iterations. There is no point in running 100 cost tables if the design's
logic depth is too high. Use TRACE to analyze timing, then modify
preferences to help improve it. Experiment with different strategies for
controlling placement and routing; use TRACE to analyze timing for each
iteration. If performance goals still are not met, use floorplanning to group
components along critical paths and shorten routing distances.

For hands-on training, see the “Achieving Timing Closure in FPGA Designs
Tutorial.”
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