
ECC Module

October 2012 Reference Design RD1025

www.latticesemi.com 1 rd1025_01.1

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
This reference design implements an Error Correction Code (ECC) module for the LatticeEC™ and LatticeSC™
FPGA families that can be applied to increase memory reliability in critical applications. The ECC module provides
Single Error Correction - Double Error Detection (SECDED) capability based on a class of optimal minimum odd-
weight error parity codes that provides better performance than typical Hamming-based SECDED codes. Several
architecture options are identified that allow the user to optimally tailor the speed, resource utilization, and latency
of the module implementation to their specific application requirements.

Features
• SECDED capability implemented using an optimal odd-weight parity matrix that provides better perfor-

mance than typical Hamming-based codes

• Directly usable code for a (72,64) SECDED module provided. Specifications provided for similar (22,16) and
(39,32) modules

• Separate registered encoder and decoder modules to support optimized integration with user logic

• Optional pipelining implementation to provide increased maximum speed of operation

• Error insertion/error indication diagnostic capabilities

Functional Description
ECC Overview
Hamming-based SECDED codes are widely used to increase memory reliability. Hamming encoding involves
deriving a set of parity check bits covering different subsets of bits comprising a data word and concatenating or
merging the check bits with the original data word. Decoding involves recalculating parity over the encoded data
word, including the parity check bits. The parity check bits calculated at the encoder are designated syndrome bits
and define what is known as the syndrome vector. The ability to correct single bit errors is provided by specifying
encoding parity check relationships such that single bit errors in the encoded data words yield unique and specific
syndrome vectors. A detailed scheme for generating effective parity check relationships was originally specified by
R. W. Hamming [1].

It is well understood that the minimum number of check bits required for single bit error correction is specified by
the relationship:

where D is the number of data bits and P is the number of parity check bits.1 Thus, five check bits are required to
implement single bit error correction for a 16-bit data word, six check bits are required for a 32-bit data word, and
seven check bits are required for a 64-bit data word. With Hamming-based codes, double error detection is typically
provided by an additional parity check bit across all the data and other parity bits. This bit will be 0 in the presence
of double bit errors. Double errors essentially result in the mod-2 sum of syndrome vectors and, since single bit
errors yield unique syndrome vector states, the mod-2 sum will be non-zero and at least one of the other syndrome

1. The total number of possible syndrome vector states is 2P. The general requirement for single bit error correction is that any single bit error in
the encoded data word must yield a unique syndrome vector. It must also be possible to detect no bit errors; thus, the total number of unique
syndrome vectors required is equal to (D + P + 1).

D + P + 1 ≤ 2P

ECC Module

2

bits will be set. Thus, double bit errors are indicated when the syndrome bit corresponding to the overall parity is 0
and one or more of the other syndrome bits is 1.

This reference design uses an SECDED code originally proposed by M. Y. Hsiao [2] that is simpler to implement
and provides faster and better error detection capability than conventional Hamming-based codes. This code
focuses on specifying an optimal minimum odd-weight parity checking relationship that reduces implementation
logic depth and gate count.

As in a Hamming code, the parity relationships are specified such that any single bit error yields a unique syn-
drome vector state. In addition, the parity relationships are defined such that any single bit error is indicated by an
odd number of syndrome bits being set to 1 (hence odd-weight parity checking), and the minimum odd weight
codes (i.e. the codes having the minimum number of 1s) are chosen from the 2P possible codes.

This code provides single error detection/correction capability comparable to a Hamming code. Double error detec-
tion is provided by the odd-weight requirement. As for Hamming, double errors essentially result in the mod-2 sum
of syndrome vectors. Since all parity vectors are odd weight and unique, the mod-2 sum will be even weight and
non-zero. Hence any even weight, non-zero syndrome vector indicates the occurrence of an even number of errors.

The amount of logic required to implement the SECDED parity coding relationships is roughly equal to the number
of 1s in the valid syndrome vectors. Logic depth, and hence processing speed, is roughly equal to the number of
bits covered by the specific parity relationships. In [2], it is shown that minimum odd weight codes may be con-
structed that always have fewer 1s than Hamming codes and thus require less logic to implement. Logic depth is
also reduced by eliminating the need for a parity bit across all of the data and check bits for double error detection.

ECC Implementation
The ECC parity check matrix for the code implemented in this design is specified in Table 1. Each data bit is
included in three or five parity check bits, implementing minimum odd-weight encoding. Each parity check bit cov-
ers 26 data bits, minimizing the parity generation logic depth.

In the ECC encoder, each parity check bit is determined by XORing the corresponding data bits specified in
Table 1. For example:

cb0 = din[0]^din[1]^din[2]^din[3]^din[4]^din[5]^din[6]^din[7]^din[10]^
din[13]^din[14]^din[17]^din[20]^din[23]^din[24]^din[27]^din[35]^
din[43]^din[46]^din[47]^din[51]^din[52]^din[53]^din[56]^din[57]^
din[58];

At the decoder, syndrome bits are calculated over the corresponding data and received check bit. An error has
occurred if any of the syndrome bits is set to 1, i.e.

error = sb[0]|sb[1]|sb[2]|sb[3]|sb[4]|sb[5]|sb[6]|sb[7];

If a single bit error has occurred, an odd number of syndrome bits will be set to 1:

one_error = error & (sb[0]^sb[1]^sb[2]^sb[3]^sb[4]^sb[5]^sb[6]^sb[7]);

For double bit errors, an even number of check bits will be set to 1:

two_error = error & !(sb[0]^sb[1]^sb[2]^sb[3]^sb[4]^sb[5]^sb[6]^sb[7]);

For the case of one bit error, the specific errored bit is identified by the specific state of the syndrome vector. For
example, an error in data bit 0 is indicated by:

eb[0] = sb[0]&sb[1]&!sb[2]&!sb[3]&!sb[4]&sb[5]&!sb[6]&!sb[7];

ECC Module

3

Table 1. Parity Check Matrix for (72, 64) SECDED Code

Byte Bit sb0 sb1 sb2 sb3 sb4 sb5 sb6 sb7
0 1 1 1
1 1 1 1
2 1 1 1

0 3 1 1 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1
10 1 1 1

1 11 1 1 1 1 1
12 1 1 1
13 1 1 1
14 1 1 1
15 1 1 1
16 1 1 1
17 1 1 1
18 1 1 1

2 19 1 1 1 1 1
20 1 1 1
21 1 1 1
22 1 1 1
23 1 1 1
24 1 1 1
25 1 1 1
26 1 1 1

3 27 1 1 1 1 1
28 1 1 1
29 1 1 1
30 1 1 1
31 1 1 1
32 1 1 1
33 1 1 1
34 1 1 1

4 35 1 1 1 1 1
36 1 1 1
37 1 1 1
38 1 1 1
39 1 1 1
40 1 1 1
41 1 1 1
42 1 1 1

5 43 1 1 1 1 1
44 1 1 1
45 1 1 1
46 1 1 1
47 1 1 1
48 1 1 1
49 1 1 1
50 1 1 1

6 51 1 1 1 1 1
52 1 1 1
53 1 1 1
54 1 1 1
55 1 1 1
56 1 1 1
57 1 1 1
58 1 1 1

7 59 1 1 1 1 1
60 1 1 1
61 1 1 1
62 1 1 1
63 1 1 1
64 1
65 1
66 1

Check 67 1
68 1
69 1
70 1
71 1

ECC Module

4

Errors are corrected by generating an error mask word based on the syndrome vector relationships. A bit will be set
in the mask corresponding to the location of the errored bit. The error mask word is XORed with the data word,
inverting and correcting the identified bit. If there is no error, or there are two bit errors, no bits will be set in the
error mask and the data will be unaffected.

Note that the error decoding is only guaranteed to operate correctly in the presence of one or two bit errors. Miscor-
rections (i.e. data corruption) may occur in the presence of three or more errors. According to [2], the SECDED
code used in this design has a lower probability of miscorrecting triple errors and a higher probability of correcting
quadruple errors than conventional Hamming codes.

Module Architecture
The basic ECC encoder and decoder modules are shown in Figure 1. Block diagrams showing the encoder and
decoder architectures are given in Figures 2 and 3, respectively. These figures show the available parameterized
pipelining option. Included in the encoder module is an error insertion diagnostic capability.

Figure 1. ECC Modules

Figure 2. ECC Encoder

enc_datain[63:0] enc_dataout[71:0]

ECC
Encoder
Module

ECC
Decoder
Module

dec_dataout[63:0]

clk

reset

enc_inserr[1:0]

dec_datain[71:0]

clk

reset
dec_error[1:0]

]0[tuobc_lbe

teser

klc

]0:17[tuoatad_cne]0:36[niatad_cne

]0:1[rresni_cne

0_ROX

1_ROX

2_ROX

3_ROX

4_ROX

5_ROX

6_ROX

7_ROX

ksam rorre
noitareneg

]0:17[ksamrre_cne

esiw-tib
ROX

)v.kcolb_edocne(kcolb redocne

]0:36[niatad_lbe

]1[tuobc_lbe

]2[tuobc_lbe

]3[tuobc_lbe

]4[tuobc_lbe

]5[tuobc_lbe

]6[tuobc_lbe

]7[tuobc_lbe

noitpo enilepiP

ECC Module

5

Figure 3. ECC Decoder

ECC Encoder
The ECC encoder generates the parity check bits as specified by the relationships defined in Table 1. An error
insertion capability is also implemented that allows the insertion of either one or two bit errors in each data word.
Error insertion is performed by creating an error generation bit mask that has either one or two bits set to one and
XORing the mask with the output word specified by the input data and generated parity check bits. Error insertion
is controlled by enc_inserr[1:0] as specified in Table 2. In the present reference design implementation, when error
insertion is enabled, the position of specific bit(s) errored rotates through the encoded data word one bit each clock
cycle. This capability could easily be modified to insert errors at a fixed location (or removed completely), reducing
the logic utilization.

As shown in Figure 2, in this reference design the generated parity check bits [7:0] are appended as bits [71:65] in
the encoded data word. Depending on the specific memory architecture implemented, users may want to insert the
parity check bits in other bit positions within the encoded data word to avoid conditions where a single hardware
failure can result in a degenerative all 0 (no error) state.

Table 2. Error Insertion Coding

ECC Decoder
The ECC decoder calculates parity over the specific sets of data bits specified in Table 1 and the corresponding
parity check bit in the encoded data word. The generated syndrome vector is then decoded to determine if any
errors have occurred and specifically identify any bit errors. An error mask word is generated based on the syn-
drome vector relationships. A bit will be set in the mask corresponding to the location of an errored bit. The error
mask word is XORed with the data word, inverting and correcting the specified bit. If there is no error, or there are

enc_inserr[1] enc_inserr[0] Condition

0 0 No error insertion

0 1 One error inserted continuously

1 0 Two errors inserted continuously

1 1 Invalid

]0:36[niatad_lbd

]0[bs

teser

klc

]0:17[niatad_ced

]0:1[rorre_ced

0_ROX

1_ROX

2_ROX

3_ROX

4_ROX

5_ROX

6_ROX

7_ROX

]1[bs

]2[bs

]3[bs

]4[bs

]5[bs

]6[bs

]7[bs

rorrE
noitacidnI

noitareneg emordnys

0E

0E

0E

0E

]0[be

]1[be

]2[be

]36[be

]0:36[tuoatad_cedesiw-tib
ROX.

.

.

.

.

.

.

.

.

.

.

.

ksam rorre
noitareneg

rorre
noitcerroc

)v.kcolb_edoced(kcolb redoced

noitpo enilepiP

ECC Module

6

two bit errors, no bits will be set in the error mask and the data will be unaffected. The occurrence of none, one or
two errors is indicated by the state of dec_error[1:0] as specified Table 3.

Table 3. Error Detection Coding

Optional Pipelining
As indicated previously, the depth of the encoding and decoding logic for this ECC implementation is reduced as
compared to Hamming-based solutions, providing a higher maximum processing rate. The maximum processing
rate for this design is limited by the depth of the syndrome and error mask generation logic in the decoder. The
maximum processing speed can be increased by the optional pipelining capability. With pipelining, encoded data is
registered before diagnostic error insertion in the encoder as shown in Figure 2, and the output of the syndrome
generation circuit is registered before it is input to the mask generation circuit in the decoder as shown in Figure 3.
This pipelining has the tradeoff of increasing latency by one clock cycle in both the encoder and decoder.

Parameters
The only explicit parameter for the ECC module reference design is the ability to include optional pipelining. This
parameter is set via the ecc_params.v file. Additional modifications may be made by directly editing the source
files. The reference design architecture is relatively simple and complete source code is provided.

I/O Descriptions
The I/O for the ECC modules is given in Table 4.

Table 4. ECC Module I/O

dec_error[1] dec_error[0] Condition

0 0 No error detected

0 1 One error detected

1 0 Two errors detected

1 1 Invalid

Signal Name Active I/O Description

Encoder Module

clk I Clock signal

reset high I Reset signal

enc_datain[63:0] high I Unencoded input data

enc_inserr[1:0] high I Error insertion control

enc_dataout[71:0] high O Encoded output data

Decoder Module

clk I Clock signal

reset high I Reset signal

dec_datain[71:0] high I Encoded input data

dec_dataout[63:0] high O Decoded output data

dec_error[1:0] high O Error indication

ECC Module

7

Timing Diagrams
The timing latencies through the registered encoder and decoder ECC modules are shown in Figure 4.

Figure 4. ECC Module Timing Diagram

Implementation
As discussed previously, the ECC reference design includes separate registered encoder and decoder modules to
facilitate easy integration with user logic. Source code for separate non-registered encoder and decoder blocks are
also provided. These non-registered blocks implement only the check bit generation and syndrome-checking logic
as indicated in Figures 2 and 3. These non-registered logic blocks may be directly integrated with other logic in the
user’s data path to implement memory protection with minimal throughput latency, although users will need to man-
age design parameters such as placement and fanout to ensure signal propagation through the encoding and
decoding logic meets the system requirements. The logic utilization for these non-registered blocks is shown in
Table 5.

This design is implemented in Verilog. When using this design in a different device, density, speed grade or perfor-
mance and utilization may vary. Default settings are used during the fitting of the design.

Table 5. Performance and Resource Utilization

Device
Family Configuration Language

Speed
Grade

Utilization
(LUTs)

fMAX
(MHz) I/Os

Architectural
Resources

LatticeEC1

Pipelined Verilog -5 411 >90 278 N/A

Non- Pipelined Verilog -5 440 >90 278 N/A

Non-registered (logic only) Verilog -5 271 — 210 N/A

LatticeSC2

Pipelined Verilog -5 391 >130 278 N/A

Non- Pipelined Verilog -5 440 >130 278 N/A

Non-registered (logic only) Verilog -5 342 — 210 N/A

1. Performance and utilization characteristics are generated using LFEC20E-5F484C with Lattice Diamond® 1.3 design software.
2. Performance and utilization characteristics are generated using LFSC3GA15E-5F900C with Lattice Diamond 1.3 design software.

enc_datain

enc_dataout*
(no pipelining)

word n word n+1 word n+2 word n+3 word n+5

word n word n+1 word n+2 word n+3 word n+5

clk

dec_datain

dec_dataout*
(no pipelining)

word n word n+1 word n+2 word n+3 word n+5

word n word n+1 word n+2 word n+3 word n+5

dec_error[0]**

dec_error[1]**

*Pipeline option increases dataout vs. datain latency by 1 byte in both the encoder and decoder.
**Single bit error in word n+1, double bit error in word n+3.

dec_datain

ECC Module

8

Verification Environment
The test bench environment for verifying the ECC core is shown in Figure 5.

Figure 5. ECC Module Timing Diagram

The test bench inputs random data into the encoder. The same data is also input to shift registers which match the
delays of the encoder and decoder circuits. The encoded data is applied to the input of the decoder. This is
repeated for three scenarios: no errors, one error inserted and two errors inserted. The errors are inserted using a
diagnostic capability built into the encoder section. The outputs of the decoder are compared to the expected out-
puts. In all cases the number of errors detected should match the number of errors inserted and in the cases where
zero or one error is inserted the decoder output data should match the encoder input data.

References
[1] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell System Tech. J., Vol. 26, No. 2, pp. 147-160,

April 1950.

[2] M. Y. Hsiao, “A Class of Optimal Minimum Odd-weight-column SEC-DED Codes,” IBM J. RES. Develop., Vol.
14, pp. 395-401, July 1970.

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Revision History
Date Version Change Summary

April 2005 01.0 Initial release.

October 2012 01.1 Updated document with new corporate logo.

Added support Lattice Diamond 1.3 design software.

Added support for the LatticeSC device family.

Updated equation in the ECC Overview section.

ENCODER

DECODER

DELAY

DELAY

COMPARE

DATA

INSERT ERROR

ENCODED DATA

DECODED DATA

EXPECTED ERROR

EXPECTED DATA

DETECTED ERROR

ENCODER

DECODER

DELAY

DELAY

COMPARE

www.latticesemi.com/dynamic/view_document.cfm?document_id=http://www.latticesemi.com/

ECC Module

9

Appendix A. Additional SECDED Codes
The ECC module architecture may be easily modified to support other data sizes. Comparable optimal minimum
odd-weight parity check matrices for (22,16) and (39,32) codes are given in Tables 6 and 7, respectively.

Table 6. Parity Check Matrix for (22, 16) SECDED Code

Byte Bit sb0 sb1 sb2 sb3 sb4 sb5
0 1 1 1
1 1 1 1
2 1 1 1

0 3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1

10 1 1 1
1 11 1 1 1

12 1 1 1
13 1 1 1
14 1 1 1
15 1 1 1
16 1
17 1
18 1

Check 19 1
20 1
21 1

ECC Module

10

Table 7. Parity Check Matrix for (39, 32) SECDED Code

Byte Bit sb0 sb1 sb2 sb3 sb4 sb5 sb6
0 1 1 1
1 1 1 1
2 1 1 1

0 3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1

10 1 1 1
1 11 1 1 1

12 1 1 1
13 1 1 1
14 1 1 1
15 1 1 1
16 1 1 1
17 1 1 1
18 1 1 1

2 19 1 1 1
20 1 1 1
21 1 1 1
22 1 1 1
23 1 1 1
24 1 1 1
25 1 1 1
26 1 1 1

3 27 1 1 1
28 1 1 1
29 1 1 1
30 1 1 1
31 1 1 1
32 1
33 1
34 1

Check 35 1
36 1
37 1
38 1

	Introduction
	Features
	Functional Description
	ECC Overview
	ECC Implementation
	Module Architecture
	ECC Encoder
	ECC Decoder
	Optional Pipelining

	Parameters
	I/O Descriptions
	Timing Diagrams
	Implementation
	Verification Environment
	References
	Technical Support Assistance
	Revision History
	Appendix A. Additional SECDED Codes

