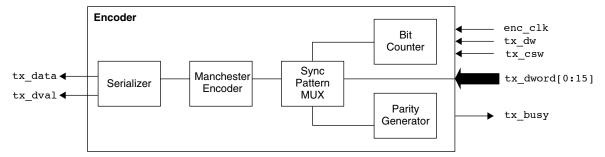


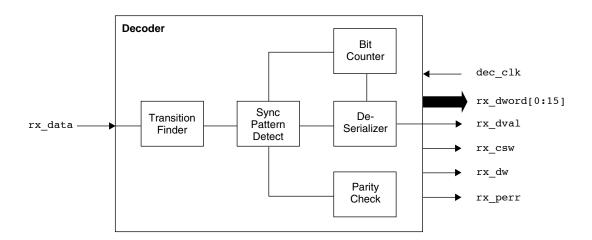
1553 Encoder/Decoder

April 2005 Reference Design RD1021

Introduction

The MIL-STD-1553 is a low-speed serial bus used in avionics systems. This reference design implements Manchester II encoding and decoding required by the 1553 along with synchronization pattern insertion and identification, data serialization and de-serialization and parity checking and insertion functions.


Features


- MIL-STD-1553 Compatible
- 1 Mbps Data Rate
- · Sync Pattern Identification and Insertion
- · Manchester II Encoding/Decoding
- · Parity Checking and Insertion
- · Serialization and De-serialization

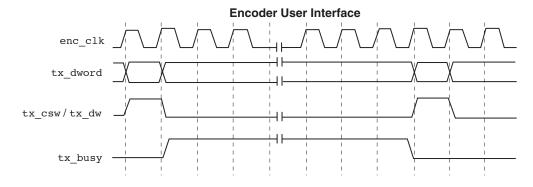
Functional Description

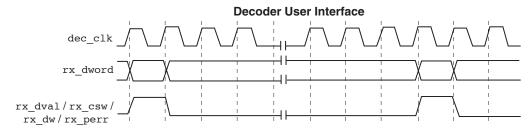
The following figure shows a block diagram of the different functions implemented in this 1553 Encoder/Decoder along with the input/output signals.

Figure 1. 1553 Encoder/Decoder Block Diagram

Encoder Operation

The encoder requires a single clock with a frequency (2 MHz) of twice the desired data rate (1 Mbps) for enc_clk . The encoder cycle begins with either tx_csw or tx_dw pulse along with the command-status or data word to be transmitted. Then the encoder asserts tx_busy until it transmits this word serially through all the encoder functions and then de-asserts tx busy to accept the next word.


Decoder Operation


The decoder requires a single clock with a frequency (8 MHz) of 8 times the desired data rate (1 Mbps) for dec_clk. The decoder is free running and continuously hunting for the synchronization pattern on the serial input. When a valid synchronization pattern is detected, it identifies the boundary of the word and determines it as either a command-status word or a data word. Then the serial bits are passed through shift registers, and a parallel word is presented to the user interface along with the type of word and when it is valid. Also, the word is checked for parity errors.

Pin Descriptions

Port Name	Active State	I/O	Signal Description	
Decoder				
dec_clk	_	In	Decoder clock of 8 MHz	
rst_n	Low	In	Asynchronous reset	
rx_data	_	In	Serial data Input	
rx_dword[0:15]	_	Out	Received output data word to user	
rx_dval	High	Out	Data valid indication for rx_dword	
rx_csw	High	Out	Indicates rx_dword has command or status word	
rx_dw	High	Out	Indicates rx_dword has data word	
rx_perr	High	Out	Indicates parity error in rx_dword	
Encoder				
enc_clk	_	In	Encoder clock of 2 MHz	
rst_n	Low	In	Asynchronous reset	
tx_dword[0:15]	_	In	Data word from user for transmission	
tx_csw	High	In	Indicates tx_dword has command or status word	
tx_dw	High	In	Indicates tx_dword has data word	
tx_data	_	Out	Serial data output	
tx_dval	High	Out	Data valid indication for tx_data	
tx_busy	High	Out	Indicates Encoder is not ready to accept the next word	

Timing Diagrams

Implementation Results

The design software used for this implementation is Lattice ispLEVER[®] version 4.2 and the Synplicity Synplify synthesis tool. The device utilization and performance summary for LatticeEC[™] and LatticeXP[™] devices (-4 speed grade) is shown below.

Device	Size	Reported Frequency			
Decoder		•			
LFEC20E-4	53 SLICEs	8 MHz			
LFXP10E-4	53 SLICEs	8 MHz			
Encoder					
LFEC20E-4	39 SLICEs	2 MHz			
LFXP10E-4	33 SLICEs	2 MHz			

File List

The files provided in this LatticeEC reference design package are:

Lattice Semiconductor

The files provided in this LatticeXP reference design package are:

1./1553_enc_dec/docs/1553_enc_dec.doc 2./1553_enc_dec/docs/readme.txt 3./1553_enc_dec/source/decoder_1553.v 4./1553_enc_dec/source/encoder_1553.v 5./1553_enc_dec/par/xp/decoder_1553.prf 6./1553_enc_dec/par/xp/encoder_1553.prf

7./1553_enc_dec/par/xp/encoder_1553.syn 8./1553_enc_dec/par/xp/encoder_1553.syn

9. /1553_enc_dec/simulation/xp/scripts/runsim_1553.do 10. /1553_enc_dec/synthesis/xp/synplify/decoder_1553.prj 11. /1553_enc_dec/synthesis/xp/synplify/encoder_1553.prj 12. /1553_enc_dec/synthesis/xp/synplify/decoder_1553.sdc 13. /1553_enc_dec/synthesis/xp/synplify/encoder_1553.sdc

14. /1553_enc_dec/testbench/test_1553.v

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)

+1-408-826-6002 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Design document Read me file

Decoder source verilog file Encoder source verilog file

Decoder Constraint file for place and route Encoder Constraint file for place and route Decoder Project file for place and route Encoder Project file for place and route

Scripts for RTL simulation

Decoder Project file for synthesis using Synplify Encoder Project file for synthesis using Synplify Decoder Constraint file for synthesis using Synplify Encoder Constraint file for synthesis using Synplify

Testbench for simulation