

DI2CSB

I²C Bus Interface Slave - Base version ver 2.03

OVERVIEW

I²C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data transmission over a short distance between many devices. The DI2CSB provides an interface between a passive target device e.g. memory, LCD display, pressure sensors etc. and an I2C bus. It can works as a slave receiver or transmitter depending on working mode determined by a master device. Very simple interface, composed with the read, write and data signals, allows easy connection to the target devices. The core doesn't required programming and is ready to work after power up/reset. The read, write, burst read, burst write and repeated start transmissions are automatically recognized by the core. The core incorporates all features required by I²C specification. The DI2CSB supports the following transmission modes: Standard, Fast and High Speed.

KEY FEATURES

- Conforms to v.2.1 of the I²C specification
- Slave operation
 - Slave transmitter
 - o Slave receiver
- Supports 3 transmission speed modes
 - Standard (up to 100 kb/s)
 - Fast (up to 400 kb/s)
 - High Speed (up to 3,4 Mb/s)
- Allows operation from a wide range of input clock frequencies

- Support for reads, writes, burst reads, burst writes, and repeated start
- 7-bit addressing
- No programming required
- Simple interface allows easy connection to target device e.g. memory, LCD display, pressure sensors etc.
- Fully synthesizable
- Static synchronous design with positive edge clocking and synchronous reset
- No internal tri-states
- Scan test readv

APPLICATIONS

- Embedded microprocessor boards
- Consumer and professional audio/video
- Home and automotive radio
- Low-power applications
- Communication systems
- Cost-effective reliable automotive systems

DELIVERABLES

- Source code:
 - ♦ VHDL Source Code or/and
 - ♦ VERILOG Source Code or/and
 - ♦ Encrypted, or plain text EDIF netlist
- VHDL & VERILOG test bench environment
 - Active-HDL automatic simulation macros
 - ModelSim automatic simulation macros

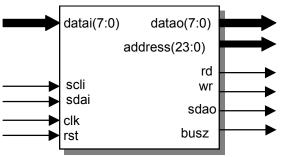
http://www.DigitalCoreDesign.com http://www.dcd.pl

All trademarks mentioned in this document are trademarks of their respective owners.

- Tests with reference responses
- Technical documentation
 - Installation notes
 - ♦ HDL core specification
 - ◊ Datasheet
- Synthesis scripts
- ♦ Example application
- Technical support
 - ◊ IP Core implementation support
 - ♦ 3 months maintenance
 - Delivery the IP Core updates, minor and major versions changes
 - Delivery the documentation updates
 - Phone & email support

LICENSING

Comprehensible and clearly defined licensing methods without royalty fees make using of IP Core easy and simply.

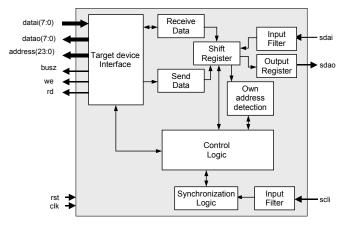

<u>Single Design</u> license allows use IP Core in single FPGA bitstream and ASIC implementation.

<u>Unlimited Designs</u>, <u>One Year</u> licenses allow use IP Core in unlimited number of FPGA bitstreams and ASIC implementations.

In all cases number of IP Core instantiations within a design, and number of manufactured chips are unlimited. There is no time restriction except <u>One Year</u> license where time of use is limited to 12 months.

- Single Design license for
 - VHDL, Verilog source code called <u>HDL</u> <u>Source</u>
 - o Encrypted, or plain text EDIF called Netlist
- One Year license for
 - Encrypted Netlist only
- Unlimited Designs license for
 - HDL Source
 - Netlist
- Upgrade from
 - HDL Source to Netlist
 - Single Design to Unlimited Designs

SYMBOL


PINS DESCRIPTION

PIN	TYPE	DESCRIPTION					
clk	input	Global clock					
rst	input	Global reset					
datai(7:0)	input	Data bus from target device					
scli	input	I ² C bus clock line (input)					
sdai	input	I ² C bus data line (input)					
datao(7:0)	output	Data bus to target device					
address(23:0)	output	Address of accessed register					
busz	output	Turns datao into Z state					
wr	output	Write strobe for target device					
rd	output	Read strobe for target device					
sdao	output	I ² C bus data line (output)					

BLOCK DIAGRAM

Figure below shows the DI2CSB IP Core block diagram.

Target device Interface – Performs the interface functions between DI2CSB internal blocks and target device. Allows easy connection of the core to a passive devices e.g. memory, LCD display, pressure sensors, I/O devices etc.

Control Logic – Manages execution of all commands sent via interface. Synchronizes internal data flow.

Shift Register – Controls SDA line, performs data and address shifts during the data transmission and reception.

Input Filter – Performs spike filtering.

Synchronization Logic – Synchronizes data and address shifts during the data transmission and reception. SCLI spikes are filtered by this unit.

PERFORMANCE

The following table gives a survey about the Core area and performance in the LATTICE® devices after Place & Route (all key features have been included):

Device	Speed grade	LUTs/PFUs	F _{max}			
SC	-7	76 / 42	323 MHz			
ECP2	-7	78 / 42	317 MHz			
ECP2M	-7	70 / 27	318 MHz			
XP2	-7	70 / 27	263 MHz			
EC	-5	118 / 27	203 MHz			
ECP	-5	118 / 27	212 MHz			
XP	-5	118 / 27	180 MHz			
ispXPGA	-5	79 / 21	180 MHz			
ORCA 4	-3	90 / 15	129 MHz			
ORCA 3	-7	73 / 17	84 MHz			

Core performance in LATTICE® devices

The main features of each Digital Core Design I^2C compliant cores have been summarized in table below. It gives a briefly member characterization helping user to select the most suitable IP Core for its application.

Design	I ² C specification version	Master operation	Slave operation	CPU interface	Passive device interface	Interrupt genera- tion	Clock synchroni- zation	Arbitration	7-bit addressing	10-bit addressing	Standard mode	Fast mode	High-speed mode	User defined tim- ing	Spike filtering
DI2CM	2.1	✓	-	\	-	\checkmark	\checkmark	✓	\checkmark	✓	\	\checkmark	✓	\checkmark	\checkmark
DI2CS	2.1	-	✓	<	-	✓	✓	-	✓	-	✓	✓	\checkmark	✓	✓
DI2CSB	2.1	-	✓	-	✓	-	-	-	\checkmark	-	\	\checkmark	✓	-	\checkmark

PC cores summary table

CONTACTS

For any modification or special request please contact to Digital Core Design or local distributors.

Headquarters:

Wroclawska 94

41-902 Bytom, POLAND

e-mail: info@dcd.pl

tel. : +48 32 282 82 66 fax : +48 32 282 74 37

Distributors:

Please check http://www.dcd.pl/apartn.php