Reveal User Guide for Radiant
Software

s=LATTICE

October 10, 2025

Copyright

Copyright © 2025 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks

All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. QuestaSim is a trademark or registered trademark of Siemens Industry
Software Inc. or its subsidiaries in the United States or other countries. All other
trademarks are the property of their respective owners.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

Reveal User Guide for Radiant Software 2

http://www.latticesemi.com/legal

Type Conventions Used in This Document

Convention Meaning or Use

Bold

<ltalic>
Ctri+L

Courier

Items in the user interface that you select or click. Text that you type
into the user interface.

Variables in commands, code syntax, and path names.

Press the two keys at the same time.

Code examples. Messages, reports, and prompts from the software.
Omitted material in a line of code.

Omitted lines in code and report examples.

Optional items in syntax descriptions. In bus specifications, the
brackets are required.

Grouped items in syntax descriptions.
Repeatable items in syntax descriptions.

A choice between items in syntax descriptions.

Reveal User Guide for Radiant Software

= LATTICE

Contents

Chapter 1 Introduction 7

Chapter 2 Reveal Inserter 9
Using JTAG Debugger 9
Debug Flows 10
Input and Output Files 16
Limitations 16

Getting Started 18
Starting Reveal Inserter 18
Creating a New Reveal Inserter Project 19
Opening an Existing Reveal Inserter Project 21
Using the Reveal Controller Simulation Model 21

Managing the Cores in a Project 22
Renaming a Core 23
Removing a Core 23

Viewing Signals in the Design Tree Pane 23
Searching for Signals 24

Setting Up the Trace Signals 25
Selecting the Debug Logic Core 25
Selecting the Trace Signals 25
Viewing Trace Signals and Buses 26
Grouping Trace Signals into a Bus 27
Ungrouping Trace Signals in a Bus 27
Removing Signals and Buses from the Trace Data Pane 27
Renaming a Bus 27
Setting Required Sample Parameters 28
Power-on Reset (POR) Debug 29
Setting Sample Options 29

Setting Up the Trigger Signals 31
Triggering 31
Adding Trigger Units 40
Renaming Trigger Units 40

Reveal User Guide for Radiant Software

CONTENTS

Setting Up Trigger Units 41

Removing Trigger Units 43

Adding Trigger Expressions 43

Renaming Trigger Expressions 44

Setting Up Trigger Expressions 44
Removing Trigger Expressions 46

Setting Up Virtual Switch/LED Settings 47
Configuring User Memory Setup 47
Configuring User Control Register Setup 49
Configuring User Status Register Setup 51
Configuring Hard IP Setup 52

Checking the Debug Logic Settings 52

Saving a Project 54

Inserting the Debug Logic Cores 54

Removing Debug Logic from the Design 55
Closing a Project 55

Exiting Reveal Inserter 55

Performing Logic Analysis with Reveal Analyzer 56

Using JTAGhub 56
JTAGhub Input and Output Ports 60
JTAGhub Ecosystem 62
JTAGhub Usage and Design Examples 63
JTAGhub Addressing Scheme 64
JTAGhub CORES 64
Setting Parameters and Connectivity 65
JTAG BYPASS Instruction in SOFTJTAG Chain 66

Using JTAGMON 68
JTAGMON Input and Output Ports 68
JTAGMON Design Flow 69

User Interface Descriptions 70

Chapter 3 Reveal Analyzer 72

About Reveal Analyzer 73
Reveal On-Chip Debug Design Flow 73
Inputs 74
Outputs 74

Inserting the Debug Logic 75

Mapping, Placing, and Routing the Design 75
Generating a Bitstream File 75

Connecting to the Evaluation Board 76
Downloading a Design onto the Device 76

Starting Reveal Analyzer 77
Starting with a New File 78
Starting with an Existing File 79
Changing the Cable Connection 80

Selecting a Reveal Analyzer Core 80

Setting Up the Trace Signals 81
Setting the Trace Bus Radix 81
Adding Time Stamps to Trace Samples 81

Reveal User Guide for Radiant Software 5

CONTENTS

Setting Up the Trigger Signals 82
Renaming Trigger Units 82
Setting Up Trigger Units 82
Renaming Trigger Expressions 84
Setting Up Trigger Expressions 84
Setting Trigger Options 85

Creating Token Sets 86
Debugging with Reveal Controller 87

Performing Logic Analysis 103
Data Capture with Sample Enable 104
Common Error Conditions 104

Stopping a Logic Analysis 104
Using Manual Triggering 105

Viewing Waveforms 105
Viewing Logic Analysis 105
Adjusting the Waveform Display 106
Panning 106
Zooming In and Out 106

Specifying the Clock Period 108

Placing, Moving, and Locating Cursors 109
Counting Samples 110

Exporting Waveform Data 110

Saving a Project 111

Exiting Reveal Analyzer 111

User Interface Descriptions 112
LA Trigger Tab 112
LA Waveform Tab 117
Viewing and Saving Waveforms 118

Using the Memory Controller Debug 119

Revision History 123

Reveal User Guide for Radiant Software 6

= LATTICE Chapterl

Introduction

The Radiant software contains the Reveal Inserter and the Reveal Analyzer
tools used for design debugging. This guide describes Reveal Inserter and
Reveal Analyzer.

One of the most common activities in debugging is logic analysis. To do this,
use Reveal Inserter and Reveal Analyzer. You can use both with all supported
FPGA devices.

Reveal continuously monitors signals within the FPGA for specific conditions,
which can range from simple to quite complex. When the trigger condition
occurs, Reveal can save signal values preceding, during, and following the
event for analysis, including a waveform presentation. The data can be saved
to a value change dump file (.vcd), which can be used with tools such as
QuestaSim, or to an ASCII tabular format that can be used with tools such as
Excel.

Before running Reveal Analyzer, use Reveal Inserter to add Reveal modules
to your design. In these modules, specify the signals to monitor, define the
trigger conditions, and other options. Reveal supports multiple logic analyzer
cores using hard/soft JTAG interface. You can have up to 15 modules,
typically one for each clock region of interest. When the modules are set up,
regenerate the bitstream data file to program the FPGA.

A feature is enabling an added module called Reveal Controller. This
controller module enables:

Access to the control and status registers of the hard IPs such as
I2CFIFO, PLL, PCle, CDR, and DPHY via the LMMI (Lattice Memory
Mapped Interface) slave interface

Virtual switches and LEDs emulating on-board switches and LEDs to
control and monitor a user design. Up to 32 switches and 32 LEDs are
supported.

Reveal User Guide for Radiant Software 7

INTRODUCTION

Read/write access to a bank of user registers and/or initialize memory
post-configuration.

The main purpose is harrowing down to problem areas during debug cycles
using a divide and conquer method into many small functional blocks to
control and monitor the status of each block.

Before starting a test run, set up Reveal Analyzer. This includes setting a
number of options, including modifying trigger conditions and customizing the
waveform display. You can save these settings for later use. During and after
a test run, view the incoming data in Reveal’'s LA Waveform view. You can
also save the data to a .vcd or .ixt file to analyze with other tools.

Note:

Reveal supports IEEE-P1735 encryption. If this encryption is applied to a design, the
design tree will allow only the visible ports and signals that are not encrypted to be
inserted by the Reveal Inserter for triggering purposes.

Reveal User Guide for Radiant Software 8

= LATTICE Chapter 2

Reveal Inserter

Reveal Inserter enables you to select which design signals to use for debug
tracing or triggering, then generate a core on the basis of these signals and
their use. After generating the required core, it generates a modified design
with the necessary debug connections and links it to the signals. Reveal
Inserter supports VHDL, Verilog, System Verilog and mixed-HDL flows for
debug insertion. Once the design has been modified for debug, it is mapped,
placed, and routed with the normal design flow in the Radiant software.

Using JTAG Debugger

JTAG can be used to access debug logic to test and analyze your design.
Devices in Radiant support hard and soft JTAG cores. Hard JTAG is basically
a JTAG block IP that is part of the device. Soft JTAG is built in RTL, which
uses the device fabric logic.

In the iCE40 device, Reveal JTAG support is implemented using logic for
JTAG state machine and GPIO pins for four JTAG pins (JTAG_TCK,
JTAG_TDI, JTAG_TMS, and JTAG_TDO).

Consider the following recommendations:

Lock the JTAG_TCK pin to PCLK or GR_PCLK to avoid using general
routing, as clock general routing may violate the CLK 1-PLC rule. For an
example of the Idc_set location constraint:

ldc_set location {JTAG TCK} -site J2

Lock pins JTAG_TCK, JTAG_TDI, JTAG_TMS, and JTAG_TDO on the
same bank. Make other banks available for DDR, MIPI or LVDS usage.

Set the frequency constraint as follows:

create clock -name {JTAG TCK} -period 166.67

Reveal User Guide for Radiant Software 9

REVEAL INSERTER :

Likewise, in CrossLink device, there is no hard JTAG block and Reveal uses
soft JTAG debug logic and GPIO pins for the four JTAG pins.

Refer to “Using JTAGhub” on page 56 for information about the use and
merging of JTAGhubs in Nexus and Avant devices.

Debug Flows

Reveal Inserter features two debug flows. When you open Reveal Inserter,
the Reveal Inserter Wizard prompts you to choose the debug flow to use.

RTL (Pre-Synthesis) — This is the standard flow for debugging a design all
at once. The user inserts the logic core before the design is synthesized
the first time. Refer to “RTL (Pre-Synthesis) Debug Flow” on page 11 for
details.

Post-Synthesis — This flow allows you to insert debug logic after running
synthesis. As such, this option is available if you have already run
synthesis. It is useful for isolating or monitoring certain signals and focus
your changes or improvements in specific areas of the design. Refer to
“Post-Synthesis Debug Flow” on page 11 for details.

Post-Place & Route — This flow allows you to insert debug logic after
running place and route. As such, this option is available if you have
already completed synthesis, mapping, and placement and routing. Also
referred to as non-intrusive debugging, you can add your debug core after
place and route without having to alter your original design. The post-
place & route debug flow is available when designing for Avant and Nexus
devices. Refer to “Post-Place & Route Debug Flow” on page 14 for
details.

Figure 1: Reveal Inserter Wizard

Reveal Inserter Wizard *

Debug 5Stage
Choose the stage you wish to debug. Available stages are automatically
enabled,

Debug Stage
®) RTL(Pre-Synthesis)

Post-Synthesis
Post-Place & Route

Finish Cancel

Reveal User Guide for Radiant Software 10

REVEAL INSERTER :

RTL (Pre-Synthesis) Debug Flow

The following are the general steps in the Reveal Inserter RTL design flow.
1. Start Reveal Inserter.

2. Inthe Reveal Inserter Wizard, select RTL (Pre-Synthesis) as debug stage
and click Finish.

3. Create a new Reveal Inserter project or open an existing Reveal Inserter
project.

4. Add and set up analyzer and controller modules.
Insert the debug logic.
This process generates and synthesizes the necessary debug logic.

The generated .rvl is automatically imported into the Radiant software if
you enabled the “Activate Reveal file in design project” option in the Insert
Debug to Design dialog box.

6. Map, place, and route the design.
7. Generate the .bin bitstream file.

If you want to perform logic analysis with Reveal Analyzer, continue with
these steps:

8. Set up the cable connection with Programmer.
9. Download the design onto the device.

10. Start Reveal Analyzer and perform logic analysis with it.

Post-Synthesis Debug Flow

In post-synthesis debugging, it is required that you mark the specific signal
objects that you want to monitor by adding the syn_rvl_debug synthesis
attribute in the RTL source files. This allows you to keep track of these signals
more easily as they are highlighted on the user interface. The syn_rvl _debug
attribute is the same for both Synplify and LSE tools.

The syn_rvl_debug attribute performs two functions:

This attribute highlights the signal so it can be easily identified in the user
interface.

After synthesis, this attribute tells the synthesis tool to preserve the signal
without optimizing it. If it is a bus, the data width is also preserved. The
synthesis tool passes the same attribute to the signal in the post-synthesis
netlist (*.vm).

The syntax in Verilog/System-Verilog is:
/* synthesis syn rvl debug = 1 */;
The syntax in VHDL is:

attribute syn rvl debug : boolean;
attribute syn rvl debug of sigl : signal is true

Reveal User Guide for Radiant Software 11

REVEAL INSERTER

For example:

input clki /*synthesis syn rvl debug = 1 */,

wire clkl /* synthesis syn rvl debug = 1 */;

reg [39:0] cnt /* synthesis syn rvl debug =1 */;
reg [31:0] cnti /* synthesis syn rvl debug = 1 */;

The synthesis tool may add a suffix to the name of a signal with the
syn_rvl_debug attribute. This change is minimal and the signal remains
recognizable to the user.

The syn_rvl_debug attribute may be attached to top level input/output ports,

which will be connected to the input/output buffers. In case of an input port

with the syn_rvl_debug attribute, in the .vm file, the output of the input buffer
should get the passed attribute. In case of an output port with attribute, in the

.vm file, the input of the output buffer should get the passed attribute.
Example 1

RTL Code:

input clki /* synthesis syn rvl debug = 1 */,

The expected output is:

wire clki ¢ /* synthesis syn rvl debug = 1 */;

where clki is driving the input port of IB and clki_c is connected to the output

port. This is similar in the output port:

output dout /* synthesis syn rvl debug = 1 */,

The expected output is:

Il
=

*/

wire dout c /* synthesis syn rvl debug

Example 2

RTL Code:

reg [31:0] counter /*synthesis syn rvl debug = 1*/;

This is the expected .vm code when the exact signal name is preserved:

wire [31:0] counter /*synthesis syn rvl debug = 1*/;

When the exact sighal name cannot be preserved, some suffix(*) may be
added.

wire [31:0] counter * /*synthesis syn rvl debug = 1*/;

Reveal User Guide for Radiant Software

12

REVEAL INSERTER :

Example 3
If the attribute is provided in the following way, it is applied to the last signal:

RTL Code:

reg sigl, sig2, sig3 /*synthesis syn rvl debug = 1*/;

The expected .vm code is:

wire sig3 /*synthesis syn rvl debug = 1*/;

The synthesis tool may also expand/elaborate the RTL code if the attribute is
attached to the states in the FSM. This depends on the type of encoding such
as binary, one-hot and others.

Here is an example of highlighted signals attached with the syn_rvl_debug
attribute.

Figure 2: Marked Debug Signals

%5 Datasets

= Add core...

. A 5

Note:

Before you start post-synthesis debugging, make sure that there is no active
.rvl project in your design. If there is, make it inactive. To change a file’s status
to inactive, right-click the file in the File List view and choose Set as Inactive.

The following are the general steps in the Reveal Inserter Post-Synthesis
debug flow.

1. After running synthesis, start Reveal Inserter.

2. Inthe Reveal Inserter Wizard, select Post-Synthesis as debug stage and
click Finish.

Reveal User Guide for Radiant Software 13

REVEAL INSERTER :

In the list of signals displayed in Reveal Inserter, the signals with the
syn_rvl_debug attributes are highlighted for easy tracking.

3. Add and set up analyzer and controller modules, if needed.

Note

When Reveal Controller is used for switches in post-synthesis, make sure the
signals are not driven by other signals in the design. Multiple driver issues produce
an error in Place & Route.

4. Click the Design Rule Check button and fix errors, if needed.
Click the Insert Debug button.

6. In the Insert Debug to Design dialog box, select the modules to insert.
Select Activate Reveal file in design project to include it in synthesis.
This also sets other .rvl files as inactive.

7. Click OK. The .rvl file is listed in the File List pane under Debug Files.

You will note that the Synthesize Design process bar now has a small
white box to indicate that only Reveal is to be synthesized in post-
synthesis stage.

[' LY | 5 | ‘ Map Design

8. Run Synthesize Design. Only the changes in Reveal are processed.

In the Task Detail View, you will observe the added Post-Synthesis Reveal
task in progress.

9. Map, place, and route the design.
10. Generate the bitstream file.

If you want to perform logic analysis with Reveal Analyzer, continue with
these steps:

11. Set up the cable connection with Programmer.
12. Download the design onto the device.

13. Start Reveal Analyzer and perform logic analysis with it.

Post-Place & Route Debug Flow

Similar to the post-synthesis debug flow, in post-place & route debugging, it is
required that you mark the specific signal objects that you want to monitor by
adding the syn_rvl_debug synthesis attribute in the RTL source files. The
syntax for Verilog and VHDL are the same. See “Post-Synthesis Debug Flow”
on page 11.

Reveal User Guide for Radiant Software 14

REVEAL INSERTER :

The following are the general steps in the Reveal Inserter Post-Place & Route
debug flow.

Note

When you initially run synthesis, map, and place & route, make sure there is
no active Reveal (.rvl) project. If there is an active .rvl project, make it inactive
by right-clicking the .rvl file In the File List view and choosing Set as Inactive.

1. After running synthesis, map, and place & route, start Reveal Inserter.

2. Inthe Reveal Inserter Wizard, select Post-Place & Route as debug stage
and click Finish.

Note

In the Tcl Console, you will see that a new Reveal project is created in the post-
PAR stage. The placed and routed design is preserved in the PAR output udb.

> rvl new project -stage postpar

In the design tree, the entire database after place and route is shown. The
signals with the syn_rvl_debug attributes are highlighted.

3. Add and set up logic analyzer cores

Note

Adding Reveal Controller cores is not supported in post-Place & Route debug flow.

4. Click the Design Rule Check button and fix errors, if needed.
Click the Insert Debug button.

6. Inthe Insert Debug to Design dialog box, select the modules to insert.
Select Activate Reveal file in design project to include it in synthesis.
This also sets other .rvl files, if any, as inactive.

Click OK.

7. In the Save Reveal Project dialog box, type the file name of the .rvl file
and click Save. The .rvlfile is listed in the File List view under Debug
Files.

You will note that the Place & Route process bar now has a small white
box to indicate that only Reveal is to be processed in post-place and route
stage.

Export Files

8. In the Task Detail View, you will observe that the following sub-tasks are
unchecked. These will be run when you click the Place & Route button.

Place & Route Reveal
Place & Route Timing Analysis
9. Run Place & Route. Only the changes in Reveal are processed.

10. Generate the bitstream file.

Reveal User Guide for Radiant Software 15

REVEAL INSERTER :

If you want to perform logic analysis with Reveal Analyzer, continue with
these steps:

11. Set up the cable connection with Programmer.
12. Download the design onto the device.

13. Start Reveal Analyzer and perform logic analysis with it.

Input and Output Files

The inputs to the Reveal Inserter flow are the following:
VHDL, Verilog, and System Verilog files

Reveal Inserter generates the following files in the debug flow:

Reveal Inserter project (.rvl) file, which contains the signal connections for
each core and some settings for the debugging logic, such as maximum
sequence depth and maximum event counter. The information in this file
is statically set in Reveal Inserter and cannot be changed in Reveal
Analyzer.

Reveal Inserter settings (.rvs) file, which contains settings that can be
dynamically changed without regenerating the debug logic. This
information includes trigger units, comparison types, values, and trigger
expressions. The information in this file is dynamically set in either Reveal
Analyzer or in both Reveal Analyzer and Reveal Inserter.

Reveal Inserter parameter (.rvp) file, which contains information needed
for debug logic generation, is produced during the design implementation
process.

Limitations

Reveal Inserter has the following limitations in the current release.

Unsupported VHDL, Verilog and System Verilog

Features in Reveal Inserter

The following features that are valid in the VHDL, Verilog and System Verilog
languages are not supported in Reveal Inserter when you use the RTL flow:

Array types of two dimensions or more are not shown in the port or node
section.

Undeclared wires attached to instantiated component instances are not
shown in the hierarchical design tree. You must declare these wires
explicitly if you want to trace or trigger with them.

Variables used in conditional statements like if-then-else statements are
not available for tracing and triggering.

Reveal User Guide for Radiant Software 16

REVEAL INSERTER :

Variables used in selection statements like the case statement are not
available for tracing and triggering.

If function calls are used in the array declaration, the actual size of the
array is unknown to Reveal Inserter.

Entity and architecture of the same design cannot be in different files.

In Verilog, you must explicitly declare variables at the very beginning of a
module body to avoid obtaining different results from various synthesis
tools.

In VHDL, you must declare synthesis attributes within an entity, not within
an architecture, to avoid obtaining different results from various synthesis
tools.

Signals used in VHDL “generate” statements are not available for tracing
and triggering.

Signals that are VHDL user-defined enumerated types, integer type, or
Boolean type are not available for tracing and triggering.

Some signals in a System Verilog design appear in the signal hierarchy
but are not available for triggering or tracing. These signals include:

Array types of two dimensions or more are not shown in the port or
node section

Signals that are user defined enumerated types, integer type, byte/
shortint/int/longint type

Signals that belong to typedef and interface

Syn_keep and Preserve_signal Attributes

In VHDL, always define the syn_keep and preserve_signal attributes as
Boolean types when you declare them in your design. Synplify defines them
as Boolean types, and Reveal Inserter will issue an error message if you
define them as strings.

Signals Implemented as Hard Routes

Signals that are implemented as hard routes in the FPGA instead of using the
routing fabric are not available for tracing or triggering. Examples are
connections to IB and OB components. Many common hard routes are
automatically shown as unavailable in Reveal Inserter, but some are not. If
you select a signal for tracing or triggering that is implemented as a hard
route, an error will occur during the synthesis, mapping, placement, or routing
steps.

Dangling or Unconnected Nets

Dangling or unconnected nets in Verilog, System Verilog, or VHDL code are
available for use with Reveal Inserter.

Reveal User Guide for Radiant Software 17

REVEAL INSERTER : Getting Started

Synthesis Parameters

VHDL generics for synthesis must be added via HDL Parameters field in
Project Properties. The current version does not support parameters via
Command Line Options field in Synthesis Strategy setting.

Getting Started

After you create a project in the Radiant software, you can start Reveal
Inserter and create a Reveal project. Or open an existing Reveal project for
modification.

Starting Reveal Inserter

Reveal Inserter is started from the main window. Open the desired design
project to have access to the tools.

To start Reveal Inserter:

Do one of the following:
In the main window, choose Tools > “# Reveal Inserter.

In the toolbar, click the Reveal Inserter “& button.
Choose the debug flow in the Reveal Inserter Wizard and click Finish.

When Reveal Inserter opens, it shows the active Reveal project or, if there are
no existing projects, Reveal Inserter creates one.

When Reveal Inserter opens a design, it must parse and statically elaborate it.
In some cases, code successfully synthesized with some synthesis tools may
be flagged as having an error when Reveal Inserter tries to open the design.
In these cases, Reveal Inserter is interpreting the HDL code more strictly than
the chosen synthesis tool. It is likely that the code would not synthesize with a
different synthesis tool or would have other compliance issues.

To correct this problem, see the reveal_error.log file in the project directory.
This file contains information and error messages that enable you to see any
problems found in the design.

Reveal User Guide for Radiant Software 18

REVEAL INSERTER : Getting Started

Creating a New Reveal Inserter Project

Before you can start Reveal Analyzer with a new .rva file, you need to be
connected to your evaluation board with a download cable and have the
board’s power turned on.The following steps can also be seen in Figure 3

To start Reveal Analyzer with a new file:
1. Issue the start command. To start:

For stand-alone in Windows, go to the Windows Start menu and

choose Programs > Lattice Radiant Reveal > i Reveal Logic
Analyzer.

For stand-alone in Linux, go to a command line and enter the
following:

<Reveal install path>/bin/lin64/revealrva
The Reveal Analyzer Startup Wizard dialog box appears.
2. If Reveal Analyzer opens with an existing file, choose File > Save As.

The Save Reveal Analyzer File dialog box opens. Change the file name
and click Save. You now have a new .rva file ready to work with.

3. In the Reveal Analyzer Startup Wizard dialog box, Select Create a new
file (at the upper-left of the dialog box).

The dialog box presents a few rows of boxes that need to be filled in. In
the figure below, the numbers match up with the steps in this procedure
and show where the boxes, buttons, and menus are for each step.

Figure 3: Startup Wizard with Steps for a New File

4

@ Reveal Analyzer Startup Wizard

Getting Started:

& Create a new file untitled HW-USBN-2A
Multiple Device in JTAG Chain TCK Low Pulse Width Delay: 1~

USB port: v Detect

XCF source

10

Debug device: - Scan

P
[e2]

RVL source: Browse...

Open an existing file
File name:

B Import file into current implementation

Cancel

12

4. In the first second row, type in the base name of the file. The extension is
added automatically.

Reveal User Guide for Radiant Software 19

REVEAL INSERTER : Getting Started

1.

12.

13.

If there are daisy-chained devices, select Multiple Device in JTAG
Chain.

To the right of this row is a pulldown menu. Choose the type of cable that
your board is connected to.

Select the port. The method depends on the cable type:

If USB, click Detect. Then choose from the active ports found. The
following figure shows the row after choosing a USB type.

First, click Detect

USB port - Detect

Then, choose from the active ports found

If parallel, select the port address. If it’s not one of the standard
addresses given, select 0x and type in the hexadecimal address.
Then click Check to verify that the connection is working. The
following figure shows the row after choosing a parallel type.

First, zelect one ofthe standard addresses or select 0% and type the address in hex,

Parallel port: @ oars O 0x278 0 0x3BC (L e

Then, click Check.

If there are daisy-chained devices, click Browse in the XCF source row to
find the XCF source file.

Click Scan to find the FPGA.

. If there is more than one FPGA on your board, go to the “Debug device”

menu and choose one that has a Reveal # icon. The icon indicates the
presence of a Reveal module.

Click Browse in the RVL source row to find the Reveal Inserter project
(.rvl) file.

To add the new .rva file to the File List view, select Import file into
current implementation. The .rva file works the same either way.

Click OK.

Reveal User Guide for Radiant Software 20

REVEAL INSERTER : Getting Started

Opening an Existing Reveal Inserter
Project

If you want to start with an existing file, you just need to have that .rva file in
the design project. You need to be connected to the evaluation board only if
you want to run a test and capture data.

To start Reveal Analyzer with an existing file:
1. Issue the start command. To start:

The stand-alone Reveal Analyzer in Windows, go to the Windows

Start menu and choose Programs > Lattice Radiant Reveal > 7§
Reveal Logic Analyzer.

The stand-alone Reveal Analyzer in Linux, enter the following on a
command line:

<Reveal install path>/bin/lin64/revealrva
The Reveal Analyzer Startup Wizard dialog box appears.

If Reveal Analyzer opens with the .rva file you want to use, you'’re ready to
go. Otherwise continue with the following steps.

2. Select Open an existing file (in the lower part of the dialog box).
In the “File name” box, choose one of the available .rva files.

4. If the file you want is not in the menu, click Browse and browse to the
desired .rva file.

5. Click OK.

Using the Reveal Controller Simulation
Model

The Reveal Controller Simulation Model replicates the functionality of Reveal
Controller in simulation.
To set up the Reveal Controller Simulation Model:

1. Choose Tools > Reveal Inserter to insert a reveal module into the
design.

2. Run Synthesize Design to generate the reveal _workspace file.

If you insert Reveal Controller only, the tool will create the sim_src folder
with the pre-synthesis Reveal generated source file under
reveal_workspace.

If you insert Reveal Controller and Analyzer, the Reveal engine will not
create the folder and no source files will be provided.

Click Tools > Simulation Wizard or click the @ icon in the toolbar.

4. In the Simulator Project Name and Stage dialog box, enter the project
name.

Reveal User Guide for Radiant Software 21

REVEAL INSERTER : Managing the Cores in a Project

Click Next.

5. In the Add and Reorder Source dialog box, select and add the source files
from the sim_src folder.

Click Next.

The following compiler directives are all enabled in the source file. You can
use the OEM simulator or any stand-alone simulator to compile and simulate
the Controller:

“define en_sw
“define en_led
“define en_user_mem
“define en_user_creg

“define en_user_sreg

Managing the Cores in a Project

Each Reveal Inserter project can include multiple debug logic cores and one
Reveal controller core. The core has its own settings for the debug logic, such
as trace signals, trigger signals, sample clock, sample enable, and trigger
output signal. These settings are called a dataset. In many cases, a single
core is all that is required to debug a design.

When you open a new project, Reveal Inserter automatically adds the first
debug logic core to the first dataset and gives it a name of
<top_module>_LA<number>, where top_module is the name of the top
module in the Reveal Inserter project, and number is a sequential number.
The core name is case insensitive—for example, “core_LAQ” is the same as
“core_la0.”

All Reveal cores are listed in the Dataset pane in the Reveal Inserter window.

Note:

For the Avant device, you need to add the PAR Strategy command line option “-exp
WARNING_ON_PCLKPLC1=1" when using Reveal and JTAGH25 to avoid errors
related to the jick_N clock.

Reveal User Guide for Radiant Software 22

REVEAL INSERTER : Viewing Signals in the Design Tree Pane

Renaming a Core

You can rename a debug logic core if you want to change its initial name.

To rename a core or cores in a project:

1. Highlight the name of the core in the Dataset pane, and choose Debug >
Rename Core, or right-click on the name of the core and choose Rename
Core from the pop-up menu.

2. Type the new name of the module over the old name.

During the renaming process, Reveal Inserter verifies that:

The core name begins with a letter and consists of letters, numbers, and
underscores ().

The core name is not the same as that of any other core.

The core name is not the same as that of any module or instance in the
design.

Removing a Core

You can also remove a debug logic core.

To remove a core or cores from a project:

Select the core in the Dataset pane, and choose Debug > Remove Core,
or right-click on the name of the core and choose Remove Core from the
pop-up menu.

Viewing Signals in the Design Tree Pane

In the Design Tree pane of the Reveal Inserter window, you can display the
hierarchy of the whole design, including the ports and nodes in the top module
and submodules, so that you can choose the signals to use for data tracing
and triggering.

From the Design Tree pane, you can drag a signal to the upper half of the
Trace Signal Setup tab to set it as a trace signal or drag it to the lower half of
the tab to set it as a sample clock signal or a sample enable signal.

In the Design Tree pane, the names of trace, trigger, and control signals are in
bold font if they are currently being used.

To view all signals in the design tree:

Right-click on the design name in the Design Tree pane and choose
Expand All from the pop-up menu.

Reveal User Guide for Radiant Software 23

REVEAL INSERTER : Searching for Signals

To view the buses, ports, top-level signals, and top level of the
hierarchy:

Right-click on the desigh name in the Design Tree pane and choose
Collapse All from the pop-up menu.

You can also view signals and buses in the Trace Data pane of the Trace
Signal Setup tab.

Searching for Signals

You can search for a signal or signals and set the selected signals as trace
signals, trigger unit signals, sample clock signals, or sample enable signals.
You can search for signal names or patterns of characters.

To search for a signal:

1. In the Signal Search box in the Design Tree pane, enter the name of the
signal or pattern to find. You can set a filter by using the case-insensitive
alphanumeric characters and wildcards shown in the following table.

2. Click Search.

If Reveal Inserter finds only one signal, it highlights it in the Design Tree
pane.

If Reveal Inserter finds multiple signals, it opens the Search Result dialog
box to list all the signals found.

3. If you are searching for multiple signals, select the desired signals in the
Search Result dialog box, and click OK.

Shift-click to select contiguous signals.
Control-click to select non-contiguous signals.

The selected signals are now highlighted in the Design Tree pane.

From the Design Tree pane, you can drag signals to the Trace Data pane, the
Sample Clock box, and the Sample Enable box in the Trace Signal Setup tab.
You can also drag signals to the Signals (MSB:LSB) box in the Trigger Unit
section of the Trigger Signal Setup tab.

Although the buses are displayed as “busname[n:m]” in the Design Tree
pane, Reveal Inserter ignores the string after the bus name when it searches
for buses. For example, if the design contains a bus called a[0:2], you can

“n * »

search for it by a pattern such as “a” or “a*,” but you cannot use a pattern such

* 9

as “a[*.

If a bus is named xyz, a search for xyz highlights the entire bus. A search for
xyz* brings up the Search Result dialog box and all the individual signals in
the xyz bus.

Reveal User Guide for Radiant Software 24

REVEAL INSERTER : Setting Up the Trace Signals

The following wildcards are supported in searches:

Wildcard Characters to Replace

Character

? Any single character

* Any sequence of
characters

[abc] “a.” b " or “c”

[*abc] Any character except “a,”
“b,” or “c”

[a-d] Any character in the range

of “a” through “d”

[fa-d] Any character except

those in the range of “a
through “d”

Setting Up the Trace Signals

Example

?a?

7Pl

where “a@” is the middle character in a
three-character string

g
where the string contains the “a” character
[abc]*

where the string begins with “a,” “b,” or “c”
[*abc]*

where the string does not begin with “a,”

“b,” or “c

[a-d]*

where the string begins with any character

“n

in the range of “a” through “d”

[a-d]*

where the string does not begin with any
character in the range of “a” through “d”

The first step in performing a logic analysis is to specify how the data from the
trace bus will be captured. Use the Trace Signal Setup tab in the Reveal
Inserter window to choose the signals from which to collect sample data in the

selected core.

Selecting the Debug Logic Core

Before you configure the trace signals, select the debug logic core to
configure in the Dataset pane. This is either the regular debug logic core or

the controller core.

Selecting the Trace Signals

You can use either of two methods to select trace signals: dragging and
dropping or using a search engine to find them. You can select up to 512 trace

signals in each core.

Reveal User Guide for Radiant Software

25

REVEAL INSERTER : Setting Up the Trace Signals

To select trace signals by dragging and dropping:

Select the desired signals in the Design Tree pane and drag them to the
Trace Data pane in the Trace Signal Setup tab.

To select trace signals by using a search engine:

1. In the Signal Search box in the Design Tree pane, enter the name or
pattern of the signal to find. You can set a filter by using case-insensitive
alphanumeric characters and wildcards. See “Searching for Signals” on
page 24 for information about the wildcards that you can use.

2. Click Search.

If Reveal Inserter finds only one signal, it highlights it in the Design Tree
pane.

If Reveal Inserter finds multiple signals, it opens the Search Result dialog
box to list all the signals found.

3. If you are searching for multiple signals, select the desired signals in the
Search Result dialog box, and click OK.

The signals are now selected in the Design Tree pane.

4. Drag them to Trace Data pane in the Trace Signal Setup tab.

Viewing Trace Signals and Buses

In the Trace Data pane in the Trace Signal Setup tab, you can display the
signals in buses or remove them from view.

To display all the signals in all the buses:

Right-click in the Trace Data pane, and choose Expand All from the pop-
up menu.

To hide all the signals in all the buses:

Right-click in the Trace Data pane, and choose Collapse All from the
pop-up menu.

To display all the signals in an individual bus:

Right-click on the bus and choose Expand from the pop-up menu.

To hide all the signals in an individual bus:

Right-click on the bus and choose Collapse from the pop-up menu.

Reveal User Guide for Radiant Software 26

REVEAL INSERTER : Setting Up the Trace Signals

Grouping Trace Signals into a Bus

You can group trace signals, buses, or both into a bus.

To group signals or buses into a bus or to add signals or buses to a bus:

1. In the Trace Data pane of the Trace Signal Setup tab, select the signals,
buses, or both to be grouped.

2. Choose Debug > Group Trace Data.

3. Double-click the new bus and type in the desired name.

Ungrouping Trace Signals in a Bus

You can ungroup the signals or buses in a bus.

To ungroup the signals, buses, or both in a bus:

1. In the Trace Data pane in the Trace Signal Setup tab, select the signals,
buses, or both to be ungrouped from the bus.

2. Choose Debug > UnGroup Trace Bus.

Removing Signals and Buses from the
Trace Data Pane

You can remove signals from the Trace Data pane in the Trace Signal Setup
tab.

To remove a signal or a bus from the Trace Data pane:

1. In the Trace Signal Setup tab, select the signals to be removed from the
Trace Data pane.

2. Choose Debug > Remove Trace Data, or right-click and choose Remove
from the pop-up menu. You can also press the Delete key.

Renaming a Bus

You can rename a bus.

To rename a bus:
1. In the Trace Data pane of the Trace Signal Setup tab, select the bus.

2. Choose Debug > Rename Trace Bus, or right-click and choose Rename
from the pop-up menu.

3. Type the new name of the module over the old name.

Reveal User Guide for Radiant Software 27

REVEAL INSERTER : Setting Up the Trace Signals

Setting Required Sample Parameters

For each core, you must set the certain sample parameters for the trace
signals.

To set the required sample parameters:

1. In the Sample Clock box in the Trace Signal Setup tab, type the name of
the clock signal or drag the clock signal from the design tree shown in the
Design Tree pane.

Note

On the board, make sure that the minimum sample clock frequency is at least that
of the JTAG clock. If the sample clock speed is too slow, you will be unable to
complete logic analysis with Reveal Analyzer.

The sample clock frequency should be no more than 200 MHz.

2. In the Buffer Depth box, specify the size of the trace memory buffer.

This parameter defines the number of trace bus samples that a core can
capture. It can be set to a minimum of 16 or to powers of 2 from 16 to
65536. The buffer size is determined by the amount of embedded memory
in the FPGA.

3. In the Implementation box, specify how the debug logic is to be
implemented in the FPGA. You can choose one of the following:

EBR - Implements the debugging logic as embedded block RAM
(EBR). This setting is the default.

4. In the Data Capture Mode box, select Single Trigger Capture or Multiple
Trigger Capture. Single Trigger Capture is enabled by default.

5. If you choose Multiple Trigger Capture, you must also set the Minimum
samples per trigger option, which specifies the minimum number of data
samples to collect per trigger. The minimum is either 8 or 1/256 of the total
buffer depth, whichever is greater. The maximum number of samples
depends on the design.

Reveal User Guide for Radiant Software 28

REVEAL INSERTER : Setting Up the Trace Signals

Power-on Reset (POR) Debug

An automatic "trigger enable" signal must be built into the Reveal module to
monitor POR functions. Before Reveal Analyzer starts, these functions
happen immediately after the power-on of the test board. When the trigger
enables signal transitions to "active," the module will watch for the trigger and
collect samples. It is similar to clicking the Run | button in Reveal Analyzer.
When Reveal Analyzer starts, it loads and displays any data collected by the
POR modules.

POR modules are not supported in iCE40UP devices.

To set a POR trigger enable:
1. In the POR Debug section, select Trigger Enable.

2. Find the POR trigger signal in the Design Tree view and drag it to the text
box in the POR Debug section.

3. Choose whether the signal is Active High or Active Low.

Setting Sample Options

In addition to the required parameters, you can set options for the data
sample.

Using a Sample Enable

A sample enable is an optional signal used to capture data only when the
sample enable is active, either high or low. If you do not specify a sample
enable signal, trace data is collected on every sample clock after the trigger.

You may want to use a sample enable in cases where you need to capture a
lot of data, but the data is only important during certain times, not whenever
the sample clock is running. In these cases, the sample enable is a “gate” that
allows you to turn the capturing of data on and off. An example is a design
that contains many different sections, but some sections only work during
certain clock phases. You typically use a master clock and generate different
signals for the phases. You could use one of the phases as the sample
enable.

To set the sample enable:

In the Sample Enable checkbox, indicate whether a sample enable signal
is to be used. If you want to use a sample enable:

a. Select the checkbox to indicate that a sample enable signal will be
used. The checkbox is deselected by default.

b. Enter the name of the sample enable signal in the box beneath the
checkbox, or drag the signal from the Design Tree pane.

c. Inthe box to the right of the signal name box, select either Active
High, which means that trace data is captured when the sample

Reveal User Guide for Radiant Software 29

REVEAL INSERTER : Setting Up the Trace Signals

enable is high and the sample clock occurs, or Active Low, which
means that trace data is captured when the sample enable is low and
the sample clock occurs. Active High is the default.

Each sample shown in the trace buffer is only captured when the sample
enable is active and there is a sample clock. Data samples can be
discontiguous, unlike those in a normal data capture.

Additionally, it is possible that the actual trigger condition may occur when the
sample enable is not active. This causes two changes from a normal data
capture:

The actual data values for the trigger condition may not be visible,
because the data cannot be captured when the sample enable is inactive.

Reveal Analyzer cannot accurately calculate the trigger point, since the
trigger point may have occurred when the sample enable is inactive.
Normally a trigger point is shown as a single marker on the clock on which
the trigger occurred. If a sample enable is used, a trigger region that
spans 5 clock cycles is shown instead. Reveal Analyzer can guarantee
that the trigger occurred in this region, but it cannot determine during
which clock cycle the trigger occurred.

The sample enable is a very useful feature, but it takes more understanding
than a normal data capture.

Adding Trigger Signals to Trace Signals

You can add trigger signals to the trace signals so that the data from the
trigger signals is included in the trace data. Tracing trigger signals increases
the amount of logic used by the trace buffer.

To add the trigger signals to the trace signals:

Select the Include trigger signals in trace data option. This option is
turned off by default.

Adding Time Stamps to Trace Samples

In Reveal Inserter, you can optionally specify a sample clock count value to be
stored with each trace sample to indicate the sample count clock value at
which the sample was captured. This count is extra data (bits) captured into
the trace buffer that increase the trace buffer’s width. This time stamp enables
you to see how many sample clock intervals have elapsed between data
captures when you use a sample enable. It is useful in some cases when it is
necessary to know if you captured the right data. A time stamp is also useful
when you try to synchronize data between multiple cores, off-chip data, or
both. For example, if you trigger two cores at the same time, you can use the
time stamps on the trace samples to calculate how the data between the
cores compares.

Reveal User Guide for Radiant Software 30

REVEAL INSERTER : Setting Up the Trigger Signals

To add time stamps to the trace samples:
1. Select the Timestamp box in the Trace Signal Setup tab.

2. In the drop-down menu in the Bits box next to the Timestamp box, select
the amount of trace memory storage needed by the time stamp, in bits.

The number of bits for the timestamp is the number of bits in the maximum
count of the timestamp. But each bit is equivalent to adding another signal
to be traced, so the amount of trace memory needed is therefore much
larger. The minimum number of bits that appears in the drop-down menu
is obtained by multiplying the value in the Buffer Depth box by 2 and
converting the result to an exponential value. For example, if the value in
the Buffer Depth box is 256, the minimum number of bits in the Bits drop-
down menu is calculated as follows:

256 X2 =512
512 = 29
So the minimum number of bits available in the Bits menu in this case is 9.

The maximum number of bits available in the Bits menu is always 63.

Setting Up the Trigger Signals

The Reveal software has some similarities to and some differences from
external logic analyzers. An external logic analyzer typically offers up to a few
dozen signals or channels and megabits worth of capture data depth. Internal
or embedded logic analyzers have different constraints. An internal logic
analyzer can offer thousands of signal connections, since no extra pins are
required to connect to the signal. But the resources inside an FPGA force a
limitation on the amount of data that can be captured, typically constrained to
several thousand bits. This difference drives different requirements. An
internal logic analyzer requires the ability to accurately pinpoint the desired
event in order to capture a smaller amount of data around that precise event.
The capabilities in the Reveal software are designed specifically for the
triggering requirements of an internal logic analyzer.

Triggering

With the Reveal software, it is easy to set up simple triggering conditions, as
well as extremely complex triggers. Triggering in Reveal is based on the
trigger unit and the trigger expression. A trigger unit is used to compare
signals to a value, and a trigger expression is used to combine trigger units to
form a trigger.

Some of Reveal’s triggering features are static and some are dynamic. Static
features can only be changed in Reveal Inserter and require the design to be
re-implemented by synthesis, map, place, and route. Although you can set

most of the dynamic features in Reveal Inserter, you can change all dynamic

Reveal User Guide for Radiant Software 31

REVEAL INSERTER : Setting Up the Trigger Signals

features when Reveal Analyzer is running, and you do not have to re-
implement the design.

Table 1: Where Trigger Features Can Be Changed

Feature Reveal Reveal
Inserter Analyzer

Trigger Units Add
Remove
Name
Signals
Operator
Radix
Value

Trigger Expressions Add
Remove

Name

RN ENENENENENEY

Expression
RAM type
Maximum sequence depth
Maximum event counter
Single Trigger Capture Make available
Multiple Trigger Capture Make available

RN N N N RN E N ENENENENENENEN

Number of samples per trigger

Number of triggers

2SENEN

Other Features AND All versus OR All

Trace buffer depth

<<

Timestamp

Trigger position v

Reveal User Guide for Radiant Software 32

REVEAL INSERTER : Setting Up the Trigger Signals

Trigger Units

The trigger unit is used to compare a number of input signals to a value. A
number of different operators are available for comparison and can be
dynamically changed during analysis, along with the comparison value and
the trigger unit name.

You can change the signals in a trigger unit only in Reveal Inserter. Changing
the input signals requires the design to be re-implemented.

You can specify up to 16 trigger units for each debug core. A common
technique is to group associated input signals into a trigger unit. For example,
you might use a trigger unit for the address bus in a design, another for the
data bus, and another for the control signals.

Most of the trigger unit operators use standard logical comparisons between
the current value of the combined signals of the trigger unit and a specified
value. But some of the operators are unusual and need some explanation.

With the exception of “serial compare,” the operators can be changed in
Reveal Analyzer.

Standard Logical Operators
Reveal includes the following operators:

== equal to

1= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to
Rising-Edge and Falling-Edge Operators
The “rising edge” and “falling edge” operators check for change in the signal
value, not the value itself. So the trigger unit’s specified value is a bit mask
showing which signals should have a rising or falling edge. A 1 means “look

for the edge;” a 0 means “ignore this bit.” A multiple-bit value is true if any of
the specified bits has the edge.

For example, consider a trigger unit defined as cout[3:0], rising edge, 1110.
This trigger unit will be true only when cout[3], cout[2], or cout[1] have a rising
edge. What happens on cout[0] does not matter.

0000 > 1110
True because cout[3], cout[2], and cout[1] rise.
0000 > 1111

True for the same reason. It does not matter whether cout[0] rises or not.

Reveal User Guide for Radiant Software 33

REVEAL INSERTER : Setting Up the Trigger Signals

0000 > 0100
True because a rising edge on any of the specified bits is sufficient.
1000 > 1000

False because cout[3] did not rise. It just stayed high.

Serial Compare

The “serial compare” operator checks for a series of values on a single signal.
For example, if a trigger unit's specified value is 1011, the “serial compare”
operator looks for a 1 on the first clock, a 0 on the next clock, a 1 on the next
clock, and a 1 on the last clock. Only after those four conditions are met in
those four clock cycles is the trigger unit true.

Serial compare is available only when a single signal is listed in the trigger
unit’s signal list. The radix is automatically binary.

You can only set the serial compare operator in Reveal Inserter. You cannot
change it or select it in Reveal Analyzer as you can the other operators.

Trigger Expressions

Trigger expressions are combinations of trigger units. Trigger units can be
combined in combinatorial, sequential, and mixed combinatorial and
sequential patterns. A trigger expression can be dynamically changed at any
time. Each core supports up to 16 trigger expressions that can be dynamically
enabled or disabled in Reveal Analyzer. Trigger expressions support AND,
OR, XOR, NOT, parentheses (for grouping), THEN, NEXT, # (count), and ##
(consecutive count) operators. Each part of a trigger expression, called a
sequence, can also be required to be valid a number of times before
continuing to the next sequence in the trigger expression.

Detailed Trigger Expression Syntax
Trigger expressions in both Reveal Inserter and Reveal Analyzer use the
same syntax.

Operators

You can use the following operators to connect trigger units:
& (AND) — Combines trigger units using an AND operator.
| (OR) — Combines trigger units using an OR operator.
A (XOR) — Combines trigger units using a XOR operator.
1 (NOT) — Combines a trigger unit with a NOT operator.
Parentheses — Groups and orders trigger units.

THEN — Creates a sequence of wait conditions. For example, the
following statement:

TUl THEN TU2

means “wait for TU1 to be true, then wait for TU2 to be true.”

Reveal User Guide for Radiant Software 34

REVEAL INSERTER : Setting Up the Trigger Signals

The following expression:

(TU1 & TU2) THEN TU3

means “wait for TU1 and TUZ2 to be true, then wait for TU3 to be true.”
Reveal supports up to 16 sequence levels.

See Sequences and Counters below for more information on THEN
statements.

NEXT — Creates a sequence of wait conditions, like THEN, except the
second trigger unit must come immediately after the first. That is, the
second trigger unit must occur in the next clock cycle after the first trigger
unit. See Sequences and Counters below for more information on NEXT
statements.

(count) — Inserts a counter into a sequence. See Sequences and
Counters below for information on counters.

(consecutive count) — Inserts a counter into a sequence. Like # (count)
except that the trigger units must come in consecutive clock cycles. That
is, one trigger unit immediately after another with no delay between them.
See Sequences and Counters below for information on counters.

Case Sensitivity
Trigger expressions are case-insensitive.

Spaces
You can use spaces anywhere in a trigger expression.

Sequences and Counters

Sequences are sequential states connected by THEN or NEXT operators. A
counter counts how many times a state must occur before a THEN or NEXT
statement or the end of the sequence. The maximum value of this count is
determined by the Max Event Counter value. This value must be specified in
Reveal Inserter and cannot be changed in Reveal Analyzer.

Here is an example of a trigger expression with a THEN operator:

TU1 THEN TU2

This trigger expression is interpreted as “wait for TU1 to be true, then wait for
TUZ2 to be true.”

If the same example were written with a NEXT operator:

TU1 NEXT TU2

it is interpreted as “wait for TU1 to be true, then wait one clock cycle for TU2
to be true.” If TU2 is not true in the next clock cycle, the sequence fails and
starts over, waiting for TU1 again.

The next trigger expression:

TUl THEN TU2 #2

Reveal User Guide for Radiant Software 35

REVEAL INSERTER : Setting Up the Trigger Signals

is interpreted as “wait for TU1 to be true, then wait for TU2 to be true for two
sample clocks.” TU2 may be true on consecutive or non-consecutive sample
clocks and still meet this condition.

The following statement:

TUl ##5 THEN TU2

means that TU1 must occur for five consecutive sample clocks before TUZ2 is
evaluated. If there are any extra delays between any of the five occurrences
of TU1, the sequence fails and starts over.

The next expression:

(TUL & TU2)#2 THEN TU3

means “wait for the second occurrence of TU1 and TU2 to be true, then wait
for TU3.”

The last expression:

TU1 THEN (1)#200

means “wait for TU1 to be true, then wait for 200 sample clocks.” This

expression is useful if you know that an event occurs a certain time after a
condition.

You can only use one count (# or ##) operator per sequence. For example,
the following statement is not valid, because it uses two counts in a sequence:
TU1 #5 & TU2 #2

Multiple count values are allowed for a single trigger expression, but only one
per sequence. For two count operators to be valid in a trigger expression, the

expression must contain at least one THEN or NEXT operator, as in the
following example:

(TU1 & TU2) #5 THEN TU2 #2

This expression means “wait for TU1 and TU2 to be true for five sample
clocks, then wait for TU2 to be true for two sample clocks.”

Also, the count operator must be applied to the entire sequence expression,
as indicated by parentheses in the expression just given. The following is not
allowed:

TU1l #5 & TU2 THEN TU2 #2
The count (#) operator cannot be used as part of a sequence following a

NEXT operator. A consecutive count (##) operator may be used after a NEXT
operator. The following is not allowed:

TUl NEXT TU2 #2

The count (# or ##) operators can only be used in one of two areas:

Reveal User Guide for Radiant Software 36

REVEAL INSERTER : Setting Up the Trigger Signals

Immediately after a trigger unit or parentheses(). However, if the trigger
unit is combined with another trigger unit without parentheses, a # cannot
be used.

After a closing parenthesis.

Precedence
The symbols used in trigger expression syntax take the following precedence:

Because it inserts a sequence, the THEN and NEXT operators always
take the highest precedence in trigger expressions.

Between THEN or NEXT statements, the order is defined by parentheses
that you insert. For example, the following trigger expression:

TULl & (TU2|TU3)
means “wait for either TU1 and TU2 or TU1 and TU3 to be true.”

If you do not place any parentheses in the trigger expression, precedence
is left to right until a THEN or NEXT statement is reached.

For example, the following trigger expression:
TUl & TU2|TU3
is interpreted as “wait for TU1 & TU2 to be true or wait for TU3 to be true.”

The precedence of the * operator is same as that of the & operator and
the | operator.

The logic negation operator (!) has a higher precedence than the #
operator, & operator, or | operator, for example:

ITULl & TU2
means “not TU1 and TU2.”

The # and ## operators have the same precedence as the * operator, &
operator, or | operator. However, they can only be used in one of two
areas:

Immediately after a trigger unit or trigger units combined in
parentheses. However, if the trigger unit is combined with another
trigger unit without parentheses, a # or ## operator cannot be used.

Here is an example of correct syntax using the count (#) operator:
TU1l #2 THEN TU3

This statement means “wait for TU1 to be true for two sample clocks,
then wait for TU3.”

However, the following syntax is incorrect, because the count operator
is applied to multiple trigger units combined without parentheses:

TUl & TU2#2 THEN TU3

After a closing parenthesis. Use parentheses to combine multiple
trigger units and then apply a count, as in the following example:

(TUL & TU2)#2 THEN TU3

This statement means “wait for the combination of TU1 and TUZ2 to be
true for two sample clocks, then wait for TU3.”

Reveal User Guide for Radiant Software 37

REVEAL INSERTER : Setting Up the Trigger Signals

Following is a series of examples that demonstrate the flexibility of trigger
expressions.

Example 1: Simplest Trigger Expression
Following is the simplest trigger expression:

TU1

This trigger expression is true, causing a trigger to occur when the TU1 trigger
unit is matched. The value and operator for the trigger unit is defined in the
trigger unit, not in the trigger expression.

Example 2: Combinatorial Trigger Expression
An example of a combinatorial trigger expression is as follows:

TU1 & TU2 | TU3

This trigger expression is true when (TU1 and TU2) or TU3 are matched. If no
precedence ordering is specified, the order is left to right.

Example 3: Combinatorial Trigger Expression with Precedence Ordering
In the following example of a combinatorial trigger expression, precedence
makes a difference:

TU1 & (TU2 | TU3)

This trigger expression gives different results than the previous one. In this
case, the trigger expression is true if (TU1 and TU2) or (TU1 and TU3) are
matched.

Example 4: Simple Sequential Trigger Expression
Following is an example of a simple sequential trigger expression:

TU1 THEN TU2

This trigger expression looks for a match of TU1, then waits for a match on
TU2 a minimum of one sample clock later. Since this expression uses a THEN
statement, it is considered to have multiple sequences. The first sequence is
“TU1,” since it must be matched first. The second sequence is “TU2,”
because it is only checked for a match after the first sequence has been
found. The “sequence depth” is therefore 2.

The sequence depth is an important concept to understand for trigger
expressions. Since the debug logic is inserted into the design, logic must be
used to support the required sequence depth. Matching the depth to the
entered expression can be used to minimize the logic. However, if you try to
define a trigger expression that has a greater sequence depth than is
available in the FPGA, an error will prevent the trigger expression from
running. The dynamic capabilities of the trigger expression can therefore be
limited. To allow more flexibility, you can specify the maximum sequence
depth when you set up the debug logic in Reveal Inserter. You can reserve
more room for the trigger expression than is required for the trigger

Reveal User Guide for Radiant Software 38

REVEAL INSERTER : Setting Up the Trigger Signals

expression currently entered. If you specify multiple trigger expressions, each
trigger expression can have its own maximum sequence depth.

Example 5: Mixed Combinatorial and Sequential Trigger Expression
Here is an example showing how you can mix combinatorial and sequential
elements in a trigger expression:

TU1 & TU2 THEN TU3 THEN TU4 | TUS

This trigger expression only generates a trigger if (TU1 AND TU2) match,
then TU3 matches, then (TU4 or TU5) match. You can set precedence for any
sequence, but not across sequences. The expression (TU1 & TU2) | TU3
THEN TU4 is correct. The expression (TU1 & TU2 THEN TU3) | TU4 is invalid
and is not allowed.

Example 6: Sequential Trigger Expression with Sequence Counts

The next trigger expression shows two new features, the sequence count and
a true operator to count sample clocks:

(TU1 & TU2)#2 THEN TU3 THEN TU4#5 THEN (1)#200

This trigger expression means wait for (TU1 and TU2) to be true two times,
then wait for TU3 to be true, then wait for TU4 to be true five times, then wait
200 sample clocks. The count (# followed by number) operator can only be
applied to a whole sequence, not part of a sequence. When the count
operator is used in a sequence, the count may or may not be contiguous. The
always true operator (1) can be used to wait or delay for a number of
contiguous sample clocks. It is useful if you knew that an event that you
wanted to capture occurred a certain time after a condition but you did not
know the state of the trigger signals at that time.

However, there is a limitation on the maximum size of the counter. This
depends on how much hardware is reserved for the sequence counter. When
you define a trigger expression, the Max Event Counter setting in the Trigger
Expression section of Reveal Inserter and Reveal Analyzer specifies how
large a count value is allowed in the trigger expression. Each trigger
expression can have a unique Max Event Counter setting.

Trigger Expression and Trigger Unit Naming

Conventions

You can rename trigger units and trigger expressions. The names can be a
mixture of lower-case or upper-case letters, underscores, and digits from 0
through 9. The first character must be either an underscore or a letter. The
names can be any length.

Reveal User Guide for Radiant Software 39

REVEAL INSERTER : Setting Up the Trigger Signals

Adding Trigger Units

You can add trigger units only in Reveal Inserter. You cannot add them in
Reveal Analyzer. You can change some of the trigger conditions defined in
Reveal Inserter in Reveal Analyzer during hardware debugging.

All trigger units are automatically available for use in all trigger expressions
defined.

Each core can support up to 16 trigger expressions. Each trigger unit consists
of the following:

Trigger unit name (label)

Signals in the trigger unit

Comparison function

Radix of the trigger unit value

Value of the trigger unit

To add a trigger unit:

1. If you want the buses in the new trigger units that you will add to have a
certain radix by default, set that radix in the Default Trigger Radix box in
the Trigger Unit section of the Trigger Signal Setup tab before you add
any trigger units.

Changing the trigger radix value does not affect any trigger units that were
created before you made the change.

2. To add a new trigger unit, click Add in the Trigger Unit section of the
Trigger Signal Setup tab.

A line now appears in the Trigger Unit section, with a default trigger unit
named TU<number>, where number is a sequential number. The first
trigger unit is named TU1 by default.

Renaming Trigger Units

You can rename a trigger unit.

To rename a trigger unit:

Double-click in the appropriate box in the Name column of the Trigger Unit
section of the Trigger Signal Setup tab, backspace over the existing
name, and type in the new name.

Reveal User Guide for Radiant Software 40

REVEAL INSERTER : Setting Up the Trigger Signals

Setting Up Trigger Units

All signals must be defined for a trigger unit in Reveal Inserter. You cannot
change them in Reveal Analyzer.

To set up a trigger unit:

1. If you want to change the default name of the trigger unit, backspace over
the default name in the Name box in the Trigger Unit section of the Trigger
Signal Setup tab and type the new name.

2. Specify the signals in the trigger unit:
a. Double-click in the box in the Signals (MSB:LSB) column.
The TU Signals dialog box appears.

b. In the Select Signals box of the dialog box, highlight the signal or
signals that you want to use in the trigger unit, and click > to move
them to the box on the right. (Shift-click to select multiple signals.)

Each trigger unit can have up to 256 signals. Since there are 16
allowable trigger units, each core can have a maximum of 4096 trigger
signals.

c. If you want to change the order of a signal in the list of signals,
highlight its name and click the up arrow to move it up one line or the
down arrow to move it down one line.

The order of the signals affects how the comparison is performed.
d. Click OK.

As an alternative to this procedure, you can drag and drop signals from
the Design Tree pane to the Signals (MSB:LSB) box in a trigger unit.

If you want to select certain signals by using a search engine:

a. In the Signal Search box in the Design Tree pane, enter the name or
pattern of the signal to find. You can set a filter by using case-
insensitive alphanumeric characters and wildcards. See “Searching
for Signals” on page 24 for information about the wildcards that you
can use.

b. Click Search.

If Reveal Inserter finds only one signal, it highlights it in the Design
Tree pane.

If Reveal Inserter finds multiple signals, it opens the Search Result
dialog box to list all the signals found.

c. If you are searching for multiple signals, select the desired signals in
the Search Result dialog box, and click OK.

The signals are now selected in the Design Tree pane.

d. Drag them to Signals (MSB:LSB) box in the Trigger Unit section of the
Trigger Signal Setup tab.

If you move the cursor over a trigger-unit line in the Signals box, the
software displays a complete list of the signals in that trigger unit.

Reveal User Guide for Radiant Software 41

REVEAL INSERTER : Setting Up the Trigger Signals

3. In the Operator column, set the comparators for the trigger condition. You
can choose from the following states:

== equal to

1= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Rising edge — compares on the rising edge of the clock
Falling edge — compares on the falling edge of the clock

Serial compare — compares until the trigger condition is met. For
example, if the trigger condition is 10011, the serial compare option
looks for a 1 on the first clock, a 0 on the next clock, a 0 on the next
clock, a 1 on the next clock, and a 1 on the last clock. Only if those five
conditions are met in those five clock cycles will the serial compare
output be active.

The serial comparator is available only when a single signal is listed in
the Trigger Unit signal list. If you choose this option, you must choose
Binary in the Radix box.

You can only set the serial compare operator in Reveal Inserter. You
cannot change it as you can other operators in Reveal Analyzer.

The default comparator is == (equal to).

For more information on the effect of the “Rising edge” and “Falling edge”
operators, see “Triggering” on page 31.

Both the operator type and the trigger unit value can be changed in
Reveal Analyzer during hardware debugging.

4. In the Radix column, set the radix of the trigger unit value given in the
Value box by selecting a radix from the drop-down menu. You can choose
one of the following:

Binary. This is the default. You must choose Binary if you selected
“Serial compare” as a comparator.

Octal
Decimal
Hexadecimal

<token_set_name>. To select <token_set _name>, information on
these operators in Reveal Analyzer. See “Creating Token Sets” on
page 86 for instructions on creating token sets.

5. In the Value column, enter the comparison value.

This value is the pattern of highs and lows that you want on the trigger unit
that will initiate collection of the trace data. The default is binary, unless
you selected <token_set _name> in the Radix column.

Reveal User Guide for Radiant Software 42

REVEAL INSERTER : Setting Up the Trigger Signals

If you selected <token_set _name> in the Radix column, a drop-down
menu opens in the Value column. This menu lists all the tokens that you
entered in the Token Manager dialog box for the chosen token set. Select
any name. The only token sets available for a given bus must match the
bit width of the bus. Other token sets will not be listed as choices for that
bus.

You can use “x” for a don’t-care value in the Value column if you selected
Binary, Octal or Hexadecimal in the Radix column and if you selected the
==, I=, or serial compare operators in the Operator column.

Removing Trigger Units

You can remove trigger units in Reveal Inserter, but you cannot remove them
in Reveal Analyzer.

To remove a trigger unit:

1. In the Trigger Unit section of the Trigger Signal Setup tab, click in any box
in the line representing the trigger unit that you want to remove.

2. Click Remove.

Adding Trigger Expressions

Trigger expressions are combinatorial or sequential equations of trigger units
or both. Trigger expressions can be defined during insertion and changed in
Reveal Analyzer. You can add up to 16 trigger expressions.

You can add trigger expressions only in Reveal Inserter. You cannot add them
in Reveal Analyzer.

You can dynamically enable or disable individual trigger expressions before
triggering is activated during hardware debugging.

To add a trigger expression:

In the Trigger Expression section of the Trigger Signal Setup tab, click
Add.

A line appears with the default trigger expression called TE<number>,
where <number> is a sequential number. The first trigger expression is
named TE1 by default. You can rename the trigger expression by
backspacing over the name and typing a new name.

Reveal User Guide for Radiant Software 43

REVEAL INSERTER : Setting Up the Trigger Signals

Renaming Trigger Expressions

You can rename a trigger expression.

To rename a trigger expression:

Double-click in the appropriate box in the Name column of the Trigger
Expression section of the Trigger Signal Setup tab, backspace over the
existing name, and type in the new name.

Setting Up Trigger Expressions

You set up the initial trigger expressions in Reveal Inserter, but you can
change them and their names in Reveal Analyzer. You can also enable or
disable trigger expressions in Reveal Analyzer. However, you cannot change
the sequence depth, the maximum sequence depth, or the maximum event
counter of the trigger expressions in Reveal Analyzer.

To set up a trigger expression:

1. If you want to change the default name of the trigger expression,
backspace over the default name in the Name box in the Trigger
Expression section of the Trigger Signal Setup tab and type the new
name.

You can also change the name of a trigger expression in Reveal Analyzer.

2. In the Expression box, enter the names of the trigger units and the
operators that you want to use to connect them.

You can use the following operators to connect trigger units:
& (AND) — Combines trigger units using an & operator.
| (OR) — Combines trigger units using an OR operator.
A (XOR) — Combines trigger units using a XOR operator.
1 (NOT) — Combines a trigger unit with a NOT operator.
Parentheses — Groups and orders trigger units.

THEN — Creates a sequence of wait conditions. For example, the
following statement:

TU1l THEN TU2
means “wait for TU1 to be true,” then “wait for TU2 to be true.”

The following expression:

(TU1 & TU2) THEN TU3

means “wait for TU1 and TU2 to be true, then wait for TU3 to be true.”
Reveal supports up to 16 sequence levels.

See “Triggering” on page 31 for more information on THEN
statements.

Reveal User Guide for Radiant Software 44

REVEAL INSERTER : Setting Up the Trigger Signals

NEXT — Creates a sequence of wait conditions, like THEN, except the
second trigger unit must come immediately after the first. That is, the
second trigger unit must occur in the next clock cycle after the first
trigger unit. See “Triggering” on page 31 for more information on
NEXT statements.

(count) — Inserts a counter into a sequence. See “Triggering” on
page 31 for information on counters.

(consecutive count) — Inserts a counter into a sequence. Like
(count) except that the trigger units must come in consecutive clock
cycles. That is, one trigger unit immediately after another with no
delay between them. See “Triggering” on page 31 for information on
counters.

For more information on the precedence of these symbols in trigger
expression syntax, see “Triggering” on page 31.

Reveal Inserter checks the syntax and displays the syntax in red font if it is
erroneous.

Both the trigger units and operators associated with a trigger expression
can be changed in Reveal Analyzer during hardware debugging.

3. From the drop-down menu in the Ram Type box, specify how the trigger
expression is to be implemented in the debug logic. You can choose one
of the following:

EBR - Implements the trigger expression as embedded block RAM
(EBR). Reveal Inserter calculates the appropriate number of EBRs. By
default, the trigger expression is implemented as EBR.

The Sequence Depth box is read-only, so you do not need to enter data
in this box.

4. From the drop-down menu in the Max Sequence Depth box, specify the
maximum number of sequences, or trigger units connected by THEN
operators, that can be used in a trigger expression.

You can choose 1, 2, 4, 8, or 16. Reveal supports up to 16 maximum
sequence levels.

If the number in the Sequence Depth box is higher than that set in the Max
Sequence Depth box, the number in the Max Sequence Depth box
appears in red to indicate an error.

The Max Sequence Depth value is set statically in Reveal Inserter and
cannot be changed in Reveal Analyzer.

5. From the drop-down menu in the Max Event Counter box, specify the
maximum size of the count in the trigger expression (the count is how
many times a sequence must occur before a THEN statement). You can
choose 1 and powers of 2 from 2 to 65,536. The maximum is 65,536. The
default is 1. If the largest counter value used in the trigger expression is
larger than that set in the Max Event Counter box, the number in the Max
Event Counter box appears in red.

You cannot change the Max Event Counter setting in Reveal Analyzer.
You can only change it in Reveal Inserter.

Reveal User Guide for Radiant Software 45

REVEAL INSERTER : Setting Up the Trigger Signals

You can also add a counter to the output of the final trigger from all the
trigger expressions. This counter adds an option to the final trigger output
that combines all the trigger expressions. It is similar to the AND All and
OR All options in the Analyzer.

6. To add a counter to the output of the final trigger, do the following:

a. Select the Enable final trigger counter checkbox in the lower left
portion of the Trigger Signal Setup tab.

b. From the drop-down menu in the Event Counter Value box, select
the maximum size of the count of all the trigger expression outputs
combined. You can choose powers of 2 between 2 and 65536.

Leaving the “Enable final trigger counter” option unselected is equivalent
to setting the counter to a value of 1.

You can change the value of this parameter in Reveal Analyzer, but you
cannot make the value bigger, so be sure to reserve enough space for the
count that you think you will need.

7. If you want create a trigger-out signal, do the following in the Trigger Out
section:

a. Select the Enable Trigger Out option.

b. If you want to create a net, type in the name of the signal that you
want to use as the trigger output signal in the Net box.

The default name of the trigger output signal is
reveal_debug_<default_core_name>_net. An example is
reveal_debug_count_LAO_net.

c. In the Polarity box, select the polarity of the trigger output signal from
the drop-down menu, either Active High or Active Low.

d. In the “Minimum pulse width” box, enter the minimum pulse width of
the trigger output signal, measured in cycles of the sample clock. You
can input any value of 0 or greater as the minimum pulse.

Once you create a net as a trigger output signal, its name appears in the
Trigger Output pane beneath the Design Tree pane.

Removing Trigger Expressions

You can disable a trigger expression from being used by deselecting the
checkbox to the left of the trigger expression name in Reveal Analyzer, but
you can remove a trigger expression only in Reveal Inserter.

To remove a trigger expression:

1. Click in any box in the line representing the expression that you want to
remove.

2. Click Remove.

Reveal User Guide for Radiant Software 46

REVEAL INSERTER : Setting Up the Trigger Signals

Setting Up Virtual Switch/LED Settings

The data pane consists of Virtual Switch/LED panels in which you drag and
drop the RTL-defined switch and LED signals. A maximum of 32 bits can be
selected for both Virtual Switch/LED signals.

To set up Virtual Switch/LED signals:

1. Select the top_Controller core in the Dataset view. (There can only be one
Controller core.)

2. Click the Virtual Switch & LED Setup tab.

3. Select signals in the Design Tree by expanding the hierarchy or doing a
name search in the Signal Search text box and clicking on Search.

4. Drag the desired signals to the Virtual Switch or LED data panels to the
right. The width of the signals will automatically update between 1-32
entries at the top.

5. Beside the header title, Virtual Switch/LED Setting, there is a check box in
which the Controller function for Virtual Switch/LED can be enabled/
disabled.

Note

In order for this tab to display the Switch/LED names correctly and for the compilation
tool flow to run through successfully, please use the Reveal Controller template
from the Source Template Editor tool. See the help section: Entering the Design >
HDL Design Entry > Using Templates.

Configuring User Memory Setup

Setting up the User Memory setting consists of assigning six mandatory ports
(which must be defined in the user RTL design). The maximum data width is
32 bits.

The user design must include a memory block (EBR, Distributed Memory or
PMI Memory) to be able set up User Memory.
The mandatory signals in the user design to set up User Memory are:

Clock

Clock_enable

Wr_Rdn

Address

WData

RData

Reveal User Guide for Radiant Software 47

REVEAL INSERTER : Setting Up the Trigger Signals

To set up User Memory signals:

1. To select the top Controller core in the Dataset view, click on it. There can
only be one Controller core. When you click on Add Controller, the control
panel will appear. You can enable User Memory and connect to any lower-
level hierarchy under the top-level, provided that all the ports are
connected without any unconnected ports before and by selecting the
corresponding memory port names. The Address and Data Width will be
automatically updated.

2. Reveal Controller will add a mux between user logic and the Reveal
Controller, which can be left blank or connected to the user logic. Once
checked, click the User Memory Setup tab.

[user Memory Setting

Address: 0x90000000~0x3000FFFF

Address Width: 9 (416

Data Width: 2 (432
Setting List

Memory Port

Clock top_test1_inst/pmi_ram_dp_inst/Clock
Clock_enable top_test1_inst/pmi_ram_dp_inst/ClockEn
Wr_Rdn top_test1_inst/pmi_ram_dp_inst/WE_RDN
Address([8:0] top_test1_inst/pmi_ram_dp_inst/Address[8:0]
WData[31:0] top_test1_inst/pmi_ram_dp_inst/WData[31:0]
RData[31:0] top_test1_inst/pmi_ram_dp_inst/Q[31:0]

Virtual Switch & LED Setup User Memory Setup Hard IP Setup User Status Register Setup User Control Register Setup

3. Select signals in the Design Tree and drag the signals to the desired
position under Setting List in the User Memory Setup tab. As the pre-
synthesis controller debug, no need to add any floating wires. For help
finding signals see, “Searching for Signals” on page 24.

4. Drag the desired signals into the User Memory data panel to the right. You
do not need to provide a clock if there is no user logic connected while the

width of the signals will automatically update between 4-32 entries at the
top.

5. Beside the title User Memory Setting, there is a check box in which the
Controller function for User Memory signals can be enabled/disabled. If
there is a noticeable reset port, it should be connected to an inactive reset
signal so that it does not impact the controller functionality and it should
not be in a floating state.

Reveal User Guide for Radiant Software 48

REVEAL INSERTER : Setting Up the Trigger Signals

Configuring User Control Register
Setup

The User Control Register Setup tab displays a table-like panel where you
can enable the Control Register. The Control Register address ranges from
0x81000000 up to 0x810000f8.

You can add up to 32-address locations with a maximum data-width of 8-bit. If
the signal has a data width greater than 8, it splits into 8-bit per address
location with a unique label.

The user design must include the control registers as wires, which should not
have any other drivers. They should be treated as asynchronous switches as
they are changed with the JTAG clock.

These signals are read-writable from the controller.

Reveal User Guide for Radiant Software 49

REVEAL INSERTER : Setting Up the Trigger Signals

To set up User Control Register:

1. Click the User Control Register Setup tab.

2 control Register
Name Control Signals (MSB:LSB) Width &
cregd | top_test1_inst/control_reg0:7,top_test1_inst/control_reg0:6,top_test1_inst/control_reg0:5,top_test1_inst/control_reg0:4,top_test1_inst/control_reg0:3,top_test1_inst/control_reg0:2,top_test1_inst/control_reg0:1,top._test1_inst/control_reg0:0
cregl | top_test1 _inst/control_reg0_7_0[7:0]
creg2 | top_test1_inst/control_reg0_15_8[7:0]
creg3 | top_test1 _inst/control_reg0_23_16[7:0]

1

2

3

4

5 cregd | top_test_inst/control_reg1:7,top_test1_inst/control_reg1:6,top_testl_inst/control_reg1:5,top_test1_inst/control_reg1:4,top_test1_inst/control_reg1:3,top_test1_inst/control_reg 1:2,top._test1_inst/control_reg1:1,top_test1_inst/control_reg1:0

6 creg5 | top_testl_inst/count_regl:15 top_test1_inst/count_reg1:14,top_test1_inst/count_reg1:13,top._test1_inst/count_reg1:12,top_test1_inst/count_reg1:11,top_test1_inst/count_reg1:10,top_test1_inst/count_reg1:9,top_test1_inst/count_reg1:8

7 creg6 | top_testl_inst/control_reg1:23,top_test1_inst/control_reg1:22,top_testl_inst/control_reg1:21,top._test1_inst/control_reg1:20,top_test1_inst/control_reg1:19,top_test1_inst/control_reg1:18,top_test1_inst/control_reg1:17,top_test1_inst/control_reg1:16
8 creg7 | top_testl_inst/count_regl:31,top_test1_inst/count_reg1:30,top_test1_inst/count_reg1:29,top._test1_inst/count_reg1:28 top_test1_inst/count_reg1:27,top_test1_inst/count_reg1:26,top_test1_inst/count_reg1:25,top_test1_inst/count_reg1:24

9 creg3 | top_testl_inst/control_reg27 top_test1_inst/control_reg2:6 top_test1_inst/control_reg2:5,top_test1_inst/control_reg2:4,top_test1_inst/control_reg2:3,top_test1_inst/control_reg2:2,top_test1_inst/control_reg2:1,top_test1_inst/control_reg2:0

10 cregd | top_test_inst/control_reg2:15,top_test1_inst/control_reg2:14,top_test1_inst/control_reg2:13,top_test1_inst/control_reg2:12,top_test1_inst/control_reg2:11,top_test1_inst/control_reg2:10,op_test1_inst/control_reg2:3,top_test1_inst/control_reg2:8
11 cregl0 | top_test! _inst/control_reg2:23 top_test1_inst/control_reg2:22,top_test1_inst/control_reg2:21,top_test1 _inst/control_reg2:20,top_test1_inst/control_reg2:19,top_test_inst/control_reg2:18,top_test1 _inst/control_reg2:17,top_test1_inst/control_reg2:16
12 cregll | top_testi_inst/control_reg2:31,top_test1_inst/control_reg2:30,top_test1_inst/control_reg2:29,top_test1_inst/control_reg2:28,top_test1_inst/control_reg2:27top_test_inst/control_reg2:26,top_test1_inst/control_reg2:25,top_test1_inst/control_reg2:24
13 cregl2 | top_test_inst/control_reg3:7,top_test1_inst/control_reg3:6,top_testl_inst/control_reg3:5,top_test1_inst/control_reg3:4,top_test1_inst/control_reg3:3,top_test1_inst/control_reg3:2,top._test1_inst/control_reg3:1,top_test1_inst/control_reg3:0

14 creg13 | top_test!_inst/control_reg3:15,top_test1_inst/control_reg3:14,top_test1_inst/control_reg3:13 top_test1_inst/control_reg3:12,top_test1_inst/control_reg3:11,top_test1_inst/control_reg3:10,top_test1_inst/control_reg3:3,top_test1_inst/control_reg3:8

15 | cregl4 | top_testl_inst/control_reg3:23,top_test1_inst/control_reg3:22,top_test1_inst/control_reg3:21,top_test1_inst/control_reg3:20,top_test1_inst/control_reg3:19,top_test1_inst/control_reg3:18,top_test1_inst/control_reg3:17,top_test1_inst/control_reg3:16
16 creglS top_testl_inst/control_reg3:31,top_test1_inst/control_reg3:30,top_test1_inst/control_reg3:29,top_test1_inst/control_reg3:28,10p_test1_inst/control_reg3:27,top_testl_inst/control_reg3:26,top_test1_inst/control_reg3:25,top_test1_inst/control_reg3:24
17 cregl6 | top_testd _inst/count reg4:7,top_test1_inst/count_reg4:5,top_test1_inst/count_reg4:5,top_test1_inst/count_reg44,top_test1_inst/count_reg4:3,op_test1_inst/count_reg4:2,top_test1_inst/count_reg4:1,top._test1_inst/count_regd:0

18 | cregl7 | top_testl_inst/control_reg4:15,top_test1_inst/control_regd: 14,top_test1_inst/control_reg4:13,top_test1_inst/control_reg4:12,top_test1_inst/control_reg4:11,top_test1_inst/control_reg4:10;top_test1_inst/control_reg4:9,top_test1_inst/control_reg4:§
19 cregl8 | top_test_inst/control_reg4:23,top_test1_inst/control_reg4:22,top_test1_inst/control_reg4:21,top_test!_inst/control_reg4:20,t0p_test1_inst/control_reg4:19,top_testl_inst/control_reg4:18;top_test1_inst/control_reg4:17,top_test1_inst/control_reg4:16
20 cregl9 | top_testd_inst/control_reg4:31,top_test1_inst/control_reg4:30,top_test1_inst/control_reg4:29,top_test!_inst/control_reg4:28,top_test1_inst/control_reg4:27,top_test!_inst/control_reg#:26,top_test1_inst/control_reg4:25,top_test1_inst/control_reg4:24
21 creg20 | top_test_inst/count reg5:7,top_test1_inst/count_reg5:6,top_test1_inst/count_reg5:5,top_test1_inst/count_reg5:4,top_test1_inst/count_reg5:3,top_test1_inst/count_reg5:2,top_test1_inst/count_reg5:1,top_test1_inst/count_reg5:0

22 creg21 | top_testl_inst/count_reg5:15,top_test1_inst/count_reg5:14,top_test1_inst/count_reg5:13,top_test1_inst/count_regS:12,top_test1_inst/count_regS: 11,top_test]_inst/count_regS:10,top_test1_inst/count_regS:9,top_test1_inst/count_reg5:8

23 creg22 | top_testl _inst/count reg5:23,top_test1_inst/count_reg5:22,top_test1_inst/count_reg5:21,top_test!_inst/count_regS:20,top_test!_inst/count_regS:19,top_test!_inst/count_regS:18;top._test!_inst/count_reg5:17,top_test!_inst/count_reg5:16

24 | creg23 | top_testl_inst/control_reg5:31,top_test1_inst/control_reg5:30;top_test1_inst/cantrol_reg5:29,top_test1_inst/control_reg5:28,top_test1_inst/control_reg5:27,top_test1_inst/control_reg5:26,top_test1_inst/control_reg5:25,top_test1_inst/control_reg5:24
25 creg24 top_testl_inst/control_reg67,top_test1_inst/control_reg6i6,top_testl_inst/control_reg6:s, top_test1_inst/control_reg6:4,top_test1_inst/control_reg6:3,top_test1_inst/control_reg6:2,top_test1_inst/control_regé:1,top._test1_inst/control_reg6:0

2 creg25 | top_testl_inst/count reg6:15,top_test1_inst/count_reg6:14,top_test1_inst/count_regé:13,top_test!_inst/count_reg:12,top_test1_inst/count_regé:11,top_test!_inst/count_regé:10,top_test!_inst/count_reg6:9,top_test1_inst/count_regé:8

27 | creg26 | top_testl_inst/count reg6:23,top_test1_inst/count_reg6:22,top_test1_inst/count_reg6:21,top_test1_inst/count_reg6:20,top_test1_inst/count_reg6:19,top_test1_inst/count_reg6:18,top_test1_inst/count_reg6:17,top_test1_inst/count_reg6:16

28 creg27 top_test1_inst/control_reg6:31,top_test1_inst/control_reg6:30,top_test1_inst/control_reg6:29,top_test1_inst/control_reg6:28,10p_test1_inst/control_reg6:27,top_testl_inst/control_reg6:26,top_test1_inst/control_reg6:25,top_test1_inst/control_reg6:24
29 creg28 | top_testd _inst/control_reg77.top_test1_inst/control_reg7:6,top_test!_inst/control_reg7:5, top_test1_inst/control_reg7:4,top._test1_inst/control_reg7:3,top_test1_inst/control_reg7:2,top_test1_inst/control_reg7:1,top._test1_inst/control_reg7:0

30 | creg29 | top_testl_inst/count reg7:15,top_test1_inst/count reg7:14,top_test1_inst/count_reg7:13,top_test1_inst/count reg7:12,top_test1_inst/count_reg7:11,top_test1_inst/count_reg7:10,top_test1_inst/count_reg7:9,top_test1_inst/count_reg7:8

31 creg30 | top_testl_inst/count_reg7:23,top_test1_inst/count_reg7:22,top_test1_inst/count_reg7:21,top_test1_inst/count_reg7:20,top_test1_inst/count_reg7:19,top_test]_inst/count_reg7:18,top_test1_inst/count_reg7:17,top_test1_inst/count_reg7:16

32 [EEER] top_testl_inst/count reg7:31,top_test1_inst/count_reg7:30,top_test1_inst/count_reg7:29,top_test!_inst/count_reg7:28,top_test!_inst/count_reg7:27,top_test!_inst/count_reg7:26 top._test!_inst/count_reg7:25top._test1_inst/count_reg7:24

© o o B oo ® e o oo ®®®m®E 0o ®® 0o ©® o o o 0 oo

Add Remove Address: 0x81000000 ~ 0xB10000f8

Virtual Switch & LED Setup User Memory Setup User Status Register Setup

Hard 1P Setup

2. Click the Add button. By default, a unique label is assigned to the Name
column. You can edit this label by double-clicking it.

3. Drag-and-drop the corresponding signals from Design View to the
Control Signals column.

Or

4. Select the existing row and double-click the Control Signals column.
The Edit Signals dialog box appears.

5. In the Edit Signals dialog box, do the following:

a. Choose signals from the Select Signals pane.

b. Click the forward > button to move the signals to the right-hand
pane.

c. Change the order of the signals as desired.
d. Click OK.

6. If you wish to delete a row from the Control Signals column, click the
Remove button to delete the selected row.

Reveal User Guide for Radiant Software 50

REVEAL INSERTER : Setting Up the Trigger Signals

Configuring User Status Register Setup

The User Status Register Setup tab displays a table-like panel where you can
enable the Status Register. The Status Register address ranges from
0x81001000 up to 0x810010f8.

You can add up to 32-address locations with a maximum data-width of 8-bit. If
the signal has a data width greater than 8, it splits into 8-bit per address
location with a unique label.

The user design must include status registers as wires, which should be
driven by registers to show the status of the different functional blocks of the
design. These signals are read-only.

To set up User Status Register:

1. Click the User Status Register Setup tab.

[status Register
Name Status Signals (MSB:LSB) Width =

1 sregD top_testl_inst/stat_reg0:7,top_test1_inst/stat_regQi6,top_test]_inst/stat_reg0:5,top_test1_inst/stat_reg0:4,top_test1_inst/stat_reg0:3t0p_test1_inst/stat_reg0:2.top_test1_inst/stat_regO:1,top_test1_inst/stat_reg0:0

2 sregl top_test1_inst/stat_reg0:15,top_test1_inst/stat_reg0:14,top_test1_inst/stat_reg0:13,top_test1_inst/stat_reg0:12,top_test1_inst/stat_reg0:11,top_test1_inst/stat_reg0:10,top_test1_inst/stat_reg0:9,top_test1_inst/stat_reg0:8

3 sreg2 | top_testl_inst/stat_reg0:23,top_test1_inst/stat_reg0:22,top_test1_inst/stat_reg0:21,top_test1_inst/stat_reg0:20,top_test1_inst/stat_reg0:19,top_test1_inst/stat_reg0:18,top_test1_inst/stat_reg0:17,top_test1_inst/stat_reg0:16

4 sreg3 top_testl_inst/stat_reg0:31,top_testl_inst/stat_reg0:30,top_test1_inst/stat_reg0:29,top_test1_inst/stat_reg0:28,top_test1_inst/stat_reg0:27 top_test1_inst/stat_reg0:26,top_test1_inst/stat_reg0:25 top_test1_inst/stat_reg0:24

5 sregd top_testl inst/stat_reg1:7,top_test] inst/stat_regT:6,top_test] _inst/stat_reg1:5,top_test1_inst/stat_reg1:4,top_test1_inst/stat_reg1:3,top_test1_inst/stat_reg1:2top_test1_inst/stat_reg1:1,top_test1_inst/stat_reg1:0

6 sregS top_testl_inst/stat_reg1:15,top_test1_inst/stat_reg1:14 top_test1_inst/stat_reg1:13 top_test_inst/stat_reg1:12,top_test1_inst/stat_reg1:17,top_test1_inst/stat_reg1:10,top_test1_inst/stat_reg1:9,top_test1_inst/stat_reg1:8

7 sregh top_testl_inst/stat_reg0:23,top_test1_inst/stat_reg0:22,top_test1_inst/stat_reg0:21,top_test1_inst/stat_reg0:20,top_test1_inst/stat_reg0:19,top_test1_inst/stat_reg0:18,top_test1_inst/stat_reg0:17,top_test1_inst/stat_reg0:16

8 sreg7 top_testl inst/stat_reg0:31,top_testl_inst/stat_reg0:30,top_test1_inst/stat_reg0:23,top_test1_inst/stat_reg0:28,top_test1_inst/stat_reg0:27,top_test1_inst/stat_reg0:26,top_test1_inst/stat_reg0:25,top_test_inst/stat_reg0:24

9 sreg8 top_testl inst/stat_reg2:7 top_test1_inst/stat_reg2:6,top_test1_inst/stat_reg2:5,top_test!_inst/stat_reg2:4,top_test1_inst/stat_reg2:3,top_test1_inst/stat_reg2:2,top_test1_inst/stat_reg2:1,top_test1_inst/stat_reg2.0

10 sregd top_testl_inst/stat_reg2:15,top_test1_inst/stat_reg2:14,top_test1_inst/stat_reg2:13,top_test1_inst/stat_reg2:12,top_test1_inst/stat_reg2:11,top_test1_inst/stat_reg2:10,top_test1_inst/stat_reg2:9,top_test1_inst/stat_reg2:8

11 sregl0 | top_testl_inst/stat_reg2:23,top_test1_inst/stat_reg2:22,top_test1_inst/stat_reg2:21,top_test1_inst/stat_reg2:20,top_test1_inst/stat_reg2:19,top_test1_inst/stat_reg2:18,top_test1_inst/stat_reg2:17,top_test1_inst/stat_reg2:16

12 sregll top_testl_inst/stat_reg2:31,top_test]_inst/stat_reg2:30,top_test1_inst/stat_reg2:29,top_test1_inst/stat_reg2:28,top_test_inst/stat_reg2:27,top_test1_inst/stat_reg2:26,top_test1_inst/stat_reg2:25 top_test1_inst/stat_reg2:24

13 sregl2 top_testl inst/stat_reg3:7,top_testl inst/stat_reg3:6,top_testl_inst/stat_reg3:5,top_test1_inst/stat_reg3:4,top_test1_inst/stat_reg3:3,top_test1_inst/stat_reg3:2,top_test1_inst/stat_reg3:1,top_test1_inst/stat_reg3:0

14 sregl3 top_testl_inst/stat_reg3:15,top_test1_inst/stat_reg3:14,top_test1_inst/stat_reg3:13 top_test1_inst/stat_reg3:12,top_test1_inst/stat_reg3:17,top_test1_inst/stat_reg3:10,top_test1_inst/stat_reg3:9,top_test1_inst/stat_reg3:8

15 sregl4 top_testl_inst/stat_reg3:23,top_test]_inst/stat_reg3:22,top_test1_inst/stat_reg3:21,top_test1_inst/stat_reg3:20,top_test1_inst/stat_reg3:19,top_test1_inst/stat_reg3:18,top_test1_inst/stat_reg3:17,top_test1_inst/stat_reg3:16

16 sregl5 top_testl_inst/stat_reg3:31,top_test1_inst/stat_reg3:30,top_test1_inst/stat_reg3:29,top_test1_inst/stat_reg3:26,top_test1_inst/stat_reg3:27,top_test1_inst/stat_reg3:26,top_test1_inst/stat_reg3:25,top_test1_inst/stat_reg3:24

17 sreg16 top_test!_inst/status_regd:7,top_test1_inst/status_reg:6,top_test1_inst/status_reg4:5top_test1_inst/status_regd4,top_test1_inst/status_reg4:3,top._test1_inst/status_reg4:2,top_test1_inst/status_reg4:1,top_test1_inst/status_reg4:0

18 sregl7 top_testl_inst/status_regd:15 top_test1_inst/status_regd:14,top_test1_inst/status_reg4:13,top_test1_inst/status_reg4:12,top_test1_inst/status_reg4:11,top_test1_inst/status_reg4:10;top_test1_inst/status_reg4:9,top_test1_inst/status_reg4:8
19 sreg18 top_testl_inst/stat_reg4:23 top_test1_inst/stat_regd:22,top_test1_inst/stat_reg4:21,top_test1_inst/stat_reg4:20,top_test1_inst/stat_reg4:19,top_test1_inst/stat_reg4:18,top_test1_inst/stat_reg4:17,top_test1_inst/stat_reg4:16

20 sreg19 top_testi_inst/stat_regd:31,top_test]_inst/stat_regd:30,top_test1_inst/stat_regd:29,top_test1_inst/stat_reg4:28,top_test1_inst/stat_reg4:27,top_test1_inst/stat_reg4:26,top_test1_inst/stat_reg4:25,top_test1_inst/stat_reg4:24

21 sreg20 top_testl_inst/count_regS:7,top_test1_inst/count_reg5:6,top_test1_inst/count_reg5:5,top_test1_inst/count_regS:4,top_test1_inst/count_reg5:3,top_test1_inst/count_reg5:2,top_test1_inst/count_reg5:1,top_test1_inst/count_reg5:0

22 sreg2l top_testl_inst/stat_reg5:15,top_test1_inst/stat_reg5:14,top_test1_inst/stat_reg5:13,top_test1_inst/stat_reg5:12,top_test1_inst/stat_reg5:17,top_test1_inst/stat_reg5:10,top_test1_inst/stat_reg5:9,top_test1_inst/stat_reg5:8

23 sreg22 top_testl_inst/stat_reg5:23,top_test1_inst/stat_reg5:22,top_test1_inst/stat_reg5:21,top_test1_inst/stat_ree
24 sreg23 top_testl_inst/stat_reg:31,top_test1_inst/stat_regS:30,top_test1_inst/stat_reg5:29,top_test1_inst/stat_ret

:20,top_test1_inst/stat_reg5:19,top_test1_inst/stat_reg5:18,top_test1_inst/stat_reg5:17,top_test1_inst/stat_reg5:16
,top_test1_inst/stat_reg5:27,top_test1_inst/stat_regs:26,top_test1_inst/stat_reg5:25,top_test1_inst/stat_reg5:24
25 sreg24 top_test!_inst/stat reg6:7,top_test1_inst/stat_reg6:6,top_test1_inst/stat_reg6:5,top_test1_inst/stat_reg6:4,top_test1_inst/stat_reg6:3 top_test1_inst/stat_reg6:2top_test1_inst/stat_reg6:1,top_test1_inst/stat_reg6:0

26 sreg25 top_testl_inst/stat_reg6:15,top_test1_inst/stat_reg6:14,top_test1_inst/stat_reg6:13,top_test1_inst/stat_reg6:12,top_test1_inst/stat_regé:11,top_test1_inst/stat_reg6:10,top_test1_inst/stat_reg6:9,top_test1_inst/stat_reg6:3

27 sreg26 top_testl inst/stat_reg6:23,top_test1_inst/stat_reg6:22,top_test1_inst/stat_reg6:21,top_test1_inst/stat_reg6:20,top_test1_inst/stat_reg:19,top_test1_inst/stat_reg6:18,top_test1_inst/stat_reg6:17,top_test1_inst/stat_reg6:16

28 sreg27 top_testl inst/stat_reg6:31,top_test1_inst/stat_reg6:30,top_test1_inst/stat_reg6:29,top_test1_inst/stat_reg6:28,top_test1_inst/stat_reg6:27,top_test1_inst/stat_reg6:26,top_test1_inst/stat_reg6:25,top_test1_inst/stat_reg6:24

29 sreg28 top_testl_inst/status_reg7:7,top_test1_inst/status_reg7:6,top_test1_inst/status_reg7:5,top_test1_inst/status_reg7:4,top_test1_inst/status_reg7:3,top_test]_inst/status_reg7:2,top_test1_inst/status_reg7:1,top_test1_inst/status_reg7:0
30 sreg29 top_testl inst/stat_reg7:15,top_test1 inst/stat_reg7:14,top_test1_inst/stat_reg7:12,top_test1_inst/stat_reg7:12,top_test1_inst/stat_reg7:11,top_test1_inst/stat_reg7:10,top_test1_inst/stat_reg7:9,top_test1_inst/stat_reg7:

31 sreg30 top_testl inst/stat_reg7:23,top_test1 inst/stat_reg7:22,top_test1_inst/stat_reg7:21,top_test1_inst/stat_reg7:20,top_test1_inst/stat_reg7:19,top_test1_inst/stat_reg7:18,top_test1_inst/stat_reg7:17,top_test1_inst/stat_reg7:16

32 NPTES] top_testl inst/stat reg7:31,top_test1 inst/stat_reg7:30,top_test1_inst/stat_reg7:29,top_test1_inst/stat_reg7:28,top_test1_inst/stat_reg7:27,top_test1_inst/stat_reg7:26,top_test1_inst/stat_reg7:25,top_test1_inst/stat_reg7:24

® o o o o ® @ ® oo m® oo E o e e m®® o ®o®© o 0o o o

Add Remove Address: 0x81001000 ~ 0x810010f8

Virtual Switch & LED Setup User Memory Setup User Control Register Setup Hard 1P Setup

2. Click the Add button. By default, a unique label is assigned to the Name
column. You can edit this label by double-clicking it.

3. Drag-and-drop the corresponding signals from Design View to the Status
Signals column.

Or
4. Select the existing row and double-click the Status Signals column.

The Edit Signals dialog box appears.

Reveal User Guide for Radiant Software 51

REVEAL INSERTER : Checking the Debug Logic Settings

5. In the Edit Signals dialog box, do the following:
a. Choose signals from the Select Signals pane.
b. Click the forward - button to move the signals to the right-hand
pane.
c. Change the order of the signals as desired.
d. Click OK.

6. If you wish to delete a row from the Status Signals column, click the
Remove button to delete the selected row.

Configuring Hard IP Setup

The Hard IPs are automatically extracted from the RTL design and displayed
in the data pane.

For the Inserter, the starting addresses for the IPs as shown is only for
informational purpose. The addresses can be experimented in the Analyzer.

To set up Hard IP:
1. Click the Hard IP Setup tab.

2. Select Controller function for Hard IPs for analysis by enabling check
boxes.

When implementing Reveal Controller for Hard IPs of PCS and PCIE, the
implementation will not remove the user logic but will mux it with Reveal
Controller logic. The following information explains this process:

The user logic will access the LMMI interface and be active in the
beginning of design for functions like link state machine. After that, the
function needs to be inactive.

When Reveal Controller gets access to the LMMI registers, it will select
the mux during that time only. When there is no Reveal read/write
command, it will de-select the mux.

Checking the Debug Logic Settings

Reveal Inserter automatically checks the settings of the debug logic before
saving the project or inserting the debug logic cores, but you may want to
check them independently beforehand. With one DRC command (Debug >
Design Rule Check), you can verify the following:

The core names begin with a letter and consist of letters, numbers, and
underscores ().

A core name is not the same as that of any other core.

The core name is not the same as that of any module already defined in
the design.

Reveal User Guide for Radiant Software 52

REVEAL INSERTER : Checking the Debug Logic Settings

The number of cores is between 1 and 15.

The number of trace signals is between 1 and 512.

The number of trigger signals is between 1 and 4096.

The number of trigger units and trigger expressions is between 1 and 16.
The number of trigger signals in a trigger unit is between 1 and 256.

A sample clock is specified.

The sample clock signal is a 1-bit signal already defined in the design.

A sample enable is specified.

The sample enable signal is a 1-bit signal already defined in the design.
The name of the trigger-out signal is given if this signal is enabled.

The name of the trigger-out signal is not the same as any signal already
defined in the design.

The number of EBRs needed does not exceed the number available.
The design includes an input signal.
The syntax of the trigger expressions is correct.

The trigger expression sequence is less than or equal to the maximum
sequence.

The trigger output signal is specified, if the Enable Trigger Out option is
enabled.

The trigger output signal is not the same as the name of any signal in the
design.

The values of the trigger unit are correct.

The names of the trigger units and the trigger expressions conform to the
guidelines given in the “Trigger Expression and Trigger Unit Naming
Conventions” on page 39.

The bit widths of the token values are the same as the bit widths of the
trigger unit signals.

To check the logic debugging settings:

Choose Debug > Design Ruler Check or click ﬂ in the toolbar.
The results of the check are displayed in the Message tab. The Message tab
also displays the total resource utilization, as in the following example:

The number of EBRs needed is 2.

Reveal User Guide for Radiant Software 53

REVEAL INSERTER : Saving a Project

Saving a Project

Once you set the debug options, save the project so that the project
information is saved in an .rvl and an .rvs file. Reveal Inserter automatically
performs a design rule check before it saves these files.

When you select Debug > 3 Insert Debug or click the £} button, Reveal
Inserter saves the project information in an .rvl and an .rvs file.

Note

Reveal Inserter generates a “signature” or tracking mechanism each time that debug
logic is inserted into the design. The signature is placed into the project file and into the
debug logic. Reveal Analyzer reads this signature to ensure that the FPGA has been
programmed with the latest debug logic. Reveal Inserter generates a new signature
every time the .rvl file is written, and Reveal Analyzer checks this signature each time
that it runs the design. If you save the project in Reveal Inserter without re-running the
implementation process, Reveal Analyzer issues an error message, even if the debug
logic was not changed.

To save the project settings in the current directory:

Choose File > Save or click Eﬂ in the toolbar to save the project in .rvl
and .rvs files in your current directory.

To save the project settings in another directory:

Choose File > Save As to save the projectin .rvl and .rvs files in a
directory other than the current directory. In the Select Project dialog box,
browse to the desired directory, enter the name of the .rvl file in the File
Name box, select .rvl in the Files of Type box, and click Save.

Inserting the Debug Logic Cores

When you finish setting up the trace and trigger signals, you can insert the
Reveal modules into the design.

Note

Interactive and stand-alone synthesis are not compatible with Reveal modules. Reveal
Inserter automatically uses the integrated synthesis option. Make sure your design
project is set up for integrated synthesis if not done already.

To insert the debug logic modules into the design:

1. Choose Debug > I3 Insert Debug.

2. Inthe Insert Debug to Design dialog box, select the modules to insert.
3. Select Activate Reveal file in design project.

If the .rvl file is not active in the design project, the Reveal modules will not
be included during synthesis.

Reveal User Guide for Radiant Software 54

REVEAL INSERTER : Removing Debug Logic from the Design

4. Click OK.

Reveal Inserter performs a design rule check and saves the Reveal (.rvl)
file. The Output view shows resource requirements and the DRC report
for the modules. The .rvl file is listed in the File List pane under Debug
Files.

5. Implement the design in the usual way.

Removing Debug Logic from the Design

You may want to remove the debug logic cores in pre-production versions of
your device to free block RAM resources and LUT-based logic and to expand
the design. If you want to remove the debug logic cores from your design, you
must remove the .rvl file or set it as inactive. Otherwise, the cores will
continue to be inserted.

To remove the debug logic cores from the design:
1. In the File List view, highlight the .rvl file and right-click.
2. Do one of the following:

To remove the Reveal modules but keep the project, choose Set as
Inactive.

To delete the Reveal project, choose Remove.

The .rvl file is now removed from the design.

Closing a Project

To close a Reveal Inserter project:

Choose File > Close.

Exiting Reveal Inserter

To exit Reveal Inserter:

Click &= in the Reveal Inserter tab.

Reveal User Guide for Radiant Software 55

REVEAL INSERTER : Performing Logic Analysis with Reveal Analyzer

Performing Logic Analysis with Reveal Analyzer

After you have created your design project database with the Radiant
software, generated a debug logic/controller core with Reveal Inserter,
mapped, placed, and routed your design, and downloaded the design to the
evaluation board, you can perform a logic analysis with Reveal Analyzer.
Refer to “Reveal Analyzer” on page 72 for more information about performing
logic analysis.

Using JTAGhub

A JTAGhub is a module that contains a JTAG core, which is either hard or
soft, and around it is soft logic. A hard JTAG core wrapped by soft logic is a
hard JTAGhub. A soft JTAG RTL core wrapped by soft logic is a soft
JTAGhub.

In Nexus, a hard JTAGhub is referred to as JTAGH19 and a soft JTAGhub is
called JTAGH19SOFT. In Avant, a hard JTAGhub is referred to as JTAGH25
and a soft JTAGhub is called JTAGH25SOFT. In pre-synthesis, you can have
a maximum of 19 connected cores in Nexus and 25 connected cores in Avant.
For details on the actual cores usable by Reveal or open to user instantiation
and those reserved for certain other applications, refer to “JTAGhub
Addressing Scheme” on page 64 and “JTAGhub CORES” on page 64.

In Reveal Inserter, JTAGhub is treated as a primitive which can be
instantiated directly in user RTL.

Note

You can have several Reveal debug cores but only one controller core in your design.

There can only be one hard JTAG in a design. So if there are multiple hard
JTAGhub instances, all these are merged by the post-synthesis utility. Multiple
soft JTAGhubs, with or without merging, are acceptable.

A JTAGhub, either soft or hard is inserted as a black-box by Reveal Inserter
for normal debugging and treated as a primitive for synthesis. It is added to
the synthesis header file as a black-box. The logic is not optimized by the
synthesis tool. The user can also manually instantiate the JTAGhub in the
design.

Hard JTAGhub — Merged

If there is already one hard JTAGhub in the design and the user inserts
another hard JTAGhub in Reveal, then the two hard JTAGhubs are merged.

On the other hand, there can be multiple soft JTAGhub instances in a design.
These soft JTAGhubs may or may not be merged. Each soft JTAGhub needs
four 1/0O ports and a JTAG cable.

Reveal User Guide for Radiant Software 56

REVEAL INSERTER : Using JTAGhub

Figure 4: JTAGhub Architecture

- JTCK
- JTDI
- JSHIFT
TDI —» - » JUPDATE
TCK —> Hard/ L » JRSTN
Soft

T™MS ——» Soft Logic

JTAG gic |, JCE2

TDO <+— ——» CDN

IP_ENABLE[18:0] (Nexus)
IP_ENABLE[24:0] (Avant)

<: ER2_TDO[18:0] (Nexus)

ER2_TDO[24:0] (Avant)

JTAGhub

Figure 5: Hard JTAGhub - Merged

TDIHARD » TDI
TCKHARD » TCK
TMSHARD » TMS
TDOHARD < TDO

JTAGH19HARD

—» TDI
» TCK
» TMS

+—— TDO

JTAGH19HARD

Soft JTAGhub — Merged

This is an example of two soft JTAG instances that are merged. In this

example, all the JTAG ports are connected. TDISOFT, TCKSOFT, TMSSOFT
and TDOSOFT are the top-level ports of the design. If the user needs to insert
Reveal debugger, then the user must use TDISOFT, TCKSOFT, TMSSOFT,

TDOSOFT as the top level port names.

Reveal User Guide for Radiant Software

57

REVEAL INSERTER : Using JTAGhub

By merging JTAGhubs, only one set of I/O pins is required and only one set of
logic is involved. Since merging minimizes logic resources, the design utilizes
a minimal number LUTs.

Figure 6: Soft JTAGhub - Merged

TDISOFT » TDI
TCKSOFT » TCK
TMSSOFT » TMS

TDOSOFT < TDO
JTAGH19SOFT

—» TDI

—» TCK
» TMS
TDO

A

JTAGH19SOFT

Soft JTAGhub — Not Merged

This is an example of two soft JTAGhub instances that are not merged. In this
diagram, the TDI, TCK, TMS, and TDO ports are connected to their
corresponding top-level ports. The design has two independent sets of soft
JTAG ports that are connected to two different cables. Hard JTAG is used for
both programming and debugging. Both of these operations can be
performed using the same cable and connection. Note that this is not true for
soft JTAG.

Reveal User Guide for Radiant Software 58

REVEAL INSERTER : Using JTAGhub

Figure 7: Soft JTAGhub - Not Merged

TDISOFTQ ————— » TDI
TCKSOFTQ ——— » TCK
TMSSOFT) ————» TMS

TDOSOFTQO «—— TDO

JTAGH19SOFT

TDISOFT1 ——— » TDI
TCKSOFT1 ——— » TCK
TMSSOFT1 ————» TMS

TDOSOFT1 «—— TDO

JTAGH19SOFT

Notes

Designs generated in Lattice Propel can use hard JTAG, soft JTAG, or a mix of the
two types, depending on the processor. If there are two processors, two
independent debugging GDBs are used. In some devices, however, Propel can
use only one soft JTAGhub.

The JTAG primitive and JTAGH19/JTAGH25 cannot co-exist in a design. Likewise,
JTAGA and JTAGH19SOFT/JTAGH25SOFT cannot be added together in one
design. These result in an error.

Support for BYPASS Instruction in Soft JTAGhub

In JTAG, the BYPASS register is a single-bit pass-through register that
connects the TDO and the TDI ports.

The user can create SOFT JTAGhub chains wherein the TDO port of the first
device is connected to the TDI port of the next device. The TCK and TMS
ports are all connected together.

Up to 22 devices can be linked in one chain. These devices can be Avant
only, Nexus only, or a mix of the two. BYPASS instruction allows the other
devices in the JTAG chain to be tested with minimal overhead.

Reveal User Guide for Radiant Software 59

REVEAL INSERTER : Using JTAGhub

Figure 8: Soft JTAGhub Chain

TDISOFT ——— » TDI

TCKSOFT
TMSSOFT

TDOSOFT <— TDO

» TCK
» TMS

TDO

JTAGH25SOFT

TDI

» TCK
T™S

Y

TDO

JTAGH25SOFT

TDI

» TCK
» TMS

JTAGH25SOFT

JTAGhub Input and Output Ports

In JTAGhub, the standard TCK, TMS, TDI, and TDO ports are connected to
the 1/0s and go off-chip. All the other ports are connected to the FPGA fabric.
When multiple sets of JTAGhubs are in the same design, all the JTAG ports
are unique. Each set connects to one JTAG cable.

Signal
TDI

TCK

TMS

TDO

JTCK

JTDI

Description

Data shifted into the test or programming logic of the
device.

Signal that synchronizes the internal state machine
operations. In JTAG, TCK is not like a regular clock. It
is pulsed when data is transmitted/received.

Signal sampled at the rising edge of TCK to determine
the next state.

Data shifted out of the test or programming logic of the
device.

Signal similar to TCK and controlled by IP_ENABLE
and ER2_TDO.

Signal similar to TDI and controlled by IP_ENABLE
and ER2_TDO.

Reveal User Guide for Radiant Software

60

REVEAL INSERTER : Using JTAGhub

Signal
JSHIFT

JUPDATE

JRSTN

JCE2

CDN

IP_ENABLE[18:0] (Nexus)
IP_ENABLE[24:0] (Avant)

ER2_TDO[18:0] (Nexus)
ER2_TDO[24:0] (Avant)

Description

Signal asserted and de-asserted at the pos-edge of
JTCK. It remains high as long as valid data is available
in JTDL.

Signal that gives a positive pulse of one-cycle after
JSHIFT is de-asserted. It should be used to capture
the shifted-data (JTDI). li is asserted and de-asserted
at the pos-edge of JTCK.

An active low reset signal. Initially set low and then
remains high.

Signal that goes high when valid data becomes
available in JTDI for the selected core. It remains high
as long as the data is valid. It is asserted one clock
cycle before JSHIFT is asserted and de-asserted at
the same time as JSHIFT.

Not used
Communicates with 19 cores in Nexus and 25 cores in
Avant.

Each bit enables one core. When one core is enabled,
others are disabled.

When IP_ENABLE bit and JCE2 and JSHIFT are high,
then valid data is shifted in with JTDI and shifted out
with corresponding bit of ER2_TDO.

Input data to be shifted out of TDO. Each bit
corresponds to equivalent bit of IP_ENABLE.

A soft JTAGhub uses four GPIO ports with locate constraints. Hard JTAGhub
pins are fixed in the device.

The TDI, TCK, TMS and TDO ports can be connected to the top-level of the

user design.

The user or the tools must connect top-level ports to the TDI, TCK, and TMS
of the JTAGhub. The TDO port may be connected to the top-level port for
synthesis and may not be connected to the top-level port for simulation to
avoid having multiple drivers.

Reveal User Guide for Radiant Software

61

REVEAL INSERTER : Using JTAGhub

If simulation is not required, it is recommended that the TDI, TCK, TMS input
ports be tied to low and the TDO be unconnected.

Notes
For debug cores inserted by Reveal Inserter, there is no support for simulation.

For netlists generated in System Builder and Propel, it is possible to simulate the
user design.

Encrypted source files for JTAGH19/JTAGH25 and JTAGH19SOFT/
JTAGH25SOFT are provided to compile and run the simulation. In an Avant
project, the models will also be available in the OEM simulator.

If both JTAGH25 and JTAGMON are present in the design, the merge tool will
intelligently combine them, ensuring compatibility and avoiding duplication.

JTAGhub Ecosystem

In a typical design, several Reveal debug cores and, normally, only one
Reveal controller core may be present. There may likewise be user design
logic and one or more RISC-V cores. These can all be connected to one
JTAGhub and can communicate with the JTAG one at a time.

The JTAG cable connects to the machine with the Debug Analyzer and
Reveal Controller tools. To set parameters and connectivity, the user can use
the interface or run Tcl commands since these are all standard JTAG protocol
commands. The RISC-V GDB debugging protocol can also be included. All
these communicate with the cableserver, then the device driver, and onto the
device through the JTAG cable.

Figure 9: JTAGhub Ecosystem

Device Debugging Tools/Logic
Reveal Debug
Debug Cores | Analyzer
' .
Reveal Controller JTAGhub o Reveal
& Y Controller
ITAG Device n ?;:,
! Driver g
Cable @
= L User Desgn
User Design

3
RISC-V L RISC-V GDB

!

Reveal User Guide for Radiant Software 62

REVEAL INSERTER : Using JTAGhub

JTAGhub Usage and Design Examples

This section provides some examples of how JTAGhub is used in a design
and recommendations for debugging. A general rule is to avoid using both
hard and soft JTAGhubs if using only one cable. With multiple cables, hard
and soft JTAGhubs can be mixed in the design.

Note: A design with RISC-V does not necessarily come from Propel.

Example 1. The design has no existing JTAGhub

In this case, the user can insert either a hard JTAGhub or a soft JTAGhub.

Example 2. The design contains one RISC-V with hard JTAGhub

In this case, the user should use hard JTAGhub for Reveal debugging with
just one cable. If soft JTAG is used for Reveal debugging, another cable is
required.

Example 3. The design contains one RISC-V with soft JTAGhub

In this case, the user should use soft JTAGhub for Reveal debugging. The
soft JTAGhubs are merged and only one cable is required.

Example 4. The design contains two RISC-V cores with hard JTAGhub
In this case, the user should use hard JTAGhub for Reveal debugging. The
hard JTAGhubs are merged and only one cable is required.

Example 5. The design contains two RISC-V cores with soft JTAGhub

In this case, the user should use soft JTAGhub for Reveal debugging.
Example 6. The design contains one RISC-V with hard JTAGhub and the
user instantiates another one hard JTAGhub

In this case, the three hard JTAGhubs are merged and the user should use
hard JTAGhub for Reveal debugging.

Example 7. The design contains one RISC-V with soft JTAGhub and the
user instantiates another one soft JTAGhub

In this case, the three soft JTAGhubs are merged and the user should use soft
JTAGhub for Reveal debugging.

Example 8. The design contains multiple RISC-V cores with independent
soft JTAGhubs

In this case, the user must use multiple cables, one for each RISC-V
processor and its associated soft JTAGhub.

Reveal User Guide for Radiant Software 63

REVEAL INSERTER : Using JTAGhub

JTAGhub Addressing Scheme

The following addressing scheme is used to address the individual cores from
the Cableserver clients (Reveal Debug, Controller, RISCV GDB, User
Instance - Avant). If the user manually instantiates JTAGhub in the design, it is
recommended to use only CORE-17 and CORE-18.

The address length is 24 bits for Nexus and 32 bits for Avant.

Address Description

Nexus

Bit[23] Bit[23]

Bit[22:4] 19 bits for IP_ENABLE[18:0], one-bit for each core. To

enable a core, the IP_ENABLE bit of that core is set
high and other IP_ENABLE bits are set low.

Bit[3] Reserved bit for future use to clear data.

Bit[2:0] 3-bit control, value of 6 means read

Avant

Bit[29] Bit[29]

Bit[28:4] 25 bits for IP_ENABLE[24:0], one bit for each core. To

enable a core, the IP_ENABLE bit of that core is set
high and other IP_ENABLE bits are set low.

Bit[3] Reserved bit for future use to clear data
Bit[2:0] 3-bit control, value of 6 means read
Bit[31:30] 2 bits reserved

JTAGhub CORES

Example Commands

To enable read of the ID of a CORE

! enable ER1

SIR 8 TDI (32); // 8-bit data with hex value 32
! set reveal core
SDR 24 TDI (800006) ; // 24-bit data with hex value 800006

To enable a CORE (COREUQO n this case)

! enable ER1
SIR 8 TDI (32);
SDR 24 TDI (000016);

Reveal User Guide for Radiant Software 64

REVEAL INSERTER : Using JTAGhub

This table lists the CORE hex values for Nexus and Avant devices. In Nexus,
CORE17 and CORE18 are open to any user instantiation. In Avant, CORE17
to CORE 24 are cores open to any user instantiation.

Nexus Avant
CORE17 => SDR 24 TDI (200006); CORE17 => SDR 32 TDI (00200006);
CORE18 => SDR 24 TDI (400006); CORE18 => SDR 32 TDI (00400006);

CORE19 => SDR 32 TDI (00800006);
COREZ20 => SDR 32 TDI (01000006);
CORE21 => SDR 32 TDI (02000006);
CORE22 => SDR 32 TDI (04000006);
CORE23 => SDR 32 TDI (08000006);
CORE24 => SDR 32 TDI (10000006);

Setting Parameters and Connectivity

When Reveal Inserter inserts a core, it sets the HUB_* value as “Ob1” and
connects the IP_ENABLE bit and the ER2_TDO bit.

Examples:
For any user instantiation, the settings and connections are as follows for
CORE-17
parameter HUB 17 = “0bl”;

IP_ENABLE[17] is connected to the IP_ENABLE input port of the core.
ER2_TDO[17] is connected to the ER2_TDO output port of the core.

For any user instantiation, the settings and connections are as follows for
CORE-18

parameter HUB 18 = “0bl”;
IP_ENABLE[18] is connected to the IP_ENABLE input port of the core.
ER2_TDO[18] is connected to the ER2_TDO output port of the core.

Reveal User Guide for Radiant Software 65

REVEAL INSERTER : Using JTAGhub

JTAG BYPASS Instruction in SOFTJTAG
Chain

JTAG BYPASS instruction allows you to reduce overhead by passing over
devices in a chain that do not need to be involved in the current action. These
devices remain in functional mode but allow data to flow through to the next
device in the chain. When debugging, you can also use BYPASS instruction
to isolate what may be offending devices in the chain.

You can build a SOFTJTAG chain of Nexus devices, Avant devices, or a mix
of both Nexus and Avant devices. Radiant supports up to 22 devices in a
single chain.

The TDO port of the first device is connected to the TDI port of the next device
in the chain. The TCK and TMS ports are connected together.

Figure 10: Soft JTAGhub Chain of Three Nexus Devices

TDISOFT ———— » TDI
TCKSOFT » TCK
TMSSOFT » TMS
TDO

JTAGH19SOFT

TDI

TCK
TMS
TDO

JTAGH19SOFT

TDI

TCK
TMS
TDO

3
@)
3
3
{ vy v ¢ T A4 4 ¢ T

JTAGH19SOFT

Each device with softJTAG interface can be debugged in Reveal when
connected in a chain. For example, if multiple devices are connected in a
chain, a specific target device can be selected to be debugged. You can mix
hardJTAG and softJTAG interfaces as long as they are connected in a chain.
The softJTAG interface only has access to the FPGA fabric and that is how
debugging is done.

Note:

The softJTAG interface does not have access to configuration logic, so there
are no programming and scanning functions.

To scan debug devices in a chain with hardJTAG and softJTAG
interfaces:

1. Scan the devices in Radiant Programmer tool. The hardJTAG interface
will be used in scanning these devices. Open Radiant Programmer and

Reveal User Guide for Radiant Software 66

REVEAL INSERTER : Using JTAGhub

choose Run > Scan Device. The tool scans and lists the devices in a new
xcf file.

2. If there are devices connected in the chain using softJTAG interface,
manually add these devices using Edit > Add Device.

Figure 11: Manually Adding Device

E3 Radiant Pragrammer - impl_1xcf *
File Edit View Run Tools Help

ama & @ e s

Enable Status Device Family Device Operation File Name File Date/Time Checksum USERCODE
1 PASS | LAV-AT_ENG2 LAV-AT-X70 Fast... C:/Users/Public/DTS/A_Reveal/avant/ipi/aes_otp/...
2 LFMNX LFMNX-50 Fast...

Create the .xcf file. This .xcf file will be common for all the Reveal projects.
4. Open Reveal Analyzer and create a new project.

In the Reveal Analyzer/Controller Startup Wizard, select the Multiple
Device in JTAG Chain option.

Figure 12: Multiple Devices in JTAG Chain Option
‘U Reveal Analyzer/Controller Startup Wizard X
Getting Started:

@ Create a new file untitled HW-USBN-2B (FTDT) ~

[Multiple Device in TTAG Chain ~ TCK Low Pulse Width Delay: | 1 =

USE port: FTUSB-1 {Dual R5232-HS B Location 0001) - Detect
XCF source: Browse...
Debug device: - Scan
RVL source: C:fUsers/Public/DTS/A_Reveslfavant/ipi/acs_otp/aes_otp.rvl Browse...

Open an existing file
File name: -

|:| Import file into current implementation

Cancel

6. In the XCF source row, click Browse to locate and load the .xcf file that
you created in Step 2.

7. In the Debug device row, click Scan to find the FPGA device.

Note:

Always load the .xcf source file before running scan. If you do not specify the .xcf
source file, there will be an error message.

Reveal User Guide for Radiant Software 67

REVEAL INSERTER : Using JTAGMON

Using JTAGMON

The JTAGMON primitive is a hardware-level anti-tamper mechanism for Avant
devices. It monitors the JTAG interface against unauthorized access or any
security risk.

JTAGMON instantiates IB (Input Buffers) to receive the JTAG signals. It can
log, analyze, or trigger alerts based on JTAG activity. If an unexpected JTAG
activity is detected, for example during runtime, it can trigger a system
response such as a reset, a lockdown, or an alert.

JTAGMON Input and Output Ports

The following ports allow the primitive to sit inline with the JTAG chain,
observing and potentially modifying or blocking signals.

The top level port names of the design connecting to the TDI, TCK, TMS ports
of the JTAGMON primitive must be TDI, TCK, and TMS respectively. These
can drive both JTAG ports and Fabric routing.

Input Ports Description

TDI Test Data Input, one of the pins for the Test Access
Port (TAP), JTAG serial interface to the device,
connected directly from the pad of device TDI pin.

TCK Test Clock, one of the pins for the Test Access Port
(TAP), JTAG serial interface to the device, connected
directly from the pad of device TCK pin.

Clocks registers and TAP Controller.

TMS Test Mode Select, one of the pins for the Test Access
Port (TAP), JTAG serial interface to the device,
connected directly from the pad of device TMS pin.

Controls state machine switching for TAP Controller

Output Ports Description

TDIO Monitored Test Data Out

TCKO Monitored Test Clock Out
TMSO Monitored Test Mode Select Out

Reveal User Guide for Radiant Software 68

REVEAL INSERTER : Using JTAGMON

JTAGMON Design Flow

This section details how JTAGMON is implemented in the design flow.
1. RTL Design Instantiation
The RTL design includes an instantiation of the JTAGMON primitive.

Top-Level Inputs: The JTAG interface signals—TDI (Test Data In), TMS
(Test Mode Select), and TCK (Test Clock)—are exposed at the top level of
the design.

Output Connections: The outputs of the JTAGMON primitive are
connected to a soft IP block that monitors these signals. This soft IP could
be used for debugging, test access, or signal analysis.

2. Synthesis Phase
In synthesis, the primitive is declared in the synthesis header file.
It uses:
syn_black_box attribute to indicate it is a black box during synthesis.
black_box_pad_pin to preserve pin names and prevent optimization.

During synthesis, the tool is configured not to infer input buffers (IBs) for
the JTAG signals. This is to preserve the integrity of the JTAG path and
allow for proper monitoring and routing.

This ensures that the JTAG signals remain unbuffered and directly
accessible, which is critical for accurate signal observation and
debugging.

3. Post-Synthesis / Mapping

JTAGMON Expansion: After synthesis and during the mapping phase, the
JTAGMON primitive is expanded as input buffers using data from the
post-synthesis .udb file.

4. Optional Merge with JTAGhub

Reveal Inserter automatically inserts the current JTAGhub (JTAGH25). If
both JTAGH25 and JTAGMON are present, the merge tool combines
them, ensuring compatibility and avoiding duplication.

This step ensures that all JTAG-related components are correctly
interconnected and that the monitoring infrastructure is unified.
5. Place and Route (PAR)

During the Place and Route (PAR) stage, the tool ensures that the JTAG
ports are correctly located on the physical device.

This includes assigning the correct I/O pads and ensuring signal integrity
and timing closure for the JTAG interface.

Reveal User Guide for Radiant Software 69

REVEAL INSERTER : User Interface Descriptions

User Interface Descriptions

The Reveal Inserter window appears when you first choose Tools > Reveal
Inserter or click on the & icon.

The Reveal Inserter window includes the following features:

Dataset pane Lists the cores in the current dataset. You debug a design
with Reveal Inserter debug logic, using a certain sample clock. If you want to
debug a multi-clock design, you can create a core for each sample clock
region. These cores are listed in the Dataset pane. This pane can be
detached as a separate window and can be hidden using the View menu.

Design Tree pane Lists all the buses and signals in the design. The names
of trace, trigger, and control signals are in bold font if they are currently being
used.

One of the following strings appears after each signal name to indicate its
use:

@Tc indicates that the signal is a trace signal.
@Tg indicates that the signal is a trigger signal.

@C indicates that the signal is a control signal.

Similarly, one of the following strings appears after each bus name to indicate
its use:

@Tc indicates that all the signals in the bus are used only as trace signals.

@Tg indicates that all the signals in the bus are used only as trigger
signals.

@Tc, Tg indicates that all the signals in the bus are used as trace signals
and trigger signals. It also appears if all the signals are used as trigger
signals and none of the signals in the bus are used as control signals and
you selected the “Include trigger signals in trace data” option.

@Mx indicates the following:
At least one signal in the bus is used as a control signal.

Some signals in the bus are used both as trigger signals and as other
kinds of signals.

Some signals in the bus are used both as trace signals and as other
kinds of signals, except that all the signals are used as trigger signals,
none of the signals are used as control signals, and you selected the
“Include trigger signals in trace data” option.

If you select or deselect the “Include trigger signals in trace data” option, the
signal and bus names are immediately updated in the Design Tree pane. If
you set a signal as a trigger signal and select the “Include trigger signals in
trace data” option, the use of the signal is displayed as Tc, Tg, even though
you did not drag the signal name to the Trace Data pane.

If you select a signal in the hierarchy, the Signal Information tab at the bottom
of the Reveal Inserter window displays information about how it is used.

Reveal User Guide for Radiant Software 70

REVEAL INSERTER : User Interface Descriptions

You can enlarge the width of this pane to see longer signal names by
dragging the splitter at the right edge of the pane. This pane can be detached
as a separate window and can be hidden using the View menu.

Signal Search box Enables you to search for a signal or a group of signals.
You can enter a signal name or pattern. You can set a filter by using the case-
insensitive alphanumeric characters and wildcards described in “Searching
for Signals” on page 24.

If Reveal Inserter finds only one signal, it highlights it in the Design Tree pane.
If it finds multiple signals, it opens the Search Signals dialog box to list all the
signals found. When you click OK, the selected signals are highlighted in the
Design Tree pane. From the Design Tree pane, you can drag signals to the
Trace Data pane, the Sample Clock box, and the Sample Enable box in the
Trace Signal Setup tab. You can also drag signals to the Signals (MSB:LSB)
box in the Trigger Unit section of the Trigger Signals Setup tab.

Trigger Output pane Displays the names of the trigger output signals
defined in the Trigger Out box in the Trigger Signal Setup tab.

This field displays the trigger output signals for all but the first core and only
those output signals for which NET or BOTH were chosen. From the Trigger
Out Nets box, you can drag the signal names to the top half of the Trace
Signal Setup tab. This pane can be detached as a separate window and can
be hidden using the View menu.

Trace Signal Setup

Activates the Trace Signal Setup tab.

Trigger Signal Setup

Activates the Trigger Signal Setup tab.

Trace Data pane

Displays the selected trace signals in the Trace Signal Setup tab.

Reveal User Guide for Radiant Software 71

= LATTICE

Chapter 3

Reveal Analyzer

Logic analyzers enable you to view signal information to debug design
functionality. With external logic analyzers, you connect to pins on a board,
set one or more trigger conditions, and sample and view collected data.
Internal logic analyzers, such as Reveal Analyzer, depend on additional logic
placed into the design for triggering and tracing, then transferring the data to a
PC, usually through a JTAG connection, for viewing and analysis.

Reveal Inserter handles the task of inserting debug logic into your design.
Before using Reveal Analyzer, you must use Reveal Inserter to allow debug
access.

Reveal Analyzer enables you to configure trigger settings and extract
information from a programmed device through the JTAG ports. It interfaces
directly to the Reveal cores in the design. You can set up triggers, select
capture modes, and run or stop the triggers. Reveal Analyzer displays the
data captured on the silicon according to the settings that you specify.

Reveal Analyzer's graphical user interface enables you to view the trace data
of a signal or bus in a waveform viewer.

Although an evaluation board is normally required to run Reveal Analyzer,
Reveal Analyzer includes a demonstration design that you can run without the
evaluation board so that you can learn how to use the tool.

Reveal Analyzer requires the Programmer programming software to configure
the specified device. The acquired data is displayed in the waveform viewer.

You can export waveform data to a value change dump (.vcd) file, which can
be imported by such third-party tools as ModelSim or Active-HDL. You can
also output a file in ASCII tabular format for exporting the data into other tools
such as Excel.

Reveal User Guide for Radiant Software 72

REVEAL ANALYZER : About Reveal Analyzer

About Reveal Analyzer

This section introduces some of the key features of Reveal Analyzer: the
devices that it supports, the steps in its design flow, its inputs, and its outputs.

Reveal On-Chip Debug Design Flow

The following figure shows the Reveal insertion and logic analysis design
flow.

Figure 13: Reveal Design Flow

Lattice Radiant

Debug
module
(HDL)

Debug IP Cores Modified Design

Synthesis

Synthesis

+ *

I

i ! :

! i I

! | I

! I I

| : '

: : :
Reveal Core -

>

. Software Tools
I:I Background Tasks

FPGA

Before accessing Reveal Analyzer, you must install a Lattice Semiconductor
or USB download cable and a power supply between your computer and the
evaluation board. Refer to “Connecting to the Evaluation Board” on page 76
for information on this procedure.

You do not need to install a cable and a power supply if you want to run the
demonstration design that comes with Reveal Analyzer so that you can learn
how to use the tool.

You must also have a design project that has had on-chip debug logic
inserted by the Reveal Inserter software.

The general steps involved in performing a logic analysis are the following:
1. Start Reveal Inserter.

2. Configure the trace and trigger signal settings in Reveal Inserter.

3. Insert the debug logic with Reveal Inserter.
4

Build the database in the Process view.

Reveal User Guide for Radiant Software 73

REVEAL ANALYZER : About Reveal Analyzer

Map, place, and route the design.

Generate the bitstream data (.bin file).

Set up a cable connection.

Download the design onto the device by using Programmer.
Start Reveal Analyzer.

. Create a new Reveal Analyzer project or open an existing one.

o2 © N o v

= O

. Configure the trigger settings for each core in each device that you want
to use to perform logic analysis of the design.

12. Click the Run | button to perform the logic analysis, and wait for the
design to trigger and download the trace information into Reveal Analyzer
from the board.

13. View the resulting waveforms for each core.

14. Optionally, you can export the waveform data for each core in a value
change dump (.vcd) file for use in third-party tools or in an ASClI-format
text (.txt) file.

Inputs

Reveal Analyzer requires the following as input:
A design project

A Reveal Analyzer settings (.rvs) file, which is output by Reveal Inserter or
Reveal Analyzer. It contains all the dynamically changeable trigger
settings, such as trigger unit operators, trigger unit values, and any trigger
expressions.

An existing Reveal Inserter project (.rvl file), which contains the
connections for each core and all the static settings of the debugging
logic. The information in this file is statically set in Reveal Inserter and
cannot be changed in Reveal Analyzer.

A Reveal Analyzer project (.rva) file, which is the project file output by Reveal
Analyzer in a previous session. It contains the information used by Reveal
Analyzer, such as window settings, waveform trace signal positions, radixes,
markers, and signal colors.

Outputs
Reveal Analyzer generates the following files:

A Reveal Analyzer project (.rva) file, which contains the information such
as window settings, waveform trace signal positions, radixes, markers,
and signal colors. This file is also an input file when you re-open a project
that you previously saved.

A Reveal Analyzer trace (.trc) file, which contains the waveform
information acquired from previous runs of Reveal Analyzer. When you
first open Reveal Analyzer, the waveform displays this information until

Reveal User Guide for Radiant Software 74

REVEAL ANALYZER : Inserting the Debug Logic

you press the Run button. If the debug signals have been changed from a
previous Reveal Analyzer run, incorrect information is displayed in the
waveform when it is first opened. Once a run has been completed, the
waveform contains valid information with the changed debug
configuration.

Optionally, a value change dump (.vcd) file, in which you can export
waveform data for display in third-party tools such as ModelSim and
Active-HDL. The .vcd file is an ASCII file containing header information,
variable definitions, and variable value changes. Its format is specified by
the IEEE 1364 standard.

Optionally, an ASCII-format text (.txt) file, in which you can export
waveform data for display in third-party tools such as ModelSim and
Active-HDL. The .txt file is in a simple ASCII character-tab-delimited
format. It includes a header line with the signal names, then each line
contains the value for each signal, one line per each sample clock.

Inserting the Debug Logic

Before performing logic analysis with Reveal Analyzer, you must use Reveal
Inserter to generate the debug logic and insert it into your design. You must
also set up the trace and trigger signals to be used in Reveal Inserter.

Mapping, Placing, and Routing the Design

Once you build and translate the design, you map, place, and route the
design.

To map, place, and route the design:
1. Double-click the Map Design process in the Process view.
2. Double-click the Place & Route Design process in the Process view.

All core clock pins must be located and driven by valid signals for successful
hardware debugging.

Generating a Bitstream File

Now you generate a bitstream (.bin) file, as appropriate, to download into the
device.

To generate a bitstream file:
Double-click the Export Files process in the Process view.

This process creates a .bin file that is ready for downloading into the
device.

Reveal User Guide for Radiant Software 75

REVEAL ANALYZER : Connecting to the Evaluation Board

Connecting to the Evaluation Board

Reveal Analyzer requires that a Lattice Semiconductor parallel port cable or
USB download cable and a power supply be installed between your computer
and the evaluation board so that you can program the device with
Programmer.

To connect the evaluation board to your computer:

1. Install a driver for the download cable, if it has not been previously
installed.

2. Reboot your computer, if the driver was not previously installed.

3. Attach the parallel port or USB cable to the parallel port or USB port of
your system.

4. Plug in the AC adapter to a wall outlet, and plug the other end into the
power jack provided on the evaluation board.
Note

You should follow the handling and power-up advice provided in the Lattice
Semiconductor device evaluation board documentation when using the evaluation
board.

In the Radiant software, choose Tools > Programmer.
The Cable Setup Window view is default open.
Click Detect Cable button.

Attach the JTAG connector cable to the appropriate JTAG programming
header of the evaluation board. See the device evaluation board
documentation for details.

©® N o o

Refer to the Programmer Help for more information about your cable
connection.

Downloading a Design onto the Device

To download a design onto the device, use Programmer. This process creates
a scan chain configuration (.xcf) file. Reveal Analyzer derives the information
in the downloaded design directly from the device on the board.

To download the design onto the device:
1. In Programmer, select File > New.

A new programmer project window appears, enter Filename.
2. Click on Detect Cable button.

3. If there are multiple cables, select one from the Multiple Cables Detected
dialog drop down list.

4. Click the ... button under File Name section.

Reveal User Guide for Radiant Software 76

REVEAL ANALYZER : Starting Reveal Analyzer

5. Select the <design_name>.bin file, and click Open.

6. Double click In the Operation box, a new Device Properties dialog
appears. Select Fast Configuration, in the Operation drop down list.

7. Click OK to close the Device Properties dialog box.

8. Choose Run > Program Device, or click the Program Device button on
the toolbar.

After a few moments, the download and programming activity will end. A
green PASS button appears in the Status field.

9. Select File > Save Project As to save the configuration setup as an .xcf
file.

10. The .xcf file must reside in the design project directory for Reveal
Analyzer to use it.In the File Name box in the dialog box that appears,
type in <design_name>.xcf, and click Save.

11. Choose File > Exit in Programmer.

See the Programmer Help for detailed instructions on the downloading
process.

Starting Reveal Analyzer

Before starting Reveal Analyzer you need to decide if you want to work with a
new Reveal Analyzer (.rva) file or an existing one. The .rva file defines the
Reveal Analyzer project and contains data about the display of signals in the
LA Waveform view. You may want to start Reveal Analyzer with a new file to
set up a new test. Start with an existing file to rerun a test, to set up a new test
based on existing settings, or to just view the waveforms from an earlier test.
(See “Starting with an Existing File” on page 79.)

How you start Reveal Analyzer also depends on whether you are using it
integrated with the Radiant software or using the stand-alone version, and on
your operating system.

Reveal User Guide for Radiant Software 77

REVEAL ANALYZER : Starting Reveal Analyzer

Starting with a New File

Before you can start Reveal Analyzer with a new .rva file, you need to be
connected to your evaluation board with a download cable and have the
board’s power turned on.

To start Reveal Analyzer with a new file:
1. Issue the start command:
For integrated with the Radiant software, go to the Radiant software

main window and choose Tools > J Reveal Analyzer.

For stand-alone in Windows, go to the Windows Start menu and
choose Programs > Lattice Radiant Reveal > Lattice Reveal Logic
Analyzer.

For stand-alone in Linux, go to a command line and enter the
following:

<Reveal install path>/bin/lin64/revealrva

2. If Reveal Analyzer opens with an existing file, choose File > Save <file>
As.

The Save Reveal Analyzer File dialog box opens. Change the filename
and click Save. You now have a new .rva file ready to work with.

3. (Stand-alone only) In the Reveal Analyzer Startup Wizard dialog box,
browse to the implementation directory. This is where the Reveal Inserter
project (.rvl) file should be and where the .rva file will be created.

4. In the Reveal Analyzer Startup Wizard dialog box, select Create a new
file (at the upper-left of the dialog box).

The dialog box presents a few rows of boxes that need to be filled in.

5. In the next row, type in the base name of the file. The extension is added
automatically.

6. To the right of this row is a drop-down menu. Choose the type of cable that
your board is connected to.

Another row in the dialog box changes to select the port.
7. Select the specific port. The method depends on the port type:

If USB, click Detect. Then choose from the active ports found. The
following figure shows the second row after choosing a USB type.

First, click Detect.

Then, choose from the active ports found.

If parallel, select the port address. If it’s not one of the standard
addresses given, select 0x and type in the hexadecimal address.
Then click Check to verify that the connection is working. The
following figure shows the second row after choosing a parallel type.

Reveal User Guide for Radiant Software 78

REVEAL ANALYZER : Starting Reveal Analyzer

First, zelect one ofthe standard addresses or select 0% and type the address in hex,

Parallel port: @ oars O 0x278 0 0x3BC (L e

Then, click Check.

8. Click Browse in the RVL source row to find the Reveal Inserter project
(.rvl) file.

9. To add the new .rva file to the File List view, select Import file into
current implementation. (Not available in stand-alone.) The .rva file
works the same either way.

10. Click OK.

Starting with an Existing File

If you want to start with an existing file, you just need to have that .rva file in
the design project. You need to be connected to the evaluation board only if
you want to run a test and capture data.

To start Reveal Analyzer with an existing file:

1. lIssue the start command. To start:

In the Radiant software main window, choose Tools > J Reveal
Analyzer.

The stand-alone Reveal Analyzer in Windows, go to the Windows
Start menu and choose Programs > Lattice Radiant Reveal >
Lattice Reveal Logic Analyzer.

The stand-alone Reveal Analyzer in Linux, enter the following on a
command line:

<Reveal install path>/bin/lin64/revealrva

If Reveal Analyzer opens with the .rva file you want to use, you’re ready to
go. Otherwise continue with the following steps.

2. (Stand-alone only) In the Reveal Analyzer Startup Wizard dialog box,
browse to the implementation directory. This is where the Reveal Inserter
project (.rvl) file and where the .rva file should be.

3. In the Reveal Analyzer Startup Wizard dialog box, select Open an
existing file (in the lower part of the dialog box).

4. In the “File name” box, choose one of the available .rva files.

If the file you want is not in the menu, click Browse and browse to the
desired .rva file.

6. To add the new .rva file to the File List view, select Import file into
current implementation. (Not available in stand-alone.) The .rva file
works the same either way.

7. Click OK.

Reveal User Guide for Radiant Software 79

REVEAL ANALYZER : Selecting a Reveal Analyzer Core

If the connection to your evaluation board has changed, either in the cable
type or the computer port used, you need to tell Reveal Analyzer about the
new connection. See “Changing the Cable Connection” on page 80.

Changing the Cable Connection

If you need to change how your evaluation board is connected to your
computer, go ahead and make the change. Then go through the following
procedure to change the Reveal Analyzer project.

To change the cable setting in a Reveal Analyzer project:

1.
2.

Make sure your evaluation board is connected and that its power is on.

If Reveal Analyzer is not already open, start it as described in “Starting
with an Existing File” on page 79.

Choose Design > Cable Connection Manager.
The Cable Connection Manager dialog box opens.
In the dialog box, choose the cable type.
The second row in the dialog box changes to select the specific port.
Select the specific port. The method depends on the port type:
If USB, click Detect. Then choose from the active ports found.

If parallel, select the port address. If it's not one of the standard
addresses given, select 0x and type in the hexadecimal address.
Then click Check to verify that the connection is working.

To change the clock speed of the cable connection, adjust the value of
TCK Low Pulse Width Delay.

Click OK.

Selecting a Reveal Analyzer Core

After you have created a project, each Reveal core in the design will have a
Reveal Analyzer window available to set triggers and view captured data.

To display a Reveal Analyzer core:

Choose the only core from the check box. Only one core is supported.

Reveal User Guide for Radiant Software

80

REVEAL ANALYZER : Setting Up the Trace Signals

Setting Up the Trace Signals

Although you can add trace signals only in Reveal Inserter, you can set
radixes for them by using the LA Waveform tab.

Setting the Trace Bus Radix

You can set the radix of a trace bus displayed in the LA Waveform tab. You
can choose a binary, octal, decimal, or hexadecimal radix. You can also use
any token set whose bit width matches the bus.

To set the bus radix of a signal bus:
1. In the LA Waveform tab, select one or more buses.

To select one bus, click on it. To select more than one, Control-click on
each one. To select all buses in a range, click on one end of the range and
Shift-click the other end. If you want to change all the signals in the
waveform to the same radix, you do not need to select anything.

2. Right-click in one of the selected waveforms and choose Set Bus Radix.
Be careful to click in the same row as one of your selections, or you will
change the selection.

The Set Bus Radix dialog box opens.
In the drop-down menu, choose the radix or token set.

4. In the Range drop-down menu, choose Selected signals or, if you want
to change all the signals in the waveform to the same radix, choose All
signals.

5. Click OK.

Adding Time Stamps to Trace Samples

In the Reveal Inserter, you can optionally specify a sample clock count value
to be stored with each trace sample to indicate the sample count clock value
at which the sample was captured. This count is extra data (bits) captured into
the trace buffer that increase the trace buffer’s width. This time stamp enables
you to see how many sample clock intervals have elapsed between data
captures when you use a sample enable. It is useful in some cases when it is
necessary to know if you captured the right data. A time stamp is also useful
when you try to synchronize data between multiple cores, off-chip data, or
both. For example, if you trigger two cores at the same time, you can use the
time stamps on the trace samples to calculate how the data between the
cores compares.

See Adding Time Stamps to Trace Samples in the Reveal Inserter Help for
information on adding time stamps to trace samples in Reveal Inserter.

Reveal User Guide for Radiant Software 81

REVEAL ANALYZER : Setting Up the Trigger Signals

Setting Up the Trigger Signals

Before you perform logic analysis, you must define the conditions under which
the trigger will start or stop the collection of data on the trace signals specified
in Reveal Inserter. You must define these triggers for each core. Use the LA
Trigger tab of the Reveal Inserter window to specify the trigger units and
trigger expressions that start the collection of the sample data for the selected
core. In Reveal Analyzer, you cannot add or remove new trigger units or
trigger expressions, but you can change the values and operators in the
trigger units and trigger expressions. In addition, you can disable a trigger
expression from being used by clearing the checkbox to the left of the trigger
expression hame. You must make sure in Reveal Inserter that all signals that
you might want to trigger on are included in the trigger units. In addition, you
may want to create several trigger expressions ahead of time.

Renaming Trigger Units

You can rename a trigger unit.

To rename a trigger unit:

Click in the appropriate box in the Name column of the Trigger Unit
section of the LA Trigger tab, backspace over the existing name, and type
in the new name.

Setting Up Trigger Units

All signals for a trigger unit must be defined in Reveal Inserter. You cannot
change them in Reveal Analyzer.

To set up a trigger unit:

1. If you want to change the default name of the trigger unit, backspace over
the default name in the Name column and type the new name.

2. If you want to add, change, or remove the signals in the Signals
(MSB:LSB) column, you must add, change, or remove them in Reveal
Inserter. You cannot add, change, or remove signals in Reveal Analyzer.

3. In the Operator column, set the comparators for the trigger condition. You
can choose from the following states:

== equal to

I= not equal to

> greater than

>= greater than or equal to
<less than

<= less than or equal to

Rising edge — compares on the rising edge of the clock

Reveal User Guide for Radiant Software 82

REVEAL ANALYZER : Setting Up the Trigger Signals

Falling edge — compares on the falling edge of the clock

Serial compare — compares until the trigger condition is met. For
example, if the trigger condition is 10011, the serial compare option
looks for a 1 on the first clock, a 0 on the next clock, a 0 on the next
clock, a 1 on the next clock, and a 1 on the last clock. Only if those five
conditions are met in those five clock cycles will the serial compare
output be active.

Other operators cannot be changed to a serial compare, and a serial
compare cannot be changed to another operator in Reveal Analyzer.
These can only be changed in Reveal Inserter.

The serial comparator is available only when a single signal is listed in
the Trigger Unit signal list. If you choose this option, you must choose
Binary in the Radix box.

The default comparator is == (equal to).

4. In the Radix column, select a radix from the drop-down menu to set the
radix of the trigger bus value given in the Value box. You can choose one
of the following:

Binary. This is the default. You must choose Binary if you selected
“Serial compare” as a comparator.

Octal
Decimal
Hexadecimal

<token_set_name>. To select <token_set_name>, you must have
created token sets in Reveal Inserter. See the Reveal Inserter Help for
information on this procedure.

5. In the Value column, enter the comparison value.

This value is the pattern of highs and lows that you want on the trigger unit
that will initiate collection of the trace data. The default is binary, unless
you selected <token_set_name> in the Radix column.

If you selected <token_set _name> in the Radix column, a drop-down
menu opens in the Value column. This menu lists all the tokens that you
entered in the Token Manager dialog box for the chosen token set. Select
any name.

You can use "x” for a don’t-care value in the Value column if you selected
Binary, Octal or Hexadecimal in the Radix column and if you selected the
==, I=, or serial compare operators in the Operator column.

Reveal User Guide for Radiant Software 83

REVEAL ANALYZER : Setting Up the Trigger Signals

Renaming Trigger Expressions

You can rename a trigger expression.

To rename a trigger expression:

Click in the appropriate box in the Name column of the Trigger Expression
section of the LA Trigger tab, backspace over the existing name, and type
in the new name.

Setting Up Trigger Expressions

You must set up the initial trigger expressions in Reveal Inserter, but you can
change their names and some values in Reveal Analyzer. You can also
enable or disable trigger expressions in Reveal Analyzer. However, you
cannot change the sequence depth, the maximum sequence depth, or the
maximum event counter of the trigger expressions in Reveal Analyzer.

To set up a trigger expression:
1. To enable a trigger expression, click the checkbox in the Enable column.

2. In the Expression box, enter the names of the trigger units that you want
to use and the operators that you want to use to connect them.

You can use the following operators to connect trigger units:
& (AND)
| (OR)
A (XOR)
1(NOT)
Parentheses
THEN
NEXT
(count)
(consecutive count)
See “Triggering” on page 31 for information on these operators.

Reveal Analyzer checks the syntax and displays the syntax in red font if it
is erroneous.

The setting in the Sequence Depth box is set by the software, so it is
read-only. See “Triggering” on page 31 for more information on this
parameter.

3. If you want to change the setting in the Max Sequence Depth box, you
must change it in Reveal Inserter; you cannot change it in Reveal
Analyzer. The number of sequences in the Trigger Expression box cannot
exceed the number specified in the Max Sequence Depth box.

Reveal User Guide for Radiant Software 84

REVEAL ANALYZER : Setting Up the Trigger Signals

4. If you want to change the setting in the Max Event Counter box, you
must change it in Reveal Inserter; you cannot change it in Reveal
Analyzer.

5. In the POR Debug section, if you wish to connect POR when Analyzer
opens, click the Connect POR when Analyzer opens check box.

6. Specify whether the final trigger occurs when one or all of the conditions
specified by the trigger expressions is met before trace data is captured:

AND All indicates that the conditions specified by all the trigger
expressions must be met before the trace data is captured.

OR All indicates that the conditions of one of the trigger expressions
must be met before the trace data is captured. This option is the
default.

Only trigger expressions whose checkboxes are enabled are included in
the AND or OR.

Setting Trigger Options

You can set a number of options to control the triggering.

1. To set trigger options in Reveal Analyzer:In the Samples Per Trigger
box, select the number of samples to collect per trigger. The minimum is
16. The maximum is the trace buffer depth chosen in Reveal Inserter
when the core is generated. The values available in the Samples Per
Trigger box also change according to the number of triggers. If the
number of triggers is set higher than 1, the samples per trigger multiplied
by the selected number of triggers cannot exceed the trace buffer depth.
Reveal Analyzer adjusts the Samples Per Trigger value, if necessary. The
default number of samples per trigger is the sample buffer depth. For
example, if the sample buffer depth is 2048, the default sample per trigger
is 2048.

2. In the Number of Triggers box, select the trace buffer depth divided by
the samples per trigger. The trace buffer depth is specified by the setting
of the Buffer Depth parameter in the Trace Signal Setup tab in Reveal
Inserter. The default is 1.

3. Inthe Trigger Position field, select Pre-selected Position or User-
selected Position.

Reveal User Guide for Radiant Software 85

REVEAL ANALYZER : Creating Token Sets

Creating Token Sets

You can create sets of “tokens,” or text labels, for values that might appear on
trace buses. You can create tokens such as ONE, TWO, THREE, or Reset,
Boot, Load. Tokens can make reading the waveforms in Reveal Analyzer
easier and can highlight the occurrence of key values. See the following figure
for an example. The row for the chstate bus uses tokens.

Figure 14: LA Waveform View Using Tokens

Fo7d 650 F628 Fa30 F632 Fo34 Fo38 638 Fodi Fod2
0:124 0126 oiza 0i1=0 D:IS#
| | T |

Bus/Signal Data
B-hand_type 1 vy
pb_done 0
sorf_done 0
- stimcount 179
gmstate finish_hd2 ~ §
+- chstate wait_for_load §
#-Lut/gamesm fxstate 1001 v i
- uut/ch/sortfsort_loop_done |1 vy
game_ready 0
bet [u}

Fod4
0,124 0126 0128 0:140 0:142 0:144
| | | | | |

To create or modify a token set:

1.

Choose Design > Token Set Manager.

The Token Manager dialog box opens. If the Reveal project already has
token sets defined, they are listed in the dialog box.

If you want to use token sets that were previously saved to a separate file,
right-click in the dialog box and choose Import. In the Import Tokens
dialog box, browse to the token (.rvt) file and click Open.

The token sets in the .rvt file are added to the list in Token Manager.
To create a new token set, click Add Set.

A new token set is started with default values. But it has no tokens defined
yet.

To change the size of the token values, double-click the value in the Num.
of Bits column and type in the new width, in bits. The width can be up to
256. The width must be the same as the bus that the token set will be
used with.

The Num. of Bits value can only be changed when the token set is empty.
If there are any tokens, you will get an error message.

To create a new token, select a token set. Then click Add Token.

A new token is created with default values. Repeat for as many new
tokens needed.

You can modify token sets by doing any of the following:

To change the name of a token or token set, double-click the name
and type a new name. The name can consist of letters, numbers, and
underscores (). It must start with a letter.

Reveal User Guide for Radiant Software 86

REVEAL ANALYZER : Debugging with Reveal Controller

To change the value of a token, double-click the value and type in a
new value. Token values must be prefixed by one of the radix
indicators shown in the following table:

Radix Prefix Example
Binary b’ b’110x0
Octal o 0’53
Decimal d d’'123
Hexadecimal h’ x'0F2

If a value does not have a prefix, its radix is assumed to be binary. You

can use an “x” in binary numbers as a don’t-care value.
To remove a token or token set, select it. Then click Remove.

7. You can save the collection of token sets showing in the dialog box to a
separate file for use in another project. To save the token sets, right-click
and choose Export. In the Export Tokens dialog box, browse to the
desired location and type in the name of the new token (.rvt) file. Click
Save.

8. When you are done, click Close to close the dialog box. The token sets
are automatically applied to the current Reveal project.

Debugging with Reveal Controller

Reveal Controller is another divide-and-conquer mechanism for you to
emulate an otherwise unavailable environment for power debug. For
example, your evaluation board would only have a limited number of LEDs or
switches but the virtual environment enables up to 32 bits. Register memory
mapping and dumping of values is also easily manifested while visibility into
Hard IPs is also enabled.

Virtual LED Switch Console

Once Reveal Analyzer is set up and started, you are presented with three
tabs, the first of which is a virtual LED/Switch console to emulate the board.

The top section, Virtual LED shows all the LEDs that were defined in the
insertion stage. Once the board is running, you can see the LEDs flash in red
and green as they would in the real hardware environment.

The lower section shows the virtual switch in which you can either enter the
data as a hex value or can set the virtual dip switches.

Reveal User Guide for Radiant Software 87

REVEAL ANALYZER : Debugging with Reveal Controller

Select Direct Mode to see the data and switches in real time instead of waiting
until the Apply button is clicked.

Note

Switches are of type in/out. When defining switches in RTL, use the WIRE definition
otherwise multiple input driver errors will be encountered later in the flow.

Assigning Colors to Virtual Switch/LED Signals

To assign colors to virtual switch/LED signals:

1. In the Switch List and LED List tables, click the color of the signal.

2. This opens the Select Color dialog box. Choose the color to assign to the
signal and click OK.

The colors you assign are also reflected in the virtual LED/Switch console in
Reveal Analyzer.

User Memory Analysis

The second tab is for User Memory Analysis. The title indicates the range of
the User Memory map. Analysis follows no particular steps or order.

Default Data: A value that will initialize all memory locations.
Write Address/Data: Address and data in hex to be written.

Read Address/Data: Enter address. The data is read back when ‘Read’ is
selected.

Memory File: You can dump from/to a range of memory addresses to a
.mem file. A user can also Load MemFile to load a pre-configured
memory file.

Running User Control Register

1. In the User Control Register tab, select a label from the Name column,
then click the Rd button.

User Control Register reads the value of the corresponding address
location and executes the following TCL command:

rva run_controller -read control "label"
2. Select a label from the Name column.
3. In the WR Value column, do the following:

a. Enter desired value.

b. Click the Wr button.

User Control Register executes the following TCL command:

Reveal User Guide for Radiant Software 88

REVEAL ANALYZER : Debugging with Reveal Controller

rva_run_controller -write control "label" -data value

Ready = ST [top_controller
2
User Control Register (writable) Address: 0x81000000 ~ 0x810000f8
Address Name Control Signals (MSB:LSB) ‘Width Radix Rd Value Wr Value =
0x81000000 | creg0 top_test1_inst/control_req0:7, . 8 Hex Rd Wr
0x81000008 cregl top_test1_inst/control_reg0_7_0[7:0] & Hex Rd Wr
0x81000010 | creg2 top_test1_inst/... 8 Hex Rd Wr
0x81000018 | creg3 top_test1_inst/... 8 Hex Rd Wr
0x81000020 creg4 top_testi_inst/control_reg1:7, . 8 Hex Rd Wr
0x81000028 | creg5 top_test1_inst/count_reg1:15, ... 8 Hex Rd Wr
0x81000030 | cregb top_test1_inst/control_reg1:23, ... 8 Hex Rd Wr
0x81000038 | creg7 top_testi_inst/count_reg1:31, ... 8 Hex Rd Wr
0x81000040 | creg8 top_test1_inst/control_reg2:7, ... 8 Hex Rd Wr
0x81000048 | creg9 top_test1_inst/control_reg2:15, ... 8 Hex Rd Wr
0x81000050 creg10 top_test1_inst/control_reg2:23, ... 8 Hex Rd Wr
0x81000058 creg1l1 top_test1_inst/control_reg2:31, ... 8 Hex Rd Wr
0x81000060 creg12 top_testl_inst/control_reg3:7, ... 8 Hex Rd Wr
0x81000068 creg13 top_testl_inst/control_reg3:15, ... 2 Hex Rd Wr
0x81000070 creg14 top_testl_inst/control_reg3:23, ... 8 Hex Rd Wr
0x81000078 creg1> top_testl_inst/control_reg3:31, ... 8 Hex Rd Wr
0x81000080 creg16 top_testl_inst/count_reg4:7, ... 8 Hex Rd Wr "
Apply Al Read All Load Dump
Virtual LED Switch User Memory User Status Register User Control Register

4. Double-click a row in the Control Signals column to display the list of
signals with their corresponding value.

5. In the User Control Register tab, click the Apply All button to apply the
value of all address locations assigned by the Name column and execute
multiple TCL commands sequentially.

6. Click the Read All button to read the value of all address locations
assigned by the Name column and execute multiple TCL commands
sequentially.

7. Click the Load button to load the value from the register file to all address
locations of Control Register.

8. Click the Dump button to save the value of all address locations to a
register file.

Running User Status Register

1. In the User Status Register tab, select a label from the Name column,
then click the Rd button.

User Status Register reads the value of the corresponding address
location and executes the following TCL command:

rva run controller -read status "label"

Reveal User Guide for Radiant Software 89

REVEAL ANALYZER : Debugging with Reveal Controller

Ready & top_Controller
[
User Status Register (read-only) Address: 0x81001000 ~ Dx810010f8
Address Name Status Signals (MSB:LSB) Width Radix Value =
0x81001000 sreg0 top_test1_inst/stat_reg0:7, top_test1_inst/stat_reg0:6, .. 8 Hex Rd
0x81001008 sreg1 top_test1_inst/stat_reg0:15, top_test1_inst/... 8 Hex Rd
0x81001010 sreg2 top_test1_inst/stat_reg0:23, top_test1_inst/... 8 Hex Rd
0x81001018 sreg3 top_test1_inst/stat_reg0:31, top_test1_inst/... 8 Hex Rd
0x81001020 sreg4 top_testl_inst/stat_reg1:7, top_test1_inst/stat_reg1:6, .. 8 Hex Rd
0x81001028 sreg5 top_test1_inst/stat_reg1:15, top_test1_inst/... 8 Hex Rd
0x81001030 sregb top_test1_inst/stat_reg0:23, top_test1_inst/... 8 Hex Rd
0x81001038 sreg7 top_testl_inst/stat_reg0:31, top_test1_inst/.. 8 Hex Rd
0x81001040 ' sreg8 top_test1_inst/stat_reg2:7, top_test1_inst/stat_reg2:6, ... 8 Hex Rd
0x81001048 sreg9 top_test1_inst/stat_reg2:15, top_test1_inst/... 8 Hex Rd
0x81001050 sreg10 top_test1_inst/stat_reg2:23, top_test1_inst/... 8 Hex Rd
0x81001058 sreg11 top_test1_inst/stat_reg2:31, top_test1_inst/... 8 Hex Rd
0x81001060 sreg12 top_testl_inst/stat_reg3:7, top_test1_inst/stat_reg36, .. 8 Hex Rd
0x81001068 sreg13 top_testl_inst/stat_reg3:15, top_test1_inst/... 8 Hex Rd
0x81001070 sreg14 top_testl_inst/stat_reg3:23, top_test1_inst/... 8 Hex Rd
0x81001078 sreg15 top_test1_inst/stat_reg3:31, top_test1_inst/.. 8 Hex Rd
0x81001080 sreg16 top_testl_inst/status_reg4:7, top_test1_inst/.. 8 Hex Rd 2
Read All Dump
Virtual LED Switch User Memory User Status Register User Control Register

2. On the bottom left corner, click the Read All button.

The Read All button reads the value of all address locations assigned by
the Name column and executes multiple TCL commands sequentially.

3. On the bottom right corner, click the Dump button.
The Dump button saves the value of all address locations to a register file.

4. Double-click a row in the Status Signals column to display the list of
signals with their corresponding value.

Hard IP Debug

All the IP selected for analysis in Reveal Inserter are displayed here.

Main operations are reading/writing to memory locations.

Note

The detailed settings of each IP is beyond the scope of this help. Links will be provided
to Application Notes to explain its usage.

Reveal User Guide for Radiant Software 20

REVEAL ANALYZER

Debugging with Reveal Controller

Debugging Nexus PCS/SerDes

Radiant supports PCS/SerDes debugging for devices built on the Nexus

platform such as CertusPro-NX.

To debug Nexus PCS/SerDes:

1. Use the Reveal Inserter tool to add controller cores to the design. These

cores allow writing and reading the control and status registers and
change the parameters for PCS/Serdes operations.

2. If your design has a hard IP, the Hard IP Setup tab displays all your hard
IPs. Under the Enable column, click the check box of an IP to enable the

debug function.

% Reveal Inserter
Hard IP Setting
Enabled | IP Name
PLLY
pLL2
PCSCHT
[¥] PCSCH2

b o
<]

Virtual Switch 8 LED Setup

Instance Name

pllinst0flsce_plL_inst/gen_no_refclk_mon.u_PLL
pllinst1/lsce_plLinst/gen_no_refclk_mon.u_PLL
Iscc_mpes_top_inst/PCSX2_1.u_PCSK2_1
Iscc_mpes_top_inst/PCSX2_1.u_PCSK2_1

User Memory Setup User Status Register Setup

program the device.

Address

0x10000000~0x10000035
0x10010000~0x10010035
0x30010000~0x300101FF
0x30020000~0x300201FF

User Control Register Setup Hard IP Setup

3. Generate the updated bitstream with the inserted debug cores and

4. Open Reveal Analyzer/Controller and connect to the programmed device
through USB/JTAG.

Reveal User Guide for Radiant Software

91

REVEAL ANALYZER Debugging with Reveal Controller

5.

In the Hard IP tab, you will see the instantiated hard IP blocks on the

Nexus device. Scroll to the IP core to debug..

~ PCSCH1

Address (0x30010000 ~ 0x300101FF)
Iscc_mpes_top_inst/PCSX2_1.u_PCSX2_1

Instance Hierarchy:

Transmit Settings
Differential Amplitude
Cutput Termination
Tx Post-Cursor Ratio
Tx Pre-Cursor Ratio
Invert Tx Data Polarity

Tx PLL Loss of Lock Status

Receive Settings

Input Termination

Rx EQ

Invert Rx Data Polarity
CDR Loss of Lock Status

Data Loss of Lock Status

Eye-Opening Monitor...

OmVv =
100 ohm <
0
0
off -

unlocked

100 ohm =
85_LMS 2.5GT/s <
off =
unlocked
unlocked

Loopback Mode Settings Note: The "Reload” function will not update th

Loopback Mode

Serdes/PCS Reset
MPCS Tx Reset
MPCS Rx Reset
PMA Tx Reset
PMA Rx Reset
PMA T HiZ

PMA Rx HiZ

Write Address:

Write Data:

Read Address:

Read Data:

Dump From {Offset):
Dump MempFile:

Load MemfFile:

Virtual LED Switch

Disabled 4

off <

off 4
off =
off <
off =
off <

Apply Reload

0x30070000

0x0 Write
0x300710000

Read

0x00000000 Range:

Hard IP

6. Set the control parameters and click the Apply button.

7. Run your design.

8. Analyze the captured data. You can modify settings if allowed.

Click the Eye Opening Monitor button to view a graphical eye diagram that
details the signal eye width and height. See “Running Reveal Eye-Opening
Monitor” on page 100.

Reveal User Guide for Radiant Software

92

REVEAL ANALYZER : Debugging with Reveal Controller

Debugging Avant with SerDes Toolkit

In designs using Avant MPPHY module, Radiant supports SerDes debugging
using the SerDes toolkit. This feature allows you to evaluate and debug the
performance of transceivers. It generates and checks data patterns to
measure the bit error rate (BER), which helps in identifying signal integrity
issues. In Reveal Inserter, set up hard IP by clicking the Hard IP Setup tab
and then select functions by enabling check boxes.

You can test and validate transceiver links. You can verify that the
transceivers are functioning correctly and can handle the data rates required
in your design. By analyzing the BER, you can identify and diagnose issues
such as signal degradation, noise, or incorrect settings. You can also optimize
transceiver configurations by adjusting various transceiver parameters.

SerDes toolkit features:

Real-time access to transceiver settings. This allows you to monitor and
modify the settings of the transceiver on-the-fly while the system is
running.

Adjust Parameters: Use different transceiver and clocking topologies.
Change settings such as pre-emphasis, equalization, and data rate in
real-time to see how they affect the signal quality.

Optimize Performance: Fine-tune the transceiver settings to achieve
the best possible performance for your specific board configuration.

Troubleshoot Issues: Quickly identify and resolve issues by making
adjustments and immediately observing the impact on the link quality.

Sweep testing. Automate the process of testing various settings to find the
optimal configuration. The AutoSweep feature with interval-stepping
capability allows quick testing of many combinations of physical medium
attachment (PMA) analog settings to find the optimal setting for a
particular transceiver link.

Note

You can capture Eye Diagram data while auto-sweeping the PMA
settings.

Data pattern generators and checkers select transceiver.

Multiple different PRBS (Pseudo-Random Binary Sequence) and clock
patterns transmitted over the channels.

Channel manager interface monitor and track status while testing multiple
channels simultaneously.

Running link tests between multiple devices across one or more boards.

Save and Load capability that enables comparison of different sets of
signal integrity results including the eye diagram. This capability enables
customers to compare the signal integrity results for different PMA
settings.

After the device is programmed, SerDes Toolbox, TX, and RX settings are
displayed in the Hard IP tab of the Reveal Controller interface.

Reveal User Guide for Radiant Software 93

REVEAL ANALYZER Debugging with Reveal Controller

7> Start Page Reports 23 Reveal Analyzer/Controller

Ready) top_Controller

2
~ MPPCIEXBAQI

MPPX4 Address (0x30000000 ~ Ox3000FFFF)

Instance Hierarchy: inst_m

Assigned Quad: Quad-A
= SerDes Toolbox

Eye-Opening Monitor..

LaneD Lane1 Lane2 Lane3
SerDes Toolbox Read Read Read Read
Loopback Mode Disabled = Disabled = Disabled = Disabled bt
TX PRBS Pattern Disabled ~ | Disabled ~ | Disabled ~ | Disabled -
RX PRBS Pattern Disabled * Disabled * Disabled ~ Disabled o
PATO 1] o o 0
Restart Restart Restart Restart Restart
Inject 1-bit Error Inject Inject Inject Inject
PRBS Error Count 1] 0 0 0
= TX Settings

Lane0 Lane1 Lane2 Lane3
™ Read Read Read Read
P Lock st | vedes bk uneces
TX Data Polarity Non-invert - Non-invert ~ MNon-invert = Non-invert =
TX Data Width 8-bit * B&-bit - | B-bit ¥ B-bit -
TX Data Enable Off ~ Off - | Off > Off -
TX Equal Pre-cursor o 0 *|0 *|0 -
TX Equal Main-cursor 1] b L] L) ~jo =
TX Equal Post-cursor 0 L |0 L) T
TX Termination 54-ohm ~ 54-ohm ~ | 54-ohm - 54-ohm]
TX Diff Amplitude Enable Off v Off - || off - Off -
TX Diff Amplitude (iboost) 1] * 0 =10 b L '
TX Diff Amplitude (vboost) 0 b L o v 0 hd
~ RX Settings

Lane0 Lane1 Lane2 Lane3
RX Read Read Read Read
CDR Lock Status Unlocked Unlocked Unlocked Unlocked

Hard IP

Clicking the Read button of a specific lane shows the required settings from
the device and populates the values for the lane. Inactive lanes are grayed

out.

Reveal User Guide for Radiant Software

94

REVEAL ANALYZER : Debugging with Reveal Controller

Table 2: SerDes Toolbox Settings
Settings Display/Values

Loopback Mode DISABLED (Default)
Near-End Serial

Parallel

TX PRBS DISABLED (Default)
Pattern PRBS31
PRBS23_18
PRBS23_21
PRBS16
PRBS15
PRBS11
PRBS9
PRBS7
FIXED WORD (PATO)
DC BALANCED (PATO, ~PATO)

FIXED PATTERN (000, PATO,
3FF, ~PATO)

RX PRBS DISABLED (Default)
Pattern PRBS31
PRBS23_18
PRBS23_21
PRBS16
PRBS15
PRBS11
PRBS9
PRBS7
FIXED WORD (PATO)
DC BALANCED (PATO, ~PATO)

FIXED PATTERN (000, PATO,
3FF, ~PATO)

PATO

Description

This is a testing configuration where the transmitted signal is
looped back to the receiver without leaving the device.

In Near-End Serial, the transmitted signal is looped back at the
near end of the communication link, close to the transmitter.

In Parallel, the transmitted data is looped back in parallel.
Multiple data lanes are used simultaneously for the loopback
test.

This is the PRBS (Pseudo-Random Binary Sequence) pattern
generated and sent by the transmitter side of the
communication link.

The PRBS pattern is used to test the integrity of the link by
sending a known sequence of bits and checking if the received
sequence matches the expected pattern.

PRBS<BITS> PRBS patterns with more number of bits
(long pattern) are particularly useful for jitter measurement.

FIXED WORD is a single unchanging predefined sequence.

DC balanced refers to a pattern that includes an equal
number of ones and zeros. This balance helps keep the DC
level steady and reduces signal degradation, which is
particularly important when the signal passes through AC-
coupling circuits.

FIXED PATTERN is a predefined sequence that is a
combination of multiple fixed words or sequences.

When selected, the Restart button takes on the value.
This is the PRBS pattern generated and sent by the receiver
side of the communication link.

The PRBS pattern is used to test the integrity of the link by
sending a known sequence of bits and checking if the received
sequence matches the expected pattern.

PRBS<BITS> PRBS patterns with more number of bits
(long pattern) are particularly useful for jitter measurement.

FIXED WORD is a single unchanging predefined sequence.

DC balanced refers to a pattern that includes an equal
number of ones and zeros. This balance helps keep the DC
level steady and reduces signal degradation, which is
particularly important when the signal passes through AC-
coupling circuits.

FIXED PATTERN is a predefined sequence that is a
combination of multiple fixed words or sequences.

When selected, the Restart button takes on the value.

Enter the pattern:
8 bits for 16-bit data width
10 bits for 20-bit data-width

Reveal User Guide for Radiant Software

95

REVEAL ANALYZER : Debugging with Reveal Controller

Table 2: SerDes Toolbox Settings

Settings Display/Values Description

Restart Restart button Clicking this button clears the TX and RX pattern settings and
sets the selected Patterns and sync.

Inject 1-bit Error Inject 1-bit Error button Clicking this button inserts a 1-bit error in LSB of TX word.

PRBS Error PRBS Error Count button Clicking this button reads the error count and displays it in the

Count cell.

Table 3: TX Settings
Settings Display/Values Description

PLL Lock Status Green = Locked When the PLL (Phase-Locked Loop) is locked, the output signal
- stays in sync with the input signal, maintaining a steady phase
Red = Unlocked relationship. If the PLL becomes "unlocked," it indicates that
synchronization failed, and the output signal is no longer aligned
with the input signal.

TX Data Polarity Non-inverted = Unchecked Non-Inverted Data Polarity means that the data signal is
_ transmitted without any change in its original form. The logical '1'
Inverted = Checked (high) and logical '0' (low) levels of the signal are maintained.

Inverted Data Polarity means that the data signal is flipped or
transmitted in an inverted form. In this case, the logical '1'
becomes '0' and the logical '0' becomes '1".

TX Data Width 8-bit TX data width is the number of bits that can be transmitted
10-bit simultaneously over a channel.
16-bit
20-bit
32-bit
40-bit

TX Data Enable Off When the TX Data Enable signal is On, the data on the TX line
on is valid and ready for transmission. When the signal is Off, the

data on the TX line is not valid, and the transmission should be
ignored.

TX Equal Pre- 0.0 to 6.75 with 0.25 each step The adjustment of the signal before the main data pulse to

cursor compensate for distortions and signal degradation caused by
the transmission channel. Pre-conditioning the signal with pre-
cursor equalization reduces inter-symbol interference (ISI) and
enhances overall signal quality at the receiver's end.

TX Equal Main- 0to 24 The primary coefficient (main cursor) is used as the key value in

cursor determining the total equalization. The main cursor coefficient
represents the central, most significant part of the transmitted
signal. It is the primary reference point in the signal that should
have the highest amplitude.

Reveal User Guide for Radiant Software 926

REVEAL ANALYZER : Debugging with Reveal Controller

Table 3: TX Settings
Settings Display/Values

TX Equal Post- 0.0 to 8.75 with 0.25 each step
cursor

TX Termination 54-ohms

52-ohms
50-ohms
48-ohms
46-ohms
44-ohms
42-ohms
40-ohms

TX Diff Off

Amplitude

Enable On

TX Diff 0to15

Amplitude

(iboost)

TX Diff Oto7

Amplitude

(vboost)

Table 4: RX Settings
Settings Display/Values

CDR Lock Satus Green = Locked
Red = Unlocked

RX Signal Status Green = Valid
Red = Invalid

Description

The adjustment of the signal after the main data pulse to
compensate for distortions and signal degradation caused by
the transmission channel. Pre-conditioning the signal with post-
cursor equalization reduces inter-symbol interference (ISI) and
enhances overall signal quality at the receiver's end.

The termination resistor value on the transmission side of the
communication link. This resistor matches the transmission line
impedance and minimizes signal reflections.

When the TX Diff Amplitude Enable setting is turned On, the
transmitter can generate a differential signal with the appropriate
amplitude so that the signal can be accurately interpreted by the
receiver, even in the presence of noise.

The strength of the amplitude boost applied to the differential
signal. This help helps the transmitted signal to be accurately
received despite noise or interference.

Description

When the CDR (Clock and Data Recovery) the data is correctly
sampled and the clock is properly aligned with the data
transitions.

If the CDR is unlocked, data errors may occur due to
misalignment between the clock and data signals.

A valid RX signal status indicates that the received data is
correctly aligned with the clock signal.

An invalid RX signal means that the received data is not correct
or cannot be properly interpreted. This may be due to signal
integrity issues, clock misalignment, protocol errors, or data
corruption.

Reveal User Guide for Radiant Software

97

REVEAL ANALYZER : Debugging with Reveal Controller

Table 4: RX Settings
Settings Display/Values Description

RX Loss of 60mVpp This value is the minimum signal level required to maintain
Signal Threshold 80mVpp reliable data transmission. When the signal falls below this
threshold, the system detects a loss of signal.
100mVpp

120mVpp
140mVpp
160mVpp
180mVpp

RX Data Polarity Non-inverted = Unchecked Non-Inverted Data Polarity means that the data signal is received
Inverted = Checked WIﬂ:]OUt| a|ny change in its orlg!nal form. Thg Ioglcal 1' (high) and
logical '0' (low) levels of the signal are maintained.

Inverted Data Polarity means that the data signal is flipped or
received in an inverted form. In this case, the logical '1' becomes
'0" and the logical '0' becomes '1'.

RX Data Width ~ 8-bit RX data width is the number of bits that can be received
10-bit simultaneously over a channel.
16-bit
20-bit
32-bit
40-bit
RX Equal Afe Oto7 The "adaptive equalization filter rate" setting that adjusts the
Rate equalization parameters dynamically to optimize signal integrity
and minimize bit errors.
RX Equal Atten Oto7 The receiver equalization attenuation level setting adjusts the
Level attenuation applied to the received signal to optimize signal
integrity and minimize bit errors.
RX Equal Ctle Oto3 This value indicates the pole location of the Continuous-Time
Pole Linear Equalizer (CTLE) in the receiver path.
RX Equal Ctle 0to 31 This value refers to the CTLE boost in the receiver path. Boosting
Boost the CTLE increases its gain, especially at higher frequencies.
RX Termination 54-ohms The termination resistor value on the receiver side of the
communication link. This resistor matches the transmission line
52-ohms) L . .
impedance and minimizes signal reflections
50-ohms
48-ohms
46-ohms
44-ohms
42-ohms
40-ohms
RX Termination DC (Default) This indicates whether the receiver termination is set to an
Acdc AC alternating current (AC) or a direct current (DC) coupling mode.

Reveal User Guide for Radiant Software 98

REVEAL ANALYZER : Debugging with Reveal Controller

Table 4: RX Settings

Settings Display/Values Description

RX EqualVgal Oto7 The value indicates the amplification level of the signal received
Gain by VGA2.

RX EqualVga2 O0to7 The value indicates the amplification level of the signal received
Gain by VGA2.

Clicking the Eye Opening Monitor button provides a graphical eye diagram
that details the signal eye width and height.

Secan Puts Scm 1

See “Running Reveal Eye-Opening Monitor” on page 100 for more
information.

Reveal User Guide for Radiant Software 29

REVEAL ANALYZER : Debugging with Reveal Controller

Running Reveal Eye-Opening Monitor

The Reveal Eye-Opening Monitor can be launched from the Reveal Analyzer/
Controller. You need to be connected to a board to be able to run the Eye-
Opening Monitor.

To launch the Eye-Opening Monitor:

1. In the Radiant software main window choose Tools > Reveal Analyzer/
Controller

In the drop-down menu, choose top_Controller to display the Hard IP
tab.

2. Click the Hard IP tab.

If debugging a non-Avant device, scroll down to the PCS channels to
locate the Eye-Opening Monitor button.

If debugging an Avant device, the Eye-Opening Monitor button is located
at the upper-right of the current IP instance.

3. Click the Eye-Opening Monitor button. The Eye-Opening Monitor dialog
box is displayed.

The figure below shows the Eye-Opening Monitor dialog box when
debugging a non-Avant device.

@ Eye-Opening Monitor x
Quality of Eye Diagram: Normal -

(Since high quality will increase the runtime, select normal or low gquality
for faster resuilt.)

Run Cancel

The figure below shows the Eye-Opening Monitor dialog box when
debugging an Avant device. The Channel and Import options are added.

2% Eye-Opening Monitor X
Quality of Eye Diagram: | Normal -
Channel: Lo -

(Since high quality will increase the runti Lo
for faster result.) Li

L2
L3

Run Tmport Cancel

Reveal User Guide for Radiant Software 100

REVEAL ANALYZER : Debugging with Reveal Controller

4. In the Eye-Opening Monitor dialog box, select the quality of the eye
diagram from the drop-down menu.

It is recommended to select normal or low quality for a faster result, and
select high quality for the final result. The default is normal quality.

If you are debugging Avant SerDes multiple channels, select the channel
to debug in the Channel drop-down menu.

5. Click the Run button to start the EOM process. You can stop the process
at any time by clicking the Stop button.

6. After the EOM has finished running, it will display the eye diagram for the
current channel. The figure below shows the Eye Diagram when
debugging non- Avant devices.

Figure 15: Example of Eye Diagram for Non-Avant Devices

23 Eye Diagram b4

& =
I
Wertical Step

0
6
12
18
4
0
6
42
48
54
60

Phase Step

Eye width: 28 Eye height: 15

ViewRawData | Close

At the bottom of the eye diagram for non-Avant devices, you can click the
View Raw Data button to open the raw data file containing the number of
samples and errors used in calculating the density of the eye diagram.

Reveal User Guide for Radiant Software 101

REVEAL ANALYZER : Debugging with Reveal Controller

¥ nsamples_cur | nsamplespre | nerors icor nemors pre

1 0 -63 0120000 160000 00000 Oulfib22
2 0 -60 0160000 e 160000 Co 000000 O 30be
3 0 -57 0160000 160000 00000 Oulf3ae3
4 0 -54 010000 10000 O 0O0O00 0x0f3a35
5 0 =51 0120000 e 160000 o000 003270
6 0 -48 0160000 160000 000000 On0F 3960
T [} -5 0180000 160000 000000 0x0f3bET
8 0 -42 0160000 160000 00000 Ou0f3819
9 o 39 0120000 e 10000 Coc 000000 Ow0f338¢
L -36 0120000 e 160000 Qo000 O 2667
n 0 -33 0120000 010000 Che0O0000 Ox0f0e98
12 o -30 010000 010000 000000 OxDedbTH
13 0 -7 0160000 160000 o000 Ouef928
14 0 -24 0 120000 10000 Q000023 Culdedaz
15 0 -21 0120000 010000 Ohe0000F4 0x0d0d23
16 0 -18 0120000 10000 Oe0O0T12 Ox0BET20
17 L} -1% 0120000 0120000 Oa0013ef CxDa2dBf
Close

The raw data comes from the eom register.

The numbers from nsample_cur, nsample_pre, nerrors_cur, and
nerrors_pre columns calculate the result.

The numbers are collected by reading the eom register of the PCS IP.

If you change the Reveal Controller options, you can re-run the EOM to
display the new eye diagram and view the new raw data until the desired
result is achieved.

Importing an Existing EOM Result

If you are debugging Avant SerDes, each time you run the EOM, the result is
automatically saved as a .txt file in the project folder. The file name provides
information on the EOM settings. For example, the file name
eom_normal_MPPHYX4Q1_L2.txt tells you that the EOM result was
generated using normal quality for the MPPHYX4Q1 instance with L2 or lane
2 as the selected channel.

To import an existing EOM result:

1. Click the Import button in the Eye-Opening Monitor dialog box.

2. The Select Existing EOM File dialog box is displayed.
Selecting AVANT EOM (*.txt) displays only the EOM results for debugging
the Avant device.

3. Select the .txt file and click Open. The Eye Diagram is displayed. The
figure below shows the Eye Diagram when debugging Avant devices.

Reveal User Guide for Radiant Software 102

REVEAL ANALYZER : Performing Logic Analysis

Figure 16: Example of Eye Diagram for Avant Devices

O

195
130
65

325
Iﬁ-s 3—--gs 260
HE -

o
Voltage

-65

-129
-195
-260
-325

Unit Interval

Eye width: 0 Eye height: 0

Close

Performing Logic Analysis

After you have configured trigger settings in the LA Trigger tab, you can
perform a logic analysis on a single core.

To perform logic analysis:

1. Inthe <design_name>_LA<core_number> check box in the toolbar, select
the core on which to perform logic analysis.

2. Click |z on the Reveal Analyzer toolbar.

The Run button changes into the Stop [l button and the status bar next
to the button shows the progress.

Reveal Analyzer first configures the cores selected for the correct trigger
condition, then waits for the trigger conditions to occur. Once the specified
trigger has occurred, the data is downloaded to the PC. The resulting
waveforms appear in the LA Waveform tab.

If the trigger condition is not met, Reveal Analyzer will continue running. In
that case, you can use manual triggering, described in “Using Manual
Triggering” on page 105.

Reveal User Guide for Radiant Software 103

REVEAL ANALYZER : Stopping a Logic Analysis

Data Capture with Sample Enable

Triggers occur at every sample clock edge when the condition is met. Trace
data is also captured on the sample clock edge. If a sample enable is used,
each sample shown in the trace buffer is only captured when the sample
enable is active and there is a sample clock. Data samples can be
discontiguous, unlike those in a normal data capture.

It is also possible that the actual trigger condition may occur when the sample
enable is not active, causing two changes from a normal data capture:

The actual data values for the trigger condition may not be visible,
because the data cannot be captured when the sample enable is inactive.

Reveal Analyzer cannot accurately calculate the trigger point, since the
trigger point may have occurred when the sample enable was inactive.
Normally a trigger point is shown as a single marker on the clock on which
the trigger occurred. If a sample enable is used, a trigger region that
spans five clock cycles is shown instead. Reveal Analyzer can guarantee
that the trigger occurred in this region, but it cannot determine during
which clock cycle the trigger occurred.

The sample enable is a very useful feature, but it takes more understanding
than a normal data capture.

Common Error Conditions

Please refer to the Reveal Troubleshooting guide for more information.

Stopping a Logic Analysis

You can stop a logic analysis while it is running.

To stop a logic analysis:
Click [2].

This command only stops the logic analysis on the current core in the active
window. You must stop each core separately.

104

Reveal User Guide for Radiant Software

REVEAL ANALYZER : Using Manual Triggering

Using Manual Triggering

If you set up a trigger but triggering fails to occur or you want to trigger
manually instead of triggering when a signal condition occurs, you can use
manual triggering to capture data. The captured data may then help you find
out why triggering did not occur as you originally intended.

When you select manual triggering, Reveal Analyzer fills the buffer with data
captured from that moment. In single-trigger capture mode, it fills the buffer
and stops. In multiple-trigger capture mode, it captures one trigger and data.
You can then continue to manually trigger as many times as the original
triggering setup specified. If you want to capture fewer triggers, you can
manually trigger the desired number of times, then press the Stop ([EJ]) button
to stop the logic analysis. The buffer starts downloading the data.

To use manual triggering:

Note

Alogic analysis must be running before you can use the Manual Trigger command.

1. After you start the logic analysis with the | button, click E

This command only applies to the logic analysis on the current core in the
active window. You must trigger each core separately.

2. When you have captured the desired number of triggers in multiple trigger
capture mode, click @

Viewing Waveforms

After running your logic analysis, you can view the trace buffer data in
waveform format in the LA Waveform tab. Whenever the trace stops, Reveal
Analyzer reads the trace samples back from the trace memory and
automatically updates the signal waveforms.

If you perform a logic analysis, exit Reveal Analyzer, and then reopen it, the
old data is displayed in the waveform until you perform a new logic analysis.

Viewing Logic Analysis

To view a logic analysis:
1. Click the LA Waveform tab.

2. Choose a module from the drop-down menu in the Reveal Analyzer
toolbar.

Reveal User Guide for Radiant Software 105

REVEAL ANALYZER : Adjusting the Waveform Display

Adjusting the Waveform Display

You can adjust the waveform display by panning and zooming. You can also
adjust the colors.

Panning

You can move the waveform display in the LA Waveform tab so that you can
view any part of it.

To pan the waveform display:
1. Right-click in the waveform and choose Pan Mode.

2. Press and drag the left mouse button to the left or the right.

Zooming In and Out

You can zoom in and out on a waveform in the Reveal Analyzer LA Waveform
tab to increase or decrease the displayed time interval.

To zoom in on a waveform:

Choose View > Zoom In, click @ or right-click on the waveform and
choose Zoom >Zoom In.

To zoom in on a specified area:
1. Right-click the waveform and choose Zoom Mode.
The pointer changes to a cross.

2. Hold down the left mouse button and drag the pointer across the area you
want to zoom in on.

A shaded area appears on the waveform display.
3. Release the mouse button.

The shaded area expands to fill the display.

To zoom out on a waveform:

Choose View > Zoom Out, click Q or right-click on the waveform and
choose Zoom > Zoom Out.

To show the entire waveform in the window:
Choose View > Q Zoom Fit.

To zoom to the trigger point:

Right-click in the waveform and choose Zoom > Zoom Trigger

Reveal User Guide for Radiant Software 106

REVEAL ANALYZER : Adjusting the Waveform Display

To zoom to the start of the display:

Right-click in the waveform and choose Zoom > Zoom Start

To zoom to the end of the display:

Right-click in the waveform and choose Zoom > Zoom End

Setting a Trace Bus Radix

You can set the radix of a trace bus displayed in the LA Waveform tab. You
can choose a binary, octal, decimal, or hexadecimal radix. You can also use
any token set whose bit width matches the bus.

To set the bus radix of a signal or bus:
1. In the LA Waveform tab, click in the Data cell of the signal or bus.
A menu appears showing the different radices and any token sets that fit.

2. Choose the desired radix or token set.

To set the bus radix of multiple signals and buses:
This method can set several signals to the same radix but cannot use tokens.
1. In the LA Waveform tab, select one or more buses.

To select one bus, click on it. To select more than one, Control-click on
each one. To select all buses in a range, click on one end of the range and
Shift-click the other end. If you want to change all the signals in the
waveform to the same radix, you do not need to select anything.

2. Right-click in one of the selected waveforms and choose Set Bus Radix.
Be careful to click in the same row as one of your selections, or you will
change the selection.

The Set Bus Radix dialog box opens.
In the drop-down menu, choose the radix.

4. In the Range drop-down menu, choose Selected signals or, if you want
to change all the signals in the waveform to the same radix, choose All
signals.

5. Click OK.

Reveal User Guide for Radiant Software 107

REVEAL ANALYZER : Specifying the Clock Period

Changing LA Waveform Colors

You can change the colors used by the waveform.

To change the colors:

1.

N o o ko

Open the Options dialog box. Depending on which version of Reveal
Analyzer you’re using, do one of the following:

If integrated with the Radiant software, choose Tools > Options.
Then, in the Options dialog box, choose Color in the left panel and
then click on the Reveal Analyzer tab.

If stand-alone, choose Design > Options.
Click on the color sample for the desired part of the LA Waveform view.
The Select Color dialog box opens.
Select a color.
In the Select Color dialog box, click OK.
To see the effect of the change, click Apply.
Change other colors if desired.
Click OK.

Specifying the Clock Period

You can specify a clock period for your logic analysis. Setting the frequency
enables you to determine the location of your cursors, as well as the distance
between them. Frequency is determined by dividing 1 by the period.

To set the clock frequency:

1.
2.

4.

Right-click the waveform and choose Set Clock Period.

In the Specify Clock Period dialog box, choose either picoseconds or
nanoseconds for the period interval selector. Click the box next to Period
to select picoseconds (ps) or nanoseconds (ns).

Place the cursor in either the Period or Frequency text box and type in the
desired value. The other text box fills in automatically.

Only integers are allowed. If you try to specify a frequency that would
require a non-integer period, the period is truncated to an integer and the
frequency is automatically adjusted. For example, typing 150 in the
Frequency text box gives you a period of 6 and a frequency of 166.

Click OK.

Reveal User Guide for Radiant Software 108

REVEAL ANALYZER : Placing, Moving, and Locating Cursors

Placing, Moving, and Locating Cursors

The LA Waveform view comes with three types of “cursors” to highlight
moments in the waveform. The cursors are vertical lines cutting through all
the signals at the leading edge of a clock cycle. See Figure 18 on page 117.
The three types are:

Trigger. A purple line with a “T” at the top, trigger cursors are automatically
placed at the moment of each final trigger event. If the module used a
sample enable signal and the exact moment of the trigger is unknown, the
waveform shows a trigger cursor five clock cycles before the sample
enable signal turned inactive and sampling stopped.

Active. A red line appears wherever you click in the waveform. The Data
column shows the values of the signals and buses at the moment
highlighted by the active cursor.

User. A blue line can be placed anywhere you want. Use these cursors to
mark moments of interest. You can also use these cursors to maneuver
about a long waveform with the Go to Cursor command.

Most cursor functions require that the LA Waveform view be in Select mode:
right-click in the LA Waveform view and choose Select Mode.

To create a user cursor:
1. Click in the desired clock cycle.

The active cursor appears. Make sure it is where you want the user cursor
to be.

2. Right-click and choose Add Cursor.

To move a user cursor:
1. Zoom in so you can easily see and click in individual samples.
2. Click in the desired location.

The active cursor appears. Make sure it is where you want the user cursor
to be.

3. Carefully click in the sample to the right of the user cursor.

You must click on or to the right of the user cursor. Otherwise you are just
moving the active cursor to a neighboring sample.

The user cursor and the active cursor exchange locations.

To jump to a user cursor:

Right-click in the waveform and choose Go to Cursor > <cursor>.
Cursors are identified by the sample index as shown in the green bar at
the top of the waveform display.

Reveal User Guide for Radiant Software 109

REVEAL ANALYZER : Counting Samples

To remove a user cursor:

1.

2.

Click on or near the cursor.

The active cursor appears. Make sure it is on or next to the user cursor
you want to remove.

Right-click and choose Remove Cursor.

To remove all user cursors:

Right-click in the waveform and choose Clear All Cursor.

Counting Samples

You can easily count the number of samples in a range on the display.

To count samples:

Click where you want to start counting and drag to the end of the range.

While you're dragging, the LA Waveform view shows two red lines and the
number of samples between the lines.

Exporting Waveform Data

You can export waveform data to a value change dump (.vcd) file, which can
be imported by such third-party tools as ModelSim or Active-HDL, or to an
ASCIlI-format text (.txt) file. You must have performed a logic analysis,
implemented a trigger on hardware, and captured data that is shown in the
waveform display before you can export data.

To export data:

1.

N o o &

If you want the data to include an approximate measure of time instead of
a simple count of clock cycles, right-click the waveform and choose Set
Clock Period. See “Specifying the Clock Period” on page 108.

If you want to export only some of the signals, select them in the
waveform. You can only export whole buses. If you select only some of
the signals in a bus, you get the whole bus.

Right-click in the waveform and choose Export Waveform.
The Export Waveform dialog box opens.

Browse to the location where you want to export the file.
Type in a name in the File name box.

Choose a file type.

If you are exporting only some of the signals, choose Selected signals in
the Range box.

Reveal User Guide for Radiant Software 110

REVEAL ANALYZER : Saving a Project

8. If you are exporting to .vcd, type in a module name. This will form the title
in the .vcd file. If you leave the field empty, the module name will be
“<unknown>".

9. Click Save.

Saving a Project

You can save the trigger settings and waveform setup settings in a Reveal
Analyzer project (.rva) file that you can use as an input file in the future. You
can also save an existing .rva file in a file with a different name.

To save a Reveal Analyzer project:
Choose File > Ei] Save <file>.

The project data is now output into an .rva file.

To save the project file with a different name:

1. Choose File > Save <file> As.
The Save Reveal Analyzer File dialog box appears.

2. Browse to the directory in which you want to save the project.
In the File name box, type the file name.

4. Click Save.

Exiting Reveal Analyzer

To exit Reveal Analyzer:

Choose File > Close.

Reveal User Guide for Radiant Software 111

REVEAL ANALYZER : User Interface Descriptions

User Interface Descriptions

The Reveal Analyzer window consists of the LA Trigger, LA Waveform.

LA Trigger Tab

The LA Trigger tab enables you to select the trigger signals and define the
data values or pattern of data values that cause trace data collection to begin.

Trigger Unit

The parameters in the Trigger Unit section enable you to configure the trigger
units, which are the basic trigger comparison mechanism in Reveal Inserter
and Reveal Logic Analyzer. Trigger units allow comparison of the signal to a
value that is entered during hardware debug. You can include up to 16 trigger
units in a core. Each trigger unit consists of the following information:

Name Specifies the name of the trigger unit. See “Trigger Expression and
Trigger Unit Naming Conventions” on page 117 for the guidelines governing
trigger unit names. The default name is TU<number>, where <number> is a
sequential number. The first trigger unit is named TU1 by default.

Signals Lists the signals in the trigger unit. You can select up to 4096 trigger
signals. You can specify these signals only in Reveal Inserter.

Operator Specifies the comparators that Reveal will use to compare the
states of the trigger bus signals to the pattern of signal states that you set in
the Trigger Signal Setup tab of Reveal Logic Analyzer. You can choose from
the following states:

== equal to. This comparator is the default.

1= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Rising edge — Compares on the rising edge of the clock
Falling edge — Compares on the falling edge of the clock

Serial compare — Compares until the trigger condition is met. For
example, if the trigger condition is 10011, the serial compare option looks
fora 1 on the first clock, a 0 on the next clock, a 0 on the next clock, a 1 on
the next clock, and a 1 on the last clock. Only if those five conditions are
met in those five clock cycles will the serial compare output be active.

Other operators cannot be changed to a serial compare, and a serial
compare cannot be changed to another operator in Reveal Logic
Analyzer. These can only be changed in Reveal Inserter.

Reveal User Guide for Radiant Software 112

REVEAL ANALYZER : User Interface Descriptions

The serial comparator is available only when a single signal is listed in the
Trigger Unit signal list. If you choose this option, you must choose Binary
in the Radix box.

Radix Specifies the radix of the trigger bus. It can be one of the following:

Binary. This is the default. You must choose Binary if you selected “Serial
compare” as a comparator.

Octal
Decimal
Hexadecimal

<token_set_names>. To select <token_set _name>, you must have
created token sets in Reveal Inserter. See the Reveal Inserter Help for
information on this procedure.

Value Specifies the comparison value. This value is the pattern of highs and
lows that you want on the trigger unit that will initiate collection of the trace
data. The default is binary.

If you selected a <token set name> in the Radix column, a drop-down menu
opens in the Value column. This menu lists all the tokens that you entered in
the Token Manager dialog box for the chosen token set. Select any name.
You can use “x” for a don’t-care value in the Value column if you selected
Binary, Octal or Hexadecimal in the Radix column and if you selected the ==,
1=, or serial compare operators in the Operator column.

Trigger Expression

The parameters in the Trigger Expression section of the Trigger Signal Setup
tab enable you to configure the trigger expressions, which are combinatorial,
sequential, or both combinatorial and sequential equations of trigger units that
define when the collection of the trace data samples begins. You can add up
to 16 trigger expressions. Each trigger expression consists of the following
information:

Enable Determines whether the trigger expression is active when the
triggering is enabled by the Run button.

Name Specifies the name of the trigger expression. The default name is
TE<number>, where <number> is a sequential number. The first trigger
expression is named TE1 by default.

Expression Specifies the trigger units and the operator or operators that
indicate the relationship of one trigger unit to other trigger units. You can use
the following operators to connect trigger units:

& (AND) — Combines trigger units using an & operator.
| (OR) — Combines trigger units using an OR operator.

A (XOR) — Combines trigger units using a XOR operator.

Reveal User Guide for Radiant Software 113

REVEAL ANALYZER : User Interface Descriptions

! (not) — Combines a trigger unit with a NOT operator.
Parentheses — Groups and orders trigger units.

THEN - Creates a sequence of wait conditions. For example, the
following statement:

TUl THEN TU2
means “wait for TU1 to be true,” then “wait for TU2 to be true.”

The following expression:

(TULl & TU2) THEN TU3

means “wait for TU1 and TUZ2 to be true, then wait for TU3 to be true.”
Reveal supports up to 16 sequence levels.

NEXT — Creates a sequence of wait conditions, like THEN, except the
second trigger unit must come immediately after the first. That is, the
second trigger unit must occur in the next clock cycle after the first trigger
unit.

(count) — Inserts a counter into a sequence. Sequences are groups of
combinatorial operations connected by THEN operators. The counter
counts how many times a sequence must occur before a THEN
statement. The maximum value of this count is determined by the Max
Event Counter value. It must be specified in Reveal Inserter and cannot
be changed in Reveal Logic Analyzer.

Here are some examples.
The following statement:
TULl #5 THEN TU2

means that TU1 must be true for five consecutive or non-consecutive
sample clocks before TU2 is evaluated. The counts do not have to be
sequential. TU1 does not have to be true five times in a row to satisfy this
condition. It only has to be true fives times to meet this condition.

The next expression:
(TU1l & TU2)#2 THEN TU3

means “wait for the second occurrence of TU1 and TU2 being true, then
wait for TU3.”

The last expression:
TU1 THEN (1)#200

means “wait for TU1 to be true, then wait for 200 sample clocks.” This
expression is useful if you know that an event occurs a certain time after a
condition.

You can only use one count (#) operator per sequence. For example, the
following statement is not valid, because it uses two counts in a sequence:

TULl #5 & TU2 #2

(consecutive count) — Inserts a counter into a sequence. Like # (count)
except that the trigger units must come in consecutive clock cycles. That
is, one trigger unit immediately after another with no delay between them.

Reveal User Guide for Radiant Software 114

REVEAL ANALYZER : User Interface Descriptions

Sequence Depth Specifies the number of sequences, which are groups of
combinatorial operations connected by THEN operators, used in a trigger
expression. Reveal supports up to 16 sequence levels.

For example, in the following figure, TE1 consists of one sequence, since it
has no THEN operator. It therefore has a sequence depth of 1. TE2 has two
sequences, TU1|TU2 and TU3 & TUZ2, linked by a THEN operator, so its
sequence depth is 2. TE3 has three sequences:

TU1 & TU3 & TU2 followed by THEN
TU1 followed by THEN
TU3

TES3 therefore has a sequence depth of 3.

Figure 17: Trigger Expression Sequences

Enable ||Name Expression q Max Seq Max Event Counter:
Depth Depth

= TE1 TU1 & TUZ 1 2 1
= TEZ2 TUA|TUZ THEM TU3 & TUZ 2 2 1
= TEZ TU1 & TUZ & TUZ THEN TU1 THEHW TUZ 3 4 1

Max Sequence Depth Specifies the maximum number of sequences, or
trigger units connected by THEN operators, that can be used in a trigger
expression. You can set this option only in Reveal Inserter.

Max Event Counter Determines the maximum size of the count in the
trigger expression (the count is how many times a sequence must occur
before a THEN statement). You can set this option from 1 to 65,536. The
maximum is 65,536. The default is 1. You can set this option only in Reveal
Inserter.

AND All Indicates that the conditions specified by all the trigger expressions
must be met before the trace data is captured.

OR All Indicates that the conditions of one of the trigger expressions must
be met before the trace data is captured. This option is the default.

Samples Per Trigger Specifies the number of samples to collect per trigger.
The minimum is 16. The maximum is the trace buffer depth chosen in Reveal
Inserter when the core is generated. The values available in the Samples Per
Trigger box also change according to the number of triggers. If the number of
triggers is set higher than 1, the samples per trigger multiplied by the selected
number of triggers cannot exceed the trace buffer depth. Reveal Logic
Analyzer adjusts the Samples Per Trigger value, if necessary. The default
number of samples per trigger is the sample buffer depth. For example, if the
sample buffer depth is 2048, the default sample per trigger is 2048.

Number of Triggers Specifies the trace buffer depth divided by the
samples per trigger. The trace buffer depth is specified by the setting of the
Buffer Depth parameter in the Trace Signal Setup tab in Reveal Inserter. The
default is 1.

Reveal User Guide for Radiant Software 115

REVEAL ANALYZER : User Interface Descriptions

Trigger Position

Pre-selected Position Specifies the position of the trigger point in the data
stream. For example, 32/512 means the trigger point is the 32nd sample in
the trace memory that has a total depth of 512 samples (from sample 0 to
sample 511). You can use one of the following samples in the Position box:

Pre-Trigger — Sets the trigger point at 1/16 of the total number of samples
in the trace memory. For example, when the trace memory has a total
number of 512 samples, 1/16 of these would be 32. The 32 setting means
that 32 data samples are collected before the trigger occurs. The Pre-
Trigger setting is helpful if you are mostly interested in the data states that
occurred after the trigger event. Using the example just given, only 32
samples of data (from sample 0 to sample 31) that occur before the trigger
are stored, but 480 samples of data (from sample 32 to sample 511) that
occur after the trigger are stored.

Center-Trigger — Sets the trigger point at 50 percent (1/2) of the total
number of samples in the trace memory. For example, when the trace
memory has a total number of 512 samples, 50 percent of these would be
256, so the trigger point would be set at 256. The Center-Trigger setting
provides equal amounts of trace data before and after the trigger event.
Using the example just given, 256 samples of data (from sample 0 to
sample 255) that occur before the trigger are stored, and 256 samples of
data (from sample 256 to sample 511) that occur after the trigger are
stored.

Post-Trigger — Sets the trigger point at 15/16 of the total number of
samples in the trace memory. For example, when the trace memory has a
total number of 512 samples, 15/16 of these would be 480. The Post-
Trigger setting is helpful if you are mostly interested in the data states that
occurred before the trigger event. Using the example just given, 480
samples of data (from sample 0 to sample 479) that occur before the
trigger are stored, but only 31 samples of data that occur after the trigger
are stored.

Note

The actual trigger position in the captured samples may not match the trigger position
that you set in the Trigger Signal Setup tab. For example, if the trigger condition occurs
before the trigger position set in the Trigger Signal Setup tab, the actual trigger position
is earlier than that specified in the Trigger Signal Setup tab. Since the trigger occurred
before enough samples were captured to fill the buffer, both the position is different
and the total number of captured samples will be less than the set value. This condition
is more likely to occur using the post-trigger setting. To avoid this, do not use a trigger
condition that occurs immediately or very frequently.

User-Selected Position Enables you to choose the trigger point from
certain points selected by the tool.

Trigger Position Shows the position of the trigger point in relation to the
number of samples per trigger. It is in read-only notation at the very bottom of
the Trigger Position section. For example, if you selected the Center-Trigger
setting for the Pre-selected Position option and you selected 1024 samples in

Reveal User Guide for Radiant Software 116

REVEAL ANALYZER : User Interface Descriptions

the Samples Per Trigger box, the Trigger Position field would display a trigger
point equal to half the samples, 512/1024.

Trigger Expression and Trigger Unit Naming

Conventions

You can rename trigger units and trigger expressions. The names can be a
mixture of lower-case or upper-case letters, underscores, and digits from 0
through 9. The first character must be either an underscore or a letter. The
names can be any length.

LA Waveform Tab

Waveforms are presented in a grid layout as shown in Figure 18 along with
several features to help you find and analyze the data.

Figure 18: Elements of the LA Waveform View

Bus/Signal column Data column Waveform display

Timestamp Sample index Fointer

158 20 0z Z5d 26 Z08 2
Bus/Signal Data 016 0:1g 020 mzz 024 026 0
+- TU1 36 v
H- TUZ 05 »
+- T3 54w
= cout 36 v
cout:0 u]
cout:l 1
cout:2 1
cout:3 u]
cout:4 1
cout:S 1
cout:G u]
cout:? u]
aa/reveal_debug_count_LAO_net| 0

Trigger cursor Active cursor User cursor

Bus/Signal Column Displays the names of the trace buses and signals in
the selected module.

Note:

When you copy and paste a duplicate or incorrect signal, you can delete it using either
of the following keyboard shortcuts:

Shift + Delete
Ctrl + X

~

Reveal User Guide for Radiant Software 11

REVEAL ANALYZER : User Interface Descriptions

Data Column Displays the value of the bus or signal at the active cursor (a
solid, red line that you can set in the waveform display). Buses also have a
drop-down menu for setting the radix used in the Data column and in the
waveform display. The menu includes token sets whose bit width matches the
bus. See “Setting the Trace Bus Radix” on page 81.

Waveform Display Displays the trace data in waveform format. When there
is room, bus values are included the display using the radix set in the Data
column. You can zoom in and out, pan, and jump to various points.

The waveform display includes several other elements to help you read the
display and analyze the data:

Timestamp. The gray bar at the top of the display shows “timestamps” of
the trace frames (actually, a simple count of the clock cycles). Timestamps
are shown only if the Timestamp trace option was selected for the module
in Reveal Inserter. See “Adding Time Stamps to Trace Samples” on

page 81.

Sample Index. The green bar near the top of the display shows a count of
triggers and trace samples within each trigger’'s data set. The sample
indexes have the form <trigger>:<sample>. For example, 0:2 indicates the
first trigger and the third trace sample for that trigger (the counts are zero-
based). 2:10 indicates the third trigger and the eleventh trace sample for
that trigger.

Pointer. Ared line that cuts across the timestamp and sample index bars,
the pointer follows the horizontal movement of the mouse pointer across
the waveform display. Use the pointer to see where you are in time as you
examine the waveform.

Cursors. Vertical lines cutting through all the signals, cursors mark
moments in the waveform. See “Placing, Moving, and Locating Cursors”
on page 109.

Viewing and Saving Waveforms

After capturing data, you can view the trace data in waveform format in the LA
Waveform tab. Whenever the trace stops, Reveal Analyzer reads the trace
samples and automatically updates the signal waveforms.

To view a waveform:
1. Click the LA Waveform tab.

2. Choose a module from the pulldown menu in the Reveal Analyzer tool
bar.

Sometimes the waveform includes fewer clock cycles than you expect; in
particular, fewer before the trigger. This happens if the trigger occurs so
quickly after the test starts that there are not enough clock cycles before the
trigger to fill that part of the trace buffer.

You can also save the captured waveform as an RVA file and reload it when
you reopen Reveal Analyzer. The saved waveform carries most of the

Reveal User Guide for Radiant Software 118

REVEAL ANALYZER : Using the Memory Controller Debug

customization that you applied such as color changes, bus grouping, cursors,
and others (except for zoom in/out information.)

To save a waveform:

1. Choose File > Save <file> As.
The Save Reveal Analyzer File dialog box appears.

2. Browse to the directory in which to save the project.
Make sure to save the .rva in the same directory as .rvl project file.
In the File name box, type the file name.

4. Click Save.

Using the Memory Controller Debug

The memory controller debug feature for Avant devices provides an
interactive and targeted method for diagnosing and resolving DDR interface
issues or stress-testing your design.

Initiate various types of memory training routines such as write leveling,
read gate training, and VREF training.

Write directly to DDR mode registers and fine-tuning memory parameters
such as drive strength, termination, and on-die VREF settings.

Immediately assess the impact of your changes through the Margin
Report and VREF Report. These are visual and quantitative feedback on
signal margins and voltage reference calibration.

Stress-test your design, even if not currently experiencing issues. You can
create traffic patterns based on your use cases. Test different types of
memory access patterns and see how the memory controller handles
them.

The following section describes the memory controller debug feature. For
complete information on the IP, see FPGA-IPUG-02195, DDR Memory PHY
Module.

Enabling the Memory Controller Debug

Enabling the memory controller debug is a two-step process:
Enable Reveal debug during IP configuration

Enable memory controller debug in Reveal Inserter

To enable Reveal debug during IP configuration:
1. In the Module/IP tree, select the component to generate.

2. Configure your settings in the Module/IP Block Wizard.

Reveal User Guide for Radiant Software 119

https://www.latticesemi.com/view_document?document_id=53672
https://www.latticesemi.com/view_document?document_id=53672

REVEAL ANALYZER Using the Memory Controller Debug

4.

Check the Enable Reveal Debug option.

2] Module/IP Block Wizard X
Configure Component from IP ddr_mc Version 2.6.0.01

Set the follawing parameters to configure this component

Diagram Ipddrd Configure IP

\pddr4 General Memory Device Timing Training Settings Example Design
Property Value F
ddr_ca_o[5:0 e
ddr_ck_o[1:0; Interface Type LPDDR4
—EAP B.SO ddr_cke_o[0:0 110 Buffer Type WVSTLTTI
—[HAx1s0 ddr_cs_o[0:0 DDR Command Frequency (MHz) 1066
—faclk i ddr_dmi_io[3:0
—areset_n_i ddr_dg_io[31:0 Erabiwbbl
—pclk_i ddr_dqs_io[3:0;
—pll_refclk_i ddr_reset_n_ot
—{pli_rst_n_i init_done_o Enable Revesl Debug =
—preset_n_i irg_o vLﬂPl
—{rst_n_i pll_lock_o—
sclk_a— Reference Clock Frequency (MHz) 100.0
trn_err_o—
~ Memory Configuration
ddr_mc DOR Density (per Channel) b
» 7| DDRBusWidth 2

No DRC issues are found.

Generate Cancel

Click Generate.

To automatically import the .ipx file into your project when the component
is generated, select Insert to project in the Check Generating Result
dialog box.

Click Finish.

To enable the memory controller debug in Reveal Inserter:

1.

2
3
4.
5

1.

Open Reveal Inserter. select RTL (Pre-Synthesis) in Debug Stage.
Click Finish.

In Datasets, click Add Controller to add a Controller core.

Click the Hard IP Setup tab.

Under Hard IP Setting, enable the IP by selecting its check box on the
Enabled column.

Click the 5 Insert Debug button.
In the Insert Debug to Design dialog box, select the modules to insert.
Select Activate Reveal file in design project.

If the .rvl file is not active in the design project, the Reveal modules will not
be included during synthesis.

Click OK.

. In the Save Reveal Project dialog box, indicate the file name and click

Save.
The active .rvl file is listed in the File List view under Debug Files.

Click Export Files to run the design flow and insert the Reveal controller.

Reveal User Guide for Radiant Software

120

REVEAL ANALYZER : Using the Memory Controller Debug

Downloading the Bitstream and Starting a Reveal
Analyzer Project

If the correct setup process is followed and Reveal inserter is properly
configured, download the bitstream and start a new project in Reveal
Analyzer/Controller.

Connect the board with the Avant device to your computer. Using Radiant
Programmer, download the bitstream to the board. Refer to “Programming the
FPGA” on page 435.

After downloading the bitstream and making sure that there are no errors,
open the Reveal Analyzer/Controller to create a new project.

Running Calibration

To open the memory controller debug interface and run calibration:

1. In Reveal Analyzer/Controller, choose top_Controller in the drop-down
menu.

2. Click the Hard IP tab.

You can separate the tab by clicking the detach icon at the upper right
corner.

3. The Memory Interface Calibration tab opens.

You can view the status of various memory controller debug tuning tests
such as command bus training, write leveling, read training, and write
training. You can also read and write from the mode registers of their
memory controller IP.

4. Click the Run button.

This shows the calibration status, calibration margin report, current ODT,
and VREF settings.

The Calibration Margin Report tab shows the margin for various DQS/DQ,
command/control, and address signals.

For detailed information on the available options, refer to FPGA-IPUG-
02195, DDR Memory PHY Module.

Reveal User Guide for Radiant Software 121

https://www.latticesemi.com/view_document?document_id=53672
https://www.latticesemi.com/view_document?document_id=53672

REVEAL ANALYZER

Using the Memory Controller Debug

=]
~ LPDDRI

Address ((x60000000 ~ O0x60D03FFF)

Memory Interface Calibration
Calibration Status
@ Command Bus Training
© write Leveling
© Read Training
@ write Training

(@ Self-Calibrating Logic
Training

(@ Bit-Level Tim Sueep
Training

DT Settings
Current DQ ODT | RZQ/4
Current CA ODT | RZQ/2

NewDQODT | Disable

New CA ODT | Disable

VREF Settings

New DQ VREF | [

New CA VREF | [

@ paso
© pas1
© pas2
@ pas3

@ Rank0
@ Rank1

Run

Current DQ'VREF | | (25) 220mV

Current CAVREF | | (25) 220mV

Instance Hierarchy: u_lpddrd/Iscc_me_avant_inst/RVL_APB.u_ddr_dbg

Calibration Margin Report

»

»

»

DQS/DQY/DM
Signals

Daso
o]

Read Margin
(ps)

330
365

330
365
330
330
365
313

Read Delay
(# of Taps)

VREF IN
(mv)

220
220
220
220
220
220
220
220
220

Write Margin
(ps)

374
410
388
374

3%
366
3%
66

Write Delay
(% of Taps)

51
56
53
51
51

50

50

VREF OUT
(mv)

20
20
220
220
220
220
220
220
220

When you run the calibration, a .csv file of the results is automatically

saved in the directory of your .rva file.

Note

This feature is repeatable with TCL commands, with or without the GUI.

Reveal User Guide for Radiant Software

122

REVISION HISTORY

Revision History

The following table provides the revision history for this document.

Date
10/10/2025
06/26/2025
03/31/2025
12/20/2024
06/28/2024
03/29/2024
11/27/2023
06/5/2023
02/27/2023
11/7/2022
06/6/2022
12/7/2021
05/1/2020
10/23/2019

Version
2025.1.1
2025.1
2024.2.1
2024.2
20241
2023.2.1
2023.2
2023.1
2022.1.1
20221
3.2

3.1

2.1

2.0

Description

Updated to reflect changes in Radiant 2025.1.1 software.

Updated to reflect changes in Radiant 2025.1 software.

Updated to reflect changes in Radiant 2024.2.1 software.

Updated to reflect changes in Radiant 2024.2 software.

Updated to reflect changes in Radiant 2024.1 software.

Updated to reflect changes in Radiant 2023.2.1 software.

Updated to reflect changes in Radiant 2023.2 software.

Updated to reflect changes in Radiant 2023.1 software.

Updated to reflect changes in Radiant 2022.1.1 software.

Updated to reflect changes in Radiant 2022.1 software.
Updated to reflect changes in Radiant 3.2 software.
Updated to reflect changes in Radiant 3.1 software.
Updated to reflect changes in Radiant 2.1 software.

Initial Release. Content was previously Appendix A of
“Radiant Software User Guide.”

Reveal User Guide for Radiant Software

123

	Introduction
	Reveal Inserter
	Using JTAG Debugger
	Debug Flows
	Input and Output Files
	Limitations
	Getting Started
	Starting Reveal Inserter
	Creating a New Reveal Inserter Project
	Opening an Existing Reveal Inserter Project
	Using the Reveal Controller Simulation Model

	Managing the Cores in a Project
	Renaming a Core
	Removing a Core

	Viewing Signals in the Design Tree Pane
	Searching for Signals
	Setting Up the Trace Signals
	Selecting the Debug Logic Core
	Selecting the Trace Signals
	Viewing Trace Signals and Buses
	Grouping Trace Signals into a Bus
	Ungrouping Trace Signals in a Bus
	Removing Signals and Buses from the Trace Data Pane
	Renaming a Bus
	Setting Required Sample Parameters
	Power-on Reset (POR) Debug
	Setting Sample Options

	Setting Up the Trigger Signals
	Triggering
	Adding Trigger Units
	Renaming Trigger Units
	Setting Up Trigger Units
	Removing Trigger Units
	Adding Trigger Expressions
	Renaming Trigger Expressions
	Setting Up Trigger Expressions
	Removing Trigger Expressions
	Setting Up Virtual Switch/LED Settings
	Configuring User Memory Setup
	Configuring User Control Register Setup
	Configuring User Status Register Setup
	Configuring Hard IP Setup

	Checking the Debug Logic Settings
	Saving a Project
	Inserting the Debug Logic Cores
	Removing Debug Logic from the Design
	Closing a Project
	Exiting Reveal Inserter
	Performing Logic Analysis with Reveal Analyzer
	Using JTAGhub
	JTAGhub Input and Output Ports
	JTAGhub Ecosystem
	JTAGhub Usage and Design Examples
	JTAGhub Addressing Scheme
	JTAGhub CORES
	Setting Parameters and Connectivity
	JTAG BYPASS Instruction in SOFTJTAG Chain

	Using JTAGMON
	JTAGMON Input and Output Ports
	JTAGMON Design Flow

	User Interface Descriptions

	Reveal Analyzer
	About Reveal Analyzer
	Reveal On-Chip Debug Design Flow
	Inputs
	Outputs

	Inserting the Debug Logic
	Mapping, Placing, and Routing the Design
	Generating a Bitstream File
	Connecting to the Evaluation Board
	Downloading a Design onto the Device
	Starting Reveal Analyzer
	Starting with a New File
	Starting with an Existing File
	Changing the Cable Connection

	Selecting a Reveal Analyzer Core
	Setting Up the Trace Signals
	Setting the Trace Bus Radix
	Adding Time Stamps to Trace Samples

	Setting Up the Trigger Signals
	Renaming Trigger Units
	Setting Up Trigger Units
	Renaming Trigger Expressions
	Setting Up Trigger Expressions
	Setting Trigger Options

	Creating Token Sets
	Debugging with Reveal Controller
	Performing Logic Analysis
	Data Capture with Sample Enable
	Common Error Conditions

	Stopping a Logic Analysis
	Using Manual Triggering
	Viewing Waveforms
	Viewing Logic Analysis

	Adjusting the Waveform Display
	Panning
	Zooming In and Out

	Specifying the Clock Period
	Placing, Moving, and Locating Cursors
	Counting Samples
	Exporting Waveform Data
	Saving a Project
	Exiting Reveal Analyzer
	User Interface Descriptions
	LA Trigger Tab
	LA Waveform Tab
	Viewing and Saving Waveforms

	Using the Memory Controller Debug

	Revision History

