
Lattice Radiant TCL Scripting
User Guide

June 26, 2025

Lattice Radiant TCL Scripting User Guide 2

Copyright
Copyright © 2025 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. QuestaSim is a trademark or registered trademark of Siemens Industry
Software Inc. or its subsidiaries in the United States or other countries. All other
trademarks are the property of their respective owners.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

http://www.latticesemi.com/legal

Lattice Radiant TCL Scripting User Guide 3

Type Conventions Used in This Document
Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

Lattice Radiant TCL Scripting User Guide 4

Radiant Tcl User Guide
Contents

Chapter 1 Tcl Overview 6
Tcl Scripting Language 6

Chapter 2 Getting Started with Tcl Scripting in Radiant 10
Understanding the Radiant Design Flows 11
Lattice Implementation Directory 12
Valid Characters in File Names and Project Paths 13
Radiant Tcl Scripting Modes 14

GUI Mode 14
Pure Interactive Shell Mode 15
Interactive Shell/GUI Mode 16
Commands Unavailable in GUI Mode but Available in Pure Tcl Mode 16

Opening the GUI Integrated Tcl Console 17
Opening the Standalone Tcl Console 18
Creating a Tcl Script 19
Invoking a Tcl Script 20
Getting Help 21

Chapter 3 Tcl Scripting Techniques in Radiant 22
Tcl Scripts and Batch Scripts 22
Using Reports in Creating Tcl Scripts 23
Using Variables in Tcl Scripts 24

Creating Variables and Setting their Values 24
Referencing a Variable 25

Using Lists in Tcl Scripts 26
Creating a List in Tcl 26
Managing a List in Tcl 27

Controlling Loops in Tcl Scripts 28
Accessing Files 30

RADIANT TCL USER GUIDE CONTENTS

Lattice Radiant TCL Scripting User Guide 5

Calling an External Program 32
Error Handling 33
Defining Reusable Procedures 34
Accessing and Modifying Design Objects 34

Chapter 4 Practical Examples and Use Cases 36
Example 1: Automating a Basic Design Flow 36
Example 2: Adding Source Files to a Project 37
Example 3: Tcl-based Timing Analysis 38
Example 4: Automating Device Programming 39
Example 5: Generating Reports and Documentation 40

Implementation Reports 40
Custom Timing Analysis (TRACE) 41
Parse Logs 41

Example 6: Advanced Scripting Examples 42
Batch Processing of Multiple Designs 42
Tcl Script with Error Handling 43

Chapter 5 Troubleshooting and Best Practices 44
Common Errors and How to Fix Them: 44
Debugging Tcl Scripts 45
Best Practices for Writing Readable and Maintainable Tcl Scripts 46

Chapter 6 Tcl Command Syntax Reference 48

Chapter 7 Definition of Terms 50

Revision History 51

TCL OVERVIEW : Tcl Scripting Language

Lattice Radiant TCL Scripting User Guide 6

Chapter 1

Tcl Overview

Radiant supports standard Tcl and extended Radiant-specific Tcl commands.
These offer added control and flexibility so you can perform a wider range of
tasks that the software is designed to handle. You can find detailed
information on these commands in the Radiant Help.

Tcl Scripting Language

Tcl is a scripting language that allows you to interface directly with the Radiant
design tools. Commands can be executed interactively or written in scripts. By
creating scripts, you can implement various approaches in your design and
improve your productivity. It is a standard application programming interface
(API) among most EDA vendors to control and extend their applications.

Tcl scripts consist of commands. A command is a fundamental unit of
execution used to perform actions, manipulate data, and control the flow of a
Tcl script. Here are some key aspects of commands in Tcl:

 A Tcl command typically consists of a command name followed by one or
more arguments, separated by spaces. The first word identifies the
command, and all subsequent words are passed to the command as
arguments.

commandName arg1 arg2 arg3

For example:

create_clock -period <period_value> [-name <clock_name>]
[-waveform {<value1 value2>}]

 The commands are separated by semicolons or new lines. Each
command is a string of words separated by spaces or tabs.

For example:

prj_open C:/test/iobasic_radiant/io1.rdf
prj_run_map

Note
To check the currently supported version of Tcl in Radiant, go to
\tcltk\windows\lib in your Radiant installation folder.

TCL OVERVIEW : Tcl Scripting Language

Lattice Radiant TCL Scripting User Guide 7

 A word is a string that can be a single word, or multiple words within
braces, {}, or multiple words within quotation marks, "". Semicolons,
brackets, tabs, spaces, and new-lines, within quotation marks or braces
are treated as ordinary characters. However, the backslash, \, is treated
as a special character even within braces and quotation marks.

Table 1: Tcl Language Features
String Description

; or <newline> Command separator

\  Escape sequences: The backslash is followed by
specific characters to produce special characters
like a newline (\n), tab (\t), or quotes (\").

 Line continuation: You can use the backslash at the
end of a line to indicate that the command continues
onto the next line.

"hello $a" This is a double-quoted string with substitution. When
you use double quotes, Tcl performs variable
substitution—replacing the $a with the value of the
variable a.

For example:

set a “world”
puts “hello $a”

Output:

hello world

In this case, Tcl substitutes $a with the value of a, which
is "world", resulting in "hello world".

If the variable a is not defined, Tcl raises an error or
interprets $a literally.

{hello $a} If you want to prevent substitution, use braces {}
instead:

For example”

puts {hello $a}

Output:

{hello $a}

TCL OVERVIEW : Tcl Scripting Language

Lattice Radiant TCL Scripting User Guide 8

{*}word The {*} operator is used for argument expansion. It
allows you to expand the elements of a list into
individual arguments for a command. Essentially, it
takes a list and treats each element as separate
arguments.

For example:

set myList {one two three}

puts {*}$myList

Output:

One

Two

Three

The {*} operator is especially useful for commands
where you need to pass multiple arguments. You can
handle lists without manual looping or concatenation.

{*}word Command substitution involves using square brackets []
to execute a command and substitute its output into a
larger expression or command.

For example:

set result [expr 5 + 10]

puts “The result is $result”

Output:

The resilt is 15

 Command within brackets: [expr 5 + 10] executes
the expr command, which evaluates the arithmetic
expression 5 + 10.

 Substitution: The result of the command (15) is
substituted into the variable result.

Command substitution allows you to dynamically
incorporate the results of one command into another,
making scripts more concise and flexible.

Table 1: Tcl Language Features
String Description

TCL OVERVIEW : Tcl Scripting Language

Lattice Radiant TCL Scripting User Guide 9

For a comprehensive guide on general Tcl/Tk commands, visit www.tcl-
lang.org.

 the Tcl/Tk Documentation section provides detailed reference materials
and manuals for Tcl/Tk; and

 the Tcl/Tk Versions Overview highlights the features and improvements in
different Tcl/Tk versions.

$name Substitution with the value of a scalar variable with a
given name. This refers to accessing and using the
value stored in the variable within a command. This is
achieved using the $ symbol followed by the variable
name.

For example:

set name “Tim”

puts “Hello, $name”

Output:

Hello, Tim

This substitution allows Tcl to dynamically incorporate
the value of a variable into commands or expressions.

$name(index) Substitution with the value of a scalar variable with a
given name. This refers to accessing and using the
value stored in the variable within a command. This is
achieved using the $ symbol followed by the variable
name.

For example:

set name “Tim”

puts “Hello, $name”

Output:

Hello, Tim

This substitution allows Tcl to dynamically incorporate
the value of a variable into commands or expressions.

Table 1: Tcl Language Features
String Description

https://www.tcl-lang.org/doc/
https://www.tcl-lang.org/software/tcltk/choose.html
https://www.tcl-lang.org/software/tcltk/choose.html

GETTING STARTED WITH TCL SCRIPTING IN RADIANT :

Lattice Radiant TCL Scripting User Guide 10

Chapter 2

Getting Started with Tcl
Scripting in Radiant

Although Radiant provides a powerful and intuitive GUI for designing and
implementing your projects, when it comes to complex and repetitive tasks,
Tcl scripting offers a higher level of automation and control. These are crucial
in the fast-paced and highly competitive nature of FPGA development:

 Rapid Prototyping: Quick testing and iteration of designs.

 Parallel Processing: Simultaneous execution of multiple operations.

 Reconfigurability: Quick reprogramming of functionality.

 Automated debugging: Built-in commands can be used to add
breakpoints, watchpoints, and perform single-step tracing, You can also
automate interaction with debuggers such as GDB (GNU Debugger).

In Tcl, the actions in each tool's GUI has an equivalent Tcl command and you
can work entirely from the command line. By writing Tcl scripts, you can:

 Automate repetitive tasks in your design flow, such as synthesis, mapping,
place & route, and bitstream generation.

 Ensure repeatability and consistent results across multiple design
iterations or when working in a team environment.

 Explore design options faster and with greater ease. You can experiment
with different synthesis and implementation settings to optimize your
design for performance or resource utilization.

 Version control your design flow. Store your design flow as code, making it
easy to track changes and revert to previous configurations.

 Seamlessly integrate Radiant into larger design automation flows. Tcl
scripts can be used to interface with other Electronic Design Automation
(EDA) tools, enabling seamless data exchange and process coordination.
This integration helps in creating a cohesive and efficient design workflow.

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Understanding the Radiant Design Flows

Lattice Radiant TCL Scripting User Guide 11

Understanding the Radiant Design Flows
Radiant Tcl supports two design flows: project flow and non-project flow.

In project flow, you can:

 Start a new project or open an existing one.

 Add, delete, or list files such as RTL, constraints, and strategy settings.
You can save the project anytime as an .rdf file.

In non-project flow, you can:

 Use specific commands to start a non-project flow from an existing project

 Use a .udb database file as input to continue the design process.

Key Differences:

 Storage: Project flow saves designs as disk files, allowing different
strategies for the same project. Non-project flow keeps designs in
memory, accessible and changeable with commands.

 File Management: Project flow checks file timestamps for changes and
requires rerunning design stages if files change. Non-project flow uses a
.udb file without timestamp checks.

 Design Stages: Non-project flow requires running design stages
sequentially (e.g., placement before routing). Project flow can run stages
automatically from the current to the target stage.

 Implementation: Project flow uses implementation strategies, while non-
project flow uses implementation options.

For more information about the design flows, refer to the following Radiant
Help topics under Reference Guides > Tcl Command Reference Guide >
Running Radiant Tcl.

 Understanding Design Flows

 Running Project Flow

 Running Non-Project Flow

 Switching From Project Flow to Non-Project Flow

 Running Milestone Results in Non-Project Flow

 Opening GUI in Non-Project Flow

 Design Flow Examples

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Lattice Implementation Directory

Lattice Radiant TCL Scripting User Guide 12

Lattice Implementation Directory

In non-project flow, the lattice_workdir folder keeps the intermediate files
during the run. The directory is created under your implementation directory.

In lattice_workdir, you can find map, plc, and rte subdirectories which keep
the intermediate run results for technology map (map), placement (plc), and
routing (rte). For example, the placement log file <file_name>.par is located
under the plc subdirectory.

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Valid Characters in File Names and Project Paths

Lattice Radiant TCL Scripting User Guide 13

Valid Characters in File Names and Project Paths

The following characters are valid for use in file names and project paths:

 Alphabet (A - Z; a - z)

 Number (0 - 9)

 Underscore (_)

 Minus (-)

 Space ()

Notes
 In Windows, brackets [] in file names are acceptable but not recommended.

 In Linux, these symbols in file names are acceptable but not recommended:
Vertical bar (|); Backslash (\); Greater than sign(>); Question mark (?); Less than
sign (<); Colon (:); Asterisk (*); and Quotation mark (").

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Radiant Tcl Scripting Modes

Lattice Radiant TCL Scripting User Guide 14

Radiant Tcl Scripting Modes
You can work with Radiant Tcl scripts in three modes:

 GUI Mode

 Pure Interactive Shell Mode

 Interactive Shell/GUI Mode

GUI Mode
You can access the Tcl Console from within the Radiant GUI. The GUI mode
is more user-friendly and visual, making it easier to manage projects and view
statuses, but it has limitations regarding certain Tcl commands.In this mode.
The Tcl Console only accepts commands related to the current project you
are working on. It does not accept general or non-project-specific commands.
The radiant command is used to start this mode.

In GUI mode, Radiant manages the project process and status, but it does not
retain the design data in memory. This means that while you can use Tcl
commands within the GUI, any commands that require access to design data
are unavailable. See “Commands Unavailable in GUI Mode but Available in
Pure Tcl Mode” on page 16.

If you need to run commands that are not directly related to your project, use
a different mode, such as the pure interactive shell mode (radiantc) or the
interactive shell/GUI mode (radiantc -gui).

A comprehensive list of all radiant Tcl commands, with a brief description of
each command and its options is available in the Radiant Help.

The Tcl commands are organized into major categories:

 Radiant Software Tcl Console Commands

 Radiant Software Timing Constraints Tcl Commands

 Radiant Software Physical Constraints Tcl Commands

 Technology Mapping Tcl Commands

 Synthesis Tcl Command

 Design Object Tcl Commands

 System Tcl Commands

 Radiant Software Project Tcl Commands

 Device Tcl Commands

 Place & Route Tcl Commands

 Device Tcl Commands

 Place & Route Tcl Commands

 Simulation Libraries Compilation Tcl Commands

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Radiant Tcl Scripting Modes

Lattice Radiant TCL Scripting User Guide 15

 Reveal Inserter Tcl Commands

 Reveal Analyzer Tcl Commands

 Power Calculator Tcl Commands

 Engineering Change Order Tcl Commands

 IP Version Update Tcl Commands

 Message Control Tcl Commands

 Physical Synthesis Tcl Commands

 Physical Synthesis Tcl Commands

For details on these commands, refer to this Radiant Help topic: Reference
Guides > Tcl Command Reference Guide > Radiant Software Tool Tcl
Command Syntax.

Pure Interactive Shell Mode
While GUI mode offers ease of use and visual management, pure Tcl mode
provides comprehensive access to all Tcl commands, making it ideal for
detailed scripting and automation tasks

When working in pure interactive shell mode and specify a Tcl file, the
software runs in batch mode. This means it will automatically execute all the
commands in the specified Tcl file without needing any further user
interaction. Use the radiantc command to start this mode.

In this mode, you can include both project-specific commands (related to a
particular project you are working on) and non-project commands (general
commands that are not tied to any specific project). This flexibility allows you
to automate a wide range of tasks, whether they are related to a specific
project or more general operations.

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Radiant Tcl Scripting Modes

Lattice Radiant TCL Scripting User Guide 16

Interactive Shell/GUI Mode
This mode provides the flexibility to switch between a command line interface
and a graphical interface as needed, making it convenient for different types
of tasks and workflows.

1. Starting in Shell Mode

Radiant software starts in an interactive shell mode. This means you can
enter and execute Tcl commands directly in the command line interface.
Use the radiantc -gui command to start this mode.

2. Switching to GUI Views

While in shell mode, you can use the gui_start command to open the GUI
view. This switches the interface from the command line to the GUI.

3. Returning to Shell Mode

After you are done using the GUI views, you can close them. Once the
GUI views are closed, the software automatically returns to the shell
mode.

Commands Unavailable in GUI Mode
but Available in Pure Tcl Mode
Due to the nature of GUI mode, the following categories of Tcl commands are
unavailable because they require access to design data. These are available
in pure Tcl mode.

 Bitstream Generation Tcl Commands: Commands related to generating
the bitstream file for the FPGA.

 Design Tcl Commands: Commands that manipulate or query the design
data.

 Device Tcl Commands: Commands that interact with the FPGA device
settings.

 Technology Mapping Tcl Commands: Commands that map the design
onto the FPGA technology.

 Placement Tcl Commands: Commands that handle the placement of
design elements on the FPGA.

 Routing Tcl Commands: Commands that manage the routing of
connections between design elements.

 Timing Analysis Tcl Commands: Commands that perform timing analysis
on the design.

For details on these commands, refer to this Radiant Help topic: Reference
Guides > Tcl Command Reference Guide > Radiantc TCL Commands.

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Opening the GUI Integrated Tcl Console

Lattice Radiant TCL Scripting User Guide 17

Opening the GUI Integrated Tcl Console

In Windows, you can open the Tcl Console from within the Radiant GUI using
any of these methods:

Using the Windows Start Menu

1. Choose Start > Lattice Radiant Software (version_number) > Radiant
Software to open the GUI.

2. Click the small arrow pane switch at the bottom of the Radiant software
main window.

3. Click the Tcl Console tab.

Using Command Prompt

1. Open Command Prompt and type the following:

C:/lscc/radiant/<version>/bin/nt64/radiant to open the
GUI.

2. Click the small arrow pane switch at the bottom of the Radiant software
main window.

3. Click the Tcl Console tab.

Using Windows PowerShell

1. Choose Start > Windows PowerShell > Windows PowerShell (x86).

At the command line prompt, type C:/lscc/radiant/
<version_number>/bin/nt64/radiant to open the GUI.

2. Click the small arrow pane switch at the bottom of the Radiant software
main window.

3. Click the Tcl Console tab.

In Linux, you can open the Tcl Console from within the Radiant GUI using this
method:

1. Type the following at the command line.

/usr/<user_name>/radiant/<version_number>/bin/lin64/radiant

2. When the Radiant software opens, click the Tcl Console tab.

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Opening the Standalone Tcl Console

Lattice Radiant TCL Scripting User Guide 18

Opening the Standalone Tcl Console

In Windows, you can open the standalone Tcl Console from within the
Radiant GUI using any of these methods:

Using the Windows Start Menu

1. Choose Start > Lattice Radiant Software (version_number) > TCL
Console.

Using Command Prompt

1. Open Command Prompt and type the following:

C:/lscc/radiant/<version>/bin/nt64/radiantc.

Using Windows PowerShell

1. Choose Start > Windows PowerShell > Windows PowerShell (x86).

At the command line prompt, type C:/lscc/radiant/
<version_number>/bin/nt64/radiantc.

In Linux, you can open the standalone Tcl Console by typing the following at
the command line:

/usr/<user_name>/Radiant/<version_number>/bin/lin64/radiantc

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Creating a Tcl Script

Lattice Radiant TCL Scripting User Guide 19

Creating a Tcl Script

There are two ways to create a Tcl script in Radiant.

 Using a Text Editor: You can write Tcl commands in a text editor. This
method is best for experienced users who are familiar with the command
syntax.

 Using the Radiant Software GUI: This is the preferred method if you are
just starting with Tcl scripting in Radiant. When you use the GUI to
perform tasks, the corresponding Tcl commands are shown in the Tcl
Console. This helps you get the correct syntax easily. After you have the
basic commands in the right order, you can add more Tcl code for error
checking or customization.

The procedure below illustrates this method. Start a project in Radiant,
perform tasks using the GUI, save the commands as a script, and then
edit the script in a text editor. The goal is to initially have the basic
commands in the right order, and then add more Tcl code to check for
errors, clean up, or further customize the script.

To create a Tcl script in Radiant software:

1. Open the Radiant software. Close any open project.

Click the small arrow pane switch at the bottom of the Radiant software
main window and then click on the Tcl Console tab to open the console.

2. Reset the Tcl Console. In the Tcl Console, run the reset command to clear
the command history.

3. Create a new project or open an existing project for which to write the
script.

4. Capture the Tcl commands. Use the Radiant software GUI to perform
tasks. The Tcl Console shows the commands for each task. For example,
open a new project, add source files, run synthesis, map, place and route,
and export files

5. Save your script. In the Tcl Console, type save_script <filename.ext>.
Choose a file name without spaces or special characters (for example,
myscript.tcl or design_flow_1.tcl). See “Valid Characters in File Names
and Project Paths” on page 13.

6. Edit your script. Use a text editor to make changes to your script.

Here is an example of a simple Tcl script in Radiant.

prj_archive -dir "C:/my_radiant/counter" -extract "C:/lscc/
radiant/1.1/examples/counter.zip"
prj_run_par
prj_close

The contents of the zip file "C:/lscc/radiant/1.1/examples/counter.zip" are
extracted into the specified directory. The entire design flow is run until Place
& Route (PAR). The project is then closed and all resources associated with
the project are properly released.

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Invoking a Tcl Script

Lattice Radiant TCL Scripting User Guide 20

Invoking a Tcl Script

The two main ways to invoke a TCL script in the Lattice tool flow are:

 use the built-in TCL console

 launch a script on tool startup

To invoke a Tcl script in the built-in TCL console, type “source” followed by the
location and name of the TCL script to invoke.

source /home/<user home directory>/projects/build.tcl

To invoke a Tcl script on tool startup, launch Radiant directly from the
command line with the startup script specified as an option. The exact syntax
and method depends on the operating system.

In Windows:

 Launch the Radiant user interface and run the script:

 <Radiant install path>/bin/nt64/pnmain.exe -t <TCL script location>/
<TCL script name>.tcl

 Launch the Radiant Console Mode and run the script:

 Radiant install path>/bin/nt64/pnmainc.exe <TCL script location>/
<TCL script name>.tcl

In Linux

 Launch Radiant user interface and run the script:

 <Radiant install path>/bin/lin64/radiant -t <TCL script location>/<TCL
script name>.tcl

 Launch Radiant Console Mode and run the script:

 <Radiant install path>/bin/lin64/radiantc <TCL script location>/<TCL
script name>.tcl

If you already created a project in Radiant and added the associated files, the
TCL scripting in the main build flow requires only the prj_run command with a
few command variants

prj_run <Implementation stage> -impl <implementation name>

For details, refer to the lattice Radiant Tcl Scripting section in FPGA-AN-
02073, Scripting Lattice FPGA Build Flow.

https://www.latticesemi.com/view_document?document_id=54075

GETTING STARTED WITH TCL SCRIPTING IN RADIANT : Getting Help

Lattice Radiant TCL Scripting User Guide 21

Getting Help

To access command syntax help in the Tcl console:

 Type help <tool_keyword> and press Enter:

For example:

% help des_instance

 Type the name of the command or function for more details on syntax and
usage.

For example:

% help des_list_instance

des_list_instance is used to list design instances.

des_report_instance is used to report instance information.

Note
The Tcl interpreter may interpret the -help command as a usage error. It is
recommended to use help {command}, which works in both interactive
and script settings.

TCL SCRIPTING TECHNIQUES IN RADIANT : Tcl Scripts and Batch Scripts

Lattice Radiant TCL Scripting User Guide 22

Chapter 3

Tcl Scripting Techniques in
Radiant

Tcl Scripts and Batch Scripts

Aside from Tcl scripts, batch scripts can also be used in the Radiant design
flow. Batch scripts are executed at the command line level without a Tcl
interpreter. These are also ideal for large or multiple designs. When using
batch scripts, however, not all Radiant GUI functionalities are covered and
you may need to perform additional setup.

In Tcl, the prj_run command is used to run each stage of the project flow
using the settings at the project level and each tool's respective environment.
In the batch scripting flow, on the other hand, you need to call specific
commands for each stage of the build flow while specifying additional options.

For example, in batch scripting, the synthesis and post-synthesis commands
depend on your synthesis engine..

Compared to batch commands, Tcl commands are more straightforward. For
example, to run Map, PAR, and Export, use prj_run followed by the process or
stage to run and the implementation name.

 prj_run map -impl <implementation name>

 prj_run PAR -impl <implementation name>

 prj_run export -impl <implementation name>

You can also use one instance of prj_run to run through multiple stages of the
design flow. For example, if you use the prj_run PAR command, and you

Table 2: Tcl versus Batch Synthesis and Post-Synthesis Commands
Tcl Batch

LSE  synthesis

 postsyn

Synplify Pro prj_run Synthesis -impl
<implementation name>

 synpwrap

 postsyn

TCL SCRIPTING TECHNIQUES IN RADIANT : Using Reports in Creating Tcl Scripts

Lattice Radiant TCL Scripting User Guide 23

have not run through any other stage, the tool automatically runs through
Synthesis and then Map. Remember that in this scenario, Radiant only runs
through an earlier stage if you have never run that stage.

Using Reports in Creating Tcl Scripts

Log reports serve as a form of documentation, recording the build process
and outcomes, which is useful for future reference and for other team
members. Reports help identify and track errors or issues that occur during
the build process, making it easier to debug and fix problems. They provide
insights into the performance of your Tcl scripts and help optimize your code.

In Radiant, there are reports that you can use in creating your Tcl scripts:

 Tcl Command Log

 Last Build Log

The Tcl command log tracks all the Tcl command executed from the previous
time Radiant was launched. This is useful when creating small scripts to
reproduce GUI functionality.

The last build log, in batch mode, contains the console outputs from the last
time you run the build. You can parse through this file using Ctrl + F to find
specific batch commands that Radiant invoked to build your project.

Note
To rerun multiple earlier stages using prj_run, add the -forceAll option. To
rerun an individual stage, add the -forceOne option.

TCL SCRIPTING TECHNIQUES IN RADIANT : Using Variables in Tcl Scripts

Lattice Radiant TCL Scripting User Guide 24

Using Variables in Tcl Scripts

Variables allow you to reuse values throughout your script without needing to
hard-code them multiple times. If you need to change a value, you only need
to update the variable rather than every instance of the value in your script.
Use meaningful variable names to make your script easier to read or
maintain. Variables also simplify debugging by allowing you to isolate and test
specific parts of your script.

Creating Variables and Setting their
Values
To set a variable names and values in Tcl, use the set command followed by
the name of the variable that you want to create. If you want to assign some
value of that variable, input the text after the variable name.

For example:

Set the directory to a variable
set dir "/home/user/project/"

Use the glob command to filter files based on the file type
set file_list [glob -directory $dir *.vhd]

Use foreach to list the filtered files and add them to the
project one by one
foreach file $file_list {
 prj_add_source -impl impl1 $file

In this example:

 set dir "/home/user/project/" assigns the directory path to the variable dir.

 glob -directory $dir *.vhd filters files in the specified directory with the .vhd
extension and assigns them to the variable file_list.

 foreach file $file_list { prj_add_source -impl impl1 $file } iterates over each
file in file_list and adds it to the project.

TCL SCRIPTING TECHNIQUES IN RADIANT : Using Variables in Tcl Scripts

Lattice Radiant TCL Scripting User Guide 25

Referencing a Variable
To reference a variable in your script, place a $ sign before the variable that
you want to reference. If a value is assigned to a variable, the Tcl interpreter
associates the variable with the variable that is called. If multiple variables are
called in the same line, use ${} to avoid syntax error.

For example:

prj_project open ${project_directory}/${project_name}.rdf

Without ${}, the Tcl interpreter would look for a variable project-
directory$project_name.rdf and error out.

The ${} tells the interpreter o elaborate both variables and treat the resilt as a
single combined string.

TCL SCRIPTING TECHNIQUES IN RADIANT : Using Lists in Tcl Scripts

Lattice Radiant TCL Scripting User Guide 26

Using Lists in Tcl Scripts

Creating a List in Tcl
An inset list in Tcl can contain elements of different types, including strings,
numbers, and even other lists. Creating a list in Tcl scripts enable the
automation of repetitive tasks. For example, you can use a list to store file
names and then iterate over the list to perform operations on each file, such
as copying, moving, or processing them. You can use the set command to
create inset lists with additional operations such as sorting, referencing,
appending, and others.

There are two ways to create a list in Tcl:

 Set the name for your list followed by braces { } containing the contents of
the list separated by spaces.

For example:

#Create a list of file names

set myList {element1 element2 element3}

The elements within braces are treated as a single list literally and without
any substitution or evaluation.

 Set the name for your list followed by square brackets [] containing the
contents of the list separated by spaces.

For example:

#Create a list of file names

set myList [list element1 element2 element3]

This method is used to execute commands and substitute their results. In
the example, the list keyword is used to declare that the contents of the
square brackets are lists. The command list element1 element2
element3 is executed and its result is assigned to myList.

TCL SCRIPTING TECHNIQUES IN RADIANT : Using Lists in Tcl Scripts

Lattice Radiant TCL Scripting User Guide 27

Managing a List in Tcl
There are various ways to manage a list in Tcl scripts.

 Using the lsort command to alphabetically sort the contents of the list.

lsort<list name>

 Using the lappend and append command to add a value to the end of a
list.

lappend<list name><value> | append<list name><value>

 Using the lindex command to return the value of a list to the specified
index.

lindex<list name><list index>

You can also reference an item from a specific list index in a list using the
$ sign to reference the source list followed by an integer to indicate the list
index to reference.

$<list name>(list index)

For example:

$mylist(3)

 Using the llength command to return the number of elements in a list.

llength<list name>

 Using the Iinsert command to add another valueat a specified index in
a list. You have three inputs: the name of the list, the index where the new
value will be inserted, and the value to be inserted.

linsert <list name><list index><value>

 Using the lset command to directly set or modify the value of an
element at the index of a list.

lset <list name><list index>value

 Using the lreplace command to replace multiple elements in a list
between specified indices.

lreplace<list name><list index><value 1><value 2>element
element ...?

list name is the list to be modified. value 1 is the index of the first
element to be replaced and lvalue 2 is the index of the last element to
be replaced.

element is the new elements to be inserted in place of the specified
range.

TCL SCRIPTING TECHNIQUES IN RADIANT : Controlling Loops in Tcl Scripts

Lattice Radiant TCL Scripting User Guide 28

Controlling Loops in Tcl Scripts

In Tcl, a loop is a control structure that allows you to execute a block of code
repeatedly based on a condition. There are several types of loops in Tcl:

 for loop

Executes a statement multiple times, updating the loop variable each
time.

for{<initialization>}{<condition>}{<increment>}{<statement>}
;

For example:

"for{set i 0}{Si<5}{incr i}{..."

 foreach loop

Iterates through all the elements in one or more lists

foreach <variable><list name or list contents>{<statement>);

For example:

"foreach x $my_list(..."

 while loop

Execute a statement repeatedly as long as its logical expression is true

while{<logical expression>}{<statement>}

For example

"while{$x<10}{..."

"while{1}{..." iterates forever untli there is a breakpoint or an error
is encountered.

TCL SCRIPTING TECHNIQUES IN RADIANT : Controlling Loops in Tcl Scripts

Lattice Radiant TCL Scripting User Guide 29

Using the Break Command

The break command in Tcl is used to exit a loop prematurely. When break is
encountered within a loop, the loop terminates immediately, and execution
continues with the statement following the loop. This is useful when you need
to stop looping based on a specific condition.

For example:

for {set i 0} {$i < 10} {incr i} {
 if {$i == 5} {
 break
 }
 puts "Iteration $i"
}
puts "Loop terminated at iteration $i"

In the example, the loop terminates when i equals 5 and the message "Loop
terminated at iteration 5" is displayed.

Using the Continue Command

The continue command in Tcl is used within loops to skip the remaining
statements in the current iteration and proceed to the next iteration. This is
useful when you want to bypass certain parts of the loop based on a
condition.

For example:

for {set i 0} {$i < 10} {incr i} {
 if {$i % 2 == 0} {
 continue
 }
 puts "Odd iteration $i"

In the example, the loop prints the iteration number only for odd values of i.
When i is even, the continue command skips the puts statement and
moves to the next iteration.

TCL SCRIPTING TECHNIQUES IN RADIANT : Accessing Files

Lattice Radiant TCL Scripting User Guide 30

Accessing Files

You can incorporate file management into your Tcl scripts by using file access
commands.

 Check the existence of, delete, or rename a file.

You can perform a boolean check to determine if a file or directory exists
or not. You can use this with other Tcl constructs such as an if statement
for added functionality (returns 1 if True/0 if False). You can also use this
to delete or rename a file.

file exists <file name> (or drectory)
file delete <file name> (or drectory)
file rename <file name> (or drectory)(new name)

 Open a file.

You can open a file with set access permission and return the file name.
Use this command in conjunction with other commands to read from the
file.

set fileId [open "file name> r|w|a]

Adding r|w|a] read only/write only/append only) specifies the type of
access, If none is specified, the file opens with its default permissions.

 Close a file.

close<file name>

 Parse through an open file.

You can parse through an open file in Tcl.

Reading the entire contents of a file.

After the open command, you can use the read command to read
through the entire contents of the file.

read[-nonewline]<file name>

(optional) -nonewline removes all new line characters (\n) from the file
when reading through it.

Reading the file line by line.

set fileId [open <file name> r]
while {[gets $fileId line] >= 0} {
 # Process each line
 puts "Line: $line"
}
close $fileId

TCL SCRIPTING TECHNIQUES IN RADIANT : Accessing Files

Lattice Radiant TCL Scripting User Guide 31

Reading the file in chunks.

For larger files, you can read in chunks to avoid memory issues.

set fileId [open <file name> r]
while {![eof $fileId]} {
 set chunk [read $fileId 1024] ;# Read 1024 bytes at a
time
 # Process each chunk
 puts "Chunk: $chunk"
}
close $fileId

Reading the next line of a file.

Use the gets command to read the next line of the specified file.

gets<file name>[<variable name>]

By adding a variable name at the end, you can store the contents read
from the file to the specified variable.

 Check for the end of a file.

You can perform a boolean check to see if the file has reached its end.

eof<file name>

 Write to an open file.

You can use the puts command to write to an open file.

puts[-nonewline][file nae]<string>

TCL SCRIPTING TECHNIQUES IN RADIANT : Calling an External Program

Lattice Radiant TCL Scripting User Guide 32

Calling an External Program

Calling an external program in Tcl scripts can be useful for several reasons.
You can also call external program and incorporate non-Tcl commands into a
Tcl scripted workflow.

 If you need functionality that is not available directly in Tcl, external
programs can provide specialized capabilities, such as data analysis or
network operations.

 You can also integrate Tcl scripts with other software or systems. Calling
external programs allows you to leverage existing tools and workflows
without rewriting them in Tcl.

 Certain tasks might be more efficiently handled by external programs
written in languages optimized for specific operations (such as C for
computational tasks).

 Automating tasks that involve multiple tools or systems can be
streamlined by calling external programs from Tcl scripts.

Here is a simple example of calling an external program (such as ls
command) from a Tcl script: In this example, the exec command runs the ls
-l command and captures its output, which is then printed. This command
functions the same way in Windows and Linux.

The main difference is when OS specific commands are used.

exec ls (Linux) vs exec cmd /c dir /B (Windows) to return a list of files
in the current directory.

You can also use exec with the set command to store console output
results from invoking a command.

For example:

set results[exec C:/user/usr/programs/python/python.exe C:/
PROJECTS/SCRIPTS/MY_SCRIPT.PY]

The exec command is used to execute an external program.

C:/user/usr/programs/python/python.exe is the path to the Python
executable. It specifies which interpreter to use for running the Python script.

C:/PROJECTS/SCRIPTS/MY_SCRIPT.PY is the path to the Python script to
execute.

set results is the command that assigns the output of the exec
command to the variable results.

TCL SCRIPTING TECHNIQUES IN RADIANT : Error Handling

Lattice Radiant TCL Scripting User Guide 33

Error Handling

You can implement error handling in your scripts to gracefully handle
unexpected situations and prevent script termination. Lattice tools do not
have built-in error handling Tcl commands but you can use some native
commands for preventive error handling.

 Use the catch command to catch errors as they occur during runtime.

If an error occurs, the command returns the error code; and zero if no
error is encountered.

catch<statements or script><variable name>

For example:

catch{gets $my_file}read-error

In the example, the error code output from Tcl interpreter is stored in the
read_error variable.

 Use the catch command directly in an if/else statement, which is
nested inside of a for loop.

foreach i $VFILE_LIST {
if { [catch (prj_add_source $i)} fid] } {

puts “file already exists in the project.”
}

}

Instead of stopping the script from running, you are able to output a
message that the file already exists.

 Use an if/else statement to preemptively check the validity of a script's
inputs.

If you know the parts of a script that are key to its operation, you can set
preemptive error handling conditions to prevent errors. For example, you
can check the existence of a file before passing it out.

if{boolean expression #1}{
statements

}elseif {bollean expression #2}{
statement

}else{
statements

}

TCL SCRIPTING TECHNIQUES IN RADIANT : Defining Reusable Procedures

Lattice Radiant TCL Scripting User Guide 34

Defining Reusable Procedures

Defining reusable Tcl procedures or functions helps organize your scripts into
easy to maintain modules. You can define a procedure using the proc
command.

proc name {arguments} {
 body
}

name is the name of the procedure followed by a list of arguments the
procedure takes. You can define values for arguments. body is the code that
runs when the procedure is called.

Here is an example of a procedure that adds two numbers.

proc addNumbers {a b} {
 set sum [expr {$a + $b}]
 return $sum
}

Here is a way to call the procedure.

set result [addNumbers 5 10]
puts "The sum is $result

Accessing and Modifying Design Objects

To access design objects, you typically use get_* commands to query
various objects in your design, such as clocks, ports, pins, cells, and nets.

For example:

 set clocks [get_clocks]

 set ports [get_ports]

 set pins [get_pins]

 set cells [get_cells]

 set nets [get_nets]

You can filter the results using the -filter option.

set nets [get_nets -filter {NAME =~ "clk*"}]

After you access the design object, you can modify their properties using the
set_property command.

set_property IS_CLOCK true [get_ports clk]

TCL SCRIPTING TECHNIQUES IN RADIANT : Accessing and Modifying Design Objects

Lattice Radiant TCL Scripting User Guide 35

Note

Most of the contents of this section, Tcl Scripting Techniques in Radiant, is
also available in Lattice Insights, which is the official training portal of Lattice
Semiconductor. See the topic: Creating Scripts to Automate Lattice Tool
Flows.

https://www.latticesemi-insights.com/

PRACTICAL EXAMPLES AND USE CASES : Example 1: Automating a Basic Design Flow

Lattice Radiant TCL Scripting User Guide 36

Chapter 4

Practical Examples and Use
Cases

Example 1: Automating a Basic Design Flow

You can automate the entire design flow without opening the Radiant GUI by
using pnmainc.exe and scripting the flow in Tcl.

Sample Script for Windows

tcl
Open the project
prj_open C:/Users/yourname/Projects/my_project.rdf

Run synthesis
prj_run synthesis -impl impl_1

Run implementation
prj_run map -impl impl_1

Run PAR
prj_run PAR -impl impl_1

Export bitstream
prj_run export -impl impl_1

PRACTICAL EXAMPLES AND USE CASES : Example 2: Adding Source Files to a Project

Lattice Radiant TCL Scripting User Guide 37

Example 2: Adding Source Files to a Project

You can automate adding multiple source files (such as all VHDL files in a
directory) to a Radiant project.

tcl
Set the directory containing your files
set dir /path/to/your/files

Get a list of all .vhd files in the directory
set file_list [glob -directory $dir *.vhd]

Add each file to the project implementation
foreach file $file_list {
 prj_add_source -impl impl1 $file
}

This approach is useful for batch-adding files based on type.

PRACTICAL EXAMPLES AND USE CASES : Example 3: Tcl-based Timing Analysis

Lattice Radiant TCL Scripting User Guide 38

Example 3: Tcl-based Timing Analysis

For a complete discussion on interactive static timing analysis (STA) using the
TCL commands in the Lattice Radiant software, refer to the FPGA-AN-02091,
Interactive Timing Analysis Using TCL in Lattice Radiant Design Software
application note.

As an added reference, you may also refer to the FPGA-AN-02059, Lattice
Radiant Timing Constraints Methodology application note, which provides
guidelines and best practices for defining and managing timing constraints in
Radiant.

https://www.latticesemi.com/view_document?document_id=54374
https://www.latticesemi.com/view_document?document_id=54374
https://www.latticesemi.com/view_document?document_id=53772
https://www.latticesemi.com/view_document?document_id=53772

PRACTICAL EXAMPLES AND USE CASES : Example 4: Automating Device Programming

Lattice Radiant TCL Scripting User Guide 39

Example 4: Automating Device Programming

You can automatically configure and program devices using the standalone
Programmer extended Tcl commands. You can program multiple devices in a
batch and your automation scripts can serve as documentation for your
programming process. A clear record of the steps taken ensures traceability
in your design.

To automate device programming using Tcl scripting:

1. Create an XCF configuration file.

The first step in this procedure is creating the *.xcf file. The *.xcf file is the
configuration file in which you set up the operation and the location of your
programming file such as bitstream.

a. Open Radiant Programmer and create a new project. You can also
directly scan a board attached to your PC.

b. Set the device, operation, and programming file.

c. Save the programmer settings as an .xcf file by clicking File > Save
Project or Save Project As.

The *.xcf file will be used as input to your Tcl script.

2. Write the TCL script.

a. Use Tcl commands to load the XCF and execute programming.

pgr_project C:/<path>/test.xcf
pgr_program set -cable usb2 -portaddress FTUSB-0
pgr_program run

b. Save your script as a .tcl file.

3. Run the Tcl script.

a. Open the Radiant standalone TCL Console.

In Windows, C:/lscc/radiant/<version>/bin/nt64/
pnaminc.exe

In Linux, /home/<user>/lscc/radiant/<version>/bin/
lin64/pnmainc

b. Use the source command to run the script.

source<tcl file path>

You can also automate device programming using batch scripting by invoking
prgcmd with the .xcf file. For details, see the Lattice website Answer
Database FAQ topic: Radiant Programmer All Version: How to automate
Radiant programmer using scripts.

https://www.latticesemi.com/support/answerdatabase/7/3/0/7302
https://www.latticesemi.com/support/answerdatabase/7/3/0/7302

PRACTICAL EXAMPLES AND USE CASES : Example 5: Generating Reports and Documentation

Lattice Radiant TCL Scripting User Guide 40

Example 5: Generating Reports and Documentation

Although there is no direct Tcl commands in Radiant for generating
standalone reports, you can use prj_run stages to trigger report generation
and then parse the resulting log files.

Implementation Reports
Run implementation stages and access their log files:

tcl
Open project
prj_open C:/path/to/your_project.rdf

Run synthesis and implementation (generates logs
automatically)
prj_run synthesis
prj_run map
prj_run PAR

Export bitstream (triggers final reports)
prj_run export

 Log location: Check the project directory’s impl/<impl_name>/log folder
for .log files (for example, map.log, par.log).

 Timing reports: After Place & Route, a .twr file is generated (use trce.exe
through the command line for custom analysis).

PRACTICAL EXAMPLES AND USE CASES : Example 5: Generating Reports and Documentation

Lattice Radiant TCL Scripting User Guide 41

Custom Timing Analysis (TRACE)
If you need to regenerate timing reports with specific parameters (such as
speed grade), use the command-line trce.exe tool (not directly through Tcl
in Radiant):

tcl
Example of invoking external commands (requires shell
integration)
exec trce.exe -v 10 -sp 5 -sethld -o output.twr
design.ncd design.prf

Parameters:

 -sp 5: Override speed grade

 -v 10: Verbosity level

 output.twr: Output timing report file

Parse Logs
You can extract specific metrics from log files using Tcl file operations:

tcl
set log_file [open "impl/impl1/par.log" r]
while {[gets $log_file line] != -1} {
 if {[string match "*Slack:*" $line]} {
 puts "Timing slack found: $line"
 }
}
close $log_file

For additional information, refer to this Radiant Help topic: User Guides >
Managing Projects > Viewing Logs and Reports.

PRACTICAL EXAMPLES AND USE CASES : Example 6: Advanced Scripting Examples

Lattice Radiant TCL Scripting User Guide 42

Example 6: Advanced Scripting Examples

Batch Processing of Multiple Designs
You can batch process multiple Radiant designs in Tcl by using a script that
iterates through projects, automates implementation, and handles
programming. Below is the possible structure of your script:

Basic Batch Processing Script

tcl
List of project paths (.rdf files)
set project_list {
 "C:/Projects/design1.rdf"
 "C:/Projects/design2.rdf"
}

for each project
$project_list {
 # Open project
 prj_open $project

 # Run synthesis and implementation
 prj_run synthesis
 prj_run map
 prj_run PAR

 # Export bitstream
 prj_run export

 # Close project
 prj_close
}

PRACTICAL EXAMPLES AND USE CASES : Example 6: Advanced Scripting Examples

Lattice Radiant TCL Scripting User Guide 43

Tcl Script with Error Handling
tcl
proc process_project {project_path} {
 if {![file exists $project_path]} {
 puts "ERROR: Project $project_path not found"
 return 0
 }

 prj_open $project_path
 set success 1

 # Run stages with error checking
 foreach stage {Synthesis Map PlaceAndRoute Export} {
 if {![prj_run $stage]} {
 puts "ERROR: Failed at $stage for
$project_path"
 set success 0
 break
 }
 }

 prj_close
 return $success
}

Process all projects
set failed_projects [list]
foreach project $project_list {
 if {![process_project $project]} {
 lappend failed_projects $project
 }
}

if {[llength $failed_projects] > 0} {
 puts "Failed projects: $failed_projects"
}

TROUBLESHOOTING AND BEST PRACTICES : Common Errors and How to Fix Them:

Lattice Radiant TCL Scripting User Guide 44

Chapter 5

Troubleshooting and Best
Practices

Common Errors and How to Fix Them:
Here are some common Tcl errors encountered in Radiant and their solutions:

 Malformed Command Line

Error Message: @E| Mal-formed command line - please check for extra
quotes in macro

Solution: This error can be fixed by removing the prj_set_impl_opt
{include path} {""} line in the Tcl script or commenting out the problematic
line in the relevant script file.

 File Not Found

Error Message: @E| File not found - please check the file path

Solution: Ensure that the file path specified in the Tcl script is correct and
that the file exists at the specified location. Double-check for any typos in
the file path.

 Invalid Command

Error Message: @E| Invalid command - command not recognized

Solution: Verify that the command used in the Tcl script is supported by
Radiant. Refer to the Radiant Help for the correct syntax and supported
commands.

 Permission Denied

Error Message: @E| Permission denied - unable to access file

Solution: Ensure that you have the necessary permissions to access the
file or directory. You may need to adjust the file permissions or run the
script with elevated privileges.

 Syntax

Error Message: @E| Syntax error - unexpected token

Solution: Check the Tcl script for any syntax errors such as missing
braces, parentheses, or semicolons. Ensure that all commands are
properly formatted.

TROUBLESHOOTING AND BEST PRACTICES : Debugging Tcl Scripts

Lattice Radiant TCL Scripting User Guide 45

Debugging Tcl Scripts
The following techniques are useful for debugging Tcl scripts in Radiant.

 Using the puts command to print messages to the console.

The puts command allows you to print messages at various stages of the
script execution. This helps you track the flow of your script and identify
where issues might be occurring.

For example:

Run synthesis
prj_run synthesis
puts "Synthesis completed."

 Using the catch command to implement error handling.

The catch command allows you to manage exceptions and provide
meaningful error messages. This can help you understand what went
wrong and where.

For example:

Attempt to run synthesis

if { [catch {prj_run synthesis} errMsg] } {

 puts "Error during synthesis: $errMsg"

} else {

 puts "Synthesis completed successfully."

}

 Executing your script in sections.

Break down your script into smaller sections and test each part
individually. This makes it easier to isolate and fix issues.

 Using the log files.

The log message from Radiant (GUI) run is stored in the automake.log
file.

When using radiantc, the log message is automatically stored in the
radiantc.log.<pid> file. The tcl commands are kept in the radiant.tcl.<pid>
file, where the <pid> is the process id for radiantc run.

In the case the file “radiantc.log.<pid>” does exist, the file will be renamed
to “radiantc.log.<pid>.bak”. We do the same check for “radiant.tcl.<pid> ”

In radiantc mode, you can:

 Use the RAT_LOG_DIR environment variable to specify the directory
where you want to keep the log/tcl files.

If there is no environment variable, the log/tcl directory is set as
C:\Users\<User dir>\AppData\Roaming\LatticeSemi\DiamondNG\tcl if
you are using NT, and the current directory ./ when using Linux.

 Specify the run name to be used as the prefix of log/tcl file names.

For example:

TROUBLESHOOTING AND BEST PRACTICES : Best Practices for Writing Readable and Maintainable Tcl Scripts

Lattice Radiant TCL Scripting User Guide 46

Run radiantc -run mytest. The log file will be named
mytest.log.<pid> and the tcl file will be named mytest.tcl.<pid>.

Best Practices for Writing Readable and
Maintainable Tcl Scripts

 Choose an appropriate variable name to describe the purpose of the
variable.

 Choose an appropriate procedure name to describe the function of the
procedure.

 Follow proper indentation to create an organized code that is easy to
follow.

 Code comments should occupy full lines

Comments that document code should occupy full lines and should not be
placed at the end of lines containing code.

 Put one command per line

Instead of using semi-colons to place multiple commands on the same
line, place one command per line for easy reading and debugging.

 Use parentheses around each sub-expression

Placing parentheses around each sub-expression makes the evaluation
order clear.

 Make sure switch statements are clear

Use the -- option in switch statements to clearly indicate that what follows
are the cases to be matched, not additional options for the switch
command itself.

Comments for each case should line up on the same tab stop and must be
within the braces.

TROUBLESHOOTING AND BEST PRACTICES : Best Practices for Writing Readable and Maintainable Tcl Scripts

Lattice Radiant TCL Scripting User Guide 47

 Document your code properly

Document your code to indicate the correct usage of the script, fix bugs
easily, and add new features.

 Document areas with wide impact.

 Document each code in exactly one place.

 Document as you write the code.

TCL COMMAND SYNTAX REFERENCE :

Lattice Radiant TCL Scripting User Guide 48

Chapter 6

Tcl Command Syntax Reference

A comprehensive list of all Radiant Tcl commands, with a brief description of
each command and its options is available in the Radiant Help. Refer to
Reference Guides > Tcl Command Reference Guide.

The Tcl Commands are organized into major categories:

 General Radiant Commands

 Radiant Software Tcl Console Commands

 System Tcl Commands

 Device Tcl Commands

 Message Control Tcl Commands

 Project Flow Commands

 Radiant Software Project Tcl Commands

 Non-project Commands

 Synthesis Tcl Command

 Place & Route Tcl Commands

 Physical Synthesis Tcl Commands

 Reveal Commands

 Reveal Inserter Tcl Commands

 Reveal Analyzer Tcl Commands

 Power Calculator Commands

 Power Calculator Tcl Commands

 Simulation Related Commands

 Simulation Libraries Compilation Tcl Commands

 Radiantc TCL Commands

 Bitstream Generation Tcl Commands

 Design Tcl Commands

 Device Tcl Commands

 Technology Mapping Tcl Commands

 Placement Tcl Commands

TCL COMMAND SYNTAX REFERENCE :

Lattice Radiant TCL Scripting User Guide 49

 Routing Tcl Commands

 Timing Analysis Tcl Commands

 Other Commands

 Design Object Tcl Commands

 Engineering Change Order Tcl Commands

For a comprehensive guide on general Tcl/Tk commands, visit www.tcl-
lang.org.

 the Tcl/Tk Documentation section provides detailed reference materials
and manuals for Tcl/Tk; and

 the Tcl/Tk Versions Overview highlights the features and improvements in
different Tcl/Tk versions.

Note
Timing and Physical Constraints Commands are not used in scripted flows.

https://www.tcl-lang.org/doc/
https://www.tcl-lang.org/software/tcltk/choose.html
https://www.tcl-lang.org/software/tcltk/choose.html

DEFINITION OF TERMS :

Lattice Radiant TCL Scripting User Guide 50

Chapter 7

Definition of Terms

The following are terms you may encounter when working with Tcl:

 Array: A collection of elements indexed by strings.

 Binding: Associating an event with a command to be executed when the
event occurs.

 Channel: An abstraction for input/output operations, such as reading from
or writing to a file

 Command: A string that Tcl interprets and executes. Commands can be
built-in or user-defined.

 Event: An action or occurrence that can be handled by Tcl, such as a
mouse click or key press.

 Extension: Additional functionality added to Tcl, often provided as
packages.

 Interpreter: The program that reads and executes Tcl commands.

 List: An ordered collection of elements.

 Namespace: A context for grouping related procedures and variables to
avoid name conflicts.

 Package: A collection of Tcl scripts and binary files that provide additional
functionality.

 Procedure: A reusable block of code defined using the proc command.

 Script: A file containing Tcl commands that can be executed by the Tcl
interpreter.

 String: A sequence of characters.

 Variable: A named storage location that holds a value.

REVISION HISTORY :

Lattice Radiant TCL Scripting User Guide 51

Revision History

The following table provides the revision history for this document.

Date Version Description

06/26/2025 1.0 Initial release.

	Lattice Radiant TCL Scripting User Guide
	Radiant Tcl User Guide Contents
	Tcl Overview
	Tcl Scripting Language

	Getting Started with Tcl Scripting in Radiant
	Understanding the Radiant Design Flows
	Lattice Implementation Directory
	Valid Characters in File Names and Project Paths
	Radiant Tcl Scripting Modes
	GUI Mode
	Pure Interactive Shell Mode
	Interactive Shell/GUI Mode
	Commands Unavailable in GUI Mode but Available in Pure Tcl Mode

	Opening the GUI Integrated Tcl Console
	Opening the Standalone Tcl Console
	Creating a Tcl Script
	Invoking a Tcl Script
	Getting Help

	Tcl Scripting Techniques in Radiant
	Tcl Scripts and Batch Scripts
	Using Reports in Creating Tcl Scripts
	Using Variables in Tcl Scripts
	Creating Variables and Setting their Values
	Referencing a Variable

	Using Lists in Tcl Scripts
	Creating a List in Tcl
	Managing a List in Tcl

	Controlling Loops in Tcl Scripts
	Accessing Files
	Calling an External Program
	Error Handling
	Defining Reusable Procedures
	Accessing and Modifying Design Objects

	Practical Examples and Use Cases
	Example 1: Automating a Basic Design Flow
	Example 2: Adding Source Files to a Project
	Example 3: Tcl-based Timing Analysis
	Example 4: Automating Device Programming
	Example 5: Generating Reports and Documentation
	Implementation Reports
	Custom Timing Analysis (TRACE)
	Parse Logs

	Example 6: Advanced Scripting Examples
	Batch Processing of Multiple Designs
	Tcl Script with Error Handling

	Troubleshooting and Best Practices
	Common Errors and How to Fix Them:
	Debugging Tcl Scripts
	Best Practices for Writing Readable and Maintainable Tcl Scripts

	Tcl Command Syntax Reference
	Definition of Terms
	Revision History

