Lattice Radiant Post-Synthesis
Reveal Debug Flow Tutorial

= LATTICE

June 26, 2025

Copyright

Copyright © 2025 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks

All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. QuestaSim is a trademark or registered trademark of Siemens Industry
Software Inc. or its subsidiaries in the United States or other countries. All other
trademarks are the property of their respective owners.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 2

http://www.latticesemi.com/legal

Type Conventions Used in This Document
Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<l[talic> Variables in commands, code syntax, and path names.

Ctri+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.
Omitted material in a line of code.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.
{1} Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial

= LATTICE

Contents

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 2
About the Tutorial 3

Task 1: Create a New Project 4

Task 2: Attaching the syn_rvl_debug Attribute to Monitored Signals 5
Task 3: Inserting Reveal Debug Logic During Post-Synthesis Stage 6
Task 4: Verifying the Results in Reveal Analyzer 10

Summary of Accomplishments 11

Example Project 11

Recommended References 11

Revision History 12

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial

= LATTICE

Lattice Radiant Post-Synthesis
Reveal Debug Flow Tutorial

This tutorial provides detailed instruction on how to run the post-synthesis
debug flow in Reveal. It shows how you can isolate or monitor certain signals
and focus changes or improvements in specific areas in your design. As your
design becomes more complex, post-synthesis debugging can save you a
significant amount of compile time.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 5

About the Tutorial

About the Tutorial

After completing this tutorial, you should be able to perform the following:
Add the syn_rvl_debug attribute to signals that you want to monitor.
Know the functions of the synthesis syn_rvl_debug attribute.
Be familiar with the attribute syntax.
Attach the syn_rvl_debug attribute to debug signals in your source file.
Debug a design in post-synthesis stage
Select Post-Synthesis debug stage.
View marked debug signals on the Reveal interface after synthesis:
Identify post-synthesis process indicators.
Know the Tcl command for post-synthesis debug flow.

Verify the post-synthesis debug results.
Time to Complete
About 30 minutes.

Requirements

To run this tutorial, it is assumed that you are already familiar with the
basic Radiant process flow and, specifically, the standard RTL debug flow
using Reveal Inserter and Reveal Analyzer.

To learn more about debugging in Reveal, refer to the online Help and the
Reveal User Guide.

The Lattice Radiant software is required to complete the tutorial.

System Requirements You need:
Radiant software, version 2024.1 or higher.

CrossLink-NX Evaluation Board to download a bitstream and to do on-
chip debugging. If you do not have the board, you can still do most of the
tutorial.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 6

Task 1: Create a New Project

Task 1: Create a New Project

Let us start by creating a new project in Radiant software.

To create a new project:

1.
2.
3.

In the Radiant software, choose File > New > Project.
In the Add Source page, click Add Source...

Browse to: <Radiant _install_path>/docs/tutorial/
post_synthesis_reveal_tutorial and select the counter_top.v file.

Click Next.
In the Select Device page, choose the following options:
Family: LIFCL (CrossLink-NX)
Device: LIFCL-40
Package: CABGA400
Click Next.
In the Select Synthesis Tool dialog box, choose Lattice LSE.
Click Finish.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 7

Task 2: Attaching the syn_rvl_debug Attribute to Monitored Signals

Task 2: Attaching the syn_rvl_debug Attribute to
Monitored Signals

One of the prerequisites to post-synthesis debugging is attaching the
synthesis syn_rvl_debug attribute to signals that your want to monitor.

This attribute highlights the signal so it can be easily identified in the user
interface.

In post-synthesis, this attribute tells the synthesis tool to preserve the
signal without optimizing it. If it is a bus, the data width is also preserved.
The synthesis tool passes the same attribute to the signal in the post-
synthesis netlist (*.vm).

If the signal is a port, the synthesis tool may add a suffix to the signal

name because of the input buffer. The signal name, however, remains

recognizable to the user. For more information on the expected changes

in the signal name, refer to the online Help or the Reveal User Guide.
Here is the Verilog syntax:

/* synthesis syn rvl debug = 1 */;

Here is the VHDL syntax:

attribute syn rvl debug : boolean;
attribute syn rvl debug of sigl : signal is true

To attach the syn_rvl_debug attribute to signals:

1. In the File List view, double-click the counter_top.v file to open the
source code.

2. Add the synthesis syn_rvl_debug attribute to the debug signals clki, clk1,
cnt, and cnt1.

Note

While you can add the syn_rvl_debug attribute to signals such as wire,
reg, logic, port, input, and output, it is recommended that you use it mostly
for internal wire, reg, and logic objects.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 8

Task 3: Inserting Reveal Debug Logic During Post-Synthesis Stage

’n\ Start Page Reports i counter_top.v

s reset and MSB toggle to LED output

8 module counter top
o

|;:1z:Li: clki /*synthesis syn_rvl debug =

t ent_31,
t LEDPIO OUTO,
t LEDPIO_OUTL,
t LEDPIO OUT2,
t LEDPIO_OUT3,
t LEDPIO OUT4,
t LEDPIG_OUTS,
put LEDPIO OUTE,
it LEDPIO_OUT?

3. Save the counter_top.v file.

4. Run Synthesize Design.

Task 3: Inserting Reveal Debug Logic During Post-
Synthesis Stage

The purpose of this task is to add the Reveal debug logic in the post-synthesis
stage. Along the way, you will see how the marked debug signals are
displayed on the Reveal Inserter interface and how the debug stage is
indicated.

Note:

Before you add post-synthesis Reveal debug logic, make sure there is no active
Reveal .rvl project after synthesis. If there is an active Reveal (.rvl) file in the Debug
Files folder in File List view, set it as inactive by right-clicking the file and choosing Set
as Inactive.

To insert Reveal debug logic in the Post-Synthesis stage:
1. After running Synthesize Design, start Reveal Inserter.

2. The Reveal Inserter Wizard allows you to choose between three debug
flows:

RTL (Pre-Synthesis) — This is the standard flow for debugging a
design all at once. The debug logic is inserted before the design is
synthesized the first time.

Post-Synthesis — This flow allows you to insert debug logic after the
design is synthesized.

Post-Place & Route — This flow allows you to insert debug logic after
running place and route.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 9

Task 3: Inserting Reveal Debug Logic During Post-Synthesis Stage

Choose Post-Synthesis under Debug Stage and click Finish.

Reveal Inserter Wizard *

Debug Stage
Choose the stage you wish to debug. Available stages are automatically
enabled.

Debug Stage
@ RTL(Pre-Synthesis)

Post-Synthesis
Post-Place & Route

Finish Cancel

Reveal Inserter opens and shows the active Reveal project.

In the Datasets pane of the Reveal Inserter window, you will note that the
debug signals previously attached with the syn_rvl_debug attribute are
highlighted in yellow. This is applied up to the sub-module level.

"5 Datasets
- Add core...

- A -
3 M
| I
| I
| I

] 3

Note

In the example, the clki signal is appended with a suffix and renamed as clki_c.
For additional information regarding the renaming of marked debug signals, refer
to the online Help and Reveal User Guide.

You can add multiple Logic Analyzer modules and one Controller module
to your project.

If you are using Reveal Controller for switches in post-synthesis, make
sure the signals are not driven by other signals in the design. Multiple
driver issues produce an error in Place & Route.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 10

Task 3: Inserting Reveal Debug Logic During Post-Synthesis Stage

For this tutorial, we will simply add two Logic Analyzer modules.
3. Click Add Core > Add Logic Analyzer.

The top-level unit indicates that the design is being debugged in Post-
Synthesis stage. In the Tcl Console, you will also find the command:

rvl new project -stage postsyn

"ﬁ\ Start Page Reports e
E hd "?Ej Datasets
@ T
B Add core...
- ..;-""i counter_top [Post-Synthesis] -
L. clk1
"1, clkic
» "La cnt[39:0] Sample Clock
» "La cnti[31:0]
"1, GND_net Buffer Depth
L. clk1_keep_enable 3 ‘
b "L cnt 39 N_1[39:0] Sample Ena
b "L cnti 31_N_41[31:0] Sanols
"L, n18
"L, n19
L “go POR Debug
= N .
L orst Trigger
b "La rst_count[2:0]
Signal Search Include tr
Search Trace Signe

Starting: "rvl close project -force”

Starting: |"rvl_new_project -stage postsyn”

Starting: parse design source files

Set up the trace and trigger signals.

Add the second Logic Analyzer core and set up trace and trigger signals.
Click the Design Rule Check button.

Click the Insert Debug button.

© N o o A

In the Insert Debug to Design dialog box, select the module to insert.
Select Activate Reveal file in design project to include it in synthesis.

i

% Insert Debug to Design X

Please select core(s) you want to insert.

B counter_top_LAO
B counter_top_LA1

B Activate Reveal file in design project

OK Cancel Help

Click OK.

9. Save the Reveal project as post_syn1.rvl.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 1

Task 3: Inserting Reveal Debug Logic During Post-Synthesis Stage

10.

The .rvl file is listed in the File List pane under Debug Files.

You will note that the Synthesize Design process bar now has a small
white box.

This indicates that entire design will not be synthesized but only the
changes made in Reveal.

E;’ Map Design
Run Synthesize Design.

This time, only the changes in Reveal are processed.

In Task Detail View, you will observe the added Post-Synthesis Reveal
task in progress.

Export Files

. Synthesize Design

Lattice Synthesis Engine

Post-Synthesis Reveal

l Post-Synthesis Timing Analy...

Post-Synthesis Simulation File
Map Design
Map Timing Analysis
2 Place & Route Design
0 Place & Route Timing Analysis
1/0 Timing Analysis v
Export Files
Bitstream File
IBIS Model

Gato-1 ausl Simulatinn Fila A

You can continue on with the standard Radiant process flow. Map, place, and
route the design, and generate the bitstream data (.bit file).

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 12

Task 4: Verifying the Results in Reveal Analyzer

Task U: Verifying the Results in Reveal Analyzer

The purpose of this task to is verify the results of the post-synthesis debug
process in Reveal Analyzer.

1. Set up a cable connection, and download the design onto the device by
using Programmer.

2. Start Reveal Analyzer and create a new project.

In the startup wizard, select options and fill out the required fields. Indicate
post_syn1.rvl in the RVL source field. Click OK.

4. In the Reveal Analyzer interface LA Trigger tab, select the active debug
core that you want to analyze using the drop-down button.

D counter_top LAO D counter_top_LA1 | counter top LAO -

:"counte r_top_LA1

Click the Run button to start the logic analysis of the active core.

6. Click the LA Waveform tab to view the resulting waveform.

jol
.
7
]
:
M
x

12} Start Page Reports 74 Reveal Analyzer/Controller

Completed = [counter_top_1A0 [counter_top LA1 | counter_top_LAD T
= [example_count

I UFCL-40-8BG400C Bus/Signal Data

~ [Strategies

0:16 0:32 0:48 0:64
| | |

| Area Pt 5F0000
= Timing

] Strategyl
= % impl_1 (Lattice LSE)
* (7 Input Files
1 source/counter_top.v
Pre-Synthesis Constraint Files
~] Post-Synthesis Constraint Files
source/counter32.pdc
~ (7] Debug Files
%) sourcefexample_count.nvl
| sourcefimpl_1/post_synl.rvi
4 sourcefimpl_1/post_syn_lse.rvl

%) source/impl_1/tutorial.rva [source/impl_1/post_synl.rvi]

Qv FdText [E Y {2} Start Page Reparts 4 Reveal Analyzer/Controller
Completed = [counter_top_LAD [counter_top_LAL | counter_top LAL ~
[example_count
I8 UIFcL-40-8BG400C Bus/Signal Data — — -— —
= [Strategies 0 0 0

| Area b ocnti F50000

=-| Timing

2/ Strategyl

4

2 impl_1 (Lattice LSE)
- Input Files
i source/counter_top.v
Pre-Synthesis Constraint Files
~ 7 Post-Synthesis Constraint Files
source/counter32.pdc
- Debug Files
%) source/example_count.nl
% sourcefimpl_1/post_syn1.rvi
source/impl_1/post_syn_lse.rvl

source/impl_1/tutorial.rva [source/impl_1/post_syn1.r]

Optionally, you can export the waveform data for each core in a value change
dump (.vcd) file for use in third-party tools or in an ASCII-format text (.txt) file.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 13

Summary of Accomplishments

Summary of Accomplishments

You have completed the Lattice Radiant Post-Synthesis Reveal Debug Flow
Tutorial. In this tutorial, you have learned how to:

Add the syn_rvl_debug attribute to monitored signals.

View marked debug signals on the Reveal interface:

Identify post-synthesis debug stage through indicators in the interface.
Identify post-synthesis process indicators.

Verify the post-synthesis debug results in Reveal Analyzer.

Example Project

You can review this tutorial or familiarize yourself further with the Reveal post-
synthesis debug flow using an example project, example_count.rdf. It is
available in the <Radiant_install_path>/docs/tutorial/

post_synthesis_reveal_tutorial/example_post_synthesis_reveal_nexus
directory.

Recommended References

You can find additional information on the subjects covered by this tutorial in
these resources:

Radiant Help: User Guides > Testing and Debugging On-Chip > Post-
Synthesis Debugging

Reveal User Guide for Radiant Software

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial 14

https://www.latticesemi.com/view_document?document_id=54309

= LATTICE

Revision History

The following table gives the revision history for this document.

Date Version Description

06/26/2025 2025.1 Updated to reflect changes in Radiant 2025.1.
12/20/2024 2024.2 Updated to reflect changes in Radiant 2024.2.
06/28/2024 20241 Initial release.

Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial

15

	Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial
	Contents
	Lattice Radiant Post-Synthesis Reveal Debug Flow Tutorial
	About the Tutorial
	Task 1: Create a New Project
	Task 2: Attaching the syn_rvl_debug Attribute to Monitored Signals
	Task 3: Inserting Reveal Debug Logic During Post- Synthesis Stage
	Task 4: Verifying the Results in Reveal Analyzer
	Summary of Accomplishments
	Example Project
	Recommended References

	Revision History

