
Programming Tools User Guide
for Radiant Software 2025.1

June 26, 2025

Programming Tools User Guide for Radiant Software 2025.1 2

Copyright
Copyright © 2025 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks
All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. QuestaSim is a trademark or registered trademark of Siemens Industry
Software Inc. or its subsidiaries in the United States or other countries. All other
trademarks are the property of their respective owners.

Disclaimers
NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

http://www.latticesemi.com/legal

Programming Tools User Guide for Radiant Software 2025.1 3

Type Conventions Used in This Document
Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<Italic> Variables in commands, code syntax, and path names.

Ctrl+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.

... Omitted material in a line of code.

.

.

.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.

{ } Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

Programming Tools User Guide for Radiant Software 2025.1 4

Contents

Chapter 1 Programming Tools Description 7
Programmer 7
Deployment Tool 7
Programming File Utility 8
Download Debugger 8
Embedded Flow 8
Driver Installation 8

Chapter 2 Programmer Overview 9
Usage and flow 9

Programmer Design Flow 9
Programming Basics 10
In-System Programming 11
Programming Algorithm Basics 11
Programming Times 12
USERCODE 13
Programming Hardware 14
Programming Software 14
Embedded Programming 15
FPGA Configuration 15
Serial Peripheral Interface Flash 15

Chapter 3 Deployment Tool Overview 16
Deployment Tool Function Types 18
Output File Types 18

File Conversion Output File Types 18
Tester Output File Types 20
Embedded System Output File Types 21
External Memory Output File Types 22

CONTENTS

Programming Tools User Guide for Radiant Software 2025.1 5

Chapter 4 Embedded Flow Overview 24
JTAG Full VME Embedded 32

VME File Format 32
JTAG Full VME Embedded Flow 35
JTAG Full VME Embedded System Memory 36
JTAG Full VME Embedded Basic Operation 37
VME Source Code 38
JTAG Full VME Embedded Programming Engine 38
RAM Size Requirement for VME 39
ROM Size Requirement for JTAG Full VME Embedded 40
JTAG Full VME Embedded Required User Changes 41
Program Memory Requirement 42
Program Memory Allocation 43
Sample Program Size 43
Using JTAG Full VME Embedded 44
Generating VME Files 45
Testing VME Files 46
Converting an SVF File to VME File 46
Choosing the File-Based or EPROM-Based Version 46
Customizing for the Target Platform 46
Advanced Issues 47
EPROM-based JTAG Full VME Embedded User Flow 47
Programming Engine Flow 48
VME Byte Codes 63
Unsupported SVF Syntax 66

JTAG Slim VME Embedded 67
JTAG Slim VME Embedded Source Code 68
Using the PC-based JTAG Slim VME Embedded 69
Using the 8051-based JTAG Slim VME Embedded 70
VME Algorithm Format 71
VME Data Format 74
VME Required User Changes 75
Program Memory Requirement 76
Program Memory Allocation 76
Sample Program Size 77
VME File Size 78
Generating JTAG Slim VME Embedded Files 78
JTAG Slim VME Embedded Source Code 79
8051 JTAG Slim VME Embedded User Flow 81
Programming Engine Flow 82
VME Algorithm and Format 93

Slave SPI Embedded 95
Requirements 95
Slave SPI Embedded Algorithm Format 97
Slave SPI Embedded Data Format 98
Generating Slave SPI Embedded Files 98
Modifications 99
Usage 105
Return Codes from Slave SPI Embedded 106
Programming Considerations for SSPIEM Modification with Aardvark SPI

APIs 106
I2C Embedded 107

Masters and Slaves 107

CONTENTS

Programming Tools User Guide for Radiant Software 2025.1 6

CrossLink-NX Slave I2C Programming 108
Using the PC-based I2C Embedded Programming 108
Using the 8051-based I2C Programming 109
I2C Algorithm Format 110
I2C Data Format 111
I2C Embedded Programming Required User Changes 112
Generating I2C Files 113
Programming Considerations for SSPIEM and I2CEM modification with

Aardvark I2C APIs 117

Index 118

Revision History 120

Programming Tools User Guide for Radiant Software 2025.1 7

Chapter 1

Programming Tools Description

This user guide is intended to provide users with basic information, and
references on where to find more detailed information, to assist in configuring
and programming Lattice devices using Radiant software Programmer and
related tools including Deployment Tool, Programming File Utility, and
Download Debugger.

Programmer
Radiant software Programmer is a system for programming devices. The
software supports serial programming of Lattice devices using PC and Linux
environments. The tool also supports embedded microprocessor
programming. Refer to “Programmer Overview” on page 9.

Deployment Tool
The Deployment Tool graphical user interface (GUI) is separate from the
Radiant and Programmer design environment, and is launched from Radiant
Programmer by choosing Tools > Deployment Tool.

The Deployment Tool allows you to generate files for deployment for single
devices, a chain of devices, and can also convert data files to other formats
and use the data files it produces to generate other data file formats. Refer to
“Deployment Tool Overview” on page 16.

PROGRAMMING TOOLS DESCRIPTION : Programming File Utility

Programming Tools User Guide for Radiant Software 2025.1 8

Programming File Utility
Programming File Utility allows the viewing and editing of different format
programming files.The Programming File Utility is a stand-alone tool that
allows you to view and compare data files. When comparing two data files, the
software generates an output (.out) file with the differences highlighted in red.

Detailed information and procedures on how to use the Programming File
Utility are contained in the “Using Programming File Utility” section of the
Lattice Radiant online help.

Download Debugger
Download Debugger is a utility for debugging programming for debugging
Serial Vector Format (SVF) files, Standard Test And Programming Language
(STAPL) files, and Lattice Embedded (VME) files. Download Debugger allows
you to program a device, and edit, debug, and trace the process of SVF,
STAPL, and VME files. Download Debugger also allows you to create, edit, or
view a VME file in hexadecimal format.

Detailed information and procedures on how to use the Download Debugger
are contained in the “Debugging SVF, STAPL, and VME Files” section of the
Lattice Radiant software online help or in the stand-alone Download
Debugger online help.

Embedded Flow
Programming flow using a processor to read the contents of a stored
programming file and programming the FPGA. Lattice provides the option to
generate several different file formats for different embedded target options.
Refer to “Embedded Flow Overview” on page 24.

Driver Installation
A utility is available for installing programming drivers after the Radiant
software or Programmer software has been installed. Refer to the topic
“Installing/Uninstalling Parallel Port Driver and USB Driver on a PC” in the
Lattice Radiant online help or in the Programmer online help.

2Programming Tools User Guide for Radiant Software 2025.1 9

Chapter 2

Programmer Overview

Usage and flow
Programming is the process changing the state of a non-volatile
programmable element (such as embedded Flash and external SPI Flash
devices) by downloading data from bitstream or hex files transmitted to the
download cable through the host computer’s serial communications port; from
an embedded system; or from a third-party programmer.

Configuring is the process of changing the state of a volatile programmable
element (such as SRAM in the FPGA).

Before programming or configuring an FPGA, you need to create and verify
your design, and then generate data files. To download a data file into the
target device, use the Programmer tool.

Programmer Design Flow
The design flow for creating and downloading a design chain is the same,
whether you select the devices and settings from the software or use an
existing chain configuration file.

1. Create a design and compile it to a ISC, hex, or bitstream data file.

2. Using Programmer, create a new chain configuration or open an existing
one.

3. Add devices to the chain, and select the data file and operation for each.

4. Arrange the order of the devices in the chain and edit the options for each
device as needed.

5. Program the daisy-chained devices using the Program toolbar command.

Figure 1 on page 10 describes the Lattice programming process.

PROGRAMMER OVERVIEW : Usage and flow

Programming Tools User Guide for Radiant Software 2025.1 10

Programming Basics
To successfully program devices in-system, there are a few simple
requirements that must first be met. The first of these requirements is that the
devices on the board must be correctly connected into an 1149.1 scan chain.
This scan chain can be used for either programming or testing the board.

To program using Programmer a description of the scan chain must be
developed. This description, called a chain file, contains basic information
about all of the devices in the chain. For the Lattice devices, it includes the
device type, the operation to be performed, and the data file, if required by the
operation. Additional information in the chain file can include the state of the I/
O pins during programming, along with security requirements. If the chain
includes non-Lattice devices, the instruction register length is required for
these devices. The instruction register length can be found from the BSDL file
or the SVF file for the device.

Another requirement for successful programming is thoughtful board design.
The signals used in a scan chain (TCK, TMS, TDI, and TDO) rarely operate
as fast as the data path signals on the board. However, correct board layout
methodologies, such as buffering for large chains and termination resistors,
are required to ensure trouble-free operation. Some Lattice devices have

Figure 1: Programming Design Flow

PROGRAMMER OVERVIEW : Usage and flow

Programming Tools User Guide for Radiant Software 2025.1 11

some additional pins (TRST, ispEN, PROGRAMN, INITN, DONE, SLEEPN,
and TOE) that can affect boundary scan programming and test if not taken
care of properly.

After all of these requirements have been met, it should be relatively
straightforward to program any number of devices on a board. You can
program the devices using a PC or Linux system and a board test system
connected by one of the following cables:

 A Lattice parallel port cable with the 8-pin AMP connector or 10-pin
JEDEC connector

 A Lattice USB port cable

In-System Programming
After you have compiled your design to a data file (hex or bitstream) and
device programming is necessary, you must serially shift the fuse map (a fuse
map file is a design file that has the fuse data already pre-arranged in exactly
the same format as the physical layout of the fuse array of the device) data
into the device along with the appropriate addresses and commands.

Lattice non-volatile FPGA devices use embedded flash memory and require
only TTL-level programming signals. An integrated state machine controls the
sequence of programming operations, such as identifying the device, shifting
in the appropriate data and commands, and controlling internal signals to
program and erase the embedded Flash in the device. Programming consists
of serially shifting the logic implementation stored in a data file into the device
along with appropriate addresses and commands, programming the data into
the embedded Flash, and shifting the data from the logic array out for device
programming verification.

Most of Lattice’s devices use the IEEE 1149.1-1993 Boundary Scan Test
Access Port (TAP) as the primary interface for in-system programming.

Programming Algorithm Basics
Programming a device is similar to programming any piece of memory, such
as an EPROM or a Flash memory. The device can be thought of as an array
that is programmed one row at a time. The programming information is
provided to the software in the form of a data file that must be converted into
the row and column fuse map data. Before a non-volatile device can be
programmed, it first has to be erased. After the device has been erased, the
programming data can be loaded and the device programmed. After the
device has been programmed, it will be verified by reading out the data in the
device and comparing it to the original.

Figure 2 on page 12 shows the basic programming flow for the device. It does
not include the data file conversion into fuse map data, for it assumes that

PROGRAMMER OVERVIEW : Usage and flow

Programming Tools User Guide for Radiant Software 2025.1 12

step has already been done. This programming flow will be the same,
regardless of the programming hardware used.

Programming Times
The time it takes to program a device can often determine where in the
manufacturing process a device, or group of devices, is programmed. A board
test system costing hundreds of thousands of dollars to purchase and as
much as one dollar per minute to operate can be an expensive alternative to
programming if programming times are too long. In many instances, it is more
cost-effective to buy a couple of PCs and program the devices using these
much cheaper systems.

The time it takes to completely program a device is based on the time it takes
to first erase the device, then to program each row in the device, and finally to

Figure 2: Basic Device Programming Flow

Note
If the device will not be programmed in-circuit (that is, by a cable or an embedded
processor), it is not necessary to preload or save the I/O states.

PROGRAMMER OVERVIEW : Usage and flow

Programming Tools User Guide for Radiant Software 2025.1 13

verify the device. The erase time for all devices is between 100 ms and 200
ms. A single row is programmed in 10 ms to 50 ms, depending on the device.
The verification process is the quickest of the required steps in the
programming sequence and mainly depends on the time required to shift the
verification data out of any given device.

The benefit of minimal programming times is much more obvious on board
test systems, because they are included as a part of the test program and are
running at the fastest speed possible. Additionally, there is no translation
needed to or from the data file, since this has already been done by
Programmer.

USERCODE
User-programmable identification can ease problems associated with
document control and device traceability. Every Lattice 1149.1-compliant
device contains a 32-bit register that is accessible through the optional IEEE
1149.1 USERCODE instruction. This user-programmable ID register is
basically a user’s notepad provided in Flash or SRAM cells on each device.

In the course of system development and production, the proliferation of PLD
architectures and patterns can be significant. To further complicate the
record-keeping process, design changes often occur, especially in the early
stages of product development. The task of maintaining which pattern goes
into what device for which socket becomes exceedingly difficult. Once a
manufacturing flow has been set, it becomes important to “label” each PLD
with pertinent manufacturing information, which is beneficial in the event of a
customer problem or return. A USERCODE register is incorporated into
devices to store such design and manufacturing data as the manufacturer’s
ID, programming date, programmer make, pattern code, checksum, ISC data
file CRC, PCB location, revision number, or product flow. This assists you with
the complex chore of record maintenance and product flow control. In
practice, the user-programmable USERCODE register can be used for any of
a number of ID functions.

Within 32 bits available for data storage, you may find it helpful to define
specific fields to make better use of the available storage. A field may use
only one bit (or all bits), and can store a wide variety of information. The
possibilities for these fields are endless, and their definition is completely up
to you.

Even with the device’s security feature enabled, the USERCODE register can
still be read. With a pattern code stored in the USERCODE register, you can
always identify which pattern has been used in a given device. As a second
safety feature, when a device is erased and re-programmed, the USERCODE
identification is automatically erased. This feature prevents any situation in
which an old USERCODE might be associated with a new pattern.

It is your responsibility to update the USERCODE when reprogramming. The
USERCODE information is not included in the fuse map checksum reading.

PROGRAMMER OVERVIEW : Usage and flow

Programming Tools User Guide for Radiant Software 2025.1 14

Loading the USERCODE instruction makes the USERCODE available to be
shifted out in the Shift-DR state of the TAP controller. The USERCODE
register can be read while the device is in normal functional operation,
allowing the device to be scanned while operating.

Programming Hardware
All programming specifications, such as the programming cycle and data
retention, are guaranteed when programming devices over the commercial
temperature range (0 to 70 degrees C). It is critical that the programming and
bulk erase pulse width specifications are met by the programming platform to
ensure proper in-system programming. The details of device programming
are invisible to you if you use Lattice programming hardware and software.

Computer Hardware
Programming is most commonly performed on a PC or Linux system using
the parallel port cable or the USB port cable.

Parallel Port Cable
The cable uses the parallel port of a PC or Linux system for in-system
programming of all Lattice devices. Programmer generates programming
signals from the parallel port and passes them through the cable to the JTAG
port of the devices. With this cable and a connector on the printed circuit
board, no additional components are required to program a device. Refer to
the cable data sheet for more detailed specifications and ordering information.

Hardware design considerations for new boards include whether the
hardware designer will be using boundary scan test operations or low-voltage
(3.3 V–1.8 V) devices. In a system using 3.3 V devices, the cable version 2.0
should be used. This cable operates with either a 3.3 V or 5 V power source.
In a system using 1.8 V devices, cable version 3.0 must be used. This cable
operates with a power of 1.8 V to 5.0 V.

USB Port Cable
The USB port cable uses the USB port of a PC or Linux system for in-system
programming of all Lattice devices. Programmer generates programming
signals from the USB port and passes them through the USB port cable to the
JTAG, Target SPI, or I2C port of the device. Be sure to use JTAGI2C Interface
Programming mode with the USB cable for the I2C port.

Programming Software
Programmer supports programming of all Lattice devices in a serial daisy
chain programming configuration in a PC or Linux environment. The software
is built around a graphical user interface. Any required data files are selected

PROGRAMMER OVERVIEW : Usage and flow

Programming Tools User Guide for Radiant Software 2025.1 15

by browsing with a built-in file manager. The software supports serial a
programming of all Lattice devices. Any non-Lattice devices that are
compliant with IEEE 1149.1 can be bypassed after their instruction register
lengths are defined in the chain description. Any non-Lattice devices that are
compliant with IEEE 1532 can be programmed using an IEEE 1532-compliant
BSDL and ISC data file. Programmable devices from other vendors can be
programmed through the vendor supplied SVF file.

Embedded Programming
Programmer embedded source code is available for programming devices in
an embedded or customized environment. The programming source code is
written in ANSI-standard C language, which can be easily incorporated into
an embedded system or tester software to support programming of devices.
This code supports such common operations as Erase, Program, Verify, and
Secure. After completion of the logic design and creation of a bitstream file,
Programmer can create the data files required for in-system programming on
customer-specific hardware: PCs, testers, or embedded systems.

FPGA Configuration
Programmer provides efficient and economical alternatives to large and
expensive PROMs that are normally used for configuring FPGA devices.

Because SRAM-based FPGA devices are volatile, they require
reconfiguration on power cycles. This means that external configuration data
must be held in a non-volatile device. On systems that require quick
configurations or that do not have processor resources readily available, a
dedicated serial PROM can be used. But such a PROM has to be large to
accommodate large FPGA devices or multiple devices.

A much easier solution is to use a low-cost, industry-standard flash memory
device combined with a CrossLink-NX device.

Serial Peripheral Interface Flash
Programmer, combined with a Lattice cable download, supports the
programming of Serial Peripheral Interface (SPI) flash devices.

Several Lattice FPGAs can be configured directly from an external serial
peripheral interface (SPI) flash memory devices. Because of their bitstream
compression capability, these Lattice FPGAs allow the use of smaller-capacity
SPI memory devices.

For an up-to-date list of Lattice devices that can be configured using SPI
flash, as well as a list of supported SPI flash devices, refer to the topic “Serial
Peripheral Interface (SPI) Flash Support” in the Lattice Radiant online help.

Programming Tools User Guide for Radiant Software 2025.1 16

Chapter 3

Deployment Tool Overview

The Deployment Tool graphical user interface (GUI) is separate from the
Radiant and Programmer design environment, and is launched from Radiant
Programmer by choosing Tools > Deployment Tool.

The Deployment Tool allows you to generate files for deployment for single
devices, a chain of devices, and can also convert data files to other formats
and use the data files it produces to generate other data file formats. A four-
step wizard allows you to select deployment type, input file type, and output
file type.

A basic block diagram of the Deployment Tool flow is shown in Figure 3 on
page 17.

DEPLOYMENT TOOL OVERVIEW :

Programming Tools User Guide for Radiant Software 2025.1 17

Figure 3: Deployment Tool Flow

DEPLOYMENT TOOL OVERVIEW : Deployment Tool Function Types

Programming Tools User Guide for Radiant Software 2025.1 18

Deployment Tool Function Types

There are four function types available in Deployment Tool:

 File Conversion

 Tester

 Embedded System

 External Memory

The function types are accessed from the Function Type dropdown menu on
the Deployment Tool Getting Started dialog box, as shown in Figure 4.

Output File Types
Each function type outputs different file types. This section describes all of the
file types that are output by the five function types.

File Conversion Output File Types
The File Conversion function outputs four different file types, as shown in
Figure 5 on page 18. The output types are defined as follows:

Figure 4: Deployment Tool Function Types

Figure 5: File Conversion Output File Types

DEPLOYMENT TOOL OVERVIEW : Output File Types

Programming Tools User Guide for Radiant Software 2025.1 19

IEEE 1532 ISC Data File

Converts JEDEC files to IEEE 1532 compliant ISC (In System Configuration)
data files, which are used in conjunction with IEEE 1532 compliant BSDL files
to program a device.

Application Specific BSDL File

Converts a generic BSDL (Boundary Scan Description Language) file to an
Application Specific BSDL file, using the signal names from the input file
(JEDEC or ALT file). Also, for any I/Os that support VREFs or LVDS pairs and
are configured as VREFs or LVDS pairs, the application-specific BSDL file
changes to accurately reflect the behavior of the VREF or LVDS pair. When
generating the Application Specific BSDL file, you have the option to convert
bi-directional I/Os to inputs or outputs based on your design, or to keep all I/
Os as bi-directional. The generic BSDL files are available on the Lattice
website.

JEDEC File

Converts the following file types JEDEC, Binary Bitstream, ASCII Bitstream,
or IEEE 1532 ISC into a JEDEC file. The USERCODE, USERCODE format,
and set the Program Security Fuse for the JEDEC file.

Bitstream

Takes a Binary Bitstream, or ASCII Bitstream file and can convert it into the
following output formats Binary Bitstream, ASCII Bitstream, Intel Hex,
Motorola Hex, and Extended Tektronix Hex. Users can specify the Program
Security Bit, Verify ID Code, Frequency, Compression, CRC Calculation,
USERCODE format, and USERCODE.

JEDEC to Hex

Note:
The specific BSDL file generation for SRAM-based FPGA devices is currently not
supported in this operation.

DEPLOYMENT TOOL OVERVIEW : Output File Types

Programming Tools User Guide for Radiant Software 2025.1 20

Converts JEDEC (*.jed) file type to either ASCII Raw Hex (*.hex) or Binary
Raw Hex (*.bin) file type.

Refer to the Deployment Tool online help for information about specific device
support.

Tester Output File Types
The Tester function outputs five different file types, as shown in Figure 6.

The output types are defined as follows:

SVF - Single Device

SVF Single Takes one of the following user data files types ASCII Bitstream,
Binary Bitstream, or IEEE 1532 ISC and then select an operation to generate
an SVF (Serial Vector Format) file. Depending on the data file selected then a
certain set of operation for the device are available to be selected. The user is
able to check several options which will modify the SVF file.

SVF - JTAG Chain

Note
The JEDEC to Hex feature supports JEDEC files generated by Lattice software.
Using self-modified JEDEC files, corrupted JEDEC files, or JEDEC files generated
using other software may result in incorrect data being generated, hanging, or
crashing.

This feature does not support the following:

 Encrypted JEDEC files

 SED CRC

 TAG Memory

 USERCODE

 Feature Row

Figure 6: Tester Output File Types

DEPLOYMENT TOOL OVERVIEW : Output File Types

Programming Tools User Guide for Radiant Software 2025.1 21

Takes an XCF file generated by Programmer and generates an SVF file.
There are several options available that modify the SVF file including write
header and comments, and set maximum data size per row.

STAPL - Single Device

Takes an ASCII Bitstream, Binary Bitstream, or IEEE 1532 ISC and then
depending on the input file type gives a set of available operation that can be
performed on the device. A STAPL (Standard Test And Programming
Language) file is generated using the data file and operation.

STAPL - JTAG Chain

Generates a STAPL file for testing using only an XCF file generated by
Programmer.

Refer to the Deployment Tool online help for information about specific device
support.

Embedded System Output File Types
The Embedded System function outputs five different file types, as shown in
Figure 7.

The output types are defined as follows:

JTAG Full VME Embedded

Takes an XCF as an input file, then the user can check options such as
Compress VME, include Header along with several other options. This
operation generates a VME file which is a compressed hexadecimal
representation of an SVF files.

JTAG Slim VME Embedded

VME is a compressed version of a VME file. To generate a Slim VME file an
XCF file must be specified, then specify whether it is a Compressed VME file

Figure 7: Embedded System Output File Types

DEPLOYMENT TOOL OVERVIEW : Output File Types

Programming Tools User Guide for Radiant Software 2025.1 22

and whether or not to generate a HEX file. This operation outputs an
algorithm VME file and a data VME file.

Slave SPI Embedded

This file type allows field upgrades via the Target SPI port. This operation can
be given an XCF, Binary Bitstream, and ASCII Bitstream as an input file. If an
Bitstream file is given then the operation for the device must be specified
along with whether or not to compress the embedded file and whether or not
to generate a HEX file. If an XCF file is given there are no other operations or
options the user needs to provide. This operation will output an algorithm file
(.sea) and a data file (.sed).

I2C Embedded

I2C embedded files enable field upgrades via the I2C port. If an XCF file is
specified then the user is given the option to compress the embedded files,
generate a hex file, include comments, and if there should be a fixed pulse
width. If a Bitstream file is specified then the previous options are available
along with selecting the device operation and specifying the length of the I2C
Slave Address. Two files will be generated a data file (.ied) and an algorithm
file (.iea).

Refer to the Deployment Tool online help for information about specific device
support.

Also, refer to “Embedded Flow Overview” on page 24.

External Memory Output File Types
The External Memory function outputs four different file types, as shown in
Figure 8 on page 22. The output types are defined as follows:

Hex Conversion

converts a file Binary Bitstream, ASCII Bitstream, Binary, or Hex to various
Hexadecimal file formats which are used to configure the external SPI Flash

Figure 8: External Memory Output File Types

DEPLOYMENT TOOL OVERVIEW : Output File Types

Programming Tools User Guide for Radiant Software 2025.1 23

memory of a device. The output file formats are Intel Hex, Motorola Hex, and
Extended Tektronix Hex. The user is also able to set the Program Security bit,
Verify ID Code, Frequency, compression, CRC Calculations and also the
Starting Address.

Dual Boot

Takes two Binary Bitstream or ASCII Bitstream files and then creates a single
hex file to configure primary and golden sectors of an external SPI Flash. The
output format can be Intel Hex, Motorola Hex, and Extended Tektronix Hex.
The device will usually boot form the primary sector unless there is a problem
then it will boot from the gold sector.

Ping-Pong Boot

Takes two Binary Bitstream or ASCII Bitstream files and then creates a single
hex file to configure primary and secondary sectors of an external SPI Flash.
The output format can be Intel Hex, Motorola Hex, and Extended Tektronix
Hex. The user can select the first boot from either the primary or secondary
sector. The device will usually boot form the first selected sector unless there
is a problem then it will boot from the second selected sector.

Advanced SPI Flash

This operation is for generating hex files which handles more complicated
operations such as Multiple Boot, and Quad I/O to configure external memory.
Users can set the output hex format, how big the SPI Flash size is, whether or
not to do a byte wide bit mirror, retain the bitstream header, and Whether or
not to optimize the memory space. Another option is to set multiple user data
file and where each of those data file's starting address should be in memory.

sysCONFIG Daisy Chain

This is used when multiple devices are in a daisy chain and configured from a
single SPI flash or CPU. This operation will take two Binary or ASCII
bitstreams and convert them into a single hex file.

Refer to the Deployment Tool online help for information about specific device
support.

Programming Tools User Guide for Radiant Software 2025.1 24

Chapter 4

Embedded Flow Overview

Lattice Embedded VME enables in-field upgrades of Lattice programmable
devices by suitable embedded processors, and consists of the following:

JTAG Full VME Embedded

Enable field upgrades via the JTAG port.

JTAG Slim VME Embedded

Featured s reduced foot print and is designed for microcontrollers with limited
resources, such as 8051 processors.

Slave SPI Embedded

Enable field upgrades via the Target SPI port.

I2C Embedded

Enable field upgrades via the I2C port.

There are three components to Embedded VME

 ANSI C source code, which is shipped with Radiant Programmer. The
user compiles this ANSI C Source code into their target system.

 Algorithm VME File, which contains the programming algorithm for the
target FPGA. The Algorithm VME file is generated using the Deployment
Tool.

 Data VME File, which contains the data that will be programmed into the
FPGA. The Data VME file is generated using the Deployment Tool.

For all four embedded types, the Embedded VME support is comprised of C
source files that users must port into their embedded systems for the purpose
of programming Lattice devices. The porting process is also known as the

EMBEDDED FLOW OVERVIEW :

Programming Tools User Guide for Radiant Software 2025.1 25

customization and compiling process. The end product of the porting process
will be the Embedded VME in compiled form, which will reside in the
embedded systems.

Depending on the port interface, such as JTAG, SPI, or I2C, the user can
select one of the four embedded VME types.

Figure 9 shows an example of Full VME embedded file generation for the
JTAG port.

The programming data and programming instructions are compiled into a
binary VME file format for the driver to load into the target devices. The VME
file can be provided to the driver as a stand-alone file or linked together with
the driver.

Figure 10 shows a high-level example of a file-based embedded VME used
for field upgrades.

Figure 9: Full Embedded VME Flow

Figure 10: Example Embedded VME Programming Configuration

EMBEDDED FLOW OVERVIEW :

Programming Tools User Guide for Radiant Software 2025.1 26

Porting of the JTAG VME into Embedded Systems

Porting JTAG Embedded VME is simple and the requirements are very simple
to follow:

AC Requirements:

 TCK Fmax = 25 MHz.

 TCK Rise Time and Fall Time = 50ns maximum.

 Delay function resolution and accuracy = 1 millisecond minimum.

DC Requirements:

 I/O voltage level of the driver = I/O voltage level of the VCC JTAG port of
the target devices. The VCC that power the JTAG port can be:

 VCC core (All EE based devices)

 VCCIO

 VCCJ (All SRAM based and Flash based FPGA devices)

 Programming current = 1 Ampere maximum.

JTAG Programmability of Lattice Devices

Lattice's devices can be classified into three groups based on
programmability:

 SRAM based only devices (volatile devices).

 EE based devices (non-volatile devices).

 Flash based devices (non-volatile devices).

The SRAM based only devices are the easiest devices to support in terms of
Embedded VME porting for they normally do not require accurate timing.

Embedded VME Porting Detail

Step 1: Customize JTAG Embedded VME by modifying hardware.c

The pin mapping index table on the hardware.c must be revised to match with
the customer’s board layout. On the PCB that is the target for porting the
Embedded VME, it is important and a good practice to route the JTAG port to
a test header for easy access using an oscilloscope or connecting to
Programmer for debugging.

Note
For information on configuring the Lattice iCE40 family of devices from an
embedded processor, refer to TN1248, iCE40 Programming and Configuration
Guide.

EMBEDDED FLOW OVERVIEW :

Programming Tools User Guide for Radiant Software 2025.1 27

All VME files begin with IDCODE verification to ensure the JTAG port pins are
mapped and connected properly.

Modify the Delay Function

When porting Embedded VME to a native CPU environment, the speed of the
CPU or the system clock that drives the CPU is usually known. The speed or
the time it takes for the native CPU to execute one loop then can be
calculated.

The for loop usually is compiled into the ASSEMBLY code as shown below:

LOOP: EDC RA;
JNZ LOOP;

If each line of assembly code needs four (4) machine cycles to execute, the
total number of machine cycles to execute the loop is 2 x 4 = 8.

Figure 11: Map Four GPIO Pins from the CPU to the Four JTAG Pins

EMBEDDED FLOW OVERVIEW :

Programming Tools User Guide for Radiant Software 2025.1 28

Usually: system clock = machine clock (the internal CPU clock).

Let the machine clock frequency of the CPU be F (in MHz), then one machine
cycle = 1/F.

The time it takes to execute one loop = (1/F) x 8.

It is obvious that the formula can be transposed into one microsecond = F/8.

Example: The CPU internal clock is set to 48 MHz, then one microsecond =
48/8 = 6.

The C code shown below can be used to create the millisecond accuracy. All
that needs to be changed is the CPU speed.

Step 2: Calibration

It is important to confirm if the delay function is indeed providing the accuracy
required. It is also important to confirm the TCK frequency. As an example, we
will estimate the minimum system clock frequency of the native CPU that
does not require the TCK to be slowed down. The TCK could be generated by
the following code.

Note
Some CPUs have a clock multiplier to double the system clock for the machine clock.

EMBEDDED FLOW OVERVIEW :

Programming Tools User Guide for Radiant Software 2025.1 29

writePort (g_ucPinTCK, 0x00);
writePort (g_ucPinTCK, 0x01);

Let the number of system clocks to execute one line of code = 8 clocks.

The total number of clock for one pulse = 2 x 8 = 16.

The total amount of time for one pulse = 1/F x 16.

Lattice devices TCK frequency max = 25 MHz.

The equation becomes: 1/25 = 1/F x 16.

The maximum frequency of the CPU: F = 16 x 25 = 400 MHz.

If the system clock of the native CPU is faster than 400 MHz, the TCK pulses
must be slowed down to meet the 25 MHz maximum specification.

The setup time and hold time of TDI, TMS, and TDO relative to TCK is not of
concern for Embedded VME is constructed in the fashion that it is not possible
to violate that requirement whenever the frequency of TCK is within the
specification.

The calibrate function in Embedded VME can be launched by using the –c
switch to cause the waveform as follow captured on the scope with the probe
attached to the TCK wire.

If the pulse width is found to be smaller than 1 millisecond, then increase the
cpu_frequency value until 1 millisecond delay is captured by the calibration
function.

If the TCK frequency is found to be faster than 25 MHz, then change the
sclock() function in hardware.c as shown below. The IdleTime normally is

Figure 12: JTAG Embedded VME Delay Calibration

EMBEDDED FLOW OVERVIEW :

Programming Tools User Guide for Radiant Software 2025.1 30

Figure 13: JTAG Embedded VME Delay Calibration TCK Waveforms

EMBEDDED FLOW OVERVIEW :

Programming Tools User Guide for Radiant Software 2025.1 31

initialized to 0. If it is initialized to 1, then the TCK frequency is effectively
reduced by half. Use this technique to reduce the TCK frequency until
meeting the specification.

Step 3: Program Devices

Once the calibration is done, the Embedded VME (actually the JTAG port
driver) is ready to program the devices. The device specific programming
information is all self-contained in the VME file.

The VME file actually has six major sections:

1. Check the IDCODE,

2. Erase the device,

3. Program the device,

4. Verify the device,

5. Program the done fuse,

6. Wake-up the device.

IDCODE check failure is the most common failure when porting Embedded
VME. It is a good practice to generate a Verify IDCODE only VME file first.
Run the VME file. If it passes, then the JTAG port to GPIO mapping is
confirmed. Once the port mapping is confirmed, then the programming VME
file can be used.

Accurate timing is very critical to program devices reliably.

Using the calibration routine provided by Embedded VME will achieve the
accurate timing.

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 32

JTAG Full VME Embedded
The JTAG Full VME Embedded VME software brings programming software
to embedded applications. Using Lattice Semiconductor’s Radiant
Programmer and Deployment Tools, you are provided with all necessary
capabilities for programming devices in a single or multiple device chain.
Developed to solve many programming issues facing today’s PLD users,
JTAG Full VME Embedded provides advanced features including fast
programming times, and small file sizes.

The JTAG Full VME Embedded software is a simplified version of the full
Radiant Programmer. By making it serial vector format (SVF) file centric,
JTAG Full VME Embedded is better targeted for embedded systems. Lattice
JTAG devices are supported and users are able to program competitor
devices through a simple SVF file translator. Lattice JTAG devices are those
devices that can be programmed using the IEEE 1149.1 boundary scan TAP
controller interface. Users are able to quickly and efficiently program chains of
devices using this powerful utility, thus improving productivity and lowering
costs.

An advantage of JTAG Full VME Embedded over vendor or architecture-
specific methods is that once it is developed, it supports all present and future
devices. As long as the programming flow can be described as an SVF file,
the main engine does not have to change. For embedded environments, it is
important to have deterministic memory requirements. By pre-processing the
SVF file, it is possible to know the exact resources required to implement the
programming algorithm and to store the programming data. The nature of the
SVF file also allows the resources available to determine how the file is
processed. Large shift instructions can be broken into multiple instructions if
the embedded system does not have enough RAM available to store the
entire row in one pass. Since the SVF file is serial in nature, it can be
segmented to fit available RAM, PROM or FLASH memory.

The JTAG Full VME Embedded source code is designed to be hardware and
platform independent. A VME data file, or VME file, runs on all JTAG Full VME
Embedded applications.

See Also JTAG Full VME Embedded Basic Operation

VME File Format
A VME file is simply an SVF file that has been compressed. SVF file includes
algorithm and data file in ASCII format, and VME file is the SVF file in the
optimized binary format. Compared with SVF file, VME files require minimized
memory space to store the bitstream file and has optimized code size. SVF
keywords such as SIR and SDR are replaced with the byte codes 0x11 and
0x12, respectively. This reduces the VME file by writing only one byte of data,
the byte codes, instead of writing the entire SVF keyword, which would use
more characters.

JTAG Full VME Embedded file supports compression to reduce the VME file
size by compressing the data and address streams. A looping compression is

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 33

also employed to reduce the file size even further by taking advantage of the
repeating SVF constructs. The following describes each compression
scheme.

Compressed VME Files

The compression scheme is applied to the address and data stream following
SIR and SDR, respectively. These streams will try to be compressed by 0x00,
0xFF, or by 4-bit count.

For example, consider the following line in a SVF file:

SDR 102 TDI (20000000000000000000000000);

The address stream is ‘20000000000000000000000000’. The repeating
zeros in the stream can be easily compressed by 0x00. Compression with
0xFF works in the same manner, except that instead of the data stream
containing zeros, it would contain ‘F’s.

Compression by 4-bit count works by looking for repeating patterns within the
data stream that are not zeros or ‘F’s.

For example, consider the following line in a SVF file:

SDR 80 TDI (7F97F97F97F97F97F97F9);

The repeating 4-bit count in this example would be ‘7F9,’ because it repeats
throughout the data stream. The 4-bit would be written only once in the VME
file, and would be followed by the number of repetitions found within the data
stream.

The compression scheme reduces the file size by not extrapolating repeating
information within the address and data streams. That task is left for the VME
processor.

Looping VME Files

In an SVF file, repeating constructs can be observed. The looping scheme
takes advantage of these constructs by creating a template with the repeating
information, and the differentiating date is replaced by a placeholder. The
differentiating data will be written after the construct.

For example, the following data is found in a SVF file:

SIR 5 TDI (01);

SDR 102 TDI (20000000000000000000000000);

SIR 5 TDI (02);

SDR 80 TDI (7BFFF7BFFFF7BFFF7BFF);

SIR 5 TDI (07);

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 34

RUNTEST IDLE 3 TCK 1.20E-002 SEC;

SIR 5 TDI (01);

SDR 102 TDI (10000000000000000000000000);

SIR 5 TDI (02);

SDR 80 TDI (FFFF7FFFFFFFFFFFFFFF);

SIR 5 TDI (07);

RUNTEST IDLE 3 TCK 1.20E-002 SEC;

SIR 5 TDI (01);

SDR 102 TDI (08000000000000000000000000);

SIR 5 TDI (02);

SDR 80 TDI (FFFFFFFFFFFFFFFFFFFF);

SIR 5 TDI (07);

RUNTEST IDLE 3 TCK 1.20E-002 SEC;

...

...

The looping template is built based on the repeating SIR lines. Notice how the
TDI values for the SIR commands are a repeating sequence of 01, 02, and
07. In this case the resulting template would be:

SIR 5 TDI (01);

SDR 102 TDI VAR;

SIR 5 TDI (02);

SDR 80 TDI VAR;

SIR 5 TDI (07);

RUNTEST IDLE 3 TCK 1.20E-002 SEC;

VAR is written in place to hold the data that does not repeat. The non-
repeating data will get written into the VME file following each template. The
example above would look like this in the VME file:

LOOP 3

SIR 5 TDI (01);

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 35

SDR 102 TDI VAR;

SIR 5 TDI (02);

SDR 80 TDI VAR;

SIR 5 TDI (07);

RUNTEST IDLE 3 TCK 1.20E-002 SEC;

ENDLOOP

(20000000000000000000000000)

(7BFFF7BFFFF7BFFF7BFF)

(10000000000000000000000000)

(FFFF7FFFFFFFFFFFFFFF)

(08000000000000000000000000)

(FFFFFFFFFFFFFFFFFFFF)

The ‘LOOP 3’ tells the VME processor to loop the template three times. Each
time it encounters a ‘VAR’, it will grab the first available line of data following
the ‘ENDLOOP’ and replace ‘VAR’ with it. This technique reduces the file
significantly by keeping the similar constructs to a minimal, and only writing
the differences.

JTAG Full VME Embedded Flow
The JTAG Full VME Embedded System allows you to program a device using
the microprocessor in an embedded system. When you install the VM
software, a separate VMEmbedded folder containing the VME source code
and executables is installed on your hard drive. Compiling the VME source
code gives you an executable file that you can store in your system’s memory
for programming using the JTAG port.

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 36

The following figure illustrates the JTAG Full VME Embedded flow.

See Also Generating VME Files

 Testing VME Files

JTAG Full VME Embedded System
Memory
The following figure illustrates JTAG Full VME Embedded system memory.

See Also

 JTAG Full VME Embedded Basic Operation

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 37

JTAG Full VME Embedded Basic
Operation
There are three modes of JTAG Full VME Embedded operation.

File Mode

Under the file mode, data is stored in a file system such as a hard drive or a
DOS flash. The data file is accessed using C library calls, such as fopen,
fread, and fclose. The file read operations collect data into the system
memory. The system memory of the Embedded system must be able to store
the entire bitstream from the file in a contiguous block of memory. The
memory block can be allocated in one of the three locations.

 Data Segment – You can pre-determine how many bytes of data the
bitstream will require and then create an uninitialized array variable to
hold the data. This permanently allocates a portion of the Data Segment.
For example:

char programmingData[0x10000]; // allocate 64K

 Stack Segment – You can pre-determine how many bytes of data the
bitstream will require and then create an uninitialized array variable to
hold the data. Depending upon the function call sequence, this may or
may not permanently allocate a portion of the system memory. See the
example code below.

int MyFunction () {
char bitstreamArray[0x10000];
}

 Heap Segment – You can determine at runtime how many bytes of data
the bitstream will require and then dynamically allocate an uninitialized
array variable to hold the data. You are responsible for freeing the
memory when it is not being used any longer. Below is an example.

char *bitstreamData;
bitstreamData = (char *)malloc(numberOfBitstreamBytes);

Static Linking Mode

Under the static linking mode, the bitstream data is converted from the file on
the hard drive into a C source code file. The C source code defines a byte
array. The byte array is exactly the size of the bitstream. The byte array can
be linked into either the Code Segment or the Data Segment. The memory
allocated for the bitstream is permanently consumed.

PROM Mode

Under the PROM-based mode, the bitstream file is converted from the file on
the hard drive into an Intel HEX file. The HEX file is loaded into a non-volatile
memory using a PROM programming tool. The HEX file data is placed in the
non-volatile memory at a known address (that is, a fixed address). The user C
code initializes a pointer. The pointer is given the starting address of the HEX

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 38

byte stream. The memory used by the bitstream is permanently allocated in
the non-volatile memory.

See Also

 JTAG Full VME Embedded System Memory

VME Source Code
The JTAG Full VME Embedded source code is written in standard ANSI C
and is simplified with embedded applications in mind. Most embedded
applications have greater limits on program and data sizes than PC or
workstation applications. The areas most likely to differ between platforms are
the timing delay function and hardware port manipulation.

The current version of the JTAG Full VME Embedded software is available
through the Programmer installation. The installation creates a sub-directory
called VMEmbedded, where the pre-compiled executables, source code, and
readme.txt can be found.

There are four sets of embedded-related source code that are shipped with
Programmer.

 VME – The file-based VME is the programming engine that accepts VME
files as command line arguments to process the devices. By default, the
executable compiled from this source code targets Windows operating
systems. You can make small modifications to make the compiled
executable accommodate other platforms.

 VME_eprom – The PROM-based VME is the programming engine that
requires compiling a HEX file, which is a C-programming file, with the
source code to create an executable engine that can be embedded onto
the embedded system.

 svf2vme – The svf2vme is a command line utility that can convert SVF
files into VME files.

 vme2hex – The vme2hex is a command line utility that can convert VME
files into HEX files.

Among all the source codes, only the hardware.c file requires changes. You
should customize the hardware.c file according to your target platform.

JTAG Full VME Embedded
Programming Engine
The programming engine of the JTAG Full VME Embedded software is driven
by the byte codes of the VME format file. It manipulates the I/O ports and
sends commands to the customer firmware. The commands sent from the
programming engine requires the I/O system to be connected to the device's
JTAG port. The VME byte codes instruct the engine as to what sequence of

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 39

functions to follow in order to shift in instructions, move the TAP controller
state machine, shift data in and out of the device, and observe delay. The
engine has the following three layers.

 User interface layer (ispvm_ui.c) – Directs inputs and outputs.

 Processor layer (ivm_core.c) – Decodes commands, checks CRC prior to
processing, and does optional decompression.

 Physical layer (hardware.c) – Shifts data to target device. This is the only
file that you need to edit. See Customizing for the Target Platform for
details.

The following figure illustrates JTAG Full VME Embedded JTAG port
programming engine.

RAM Size Requirement for VME
To calculate the worst-case size of memory needed to program a device, in
terms of bytes, locate the size of the largest register in the device. This is
usually the data shift register. Divide that number by eight, and then multiply
the quotient by two: one for TDI and one for TDO. If the device has MASK,
multiply the quotient by three instead of two.

This method only calculates the RAM requirements for the data of the device.
It does not account for transient variables that are used to execute the
programming algorithm. Transient variables are more difficult to calculate
because they appear in and out of scope often. Also, a variable size may
depend on the microprocessor’s register size. For example, an integer

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 40

variable on a 32-bit system is four bytes while the same variable on a 16-bit
system is only two bytes.

To approximate the RAM requirement for the run-time variables, add twenty
percent to the required RAM.

To verify that the calculation is correct, convert the SVF file to VME, and use
the VME2HEX utility to convert from VME to HEX. This utility generates the
vme_file.h file, which gives the definitive memory size requirement.

The variables that are of concern to memory are:

 MaskBuf

 TdiBuf

 TdoBuf

 HdrBuf

 TdrBuf

 HirBuf

 TirBuf

 HeapBuf

 CRCBuf

 CMASKBuf

As expected, MaskBuf, TdiBuf, and TDOBuf each requires 26 bytes. If the
device were in a chain, HdrBuf (Header Data Register), TdrBuf (Trailer Data
Register), HirBuf (Header Instruction Register), and TriBuf (Trailer Instruction
Register) would need extra bytes.

If the VME file had been generated with the looping option, HeapBuf would
require extra bytes as well. Looping requires slightly more RAM but
significantly less ROM. When the VME file has not been looped, it does not
require any additional RAM, but ROM size can significantly increase. This
trade-off is file-dependent.If the original SVF were 1532-compliant, CRCBuf
and CMASKBuf would require extra bytes as well.

ROM Size Requirement for JTAG Full
VME Embedded
To calculate the worst-case ROM size for a given device, multiply the number
of frames by the frame size. Divide that number by eight to obtain the required
ROM size, in terms of bytes.

This method assumes that the SVF file will be generated with the turbo option.
If the SVF file were generated with the sequential option, the worst-case ROM
size would be doubled.

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 41

This method only calculates the ROM requirements for the data. It does not
account for opcodes that are used to translate the algorithm of the device. To
approximate the ROM requirement for the algorithm opcodes, add twenty
percent to the required ROM.

The actual ROM requirement might be significantly less than the theoretical
worst-case requirement because SVF2VME utilizes two compression
techniques, compression and looping, to decrease the VME file. The file size
difference is file-dependent.

JTAG Full VME Embedded Required
User Changes
To make the JTAG Full VME Embedded or JTAG Slim VME Embedded
software work on your target system, you need to modify the following C
functions in the hardware.c source code.

Timer

The engine requires the ability to delay for fixed time periods. The minimum
granularity of the delay is 1 microsecond. You can determine the type of delay.
This can be a simple software timing loop, a hardware timer, or an operating
system call, for example, sleep().

Port Initialization

The firmware needs to place the port I/O into a known state. The software
assumes this has occurred.

Get Data Byte The engine calls the GetByte() function to collect one byte
from the JTAG Full VME Embedded or CPU bytestream.

Modify Port Register

The engine, as it parses the bitstream data, changes an in-memory copy of
the data to be written onto the I/O pins. Calls to this function do not modify the
I/O pins. The engine uses virtual types (for example, DONE_PIN) which this
function turns into physical I/O pin locations (for example, 0x400).

Output Data Byte

The engine calls this function to write the in-memory copy onto the I/O pins.

Input Status

This function is used by the engine to read back programming status
information. The function translates physical pin locations (for example,
0x400) into virtual types used by the engine (for example, DONE_PIN).

Output Configuration Pins

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 42

Some systems may wish to use the FPGA CFG pins, and have the
Embedded system control them. There is a separate function call to
manipulate the CFG pins.

Bitstream Initialization

You must determine how you plan to get the bitstream into your memory
system, pre-compiled, HEX file based, or dynamically installed. Whichever
method you use the data structures which pin to the bitstream need to be
initialized prior to the first GetByte function call.

See Also

 Customizing for the Target Platform

 VME Source Code

 JTAG Slim VME Embedded Source Code

Program Memory Requirement
The following figure illustrates the JTAG Full VME Embedded program
memory requirement.

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 43

Program Memory Allocation
The following figure illustrates the JTAG Full VME Embedded program
memory allocation.

Sample Program Size
This page provides sample program size for JTAG Full VME Embedded,
JTAG Slim VME Embedded, and sysCONFIG Embedded.

JTAG Port non-JTAG Port Total

JTAG Full VME
Embedded

JTAG Slim
VME

Embedded

sysCONFIG
Embedded

32-Bit 16-Bit 8-Bit 32-Bit 16-Bit

File Based
(Bitstream File External)

52KB 21KB 4.2KB 48KB 19KB As Shown

PROM Based
(Bitstream File Integrated)

52KB 21KB 4.2KB 48KB 19KB As Shown +
VME File Size

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 44

.

Using JTAG Full VME Embedded
The procedure of generating and processing the VME can be done by using
the Programmer graphical user interface.

Table 1: JTAG Full VME Program Descriptions
Program Description

JTAG Full VME Embedded
(file-based)

The file-based JTAG Full VME Embedded is the
programming engine that accepts VME files as
command line arguments to process the device(s).

JTAG Full VME Embedded
(EPROM-based)

The EPROM-based JTAG Full VME Embedded is the
programming engine that requires compiling a HEX file,
which is a C-programming file, with the source code to
create an executable engine that can be embedded
onto the embedded system.

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 45

Generating VME Files
A VME file is a variation of an SVF file that has been compressed into a binary
file. It allows you to program a device from the microprocessor on your printed
circuit board. The VME files can be created in Deployment Tool by selecting
Lattice Programmer-generated an XCF file. An XCF file is a configuration file
used by Radiant Programmer and for programming devices in a JTAG daisy
chain. The XCF file contains information about each device, the data files
targeted, and the operations to be performed.

In Deployment Tool, the JTAG Full VME Embedded software will then take the
device chain information and generate the VME file. If a non-Lattice device is
in the chain, you must add a JTAG-SVF device and supply the SVF file. For
chains with JTAG-SVF devices, JTAG Full VME Embedded generates two
VME files. You can use one or both files to program the device.

To generate a VME file:

1. In Programmer, create a project, and add the target devices into the chain
with the appropriate operations and data files. If a non-Lattice device is in
the chain, set the device as a JTAG-SVF device and provide the
appropriate SVF file, SVF vendor, and TCK frequency. Refer to
Programmer online help for more information on how to use Programmer.

2. Save the Programmer project (.xcf).

3. In Deployment Tool, choose Create New Deployment.

4. For Function Type, choose Embedded System.

5. For Output Type, choose JTAG Full VME Embedded, then click OK.

6. In the Step 1 of 4 dialog box, select the XCF file, and click Next.

7. In the Step 2 of 4 dialog box, elect the desired file options. For detailed
option descriptions, including the option that allows you to generate a
HEX (.c) file, see the Deployment Tool online help.

8. Click Next.

9. In the Step 3 of 4 dialog box, in the Output File box, specify the location
and file name of the VME file.

10. Click Next.

11. In the Step 4 of 4 dialog box, click Generate.

svf2vme The svf2vme is a command line utility that can convert
SVF files into VME files.

vme2hex The vme2hex is a command line utility that can convert
VME files into HEX files.

Table 1: JTAG Full VME Program Descriptions (Continued)
Program Description

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 46

Deployment Tool generates the VME file depending upon the options you
have chosen, and returns a message indicating that the process succeeded
or failed.

Testing VME Files
Use the Download Debugger to process the VME file using any of the Lattice
programming cables. Refer to Download Debugger online help for details.
This processor can run through using the Lattice download cable.

VME files can also be processed using the command line. See Running the
Deployment Tool from the Command Line online help for details.

Converting an SVF File to VME File
VME files can also be generated the traditional way by using the svf2vme
source code. The utility will expect an SVF file as argument.

Choosing the File-Based or EPROM-
Based Version
To generate a PROM-based VME, select the “Generate HEX (.c) File” option
in the Deployment Tool Step 2 of 4 dialog box.The programming engines of
the file-based and PROM-based processors are identical in the way they
handle the VME commands. Their difference lies in the way they interface
with VME data. For a convenient demo, the file-based version assigns a file
pointer to the binary VME file directly. The pointer is assigned based on a
command line argument. With some minor modification, this version is useful
for embedded high-level 32-bit microprocessors that can dynamically allocate
RAM and have large amounts of data and code memory. For more modest
embedded systems or smaller processors, the PROM-based version is useful
because the memory resources are completely defined when compiling the
executable.The VME file is converted to one or more C files and a header file
that are compiled with the core routines.

Customizing for the Target Platform
The main routines that will require customization are in the hardware.c file.
They include the routines for reading from and writing to the JTAG pins and a
delay routine. These routines are well commented in hardware.c and are at
the top of the file. In readPort(), a byte of data is read from the input port. In
writePort(), a byte of data is written to the output port. In ispVMDelay(), the

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 47

system delays for the specified number of milliseconds or microseconds. The
port mapping is set at the top of the hardware.c file.

The source code files are written in ANSI C. The JTAG Full VME Embedded
source codes are located in the <install_path>\embedded_source directory.

See Also

 JTAG Full VME Embedded Required User Changes

Advanced Issues
Since SVF files are serial in nature, many vendors have options on the type of
operations to be performed when generating the SVF files. If an SVF file is too
large for the targeted embedded application, consider removing optional
operations or breaking up the operations by creating multiple SVF files. This
approach is much better than arbitrarily dividing the VME file.

EPROM-based JTAG Full VME
Embedded User Flow
This appendix details the steps the user must take to use the EPROM-based
JTAG Full VME Embedded.

Figure 14: EPROM-based JTAG Full VME Embedded User Flow

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 48

Step 1. Create Chain With Programmer

Using Programmer, add the target devices into the chain with the appropriate
operations and data files. If a non-Lattice device is in the chain, set the device
as a JTAG-SVF device and provide the appropriate SVF file, SVF vendor, and
TCK frequency. For more information on supporting non-Lattice devices, see
Programmer’s on-line help documentation.

Step 2. Generate VME File

Use the Deployment Tool to generate the VME file. Refer to the Deployment
Tool online help for more information on Deployment Tool.

Step 3. Convert VME to HEX

A HEX file can be created from a VME file by using the vme2hex source code
that is shipped with Programmer, or by selecting the Generate HEX (.c) File
option in Deployment Tool. This source code can be found in the installation
path of Programmer, under the
<install_path>\embedded_source\vmembedded\sourcecode\svf2vme. A HEX
file is a C-programming language file that has the VME byte codes converted
and stored in an array.

Step 4. Modify EPROM-based Source Code

The file hardware.c must be modified to target the embedded system. In
particular, the following functions must be changed to be able to write, read,
and observe the delay, respectively:

 void writePort(unsigned char a_ucPins, unsigned char
a_ucValue)

 unsigned char readPort()

 void ispVMDelay(unsigned int delay_time)

Step 5. Compile Source Code and HEX Files

Combine the source code and HEX files into a project to be compiled. This
may be done by using a microcontroller compiler.

Programming Engine Flow
The programming engine of the JTAG Full VME Embedded is driven by the
byte codes of the VME file. The byte codes instruct the programming engine
as to what sequence of functions to follow in order to shift in instructions,
move the TAP controller state machine, shift data in and out of the device, and
observe delays.

The TAP controller is a synchronous state machine that is based on the TMS
(Test Mode Select) and TCK (Test Clock) signals of the TAP and controls the
sequence of operations of the circuitry defined by the IEEE 1149.1 standard.
The TCK signal can be driven at a maximum of 25 MHz. JTAG devices in the

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 49

chain may limit the TCK speed. Confirm the Maximum TCK for all the devices
in the programming chain.

In the Shift-DR state, a decoder is present to select which shift register is
enabled and connects it between TDI and TDO. The following are the shift
registers: Address Shift Register, Data Shift Register, 32-bit Shift Register,
and Bypass. The 32-bit Shift Register is used to store the ID code and
USERCODE. The first bit clocked into any of the registers is placed into the
MSB, and data is shifted towards TDO as additional bits are clocked in.

The engine core is implemented as a switch statement. The cases in this
switch statement perform specialized functions based on the byte code and
its operand(s). These functions may end up calling other switch statements,
calling the engine core recursively, setting global variable values, or
interfacing with the device directly. Once the byte code instruction has been
executed, it returns to the main switch statement to process the next byte.

The processor begins by calculating the 16-bit CRC of the VME file and
comparing it against the expected CRC. If that is successful, the processor
then verifies the version of the VME file to make sure it is supportable. The

Figure 15: TAP Controller State Diagram

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 50

version is an eight byte ASCII of the format ____<Major
Version>.<Minor Version>, where <Major Version> and <Minor
Version> are digits 0-9. If the version verification fails, the processor
returns the error code –4 to indicate a file error.

Figure 16: Shift Registers

Figure 17: Main Engine Switch

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 51

The Main Engine Switch calls the appropriate case statements based on the
incoming byte code from the VME. Unrecognized byte codes will result in the
program exiting with the error code –4 to indicate a file error.

STATE Case Statement

The STATE case statement expects a state following the STATE byte code to
instruct the processor to step the IEEE 1149.1 bus to the next state. The state
must be a valid stable state, which is IRPAUSE, DRPAUSE, RESET, or IDLE

SIR Case Statement

The SIR case statement begins by extracting the size of the register. The size
will be used later to indicate how many bits of data will be sent or read back
from the device. If the flow control has been set to CASCADE, then the
processor shifts the device to the SHIFTIR. The presence of CASCADE in the
flow control indicates that the SIR instruction is targeting over 64Kb of data
and has been broken down to ease the memory requirements.

If CASCADE has not been set, then the processor shifts the device into the
safe state IRPAUSE, and then to SHIFTIR. If HIR exists (see HIR Case
Statement), then the processor will bypass the HIR. The SIR sub-switch is a
switch that is based off of the byte codes that can potentially be found after
the SIR byte code.

The TDI byte code indicates that there is data that needs to be shifted into the
device. The data following the TDI byte will be extracted and decompressed,
if compression were selected, and held in memory until it is ready to be
shifted into the device.

Figure 18: STATE Case Statement

Figure 19: SIR Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 52

The TDO byte code indicates that there is data that needs to be read and
verified from the device. The data following the TDO byte will be extracted
and decompressed, if compression were selected, and held in memory until it
is ready to be compared against data in the device.

The XTDO byte code indicates that the TDO data is the TDI data of the
previous frame, such as in the case of concurrent, or turbo, programming.
Data will not follow the XTDO byte code, resulting in a smaller VME. Instead,
the previous frame’s TDI data will be used as the current TDO data.

The MASK byte code indicates that there is mask data that needs to be used
when comparing the TDO values against the actual values read from the
device. The data following the MASK byte will be extracted and
decompressed, if compression were selected, and held in memory until it is
ready to be used when comparing against data in the device.

The DMASK byte code indicates that there is dynamic mask data that needs
to be used when comparing the boundary scan. The data following the
DMASK byte will be extracted and decompressed, if compression were
selected, and held in memory until it is ready to be used when comparing
against the boundary scan.

The CONTINUE byte code terminates the SIR instruction. When this byte is
encountered, it indicates that the processor is ready to send or read and verify
data from the device using the data it is currently holding in memory. If any
byte codes other than TDI, TDO, XTDO, MASK, DMASK, and CONTINUE
were encountered in the SIR Sub-switch, the program will exit with the error
code –4, indicating a file error.

Figure 20: SIR Case Statement Continued

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 53

If the TDO or XTDO byte code were encountered in the SIR sub-switch, then
that indicates that the SIR instruction is going to read data from the device,
else the SIR instruction is going to send data to the device.

If reading and verifying data from the device were successful, the processor
checks if the CASCADE flag has been set. If it is set, the control returns to the
Main Engine Switch. If the flag is off, the processor checks if TIR exists (see
TIR Case Statement). If it exists, then the trailer devices must be bypassed.
Next, it shifts the device to the stable state that followed the ENDIR byte code
(see ENDIR Case Statement). The control returns back to the Main Engine
Switch.

If reading and verifying data from the device were unsuccessful, the
processor checks if the vendor has been set to Xilinx. If the vendor is Xilinx,
repeat the read loop up to 30 times before returning an error. If the vendor is
not Xilinx, the processor bypasses the TIR if there are trailer devices. Next, it
shifts the device to the stable state that followed the ENDIR byte code. The
error code returned is –1 to indicate a verification failure.

If TDO or XTDO were not encountered in the SIR sub-switch, then the
processor sends data to the device. If the CASCADE flag has been set, the
control returns to the Main Engine Switch. If TIR exists, then the trailer
devices must be bypassed. Next, it shifts the device to the stable state that
followed the ENDIR byte code. The control returns back to the Main Engine
Switch.

SDR Case Statement

The SDR case statement works similar to the SIR. It begins by extracting the
size of the register. The size will be used later to indicate how many bits of
data will be sent or read back from the device. If the flow control has been set
to CASCADE, then the processor shifts the device to the SHIFTIR. The
presence of CASCADE in the flow control indicates that the SDR instruction is
targeting over 64Kb of data and has been broken down to ease the memory
requirements.

Figure 21: SDR Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 54

If CASCADE has not been set, then the processor shifts the device into the
safe state DRPAUSE, and then to SHIFTDR. If HDR exists (see HDR Case
Statement), then the processor will bypass the HDR. The SDR sub-switch is a
switch that is based off the byte codes that can potentially be found after the
SDR byte code.

The TDI byte code indicates that there is data that needs to be shifted into the
device. The data following the TDI byte will be extracted and decompressed,
if compression were selected, and held in memory until it is ready to be
shifted into the device.

The TDO byte code indicates that there is data that needs to be read and
verified from the device. The data following the TDO byte will be extracted
and decompressed, if compression were selected, and held in memory until it
is ready to be compared against data in the device.

he XTDO byte code indicates that the TDO data is the TDI data of the
previous frame, such as in the case of concurrent, or turbo, programming.
Data will not follow the XTDO byte code, resulting in a smaller VME. Instead,
the previous frame’s TDI data will be used as the current TDO data.

The MASK byte code indicates that there is mask data that needs to be used
when comparing the TDO values against the actual values read from the
device. The data following the MASK byte will be extracted and
decompressed, if compression were selected, and held in memory until it is
ready to be used when comparing against data in the device.

The DMASK byte code indicates that there is dynamic mask data that needs
to be used when comparing the boundary scan. The data following the
DMASK byte will be extracted and decompressed, if compression were
selected, and held in memory until it is ready to be used when comparing
against the boundary scan.

The CONTINUE byte code terminates the SDR instruction. When this byte is
encountered, it indicates that the processor is ready to send or read and verify
data from the device using the data it is currently holding in memory. If any
byte codes other than TDI, TDO, XTDO, MASK, DMASK, and CONTINUE
were encountered in the SDR Sub-switch, the program will exit with the error
code –4, indicating a file error.

If the TDO or XTDO byte code were encountered in the SDR sub-switch, then
that indicates that the SDR instruction is going to read data from the device,
else the SDR instruction is going to send data to the device.

If reading and verifying data from the device were successful, the processor
checks if the CASCADE flag has been set. If it is set, the control returns to the
Main Engine Switch. If the flag is off, the processor checks if TDR exists (see
TDR Case Statement). If it exists, then the trailer devices must be bypassed.
Next, it shifts the device to the stable state that followed the ENDDR byte
code (see ENDDR Case Statement). The control returns back to the Main
Engine Switch.

If reading and verifying data from the device were unsuccessful, the
processor checks if the vendor has been set to Xilinx. If the vendor is Xilinx,

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 55

repeat the read loop up to 30 times before returning an error. If the vendor is
not Xilinx, the processor bypasses the TIR if there are trailer devices. Next, it
shifts the device to the stable state that followed the ENDIR byte code. The
error code returned is –1 to indicate a verification failure.

If TDO or XTDO were not encountered in the SDR sub-switch, then the
processor sends data to the device. If the CASCADE flag has been set, the
control returns to the Main Engine Switch. If TDR exists, then the trailer
devices must be bypassed. Next, it shifts the device to the stable state that
followed the ENDDR byte code. The control returns back to the Main Engine
Switch.

XSDR Case Statement

The XSDR case statement works exactly like the SDR case statement, except
that it sets the EXPRESS flag. The EXPRESS flag indicates to the processor
that the VME is performing concurrent programming. Therefore, the TDO data
shall use the previous frame’s TDI data. This reduces the VME size drastically
because the data is not duplicated.

WAIT Case Statement

The WAIT case statement expects a number following the WAIT byte code to
represent the number of milliseconds of delay the device must observe. The
delay is observed immediately. The user must update the delay function in the

Figure 22: SDR Case Statement Continued

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 56

source code to make the target embedded system observe the delay duration
correctly.

TCK Case Statement

The TCK case statement expects a number following the TCK byte code to
represent the number of clocks that the device must remain in the run test idle
state. The clock cycles are executed immediately into the device.

ENDDR Case Statement

The ENDDR case statement expects a state following the ENDDR byte code
to represent the TAP state that the processor shall move the device to after an
SDR instruction. This state will be stored in a global variable.

ENDIR Case Statement

The ENDIR case statement expects a state following the ENDIR byte code to
represent the TAP state that the processor shall move the device to after an
SIR instruction. This state will be stored in a global variable.

HIR Case Statement

The HIR case statement expects a number following the HIR byte code to
represent the number of header devices. The number will be stored in a

Figure 23: WAIT Case Statement

Figure 24: TCK Case Statement

Figure 25: ENDDR Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 57

global variable and the processor will issue this number of bypasses prior to
executing an SIR instruction.

TIR Case Statement

The TIR case statement expects a number following the TIR byte code to
represent the number of trailer devices. The number will be stored in a global
variable and the processor will issue this number of bypasses after executing
an SIR instruction.

HDR Case Statement

The HDR case statement expects a number following the HDR byte code to
represent the number of header register bits. The number will be stored in a
global variable and the processor will issue this number of bypasses prior to
executing an SDR instruction.

Figure 26: ENDIR Case Statement

Figure 27: HIR Case Statement

Figure 28: TIR Case Statement

Figure 29: HDR Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 58

TDR Case Statement

The TDR case statement expects a number following the TDR byte code to
represent the number of trailer register bits. The number will be stored in a
global variable and the processor will issue this number of bypasses after
executing an SDR instruction.

MEM Case Statement

The MEM case statement expects a number following the MEM byte code to
represent the maximum frame size in bits. Memory buffers will be allocated for
TDI, TDO, MASK, and DMASK data according to the maximum number.

VENDOR Case Statement

The VENDOR case statement expects the vendor type following the
VENDOR byte code to represent the vendor the VME supports. Different
vendors require different programming algorithms that must be supported.
This byte notifies the embedded processor to enable the specified vendor
support.

SETFLOW Case Statement

The SETFLOW case statement expects an instruction following the
SETFLOW byte code to instruct the embedded processor to enable certain

Figure 30: TDR Case Statement

Figure 31: MEM Case Statement

Figure 32: VENDOR Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 59

properties during execution. This is useful for cascading and looping VME
files, where the processor flow must change in order to take advantage of
these features.

RESETFLOW Case Statement

The RESETFLOW case statement works to reset the properties enabled
during the SETFLOW case statement.

HEAP Case Statement

The HEAP case statement expects a number following the HEAP byte code to
indicate the size of the upcoming repeat loop. In the file-based JTAG Full
VME Embedded, this size is used to dynamically allocate memory to hold the
repeat loop. In the EPROM-based embedded, the heap array is set to point to
the heap buffer in the HEX file.

REPEAT Case Statement

The REPEAT case statement is executed if the VME were generated with the
looping option. A looping VME attempts to reduce the VME size by forming
loops around similar algorithm. Following the REPEAT byte code, a number
indicating the number of repeats is extracted. The heap buffer is build by
reading the number of HEAP size (see HEAP case statement) bytes and

Figure 33: SETFLOW Case Statement

Figure 34: RESETFLOW Case Statement

Figure 35: HEAP Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 60

storing them in memory. Recursive calls are made back to the Main Engine
Switch, which will process the byte codes within the heap buffer. The
recursive calls end when the repeat size is zero.

ENDLOOP Case Statement

The ENDLOOP byte code terminates a loop iteration and shall be
encountered only when the embedded processor is processing a repeat loop.
This byte code shall always be the last byte of the heap buffer. When this byte
code is found, the control returns back to the looping control, where the repeat
size gets decremented and the next iteration of the loop begins, unless the
repeat size is zero.

ENDVME Case Statement

The ENDVME case statement exits the main engine switch. This byte code is
the last byte of the VME.

Figure 36: REPEAT Case Statement

Figure 37: ENDLOOP Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 61

SHR Case Statement

The SHR case statement expects a number following the SHR byte code to
perform a right shift on the TDI data buffer. At this point the TDI data buffer
should store the register address. By simply right shifting the register address
to increment to the next frame instead of having the VME contain several
register address buffers, the VME size is reduced.

SHL Case Statement

The SHL case statement works similar to the SHR case statement, except
that it shifts to the left.

FREQUENCY Case Statement

The FREQUENCY case statement expects a number following the
FREQUENCY byte code to establish the TCK frequency.

Figure 38: ENDVME Case Statement

Figure 39: SHR Case Statement

Figure 40: SHL Case Statement

Figure 41: FREQUENCY Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 62

VUES Case Statement

The VUES case statement sets the flow control register to indicate that the
VME is invoking the Continue If Fail feature. Under this condition, if the
USERCODE verification fails, then the embedded processor continues with
programming the data. If the USERCODE verification passes, then the
processor exits without programming.

COMMENT Case Statement

The COMMENT case statement is executed if the VME file were generated to
support SVF comments. This statement expects a number to indicate the size
of the comment. The comment is then read one byte at a time and displayed
onto the terminal. It ends when the number of bytes processed equals the
number indicating the size of the comment.

HEADER Case Statement

The HEADER case Statement is executed if the VME file were generated with
header information. Currently, this feature is not supported.

LCOUNT Case Statement

The LCOUNT case statement is executed if the VME file targets FLASH or
PROM devices. It allows the engine to repeatedly check the status of the
device before programming the next block of data. This statement expects a
number to indicate the number of status checks before issuing a failure return
code. The engine will use an index to point to the repeated commands in a
buffer and issue them to the device. The index is reset after each iteration.
This will continue until the number of status checks gets decremented to zero,
or until the status is verified to be true.

Figure 42: COMMENT Case Statement

Figure 43: HEADER Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 63

LVDS Case Statement

The LVDS case statement informs the processor about the number of LVDS
pairs and which are paired. This ensures that the processor will drive opposite
values back into the pairs.

VME Byte Codes
Appendix C lists the byte codes that are found in the VME and interpreted by
the embedded processor.

Figure 44: LCOUNT Case Statement

General Opcode Value Description
VMEHEXMAX 60000L Sets the HEX file maximum size to 60K
SCANMAX 64000L Sets the maximum data burst to 64K

Formatting Opcode Value Description
CONTINUE 0x70 Indicates the end of a VME line
ENDVME 0x7F Indicates the end of a VME file
ENDFILE 0xFF Indicates the end of file

JTAG Opcode Value Description
RESET 0x00 Traverse to TLR
IDLE 0x01 Traverse to RTI
IRPAUSE 0x02 Traverse to PAUSE IR
DRPAUSE 0x03 Traverse to PAUSE DR
SHIFTIR 0x04 Traverse to SHIFT IR
SHIFTDR 0x05 Traverse to SHIFT DR

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 64

Flow Control
Opcode Value Description

INTEL_PRGM 0x0001 Intelligent programming in effect
CASCADE 0x0002 Currently splitting large SDR
REPEATLOOP 0x0008 Currently executing a repeat loop

SHIFTRIGHT 0x0080
Indicates the next stream needs a right
shift

SHIFTLEFT 0x0100
Indicates the next stream needs a left
shift

VERIFYUES 0x0200 Indicates Continue If Fail flag

Data Type Register
Opcode Value Description

EXPRESS 0x0001 Simultaneous program and verify
SIR_DATA 0x0002 SIR is the active SVF command
SDR_DATA 0x0004 SDR is the active SVF command
COMPRESS 0x0008 Data is compressed
TDI_DATA 0x0010 TDI data is present
TDO_DATA 0x0020 TDO data is present
MASK_DATA 0x0040 MASK data is present
HEAP_IN 0x0080 Data is from the heap
LHEAP_IN 0x0200 Data is from the intelligent data buffer
VARIABLE 0x0400 Data is from a declared variable
CRC_DATA 0x0800 CRC data is present
CMASK_DATA 0x1000 CMASK data is present
RMASK_DATA 0x2000 RMASK data is present
READ_DATA 0x4000 READ data is present
DMASK_DATA 0x8000 DMASK data is present

Hardware Opcode Value Description
signalENABLE 0x1C Assert the ispEN pin
signalTMS 0x1D Assert the MODE or TMS pin
signalTCK 0x1E Assert the SCLK or TCK pin
signalTDI 0x1F Assert the SDI or TDI pin
signalTRST 0x20 Assert the RESTE or TRST pin

Vendor Opcode Value Description
VENDOR 0x56 Indicates vendor opcode is following
LATTICE 0x01 Indicates Lattice or JTAG device
ALTERA 0x02 Indicates Altera device
XILINX 0x03 Indicates Xilinx device

SVF Opcode Value Description
ENDDATA 0x00 Indicates the end of the current SDR data stream
RUNTEST 0x01 Indicates the duration to stay at the stable state
ENDDR 0x02 Indicates the stable state after SDR
ENDIR 0x03 Indicates the stable state after SIR
ENDSTATE 0x04 Indicates the stable state after RUNTEST
TRST 0x05 Assert the TRST pin
HIR 0x06 Specifies the sum of IR bits at lead
TIR 0x07 Specifies the sum of IR bits at end
HDR 0x08 Specifies the number of devices at lead
TDR 0x09 Specifies the number of devices at end
ispEN 0x0A Assert the ispEN pin

FREQUENCY 0x0B Specifies the maximum clock rate to run the state machine

STATE 0x10 Move to the next stable state
SIR 0x11 Indicates the instruction stream is following
SDR 0x12 Indicates the data stream is following

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 65

TDI 0x13 Indicates the data stream following is fed into the device

TDO 0x14 Indicates the data stream is to be read and compare

MASK 0x15 Indicates the data stream following is the output mask

XSDR 0x16
Indicates the data stream following is for simultaneous shift in and
shift out

XTDI 0x17
Indicates the data stream following is for shift in only and it must
be stored for verifying on the next XSDR call

XTDO 0x18
Indicates there is no data stream following, instead it should be
retrieved from the previous XTDI token

MEM 0x19 Indicates the size of the memory needed to be allocated.

WAIT 0x1A Indicates the duration of the delay at IDLE state
TCK 0x1B Indicates the number of clocks to pulse to TCK

HEAP 0x32 Indicates the size of the memory needed to hole the loop

REPEAT 0x33 Indicates the beginning of a reap loop

LEFTPAREN 0x35 Indicates the beginning of the data following the loop

VAR 0x55
Indicates a place holder for the data if looping option has been
selected

SEC 0x1C Indicates the absolute time in seconds that must be observed

SMASK 0x1D Indicates the mask for TDI data
MAX 0x1E Indicates the absolute maximum wait time
ON 0x1F Assert the targeted pin
OFF 0x20 Dis-assert the targeted pin
SETFLOW 0x30 Change the Flow Control Register
RESETFLOW 0x31 Clear the Flow Control Register
CRC 0x47 Indicates which bits may be used in CRC calculation

CMASK 0x48 Indicates which bits shall be used in CRC calculation

RMASK 0x49 Indicates which bits shall be used in Read and Save
READ 0x50 Indicates which bits may be used in Read and Save
ENDLOOP 0x59 Indicates the end of the repeat loop
SECUREHEAP 0x60 Byte encoded to secure the HEAP structure

SVF Opcode Value Description
VUES 0x61 Indicates Continue If Fail option has been selected
DMASK 0x62 Indicates SVF file has DMASK
COMMENT 0x63 Support SVF comments in VME file
HEADER 0x64 Support header in VME file
FILE_CRC 0x65 Support CRC-protected VME file
LCOUNT 0x66 Support intelligent programming.
LDELAY 0x67 Support intelligent programming.
LSDR 0x68 Support intelligent programming.
LHEAP 0x69 Memory needed to hold intelligent data buffer
LVDS 0x71 Support LVDS

Return Codes Value Description
VME_VERIFICATION_ERROR -1

Value returned when the expected data does
not match the actual data of the device

VME_FILE_READ_FAILURE -2
Value returned when the VME file cannot be
read

VME_VERSION_FAILURE -3
Value returned when the version is not sup-
ported

VME_INVALID_FILE -4
Value returned when an invalid opcode is
encountered

VME_ARGUMENT_FAILURE -5
Value returned when a command line argument
is invalid

VME_CRC_FAILURE -6
Value returned when the expected CRC does
not match the calculated CRC.

EMBEDDED FLOW OVERVIEW : JTAG Full VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 66

Unsupported SVF Syntax
The following are the SVF syntax not supported by the SVF2VME utility:

 TRST - The TRST command is ignored.

 PIO - The PIO command will cause SVF2VME to exit with an error.

 PIOMAP - The PIOMAP command will cause SVF2VME to exit with an
error.

 MAXIMUM - The optional parameter MAXIMUM is ignored. This may be
found in the RUNTEST command.

 SMASK - The optional parameter SMASK is ignored. This may be found
in the HDR, HIR, TDR, TIR, SIR, or SDR commands.

 Explicit state transitions in the STATE command that contain non-stable
states will cause SVF2VME to exit with an error. Only transitions between
stable states are supported in the table below.

 STATE RESET is supported. However, it is strongly discouraged to be
included into the SVF file. This statement causes the undesirable effect of
having all the devices in the entire JTAG chain to be reseted.

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 67

The following table indicates the paths taken between stable states.

JTAG Slim VME Embedded
The JTAG Slim VME Embedded software, based on the serial vector format
file, enables you to quickly and efficiently program chains of devices, thus
improving productivity and lowering costs. The JTAG Slim VME Embedded
code is designed for microcontrollers with limited resources, such as the 8051
microcontroller.

The JTAG Slim VME Embedded software behaves the same as the JTAG Full
VME Embedded. The difference is it is geared to a 8051 processor. The C
code adds memory space keywords specific to the 8051 processor. The size
of the devices which can be programmed are limited by the amount of
contiguous SRAM available to the 8051 processor.

The JTAG Slim VME Embedded is available with installations of Radiant
Programmer. Its advantages over other embedded systems include:

 Footprint of less than 3KB ROM – The small footprint is made possible
by optimizing the JTAG Slim VME Embedded programming engine to use
the least amount of code in the most efficient fashion.

 Reduced RAM usage – The memory usage is fixed at a minimal set for
all IEEE 1532-compliant devices. The number of global and local
variables has been reduced to a minimum, and no data buffers are
required to be held in memory.

 Compressible algorithm and data – The programming data, calculated
by multiplying the frame size by the number of frames, can increase the
ROM requirement substantially. For example, the device LC51024MV(B)
has a frame size of 2624 with 388 frames, resulting in 125 KB of ROM.
Fortunately, the JTAG Slim VME Embedded can compress the
programming data into sizes that are much smaller. The compression is
performed frame by frame and is data file dependent.

Current State New State State Path
RESET RESET RESET (NO CLOCK)
RESET IDLE RESET-IDLE
RESET DRPAUSE RESET-IDLE-DRSELECT-DRCAPTURE-DREXIT1-DRPAUSE

RESET IRPAUSE
RESET-IDLE-DRSELECT-IRSELECT-IRCAPTURE-IREXIT1-
IRPAUSE

IDLE RESET IDLE-DRSELECT-IRSELECT-RESET
IDLE IDLE IDLE (NO CLOCK)
IDLE DRPAUSE IDLE-DRSELECT-DRCAPTURE-DREXIT1-DRPAUSE
IDLE IRPAUSE IDLE-DRSELECT-IRSELECT-IRCAPTURE-IREXIT1-IRPAUSE
DRPAUSE RESET DRPAUSE-DREXIT2-DRUPDATE-DRSELECT-IRSELECT-RESET
DRPAUSE IDLE DRPAUSE-DREXIT2-DRUPDATE-IDLE
DRPAUSE DRPAUSE DRPAUSE (NO CLOCK)

DRPAUSE IRPAUSE
DRPAUSE-DREXIT2-DRUPDATE-DRSELECT-IRSELECT-
IRCAPTURE-IREXIT1-IRPAUSE

IRPAUSE RESET IRPAUSE-IREXIT2-IRUPDATE-DRSELECT-IRSELECT-RESET
IRPAUSE IDLE IRPAUSE-IREXIT2-IRUPDATE-IDLE

IRPAUSE DRPAUSE
IRPAUSE-IREXIT2-IRUPDATE-DRSELECT-DRCAPTURE-
DREXIT1-DRPAUSE

IRPAUSE IRPAUSE IRPAUSE (NO CLOCK)

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 68

 Sequential chain programming – The JTAG Slim VME Embedded can
process multiple devices in the same chain, with mixed operations in
sequential mode.

See Also

 Using the PC-based JTAG Slim VME Embedded

 Using the 8051-based JTAG Slim VME Embedded

JTAG Slim VME Embedded Source
Code
The source code for both the PC-based and the 8051-based JTAG Slim VME
Embedded can be found in the
<install_path>\embedded_source\slimembedded directory.

Each project has the following files. The major entry point for JTAG Slim VME
Embedded is slim_vme.c.

slim_vme.c

The slim_vme.c file is the only file that differs between the PC-based and the
8051-based embedded solutions. This difference is due to the way each of
these interfaces to the VME algorithm and data files through the entry point.
This file contains the main and entry point functions.

slim_pro.c

The slim_pro.c file provides the programming engine for the JTAG Slim VME
Embedded. The engine operates on the commands in the VME algorithm,
and fetches data from the VME data, if necessary. The engine is responsible
for functions such as sending data, verifying data, observing timing delay,
stepping through the state machine, decompression, and so on.

hardware.c

The only file that you should modify is hardware.c. This file contains the
functions to read and write to the port and the timing delay function. You must
update these functions to target the desired hardware. The released version
targets the parallel port of the PC at address 0x0378 using Lattice’s download
cable.

opcode.h

The opcode.h file contains the definitions of the byte codes used in the VME
algorithm format and programming engine.

debug.h

The debug.h file will print out debugging information if the preprocessor switch
VME_DEBUG is defined in the project. This is an optional file to include.

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 69

windriver.c and windriver.h

The windriver.c and windriver.h files target the JTAG Slim VME Embedded to
Windows. These files will be compiled if the preprocessor switch
VME_WINDOWS is defined in the project file. These files should be omitted
when compiling the 8051-based JTAG Slim VME Embedded onto an
embedded platform.

See Also

 VME Algorithm Format

 VME Data Format

Using the PC-based JTAG Slim VME
Embedded
The PC-based JTAG Slim VME Embedded is a quick and easy way to
validate the VME files and the JTAG Slim VME Embedded programming
engine by successfully processing the target chain of IEEE 1532 compliant
devices using the parallel port of the PC.

The JTAG Slim VME Embedded system uses a compressed binary variation
of SVF files, called VME, as input. Like the SVF file, the VME file contains
high-level IEEE 1149.1 bus operations. These operations consist of scan
operations and movements between the IEEE 1149.1 TAP states. However,
unlike the SVF file, where the programming algorithm of the device is
intermeshed with the programming data, the VME file is separated into a VME
algorithm file and a VME data file. This separation of the algorithm and data
allows the optimization of the JTAG Slim VME Embedded programming
engine. It also allows you to mix VME data files with VME algorithm files,
provided the chain and operations are the same.

Figure 9 shows an example of Slim VME embedded file generation for the
JTAG port.

Figure 45: Slim VME Embedded VME Flow

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 70

The JTAG Slim VME Embedded capability is enabled only if all the following
conditions are met:

 All the devices in the chain are IEEE-1532 compliant.

 Sequential mode is selected.

 Synchronize Enable and Disable setting is unchecked.

 Operation is not Read and Save or a display operation such as Calculate
Checksum or Display ID.

See Also

 Generating JTAG Slim VME Embedded Files

Using the 8051-based JTAG Slim VME
Embedded
To program embedded systems using the 8051-based JTAG Slim VME
Embedded, you must generate the VME files as HEX to create the VME
algorithm and data files as C programming files. Each file contains a C
programming style byte buffer that holds the VME algorithm or data.

The HEX files must be compiled along with the 8051-based JTAG Slim VME
Embedded source code. The source code contains handles that allow the
compiler to link the buffers of the hexadecimal files to the main source code.
The only source code file that you need to modify is the hardware.c file. You
must implement methods to write and read to the hardware port, as well as
observe the timing delay. You must modify the following functions according to
the target platform:

 readPort

 writePort

 ispVMDelay

The following are optional functions that you may wish to modify in the
hardware.c file in order to enable and disable the hardware conditions before
and after processing:

 EnableHardware

 DisableHardware

See Also

 Generating JTAG Slim VME Embedded Files

 JTAG Slim VME Embedded Source Code

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 71

VME Algorithm Format
The VME algorithm file contains byte codes that represent the programming
algorithm of the device or chain.

The byte codes perform the same operations as the SVF commands, with the
exception of BEGIN_REPEAT, CONTINUE, END_FRAME, END_REPEAT,
DATA, PROGRAM, VERIFY, ENDVME, DTDI, and DTDO.

VME Symbol HEX Value

STATE 0x01

SIR 0x02

SDR 0x03

TCK 0x04

WAIT 0x05

ENDDR 0x06

ENDIR 0x07

HIR 0x08

TIR 0x09

HDR 0x0A

TDR 0x0B

BEGIN_REPEAT 0x0C

FREQUENCY 0x0D

TDI 0x0E

CONTINUE 0x0F

END_FRAME 0x10

TDO 0x11

MASK 0x12

END_REPEAT 0x13

DATA 0x14

PROGRAM 0x15

VERIFY 0x16

ENDVME 0x17

DTDI 0x18

DTDO 0x19

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 72

The byte codes BEGIN_REPEAT, END_REPEAT, PROGRAM, VERIFY,
DTDI, and DTDO are used to support a repeating VME algorithm structure to
minimize the algorithm size, a feature that the linear SVF does not provide.

The byte code CONTINUE appears at the end of every SIR and SDR
instruction as a terminator.

The byte code END_FRAME appears at the end of every frame in the VME
data as a terminator.

Translation from the SVF file to VME algorithm file is done command by
command. For example, the following SVF line:

SIR 8 TDI (16);

will be converted to the following VME line, in binary:

0x02 0x08 0x0E 0x68

The VME Algorithm file is similar to the SVF file with the following differences:

 VME Algorithm uses byte codes from the table below to represent SVF
commands

 Fuse data and USERCODE have been removed

 Looping algorithm

The following is an example of an EPV VME Algorithm file and the SVF
translation for the LC4064V device:

Table 2: VME Algorithm Example
VME Algorithm Format Serial Vector Format (SVF) Description
0x0A 0x00 HDR 0;
0x08 0x00 HIR 0;
0x0B 0x00 TDR 0;
0x09 0x00 TIR 0;
0x06 0x03 ENDDR DRPAUSE;
0x07 0x02 ENDIR IRPAUSE;
0x01 0x01 STATE IDLE;
0x02 0x08 0x0E 0x68 0x0F SIR 8 TDI (16); Shift in the IDCODE

instruction
0x01 0x01 STATE IDLE;
0x03 0x20 0x0E 0xFF 0xFF 0xFF
0xFF 0x11 0xC2 0x09 0x01 0x80
0x12 0xFF 0xFF 0xF0 0x0F

SDR 32 TDI (FFFFFFFF) TDO
(01809043) MASK (0FFFFFFF);

Verify the IDCODE

0x02 0x08 0x0E 0x38 0x0F SIR 8 TDI (1C); Shift in the PRELOAD
instruction

0x03 0x44 0x0E 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x0F

SDR 68 TDI (00000000000000000); Shift all zero data into
boundary scan cells

0x02 0x08 0x0E 0xA8 0x0F SIR 8 TDI (15); Shift in ENABLE instruction
0x01 0x01 0x04 0x03 0x05 0x14
0x01 0x01

RUNTEST IDLE 3 TCK 2.00E-002 SEC; Execute RUNTEST instruction

0x02 0x08 0x0E 0xC0 0x0F SIR 8 TDI (03); Shift in ERASE instruction
0x01 0x01 0x04 0x03 0x05 0x64
0x01 0x01

RUNTEST IDLE 3 TCK 1.00E-001 SEC; Execute RUNTEST instruction

0x02 0x08 0x0E 0x84 0x0F SIR 8 TDI (21); Shift in ADDRESS INIT
instruction

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 73

0x01 0x01 STATE IDLE;
0x02 0x08 0x0E 0xE4 0x0F SIR 8 TDI (27); Shift in PROGRAM INCR

instruction
0x0C 0x5F 0x15 N/A Begin PROGRAM repeat loop

of size 95
VME Algorithm Format Serial Vector Format (SVF) Description
0x03 0xE0 0x02 0x18 0x14 0x0F SDR 352 DTDI (DATA); Notice the forth byte is

0x18, which is actually
DTDI. DTDI instructs the
processor to send in data
from the data buffer

0x01 0x01 0x04 0x03 0x05 0x0D
0x01 0x01

RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x13 N/A Terminate the repeat
algorithm

0x02 0x08 0x0E 0x58 0x0F SIR 8 TDI (1A); Shift in PROGRAM USERCODE
instruction

0x03 0x20 0x18 0x14 0x0F SDR 32 DTDI (DATA); Shift in the USERCODE The
USERCODE can be found in
the data buffer.

0x01 0x01 0x04 0x03 0x05 0x0D
0x01 0x01

RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x02 0x08 0x0E 0x80 0x0F SIR 8 TDI (01); Shift in ADDRESS SHIFT
instruction

0x03 0x5F 0x0E 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x02 0x0F

SDR 95 TDI
(400000000000000000000000);

Shift in beginning address

0x02 0x08 0x0E 0x54 0x0F SIR 8 TDI (2A); Shift in READ INC
instruction

0x0C 0x5F 0x16 N/A Begin VERIFY repeat loop of
size 95

0x01 0x01 0x04 0x03 0x05 0x01
0x01 0x01

RUNTEST IDLE 3 TCK 1.00E-003 SEC; Execute RUNTEST instruction

0x03 0xE0 0x02 0x0E 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x19 0x14 0x0F

SDR 352 TDI (0000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000) DTDO
(DATA);

Verify the frame against
the data in the data buffer

0x13 N/A Terminate the repeat
algorithm

0x02 0x08 0x0E 0xE8 0x0F SIR 8 TDI (17); Shift in USERCODE
instruction

0x03 0x20 0x0E 0xFF 0xFF 0xFF
0xFF 0x19 0x14 0x0F

SDR 32 TDI (FFFFFFFF)
DTDO (DATA);

Verify the USERCODE against
the USERCODE in the data
buffer

0x02 0x08 0x0E 0xF4 0x0F SIR 8 TDI (2F); Shift in PROGRAM DONE
instruction

0x01 0x01 0x04 0x03 0x05 0x0D
0x01 0x01

RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x01 0x01 STATE IDLE;
0x02 0x08 0x0E 0x78 0x0F SIR 8 TDI (1E); Shift in DISABLE

instruction
0x01 0x01 0x04 0x03 0x05 0x0D
0x01 0x01

RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x17 N/A End VME Algorithm

Table 2: VME Algorithm Example (Continued)

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 74

See Also

 JTAG Slim VME Embedded Source Code

 VME Data Format

 Generating JTAG Slim VME Embedded Files

VME Data Format
While the VME algorithm file contains the programming algorithm of the
device, the VME data file contains the fuse and USERCODE patterns.

The first byte in the file indicates whether the data file has been compressed.
A byte of 0x00 indicates that no compression was selected, and 0x01
indicates that compression was selected. When compression has been
selected, each frame is preceded by a frame compression byte to indicate
whether the frame is compressible. This is necessary because even though
you might elect to compress the VME data file, it is possible that a
compressed frame will actually be larger than an uncompressed frame. When
that happens, the frame is not compressed at all and the frame compression
byte of 0x00 notifies the processor that no compression was performed on the
frame.

When compression has not been selected, the VME data file becomes a
direct translation from the data sections of the SVF file. The END_FRAME
byte, 0x10, is appended to the end of every frame as a means for the
processor to verify that the frame has indeed reached the end.

The compression scheme used is based on the consecutive appearance of
the 0xFF byte in a frame. This byte is ubiquitous because an all 0xFF data file
is a blank pattern. When a consecutive number of n 0xFF bytes are
encountered, the VME data file will have the byte 0xFF followed by the
number n converted to hexadecimal, where n cannot exceed 255. For
example, if the following were a partial data frame

FFFFFFFFFFFFFFFFFFFF12FFFFFF

the resulting compressed data would be

0xFF 0x0A 0x12 0xFF 0x03

Uncompressed VME Data Format Compressed VME Data Format

0x00

<Frame 1>0x10

<Frame 2>0x10

…

<Frame N>0x10

0x01

<Compress Byte><Frame 1>0x10

<Compress Byte><Frame 2>0x10

…

<Compress Byte><Frame N>0x10

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 75

When the processor encounters the first byte 0xFF, it gets the next byte to
determine how many times 0xFF is compressed. The next byte is 0x0A,
which is ten in hexadecimal. This instructs the processor that 0xFF is
compressed ten times. The following byte is 0x12, which is processed as it is.
The next byte is again 0xFF followed by 0x03, which instructs the processor
that 0xFF is compressed three times.

See Also

 JTAG Slim VME Embedded Source Code

 VME Algorithm Format

 Generating JTAG Slim VME Embedded Files

VME Required User Changes
To make the JTAG Full VME Embedded or JTAG Slim VME Embedded
software work on your target system, you need to modify the following C
functions in the hardware.c source code.

Timer

The engine requires the ability to delay for fixed time periods. The minimum
granularity of the delay is 1 microsecond. You can determine the type of delay.
This can be a simple software timing loop, a hardware timer, or an operating
system call, for example, sleep().

Port Initialization

The firmware needs to place the port I/O into a known state. The
programming software assumes this has occurred.

Get Data Byte

The engine calls the GetByte() function to collect one byte from the VME or
CPU bytestream.

Modify Port Register

The engine, as it parses the bitstream data, changes an in-memory copy of
the data to be written onto the I/O pins. Calls to this function do not modify the
I/O pins. The engine uses virtual types (for example, DONE_PIN) which this
function turns into physical I/O pin locations (for example, 0x400).

Output Data Byte

The engine calls this function to write the in-memory copy onto the I/O pins.

Input Status

This function is used by the engine to read back programming status
information. The function translates physical pin locations (for example,
0x400) into virtual types used by the engine (for example, DONE_PIN).

Output Configuration Pins

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 76

Some systems may wish to use the FPGA CFG pins. There is a separate
function call to manipulate the CFG pins.

Bitstream Initialization

You must determine how you plan to get the bitstream into your memory
system, pre-compiled, HEX file based, or dynamically installed. Whichever
method you use the data structures which pin to the bitstream need to be
initialized prior to the first GetByte function call.

See Also

 Customizing for the Target Platform

 VME Source Code

 JTAG Slim VME Embedded Source Code

Program Memory Requirement
The following figure illustrates the JTAG Slim VME Embedded program
memory requirement.

Program Memory Allocation
The following figure illustrates the JTAG Slim VME Embedded program
memory allocation.

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 77

Sample Program Size
This page provides sample program size for JTAG Full VME Embedded,
JTAG Slim VME Embedded, and sysCONFIG Embedded.

JTAG Port non-JTAG Port Total

JTAG Full VME
Embedded

JTAG Slim
VME

Embedded

sysCONFIG
Embedded

32-Bit 16-Bit 8-Bit 32-Bit 16-Bit

File Based
(Bitstream File External)

52KB 21KB 4.2KB 48KB 19KB As Shown

PROM Based
(Bitstream File Integrated)

52KB 21KB 4.2KB 48KB 19KB As Shown +
VME File Size

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 78

VME File Size
Refer to “Using JTAG Full VME Embedded” on page 44 for a table that
compares VME file sizes taking typical Lattice devices for examples.

Generating JTAG Slim VME Embedded
Files
The Slim VME files can be generated by using Deployment Tool as described
as follows.

In Programmer, create a project, and add the target Lattice IEEE 1532
compliant devices into the chain with the appropriate operations and data
files. Refer to Programmer online help for more information on how to use
Programmer.

1. Save the Programmer project (.xcf).

2. In Deployment Tool, choose Create New Deployment.

3. For Function Type, choose Embedded System.

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 79

4. For Output Type, choose JTAG Slim VME Embedded, then click OK.

5. In the Step 1 of 4 dialog box, select the XCF file, and click Next.

6. To have the software check for a USERCODE match between the device
and the VME file before programming, select the Verify USERCODE,
Program Device if Fails option.

7. In the Step 2 of 4 dialog box, elect the desired file options. For detailed
option descriptions, including the option that allows you to generate a
HEX (.c) file, see the Deployment Tool online help. To significantly reduce
the ROM required for storing the VME Data buffer in the embedded
system, select Compress VME File.

8. Click Next.

9. In the Step 3 of 4 dialog box, in the Output File box, specify the location
and file name of the VME algorithm and data files.

10. Click Next.

11. In the Step 4 of 4 dialog box, click Generate.

Deployment Tool generates the VME files depending upon the options you
have chosen, and returns a message indicating that the process succeeded
or failed.

JTAG Slim VME Embedded Source
Code
Both the PC and 8051-based JTAG Slim VME Embedded source code can be
found in the installation path of Programmer under the
<install_path>\embedded_source\slimembedded\sourcecode directory.

Each project requires the following files:

Figure 46: Slim VME File Generation Flow

Note
Synchronize Enable and Disable has been turned on while using Sequential mode, the
software will force the VME file into Turbo mode.

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 80

slim_vme.c

The file slim_vme.c is the only file to differ between the PC-based and 8051-
based embedded solutions. This difference is due to the way each interfaces
to the VME Algorithm and Data files through the entry point. This file contains
the main and entry point functions.

slim_pro.c

The file slim_pro.c provides the programming engine of the JTAG Slim VME
Embedded. The engine operates on the commands in the VME Algorithm,
and fetches data from the VME Data if necessary. The engine is responsible
for functions such as sending data, verifying data, observing timing delay,
stepping through the state machine, decompression, and so on.

hardware.c

The only file that should be modified by the user is hardware.c. This file
contains the functions to read and write to the port and the timing delay
function. The user must update these functions to target the desired hardware
being used. The released version targets the parallel port of the PC at
address 0x0378 using Lattice's download cable.

opcode.h

The file opcode.h contains the definitions of the byte codes used in the VME
Algorithm format and programming engine.

debug.h

The file debug.h prints out debugging information if the preprocessor switch
VME_DEBUG were defined in the project. This is an optional file to
include.windriver.c and windriver.h

The files windriver.c and windriver.h target the JTAG Slim VME Embedded to
Windows 95 and 98. These files are compiled if the preprocessor switch
VME_WINDOWS were defined in the project file. These files should be
omitted when compiling the 8051-based JTAG Slim VME Embedded onto an
embedded platform.

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 81

8051 JTAG Slim VME Embedded User
Flow
This appendix details the steps the user must take to use the 8051-based
JTAG Slim VME Embedded.

Step 1. Create Chain with Lattice IEEE 1532 Compliant Devices using
Programmer

Using Programmer, add the target IEEE 1532 compliant devices into the
chain with the appropriate operations and data files. All the devices in the
chain must be IEEE 1532 compliant. For more information on supporting non-
Lattice devices, see Programmer’s on-line help documentation.

Step 2. Generate VME File

Use the Deployment Tool to generate the VME file. By checking the HEX
check box, the VME Algorithm and Data files will be generated as C-
programming files with the Algorithm and Data stored in C-style byte buffers.
Refer to Deployment Tool online help for more information on using the
Deployment Tool.

Step 4. Modify Source Code File hardware.c

The 8051-based source code files are written in ANSI C and can be found in
the installation path of Programmer under the <install_path>\
embedded_source\slimembedded\sourcecode\slim_vme_8051 directory. The

Figure 47: 8051 JTAG Slim VME Embedded User Flow

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 82

file hardware.c is the only file that is required to be modified by the user. The
user must modify the following functions according to the target platform:

 readPort

 writePort

 ispVMDelay

The following are optional functions that the user may wish to modify in order
to enable and disable the hardware conditions before and after processing:

 EnableHardware

 DisableHardware

Step 5. Compile Source Code and VME HEX Files

Combine the source code and VME HEX files generated into a project to be
compiled. This may be done by using a microcontroller development tool to
create the project. The source codes windriver.c, windriver.h, and debug.h
shall not be required to be added into the project.

Programming Engine Flow
The programming engine of the JTAG Slim VME Embedded is driven by the
byte codes of the VME Algorithm file. The Algorithm byte codes instruct the
programming engine as to what sequence of functions to follow in order to
shift in instructions, move the TAP controller state machine, shift data in and
out of the device, and observe delays.

The TAP controller is a synchronous state machine that is based on the TMS
(Test Mode Select) and TCK (Test Clock) signals of the TAP and controls the
sequence of operations of the circuitry defined by the IEEE 1149.1 standard.
The TCK signal can be driven at a maximum of 25 MHz for current Lattice
IEEE 1532 Compliant devices.

In the Shift-DR state, a decoder is present to select which shift register is
enabled and connects it between TDI and TDO. The following are the shift
registers: Address Shift Register, Data Shift Register, 32-bit Shift Register,
and Bypass. The 32-bit Shift Register is used to store the ID Code and
USERCODE. The first bit clocked into any of the registers is placed into the
MSB, and data is shifted one bit towards TDO as additional bits are clocked
in.

The engine core is implemented as a switch statement. The cases in this
switch statement perform specialized functions based on the byte code and
its operand(s). These functions may end up calling other switch statements,
calling the engine core recursively, setting global variable values, or
interfacing with the device directly. Once the byte code instruction has been
executed, it returns back to the main switch statement to process the next
byte.

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 83

The processor begins by verifying the VME version of the algorithm file. The
version is an eight byte ASCII of the format _SVME<Major Version>.<Minor
Version>, where <Major Version> and <Minor Version> are digits 0-9.
If the version verification fails, the processor returns the error code
ERR_WRONG_VERSION, or -4.

The Main Engine Switch calls the appropriate case statements based on the
incoming byte code from the VME Algorithm buffer. Unrecognized byte codes
will trigger the UNKNOWN case statement.

HIR Case Statement

The HIR case statement expects a number following the HIR byte code to
represent the number of header devices. The number will be stored in a

Figure 48: TAP Controller State Diagram

Figure 49: Shift Registers

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 84

global variable and the processor will issue this number of bypasses prior to
executing an SIR instruction.

TIR Case Statement

The TIR case statement expects a number following the TIR byte code to
represent the number of trailer devices. The number will be stored in a global
variable and the processor will issue this number of bypasses after executing
an SIR instruction.

Figure 50: Main Engine Switch

Figure 51: HIR Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 85

HDR Case Statement

The HDR case statement expects a number following the HDR byte code to
represent the number of header register bits. The number will be stored in a
global variable and the processor will issue this number of bypasses prior to
executing an SDR instruction.

TDR Case Statement

The TDR case statement expects a number following the TDR byte code to
represent the number of trailer register bits. The number will be stored in a
global variable and the processor will issue this number of bypasses after
executing an SDR instruction.

ENDDR Case Statement

The ENDDR case statement expects a state following the ENDDR byte code
to represent the TAP state that the processor shall move the device into after
an SDR instruction. This state will be stored in a global variable.

Figure 52: TIR Case Statement

Figure 53: HDR Case Statement

Figure 54: TDR Case Statement

Figure 55: ENDDR Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 86

ENDIR Case Statement

The ENDIR case statement expects a state following the ENDIR byte code to
represent the TAP state that the processor shall move the device into after an
SIR instruction. This state will be stored in a global variable.

WAIT Case Statement

The WAIT case statement expects a number following the WAIT byte code to
represent the number of milliseconds of delay the device must observe. The
delay is observed immediately. The user must update the delay function in the
source code to make the target embedded system observe the delay duration
correctly.

TCK Case Statement

The TCK case statement expects a number following the TCK byte code to
represent the number of clocks that the device must remain in the run test idle
state. The clock cycles are executed immediately into the device.

STATE Case Statement

The STATE case statement expects a state following the STATE byte code to
instruct the processor to step the IEEE 1149.1 bus to the next state. The state
must be a valid stable state, which is IRPAUSE, DRPAUSE, RESET, or IDLE

Figure 56: ENDIR Case Statement

Figure 57: WAIT Case Statement

Figure 58: TCK Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 87

SIR Case Statement

The SIR case statement begins by extracting the size of the register. The size
will be used later to indicate how many bits of data will be sent or read back
from the device. The processor then shifts the device into the safe state
IRPAUSE, and then to the state SHIFTIR. If HIR exists (see HIR Case
Statement), then the processor will bypass the HIR. The SIR sub-switch is a
switch that is based off of the byte codes that can potentially be found after
the SIR byte code.

The TDI byte code indicates that there is data that needs to be shifted into the
device. The processor will set the TDI index variable to point to the location
where the TDI data begins in the algorithm buffer.

The DTDI byte code indicates that there is data to that needs to be shifted into
the device. Unlike the TDI byte code, the DTDI byte code signals that the data
will be coming from the data buffer. If the data buffer has compression turned
on, the first byte of the data frame will be checked to see if the frame was
indeed compressible.

The TDO byte code indicates that there is data that needs to be read and
verified from the device. The processor will set the TDO index variable to
point to the location where the TDO data begins in the algorithm buffer.

The DTDO byte code indicates that there is data that needs to be read and
verified from the device. Unlike the TDO byte code, the DTDO byte code
signals that the data will be coming from the data buffer. If the data buffer has
compression turned on, the first byte of the data frame will be checked to see
if the frame were indeed compressible.

Figure 59: STATE Case Statement

Figure 60: SIR Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 88

The MASK byte code indicates that there is mask data that needs to be used
when comparing the TDO values against the actual values scanned out of the
device. The processor will set the MASK index variable to point to the location
where the MASK data begins in the algorithm buffer.

The UNKNOWN case statement is the default for unrecognized byte codes.
This case returns the error code ERR_ALGO_FILE_ERROR, or -5, to indicate
an error in the algorithm.

The CONTINUE byte code terminates the SIR instruction. When this byte is
encountered, it indicates that the TDI, DTDI, TDO, DTDO, and MASK indexes
are pointing to their correct locations and the processor is ready to send or
read and verify data from the device.

If the TDO or DTDO byte code were encountered in the SIR sub-switch, then
that indicates that the SIR instruction is going to read data from the device,
else the SIR instruction is going to send data to the device.

If reading and verifying data from the device were successful, the processor
checks if TIR exists (see TIR Case Statement). If TIR exists, then the trailer
devices must be bypassed. Next it shifts the device to the stable state that
followed the ENDIR byte code (see ENDIR Case Statement). The control
returns back to the Main Engine Switch.

If reading and verifying data from the device were unsuccessful, the
processor checks if TIR exists. If TIR exists, then the trailer devices must be
bypassed. Next it shifts the device to the stable state that followed the ENDIR
byte code. The error code ERR_VERIFY_FAIL, or -1, is returned and the
program exits.

Figure 61: SIR Case Statement Continued

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 89

If TDO or DTDO were not encountered in the SIR sub-switch, then the
processor sends data to the device. If TIR exists, then the trailer devices must
be bypassed. Next it shifts the device to the stable state that followed the
ENDIR byte code. The control returns back to the Main Engine Switch.

SDR Case Statement

The SDR case statement works similar to the SIR. It begins by extracting the
size of the register. The size will be used later to indicate how many bits of
data will be sent or read back from the device. The processor then shifts the
device into the safe state DRPAUSE, and then to the state SHIFTDR. If HDR
exists (see HDR Case Statement), then the processor will bypass the HDR.
The SDR sub-switch is a switch that is based off of the byte codes that can
potentially be found after the SDR byte code.

The TDI byte code indicates that there is data that needs to be shifted into the
device. The processor will set the TDI index variable to point to the location
where the TDI data begins in the algorithm buffer.

The DTDI byte code indicates that there is data to that needs to be shifted into
the device. Unlike the TDI byte code, the DTDI byte code signals that the data
will be coming from the data buffer. If the data buffer has compression turned
on, the first byte of the data frame will be checked to see if the frame were
indeed compressible.

The TDO byte code indicates that there is data that needs to be read and
verified from the device. The processor will set the TDO index variable to
point to the location where the TDO data begins in the algorithm buffer.

The DTDO byte code indicates that there is data that needs to be read and
verified from the device. Unlike the TDO byte code, the DTDO byte code
signals that the data will be coming from the data buffer. If the data buffer has
compression turned on, the first byte of the data frame will be checked to see
if the frame were indeed compressible.

The MASK byte code indicates that there is mask data that needs to be used
when comparing the TDO values against the actual values scanned out of the
device. The processor will set the MASK index variable to point to the location
where the MASK data begins in the algorithm buffer.

The UNKNOWN case statement is the default for unrecognized byte codes.
This case returns the error code ERR_ALGO_FILE_ERROR, or -5, to indicate
an error in the algorithm.

The CONTINUE byte code terminates the SDR instruction. When this byte is
encountered, it indicates that the TDI, DTDI, TDO, DTDO, and MASK indexes
are pointing to their correct locations and the processor is ready to send or
read and verify data from the device.

.

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 90

If the TDO or DTDO byte code were encountered in the SDR sub-switch, then
that indicates that the SDR instruction is going to read data from the device,
else the SDR instruction is going to send data to the device.

If reading and verifying data from the device were successful, the processor
checks if TDR exists (see TDR Case Statement). If TDR exists, then the trailer
devices must be bypassed. Next it shifts the device to the stable state that
followed the ENDDR byte code (see ENDDR Case Statement). The control
returns back to the Main Engine Switch.

If reading and verifying data from the device were unsuccessful, the
processor checks if TDR exists. If TDR exists, then the trailer devices must be
bypassed. Next it shifts the device to the stable state that followed the
ENDDR byte code. The error code ERR_VERIFY_FAIL, or -1, is returned and
the program exits.

Figure 62: SDR Case Statement

Figure 63: SDR Case Statement Continued

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 91

If TDO or DTDO were not encountered in the SDR sub-switch, then the
processor sends data to the device. If TDR exists, then the trailer devices
must be bypassed. Next it shifts the device to the stable state that followed
the ENDDR byte code. The control returns back to the Main Engine Switch.

BEGIN_REPEAT Case Statement

The BEGIN_REPEAT byte code makes it possible to loop the programming
algorithm, thus requiring less ROM to hold the algorithm. Programming each
frame requires one pass through the repeat loop. The ROM saved is
substantial when one considers that a device can have several thousand
frames. Instead of extrapolating the set of byte codes needed to program the
frame several thousand times, only one set will be sufficient.

The BEGIN_REPEAT case statement begins by extracting the repeat size.
The repeat size is typically the number of frames in the device that is to be
programmed. After the repeat size has been obtained, the next byte to extract
is the PROGRAM or VERIFY token. If the PROGRAM byte were present,
then a pointer must be set in the data buffer to designate the beginning of the
programming data. If the VERIFY byte were present, then the processor must
return to the beginning location of the data buffer. This method allows
programming and verification to use one set of data, thus reducing the ROM
required to hold the data buffer by half.

While the repeat size, or number of un-programmed frames, is greater than
zero, the algorithm index is set to point to the beginning of the repeat and a
recursive call is made to the Main Engine Switch to program the frame. When
the frame is processed, the Main Engine Switch returns the control to the
BEGIN_REPEAT case statement. The repeat size is decremented and the
process repeats until there are no frames left. The control then returns to the
Main Engine Switch. While in the repeat loop, any errors such as verification
or algorithm errors would result in the repeat loop returning the error code and
the program would exit.

Figure 64: BEGIN_REPEAT Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 92

END_REPEAT Case Statement

The END_REPEAT case statement works alongside the BEGIN_REPEAT
case statement. When the END_REPEAT byte code is encountered, it returns
the control to the caller, which is the recursive call made by BEGIN_REPEAT.
The END_REPEAT byte code appears at the end of the set of byte codes
needed to program a frame.

ENDVME Case Statement

The ENDVME case statement is the only case where the program can return
a passing value. The case statement checks if HDR exists (see HDR Case
Statement). If HDR exists, then that indicates that there are still header
devices that need to be programmed, thus the control returns to the Main
Engine Switch. If HDR does not exist, the return value is returned to the caller,
which is the entry point function and the program ends.

UNKNOWN Case Statement

The UNKNOWN case statement is the default for unrecognized byte codes.
This case returns the error code ERR_ALGO_FILE_ERROR, or -5, to indicate
an error in the algorithm.

Figure 65: END_REPEAT Case Statement

Figure 66: ENDVME Case Statement

Figure 67: UNKNOWN Case Statement

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 93

VME Algorithm and Format
The VME Algorithm and Data files are created by deconstructing an SVF file.
An SVF file is an ASCII file that contains the programming algorithm and data
needed to program the device. The programming algorithm is described by
statements that control the IEEE 1149.1 bus operations. When generating the
VME files, Deployment Tool separates the algorithm and data into the VME
Algorithm and Data files, respectively.

VME Algorithm Format

The VME Algorithm file is similar to the SVF file with the following differences:

 VME Algorithm uses byte codes from the table below to represent SVF
commands

 Fuse data and USERCODE have been removed

 Looping algorithm

The following is an example of an EPV VME Algorithm file and the SVF
translation for the LC4064V device:

Table 3: VME Algorithm Example
VME Algorithm Format Serial Vector Format (SVF) Description
0x0A 0x00 HDR 0;
0x08 0x00 HIR 0;
0x0B 0x00 TDR 0;
0x09 0x00 TIR 0;
0x06 0x03 ENDDR DRPAUSE;
0x07 0x02 ENDIR IRPAUSE;
0x01 0x01 STATE IDLE;
0x02 0x08 0x0E 0x68 0x0F SIR 8 TDI (16); Shift in the IDCODE

instruction
0x01 0x01 STATE IDLE;
0x03 0x20 0x0E 0xFF 0xFF 0xFF
0xFF 0x11 0xC2 0x09 0x01 0x80
0x12 0xFF 0xFF 0xF0 0x0F

SDR 32 TDI (FFFFFFFF) TDO
(01809043) MASK (0FFFFFFF);

Verify the IDCODE

0x02 0x08 0x0E 0x38 0x0F SIR 8 TDI (1C); Shift in the PRELOAD
instruction

0x03 0x44 0x0E 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x0F

SDR 68 TDI (00000000000000000); Shift all zero data into
boundary scan cells

0x02 0x08 0x0E 0xA8 0x0F SIR 8 TDI (15); Shift in ENABLE instruction
0x01 0x01 0x04 0x03 0x05 0x14
0x01 0x01

RUNTEST IDLE 3 TCK 2.00E-002 SEC; Execute RUNTEST instruction

0x02 0x08 0x0E 0xC0 0x0F SIR 8 TDI (03); Shift in ERASE instruction
0x01 0x01 0x04 0x03 0x05 0x64
0x01 0x01

RUNTEST IDLE 3 TCK 1.00E-001 SEC; Execute RUNTEST instruction

0x02 0x08 0x0E 0x84 0x0F SIR 8 TDI (21); Shift in ADDRESS INIT
instruction

0x01 0x01 STATE IDLE;
0x02 0x08 0x0E 0xE4 0x0F SIR 8 TDI (27); Shift in PROGRAM INCR

instruction
0x0C 0x5F 0x15 N/A Begin PROGRAM repeat loop

of size 95
VME Algorithm Format Serial Vector Format (SVF) Description

EMBEDDED FLOW OVERVIEW : JTAG Slim VME Embedded

Programming Tools User Guide for Radiant Software 2025.1 94

Customizing for the Target Platform
The source code files are written in ANSI C. The VME source codes are
located in the <install_path>\embedded_source\vmembedded directory. The
JTAG Slim VME Embedded source codes can be found in the
<install_path>\embedded_source\slimembedded directory.

0x03 0xE0 0x02 0x18 0x14 0x0F SDR 352 DTDI (DATA); Notice the forth byte is
0x18, which is actually
DTDI. DTDI instructs the
processor to send in data
from the data buffer

0x01 0x01 0x04 0x03 0x05 0x0D
0x01 0x01

RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x13 N/A Terminate the repeat
algorithm

0x02 0x08 0x0E 0x58 0x0F SIR 8 TDI (1A); Shift in PROGRAM USERCODE
instruction

0x03 0x20 0x18 0x14 0x0F SDR 32 DTDI (DATA); Shift in the USERCODE The
USERCODE can be found in
the data buffer.

0x01 0x01 0x04 0x03 0x05 0x0D
0x01 0x01

RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x02 0x08 0x0E 0x80 0x0F SIR 8 TDI (01); Shift in ADDRESS SHIFT
instruction

0x03 0x5F 0x0E 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x02 0x0F

SDR 95 TDI
(400000000000000000000000);

Shift in beginning address

0x02 0x08 0x0E 0x54 0x0F SIR 8 TDI (2A); Shift in READ INC
instruction

0x0C 0x5F 0x16 N/A Begin VERIFY repeat loop of
size 95

0x01 0x01 0x04 0x03 0x05 0x01
0x01 0x01

RUNTEST IDLE 3 TCK 1.00E-003 SEC; Execute RUNTEST instruction

0x03 0xE0 0x02 0x0E 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x19 0x14 0x0F

SDR 352 TDI (0000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000) DTDO
(DATA);

Verify the frame against
the data in the data buffer

0x13 N/A Terminate the repeat
algorithm

0x02 0x08 0x0E 0xE8 0x0F SIR 8 TDI (17); Shift in USERCODE
instruction

0x03 0x20 0x0E 0xFF 0xFF 0xFF
0xFF 0x19 0x14 0x0F

SDR 32 TDI (FFFFFFFF)
DTDO (DATA);

Verify the USERCODE against
the USERCODE in the data
buffer

0x02 0x08 0x0E 0xF4 0x0F SIR 8 TDI (2F); Shift in PROGRAM DONE
instruction

0x01 0x01 0x04 0x03 0x05 0x0D
0x01 0x01

RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x01 0x01 STATE IDLE;
0x02 0x08 0x0E 0x78 0x0F SIR 8 TDI (1E); Shift in DISABLE

instruction
0x01 0x01 0x04 0x03 0x05 0x0D
0x01 0x01

RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x17 N/A End VME Algorithm

Table 3: VME Algorithm Example (Continued)

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 95

The main routines that will require customization are in the hardware.c file. It
includes the routines for reading from and writing to the JTAG pins and a
delay routine. These routines are well commented in hardware.c and are at
the top of the file. In readPort(), a byte of data is read from the input port. In
writePort(), a byte of data is written to the output port. In ispVMDelay(), the
system delays for the specified number of milliseconds or microseconds. The
port mapping is set at the top of the hardware.c file.

See Also

 VME Required User Changes

Slave SPI Embedded

Slave Serial Peripheral Interface (SPI) Embedded is a high-level
programming solution that enables programming FPGA families with built-in
SPI port through an embedded system. This allows you to perform real-time
reconfiguration to Lattice Semiconductor's FPGA families. The Target SPI
Embedded system is designed to be embedded-system independent, so it is
easy to port into different embedded systems with little modifications. The
Target SPI Embedded source code is written in C code, so you may compile
the code and load it to the target embedded system.

The purpose of this usage note is to provide you with information about how
to port the Target SPI Embedded source code to different embedded systems.
The following sections describe the embedded system requirements and the
modifications required to use Target SPI Embedded source code.

This usage guide is updated for Target SPI Embedded version 2.0. Major
changes includes new data file format, Lattice parallel port and USB cable
support.

Requirements
This section lists device requirements, embedded system requirements, and
additional requirements.

Device Requirements
 Only Lattice Semiconductor's FPGA families with SPI port are supported.

 Single device support. Multiple device support is not available.

 The Target SPI port must be enabled on the device in order to use the
Target SPI interface. This is done by setting the SLAVE_SPI_PORT to
Enable using the Radiant Spreadsheet View.

 Target SPI Configuration mode supports default setting only for CPOL and
CPHA.

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 96

CPOL - SPI Clock Polarity. Selects an inverted or non-inverted SPI clock.
To transmit data between SPI modules, the SPI modules must have
identical SPICR2[CPOL] values. In master mode, a change of this bit will
abort a transmission in progress and force the SPI system into idle state.

0: Active-high clocks selected. In idle state SCK is low.

1: Active-low clocks selected. In idle state SCK is high.

CPHA - SPI Clock Phase. Selects the SPI clock format. In master mode, a
change of this bit will abort a transmission in progress and force the SPI
system into idle state.

0: Data is captured on a leading (first) clock edge, and propagated on the
opposite clock edge.

1: Data is captured on a trailing (second) clock edge, and propagated on
the opposite clock edge.

Embedded System Requirements

A compiler supporting C code for the target embedded system is required.

A dedicated SPI interface that can be configured to Controller SPI mode is
preferred. However, if the embedded system does not have a built in SPI
interface, you may consider using a general peripheral I/O ports to implement
SPI functionality. In this case, minimum of four peripheral I/O's are required,
with at least one of them that can be tri-stated if needed.

Read and Save operations and display operations are not supported.

Other Requirements

The Target SPI Embedded system requires memory space to store
programming data files. The storage may be internal or external memory
(RAM, Flash, etc.). You may also consider storing the programming data in an
external system such as PC. In this case, you need to establish
communication between the external system and the embedded system.

Note
When CPHA=1, you must explicitly place a pull-up or pull-down on SCK pad
corresponding to the value of CPOL (for example, when CPHA=1 and CPOL=0
place a pull-down on SCK). When CPHA=0, the pull direction may be set
arbitrarily.

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 97

Slave SPI Embedded Algorithm Format
The Target SPI algorithm file contains byte codes that represent the
programming algorithm of the device or chain.

Table 4: Slave SPI Algorithm Format
SSPI Symbol Hex Value

STARTTRAN 0x10

CSTOGGLE 0x11

TRANSOUT 0x12

TRANSIN 0x13

RUNCLOCK 0x14

TRSTTOGGLE 0x15

ENDTRAN 0x1F

MASK 0x21

ALGODATA 0x22

PROGDATA 0x25

RESETDATA 0x26

PROGDATAEH 0x27

REPEAT 0x41

ENDREPEAT 0x42

LOOP 0x43

ENDLOOP 0x44

STARTOFALGO 0x60

ENDOFALGO 0x61

HCOMMENT 0xA0

HENDCOMMENT 0xA1

ALGOID 0xA2

VERSION 0xA3

BUFFERREQ 0xA4

STACKREQ 0xA5

MASKBUFREQ 0xA6

HCHANNEL 0xA7

HEADERCRC 0xA8

COMPRESSION 0xA9

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 98

Slave SPI Embedded Data Format
While the SSPI algorithm file contains the programming algorithm of the
device, the SSPI data file contains the fuse and USERCODE patterns. The
first byte in the file indicates whether the data file has been compressed. A
byte of 0x00 indicates that no compression was selected, while 0x01
indicates that compression was selected.

When compression has been selected, each frame is preceded by a frame
compression byte to indicate whether the frame is compressible. This is
necessary because even though you might elect to compress the SSPI data
file, it is possible that a compressed frame will actually be larger than an
uncompressed frame. When that happens, the frame is not compressed at all
and the frame compression byte of 0x00 is added to notify the processor that
no compression was performed on the frame.

Generating Slave SPI Embedded Files
The Target SPI Embedded files can be generated through Radiant
Programmer. Choose View > Embedded Options. The Target SPI
Embedded generation dialog allows you to generate the file in hex (C
compatible) array or binary. The binary Target SPI file can be used by the PC
version of Target SPI Embedded and utilizes the extension *.sea for algorithm
files, and *.sed for data files. Also, the binary file can be uploaded to internal
or external memory of the embedded system if you plan to implement the
system in that manner.

The hex file is a C programming language file that must be compiled with the
EPROM-based version of Target SPI Embedded processor and utilizes the
extension *.c. The binary file is generated by default. Other options are
available through the dialog, such as data file compression, adding comments
to the algorithm file, or disable generating the algorithm or data file.

HDATASET_NUM 0xAA

HTOC 0xAB

Table 4: Slave SPI Algorithm Format (Continued)
SSPI Symbol Hex Value

Uncompressed Slave SPI Data Format Compressed Slave SPI Data Format
0x00

<Frame 1>0x10

<Frame 2>0x10

…

<Frame N>0x10

0x01

<Compress Byte><Frame 1>0x10

<Compress Byte><Frame 2>0x10

…

<Compress Byte><Frame N>0x10

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 99

Modifications
The Target SPI Embedded source code is installed in the
<install_path>\embedded_source\sspiembedded\sourcecode directory where
you installed the Radiant Programmer. There are two directories in the src
directory: SSPIEm and SSPIEm_eprom.

The first directory, SSPIEm, contains the file-based Target SPI Embedded
source code, and can support sending and receiving multiple bytes over the
channel. The second directory, SSPIEm_eprom, contains the EPROM-based
Target SPI Embedded source code, which supports the algorithm and data
being compiled with the process system.

In the files that require user modification, comments surrounded by asterisks
(*) will require your attention. These comments indicate that the following
section may require user modification. For example:

Before using the Target SPI Embedded system, there are three sets of files (.c
/ .h) that need to be modified. The first set, hardware.c and hardware.h, must
be modified. This file contains the SPI initialization, wait function, and SPI
controlling functions. If you want to enable debugging functionalities,
debugging utilities need to be modified in this file as well. The hardware.c
source code supports transmitting and receiving multiple bytes at once. This
approach may be faster in some SPI architecture, but it requires a buffer to
store the entire frame data.

The second set, intrface.c and intrface.h, contains functions that utilize the
data and algorithm files. There are two sections in this file that requires
attention. The first one is the data section. When the processor in Target SPI
Embedded system needs to process a byte of data, it calls function
dataGetByte(). Target SPI Embedded version 2.0 requires data file no
matter what operation it is going to process. You are responsible to modify the
function to fit their configuration. The second section is the algorithm section.

In Programmer, there is an option to generate both the algorithm file and the
data file in hex array format (C compatible). If you wish to compile the
algorithm and data along with the Target SPI Embedded system, use the
source code in the
<install_path>\embedded_source\sspiembedded\sourcecode\sspiem_eprom
directory. Users only need to put the generated .c file in the same folder as
Target SPI Embedded system code and then compile the whole thing. If the
embedded system has internal memory that can be reached by address,
using EPROM version of intrface.c is also ideal. For users who plan to put the
algorithm and data in external storage, intrface.c and intrface.h may need
modification.

The third file set is SSPIEm.c and SSPIEm.h. Function SSPIEm_preset()
allows you to set which algorithm and data will be processed. This function
needs to be modified according to your configuration.

//***
//* Example comment
//***

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 100

Below is information about functions you are responsible to modify.

hardware.c
You are responsible to modify TRANS_transmitBytes() and
TRANS_receiveBytes(). If you wish to implement Target SPI Embedded
so it transmit one byte at a time, then TRANS_tranceive_stream() needs
to be modified.

int SPI_init();

This function will be called at the beginning of the Target SPI Embedded
system. Duties may include, but not be limited to:

 Turning on SPI port

 Enabling counter for wait function

 Configuring SPI peripheral IO ports (PIO)

 Resetting SPI

 Initializing SPI mode (Master mode, channel used, etc)

 Enabling SPI

The function returns a 1 to indicate initialization successful, or a 0 to indicate
fail.

int SPI_final();

This function is called at the very end of the Target SPI Embedded system
and returns a 1 to indicate success, or a 0 to indicate fail.

void wait(int ms);

This function takes a delay time (in milliseconds) and waits for the amount of
delay time. This function does not need a return value.

int TRANS_starttranx(unsigned char channel);

This function starts an SPI transmission. Duties may include, but are not
limited to:

 Pulling Chip Select (CS) low

 Starting Clock

 Flushing read buffer

If the dedicated SPI interface in the embedded system automatically starts the
clock and pulls CS low, then this function only returns a 1. This function
returns a 1 to indicate success, or a 0 to indicate fail.

int TRANS_endtranx();

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 101

This function finalizes an SPI transmission. Duties may include, but are not
limited to:

 Pulling CS high

 Terminating Clock

If the dedicated SPI interface in the embedded system automatically
terminates the clock and pulls CS high, then this function only returns a 1.
This function returns a 1 to indicate success, or a 0 to indicate fail.

int TRANS_cstoggle(unsigned char channel);

This function toggles the CS of current channel, and is called between
TRANS_starttranx() and TRANS_endtranx(). It first pulls CS low,
waits for a short period of time, and pulls CS high. A simple way to accomplish
this is to transmit some dummy data to the device. One bit is enough to
accomplish this. All one (1) for dummy is recommended, because usually the
channel is held high during rest, and Lattice devices ignore opcode 0xFF (no
operation). The function returns a 1 to indicate success, or a 0 to indicate fail.

int TRANS_starttranx(unsigned char channel);

This function can be used for toggling CRESET signal. The CRESET signal
must pull LOW if channel is 0 and pull HIGH if channel is 1. This function
does not require a return value.

int TRANS_trsttoggle(unsigned char toggle);

This function toggles the CRESET (TRST) signal. The function returns a 1 to
indicate success, or a 0 to indicate fail.

int TRANS_runClk(int clks);

This function runs a number of extra clocks on an SPI channel. If the
dedicated SPI interface does not allow free control of clock, a workaround is
to enable the CS of another channel that is not being used. This way the
device still sees the clock but the CS of current channel will stay high. The
function returns a 1 to indicate success, or a 0 to indicate fail.

int TRANS_transmitBytes (unsigned char *trBuffer, int trCount);

This function is available if you wish to implement transmitting multiple bits
one byte at a time. It is responsible to transmit the number of bits, indicated by
trCount, over the SPI port. The data to be transmitted is stored in
trBuffer. Integer trCount indicates the number of bits being transmitted,
which should be divisible by eight (8) to make it byte-bounded. If trCount is
not divisible by eight, pad the least significant bits of the transmitted data with
ones (1).

int TRANS_receiveBytes (unsigned char *rcBuffer, int rcCount);

This function is available if you wish to implement receiving multiple bits one
byte at a time. It is responsible to receive the number of bits, indicated by
rcCount, over the SPI port. The data received may be stored in rcBuffer.

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 102

Integer rcCount indicates the number of bits being received, which should be
divisible by eight (8) to make it byte-bounded. If rcCount is not divisible by
eight, pad the most significant bits of the received data with ones (1).

int TRANS_transceive_stream(int trCount, unsigned char *trBuffer,
trCount2, int flag, unsigned char *trBuffer2);

This function is available for modification if you wish to implement
transmission with one byte at a time. The function also appears in
implementation of transmission with multiple bytes at once, but you don’t
need to modify it.

For single byte transmission, this is the most complex function that needs to
be modified. First, it will transmit the amount of bits specified in trCount with
data stored in trBuffer. Next, it will have the following operations
depending on the flag:

 NO_DATA: End of transmission. trCount2 and trBuffer2 are
discarded.

 BUFFER_TX: Transmit data from trBuffer2.

 BUFFER_RX: Receive data and compare it with trBuffer2.

 DATA_TX: Transmit data from external data.

 DATA_RX: Receive data from trbuffer2.

If the data is not byte-bounded and your SPI port only transmits and receives
byte-bounded data, padding bits are required to make it byte-bounded. When
transmitting non-byte-bounded data, add the padding bits at the beginning of
the data. When receiving data, do not compare the padding, which are at the
end of the transfer. The function returns a 1 to indicate success, or a 0 to
indicate fail.

(optional) int dbgu_init();

This function initializes the debugging functionality. It is up to you to
implement it, and implementations may vary.

(optional) void dbgu_putint(int debugCode, int debugCode2);

This function puts a string and an integer to the debugging channel. It is up to
you to take advantage of these inputs.

SSPIEm.c

int SSPIEm_preset();

This function calls dataPreset() and algoPreset() functions to pre-set the data
and algorithm. The input to this function depends on the configuration of the
embedded system. This function returns 1 to indicate success, or 0 to indicate
fail.

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 103

intrface.c - Data Section

Global Variables

Global variables may vary due to different implementations.

int dataPreset();

This function allows you to set which data will be used for processing. It
returns 1 to indicate success, or 0 to indicate fail.

int dataInit (unsigned char *comp);

This function initializes the data. The first byte of the data indicates if the fuse
data is compressed. It retrieves the first byte and stores it in the location
pointed to by *comp. The fuse data starts at the second byte. The
implementation may vary due to different configuration. The function returns a
1 to indicate success, or a 0 to indicate fail. For implementation that uses
internal memory, which can be accessed by addressing, the following is an
example implementation:

Points variable data to the beginning of the fuse data.

Resets count to 0.

int dataGetByte(int *byteOut);

This function gets one byte from data array and stores it in the location
pointed to by byteOut. The implementation may vary due to different
configuration. The function returns 1 to indicate success, or 0 to indicate fail.
For implementation that uses internal memory, which can be accessed by
addressing, here is a sample implementation:

Gets byte that variable data points to.

Points data to the next byte.

Count++.

int dataReset();

This function resets the data pointer to the beginning of the fuse data. Note
that the first byte of the data is not part of the fuse data. It indicates if the data
is compressed. The implementation may vary due to different configuration.
The function returns a 1 to indicate success, or a 0 to indicate fail. For
implementation that uses internal memory, which can be accessed by
addressing, the following is an example implementation:

Points variable data to the beginning of the data array.

Resets count to 0.

Note: This section has data utilized functions. Modification of this section is
optional if you wish to compile the algorithm along with Target SPI Embedded
system.

int dataFinal();

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 104

This function is responsible to finish up the data. The implementation may
vary due to different configuration. The function returns a 1 to indicate
success, or a 0 to indicate fail.

intrface.c - Algorithm Section

Global variables

Global variables may vary due to different implementation.

int algoPreset();

This function allows you to set which algorithm will be used for processing. It
returns 1 to indicate success, or 0 to indicate fail.

int algoInit();

This function initializes the data. The implementation may vary due to different
configuration. The function returns a 1 to indicate success, or a 0 to indicate
fail.

In our implementation, it only sets algoIndex to 0.

int algoGetByte(unsigned char *byteOut);

This function gets one byte from the algorithm bitstream and stores it in the
location pointed to by byteOut. The implementation may vary due to different
configuration. The function returns a 1 to indicate success, or a 0 to indicate
fail.

int algoFinal();

This function is responsible to finish up the algorithm. The implementation
may vary due to different configuration. The function returns a 1 to indicate
success, or a 0 to indicate fail.

intrface.c - Sample Configurations

There are several different options to configure the Target SPI Embedded
data file and algorithm file. The following are two possible configurations.

1. EPROM Approach

With this version, both algorithm and data are generated into C-compatible
Hex array and compiled along with Target SPI Embedded source code. Here
are how the functions are modified to fit this configuration:

 Include both Hex arrays in the global scale.

 Pass the pointer to the arrays to SSPIEm_preset(). In this function,
pass the pointer to algoPreset() and dataPreset() functions,

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 105

respectively. Both functions store the pointer in global variables defined in
intrface.c.

 In algoInit() and dataInit() functions, set the counters to zero (0).

 In algoGetByte() and dataGetByte() functions, read a byte from
the respective array, and increment the counter.

 In dataReset() function, reset the counter to zero (0).

 In algoFinal() and dataFinal() functions, set the pointer to both
array to NULL. This is optional.

Although optional, it is a good idea to keep track of the size of both data and
algorithm arrays. The size of array may be passed to Target SPI Embedded
through the preset functions.

If the embedded system uses internal memory that can be reached the same
way as using array, this configuration may also fit into the embedded system.

If you plan to use EPROM approach, intrface.c will be available, and you may
not need to modify it. The files intrface.c, intrface.h, SSPIEm.c, and
SSPIEm.h are in the
<install_path>/SSPIEmbedded/SourceCode/src/SSPIEm_eprom directory.

2. File System Approach

This approach is used when implementing Target SPI Embedded command-
line executable on PC. If the embedded system has similar file system, it may
access the algorithm and data through the file system. Here is how the
functions are modified to fit this configuration:

 Pass the name of the algorithm and data file to SSPIEm_preset(). In
this function, pass them to algoPreset() and dataPreset()
functions, respectively. Both functions store the name of the file in global
variables defined in intrface.c.

 In algoInit() and dataInit() functions, open the file and check if
they are readable. If the file is not opened as a stream, set the counter to
zero (0).

 In algoGetByte() and dataGetByte() functions, read a byte from the
respective file, and increment the counter if needed.

 In dataReset() function, reset the counter to zero (0), if needed. If the
file is read as a stream, rewind the stream.

 In algoFinal() and dataFinal() functions, close both files.

Usage
In order to use the Target SPI Embedded system, include it in the target
embedded system by adding SSPIem.h to the header list. To start the
processor, simply make this function call:

SSPIEm(unsigned int algoID);

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Programming Tools User Guide for Radiant Software 2025.1 106

Currently, the converter does not have algoID capability. This capability is
reserved for future use. Use 0xFFFFFFFF for algoID.

Return Codes from Slave SPI
Embedded
The utility returns a 2 when the process succeeds, and returns a number less
than or equal to 0 when it fails. Table 5 lists return codes from Target SPI
Embedded.

Programming Considerations for
SSPIEM Modification with Aardvark SPI
APIs
Aardvark is an SPI adapter that can be used for programming of Lattice FPGA
devices with Target SPI. The Radiant software provides SSPIEM example
source codes which are modified with Aardvark SSPI APIs. However Lattice
does not guarantee that these APIs will be supported for all the programming
modes incorporated in the .sea files generated by the Lattice Deployment
Tool, which are used by our SSPIEM source codes. This is due to the
limitation of the Aardvark adapter and with its associated read/write APIs
meant for the data transfer between the Lattice’s algo interpretation logic and
the actual programming hardware driver logic.

Table 5: Return codes from Slave SPI Embedded
Results Return Code

Succeed 2

Process Failed 0

Initialize Algorithm Failed -1

Initialize Data Failed -2

Version Not Supported -3

Header Checksum Mismatch -4

Initialize SPI Port Failed -5

Initialization Failed -6

Algorithm Error -11

Data Error -12

Hardware Error -13

Verification Error -20

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 107

The Aardvark adapter has a buffer limitation of 4 KB and any algo file data
above 4 KB will overflow the buffer and result in a programming failure.

I2C Embedded

The physical I2C buss consists of two wires: SCL and SDA.

 SCL is the clock line. It is used to synchronize all data transfers over the
I2C bus.

 SDA is the data line.

The SCL & SDA lines are connected to all devices on the I2C bus. There must
be a third wire connected to ground or 0 volts. There may also be a 5V wire
for power distribution t he devices. Both SCL and SDA lines are “open drain”
drivers, meaning that the device can drive its output low, but it cannot drive it
high. For the line to be able to go high, you must provide pull-up resistors to
the 5V supply. There should be a resistor from the SCL line to the 5V line and
another from the SDA line to the 5V line. You only need one set of pull-up
resistors for the entire I2C bus, as illustrated below.

Masters and Slaves
The devices on the I2C bus are either masters or slaves. The master is
always the device that drives the SCL clock line. The slaves are the devices
that respond to the master. Only a master can initiate a transfer over the I2C
bus. A slave cannot initiate a transfer over the I2C bus. There can be, and
usually are, multiple slaves on the I2C bus. However, there is normally only
one master. It is possible to have multiple masters, but it is typical and not
covered in this document. For the purposes of this document, the
CrossLink-NX device is always the slave.

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 108

CrossLink-NX Slave I2C Programming
When the master communicates to a slave (CrossLink-NX for example) it
begins by issuing a start sequence on the I2C bus. A start sequence is one of
two special sequences defined for the I2C bus, the other being the stop
sequence. The start sequence and stop sequence are the only time when the
SDA (data line) is allowed to change while the SCL (clock line) is high. When
data is being transferred, SDA must remain stable and not change while the
SCL is high. The start and stop sequences mark the beginning and end of a
transaction with the slave device.

The primary I2C port of the CrossLink-NX device can be used as a user I2C
port function or as a device programming port. When used for device
programming, the primary I2C port is a slave I2C with a default slave address
of 7’b1000000 for 7-bit addressing or 10’b1111000000 for 10-bit addressing.
The primary I2C port must be enabled in order to support the device
programming using the I2C protocol. This is done by setting the I2C_Port
preference to ENABLE in the software. The I2C programming supports single
device programming.

The sequence for device programming using the I2C follows the standard
Lattice device programming algorithm. The I2C bus hardware requirements,
the timing requirements, and the receive/transmit protocols must follow the
standard I2C specification. The definition of the SDA data time is the delay
form the SCL falling edge 30% VDD to SDA falling edge 70% VDD. The SDA
data setup time is the time requirement from the SDA falling edge 30% VDD
to the SCL rising edge 30% VDD.

All the I2C slave commands consist of one byte op-code followed by three
one-byte operand, except the ISC DISABLE command. The ISC DISABLE
command for I2C programming consists of one byte op-code followed by two
operands. I2C programming can also be done in the background. In this case,
the ISC ENABLE command (0XC6) should be replaced by the
LSC_ENABLE_X command (0X74).

Using the PC-based I2C Embedded
Programming
The I2C Embedded system for CrossLink-NX is a quick and easy way to
validate I2C files and the I2C Embedded programming engine by successfully
processing the target CrossLink-NX device using the FTDI USB2 Cable of the
PC.

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 109

The programming algorithm of the device is separated into I2C algorithm file
and I2C data file. This separation of the algorithm and data allows the
optimization of the I2C embedded programming engine. It also allows you to
mix I2C data files with I2C algorithm files.

To access the PC-based I2C Embedded System, use the Radiant Deployment
Tool to add the CrossLink-NX device. Then, select the I2C embedded
programming options from the Generate I2C dialog box. For more information,
refer to the Deployment Tool online help.

The only source code file that must be modified is the hardware.c file. The
source files can be found in
<install_path>\embedded_source\i2cembedded\src\i2cem Radiant directory.

hardware.c
The only file that you should modify is hardware.c. This file contains the
functions to read and write to the port and the timing delay function. You must
update these functions to target the desired hardware.

opcode.h
The opcode.h file contains the definitions of the byte codes used in the I2C
algorithm format and programming engine.

i2c_core.c
The i2c_core.c file provides the programming engine for the I2C embedded
system. The engine operates on the commands in the I2C algorithm, and
obtains data from the I2C data, if necessary. The engine is responsible for
functions such as sending data, verifying data, observing timing delay,
decompression, and so on.

i2c_main.c
The i2c_main.c file is the only file that differs between the PC-based and the
8051-based embedded solutions. This difference is due to the way each of
these interfaces to the I2C algorithm and data files through the entry point.
This file contains the main and entry point functions.

Using the 8051-based I2C Programming
To program embedded systems using the 8051-based I2C programming, you
must generate the I2C files as HEX to create the I2C algorithm and data files
as C programming files. Each file contains a C programming style byte buffer
that holds the I2C algorithm or data.

mailto:techsupport@latticesemi.com

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 110

The HEX files must be compiled along with the 8051-based I2C System
source code. The source code contains handles that allow the compiler to link
the buffers of the hexadecimal files to the main source code. The only source
code file that you need to modify is the hardware.c file. The source files can
be found in the
<install_path>\embedded_source\i2cembedded\src\i2cem_eprom directory.

hardware.c
The only file that you should modify is hardware.c. This file contains the
functions to read and write to the port and the timing delay function. You must
update these functions to target the desired hardware.

opcode.h
The opcode.h file contains the definitions of the byte codes used in the I2C
algorithm format and programming engine.

i2c_core_eprom.c
The i2c_core.c file provides the programming engine for the I2C embedded
system. The engine operates on the commands in the I2C algorithm, and
fetches data from the I2C data, if necessary. The engine is responsible for
functions such as sending data, verifying data, observing timing delay,
decompression, and so on.

i2c_eprom.c
The i2c_main.c contains the main and entry point functions for 8051-based
I2C Programming.

I2C Algorithm Format
The I2C algorithm file contains byte codes that represent the programming
algorithm of the device or chain.

Table 6: I2C Algorithm Byte Codes
I2C Symbol Hex Value

I2C_STARTTRAN 0x10

I2C_RESTARTTRAN 0x11

I2C_ENDTRAN 0x12

I2C_TRANSOUT 0x13

I2C_TRANSIN 0x14

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 111

I2C Data Format
While the I2C algorithm file contains the programming algorithm of the device,
the I2C data file contains the fuse and USERCODE patterns.

The first byte in the file indicates whether the data file has been compressed.
A byte of 0x00 indicates that no compression was selected, and 0x01
indicates that compression was selected. When compression has been
selected, each frame is preceded by a frame compression byte to indicate
whether the frame is compressible. This is necessary because even though
you might elect to compress the I2C data file, it is possible that a compressed
frame will actually be larger than an uncompressed frame. When that
happens, the frame is not compressed at all and the frame compression byte
of 0x00 notifies the processor that no compression was performed on the
frame.

When compression has not been selected, the I2C data file becomes a direct
translation from the data sections of the SVF file. The END_FRAME byte,

I2C_RUNCLOCK 0x15

I2C_WAIT 0x16

I2C_LOOP 0x17

I2C_ENDLOOP 0x18

I2C_TDI 0x19

I2C_CONTINUE 0x1A

I2C_TDO 0x1B

I2C_MASK 0x1C

I2C_BEGIN_REPEAT 0x1D

I2C_END_REPEAT 0x1E

I2C_END_FRAME 0x1F

I2C_DATA 0x20

I2C_PROGRAM 0x21

I2C_VERIFY 0x22

I2C_DTDI 0x23

I2C_DTDO 0x24

I2C_COMMENT 0x25

I2C_ENDVME 0x7F

Table 6: I2C Algorithm Byte Codes (Continued)
I2C Symbol Hex Value

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 112

0x1F, is appended to the end of every frame as a means for the processor to
verify that the frame has indeed reached the end.

The compression scheme used is based on the consecutive appearance of
the 0xFF byte in a frame. This byte is ubiquitous because an all 0xFF data file
is a blank pattern. When a consecutive number of n 0xFF bytes are
encountered, the I2C data file will have the byte 0xFF followed by the number
n converted to hexadecimal, where n cannot exceed 255. For example, if the
following were a partial data frame.

FFFFFFFFFFFFFFFFFFFF12FFFFFF the resulting compressed data would
be:

0xFF 0x0A 0x12 0xFF 0x03

When the processor encounters the first byte 0xFF, it gets the next byte to
determine how many times 0xFF is compressed. The next byte is 0x0A,
which is ten in hexadecimal. This instructs the processor that 0xFF is
compressed ten times. The following byte is 0x12, which is processed as it is.
The next byte is again 0xFF followed by 0x03, which instructs the processor
that 0xFF is compressed three times.

I2C Embedded Programming Required
User Changes
To make the I2C Embedded Programming software work on your target
system, you need to modify the following C functions in the hardware.c source
code.

Timer(SetI2Cdelay())
The engine requires the ability to delay for fixed time periods. The minimum
granularity of the delay is 1 microsecond. You can determine the type of delay.
This can be a simple software timing loop, a hardware timer, or an operating
system call, for example, sleep().

Port Initialization
The firmware needs to place the port I/O into a known state.

Uncompressed I2C Data Format Compressed I2C Data Format
0x00

<Frame 1>0x10

<Frame 2>0x10

…

<Frame N>0x10

0x01

<Compress Byte><Frame 1>0x10

<Compress Byte><Frame 2>0x10

…

<Compress Byte><Frame N>0x10

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 113

SetI2CStartCondition()
This function is used to issue a start sequence on the I2C Bus.

SetI2CreStartCondition()
This function is used to issue a start sequence on the I2C Bus.

SetI2CStopCondition()
This function is used to issue a stop sequence on the I2C Bus.

ReadBytesAndSendNACK()
This function is used to read the SDA pin from the port.

SendBytesAndCheckACK()
To apply the specified value to the SDA pin indicated.

Generating I2C Files
This section describes how to generate I2C files. An .xcf file is required for the
CrossLink-NX FPGA.

To generate an .xcf file for the CrossLink-NX, if the .xcf file does not
exist or has not yet been created:

1. Start the Radiant Programmer software and create a new Blank Project.

2. Select CrossLink-NX as Device Family.

3. Select the Device Type according to your device.

4. Choose Edit > Device Properties, or right click on the device, and in the
dropdown menu, choose Device Properties.

5. In the Device Properties dialog box:

 In the Access Mode dropdown menu, choose I2C Interface
Programming.

 In the Operation dropdown menu, choose the desired operation.

 In the Programming File box, browse to your design’s .jed
programming file.

 In the I2C Slave Address box, enter the correct I2C slave address. The
default address is 0x40.

6. Chose File > Save or File > Save (filename).xcf As... and give the file a
name. Ensure that the extension of the file is xcf.

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 114

To generate I2C Files:

1. Start the Deployment Tool.

2. In the Getting Started dialog box, select Create New Deployment.

3. In the Function Type dropdown menu, choose Embedded System.

4. In the Output File Type dropdown menu, choose as I2C Embedded.

5. Click OK.

6. In the Step 1 of 4 dialog box, browse to the .xcf file you created with the
Programmer software, and select Input XCF file(s).

7. Click Next.

8. In the Step 2 of 4 dialog box, select Compress Embedded Files
depending upon the requirement, select Generate Hex(.c) Files for 8051
micro-processor usages, and click Next.

9. In the Step 3 of 4 dialog box, select the Algorithm File and Data File to
rename and change the location of the file name. Make sure the file name
has the extension .iea and .ied, respectively, and click Next.

10. In the Step 4 of 4 dialog box, click Generate to generate the files.

11. The files will be generated as shown as below.

12. The Deployment Tool project can now be saved by selecting File > Save
As. The saved file will generate the same data file and algorithm file when
loaded again.

13. Modify the Source Code File (hardware.c). The 8051-based source code
files are written in ANSI C. The file hardware.c is the only file that is
required to be modified by the user. The user must modify the following
functions according to the target platform:

SetI2Cdelay()
SetI2CStartCondition()
SetI2CreStartCondition()
SetI2CStopCondition()
ReadBytesAndSendNACK(int length, unsigned char *a_ByteRead
, int NAck)

Where

int length = Number of bits to read

*a_ByteRead = Buffer to store byte

int NAck - Option to send

0 = No

1 - Yes

int SendBytesAndCheckACK(int length, unsigned char
*a_bByteSend

Where

int length = Number of bits to send

*a_bByteSend = Buffer storing data to send

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 115

The following are optional functions that the user may wish to modify in
order to enable and disable the hardware conditions before and after
processing:

EnableHardware()
DisableHardware()

14. Compile Source Code and I2C HEX Files. Combine the source code and
I2C HEX files generated by Deployment Tool into a project to be compiled.
This may be done using a microcontroller development tool to create the
project.

Modify the Delay Function

When porting Embedded I2C to a native CPU environment, the speed of the
CPU or the system clock that drives the CPU is usually known. The speed or
the time it takes for the native CPU to execute one loop then can be
calculated.

The for loop usually is compiled into the ASSEMBLY code as shown below:

LOOP: EDC RA;
JNZ LOOP;

If each line of assembly code needs four (4) machine cycles to execute, the
total number of machine cycles to execute the loop is 2 x 4 = 8.

Usually: system clock = machine clock (the internal CPU clock).

Let the machine clock frequency of the CPU be F (in MHz), then one machine
cycle = 1/F.

The time it takes to execute one loop = (1/F) x 8.

It is obvious that the formula can be transposed into one microsecond = F/8.

Example: The CPU internal clock is set to 48 MHz, then one microsecond =
48/8 = 6.

Note
Some CPUs have a clock multiplier to double the system clock for the machine clock.

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 116

The C code shown below can be used to create the millisecond accuracy. All
that needs to be changed is the CPU speed.

Choosing the File-Based or EPROM-Based Version

To generate a PROM-based I2C Embedded, select the “Generate HEX (.c)
File” option in the Deployment Tool Step 2 of 4 dialog box.The programming
engines of the file-based and PROM-based processors are identical in the
way they handle the VME commands. Their difference lies in the way they
interface with I2C Embedded data. For a convenient demo, the file-based
version assigns a file pointer to the binary I2C Embedded file directly. The
pointer is assigned based on a command line argument. With some minor
modification, this version is useful for embedded high-level 32-bit
microprocessors that can dynamically allocate RAM and have large amounts
of data and code memory. For more modest embedded systems or smaller
processors, the PROM-based version is useful because the memory
resources are completely defined when compiling the executable.The I2C
Embedded file is converted to one or more C files and a header file that are
compiled with the core routines.

EMBEDDED FLOW OVERVIEW : I2C Embedded

Programming Tools User Guide for Radiant Software 2025.1 117

Programming Considerations for
SSPIEM and I2CEM modification with
Aardvark I2C APIs
Aardvark is a SPI/I2C adapter which can be used for programming of Lattice
FPGA devices with Target SPI or Slave I2C. Lattice Radiant provides I2CEM
example source codes which are modified with Aardvark I2C APIs
respectively. However we do not guarantee that these APIs will be supported
for all the programming modes incorporated in the .iea files generated by the
Lattice Deployment Tool, which are used by our I2CEM source codes. This is
due to the limitation of the Aardvark adapter and with its associated read/write
APIs meant for the data transfer between the Lattice’s algo interpretation logic
and the actual programming hardware driver logic. The Aardvark adapter has
a buffer limitation of 4 KB and any algo file data above 4 KB will overflow the
buffer and will result in a programming failure.

The Deployment tool modes which are effected due to this are the Fast
Programming modes for any device, for example the CrossLink-NX device
supports Fast Programming mode but will not program with Aardvark APIs.
As the Fast Programming mode results in an algo file in which the whole data
is passed at once as a whole for Fast Programming and overflows in the
Aardvark buffer resulting in a programming failure. The supported
programming modes are “Erase Program Verify,” “Background Erase
Program Verify,” “Flash Program,” and “SSPI Program.”

The example source code using FTDI can be used to program devices in Fast
Programming mode as we guarantee that our drivers work with this mode and
the buffer in the FTDI device is large enough to hold large Fast Programming
mode data.

Programming Tools User Guide for Radiant Software 2025.1 118

Index

Numerics
8051

generating slim VME files 78
using the 8051-based slim ispVME 70

A
Aardvark I2C APIs 117
Aardvark SPI APIs 106

B
bitstream

generating CPU embedded bitstream 117

C
CPU Embedded

engine 117
CPU generating 117

D
Deployment Tool 7
device programming

see programming devices
Download Debugger 8

E
Embedded System

RAM size requirement for ispVME 39
ROM size requirement for ispVME 40

Embedded, I2C 24
Embedded, JTAG, Full VME 24, 32
Embedded, JTAG, Slim VME 24, 67
Embedded, Slave SPI 24, 95

F
file generation

CPU embedded bitstream 117
file processing

VME 46
file size

program size 43
FPGA

generating a CPU embedded bitstream 117
Full VME Embedded, JTAG 24, 32

G
generating

CPU embedded bitstream 117
slim VME 78

I
I2C Embedded 24
ispVM Embedded

RAM size requirement for ispVME 39
ROM size requirement for ispVME 40

ispVME
engine 38
flow 35
source code 38

ispVME system memory 36

J
JTAG Full VME Embedded 24, 32
JTAG Slim VME Embedded 24, 67

M
memory allocation 43

P
processing

VME 46

INDEX

Programming Tools User Guide for Radiant Software 2025.1 119

program memory allocation 43
program memory requirement 42
Programmer

using 11
Programmer, Radiant 7
programming devices

using Programmer 11
programming engine

CPU Embedded 117
ispVME 38

Programming File Utility 8

R
Radiant Programmer 7
RAM size requirement for ispVME 39
resource requirements

program memory 42
program memory allocation 43
sample program size 43

ROM size requirement for ispVME 40

S
Slave SPI Embedded 24, 95
slim ispVME

generating slim VME 78
slim ispVME source code 68
using the 8051-based slim ispVME 70
using the PC-based slim ispVME 69
VME algorithm format 71

slim ispVMEVME data format 74
Slim VME Embedded, JTAG 24, 67
source code

ispVME 38
Slim ispVME 68

SPI, Slave, Embedded 24, 95
system memory, ispVME 36

U
user changes, ispVME 41
using

8051-based slim ispVME 70
PC-based slim ispVME 69
slim ispVM Embedded System 69

V
VME

algorithm format - slim ispVME 71
data format - slim ispVME 74
format 32
processing 46
RAM size requirement 39
ROM size requirement 40

REVISION HISTORY :

Programming Tools User Guide for Radiant Software 2025.1 120

Revision History

The following table gives the revision history for this document.

Date Version Description

06/26/2025 2025.1 Updated to reflect changes in Radiant 2025.1 software.

03/31/2025 2024.2.1 Updated to reflect changes in Radiant 2024.2.1 software.

12/20/2024 2024.2 Updated to reflect changes in Radiant 2024.2 software.

06/28/2024 2024.1 Updated to reflect changes in Radiant 2024.1 software.

11/24/2023 2023.2 Updated to reflect changes in Radiant 2023.2 software.

05/23/2023 2023.1 Updated to reflect changes in Radiant 2023.1 software.

03/13/2023 2022.1.1 Updated to reflect changes in Radiant 2022.1.1 software.

10/20/2020 2.2 Added definition for int TRANS_starttranx(unsigned char
channel) in Embedded Flow Overview chapter.

11/072019 2.0 Moved content from Appendix B of “Radiant Software User
Guide.” Updated for Radiant software v2.0.

02/08/2018 1.0 Initial release, as Appendix B of “Radiant Software User
Guide.”

	Programming Tools Description
	Programmer
	Deployment Tool
	Programming File Utility
	Download Debugger
	Embedded Flow
	Driver Installation

	Programmer Overview
	Usage and flow
	Programmer Design Flow
	Programming Basics
	In-System Programming
	Programming Algorithm Basics
	Programming Times
	USERCODE
	Programming Hardware
	Programming Software
	Embedded Programming
	FPGA Configuration
	Serial Peripheral Interface Flash

	Deployment Tool Overview
	Deployment Tool Function Types
	Output File Types
	File Conversion Output File Types
	Tester Output File Types
	Embedded System Output File Types
	External Memory Output File Types

	Embedded Flow Overview
	JTAG Full VME Embedded
	VME File Format
	JTAG Full VME Embedded Flow
	JTAG Full VME Embedded System Memory
	JTAG Full VME Embedded Basic Operation
	VME Source Code
	JTAG Full VME Embedded Programming Engine
	RAM Size Requirement for VME
	ROM Size Requirement for JTAG Full VME Embedded
	JTAG Full VME Embedded Required User Changes
	Program Memory Requirement
	Program Memory Allocation
	Sample Program Size
	Using JTAG Full VME Embedded
	Generating VME Files
	Testing VME Files
	Converting an SVF File to VME File
	Choosing the File-Based or EPROM- Based Version
	Customizing for the Target Platform
	Advanced Issues
	EPROM-based JTAG Full VME Embedded User Flow
	Programming Engine Flow
	VME Byte Codes
	Unsupported SVF Syntax

	JTAG Slim VME Embedded
	JTAG Slim VME Embedded Source Code
	Using the PC-based JTAG Slim VME Embedded
	Using the 8051-based JTAG Slim VME Embedded
	VME Algorithm Format
	VME Data Format
	VME Required User Changes
	Program Memory Requirement
	Program Memory Allocation
	Sample Program Size
	VME File Size
	Generating JTAG Slim VME Embedded Files
	JTAG Slim VME Embedded Source Code
	8051 JTAG Slim VME Embedded User Flow
	Programming Engine Flow
	VME Algorithm and Format

	Slave SPI Embedded
	Requirements
	Slave SPI Embedded Algorithm Format
	Slave SPI Embedded Data Format
	Generating Slave SPI Embedded Files
	Modifications
	Usage
	Return Codes from Slave SPI Embedded
	Programming Considerations for SSPIEM Modification with Aardvark SPI APIs

	I2C Embedded
	Masters and Slaves
	CrossLink-NX Slave I2C Programming
	Using the PC-based I2C Embedded Programming
	Using the 8051-based I2C Programming
	I2C Algorithm Format
	I2C Data Format
	I2C Embedded Programming Required User Changes
	Generating I2C Files
	Programming Considerations for SSPIEM and I2CEM modification with Aardvark I2C APIs

	Index
	Revision History

