

MachXO4 Hardened Control Functions Reference Guide

Technical Note

FPGA-TN-02404-1.0

December 2025

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

Abb	reviat	ions in This Document	7
1.	Intro	ductionduction	8
1.	1.	EFB Register Map	9
1.	2.	WISHBONE Bus Interface	9
1.	3.	WISHBONE Write Cycle	10
1.	4.	WISHBONE Read Cycle	11
1.	5.	WISHBONE Reset Cycle	13
2.	Hard	lened I2C IP Cores	14
2.	1.	I2C Registers	14
3.	Typic	cal I2C Transactions	22
4.	I2C F	unctional Waveforms	23
5.	I2C T	iming Diagram	27
6.	I2C S	imulation Model	28
7.	Hard	lened SPI IP Core	34
8.	SPI R	legisters	35
9.	Typic	cal SPI Transactions	44
10.	SPI F	unctional Waveforms	45
11.		iming Diagrams	
12.	SPI S	imulation Model	49
13.	Hard	lened Timer/Counter PWM	52
13	3.1.	Timer/Counter Registers	52
14.	Time	r Counter Simulation Model	
		n Access	
15	5.1.	Flash Access Ports	65
15	5.2.	Flash Access through WISHBONE Target Interface	
15	5.3.	Command and Data Transfers to Flash Space	
15	5.4.	Command Summary by Application	
15	5.5.	Command Descriptions by Command Code	
16.	Inter	face to Flash	
17.	Com	mand Framing	88
	7.1.	I2C Framing	
17	7.2.	SPI Framing	
17	7.3.	WISHBONE Framing	
		Write and Read Examples	
		n Performance	
		e/Program/Verify Time Calculation Example	
		25	
		Support Assistance	
		listory	98

Figures

Figure 1.1. Embedded Function Block (EFB)	8
Figure 1.2. WISHBONE Bus Interface between the FPGA Core and the EFB Module	9
Figure 1.3. WISHBONE Bus Write Operation	11
Figure 1.4. WISHBONE Bus Read Operation	12
Figure 1.5. EFB WISHBONE Interface Reset	13
Figure 2.1. I2C Controller Read/Write Example (through WISHBONE)	20
Figure 2.2. I2C Target Read/Write Example (through WISHBONE)	21
Figure 3.1. Simple I2C Command (for example, ISC_ERASE)	22
Figure 3.2. I2C Command with Write Data (for example, LSC_PROG_INCR_NV)	22
Figure 3.3. I2C Command with Read Data (for example, LSC_READ_STATUS)	
Figure 4.1. EFB Controller – I2C Write	23
Figure 4.2. EFB Controller – I2C Read	24
Figure 4.3. EFB Target – I2C Write	25
Figure 4.4. EFB Target – I2C Read	26
Figure 5.1. I2C Bit Transfer Timing	27
Figure 8.1. SPI Controller Read/Write Example (through WISHBONE) – Production Silicon	42
Figure 8.2. SPI Target Read/Write Example (through WISHBONE) – Production Silicon	43
Figure 9.1. Simple SPI Command (for example, ISC_ERASE)	44
Figure 9.2. SPI Command with Write Data (for example, LSC_PROG_INCR_NV)	44
Figure 9.3. SPI Command with Read Data (for example, LSC_READ_STATUS)	44
Figure 10.1. Fully Specified SPI Transaction (MachXO4 Device as SPI Controller or Target)	45
Figure 10.2. Minimally Specified SPI Transaction Example (MachXO4 Device as SPI Target)	45
Figure 11.1. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)	
Figure 11.2. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)	46
Figure 11.3. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)	47
Figure 11.4. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)	47
Figure 11.5. Target SPI Dummy Byte Response (SPICR2[SDBRE]) Timing	48
Figure 15.1. Interfaces to the Flash Sectors	65
Figure 16.1. Basic Configuration UFM Program Example	87
Figure 17.1. I2C Read Device ID Example	88
Figure 17.2. SSPI Read Device ID Example	89
Figure 17.3. WISHRONF Read Device ID Example (-015 HC Device)	90

Tables

Table 1.1. EFB Register Map	9
Table 1.2. WISHBONE Target Interface Signals of the EFB Module	10
Table 2.1. I2C Registers	14
Table 2.2. I2C Control (Primary/Secondary)	14
Table 2.3. I2C Command (Pri/Sec)	15
Table 2.4. I2C Clock Prescale 0 (Primary/Secondary)	16
Table 2.5. I2C Clock Prescale 1 (Primary/Secondary)	16
Table 2.6. I2C Transmit Data Register (Primary/Secondary)	
Table 2.7. I2C Status (Primary/Secondary)	16
Table 2.8. I2C General Call Data Register (Primary/Secondary)	18
Table 2.9. I2C Receive Data Register (Primary/Secondary)	18
Table 2.10. I2C Interrupt Status (Primary/Secondary)	18
Table 2.11. I2C Interrupt Enable (Primary/Secondary)	
Table 6.1. I2C Primary Simulation Mode	28
Table 6.2. I2C Secondary Simulation Mode	31
Table 8.1. SPI Registers	35
Table 8.2. SPI Control 0	35
Table 8.3. SPI Control 1	36
Table 8.4. SPI Control 2	37
Table 8.5. SPI Clock Pre-scale	38
Table 8.6. SPI Controller Chip Select	38
Table 8.7. SPI Transmit Data Register	38
Table 8.8. SPI Status	
Table 8.9. SPI Receive Data Register	
Table 8.10. SPI Interrupt Status	
Table 8.11. SPI Interrupt Enable	
Table 12.1. SPI Simulation Model	
Table 13.1. Timer/Counter Registers	
Table 13.2. Timer/Counter Control	
Table 13.3. Timer/Counter Control 1	
Table 13.4. Timer/Counter Set Top Counter Value 0	
Table 13.5. Timer/Counter Set Top Counter Value 1	
Table 13.6. Timer/Counter Set Compare Counter Value 0	
Table 13.7. Timer/Counter Set Compare Counter Value 1	
Table 13.8. Timer/Counter Control 2	
Table 13.9. Timer/Counter Counter Value 0	
Table 13.10. Timer/Counter Counter Value 1	
Table 13.11. Timer/Counter Current Top Counter Value 0	
Table 13.12. Timer/Counter Current Top Counter Value 1	
Table 13.13. Timer/Counter Current Compare Counter Value 0	
Table 13.14. Timer/Counter Current Compare Counter Value 1	
Table 13.15. Timer/Counter Current Capture Counter Value 0	
Table 13.16. Timer/Counter Current Capture Counter Value 1	
Table 13.17. Timer/Counter Status Register	
Table 13.18. Timer/Counter Interrupt Status	
Table 13.19. Timer/Counter Interrupt Enable	
•	
Table 15.1. WISHBONE to Flash Logic Registers	
Table 15.2. Flash Control	
Table 15.4. Flash Status	
Table 15.4. Flash Receive Data	
Table 13.3. Flash receive Data	

Table 15.6. Flash Interrupt Status	68
Table 15.7. Flash Interrupt Enable	69
Table 15.8. Unused (Reserved) Register	69
Table 15.9. EFB Interrupt Source	70
Table 15.10. UFM Commands	
Table 15.11. Configuration Flash (Sector 0) Commands	72
Table 15.12. Non-Volatile Register (NVR) Commands	73
Table 15.13. Erase Flash (0x0E)	73
Table 15.14. Read TraceID Code (0x19)	73
Table 15.15. Disable Configuration Interface (0x26)	74
Table 15.16. Read Status Register (0x3C)	74
Table 15.17. Reset CFG Address (0x46)	75
Table 15.18. Reset UFM Address (0x47)	75
Table 15.19. Program DONE (0x5E)	75
Table 15.20. Program Configuration Flash (0x70)	75
Table 15.21. Read Configuration Flash (0x73) (SPI)	75
Table 15.22. Read Configuration Flash (0x73) (I2C/SPI)	76
Table 15.23. Read Configuration Flash (0x73) (WISHBONE)	76
Table 15.24. Enable Configuration Interface (Transparent) (0x74)	77
Table 15.25. Refresh (0x79)	
Table 15.26. STANDBY (0x7D)	
Table 15.27. Set Address (0xB4)	
Table 15.28. Read USERCODE (0xC0)	
Table 15.29. Program USERCODE (0xC2)	79
Table 15.30. Enable Configuration Interface (Offline) (0xC6)	
Table 15.31. Program UFM (0xC9)	79
Table 15.32. Read UFM (0xCA) (SPI)	
Table 15.33. Read UFM (0xCA) (SPI/I2C)	
Table 15.34. Read UFM (0xCA) (WISHBONE)	
Table 15.35. Erase UFM (0xCB)	
Table 15.36. Program SECURITY (0xCE)	
Table 15.37. Program SECURITY PLUS (0xCF)	
Table 15.38. Read Device ID Code (0xE0)	
Table 15.39. Device ID	
Table 15.40. Verify Device ID Code (0xE2)	
Table 15.41. Program Feature (0xE4)	
Table 15.42. Read Feature Row (0xE7)	
Table 15.43. Check Busy Flag (0xF0)	
Table 15.44. Program FEABITs (0xF8)	
Table 15.45. Read FEABITs (0xFB)	
Table 15.46. Bypass (Null Operation) (0xFF)	
Table 17.1. Command Framing Protocol, by Interface	
Table 17.2. Command Framing Protocol, by Interface	
Table 17.3. Command Framing Protocol, by Interface	
Table 18.1. Write Two UFM Pages	
Table 18.2. Read One UFM Page (All Devices, WISHBONE/SPI)	
Table 18.3. Read Two UFM Pages (WISHBONE/SPI)	
Table 19.1. Flash Performance in the MachXO4 Device ¹	
Table 20.1. E/P/V Calculation Parameters	95

Abbreviations in This Document

A list of abbreviations used in this document.

Abbreviation	Definition
EFB	Embedded Function Block
FPGA	Field Programmable Gate Array
GSR	Global Set/Reset
1/0	Input/Output
I2C	Inter-Integrated Circuit
IEEE	Institute of Electrical and Electronics Engineers
IP	Intellectual Property
LSB	Least Significant Bit
MSB	Most Significant Bit
PLD	Programmable Logic Device
PLL	Phase Locked Loop
SPI	Serial Peripheral Interface
SRAM	Static Random-Access Memory
SSM	Synchronous State Machine
UFM	User Flash Memory

1. Introduction

This reference guide supplements the MachXO4 Hardened Control Functions User Guide (FPGA-TN-02403), which explains the software usage. In this document, you can find:

- WISHBONE Protocol
- EFB Register Map
- Command Sequences
- Examples

As an overview, the MachXO4™ FPGA family combines a high-performance, low power, FPGA fabric with built-in, hardened control functions. The hardened control functions ease design implementation and save general purpose resources such as LUTs, registers, clocks, and routing. The hardened control functions are physically located in the Embedded Function Block (EFB). All MachXO4 devices include an EFB module. The EFB block includes the following control functions:

- Two I2C Cores
- One SPI Core
- One 16-bit Timer/Counter
- Interface to Flash memory which includes:
 - User Flash Memory
 - Configuration logic
 - Interface to Dynamic PLL configuration settings
 - Interface to On-chip Power Controller through I2C and SPI

Figure 1.1 shows the EFB architecture and the interface to the FPGA core logic.

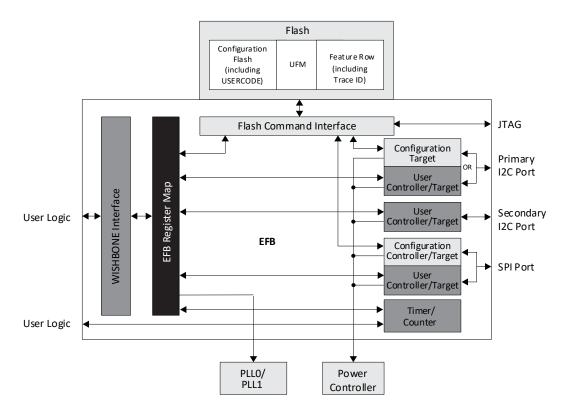


Figure 1.1. Embedded Function Block (EFB)

1.1. EFB Register Map

The EFB module has a Register Map to allow the service of the hardened functions through the WISHBONE bus interface a read/write operations. Each hardened function has dedicated 8-bit Data and Control registers, except for the Flash. These are access through the same set of registers. Table 1.1 documents the register map of the EFB module. The PLL registers are located in the Flash in the MachXO4 devices PLL modules, but are access through the EFB WISHBONE read/write cycles.

Table 1.1. EFB Register Map

Address (Hex)	Hardened Function
0x00-0x1F	PLL0 Dynamic Access1
0x20-0x3F	PLL1 Dynamic Access1
0x40-0x49	I2C Primary
0x4A-0x53	I2C Secondary
0x54-0x5D	SPI
0x5E-0x6F	Timer/Counter
0x70-0x75	Flash
0x76-0x77	EFB Interrupt Source

Note:

Address spaces that are not defined in Table 1.1 are invalid and results in non-deterministic results. Ensure valid addresses are presented to the EFB WISHBONE target interface.

1.2. WISHBONE Bus Interface

The WISHBONE bus in the MachXO4 is compliant with the WISHBONE standard from OpenCores. It provides connectivity between FPGA user logic and the EFB functional blocks. You can implement a WISHBONE controller interface to interact with the EFB WISHBONE target interface or a LatticeMico8™ soft processor core can be used to interact with the EFB WISHBONE.

The block diagram in Figure 1.2 shows the supported WISHBONE bus signals between the FPGA core and the EFB. Table 1.2 provides a detailed definition of the supported signals.

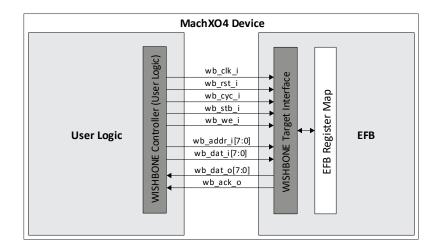


Figure 1.2. WISHBONE Bus Interface between the FPGA Core and the EFB Module

^{1.} There can be up to two PLLs in a MachXO4 device. PLL0 has an address range from 0x00 to 0x1F. PLL1 (if present) has an address range from 0x20 to 0x3F. Refer to the MachXO4 sysCLOCK PLL Design User Guide (FPGA-TN-02391) for details on the PLL configuration registers and recommended usage.

Table 1.2. WISHBONE Target Interface Signals of the EFB Module

Signal Name	1/0	Width	Description
wb_clk_i	Input	1	Positive edge clock used by WISHBONE Interface registers and hardened functions within the EFB module. Supports clock speeds up to 133 MHz. When used in conjunction with the I2C User Target or Configuration Target ports, the clock speed must be at least 7.5× the I2C bus speed (for example, >3.0 MHz when I2C rate = 400 kHz). When used in conjunction with SPI Target port, the WISHBONE clock speed must be at least twice the SPI clock speed.
wb_rst_i	Input	1	Active-high, synchronous reset signal that only resets the WISHBONE interface logic. This signal does not affect the contents of any registers. It only affects ongoing bus transactions. Wait 1 us after de-assertion before starting any subsequent WISHBONE transactions.
wb_cyc_i	Input	1	Active-high signal, asserted by the WISHBONE controller, indicates a valid bus cycle is present on the bus.
wb_stb_i	Input	1	Active-high strobe, input signal, indicating the WISHBONE target is the target for the current transaction on the bus. The EFB module asserts an acknowledgment in response to the assertion of the strobe.
wb_we_i	Input	1	Level sensitive Write/Read control signal. Low indicates a Read operation, and High indicates a Write operation.
wb_adr_i	Input	8	8-bit wide address used to select a specific register from the register map of the EFB module.
wb_dat_i	Input	8	8-bit input data path used to write a byte of data to a specific register in the register map of the EFB module.
wb_dat_o	Output	8	8-bit output data path used to read a byte of data from a specific register in the register map of the EFB module.
wb_ack_o	Output	1	Active-high, transfer acknowledge signal asserted by the EFB module, indicating the requested transfer is acknowledged.

To interface to the EFB you must create a WISHBONE controller in the User Logic. In a multiple-Controller configuration, the WISHBONE Controller outputs are multiplexed in a user-defined arbiter. A LatticeMico8 soft processor can also be utilized along with the Mico System Builder (MSB) platform, which can implement multi-controller bus configurations. If two Controller request the bus in the same cycle, only the outputs of the arbitration winner reach the Target interface.

The EFB WISHBONE bus supports the Classic version of the WISHBONE standard. Given that the WISHBONE bus is an open source standard, not all features of the standard are implemented or required:

- Tags are not supported in the WISHBONE Target interface of the EFB module. Given that the EFB is a hardened block, these signals cannot be added.
- The Target WISHBONE bus interface of the EFB module does not require the byte select signals (sel_i or sel_o), since the data bus is only a single byte wide.
- The EFB WISHBONE Target interface does not support the optional error and retry access termination signals. If the target receives an access to an invalid address, it responds by asserting wb_ack_o signal. Ensure to stay within the valid address range.

1.3. WISHBONE Write Cycle

Figure 1.3 shows the waveform of a Write cycle from the perspective of the EFB WISHBONE Target interface. During a single Write cycle, only one byte of data is written to the EFB block from the WISHBONE Controller. A Write operation requires a minimum three clock cycles.

On clock Edge 0, the Controller updates the address, data and asserts control signals. During this cycle:

- The Controller updates the address on the wb adr i[7:0] address lines.
- Updates the data that is written to the EFB block, wb dat i[7:0] data lines.
- Asserts the write enable wb_we_i signal, indicating a write cycle.

- Asserts the wb cyc i to indicate the start of the cycle.
- Asserts the wb stb i, selecting a specific target module.

On clock Edge 1, the EFB WISHBONE Target decodes the input signals presented by the controller. During this cycle:

- The Target decodes the address presented on the wb_adr_i[7:0] address lines.
- The Target prepares to latch the data presented on the wb_dat_i[7:0] data lines.
- The Controller waits for an active-high level on the wb_ack_o line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the wb ack o line.
- The EFB may insert wait states before asserting wb_ack_o, thereby allowing it to throttle the cycle speed. Any number of wait states may be added.
- The Target asserts wb_ack_o signal.

The following occurs on clock Edge 2:

- The Target latches the data presented on the wb dat i[7:0] data lines.
- The Controller de-asserts the strobe signal, wb_stb_i, the cycle signal, wb_cyc_i, and the write enable signal, wb we i.
- The Target de-asserts the acknowledge signal, wb_ack_o, in response to the Controller de-assertion of the strobe signal.

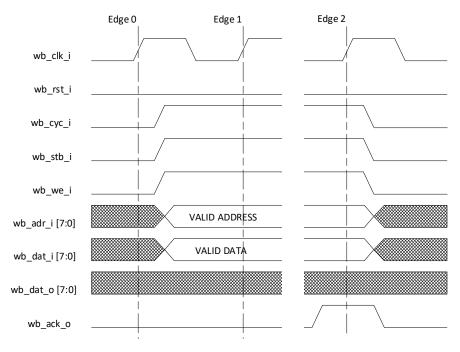


Figure 1.3. WISHBONE Bus Write Operation

1.4. WISHBONE Read Cycle

Figure 1.4 shows the waveform of a Read cycle from the perspective of the EFB WISHBONE Target interface. During a single Read cycle, only one byte of data is read from the EFB block by the WISHBONE controller. A Read operation requires a minimum three clock cycles.

On clock Edge 0, the Controller updates the address, data and asserts control signals. The following occurs during this cycle:

- The Controller updates the address on the wb_adr_i[7:0] address lines.
- De-asserts the write enable wb_we_i signal, indicating a Read cycle.
- Asserts the wb cyc i to indicate the start of the cycle.
- Asserts the wb_stb_i, selecting a specific Target module.

On clock Edge 1, the EFB WISHBONE target decodes the input signals presented by the controller. The following occurs during this cycle:

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

- The Target decodes the address presented on the wb adr i[7:0] address lines.
- The Controller prepares to latch the data presented on wb dat o[7:0] data lines from the EFB WISHBONE target on the following clock edge.
- The Controller waits for an active-high level on the wb ack o line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the wb ack o line.
- The EFB may insert wait states before asserting wb_ack_o, thereby allowing it to throttle the cycle speed. Any number of wait states may be added.
- The Target presents valid data on the wb_dat_o[7:0] data lines.
- The Target asserts wb ack o signal in response to the strobe, wb stb i signal.

The following occurs on clock Edge 2:

- The Controller latches the data presented on the wb dat o[7:0] data lines.
- The Controller de-asserts the strobe signal, wb_stb_i, and the cycle signal, wb_cyc_i.
- The Target de-asserts the acknowledge signal, wb ack o, in response to the controller de-assertion of the strobe

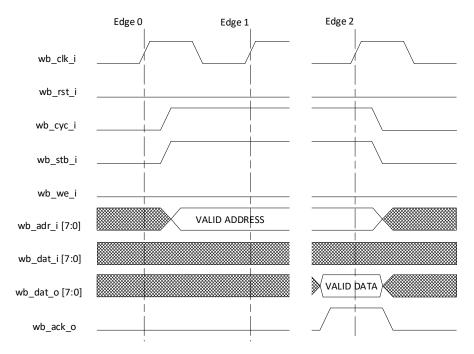


Figure 1.4. WISHBONE Bus Read Operation

To avoid simulation mismatch in functional simulations, add a delay of 100 ps to wb cyc i and wb stb i assertion assignments. See the examples below. The examples assume the wb cyc i gen signal is generated elsewhere in the design, for example from a synchronous state machine (SSM).

Verilog example: (assumes timescale 1 ns / 100 ps)

VHDL example:

Additionally, ensure your logic monitors for wb ack o, and deassert wb cyc i and wb stb i immediately.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

WISHBONE Reset Cycle 1.5.

Figure 1.5 shows the waveform of the synchronous wb_rst_i signal. Asserting the reset signal, resets the WISHBONE interface logic. This signal does not affect the contents of any registers in the EFB register map. It only affects ongoing bus transactions.

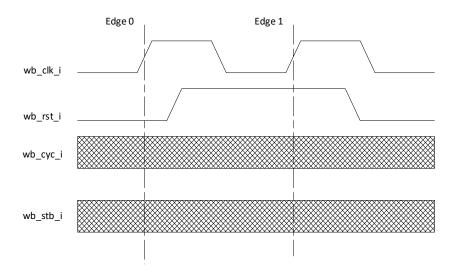


Figure 1.5. EFB WISHBONE Interface Reset

The wb rst i signal can be asserted for any length of time.

2. Hardened I2C IP Cores

I2C is a widely used two-wire serial bus for communication between devices on the same board. Every MachXO4 device contains two hardened I2C IP cores designated as the Primary and Secondary I2C IP cores. Either of the two cores can be operated as an I2C Controller or as an I2C Target. The difference between the two cores is that the Primary core has pre-assigned I/O pins while the ports of the secondary core can be assigned to any general purpose I/O. In addition, the Primary I2C core can be used for accessing the Flash. However, the Primary I2C port cannot be used for both Flash access and user functions in the same design. When instantiating the Hardened I2C IP cores for Target operations, the Embedded Function Block (EFB) wb_clk_i input must be connected to a valid clock source of at least 7.5× the I2C bus rate (for example, >3.0 MHz when I2C rate = 400 kHz).

2.1. I2C Registers

Both I2C cores communicate with the EFB WISHBONE interface through a set of control, command, status, and data registers. Table 2.1 shows the register names and their functions. These registers are a subset of the EFB register map.

Table 2.1. I2C Registers

I2C Primary Register Name	I2C Secondary Register Name	Register Function	Address I2C Primary	Address I2C Secondary	Access
I2C_1_CR	12C_2_CR	Control	0x40	0x4A	Read/Write
I2C_1_CMDR	I2C_2_CMDR	Command	0x41	0x4B	Read/Write
I2C_1_BR0	I2C_2_BR0	Clock Pre-scale	0x42	0x4C	Read/Write
I2C_1_BR1	I2C_2_BR1	Clock Pre-scale	0x43	0x4D	Read/Write
I2C_1_TXDR	I2C_2_TXDR	Transmit Data	0x44	0x4E	Write
I2C_1_SR	12C_2_SR	Status	0x45	0x4F	Read
I2C_1_GCDR	I2C_2_GCDR	General Call	0x46	0x50	Read
I2C_1_RXDR	I2C_2_RXDR	Receive Data	0x47	0x51	Read
I2C_1_IRQ	I2C_2_IRQ	IRQ	0x48	0x52	Read/Write
I2C_1_IRQEN	I2C_2_IRQEN	IRQ Enable	0x49	0x53	Read/Write

Note: Unless otherwise specified, all reserved bits in writable registers are written as 0.

Table 2.2. I2C Control (Primary/Secondary)

I2C_1_CR / I2C_2_CR										
Bit	7	6	5	4	3	2	1	0		
Name	I2CEN	GCEN	WKUPEN	(Reserved)	SDA_DEL	_SEL[1:0]	(Reserved)			
Default	0	0	0	0	0	0	0	0		
Access	R/W	R/W	R/W	-	R/W	R/W	-	_		

Note: A write to this register causes the I2C core to reset.

I2CEN

I2C System Enable Bit – This bit enables the I2C core functions. If I2CEN is cleared, the I2C core is disabled and forced into idle state.

0: I2C function is disabled

1: I2C function is enabled

GCEN

Enable bit for General Call Response – Enables the general call response in target mode.

0: Disable

1: Enable

The General Call address is defined as 0000000 and works with either 7-bit or 10-bit addressing.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

WKUPEN

Wake-up from Standby/Sleep (by Target Address matching) Enable Bit – When this bit is enabled the I2C core can send a wake-up signal to the on-chip power manager to wake the device up from standby/sleep. The wake-up function is activated when the MachXO4 Target Address is matched during standby/sleep mode.

0: Disable1: Enable

SDA DEL SEL[1:0]

SDA Output Delay (Tdel) Selection (see Figure 5.1).

00:	300 ns (min)	300 ns + 2000/[wb_clk_i frequency in MHz] (max)
01:	150 ns (min)	150 ns + 2000/[wb_clk_i frequency in MHz] (max)
10:	75 ns (min)	75 ns + 2000/[wb_clk_i frequency in MHz] (max)
11:	0 ns (min)	0 ns + 2000/[wb_clk_i frequency in MHz] (max)

Table 2.3. I2C Command (Pri/Sec)

12C_1_CMDR / I2C_2_CMDR										
Bit	7	6	5	4	3	2	1	0		
Name	STA	STO	RD	WR	ACK	CKSDIS	(Reserved)			
Default	0	0	0	0	0	0	0	0		
Access	R/W	R/W	R/W	R/W	R/W	R/W	_	_		

STA

Generate START (or Repeated START) condition (Controller operation)

STO

Generate STOP condition (Controller operation)

RD

Indicate Read from target (Controller operation)

WR

Indicate Write to target (Controller operation)

ACK

Acknowledge Option - when receiving, ACK transmission selection

0: Send ACK1: Send NACK

CKSDIS

Clock Stretching Disable. The I2C cores support a wait state or clock stretching from the target, meaning the target can enforce a wait state if it needs time to finish the task. If necessary, you can disable the clock stretching using the CKSDIS bit. In this case, the overflow flag must be monitored. For Controller operations, set this bit to 0. Clock stretching is used by the MachXO4 EFB I2C Target during both *read* and *write* operations (from the Controller perspective) when I2C Command Register bit CKSDIS=0.

During a read operation (Target transmitting), clock stretching occurs when TXDR is empty (under-run condition). During a write operation (Target receiving) clock stretching occurs when RXDR is full (over-run condition).

Translated into I2C Status register bits, the I2C clock-stretches if TRRDY=1. The decision to enable clock stretching is done on the 8TH SCL + 2 WISHBONE clocks.

0: Enabled1: Disabled

Table 2.4. I2C Clock Prescale 0 (Primary/Secondary)

I2C_1_BR0 / I2C_2_BR0 0x4										
Bit 7 6 5 4 3 2 1								0		
Name		I2C_PRESCALE[7:0]								
Default	0	0	0	0	0	0	0	0		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note: Hardware default value may be overridden by EFB component instantiation parameters. See discussion below.

Table 2.5. I2C Clock Prescale 1 (Primary/Secondary)

I2C_1_BR1 / I	_1_BR1 / I2C_2_BR1									
Bit	7	6	5	4	3	2	1	0		
Name		(Reserved) I2C_PRESCALE[7:0								
Default	0	0	0	0						
Access	_	_	_	_	_	_	R/W	R/W		

Note: Hardware default value may be overridden by EFB component instantiation parameters. See discussion below.

I2C PRESCALE[9:0]

I2C Clock Prescale value. A write operation to I2CBR [9:8] causes an I2C core reset. The WISHBONE clock frequency is divided by (I2C_PRESCALE*4) to produce the Controller I2C clock frequency supported by the I2C bus (50 kHz, 100 kHz, 400 kHz).

Notes:

- Different from transmitting a Controller, the practical limit for Target I2C bus speed support is (WISHBONE clock)/2048. For example, the maximum WISHBONE clock frequency to support a 50 kHz Target I2C operation is 102 MHz.
- The digital value is calculated by the IP Catalog when the I2C core is configured in the I2C tab of the EFB GUI. The calculation is based on the WISHBONE Clock Frequency and the I2C Frequency, which are user-entered. The digital value of the divider is programmed in the MachXO4 device during device programming. After power-up or device reconfiguration, the data is loaded onto the I2C_1_BR1/0 and I2C_2_BR1/0 registers.

Registers I2C_1_BR1/0 and I2C_2_BR1/0 have Read/Write access from the WISHBONE interface. You can update these clock pre-scale registers dynamically during device operation; however, care must be taken to not violate the I2C bus frequencies.

Table 2.6. I2C Transmit Data Register (Primary/Secondary)

I2C_1_TXDR /	OR / I2C_2_TXDR									
Bit	7	7 6 5 4 3 2 1								
Name		I2C_Transmit[7:0]								
Default	0	0 0 0 0 0 0 0								
Access	W	W	W	W	W	W	W	W		

I2C Transmit Data[7:0]

I2C Transmit Data. This register holds the byte to be transmitted on the I2C bus during the Write Data phase. Bit 0 is the LSB and is transmitted last. When transmitting the target address, Bit 0 represents the Read/Write bit.

Table 2.7. I2C Status (Primary/Secondary)

······································										
I2C_1_SR / I2C_2_SR										
Bit	7	6	5	4	3	2	1	0		
Name	TIP	BUSY	RARC	SRW	ARBL	TRRDY	TROE	HGC		
Default	_	_	_	_	_	_	_	_		
Access	R	R	R	R	R	R	R	R		

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02404-1.0

TIP

Transmit In Progress. The current data byte is being transferred. Note that the TIP flag suffers one-half SCL cycle latency right after the START condition because of the signal synchronization. Also, note that this bit can be high after configuration wake-up and before the first valid I2C transfer starts (when BUSY is low), and it is not indicating byte in transfer, but an invalid indicator.

- 1: Byte transfer in progress
- 0: Byte transfer complete

BUSY

I2C Bus busy. The I2C bus is involved in a transaction. This is set at START condition and cleared at STOP. Make sure this bit is set before treating any other I2C SR bits as valid indicators for a valid transfer.

- I2C bus busy
- 0: I2C bus not busy

RARC

Received Acknowledge. An acknowledge response is received by the acknowledge bit monitor. All ACK/NACK bits are monitored and reported, regardless of Controller/Target source or Read/Write mode.

- 1: No acknowledge received
- 0: Acknowledge received

SRW

Target Read/Write. Indicates transmit or receive mode.

- 1: Controller receiving/target transmitting
- 0: Controller transmitting/target receiving

Note: SRW is valid after TRRDY=1 following a synchronization delay of up to four WISHBONE clock cycles. Do not test both SRW and TRRDY in the same WISHBONE transaction, but test SRW at least four WISHBONE clock cycles after TRRDY is tested true. This delay is represented in Figure 4.4.

ARBL

Arbitration Lost. The core has lost arbitration in Controller mode. This bit is capable of generating an interrupt.

- 1: Arbitration Lost
- 0: Normal

TRRDY

Transmitter or Receiver Ready. The I2C Transmit Data register is ready to receive transmit data, or the I2C Receive Data Register contains receive data (dependent upon controller/target mode and SRW status). This bit is capable of generating an interrupt.

- 1: Transmitter or Receiver is ready
- 0: Transmitter of Receiver is not ready

TROE

Transmitter/Receiver Overrun Error. A transmit or receive overrun error has occurred (dependent upon controller/target mode and SRW status).

Note: When acting as a transmitter (Controller Write or Target Read) a No Acknowledge received asserts TROE indicating a possible orphan data byte exists in TXDR.

This bit is capable of generating an interrupt.

- 1: Transmitter or Receiver Overrun detected or NACK received
- 0: Normal

HGC

Hardware General Call Received. A hardware general call has been received in target mode. The corresponding command byte is available in the General Call Data Register. This bit is capable of generating an interrupt.

- 1: General Call Received in target mode
- 0: Normal

Table 2.8. I2C General Call Data Register (Primary/Secondary)

I2C_1_GCDR	R / I2C_2_GCDR									
Bit	7	7 6 5 4 3 2 1								
Name		I2C_GC_Data[7:0]								
Default	_									
Access	R	R	R	R	R	R	R	R		

I2C_GC _Data[7:0]

I2C General Call Data. This register holds the second (command) byte of the General Call transaction on the I2C bus.

Table 2.9. I2C Receive Data Register (Primary/Secondary)

I2C_1_RXDR	12C_2_RXDR									
Bit	7	6	5	4	3	2	1	0		
Name		I2C_Receive_Data[7:0]								
Default	_	_	_	_	_	_	_	_		
Access	R	R	R	R	R	R	R	R		

I2C_ Receive _Data[7:0]

I2C Receive Data. This register holds the byte captured from the I2C bus during the Read Data phase. Bit 0 is LSB and is received last.

Table 2.10. I2C Interrupt Status (Primary/Secondary)

12C_1_IRQ / 12C_2_IRQ										
Bit	7	6	5	4	3	2	1	0		
Name		(Rese	erved)		IRQARBL	IRQTRRDY	IRQTROE	IRQHGC		
Default	-	-	-	_	_	_	_	_		
Access	-	-	-	_	R/W	R/W	R/W	R/W		

IRQARBL

Interrupt Status for Arbitration Lost. When enabled, indicates ARBL is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Arbitration Lost Interrupt
- 0: No interrupt

IRQTRRDY

Interrupt Status for Transmitter or Receiver Ready. When enabled, indicates TRRDY is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Transmitter or Receiver Ready Interrupt
- 0: No interrupt

IRQTROE

Interrupt Status for Transmitter/Receiver Overrun or NACK received. When enabled, indicates TROE is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Transmitter or Receiver Overrun or NACK received Interrupt
- 0: No interrupt

IRQHGC

Interrupt Status for Hardware General Call Received. When enabled, indicates HGC is asserted. Write a 1 to this bit to clear the interrupt.

- 1: General Call Received in target mode Interrupt
- 0: No interrupt

Table 2.11. I2C Interrupt Enable (Primary/Secondary)

I2C_1_IRQEN / I2C_2_IRQEN									
Bit	7	6	5	4	3	2	1	0	
Name		(Rese	rved)		IRQARBLEN	IRQTRRDYEN	IRQTROEEN	IRQHGCEN	
Default	0	0	0	0	0	0	0	0	
Access	_	_	_	_	R/W	R/W	R/W	R/W	

IRQARBLEN

Interrupt Enable for Arbitration Lost

- 1: Interrupt generation enabled
- 0: Interrupt generation disabled

IRQTRRDYEN

Interrupt Enable for Transmitter or Receiver Ready

- 1: Interrupt generation enabled
- 0: Interrupt generation disabled

IRQTROEEN

Interrupt Enable for Transmitter/Receiver Overrun or NACK Received

- 1: Interrupt generation enabled
- 0: Interrupt generation disabled

IRQHGCEN

Interrupt Enable for Hardware General Call Received

- 1: Interrupt generation enabled
- 0: Interrupt generation disabled

Figure 2.1 shows a flow diagram for controlling Controller I2C reads and writes initiated through the WISHBONE interface. The following sequence is for the Primary I2C but the same sequence applies to the Secondary I2C.

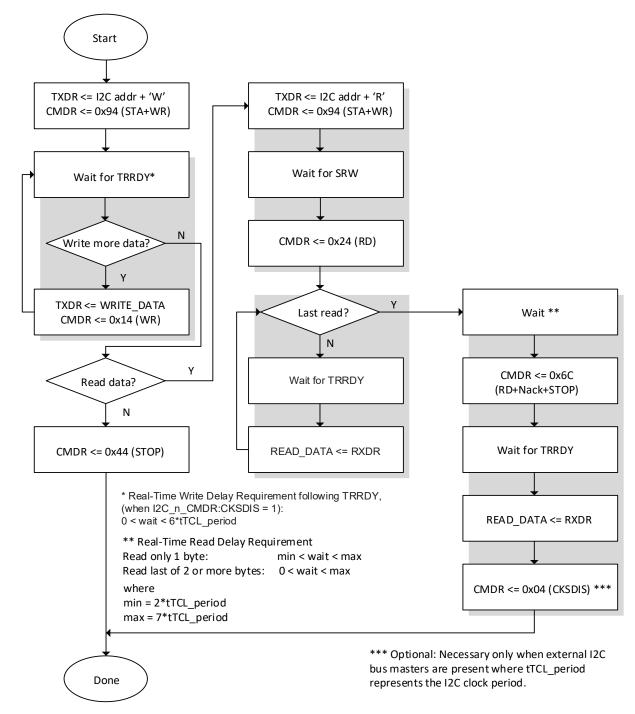


Figure 2.1. I2C Controller Read/Write Example (through WISHBONE)

Figure 2.2 shows a flow diagram for reading and writing from an I2C Target device through the WISHBONE interface. The following sequence is for the Primary I2C but the same sequence applies to the Secondary I2C.

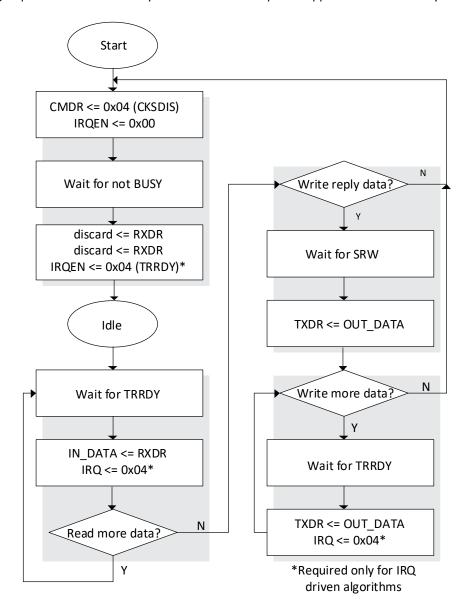


Figure 2.2. I2C Target Read/Write Example (through WISHBONE)

3. **Typical I2C Transactions**

Figure 3.1, Figure 3.2, and Figure 3.3 illustrate typical User I2C bus protocol transactions that are supported by the Controller and Target flows shown in Figure 2.1 and Figure 2.2. Additionally, the figures below reference typical sysConfig Configuration commands structures.

Figure 3.1. Simple I2C Command (for example, ISC_ERASE)

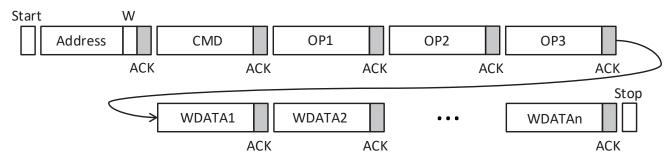


Figure 3.2. I2C Command with Write Data (for example, LSC_PROG_INCR_NV)

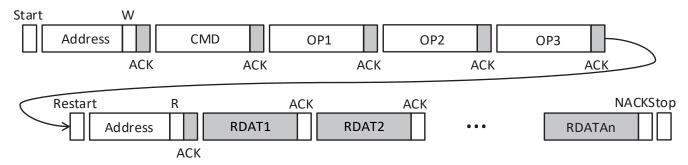


Figure 3.3. I2C Command with Read Data (for example, LSC_READ_STATUS)

4. I2C Functional Waveforms

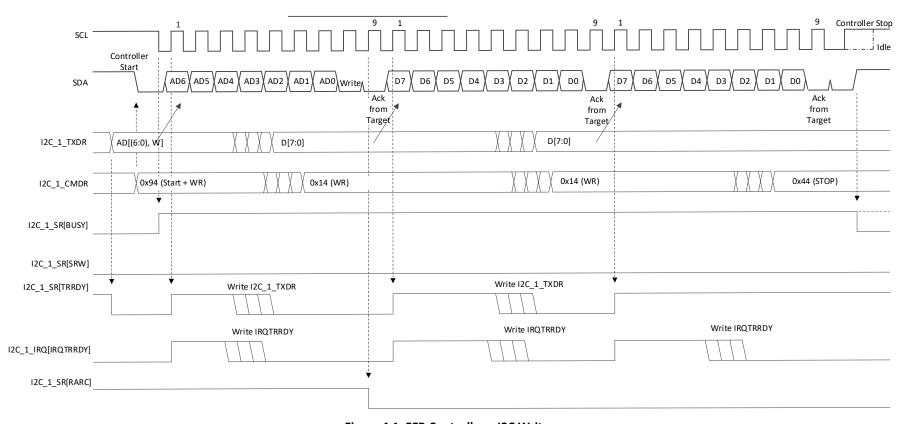


Figure 4.1. EFB Controller – I2C Write

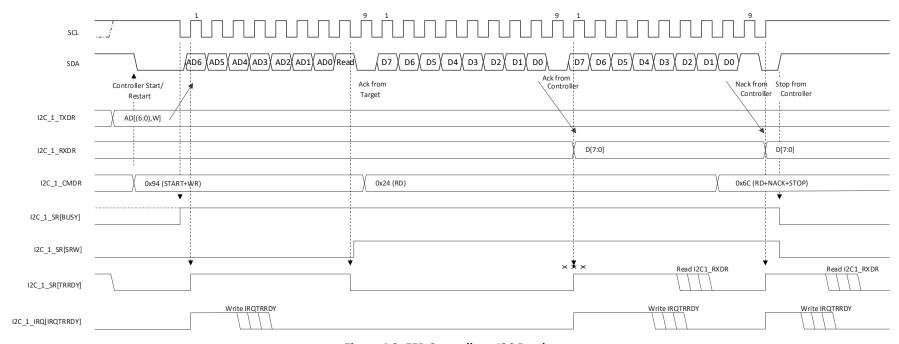


Figure 4.2. EFB Controller - I2C Read

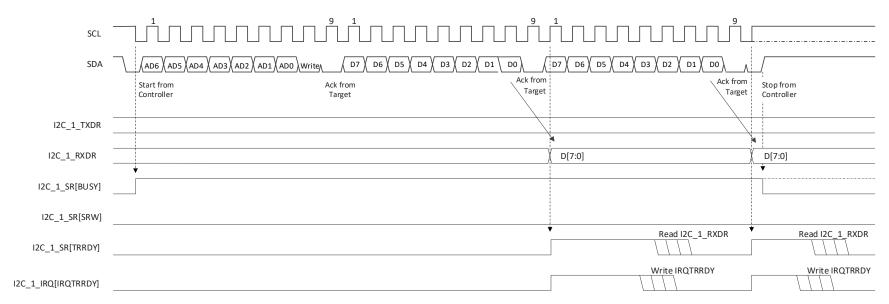


Figure 4.3. EFB Target – I2C Write

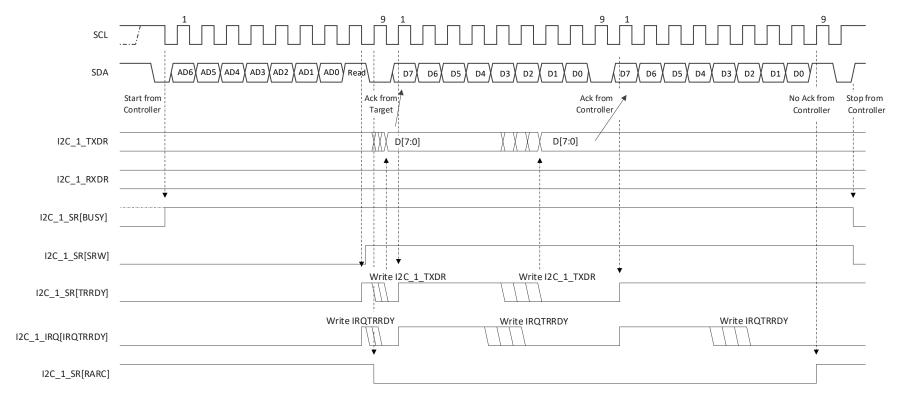


Figure 4.4. EFB Target - I2C Read

5. I2C Timing Diagram

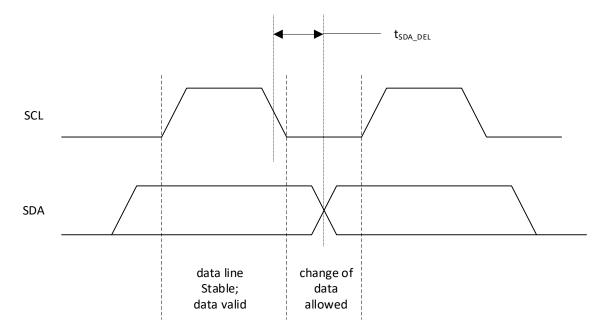


Figure 5.1. I2C Bit Transfer Timing

6. I2C Simulation Model

The I2C EFB Register Map translation to the MachXO4 EFB software simulation model is provided in the tables below.

Table 6.1. I2C Primary Simulation Mode

I2C Primary Register Name	Register Size/Bit Location	Register Function	Address I2C Primary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_1_CR	[7:0]	Control	0x40	Read/Write	i2ccr1[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
12CEN	7	_	_	_	i2c_en	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
GCEN	6	_	_	_	i2c_gcen	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
WKUPEN	5	_	_	_	i2c_wkupen	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
SDA_DEL_SEL[1:0]	[3:2]	_	_	_	sda_del_sel	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
I2C_1_CMDR	[7:0]	Command	0x41	Read/Write	i2ccmdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
STA	7	_	_	_	i2c_sta	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
STO	6	_	_	_	i2c_sto	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
RD	5	_	_	_	i2c_rd	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
WR	4	_	_	_	i2c_wt	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
АСК	3	_	_	_	i2c_nack	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
CKSDIS	2	_	_	_	i2c_cksdis	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
I2C_1_BR0	[7:0]	Clock Pre- scale	0x42	Read/Write	i2cbr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
I2C_PRESCALE[7:0]	[7:0]	_	_	_	i2cbr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/

I2C Primary Register Name	Register Size/Bit Location	Register Function	Address I2C Primary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_1_BR1	[7:0]	Clock Pre- scale	0x43	Read/Write	i2cbr[9:8]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
I2C_PRESCALE[9:8]	[1:0]	_	_	_	i2cbr[9:8]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
I2C_1_TXDR	[7:0]	Transmit Data	0x44	Write	i2ctxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
I2C_Transmit_Data[7:0]	[7:0]	_	_	_	i2ctxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
I2C_1_SR	[7:0]	Status	0x45	Read	i2csr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu /njport_unit/i2c_1st/
TIP	7	_	_	_	i2c_tip_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
BUSY	6	_	_	_	i2c_busy_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
RARC	5	_	_	_	i2c_rarc_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
SRW	4	_	_	_	i2c_srw_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
ARBL	3	_	_	_	i2c_arbl	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
TRRDY	2	_	_	_	i2c_trrdy	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
TROE	1	_	_	_	i2c_troe	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
HGC	0	_	_	_	i2c_hgc	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
I2C_1_GCDR	[7:0]	General Call	_	_	i2cgcdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
I2C_GC_Data[7:0]	[7:0]	_	_	_	i2cgcdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
I2C_1_RXDR	[7:0]	Receive Data	_	-	i2crxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/

I2C Primary Register Name	Register Size/Bit Location	Register Function	Address I2C Primary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_Receive_Data[7:0]	[7:0]	_	_	_	i2crxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu / njport_unit/i2c_1st/
I2C_1_IRQ	[7:0]	IRQ	_	_	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_1st_irqsts_3, i2csr_1st_irqsts_2, i2csr_1st_irqsts_1, i2csr_1st_irqsts_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBL	3	_	_	_	i2csr_1st_irqsts_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDY	2	_	_	_	i2csr_1st_irqsts_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROE	1	_	_	_	i2csr_1st_irqsts_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGC	0	_	_	_	i2csr_1st_irqsts_0	/efb_top/efb_pll_sci_inst/u_efb_sci/
I2C_1_IRQEN	[7:0]	IRQ Enable	_	_	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_1st_irqena_3, i2csr_1st_irqena_2, i2csr_1st_irqena_1, i2csr_1st_irqena_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBLEN	3	_	_	_	i2csr_1st_irqena_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDYEN	2	_	_	_	i2csr_1st_irqena_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROEEN	1	_	_	_	i2csr_1st_irqena_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGCEN	0	_	_	_	i2csr_1st_irqena_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

Table 6.2. I2C Secondary Simulation Mode

I2C Secondary Register Name	Register Size/Bit Location	Register Function	Address I2C Secondary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_2_CR	[7:0]	Control	0x4A	Read/Write	i2ccr1[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2CEN	7	_	_	_	i2c_en	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
GCEN	6	_	_	_	i2c_gcen	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
WKUPEN	5	_	_	_	i2c_wkupen	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
SDA_DEL_SEL[1:0]	[3:2]	_	_	_	sda_del_sel	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_CMDR	[7:0]	Command	0x4B	Read/Write	i2ccmdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
STA	7	_	_	_	i2c_sta	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
STO	6	_	_	_	i2c_sto	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
RD	5	_	_	_	i2c_rd	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
WR	4	_	_	_	i2c_wt	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
ACK	3	_	_	_	i2c_nack	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
CKSDIS	2	_	_	_	i2c_cksdis	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_BR0	[7:0]	Clock Pre- scale	0x4C	Read/Write	i2cbr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_PRESCALE[7:0]	[7:0]	_	_	_	i2cbr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_BR1	[7:0]	Clock Pre- scale	0x4D	Read/Write	i2cbr[9:8]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_PRESCALE[9:8]	[1:0]	_	_	_	i2cbr[9:8]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/

I2C Secondary Register Name	Register Size/Bit Location	Register Function	Address I2C Secondary	Access	Simulation Model Register Name	Simulation Model Register Path
						njport_unit/i2c_2nd/
I2C_2_TXDR	[7:0]	Transmit Data	0x4E	Write	i2ctxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_Transmit_Data[7:0]	[7:0]	_	_	_	i2ctxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_SR	[7:0]	Status	0x4F	Read	i2csr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
TIP	7	_	_	_	i2c_tip_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
BUSY	6	_	_	_	i2c_busy_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
RARC	5	_	_	_	i2c_rarc_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
SRW	4	_	_	_	i2c_srw_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
ARBL	3	_	_	_	i2c_arbl	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
TRRDY	2	_	_	_	i2c_trrdy	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
TROE	1	_	_	_	i2c_troe	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
HGC	0	_	_	_	i2c_hgc	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_GCDR	[7:0]	General Call	0x50	Read	i2cgcdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_GC_Data[7:0]	[7:0]	_	_	_	i2cgcdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_RXDR	[7:0]	Receive Data	0x51	Read	i2crxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_Receive_Data[7:0]	[7:0]	_	_	_	i2crxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_IRQ	[7:0]	IRQ	0x52	Read/Write	{1'b0, 1'b0, 1'b0,	/efb_top/efb_pll_sci_inst/u_efb_sci/

I2C Secondary Register Name	Register Size/Bit Location	Register Function	Address I2C Secondary	Access	Simulation Model Register Name	Simulation Model Register Path
					1'b0, i2csr_2nd_irqsts_3, i2csr_2nd_irqsts_2, i2csr_2nd_irqsts_1, i2csr_2nd_irqsts_0}	
IRQARBL	3	_	_	_	i2csr_2nd_irqsts_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDY	2	_	_	_	i2csr_2nd_irqsts_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROE	1	_	_	_	i2csr_2nd_irqsts_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGC	0	_	_	_	i2csr_2nd_irqsts_0	/efb_top/efb_pll_sci_inst/u_efb_sci/
I2C_2_IRQEN	[7:0]	IRQ Enable	0x53	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_2nd_irqena_3, i2csr_2nd_irqena_2, i2csr_2nd_irqena_1, i2csr_2nd_irqena_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBLEN	3	_	_	_	i2csr_2nd_irqena_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDYEN	2	_	_	_	i2csr_2nd_irqena_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROEEN	1	_	_	_	i2csr_2nd_irqena_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGCEN	0	_	_	_	i2csr_2nd_irqena_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

7. Hardened SPI IP Core

The MachXO4 device contains a hard SPI IP core that can be configured as an SPI Controller or Target. When the SPI core is configured as a Controller , it is able to control other devices with Target SPI interfaces that are connected to the SPI bus. When the SPI core is configured as a Target, it is able to interface with an external SPI Controller device.

8. SPI Registers

The SPI core communicates with the WISHBONE interface through a set of control, command, status, and data registers. Table 8.1 shows the register names and their functions. These registers are a subset of the EFB register map.

Table 8.1. SPI Registers

SPI Register Name	Register Function	Address	Access	
SPICR0	Control Register 0	0x54	Read/Write	
SPICR1	Control Register 1	0x55	Read/Write	
SPICR2	Control Register 2	0x56	Read/Write	
SPIBR	Clock Pre-scale	0x57	Read/Write	
SPICSR	Controller Chip Select	0x58	Read/Write	
SPITXDR	Transmit Data	0x59	Write	
SPISR	Status	0x5A	Read	
SPIRXDR	Receive Data	0x5B	Read	
SPIIRQ	Interrupt Request	Interrupt Request 0x5C		
SPIIRQEN	Interrupt Request Enable	0x5D	Read/Write	

Note: Unless otherwise specified, all Reserved bits in writable registers are written as 0.

Table 8.2. SPI Control 0

SPICRO 0x								
Bit	7	6	5	4	3	2	1	0
Name	Tidle_XCNT[1:0]		Т	Trail_XCNT[2:0)]	TLead_XCNT[2:0]		
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: A write to this register causes the SPI core to reset.

TIdle_XCNT[1:0]

Idle Delay Count. Specifies the minimum interval prior to the Controller Chip Select low assertion (Controller Mode only), in SCK periods.

00: ½
01: 1
10: 1.5
11: 2

TTrail_XCNT[2:0]

Trail Delay Count. Specifies the minimum interval between the last edge of SCK and the high de-assertion of Controller Chip Select (Controller Mode only), in SCK periods.

000: ½
001: 1
010: 1.5

•••

111: 4

TLead XCNT[2:0]

Lead Delay Count. Specifies the minimum interval between the Controller Chip Select low assertion and the first edge of SCK (Controller Mode only), in SCK periods.

000: ½001: 1010: 1.5

...

111: 4

Table 8.3. SPI Control 1

SPICR1								0x55
Bit	7	6	5	4	3	2	1	0
Name	SPE	WKUPEN_USER	WKUPEN_CFG	TXEDGE	(Reserved)			
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	_	_	_	_

Note: A write to this register causes the SPI core to reset.

SPE

This bit enables the SPI core functions. If SPE is cleared, SPI is disabled and forced into idle state.

0: SPI disabled.

1: SPI enabled, port pins are dedicated to SPI functions.

WKUPEN_USER

Wake-up Enable through User. Enables the SPI core to send a wake-up signal to the on-chip Power Controller to wake the part from Standby mode when the User target SPI chip select (spi_scsn) is driven low.

0: Wakeup disabled.

1: Wakeup enabled.

WKUPEN_CFG

Wake-up Enable Configuration. Enables the SPI core to send a wake-up signal to the on-chip power controller to wake the part from standby mode when the Configuration target SPI chip select (ufm sn) is driven low.

0: Wakeup disabled.

1: Wakeup enabled.

TXEDGE

Data Transmit Edge. Enables Lattice proprietary extension to the SPI protocol. Selects the clock edge to transmit SPI data. Refer to Figure 11.1 – Figure 11.4.

O: Transmit data on the MCLK/CCLK edge defined by SPICR2[CPOL] and SPICR2[CPHA].

1: Transmit data ½ MCLK/CCLK earlier than defined by SPICR2[CPOL] and SPICR2[CPHA].

Table 8.4. SPI Control 2

SPICR2								0x56
Bit	7	6	5	4	3	2	1	0
Name	MSTR	MCSH	SDBRE	(Reserved)	(Reserved)	CPOL	СРНА	LSBF
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	_	_	-	_	_

Note: A write to this register causes the SPI core to reset.

MSTR

SPI Controller/Target Mode. Selects the Controller/Target operation mode of the SPI core. Changing this bit forces the SPI system into idle state.

0: SPI is in Target mode.

SPI is in Controller mode. 1:

MCSH

SPI Controller CSSPIN Hold. Holds the Controller chip select active when the host is busy, to halt the data transmission without de-asserting chip select.

Note: This mode must be used only when the WISHBONE clock has been divided by a value greater than four (4).

- Controller running as normal.
- 1: Controller holds chip select low even if there is no data to be transmitted.

SDBRE

Target Dummy Byte Response Enable. Enables Lattice proprietary extension to the SPI protocol. For use when the internal support circuit (for example, WISHBONE host) cannot respond with initial data within the time required, and to make the target read out data predictably available at high SPI clock rates.

When enabled, dummy 0xFF bytes are transmitted in response to an SPI target read (while SPISR[TRDY]=1) until an initial write to SPITXDR. Once a byte is written into SPITXDR by the WISHBONE host, a single byte of 0x00 is transmitted then followed immediately by the data in SPITXDR. In this mode, the external SPI controller scans for the initial 0x00 byte when reading the SPI target to indicate the beginning of actual data. Refer to Figure 10.2.

- 0: Normal Target SPI operation.
- Lattice proprietary Target Dummy Byte Response Enabled.

Note: This mechanism only applies to the initial data delay period. Once the initial data is available, subsequent data must be supplied to SPITXDR at the required SPI bus data rate.

CPOL

SPI Clock Polarity. Selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical SPICR2[CPOL] values. In Controller mode, a change of this bit aborts a transmission in progress and forces the SPI system into idle state. Refer to Figure 11.1 - Figure 11.4.

0: Active-high clocks selected.

1: Active-low clocks selected.

CPHA

SPI Clock Phase. Selects the SPI clock format. In Controller mode, a change of this bit aborts a transmission in progress and forces the SPI system into idle state. Refer to Figure 11.1 – Figure 11.4.

0: Data is captured on a leading (first) clock edge, and propagated on the opposite clock edge.

1: Data is captured on a trailing (second) clock edge, and propagated on the opposite clock edge.

Note: When CPHA=1, you must explicitly place a pull-up or pull-down on SCK pad corresponding to the value of CPOL (for example, when CPHA=1 and CPOL=0 place a pull-down on SCK). When CPHA=0, the pull direction may be set arbitrarily.

Target SPI Configuration mode supports default setting only for CPOL, CPHA.

LSBF

LSB-First. LSB appears first on the SPI interface. In Controller mode, a change of this bit aborts a transmission in progress and forced the SPI system into idle state. Refer to Figure 11.1 – Figure 11.4.

Note: This bit does not affect the position of the MSB and LSB in the data register. Reads and writes of the data register always have the MSB in bit 7.

- 0: Data is transferred, most significant bit (MSB) first.
- 1: Data is transferred, least significant bit (LSB) first.

Table 8.5. SPI Clock Pre-scale

SPIBR 0x									
Bit	7	7 6 5 4 3 2 1							
Name	(Res	erved)	DIVIDER[5:0]						
Default ¹	0	0	0	0	0	0	0	0	
Access	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

Note:

1. Hardware default value may be overridden by EFB component instantiation parameters. See discussion below.

DIVIDER[5:0]

SPI Clock Pre-scale value. The WISHBONE clock frequency is divided by (DIVIDER[5:0] + 1) to produce the desired SPI clock frequency. A write operation to this register causes an SPI core reset. DIVIDER must be >1; otherwise, SPI transaction fails.

Note: The digital value is calculated by the IP Catalog when the SPI core is configured in the SPI tab of the EFB GUI. The calculation is based on the WISHBONE Clock Frequency and the SPI Frequency, which are user-entered. The digital value of the divider is programmed in the MachXO4 device during device programming. After power-up or device reconfiguration, the data is loaded onto the SPIBR register.

Register SPIBR has Read/Write access from the WISHBONE interface. You can update the clock pre-scale register dynamically during device operation.

Table 8.6. SPI Controller Chip Select

SPICSR								0x58
Bit	7	6	5	4	3	2	1	0
Name	CSN_7	CSN_6	CSN_5	CSN_4	CSN_3	CSN_2	CSN_1	CSN_0
Default	0	0	0	0	0	0	0	0
Access	R/W							

CSN_[7:0]

SPI Controller Chip Selects. Used in controller mode for asserting a specific Controller Chip Select line. The register has eight bits, enabling the SPI core to control up to eight external SPI target devices Each bit represents one controller chip select line (Active-Low). Bits [7:1] may be connected to any I/O pin through the FPGA fabric. Bit 0 has a pre-assigned pin location. The register has Read/Write access from the WISHBONE interface. A write operation on this register causes the SPI core to reset.

Table 8.7. SPI Transmit Data Register

14516 0.7. 31	i ii alisiilit Da	ta itegistei										
SPITXDR	0x5											
Bit	7	6	5	4	3	2	1	0				
Name				SPI_Transmi	t_Data[7:0]							
Default	_											
Access	W	W	W	W	W	W	W	W				

SPI_Transmit_Data[7:0]

SPI Transmit Data. This register holds the byte to be transmitted on the SPI bus. Bit 0 in this register is LSB, and is transmitted last when SPICR2[LSBF]=0 or first when SPICR2[LSBF]=1.

Note: When operating as a Target, SPITXDR must be written when SPISR[TRDY] is 1 and at least 0.5 CCLKs before the first bit is to appear on SO. For example, when CPOL = CPHA = TXEDGE = LSBF = 0, SPITXDR must be written prior to the CCLK rising edge used to sample the LSB (bit 0) of the previous byte. See Figure 15.1. This timing requires the inclusion of at least one protocol dummy byte in all target SPI read operations.

Table 8.8. SPI Status

SPISR 0x5A										
Bit	7	6	5	4	3	2	1	0		
Name	TIP	(Rese	rved)	TRDY	RRDY	(Reserved)	ROE	MDF		
Default	0	_			0	_	0	0		
Access	R	_	_	R	R	_	R	R		

TIP

SPI Transmitting In Progress. Indicates the SPI port is actively transmitting/receiving data.

0: SPI Transmitting completed.

1: SPI Transmitting in progress.

TRDY

SPI Transmit Ready. Indicates the SPI transmit data register (SPITXDR) is empty. This bit is cleared by a write to SPITXDR. This bit is capable of generating an interrupt.

0: SPITXDR is not empty.

1: SPITXDR is empty.

RRDY

SPI Receive Ready. Indicates the receive data register (SPIRXDR) contains valid receive data. This bit is cleared by a read access to SPIRXDR. This bit is capable of generating an interrupt.

0: SPIRXDR does not contain data.

1: SPIRXDR contains valid receive data.

ROE

Receive Overrun Error. Indicates SPIRXDR receives new data before the previous data is read. The previous data is lost. This bit is capable of generating an interrupt.

0: Normal.

1: Receiver Overrun detected.

MDF

Mode Fault. Indicates the Target SPI chip select (spi_scsn) is driven low while SPICR2[MSTR]=1. This bit is cleared by any write to SPICR0, SPICR1 or SPICR2. This bit is capable of generating an interrupt.

0: Normal.

1: Mode Fault detected.

Table 8.9. SPI Receive Data Register

SPIRXDR	0x5E										
Bit	7	7 6 5 4 3 2 1 (
Name		SPI_Receive_Data[7:0]									
Default	0	0 0 0 0 0 0 0									
Access	R	R	R	R	R	R	R	R			

SPI_Receive_Data[7:0]

SPI Receive Data. This register holds the byte captured from the SPI bus. Bit 0 in this register is LSB and is received last when LSBF=0 or first when LSBF=1.

Table 8.10. SPI Interrupt Status

SPIIRQ								0x5C
Bit	7	6	5	4	3	2	1	0
Name		(Reserved)		IRQTRDY	IRQRRDY	(Reserved)	IRQROE	IRQMDF
Default				0	0	_	0	0
Access	_	_	_	R/W	R/W	_	R/W	R/W

IRQTRDY

Interrupt Status for SPI Transmit Ready. When enabled, indicates SPISR[TRDY] is asserted. Write a 1 to this bit to clear the interrupt.

1: SPI Transmit Ready Interrupt.

0: No interrupt.

IRQRRDY

Interrupt Status for SPI Receive Ready. When enabled, indicates SPISR[RRDY] is asserted. Write a 1 to this bit to clear the interrupt.

1: SPI Receive Ready Interrupt.

0: No interrupt.

IRQROE

Interrupt Status for Receive Overrun Error. When enabled, indicates ROE is asserted. Write a 1 to this bit to clear the interrupt.

1: Receive Overrun Error Interrupt.

0: No interrupt.

IRQMDF

Interrupt Status for Mode Fault. When enabled, indicates MDF is asserted. Write a 1 to this bit to clear the interrupt.

1: Mode Fault Interrupt.

0: No interrupt.

Table 8.11. SPI Interrupt Enable

SPIIRQEN 0x5										
Bit	7	6	5	4	3	2	1	0		
Name		(Reserved)		IRQTRDYEN	IRQRRDYEN	(Reserved)	IRQROEEN	IRQMDFEN		
Default				0	0	_	0	0		
Access	_	-	-	R/W	R/W	-	R/W	R/W		

IRQTRDYEN

Interrupt Enable for SPI Transmit Ready.

1: Interrupt generation enabled.

0: Interrupt generation disabled.

IRQRRDYEN

Interrupt Enable for SPI Receive Ready.

- 1: Interrupt generation enabled.
- 0: Interrupt generation disabled.

IRQROEEN

Interrupt Enable for Receive Overrun Error.

- 1: Interrupt generation enabled.
- 0: Interrupt generation disabled.

IRQMDFEN

Interrupt Enable for Mode Fault.

- 1: Interrupt generation enabled.
- 0: Interrupt generation disabled.

Figure 8.1 shows a flow diagram for controlling Controller SPI reads and writes initiated through the WISHBONE interface.

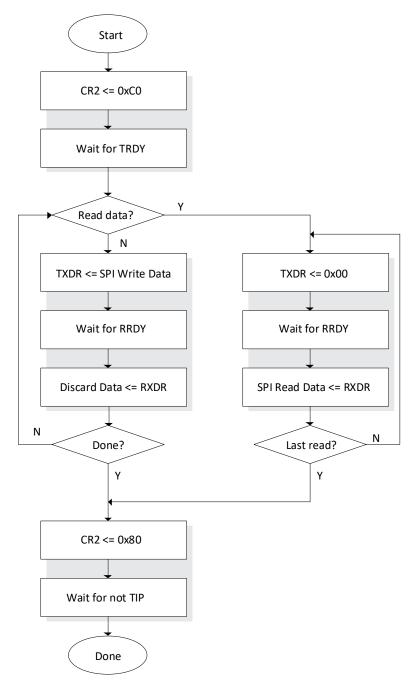


Figure 8.1. SPI Controller Read/Write Example (through WISHBONE) – Production Silicon

Note: Assumes CR2 register, MSCH = 1. The algorithm when MSCH = 0 is application dependent and not provided. See Figure 10.1 for more information.

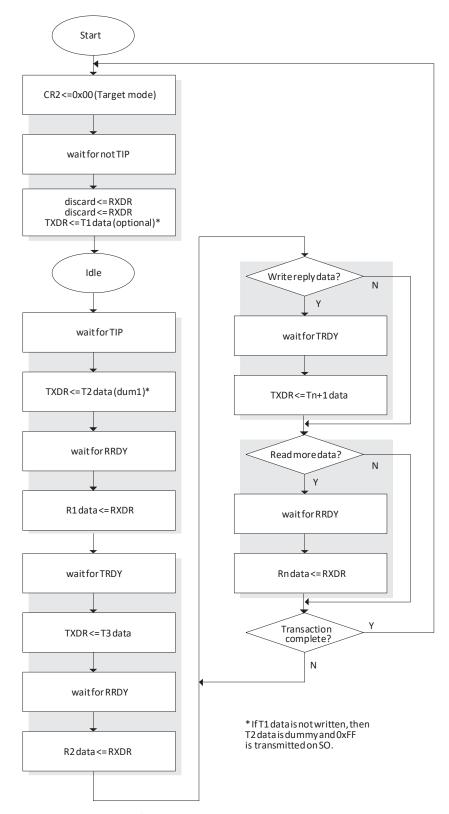


Figure 8.2. SPI Target Read/Write Example (through WISHBONE) – Production Silicon

Typical SPI Transactions

Figure 9.1, Figure 9.2, and Figure 9.3 illustrate typical User SPI bus protocol transactions that are supported by the Controller and Target flows shown in Figure 8.1, and Figure 8.2. Additionally, the figures below show typical sysConfig Configuration commands structures.

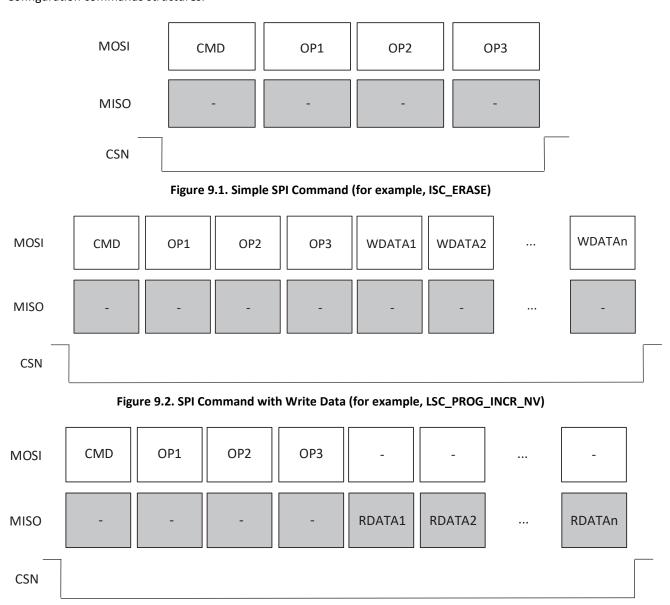


Figure 9.3. SPI Command with Read Data (for example, LSC_READ_STATUS)

10. SPI Functional Waveforms

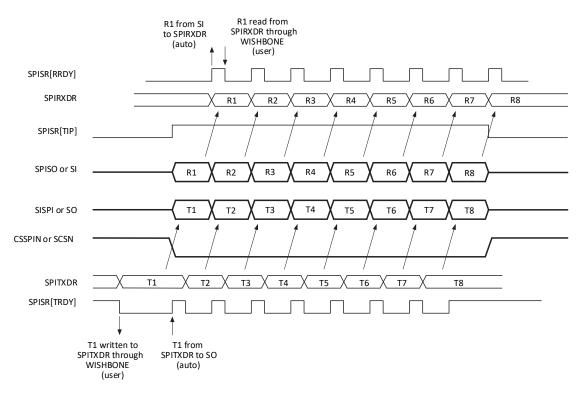


Figure 10.1. Fully Specified SPI Transaction (MachXO4 Device as SPI Controller or Target)

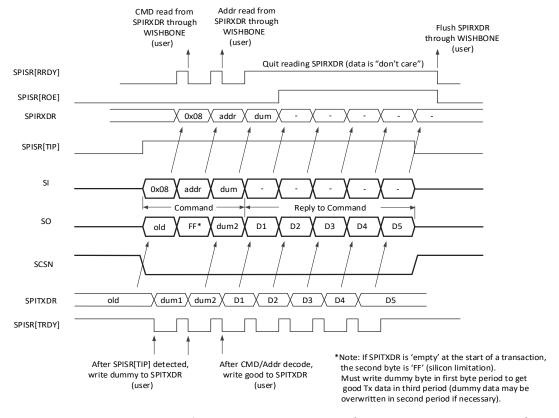


Figure 10.2. Minimally Specified SPI Transaction Example (MachXO4 Device as SPI Target)

45

11. SPI Timing Diagrams

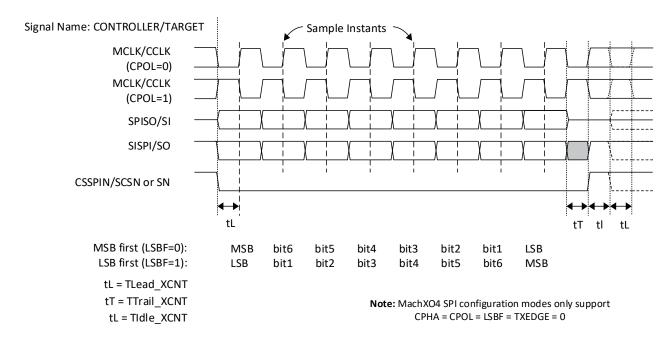


Figure 11.1. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)

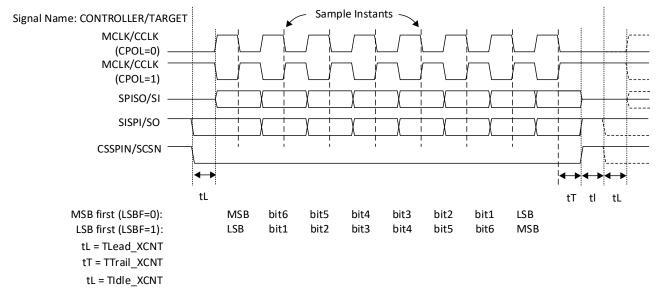


Figure 11.2. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)

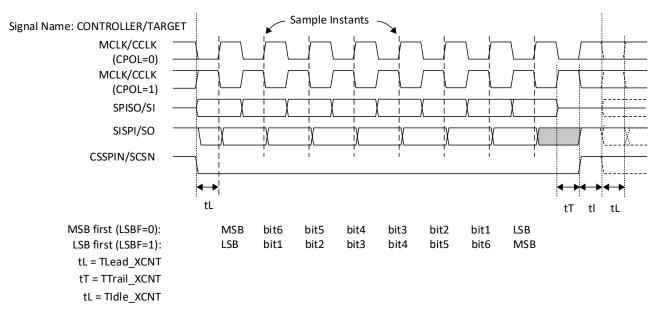


Figure 11.3. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)

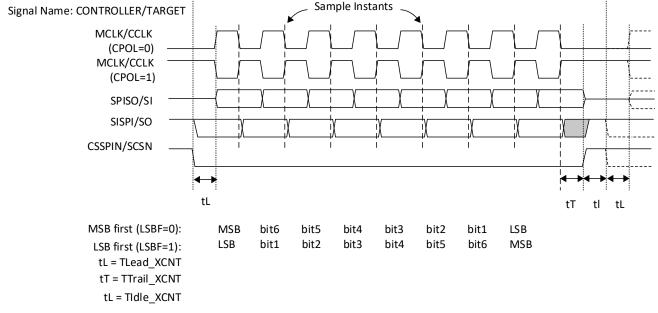


Figure 11.4. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)

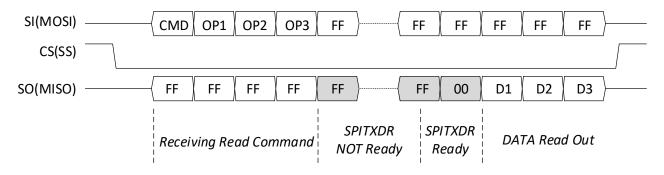


Figure 11.5. Target SPI Dummy Byte Response (SPICR2[SDBRE]) Timing

12. SPI Simulation Model

The SPI EFB Register Map translation to the MachXO4 EFB software simulation model is provided below.

Table 12.1. SPI Simulation Model

SPI Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
SPICR0	[7:0]	Control Register 0	0x54	Read/Write	spicr0[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
TIdle_XCNT[1:0]	[7:6]	_	_	_	spicr0[7:6]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
TTrail_XCNT[2:0]	[5:3]	_	_	_	spicr0[5:3]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
TLead_XCNT[2:0]	[2:0]	_	_	_	spicr0[2:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPICR1	[7:0]	Control Register 1	0x55	Read/Write	spicr1[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPE	7	_	_	_	spi_en	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
WKUPEN_USER	6	_	_	_	spi_wkup_usr	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
WKUPEN_CFG	5	_	_	_	spi_wkup_cfg	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
TXEDGE	4	_	_	_	spi_tx_edge	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPICR2	[7:0]	Control Register 2	0x56	Read/Write	spicr2[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
MSTR	7	_	_	_	spi_mstr	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
MCSH	6	_	_	_	spi_mcsh	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SDBRE	5	_	_	_	spi_srme	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
CPOL	2	_	_	_	spi_cpol	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
СРНА	1	_	_	_	spi_cpha	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
LSBF	0	_	_	_	spi_lsbf	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPIBR	[7:0]	Clock Pre- scale	0x57	Read/Write	spibr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
DIVIDER[5:0]	[5:0]	_	_	_	spibr[5:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPICSR	[7:0]	Controller Chip Select	0x58	Read/Write	spicsr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/

SPI Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
CSN_7	7	_	_	_	spicsr[7]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
CSN_6	6	_	_	_	spicsr[6]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
CSN_5	5	_	_	_	spicsr[5]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
CSN_4	4	_	_	_	spicsr[4]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
CSN_3	3	_	_	_	spicsr[3]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
CSN_2	2	_	_	_	spicsr[2]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
CSN_1	1	_	_	_	spicsr[1]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
CSN_0	0	_	_	_	spicsr[0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPITXDR	[7:0]	Transmit Data	0x59	Write	spitxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPI_Transmit_Data[7:0]	[7:0]	_	_	_	spitxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPISR	[7:0]	Status	0x5A	Read	spisr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
TIP	7	_	_	_	spi_tip_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
TRDY	4	_	_	_	spi_trdy	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
RRDY	3	_	_	_	spi_rrdy	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
ROE	1	_	_	_	spi_roe	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
MDF	0	_	_	_	spi_mdf	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPIRXDR	[7:0]	Receive Data	0x5B	Read	spirxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPI_Receive_Data[7:0]	[7:0]	_	_	_	spirxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/spi_port/
SPIIRQ	[7:0]	Interrupt Request	0x5C	Read/Write	{1'b0, 1'b0, 1'b0, spisr_irqsts_4, spisr_irqsts_3, spisr_irqsts_2, spisr_irqsts_1, spisr_irqsts_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRDY	4	_	_	_	spisr_irqsts_4	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQRRDY	3	_	_	_	spisr_irqsts_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQROE	1	_	_	_	spisr_irqsts_1	/efb_top/efb_pll_sci_inst/u_efb_sci/

SPI Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
IRQMDF	0	_	_	_	spisr_irqsts_0	/efb_top/efb_pll_sci_inst/u_efb_sci/
SPIIRQEN	[7:0]	Interrupt Request Enable	0x5D	Read/Write	{1'b0, 1'b0, 1'b0, spisr_irqena_4, spisr_irqena_3, spisr_irqena_2, spisr_irqena_1, spisr_irqena_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRDYEN	4	_	_	_	spisr_irqena_4	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQRRDYEN	3	_	_	_	spisr_irqena_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQROEEN	1	_	_	_	spisr_irqena_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQMDFEN	0	_	_	_	spisr_irqena_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

13. Hardened Timer/Counter PWM

The MachXO4 EFB contains a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit Timer/Counter module with independent output compare units and PWM support.

13.1. Timer/Counter Registers

The Timer/Counter communicates with the FPGA logic through the WISHBONE interface, by utilizing a set of control, status and data registers. Table 13.1 shows the register names and their functions. These registers are a subset of the EFB register map. Refer to the EFB register map for specific addresses of each register.

Table 13.1. Timer/Counter Registers

Timer/Counter Register Name	Register Function	Address	Access
TCCR0	Control Register 0	0x5E	Read/Write
TCCR1	Control Register 1	0x5F	Read/Write
TCTOPSET0	Set Top Counter Value [7:0]	0x60	Write
TCTOPSET1	Set Top Counter Value [15:8]	0x61	Write
TCOCRSET0	Set Compare Counter Value [7:0]	0x62	Write
TCOCRSET1	Set Compare Counter Value [15:8]	0x63	Write
TCCR2	Control Register 2	0x64	Read/Write
TCCNT0	Counter Value [7:0]	0x65	Read
TCCNT1	Counter Value [15:8]	0x66	Read
ТСТОРО	Current Top Counter Value [7:0]	0x67	Read
TCTOP1	Current Top Counter Value [15:8]	0x68	Read
TCOCR0	Current Compare Counter Value [7:0]	0x69	Read
TCOCR1	Current Compare Top Counter Value [15:8]	0x6A	Read
TCICR0	Current Capture Counter Value [7:0]	0x6B	Read
TCICR1	Current Capture Counter Value [15:8]	0x6C	Read
TCSR0	Status Register	0x6D	Read/Write
TCIRQ	Interrupt Request	0x6E	Read/Write
TCIRQEN	Interrupt Request Enable	0x6F	Read/Write

Note: Unless otherwise specified, all Reserved bits in writable registers shall be written 0.

Table 13.2. Timer/Counter Control

TCCR0 0x5E										
Bit	7	6	5	4	3	2	1	0		
Name	RSTEN	(Reserved)	ſ	PRESCALE[2:0]		CLKEDGE	CLKSEL	(Reserved)		
Default	0	0		0		0	0	0		
Access	R/W	_		R/W			R/W	R/W		

RSTFN

Enables the reset signal (tc_rstn) to enter the Timer/Counter core from the PLD logic.

- 1: External reset enabled
- 0: External reset disabled

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PRESCALE[2:0]

Used to divide the clock input to the Timer/Counter.

000: Static (clock disabled)

001: Divide by 1
010: Divide by 8
011: Divide by 64
100: Divide by 256
101: Divide by 1024
110: (Reserved setting)
111: (Reserved setting)

CLKEDGE

Used to select the edge of the input clock source. The Timer/Counter updates states on the edge of the input clock source.

0: Rising Edge1: Falling Edge

CLKSEL

Defines the source of the input clock.

0: Clock Tree

1: On-chip Oscillator

Table 13.3. Timer/Counter Control 1

TCCR1 0x										
Bit	7	6	5	4	3	2	1	0		
Name	(Reserved)	SOVFEN	ICEN	TSEL	OCM	OCM[1:0] TCM[1:0]		[1:0]		
Default	0	0	0	0	0 0)			
Access	_	R/W	R/W	R/W	R/W R/W		W			

SOVFEN

Enables the overflow flag to be used with the interrupt output signal. It is set when the Timer/Counter is standalone, with no WISHBONE interface.

0: Disabled

1: Enabled

Note: When this bit is set, other flags such as the OCRF and ICRF is not routed to the interrupt output signal.

ICEN

Enables the ability to perform a capture operation of the counter value. You can assert the *tc_ic* signal and load the counter value onto the TCICRO/1 registers. The captured value can serve as a timer stamp for a specific event.

0: Disabled

1: Enabled

TSEL

Enables the auto-load of the counter with the value from TCTOPSETO/1. When disabled, the value 0xFFFF is auto-loaded.

0: Disabled

1: Enabled

OCM[1:0]

Select the function of the output signal of the Timer/Counter. The available functions are Static, Toggle, Set/Clear, and Clear/Set.

All Timer/Counter modes:

00: The output is static low

In non-PWM modes:

01: Toggle on TOP match

In Fast PWM mode:

10: Clear on TOP match, Set on OCR match

11: Set on TOP match, Clear on OCR match

In Phase and Frequency Correct PWM mode:

10: Clear on OCR match when the counter is incrementing

Set on OCR match when counter is decrementing

11: Set on OCR match when the counter is incrementing

Clear on OCR match when the counter is decrementing

TCM[1:0]

Timer Counter Mode. Defines the mode of operation for the Timer/Counter.

00: Watchdog Timer Mode

01: Clear Timer on Compare Match Mode

10: Fast PWM Mode

11: Phase and Frequency Correct PWM Mode

Table 13.4. Timer/Counter Set Top Counter Value 0

TCTOPSET0	TCTOPSET0 0									
Bit	7	6	5	4	3	2	1	0		
Name		TCTOPSET[7:0]								
Default ¹	1	1 1 1 1 1 1 1								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

Table 13.5. Timer/Counter Set Top Counter Value 1

TCTOPSET1	1									
Bit	7	6	5	4	3	2	1	0		
Name		TCTOPSET[15:8]								
Default ¹	1	1 1 1 1 1 1 1								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

The value from TCTOPSET0/1 is loaded to the TCTOP0/1 registers once the counter has completed the current counting cycle. Refer to the Timer/Counter Modes of Operation section for usage details.

TCTOPSET0 register holds the lower eight bits [7:0] of the top value. TCTOPSET1 register holds the upper eight bits [15:8] of the top value.

^{1.} Hardware default value may be overridden by EFB component instantiation parameters.

^{1.} Hardware default value may be overridden by EFB component instantiation parameters.

Table 13.6. Timer/Counter Set Compare Counter Value 0

TCOCRSET0											
Bit	7	6	5	4	3	2	1	0			
Name		TCOCRSET[7:0]									
Default¹	1	1	1	1	1	1	1	1			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			

Note:

Table 13.7. Timer/Counter Set Compare Counter Value 1

TCOCRSET1	COCRSET1 0x									
Bit	7	6	5	4	3	2	1	0		
Name		TCOCRSET[15:8]								
Default ¹	1	1 1 1 1 1 1 1								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Note:

The value from TCOCRSETO/1 is loaded to the TCOCRO/1 registers once the counter has completed the current counting cycle. Refer to the Timer/Counter Modes of Operation section for usage details.

TCOCRSET0 register holds the lower 8-bit value [7:0] of the compare value. TCOCRSET1 register holds the upper 8-bit value[15:8] of the compare value.

Table 13.8. Timer/Counter Control 2

TCCR2	TCCR2 0										
Bit	7	6	5	4	3	2	1	0			
Name			(Reserved)	WBFORCE	WBRESETE	WBPAUSE					
Default	0	0	0	0	0	0	0	0			
Access	_	-	-	_	_	R/W	R/W	R/W			

WBFORCE

In non-PWM modes, forces the output of the counter, as if the counter value matches the compare (TCOCR) value or it matches the top value (TCTOP).

0: Disabled

1: Enabled

WBRESET

Reset the counter from the WISHBONE interface by writing a 1 to this bit. Manually reset to 0. The rising edge is detected in the WISHBONE clock domain, and the counter is reset synchronously on the next tc_clki. Due to the clock domain crossing, there is a one-clock uncertainty when the reset is effective. This bit has higher priority than WBPAUSE.

0: Disabled

1: Enabled

WBPAUSE

Pause the 16-bit counter

1: Pause

0: Normal

^{1.} Hardware default value may be overridden by EFB component instantiation parameters.

^{1.} Hardware default value may be overridden by EFB component instantiation parameters.

Table 13.9. Timer/Counter Counter Value 0

TCCNT0										
Bit	7	6	5	4	3	2	1	0		
Name		TCCNT[7:0]								
Default	0	0 0 0 0 0 0 0								
Access	R	R	R	R	R	R	R	R		

Table 13.10. Timer/Counter Counter Value 1

TCCNT1										
Bit	7	6	5	4	3	2	1	0		
Name		TCCNT[15:8]								
Default	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		

Registers TCCNT0 and TCCNT1 are 8-bit registers, which combined, hold the counter value. The WISHBONE host has read-only access to these registers.

TCCNT0 register holds the lower 8-bit value [7:0] of the counter value. TCCNT1 register holds the upper 8-bit value [15:8] of the counter value.

Table 13.11. Timer/Counter Current Top Counter Value 0

тсторо										
Bit	7	6	5	4	3	2	1	0		
Name		TCTOP[7:0]								
Default	1	1 1 1 1 1 1 1								
Access	R	R	R	R	R	R	R	R		

Table 13.12. Timer/Counter Current Top Counter Value 1

тсторо		-						0x68		
Bit	7	6	5	4	3	2	1	0		
Name		TCTOP[15:8]								
Default	1	1	1	1	1	1	1	1		
Access	R	R	R	R	R	R	R	R		

Registers TCTOPO and TCTOP1 are 8-bit registers, which combined, receive a 16-bit value from the TCTOP-SETO/1. The data stored in these registers represents the top value of the counter. The registers update once the counter has completed the current counting cycle. The WISHBONE host has read-only access to these registers. Refer to the Timer/Counter Modes of Operation section for usage details.

TCTOP0 register holds the lower 8-bit value [7:0] of the top value. TCTOP1 register holds the upper 8-bit value [15:8] of the top value.

Table 13.13. Timer/Counter Current Compare Counter Value 0

TCOCR0)									
Bit	7	6	5	4	3	2	1	0		
Name		TCOCR[7:0]								
Default	1	1	1	1	1	1	1	1		
Access	R	R	R	R	R	R	R	R		

Table 13.14. Timer/Counter Current Compare Counter Value 1

TCOCR1	Ox6A									
Bit	7	6	5	4	3	2	1	0		
Name		TCOCR[15:8]								
Default	1	1 1 1 1 1 1 1								
Access	R	R	R	R	R	R	R	R		

Registers TCOCR0 and TCOCR1 are 8-bit registers, which combined, receive a 16-bit value from the TCO-CRSETO/1. The data stored in these registers represents the compare value of the counter. The registers update once the counter has completed the current counting cycle. The WISHBONE host has read-only access to these registers. Refer to the Timer/Counter Modes of Operation section for usage details.

TCOCR0 register holds the lower 8-bit value [7:0] of the compare value. TCOCR1 register holds the upper 8-bit value [15:8] of the compare value.

Table 13.15. Timer/Counter Current Capture Counter Value 0

TCICR0								0x6B		
Bit	7	6	5	4	3	2	1	0		
Name		TCICR[7:0]								
Default	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		

Table 13.16. Timer/Counter Current Capture Counter Value 1

TCICR1								0x6C		
Bit	7	6	5	4	3	2	1	0		
Name		TCICR[15:8]								
Default	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		

Registers TCICRO and TCICR1 are 8-bit registers, and when combined, they can hold the counter value. The counter value is loaded onto these registers once a trigger event, tc_ic IP signal, is asserted. The capture value is commonly used as a timestamp for a specific system event. The WISHBONE host has read-only access to these registers.

TCICRO register holds the lower 8-bit value [7:0] of the counter value. TCICR1 register holds the upper 8-bit value [15:8] of the counter value.

Table 13.17. Timer/Counter Status Register

TCSR0 0x6D										
Bit	7	6	5	4	3	2	1	0		
Name		(Res	erved)		BTF	ICRF	OCRF	OVF		
Default					0	0	0	0		
Access	_	-	_	_	R	R	R	R		

BTF

Bottom Flag. Asserted when the counter reaches value zero. A write operation to this register clears this flag.

- 1: Counter reached zero value.
- 0: Counter has not reached zero.

ICRF

Capture Counter Flag. Asserted when the TC_IC input signal is asserted. The counter value is captured into the TCICRO/1 registers. A write operation to this register clears this flag. This bit is capable of generating an interrupt.

- 1: TC_IC signal asserted.
- 0: Normal.

OCRF

Compare Match Flag. Asserted when the counter matches the TCOCRO/1 register value. A write operation to this register clears this flag. This bit is capable of generating an interrupt.

- 1: Counter match.
- 0: Normal.

OVF

Overflow Flag. Asserted when the counter matches the TCTOP0/1 register value. A write operation to this register clears this flag. This bit is capable of generating an interrupt.

- 1: Counter match.
- 0: Normal.

Table 13.18. Timer/Counter Interrupt Status

TCIRQ	TCIRQ 0x6E										
Bit	7	6	5	2	1	0					
Name			(Reserved)	IRQICRF	IRQOCRF	IRQOVF					
Default	0	0	0	0	0	0					
Access	_	_	_	_	_	R/W	R/W	R/W			

IRQICRF

Interrupt Status for Capture Counter Flag. When enabled, indicates ICRF is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Capture Counter Flag Interrupt.
- 0: No interrupt.

IRQOCRF

Interrupt Status for Compare Match Flag. When enabled, indicates OCRF is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Compare Match Flag Interrupt.
- 0: No interrupt.

IRQOVF

Interrupt Status for Overflow Flag. When enabled, indicates OVF is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Overflow Flag Interrupt.
- 0: No interrupt.

Table 13.19. Timer/Counter Interrupt Enable

	- ,										
TCIRQEN	0x6F										
Bit	7	6	5	4	3	2	1	0			
Name			(Reserved)	IRQICRFEN	IRQOCRFEN	IRQOVFEN					
Default	0	0 0 0 0					0	0			
Access	_	_	_	_	_	R/W	R/W	R/W			

IRQICRFEN

Interrupt Enable for Capture Counter Flag.

- 1: Interrupt generation enabled.
- 0: Interrupt generation disabled.

IRQOCRFEN

Interrupt Enable for Compare Match Flag.

- 1: Interrupt generation enabled.
- 0: Interrupt generation disabled.

IRQOVFEN

Interrupt Enable for Overflow Flag.

- 1: Interrupt generation enabled.
- 0: Interrupt generation disabled.

14. Timer Counter Simulation Model

The Timer Counter EFB Register Map translation to the MachXO4 EFB software simulation model is provided below.

Table 14.1. Timer/Counter Simulation Mode

Timer/Counter Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
TCCR0	[7:0]	Control Register 0	0x5E	Read/Write	{tc_rstn_ena, tc_gsrn_dis, tc_cclk_sel[2:0], tc_sclk_sel[2:0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
RSTEN	7	_	-	_	tc_rstn_ena	/efb_top/efb_pll_sci_inst/u_efb_sci/
PRESCALE[2:0]	[5:3]	_	_	_	tc_cclk_sel[2:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
CLKEDGE	2	_	_	_	tc_sclk_sel[2]	/efb_top/efb_pll_sci_inst/u_efb_sci/
CLKSEL	1	_	_	_	tc_sclk_sel[1]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCR1	[7:0]	Control Register 1	0x5F	Read/Write	{1'b0, tc_ovf_ena, tc_ic_ena, tc_top_sel, tc_oc_mode[1:0], tc_mode[1:0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
SOVFEN	6	_	-	_	tc_ivf_ena	/efb_top/efb_pll_sci_inst/u_efb_sci/
ICEN	5	_	-	_	tc_ic_ena	/efb_top/efb_pll_sci_inst/u_efb_sci/
TSEL	4	_	-	_	tc_top_sel	/efb_top/efb_pll_sci_inst/u_efb_sci/
OCM[1:0]	[3:2]	_	_	_	tc_oc_mode[1:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCM[1:0]	[1:0]	_	-	_	tc_mode[1:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET0	[7:0]	Set Top Counter Value [7:0]	0x60	Write	{tc_top_set[7], tc_top_set[6], tc_top_set[5], tc_top_set[4], tc_top_set[3], tc_top_set[2], tc_top_set[1], tc_top_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET[7:0]	[7:0]	_	-	_	{tc_top_set[7], tc_top_set[6], tc_top_set[5], tc_top_set[4],	/efb_top/efb_pll_sci_inst/u_efb_sci/

Timer/Counter Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
					tc_top_set[3], tc_top_set[2], tc_top_set[1], tc_top_set[0]}	
TCTOPSET1	[7:0]	Set Top Counter Value [15:8]	0x61	Write	{tc_top_set[15], tc_top_set[14], tc_top_set[13], tc_top_set[12], tc_top_set[11], tc_top_set[10], tc_top_set[9], tc_top_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET[15:8]	[7:0]	_	_	_	{tc_top_set[15], tc_top_set[14], tc_top_set[13], tc_top_set[12], tc_top_set[11], tc_top_set[10], tc_top_set[9], tc_top_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET0	[7:0]	Set Compare Counter Value [7:0]	0x62	Write	{tc_ocr_set[7], tc_ocr_set[6], tc_ocr_set[5], tc_ocr_set[4], tc_ocr_set[3], tc_ocr_set[2], tc_ocr_set[1], tc_ocr_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET[7:0]	[7:0]	_	_	_	{tc_ocr_set[7], tc_ocr_set[6], tc_ocr_set[5], tc_ocr_set[4], tc_ocr_set[3], tc_ocr_set[2], tc_ocr_set[1], tc_ocr_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET1	[7:0]	Set Compare Counter Value [15:8]	0x63	Write	{tc_ocr_set[15], tc_ocr_set[14],	/efb_top/efb_pll_sci_inst/u_efb_sci/

Timer/Counter Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
					tc_ocr_set[13], tc_ocr_set[12], tc_ocr_set[11], tc_ocr_set[10], tc_ocr_set[9], tc_ocr_set[8]}	
TCOCRSET[15:8]	[7:0]	_	-	_	{tc_ocr_set[15], tc_ocr_set[14], tc_ocr_set[13], tc_ocr_set[12], tc_ocr_set[11], tc_ocr_set[10], tc_ocr_set[9], tc_ocr_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCR2	[7:0]	Control Register 2	0x64	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_oc_force, tc_cnt_reset, tc_cnt_pause}	/efb_top/efb_pll_sci_inst/u_efb_sci/
WBFORCE	2	_	-	_	tc_oc_force	/efb_top/efb_pll_sci_inst/u_efb_sci/
WBRESET	1	_	_	_	tc_cnt_reset	/efb_top/efb_pll_sci_inst/u_efb_sci/
WBPAUSE	0	_	_	_	tc_cnt_pause	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT0	[7:0]	Counter Value [7:0]	0x65	Read	tc_cnt_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT[7:0]	[7:0]	_	_	_	tc_cnt_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT1	[7:0]	Counter Value [15:8]	0x66	Read	tc_cnt_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT[15:8]	[7:0]	_	_	_	tc_cnt_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
ТСТОРО	[7:0]	Current Top Counter Value [7:0]	0x67	Read	tc_top_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOP[7:0]	[7:0]	_	-	_	tc_top_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOP1	[7:0]	Current Top Counter Value [15:8]	0x68	Read	tc_top_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOP[15:8]	[7:0]	_	_	_	tc_top_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR0	[7:0]	Current Compare Counter Value	0x69	Read	tc_ocr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/

Timer/Counter Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
TCOCR[7:0]	[7:0]	_	_	_	tc_ocr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR1	[7:0]	Current Compare Top Counter Value [15:8]	0x6A	Read	tc_ocr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR[15:8]	[7:0]	_	_	_	tc_ocr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR0	[7:0]	Current Capture Counter Value	0x6B	Read	tc_icr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR[7:0]	[7:0]	_	_	_	tc_icr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR1	[7:0]	Current Capture Counter Value	0x6C	Read	tc_icr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR[15:8]	[7:0]	_	_	_	tc_icr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCSR0	[7:0]	Status Register	0x6D	Read	{1'b0, 1'b0, 1'b0, 1'b0, tc_btf_sts, tc_icrf_sts, tc_ocrf_sts, tc_ovf_sts}	/efb_top/efb_pll_sci_inst/u_efb_sci/
BTF	3	_	_	_	tc_btf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
ICRF	2	_	_	_	tc_icrf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
OCRF	1	_	_	_	tc_ocrf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
OVF	0	_	_	_	tc_ovf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCIRQ	[7:0]	Interrupt Request	0x6E	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_icrf_irqsts, tc_ocrf_irqsts, tc_ovf_irqsts}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQICRF	2	_	_	_	tc_icrf_irqsts	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOCRF	1	_	_	_	tc_ocrf_irqsts	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOVF	0	_	_	_	tc_ovf_irqsts	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCIRQEN	[7:0]	Interrupt Request Enable	0x6F	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_icrf_irqena, tc_ocrf_irqena, tc_ovf_irqena}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQICRFEN	2	_	_	_	tc_icrf_irqena	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOCRFEN	1	_	_	_	tc_ocrf_irqena	/efb_top/efb_pll_sci_inst/u_efb_sci/

Timer/Counter Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
IRQOVFEN	0	_	_	_	tc_ovf_irqena	/efb_top/efb_pll_sci_inst/u_efb_sci/

15. Flash Access

The Flash Logic interface can be accessed using the JTAG, SPI, I2C, or WISHBONE interfaces. The MachXO4 Flash consists of three sectors:

- Configuration Flash (includes USERCODE)
- UFM
- Feature Row

The Flash is organized in pages. The Flash is not byte addressable. Each page has 128 bits (16 bytes).

15.1. Flash Access Ports

The Flash can be accessed through the JTAG port (compliant with the IEEE 1149.1 and IEEE 1532 specifications), external Target SPI port and external I2C Primary port and the internal WISHBONE interface of the EFB module. Figure 15.1 illustrates the interfaces to the Flash sectors.

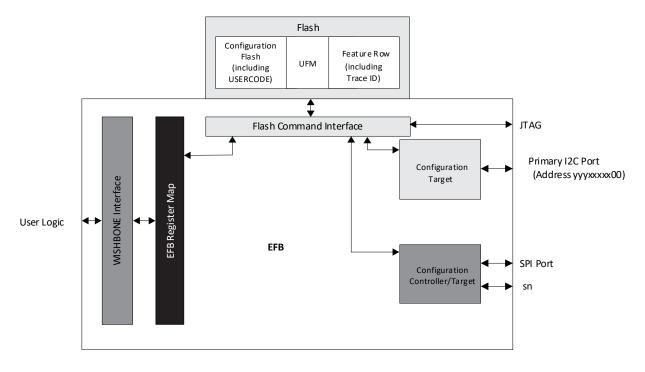


Figure 15.1. Interfaces to the Flash Sectors

The configuration logic arbitrates access from the interfaces according to the following priority. When higher priority ports are enabled, Flash access by lower priority ports is blocked.

- JTAG Port
- Target SPI Port
- I2C Primary Port
- WISHBONE Target Interface

Note: Enabling Flash Interface using Enable Configuration Interface command 0x74 Transparent Mode temporarily disables certain features of the device including:

- Power Controller
- GSR
- Hardened User SPI port
- Hardened User Primary I2C port

Functionality is restored after the Flash Interface is disabled using Disable Configuration Interface command 0x26 followed by Bypass command 0xFF.

15.2. Flash Access through WISHBONE Target Interface

The WISHBONE Target interface of the EFB module allows you to access the Flash directly from the FPGA core logic. The WISHBONE bus signals, described earlier in this document, are utilized by a WISHBONE host that you can implement using the general purpose FPGA resources.

The WISHBONE Interface communicates to the Configuration Logic through a set of data, control and status registers. Table 15.1 shows the register names and their functions. These registers are a subset of the EFB register map. Refer to the EFB register map for specific addresses of each register.

Table 15.1. WISHBONE to Flash Logic Registers

WISHBONE to CFG Register Name	Register Function	Address	Access
CFGCR	Control	0x70	Read/Write
CFGTXDR	Transmit Data	0x71	Write
CFGSR	Status	0x72	Read
CFGRXDR	Receive Data	0x73	Read
CFGIRQ	Interrupt Request	0x74	Read/Write
CFGIRQEN	Interrupt Request	0x75	Read/Write

Note: Unless otherwise specified, all reserved bits in writable registers shall be written 0.

Table 15.2. Flash Control

CFGCR								0x70
Bit	7	6	5	4	3	2	1	0
Name	WBCE	RSTE			(Rese	rved)		
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	_	_	_	-	_	-

WBCE

WISHBONE Connection Enable. Enables the WISHBONE to establish the read/write connection to the Flash logic. This bit must be set prior to executing any command through the WISHBONE port. Likewise, this bit must be cleared to terminate the command. See the Command and Data Transfers to Flash Space section for more information on framing WISHBONE commands.

1: Enabled

0: Disabled

RSTE

WISHBONE Connection Reset. Resets the input/output FIFO logic. The reset logic is level sensitive. After setting this bit to 1, it must be cleared to 0 for normal operation.

1: Reset

0: Normal operation

Table 15.3. Flash Transmit Data

Table 1919 Hadi Hallottie 9444								
CFGTXDR	0x71							
Bit	7	6	5	4	3	2	1	0
Name	CFG_Transmit_Data[7:0]							
Default	0	0	0	0	0	0	0	0
Access	W	W	W	W	W	W	W	W

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. FPGA-TN-02404-1.0

CFG_Transmit_Data[7:0]

CFG Transmit Data. This register holds the byte to be written to the Flash logic. Bit 0 is LSB.

Table 15.4. Flash Status

CFGSR 0x72								0x72
Bit	7	6	5	4	3	2	1	0
Name	WBCACT	(Reserved)	TXFE	TXFF	RXFE	RXFF	SSPIACT	12CACT
Default	0	0	0	0	0	0	0	0
Access	R	_	R	R	R	R	R	R

WBCACT

WISHBONE Bus to Configuration Logic Active. Indicates that the WISHBONE to configuration interface is active and the connection is established.

1: WISHBONE Active

0: WISHBONE not Active

TXFE

Transmit FIFO Empty. Indicates that the Transmit Data register is empty. This bit is capable of generating an interrupt.

1: FIFO empty

0: FIFO not empty

TXFF

Transmit FIFO Full. Indicates that the Transmit Data register is full. This bit is capable of generating an interrupt.

1: FIFO full

0: FIFO not full

RXFE

Receive FIFO Empty. Indicates that the Receive Data register is empty. This bit is capable of generating an interrupt.

1: FIFO empty

0: FIFO not empty

RXFF

Receive FIFO Full. Indicates that the Transmit Data register is full. This bit is capable of generating an interrupt.

1: FIFO full

0: FIFO not full

SSPIACT

Target SPI Active. Indicates the Target SPI port has started actively communicating with the Configuration Logic while WBCE is enabled. This port has priority over the I2C and WISHBONE ports. It pre-empts any existing, and prohibits any new, lower priority transaction. This bit is capable of generating an interrupt.

1: Target SPI port active

0: Target SPI port not active

I2CACT

I2C Active. Indicates the I2C port has started actively communicating with the Configuration Logic while WBCE is enabled. This port has priority over the WISHBONE ports. It pre-empts any existing, and prohibits any new WISHBONE transaction. This bit is capable of generating an interrupt.

1: I2C port active

0: I2C port not active

Table 15.5. Flash Receive Data

CFGRXDR	0x73							
Bit	7	6	5	4	3	2	1	0
Name	CFG_Receive_Data[7:0]							
Default	0	0 0 0 0 0 0 0						0
Access	R	R	R	R	R	R	R	R

CFG_Receive_Data[7:0]

CFG Receive Data. This register holds the byte read from the Flash logic. Bit 0 in this register is LSB.

Table 15.6. Flash Interrupt Status

CFGIRQ								0x74
Bit	7	6	5	4	3	2	1	0
Name	(Rese	erved)	IRQTXFE	IRQTXFF	IRQRXFE	IRQRXFF	IRQSSPIACT	IRQI2CACT
Default	0	0	0	0	0	0	0	0
Access	_	_	R/W	R/W	R/W	R/W	R/W	R/W

IRQTXFE

Interrupt Status for Transmit FIFO Empty. When enabled, indicates TXFE is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Transmit FIFO Empty Interrupt
- 0: No interrupt

IRQTXFF

Interrupt Status for Transmit FIFO Full. When enabled, indicates TXFF is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Transmit FIFO Full Interrupt
- 0: No interrupt

IRORXFE

Interrupt Status for Receive FIFO Empty. When enabled, indicates RXFE is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Receive FIFO Empty Interrupt
- 0: No interrupt

IRQRXFF

Interrupt Status for Receive FIFO Full. When enabled, indicates RXFF is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Receive FIFO Full Interrupt
- 0: No interrupt

IRQSSPIACT

Interrupt Status for Target SPI Active. When enabled, indicates SSPIACT is asserted. Write a 1 to this bit to clear the interrupt.

- 1: Target SPI Active Interrupt
- 0: No interrupt

IRQI2CACT

Interrupt Status for I2C Active. When enabled, indicates I2CACT is asserted. Write a 1 to this bit to clear the interrupt.

1: I2C Active Interrupt

0: No interrupt

Table 15.7. Flash Interrupt Enable

CFGIRQEN 0x75								
Bit	7	6	5	4	3	2	1	0
Name	(Rese	rved)	IRQTXFEEN	IRQTXFFEN	IRQRXFEEN	IRQRXFFEN	IRQSSPIACTEN	IRQI2CACTEN
Default	0	0	0	0	0	0	0	0
Access	_	-	R/W	R/W	R/W	R/W	R/W	R/W

IRQTXFEEN

Interrupt Enable for Transmit FIFO Empty.

1: Interrupt generation enabled.

0: Interrupt generation disabled.

IRQTXFFEN

Interrupt Enable for Transmit FIFO Full.

1: Interrupt generation enabled.

0: Interrupt generation disabled.

IRQRXFEEN

Interrupt Enable for Receive FIFO Empty.

1: Interrupt generation enabled.

0: Interrupt generation disabled.

IRQRXFFEN

Interrupt Enable for Receive FIFO Full.

1: Interrupt generation enabled.

0: Interrupt generation disabled.

IRQSSPIACTEN

Interrupt Enable for Target SPI Active.

1: Interrupt generation enabled.

0: Interrupt generation disabled.

IRQI2CACTEN

Interrupt Enable for I2C Active.

1: Interrupt generation enabled.

0: Interrupt generation disabled.

Table 15.8. Unused (Reserved) Register

UNUSED	USED 0x70							
Bit	7	6	5	4	3	2	1	0
Name		(Reserved)						
Default	0	0 0 0 0 0 0 0					0	
Access	_	_	_	_	_	_	_	_

Table 15.9. EFB Interrupt Source

EFBIRQ 0x7								0x77
Bit	7	6	5	4	3	2	1	0
Name	(Reserved)			CFG_INT	TC_INT	SPI_INT	I2C2_INT	I2C1_INT
Default	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

CFG_INT

Flash Interrupt Source. Indicates EFB interrupt source is from the Flash Block. Use CFGIRQ for further source resolution.

- 1: A bit is set in register CFGIRQ.
- 0: No interrupt.

TC_INT

Timer/Counter Interrupt Source. Indicates EFB interrupt source is from the Timer/Counter Block. Use TCIRQ for further source resolution.

- 1: A bit is set in register TCIRQ.
- 0: No interrupt.

SPI_INT

SPI Interrupt Source. Indicates EFB interrupt source is from the SPI Block. Use SPI-IRQ for further source resolution.

- 1: A bit is set in register SPIIRQ.
- 0: No interrupt.

I2C2_INT

I2C2 Interrupt Source. Indicates EFB interrupt source is from the Secondary I2C Block. Use I2C_2_IRQ for further source resolution.

- 1: A bit is set in register I2C 2 IRQ.
- 0: No interrupt.

I2C1_INT

I2C1 Interrupt Source. Indicates EFB interrupt source is from the Primary I2C Block. Use I2C_1_ IRQ for further source resolution.

- 1: A bit is set in register I2C_1_IRQ.
- 0: No interrupt.

15.3. Command and Data Transfers to Flash Space

The command and data transferred to the Flash are identical for all the access ports, regardless of their different physical interfaces. The Flash is organized in pages. Therefore, you address a specific page for Read or Write operations to that page. Each page has 128 bits (16 bytes). The transfers are based on a set of instructions and page addresses. The Flash is composed of three sectors, Configuration Flash (includes USERCODE), UFM, Feature Row. The Erase operations are sector based.

15.4. Command Summary by Application

Table 15.10. UFM Commands

Command Name	Command MSB LSB	SVF Command Name	Description
Read Status Register	0x3C	LSC_READ_STATUS	Read the 4-byte Configuration Status Register.
Check Busy Flag	0xF0	LSC_CHECK_BUSY	Read the Configuration Busy Flag status.
Bypass	0xFF	ISC_NOOP	Null operation.
Enable Configuration Interface (Transparent Mode)	0x74	ISC_ENABLE_X	Enable Transparent UFM access – All user I/Os (except the hardened user SPI and primary user I2C ports) are governed by the user logic, the device remains in User mode. (The subsequent commands in this table require the interface to be enabled.)
Enable Configuration Interface (Offline Mode)	0xC6	ISC_ENABLE	Enable Offline UFM access – All user I/O (except persisted sysCONFIG ports) are tri-stated. User logic ceases to function, UFM remains accessible, and the device enters Offline access mode. (The subsequent commands in this table require the interface to be enabled.)
Disable Configuration Interface	0x26	ISC_DISABLE	Disable the configuration (UFM) access.
Set Address	0xB4	LSC_WRITE_ADDRESS	Set the UFM sector 14-bit Address Register.
Reset UFM Address	0x47	LSC_INIT_ADDR_UFM	Reset the address to point to Sector 1, Page 0 of the UFM.
Read UFM	0xCA	LSC_READ_TAG	Read the UFM data. Operand specifies the number of pages to read. Address Register is post-incremented.
Erase UFM	0xCB	LSC_ERASE_TAG	Erase the UFM sector only.
Program UFM Page	0xC9	LSC_PROG_TAG	Write one page of data to the UFM. Address Register is post-incremented.

Table 15.11. Configuration Flash (Sector 0) Commands

Command Name	Command MSB LSB	SVF Command Name	Description	
Read Device ID	0xE0	IDCODE_PUB	Read the 4-byte Device ID (0x01 2b 20 43).	
Read USERCODE	0xC0	USERCODE	Read the 32-bit USERCODE.	
Read Status Register	0x3C	LSC_READ_STATUS	Read the 4-byte Configuration Status Register.	
Read Busy Flag	0xF0	LSC_CHECK_BUSY	Read the Configuration Busy Flag status.	
Refresh ¹	0x79	LSC_REFRESH	Launch boot sequence (same as toggling PRO-GRAMN pin).	
STANDBY	0x7D	LSC_DEVICE_CTRL	Triggers the Power Controller to enter or wake from standby mode.	
Bypass	0xFF	ISC_NOOP	Null operation.	
Enable Configuration Interface (Transparent Mode)	0x74	ISC_ENABLE_X	Enable Transparent Configuration Flash access – All user I/O (except the hardened user SPI and primary user I2C ports) are governed by the user logic, the device remains in User mode. (The subsequent commands in this table require the interface to be enabled.)	
Enable Configuration Interface (Offline Mode)	0xC6	ISC_ENABLE	Enable Offline Configuration Flash access – All user I/O (except persisted sysCONFIG ports) are tri-stated. User logic ceases to function, and the device enters Offline access mode. (The subsequent commands in this table require the interface to be enabled.)	
Disable Configuration Interface	0x26	ISC_DISABLE	Exit access mode.	
Set Configuration Flash Address	0xB4	LSC_WRITE_ADDRESS	Set the Configuration Flash 14-bit Page Address.	
Verify Device ID	0xE2	VERIFY_ID	Verify device ID with 32-bit input, set Fail flag if mismatched.	
Reset Configuration Flash Address	0x46	LSC_INIT_ADDRESS	Reset the address to point to Sector 0, Page 0 of the Configuration Flash.	
Read Flash	0x73	LSC_READ_INCR_NV	Read the Flash data. Operand specifies number of the pages to read. Address Register is post-incremented.	
Erase	0x0E	ISC_ERASE	Erase the Config Flash, FEATURE Row, FEABITs, Done bit, Security bits and USERCODE.	
Program Page	0x70	LSC_PROG_INCR_NV	Write one page of data to the Flash. Address Register is post-incremented.	
Program DONE	0x5E	ISC_PROGRAM_DONE	Program the Done bit.	
Program SECURITY	0xCE	ISC_PROGRAM_SECURITY	Program the Security bit (Secures CFG Flash sector).	
Program SECURITY PLUS	0xCF	ISC_PROGRAM_SECPLUS	Program the Security Plus bit (Secures CFG, Flash and UFM Sectors). Note: SECURITY and SECURITY PLUS commands are mutually exclusive.	
Program USERCODE	0xC2	ISC_PROGRAM_USERCODE	Program 32-bit USERCODE.	
Read Feature Row	0xE7	LSC_READ_FEATURE	Read Feature Row.	
Program Feature Row	0xE4	LSC_PROG_FEATURE	Program Feature Row.	
Read FEABITS	0xFB	LSC_READ_FEABITS	Read FEA bits.	
Program FEABITs	0xF8	LSC PROG FEABITS	Program the FEA bits.	

Table 15.12. Non-Volatile Register (NVR) Commands

Command Name	Command MSB LSB	SVF Command Name	Description
Read Trace ID code	0x19	UIDCODE_PUB	Read 64-bit TraceID.

When using the WISHBONE bus interface, the commands, operand, and data are written to the CFGTXDR Register. The Target SPI or I2C interface shift the most significant bit (MSB) first into the MachXO4 device. This is required only when communicating with the configuration logic inside the MachXO4 device.

In order to perform a Write, Read, or Erase operation with the Flash, it is required that the interface is enabled using Command 0x74. Affected commands are noted in the Command Description as EN Required. Once the modification operations are completed, the interface can be disabled using commands 0x26 and 0xFF.

15.5. Command Descriptions by Command Code

Table 15.13. Erase Flash (0x0E)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	x	1	Υ	0E	See below	_	_	-

Operand 0000 ucfs 0000 0000 0000 0000(binary)

where: **Erase UFM sector**

No action

1: Erase

Erase CFG Flash sector (Config Flash, DONE, security bits, USERCODE) c:

No action

1: Erase

Erase Feature sector (Target I2C address, sysCONFIG port persistence, Boot mode,

etc.)

0: No action

1: Erase

Erase SRAM

0: No action

Erase 1:

Poll the BUSY bit (or wait, see Table 19.1) after issuing this command for erasure to complete Notes:

before issuing a subsequent command other than Read Status or Check Busy.

Erased condition for Flash bits = 0.

Examples: 0x0E 04 00 00

Erase CFG Flash sector.

0x0E 08 00 00 Erase UFM sector. 0x0E 0C 00 00

Erase UFM and CFG Flash sectors.

Table 15.14. Read TraceID Code (0x19)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	_	х	N	19	00 00 00	R	8B	_

Example: 0x19 00 00 00

Read 8-byte TraceID

Notes: First byte read is user portion. Next seven bytes are unique to each silicon die.

Table 15.15. Disable Configuration Interface (0x26)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
x	x	_	_	26	00 00	_	_	_

Example: 0x26 00 00

Disable Flash interface for change access.

Notes: Must have only two operands.

The interface cannot be disabled while the Configuration Status Register Busy bit is asserted. After commands (for example, Erase, Program) verify Busy is clear before issuing the Disable

command.

Follow this command with Command 0xFF (BYPASS) to complete the Disable operation. The BYPASS command is required to restore Power Controller, GSR, Hardened User SPI, and I2C port

operation.

SRAM must be erased before exiting Offline (0xC6) Mode.

Table 15.16. Read Status Register (0x3C)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
х	х	_	N	3C	00 00 00	R	4B	xxxx IxEE Exxx xxxx xxFB xxCD xxxx xxxx

Data Format: Most significant byte of SR is received first, LSB last.

D bit 8 Flash or SRAM Done Flag

When C = 0 SRAM Done bit has been programmed

D = 1 Successful Flash to SRAM transfer D = 0 Failure in the Flash to SRAM transfer

When C=1 Flash Done bit has been programed

D = 1 Programmed

D = 0 Not Programmed

C bit 9 Enable Configuration Interface (1=Enable, 0=Disable)

B bit 12: Busy Flag (1 = busy)

F bit 13: Fail Flag (1 = operation failed)

I=0 Device verified correct, I=1 Device failed to verify

EEE bits[25:23]: Configuration Check Status

000: No Error
 001: ID ERR
 010: CMD ERR
 011: CRC ERR
 100: Preamble ERR
 101: Abort ERR

110: Overflow ERR

111: SDM EOF

(all other bits reserved)

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02404-1.0

Usage: Check the BUSY bit after all Enable, Erase, or Program operations.

Notes: Wait at least 1 µs after power-up or asserting wb_rst_i before accessing the EFB.

Example: 0x3C 00 00 00

Read 4-byte Status Register for example, 0x00 00 20 00 (fail flag set).

Table 15.17. Reset CFG Address (0x46)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	46	00 00 00	1	1	_

Example: 0x46 00 00 00

Set Address register to Configuration Sector 0, page 0.

Table 15.18. Reset UFM Address (0x47)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
X	_	_	Υ	47	00 00 00	-	1	_

Example: 0x47 00 00 00

Set Address register to Flash Sector 1, page 0.

Table 15.19. Program DONE (0x5E)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	_	Υ	5E	00 00 00	1	1	_

Example: 0x5E 00 00 00

Set the DONE bit.

Notes: Poll the BUSY bit (or wait 200 µs) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

Table 15.20. Program Configuration Flash (0x70)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
1	X	_	Y	70	00 00 00	W	16B	16 bytes Flash write data

Example: 0x70 00 00 00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Write one page of data, pointed to by the Address Register.

Notes: 16 data bytes must be written following the command and operand bytes to ensure proper data

alignment. The Address Register is auto-incremented following the page write.

Use 0x0E to erase CFG Flash sector prior to executing this command.

Poll the BUSY bit (or wait 200 μs) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

Table 15.21. Read Configuration Flash (0x73) (SPI)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	73	*(below)	R	**(below)	***(below)

Notes: This applies when Configuration Flash is read through SPI.

*Operand: 0001 0000 00pp pppp pppp pppp (binary)

pp..pp: num_pages Number of CFG Flash pages to read when num_pages = 1

Number of CFG Flash pages to read +1 when num pages > 1

**Data Size (num_pages * 16) bytes

Notes: Read CFG Flash may be aborted at any time. Any data remaining in the read FIFO will be

discarded. Any read data beyond the prescribed read size will be indeterminate. The Address

Register is auto-incremented after each page read.

***Examples: 0x73 10 00 01

0-byte dummy followed by one page of CFG Flash data (16 bytes total).

0x73 10 00 04

Read 1-page dummy followed by three pages of CFG Flash data (four pages total).

Table 15.22. Read Configuration Flash (0x73) (I2C/SPI)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	0x73	*(below)	R	**(below)	***(below)

Notes: This applies when Configuration Flash is read through I2C or SPI.

*Operand: 0000 0000 00pp pppp pppp (binary)

pp..pp: num_pages Number of CFG Flash pages to read when num_pages = 1

Number of CFG Flash pages to read +1 when num_pages > 1

**Data Size (num_pages * 16) bytes when num_pages=1

32 bytes + (num_pages) * (16 + 4) bytes when num_pages>1

Notes: Read CFG Flash may be aborted at any time. Any data remaining in the read FIFO will be

discarded. Any read data beyond the prescribed read size will be indeterminate. The Address

Register is auto-incremented after each page read.

***Examples: 0x73 00 00 01

0-byte dummy followed by one page CFG Flash data (16 bytes total)

0x73 00 00 04

Read 2-pages dummy, followed by three sets [1 page CFG Flash data, followed by four bytes

dummy] (five pages and 12 dummy bytes total).

Table 15.23. Read Configuration Flash (0x73) (WISHBONE)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	_	Υ	73	*(below)	R	**(below)	***(below)

Notes: This applies when Configuration Flash is read through WISHBONE.

*Operand: 0001 0000 00pp pppp pppp pppp (binary), or

0000 0000 00pp pppp pppp pppp (binary)

Number of CFG Flash pages to read +1 when 1 < num_pages \leq 12

76

Set to 0x3FFF when num_pages > 12

**Data Size (num_pages * 16) bytes when num_pages=1

32 bytes + (num_pages) * (16 + 4) bytes when num_pages>1

Notes: When reading more than 12 pages, the num pages argument is intentionally oversized. It is not

> necessary to read the extra pages. Read CFG Flash may be aborted at any time. Any data remaining in the read FIFO is discarded. Any read data beyond the prescribed read size is

indeterminate. The Address Register is auto-incremented after each page read.

***Examples: 0x73 00 00 01

0-byte dummy followed by one page CFG Flash data (16 bytes in total).

Read one page dummy followed by three pages of CFG data (four pages in total).

0x73 00 00 04

Read two pages dummy, followed by three sets [one page CFG Flash data, followed by four

bytes dummy] (five pages and 12 dummy bytes total).

The maximum speed which one page of data (num_page=1) can be read using WISHBONE and Notes:

no wait state is 16.6 MHz. Faster WISHBONE clock speeds are supported by inserting WB wait states to observe the retrieval delay timing requirement. For more information, refer to the Reading Flash Pages section of the MachXO4 Programming and Configuration User Guide (FPGA-

TN-02393).

Table 15.24. Enable Configuration Interface (Transparent) (0x74)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	Х	_	_	74	08 00 00 or 08 00	-	_	_

Notes: The I2C interface uses only two operands all other interfaces use three operands. This

command is required to enable modification of the UFM, configuration CFG Flash, or non-

volatile registers (NVR). Terminate this command with the command

0x26 followed by the command 0xFF.

Exercising this command temporarily disables certain features of the device, notably GSR, user SPI port, primary user I2C port and Power Controller. These features are restored when the

command is terminated.

Poll the BUSY bit (or wait 5 µs) after issuing this command for the Flash pumps to fully charge.

0x74 08 00 00 Examples:

Enable Flash interface for change access through a non- I2C interface.

Table 15.25. Refresh (0x79)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	_	_	_	79	00 00	_	_	_

0x79 00 00 Example:

Issue Refresh command

Notes: The Refresh command launches Boot sequence

Must have only two operands

After completing the Refresh command (for example, SPI SN de-assertion or I2C stop), further bus accesses are prohibited for the duration of trefresh. Violating this requirement causes the Refresh process to abort and leaves the MachXO4 device in an unprogrammed state.

Occasionally, following a device REFRESH or PROGRAMN pin toggle, the secondary I2C port may be left in an undefined (non-idle) state. The likelihood of this condition is design and route dependent. To positively return the Secondary I2C port to the idle state, write a value of 0x44 to register I2C_2_CMDR through WISHBONE immediately after device reset is released. This causes

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

a short low-pulse on SCK as the hard-block signals a STOP on the bus then returns to the idle state. Failure to manually return the Secondary I2C port to the idle state may result in an I2C bus lock-up condition. Normal I2C activity can be commenced without additional delay.

Table 15.26. STANDBY (0x7D)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	_	N	7D	0y 00	_	_	_

Example: 0x7D 0y 00

y:2: Triggers the Power Controller to enter standby mode.

y:8: Triggers the Power Controller to wake up from standby mode.

Must have only two operands. Notes:

The MachXO4 Power Controller needs to be included in the design.

Additionally, the following can be used to trigger the Power Controller to wake up from the standby mode (if the user logic standby signal has not been enabled):

I2C has the following ways:

- Primary I2C Configuration port Address match to the I2C Configuration address (No other settings required).
- b. Primary or Secondary I2C User port – Address match the I2C User address. Must have I2C 1 CR[WKUPEN] or I2C 1 CR[WKUPEN] set.
- General Call Send the General Call Wakeup command (0xF3). Must have General Calls enabled (I2C_1_CR[GCEN] or I2C_2_CR[GCEN] set) and use the General Call address.
- 2. SPI from the assertion of either Target Configuration (sn) or User (spi_scsn) chip select, as long as the appropriate control register bit is set:
 - Configuration: SPICR1[WKUPEN CFG]
 - User: SPICR[WKUPEN USER]

For more information on the Power Controller, refer to the Power and Thermal Estimation and Management for MachXO4 Devices (FPGA-TN-02409).

Table 15.27. Set Address (0xB4)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
х	х	-	Υ	B4	00 00 00	W	4B	0s00 0000 0000 0000 00aa aaaa aaaa aaaa

Data Format: sector

> CFG Flash 0: **UFM**

aa..aa:address14-bit page address

0xB4 00 00 00 40 00 00 0A Example:

Set Address register to UFM sector, page 10 decimal

Table 15.28. Read USERCODE (0xC0)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	_	Y/N	CO	00 00 00	R	4B	_

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Example: 0xC0 00 00 00

EN Required = Y Read 4-byte USERCODE from CFG Flash sector

EN Required = N Read 4-byte USERCODE from SRAM

Table 15.29. Program USERCODE (0xC2)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	_	Υ	C2	00 00 00	W	4B	_

Example: 0xC2 00 00 00 10 20 30 40

Sets USERCODE with 32-bit input 0x10 20 30 40.

Notes: Poll the BUSY bit (or wait 200 us) after issuing this command for programming to complete before

issuing a subsequent command other than Read Status or Check Busy.

Table 15.30. Enable Configuration Interface (Offline) (0xC6)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	x	_	_	C6	0y 00 00	-	_	_

Operand: 08 00 00 - Enable Flash Normal mode. Normal edit mode for Offline configuration. Used for all

offline commands described in this document, including Erase SRAM.

00 00 00 - Enable SRAM mode. Optional edit mode. Supports Erase SRAM command only.

Example: 0xC6 08 00 00 Enable Flash interface for offline change access.

Notes: Use this command to enable offline modification of the Flash, or non-volatile registers (NVR). SRAM

must be erased exiting Offline mode. When exiting Offline mode follow the command 0x26 with the command 0xFF. Exercising this command will tristate all user I/O (except persisted sysCONFIG

ports). User logic ceases to function. UFM remains accessible.

Poll the BUSY bit (or wait 5 μs) after issuing this command for the Flash pumps to fully charge.

Table 15.31. Program UFM (0xC9)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
х	1	_	Υ	С9	00 00 01	W	16B	16 bytes Flash write data

Example: 0xC9 00 00 01 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F Write one page of data, pointed to

by Address Register.

Notes: 16 data bytes must be written following the command and operand bytes to ensure proper data

alignment. The Address Register is auto-incremented following the page write.

Use 0x0E or 0xCB to erase UFM sector prior to executing this command.

Poll the BUSY bit (or wait 200 μs) after issuing this command for programming to complete before

issuing a subsequent command other than Read Status or Check Busy.

Table 15.32. Read UFM (0xCA) (SPI)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	_	_	Υ	CA	*(below)	R	**(below)	***(below)

*Operand: 0001 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num pages Number of UFM pages to read when num pages = 1

Number of UFM pages to read +1 when num pages > 1

79

**Data Size (num_pages * 16) bytes

Notes: Read UFM may be aborted at any time. Any data remaining in the read FIFO is discarded. Any

read data beyond the prescribed read size is indeterminate. The Address Register is

auto-incremented after each page read.

***Examples: 0xCA 10 00 01

Read 0-byte dummy followed by one page UFM data (16 bytes total).

0xCA 10 00 04

Read one-page dummy followed by three pages UFM data (four pages total).

Table 15.33. Read UFM (0xCA) (SPI/I2C)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	-	_	Υ	CA	*(below)	R	**(below)	***(below)

*Operand: 0000 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num_pages Number of UFM pages to read when num_pages = 1

Number of UFM pages to read +1 when num_pages > 1

**Data Size (num_pages * 16) bytes when num_pages=1

32 bytes + (num pages * 16 + 4) bytes when num pages>1

Notes: Read UFM may be aborted at any time. Any data remaining in the read FIFO is discarded. Any

read data beyond the prescribed read size is indeterminate. The Address Register is

auto-incremented after each page read.

***Examples: 0xCA 00 00 01

Read 0-byte dummy followed by one page UFM data (16 bytes total).

0xCA 00 00 04

Read two-page dummy followed by three sets [one page UFM data, followed by four bytes

dummy] (five pages total and 12 dummy bytes).

Table 15.34. Read UFM (0xCA) (WISHBONE)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
X	_	_	Υ	CA	*(below)	R	**(below)	***(below)

*Operand: 0001 0000 00pp pppp pppp pppp (binary), or

0000 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num_pages Number of UFM pages to read when num_pages = 1

Number of UFM pages to read +1 when 1 < num_pages ≤ 12

Set to 0x3FFF when num_pages > 12

**Data Size (num_pages * 16) bytes when num_pages=1

32 bytes + (num_pages * 16 + 4) bytes when num_pages>1

Notes: When reading more than 12 pages, the num_pages argument is intentionally oversized. It is not

necessary to read the extra pages. Read UFM may be aborted at any time. Any data remaining in the read fifo is discarded. Any read data beyond the prescribed read size is indeterminate. The

Address Register is auto-incremented after each page read.

***Examples: 0xCA 00 00 01

Read 0 bytes dummy followed by one page UFM data (16 bytes total)

0xCA 10 00 04

Read 1 page dummy followed by three pages of CFG data (four pages total)

0xCA 00 00 04

Read two-page dummy followed by three sets [one page UFM data, followed by four bytes

dummy] (five pages total and 12 dummy bytes)

Notes: The maximum WISHBONE clock speed with which one page of data (num_page=1) can be read

using WISHBONE and no wait states is 16.6 MHz. Faster WISHBONE clock speeds are supported by inserting WB wait states to observe the retrieval delay timing requirement. For more information, refer to the Reading Flash Pages section of the MachXO4 Programming and

Configuration User Guide (FPGA-TN-02393).

Table 15.35. Erase UFM (0xCB)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
Х	1	-	Υ	СВ	00 00 00	1	_	-

Notes: Erased condition for UFM bits = '0'.

Poll the BUSY bit (or wait, see Table 19.1) after issuing this command for erasure to complete

before issuing a subsequent command other than Read Status or Check Busy.

Example: 0xCB 00 00 00

Erase UFM sector.

Table 15.36. Program SECURITY (0xCE)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	CE	00 00 00	_	_	_

Example: 0xCE 00 00 00

Set the SECURITY bit.

Notes: Poll the BUSY bit (or wait 200 us) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

SECURITY and SECURITY PLUS commands are mutually exclusive.

Table 15.37. Program SECURITY PLUS (0xCF)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	х	_	Υ	CF	00 00 00	1	1	_

Example: 0xCF 00 00 00

Set the SECURITY PLUS bit.

Notes: Poll the BUSY bit (or wait 200 μ s) after issuing this command for programming to complete

before issuing a subsequent command other than Read Status or Check Busy.

SECURITY and SECURITY PLUS commands are mutually exclusive.

Table 15.38. Read Device ID Code (0xE0)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	Х	_	N	EO	00 00 00	R	4B	See Table 15.39

Example: 0xE0 00 00 00

Read 4-byte device ID

Table 15.39. Device ID

Device Name	Device ID
LFMXO4-010HE	0xF1 2B 20 43
LFMXO4-010HC	0x71 2B A0 43
LFMXO4-015HE	0x71 2B 20 43
LFMXO4-015HE BBG256	0xF1 2B 30 43
LFMXO4-015HC	0xF1 2B A0 43
LFMXO4-015HC BFG256	0xF1 2B B0 43
LFMXO4-025HE	0x71 2B 30 43
LFMXO4-025HC	0x71 2B B0 43
LFMXO4-050HE	0x71 2B 40 43
LFMXO4-050HE BG400	0xF1 2B 50 43
LFMXO4-050HC	0x71 2B CO 43
LFMXO4-050HC BG400	0xF1 2B D0 43
LFMXO4-050HC TG256	0xF1 2B D0 43
LFMXO4-080HE	0x71 2B 50 43
LFMXO4-080HC	0x71 2B D0 43
LFMXO4-110HE	0x31 2B 60 43
LFMXO4-110HC	0x31 2B E0 43

Example: 0xE0 00 00 00

Read 4-byte device ID

Table 15.40. Verify Device ID Code (0xE2)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
_	X	_	Υ	E2	00 00 00	W	4B	See Table 15.39

Example: 0xE2 00 00 00 01 2B 20 43

Verify device ID with 32-bit input, sets ID Error bit 27 in SR if mismatched.

Table 15.41. Program Feature (0xE4)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	_	_	Υ	E4	00 00 00	1	8B	00 00 ss uu cc cc cc cc

Data Format: ss: 8 bits for the user programmable I2C Target Address uu: 8 bits for the user

programmable TraceID

cc cc cc cc: 32 bits of Custom ID code

Notes: It is not recommended to reprogram the Feature Row in system, as it is more ideal to be

programmed during manufacturing.

Example: 0xE4 00 00 00 00 01 00 00 00 12 34

Program Feature Row with User I2C address set to 1, default user TraceID string, Custom ID code

of 12 34.

Table 15.42. Read Feature Row (0xE7)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	_	х	Υ	E7	00 00 00	R	8B	00 00 ss uu cc cc cc cc

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Data Format: ss: 8 bits for the user programmable I2C Target Address

uu: 8 bits for the user programmable TraceID

cc cc cc cc: 32 bits of Custom ID code

Example: 0xE7 00 00 00

Reads the Feature Row.

Table 15.43. Check Busy Flag (0xF0)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
х	х	_	N	F0	00 00 00	R	1B	Bxxx xxxx

Data Format: b: bit 7: Busy Flag (1= busy)

(all other bits reserved)

Example: 0xF0 00 00 00

Read one byte, for example, 0x80 (busy flag set)

Table 15.44. Program FEABITs (0xF8)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	_	х	Υ	F8	00 00 00	W	2B	00 bb mi sj di pa wv 00

Data Format: bb: Boot Sequence

1. If b=00 (Default) and m=0 then Single Boot from Flash.

2. If b=00 and m=1 then Dual Boot from Flash then External, if there is a failure.

3. If b=01 and m=1 then Single Boot from External Flash.

4. If b=10 and m=1 then Dual Boot from External then NVMC/Flash, if there is a failure.

m: Controller SPI Port Persistence

0=Disabled (Default), 1=Enabled

i: I2C Port Persistence

0=Enabled (Default), 1=Disabled

s: Target SPI Port Persistence

0=Enabled (Default), 1=Disabled

j: JTAG Port Persistence

0=Enabled (Default), 1=Disabled

d: DONE Persistence

0=Disabled (Default), 1=Enabled

i: INITN Persistence

0=Disabled (Default), 1=Enabled

p: PROGRAMN Persistence

0=Enabled (Default), 1=Disabled

a: my_ASSP Enabled

0=Disabled (Default), 1=Enabled

w: Password (Flash Protect Key) Protect All Enabled

0=Disabled (Default), 1=Enabled

v: Password (Flash Protect Key) Enabled

0=Disabled (Default), 1=Enabled

Notes: It is not recommended to reprogram the FEABITs in system, as it is more ideal to be programmed

during manufacturing.

Example: 0xF8 00 00 00 0D 20

Programs the FEABITs

Table 15.45. Read FEABITs (0xFB)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
_	_	х	Υ	FB	00 00 00	R	2B	00 bb mi sj di pa wv 00

Data Format: bb: Boot Sequence

1. If b=00 (Default) and m=0 then Single Boot from Flash.

2. If b=00 and m=1 then Dual Boot from Flash then External, if there is a failure.

3. If b=01 and m=1 then Single Boot from External Flash.

4. If b=10 and m=1 then Dual Boot from External then NVMC/Flash, if there is a failure.

m: Controller SPI Port Persistence

0=Disabled (Default), 1=Enabled

i: INITN Persistence

0=Disabled (Default), 1=Enabled

s: Target SPI Port Persistence

0=Enabled (Default), 1=Disabled

j: JTAG Port Persistence

0=Enabled (Default), 1=Disabled

d: DONE Persistence

0=Disabled (Default), 1=Enabled

i: INITN Persistence

0=Disabled (Default), 1=Enabled

p: PROGRAMN Persistence

0=Enabled (Default), 1=Disabled

a: my_ASSP Enabled

0=Disabled (Default), 1=Enabled

w: Password (Flash Protect Key) Protect All Enabled

0=Disabled (Default), 1=Enabled

v: Password (Flash Protect Key) Enabled

0=Disabled (Default), 1=Enabled

Table 15.46. Bypass (Null Operation) (0xFF)

UFM	CFG Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	x	х	N	FF	FF FF FF	_	_	_

Notes: Operands are optional. Example: OxFF FF FF Bypass

16. Interface to Flash

The WISHBONE interface of the EFB module allows a WISHBONE host to access the configuration resources of the MachXO4 devices. This can be particularly useful for reading data from configuration resources such as USERCODE and TraceID. Most importantly, this feature allows you to update the Flash array of the devices while the device is in operation mode. This is a self-configuration operation. Upon power-up or a configuration refresh operation, the new content of the Flash is loaded into the Configuration SRAM and the device continues operation with a new configuration.

The data transfer and execution of operations is the same as the one documented in the UFM section of this document. This is because the UFM is also an Flash resource and the communication between the WISHBONE host and the configuration logic is performed through the same command, status, and data registers. Please see Table 15.1 to Table 17.3 for more information on these registers.

Figure 16.1 shows a basic flow diagram for implementing a Flash Update initiated through any of the sysCONFIG ports (I2C, SPI, or WISHBONE).

For detailed information on the MachXO4 device programming and configuration, see the MachXO4 Programming and Configuration User Guide (FPGA-TN-02393).

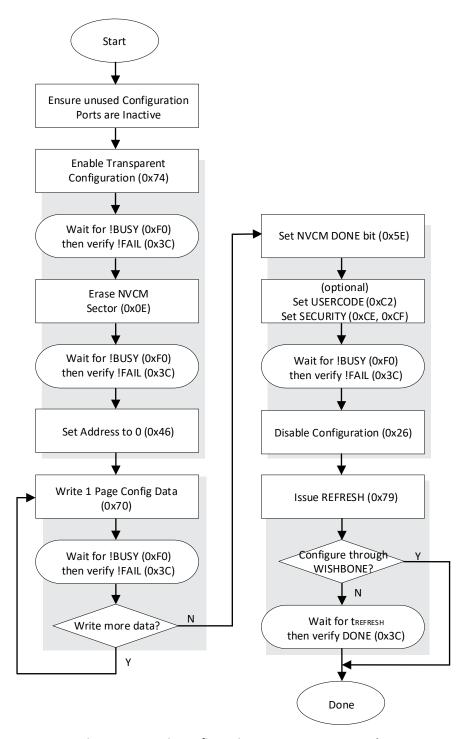


Figure 16.1. Basic Configuration UFM Program Example

17. Command Framing

17.1. I2C Framing

Each command string sent to the I2C EFB port must be correctly framed using the protocol defined for each interface. In the case of I2C, the protocol is well known and defined by the industry as shown below.

Table 17.1. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)
I2C	Start	(Command/Operands/Data)	Stop

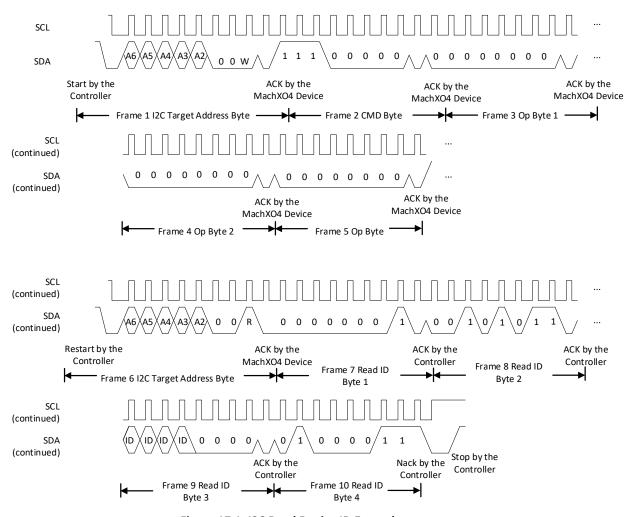


Figure 17.1. I2C Read Device ID Example

17.2. SPI Framing

Each command string sent to the SPI EFB port must be correctly framed using the protocol defined for each interface. In the case of SSPI the protocol is well known and defined by the industry as shown below.

Table 17.2. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)
SPI	Assert CS	(Command/Operands/Data)	De-assert CS

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Figure 17.2. SSPI Read Device ID Example

17.3. WISHBONE Framing

To access the Flash each command string sent to the WISHBONE EFB ports must be correctly framed using the protocol defined for each interface. In the case of the internal WISHBONE port, each command string is preceded by setting CFGCR[WBCE]. Similarly, each command string is followed by clearing the CFGCR[WBCE] bit.

Table 17.3. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)	
WISHBONE	Assert CFGCR[WBCE]	(Command/Operands/Data)	De-assert CFGCR[WBCE]	

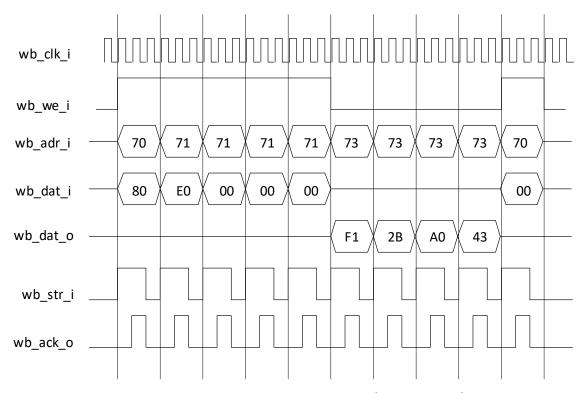


Figure 17.3. WISHBONE Read Device ID Example (-015 HC Device)

18. UFM Write and Read Examples

The Flash sectors support page-oriented read and write operations while erase operations are sector-based. Consistent with many Flash devices, byte-oriented operations are not supported.

Table 18.1. Write Two UFM Pages

Instruction Number	R/W1	CMD2	Operand	Data	Comment	
_	_	_	_	_	Open frame	
1	W	74	08 00 00	_	Enable Configuration Interface	
_	_	_	_	_	Close frame	
_	_	+	_	_	_	
2	W	3C	00 00 00	_	Poll Configuration Status Register	
_	R	_	_	xx xx bx xx	_	
_	_	-	_	_	(Repeat until Busy Flag not set, or wait 5 μs if not polling.)	
_	_	+	_	_	_	
3	W	47	00 00 00	_	Init UFM Address to 0000	
_	_	_	_	_	_	
_	_	+	_	_	_	
4	W	C9	00 00 01	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F	Write UFM Page 0 Data	
_	_	_	_	_	_	
_	_	+	_	_	_	
5	W	3C	00 00 00	_	Poll Configuration Status Register	
_	R	_	_	xx xx bx xx	_	
_	_	-	_	_	(Repeat until Busy Flag not set, or wait 200 µs if not polling.)	
_	_	+	_	_	_	
6	W	C9	00 00 01	10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F	Write UFM Page 1 Data Note: Address automatically incremented	
_	_	_	_	_	_	
_	_	+	_	_	_	
7	W	3C	00 00 00	_	Poll Configuration Status Register	
_	R	_	_	xx xx bx xx	_	
_	_	-	_	_	(poll until Busy Flag clear, or wait 200 μs if not polling.)	
_	_	+	_	_	_	
8	W	26	00 00	_	Disable Configuration Interface	
_	_	_	_	_	_	
	_	+	_	_	_	
9	W	FF	_	_	Bypass (NOP)	
	_	_	_	_	_	

- When accessing Flash through WISHBONE, use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.
- + and refer to the command framing protocol appropriate for the interface, discussed in the Command Framing section.

Table 18.2. Read One UFM Page (All Devices, WISHBONE/SPI)

Instruction Number	R/W1	CMD2	Operand	Data	Comment
_	_	+	_	_	Open frame
1	W	74	08 00 00	_	Enable Configuration Interface
_	_	_	_	_	Close frame
_	_	+	_	_	_
2	W	3C	00 00 00	_	Poll Configuration Status Register
_	R	_	_	xx xx bx xx	_
_	_	_	_	_	(Repeat until Busy Flag not set, or wait 5 μ s if not polling.)
_	_	+	_	_	_
3	W	B4	00 00 00	40 00 00 01	Set UFM Address to 0001
_	_	_	_	_	_
_	_	+	_	_	_
4	W	CA	10 00 01	_	Read one page UFM (page 1) data
_	R	_	_	10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F	_
_	-	_	_	_	_
_	_	+	_	_	_
5	W	26	00 00	_	Disable Configuration Interface
_	-	_	_	_	_
_	ı	+	_	_	_
6	W	FF	_	_	Bypass (NOP)
_	_	_	_	_	_

Notes:

- 1. When accessing Flash through WISHBONE, use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.
- 2. + and refer to the command framing protocol appropriate for the interface, discussed in the Command Framing section.

Table 18.3. Read Two UFM Pages (WISHBONE/SPI)

Instruction Number	R/W1	CMD2	Operand	Data	Comment
-	_	+	_	_	Open frame
1	W	74	08 00 00	_	Enable Configuration Interface
_	_	_	_	_	Close frame
_	_	+	_	_	_
2	W	3C	00 00 00	_	Poll Configuration Status Register
-	R	_	_	xx xx bx xx	_
1	1	-	_	_	(Repeat until Busy Flag not set, or wait 5 μs if not polling.)
-	_	+	_	_	_
3	W	47	00 00 00	_	Init UFM address to 0000
-	_	_	_	_	_
-	_	+	_	_	_
4	W	CA	10 00 03	_	Read two pages of UFM data, after one page of dummy bytes.
-	R	_	_	XX	_
_	_	_	_	_	_
_	_	+	_	_	_
5	W	26	00 00	_	Disable Configuration Interface
_	_	_	_	_	_
_	_	+	_	_	_
6	W	FF	_	_	Bypass (NOP)
_	_	_			_

Notes:

- 1. When accessing Flash through WISHBONE, use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.
- 2. + and refer to the command framing protocol appropriate for the interface.
- 3. num_pages count must include dummy page.

19. Flash Performance

Table 19.1. Flash Performance in the MachXO4 Device¹

		LFMXO4- 010	LFMXO4- 015	LFMXO4- 015 256 Ball Package	LFMXO4- 025	LFMXO4- 050	LFMXO4- 050 400 Ball Package	LFMXO4- 080	LFMXO4- 110
CFG Erase	Typ. Min.	800	800	1100	1100	1800	2800	2800	4500
(tEraseCFG)	Тур. Мах.	1400	1400	1900	1900	3100	4800	4800	7700
CFG Program	All	500	500	740	740	1400	2200	2200	3000
(tProgramCFG)	1 page	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
UFM Erase	Typ. Min.	400	400	500	500	600	900	900	1600
(tEraseUFM)	Тур. Мах.	700	700	900	900	1000	1600	1600	2800
UFM Program	All	110	110	140	140	180	480	480	840
(tProgramUFM)	1 page	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
tErase (max)	Note 2	12000	15000	15000	15000	30000	30000	30000	45000

Notes:

- 1. All times are averages, in (ms). SRAM erase times are < 0.1 ms.
- 2. tErase (max) is recommended for algorithm based time-outs.

20. Erase/Program/Verify Time Calculation Example

Using the data above, it is possible to roughly calculate the time required to perform a Program/Verify operation. The calculation assumes nearly 100% bus utilization. The overhead required by bus controller processes, if any, is not accounted for in the equation below.

E/P/V time (μs): tEraseProgramVerify = tErase + tProgram + tVerify

where: $tErase = tEraseCFG + tEraseUFM^{1}$

tProgram = 0.2 ms * number of Pages to program²

tVerify = (8 * number of Pages programmed) * BusEff * tBUSCLK

Table 20.1. E/P/V Calculation Parameters

	BusEff	BusEff ³	tBUSCLK
	(Single Page Read)	(Multi Page Read)	
I2C	14	>12	2.5 μs min
SPI	12	> 8	0.015 μs min
WB	5.25	>3	0.020 μs min

Notes:

- 1. Sector erase times are additive. If a sector (for example, CFG) is not erased, its erase time is 0.
- 2. Data transfer time is insignificant to tProgram for high-speed data protocols. To account for slow bus speeds (for example, I2C) multiply tVerify by two.
- 3. Bus efficiency approaches this value as number of read pages increases.

References

- MachXO4 Family Data Sheet (FPGA-DS-02125)
- MachXO4 Hardened Control Functions User Guide (FPGA-TN-02403)
- Power and Thermal Estimation and Management for MachXO4 Devices (FPGA-TN-02409)
- MachXO4 Programming and Configuration User Guide (FPGA-TN-02393)
- MachXO4 sysCLOCK PLL Design User Guide (FPGA-TN-02391)
- MachXO4 web page
- Lattice Radiant Software web page
- **Lattice Solutions IP Cores web page**
- Lattice Solutions Reference Designs web page
- Lattice Insights web page for Lattice Semiconductor training courses and learning plans

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

Revision History

Revision 1.0, December 2025

Section	Change Summary
All	Initial release.

www.latticesemi.com