s LATTICE

Automate 4.0

Reference Design

FPGA-RD-02302-1.0

February 2025

= LATTICE

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and
other items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases
such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

= LATTICE

Contents
(6o 01 4= o | 3PP PPPPPPUPPRPPR 3
ADDBreviations iN THiS DOCUMENT.....ccicutiiiie ittt stee ettt ettt e sr e e s bt e s bee s beesabeesabaesabeesabeesaseesabaesabeesabeesaseesabaesnseessaesseesn 9
O 1 4 o T [¥ ot i o o F TS SPPPPPRRNt 10
1.1. Automate 4.0 System Archit@CtUre OVEIVIEWcoiiuiiiiiiiiiie ettt ettt st s e e snee e 10
00t T S Y/ 11 B V] (=13 o OO PP OP PO PPROTRTR 10
000 T oY LIV =T o o USSR 10
1.2 Advantages of the Automate 4.0 Reference DESIZNccoccviiiiciie et e e e s tre e e eaees 10
1.3. AUTOMATE 4.0 COMPONENTS ..ttittttittiitittuteteteterererere e —————————————————————————————e—a—ateteteaeeasetasesasssssssssssssssssnsssnsssssnne 11
A D 1111 o WO LY o V=T TSSOSO OROOTON 12
2.1. THEOIY OF OPEIAtION ..couuiiieiiieit ettt ettt e et e bt e e bt e s bt e e bt e sa b e e e bt e s be e e bt e sabeeebeesbeeenneeeane 12
2.2. FPGA DESIZN ..ttt ettt st e e e s et e s e bt e s ab e e e e s e b et e e e b et e s R b e e e e s b e e e s e ae e e s nbae e s s raeesaanne 13
B S |V = 1 I3 V) =T o OO PP T PPPPOPI 13
2.2.2. Lattice Main System 4.0 ArChitECTUIEieiuiiiiiieieee ettt et esbe e e saee e 14
. T [Yo LI}V £) = o [P PURR R 17
2.3. EtherConnect [P DESIZN DETAIlS......ccuiii ettt ettt e et e e e et e e e e ata e e eeataeeesbbeeesstaeeeensaeeesasseeeannns 20
2.3.1. OVEIVIEW Of EXISTING IP o.eiiiiiiciiiee e ciee et ettt e ettt e e ettt e e e s tte e e e sataeeeenstaeesabaeeesabaeaeanssaeeeasssaesensseseannsasesansaens 20
e B R Y ol o 11 d=Tot { U1 PR PUPTRRRRRRPRR 21
B TR T 0= - 1 T g |V - T T ST P PSP PPPPI 21
2.4. FIFO DM A .ottt e e e e ettt e e e e e e e eeta e eeeeeeeaaaa e seeeeeeasaaa s eeeeesssanseeeeenasssnnnseeeesnnsnnnnnsesessnssnnnnneees 22
2.5. (2B BT N e oY { o] 11T U UUURRN 24
2.6. (01 ol o T g ol oo | 1= OO UOUUPPR 24
2.7. Scatter Gather DMA IP DeSIZN DETAIISccccuiiieiiiiee ettt e et e e et e e e st e e e esata e e e abaeeesatbeeeennsaeesnnnaeas 24
2.8. CNN CO-Processor UNIt (CCU) ..uuiiiiiiiiieccciiee ettt e e sttt e eette e e s tveeeesttaeeeeattaeessseeeesstaeseenssaeesssesesassaessassasesasseeaans 24
2.9. Motor Control and PDIM Data CollECLONciuuiiiiiiiieiiiierieesie sttt st site e steesate e sbeesabeesabeesabeesabeesabeesnbaesaseesn 24
D% O Y o W 0o Yo Y d o] =T ol 1 SR URP RPN 32
2.10.1. SPI CONLroller REGISTEI IMAP ..oueeiiiiiiieeiiteiiteeiet ettt ettt et ettt e sat e e bt e et e s bt e sat e e bt e e ate e bt e esaeeebeeeseesbeeenneenane 32
2.10.2. Programming FIOWcoiuiiiiiiiieiiit ettt ettt ettt ettt ettt e at e e bt e e sbe e s bt e e bt e sabe e e ateeabeeesaeeenbaeesaesbeeennnennn 33
B P I O o 14} { o | 1= ol USSP O P PP PP PROPPPPRURPPON 33
1 R U 7Y I TSR 33
2,130 ENDQA 2.2 IMIASEEI IP ettt ettt e e e st e e e e e s e bt et e e e s e b b ee e e e e e e e nbaee e e e e e e e rrraeeeens 34
2,14, SPIFIQSh CONTIOIEE oottt ettt ettt e e ettt e st e e e s bt e e e e abbeeseasbeeesabbeeesaabaeessanseeesanseeennn 34
20150 TSE IMAC .ttt ettt ettt sttt sttt e ht e e bt e bt e e bt e e bt e e bt e e a et e bt e e e Rt e e ahe e e eab e e heeesabeenheeesaneenhteenareennes 35
2.16. FPGA CONTig MOAUIE DESIZN .eeiiviieeeeiiieceiiee sttt estt e e ettt e sttt e e et e e s s atee e s saeeeesstaeeseaseeaesnsseeeeanteeessnnsnessnsseeenns 35
3. RESOUICE ULIHIZATION ..tiiitteeitieeee sttt ettt et st be e sttt e bt e s b et e bt e e bt e e sab e e bt e esabe e steesabeesnteesaneenares 36
S 14101V T TSP PSP PPPPPPPPTTIN 38
4.1. Y T I VA (=T o T = T Yo L Al o 1o 1Y ST USTRN 38
4.2. NOAE SYSEEM BOOT FIOW ...uviiiiiiiieiiiiiieee ettt e e e et e e e e e s et e e e e e e e sesaastaeeeeeeseanssaaseeeseeasnntraneaaesaanan 38
D SO EWAIE APIS . eiiiiieeiieeetee sttt st ettt e e e e st e s be e st et et e et ettt e e be e e bee e b et e ate e b et e ae e ettt e nhbe e beeenaae e tteenateentteenaaeeaes 39
5.1. Y T V3 (=T o PSP PRPPPPPN 39
5.1.1. Tasks Of the IMain SYSTEMcccciiiiiiiie sttt e s e e e s e e e et e e e e s et e e e saeteeeasstaeeesnsaeeesnsseeeannsaeesannnns 39
5.1.2. IWIP Ethernet and UDP STACK.......ccceiiieiiiiiiieeiit ettt ettt ettt sit e sttt e s sbe e e st e ebeeessaesnbaeenaeeeane 41
5.1.3. OPCUA PUBSUD ...ttt ettt ettt et b et st e s be e e bt e e bb e e steebeeenateeabaeesaeebeeenanenan 41
5.1.4. Create_UADP_NETWOIKIVIESSAEEuueiiiiieiiiiiiiee ettt e ettt e e e e e e e et r e e e e e e e eeabbaseeaeeeenastbaseeeaeeesnnsaaseeaeas 42
Lo R T €1 o T o] £ [=- Yo [T SRR 43
5.1.6. Extended NetWorkMessage HEAUENcc..uuiiiiiii ittt e e et e e e e e e e aa e e e e e e e e s nsaaaeeaeas 43
5.2. (1o e LIV 2y =T ¢ 1Y o LSRN 46
5.2.1. Tasks Of the NOGE SYSTEM ...ciiiuiieiiiiiie ettt e e e e e s e e e et e e e saee e e e saeaeeeenteeessnsneeesnsseeeansseeesansnes 46
I =)V U1 ot o] o O PTPT S PRPPP 46
(ST @0 T4 10 0 1¥ T T Tor-) o] o 1P PR PSPPSR 49
6.1. Communication between Host and Main SYStEM.......cccuuiiiiiie i e e e e e e e e e s araaeee s 49
6.1.1. Messages from HOSt 10 IMain SYSTEMI.......uiiii ettt e et e e st e e e eate e e e e ataee e ebbeeeeentaeaeeanaeas 49
6.1.2. Messages from Main SYSTEM T0 HOST....cc.uiii i ccieee ettt eet e e et e e e et e e e e eabe e e eeataeeeetbeeeeantaeeeensenas 49

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6.2. Communication between Main System and NOde SYStEM(S)cuievieriiiieiieiiiee e cee e e vae e 49
6.2.1. Messages from Main System t0 NOdE SYSTEMc.uiiiieiiiie e ee e e e rer e e e rare e e e tb e e e eentaeeeennneas 49
6.2.2. Messages from Node System t0 Main SYSTEMcuiiiiiiiiii et e e e et e e e are e e e tr e e e esntae e eennneas 49

Appendix A. Predictive Maintenance With TENSOIFIOW LItccuueieiiiieiiiiie et e sre e e e e e e stn e e e ennneas 51

Al OVEBIVIBW ...eeeeei ettt e ettt e ettt e e e e s et e et e e e s e n e r et et e e e sea s e e e e et e e e s e amn b e e et e e e s e s s aeeeeeesesannrnnneeeesesannrnnneeeens 51

A.2. Data Capture and LaD@IINGc..ui ittt s bbb e eanee s 52

A3. Y oY [I =Y 1o V- 2O T O TR TP T TSP PSP PR USRI UPPPPRRTO 52
A3 1. Training COUE SEIUCLUIE ...ooiuiiiiiieiiieet ettt ettt ettt e bt e et e s bt e e bt e s bt e sabeesabeeeaseesabeeeabeesabeesnneess 52
A.3.2. Identify Neural Network Architecture (INformational)ccceecieiiieeiie i e 54
A.3.3. Implement Training AlZOITNMooi i e e et e e te e e st e e e e s tb e e e esaeeessnseeeeansaeeeannns 56
F e T B N 11 oY o= o =Y o TN Yo T SR SUPRN 57
A.3.5. Testing the Accuracy of the Train@d MOELc..eeiiiiiiiiiiiie e eae e e s rrr e e e sbaeeeenes 58
A.3.6. Converting the Trained IMOTElcoouiiiiiiiiieee ettt st e st s be e s b e sbeesanee s 59

AA4. ON DEVICE INFEIENCINEG ...ttt ettt st et e st e et e st esabee st e e eabee s bt e eabeesabeesabeesabeeeaneenn 60
A.4.1. Implementing the TensorfloOWIMICIO LIDrarycooceoiiioeiiiiiiieiie ittt sttt s 60
A.4.2. CNN Co-processor OPTiMIZationcceeiiiiiiiiiiieiiiiiie ettt e e s e s e e s snre e e s sraeesannne 60

Appendix B. Setting Up the WIreShark TOOIcouiiii ittt e e e tte e e et e e e e eatb e e e eaataeeetbeeeentaeeeenneeas 61
Appendix C. Automate Stack 4.0 Bit and Binary GENEIatioNc.ceeccuiieiiiiee e ciiieeecitee et et e e e str e e ear e e e s areeeeeataeeeennaeas 62

C.1. InStalling the Propel SDK 2024.1........uvieeeieeeceiiee e ctiee e e sttt e e e tte e e s tteeeesttaeeeeateee s tbeaeeastaeeeesssaeesssaeesantaeesassaeesnsreeanns 62

C.2. Installing the Propel PatCh 2024.1ccccuiiii ettt et e et e e et e e e s tbe e e eestaeeeeaaaeessbaeeeaataeeesseaeesnsreeaans 62

C.3. Generating the Binary in the Main SYSTEMciiiiiiiiiie et st e sare et esareesaees 65
C.3.1. Primary IMain SYSTEMuiiiiiiiiiiiee ettt st e e s e s et e ssb e e e e sab et e s e amr e e e smnneessraeeeenreeesannneas 65
C.3.2. GOIAEN IMAIN SYSTEM..c.iiiiiiieitit ettt ettt ettt ettt et e bt e bt e s b et e bt e s b et e beesab et e nteeabeeenee e beeeseesbeeennnennne 71
(O3 0 T Lo T [V3 =T o PSRRI 74

C.4. Generating the Bit File in the IMain SYSTEMiiiiiiieecce ettt e et e e e sta e e e e ar e e e sab e e e e s taeeeeassaeeernreeaans 78
(O o R S T g TV Y = 1T B2 (=] 0 DSOS 78
(o3 A o [o =T o T\ =YL T3 Y2 =] 4 TR PP 84
(O 3 B oo LV =1 4 o B O T TS OSSPSR PPRRPPTOPPOPPRIOt 89

Appendix E. Creating the IMCS Filecoo ittt sttt sttt e sa e sa e e s e e bt e e sab e e sat e e sabeesabeesabeennseesareenanes 95
RETEIEINCES ...ttt ettt et s bt e et e s bt et e s b et e bt e s e b e e e bt e s e beeeas e e s a ke e e aseesabeeeabeesa b e e e bee e b e e e bt e e beeenee e baeenneeeane 99
TEChNICAl SUPPOIT ASSISTANCE ..vvieeiiiiiiiiiiiee ettt e e e et e e e e e e et te e e e e e e s e s e taaeeeeesesnstaseaaaeeeasssbasaaaesesaastaaseaeseesannssranaeeas 100
A o] ol o [o] oY A T T PP PT 101

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 2.1. Lattice Automate Stack 4.0 Top Level BloCK DIagram.......ccccuiieieciieeiiiieeeciieeeertee e esvee e e s tre e e saee e e esaveeeesereeeenens 12
Figure 2.2. Automate 4.0 Main SyStEM ArChITECTUIEc..viii ittt e e e e e ere e e st e e e s tr e e e snteeessnseeeesnsbeeennnes 13
Figure 2.3. Multiboot Tab of DeployYMENT TOOcccuiiiieiiee et e e e e e rte e e s rabe e e e s tb e e e snsaeesnseeeesnsresennnes 14
Figure 2.4. Client t0 SEIrVEr Data FIOW ...cccciiiiiciiie e et e ettt e ettt e e et e e e et e e e e taeeesataeeeestaeesnseeeeansseeesnsseesanseeeesnsseeennnns 16
Figure 2.5. NOE SYSteM ArChITECTUIE ..co..vii ittt et et sb e s b e et e st e e e bt e sbeeennee s beeenneenane 18
Figure 2.6. Encoder SUbSYSTEM ArChiTECTUIE........ii ittt sttt s b e sae e s b e e nnee e 18
FIGUIE 2.7. PACKET SEIUCLUIE ettt et sttt st e bt e s bt e e bt e s b et e bt e s beeebeesabeeeneesbeeenneesane 20
Figure 2.8. Motor Control and PDM Data COHCTONuiiiuiiiiiiiiieiiie ettt ettt ettt sne e s saee e 25
Figure 2.9. EnDat 2.2 Master IP Core Functional BIOCk Diagramcccueeieciireiiiieeeciiie et e e ssteee e s vre e e seee e e esevee e e s ereeeeanns 34

Figure 2.10

. SPI Flash Controller IP Core Functional BIOCK Diagram.........ccccueeeiiuieeieiiiiesceee e cieeeesire e e ere e e e eetne e e 35

Figure 4.1. Main SYSTEM BOOT FIOWciiiiiiiiciiis ettt e et e e e tte e e st e e e et b e e e s eaetaeesasseeeeansaeeesssaeesanseeeesnsseeennnes 38
FIGUIE 5.1, UADP VEISIONueiiiiiiitiiiiitte ettt ettt e e e e e e s ba e e s bb e e e e s b et e s e b e e e s anbe e e s s baeesenbeeesannaeesarbeesnanns 42
Figure 5.2. UADP MeSSage PaCKET HEAEBKcoiuiiiiiieiiiieiee ettt ettt sttt e s b e e sae e s beeeneesbeeeneenane 42
Figure 5.3. Create_UADP_NEtWOIKIMESSAZEeiiuieiiiieiie ittt sttt sttt sttt et e sttt e st e s bt e s bee e bt e sbeeesneesbeeenneenane 44
Figure 5.4. UADP NetWOrk MeSSagE FOIMMAL ..cc...eiiuiiriiieiieiite ettt ettt ettt et e st e e et e st e e bt e s beeesaeesbeeeneesbeeenneenane 45
Figure 6.1. Data Flow from Host to Node System through the Main SyStem..........ccocciiiiiiiiiii i 50
Figure A.1. Predictive Maintenance Machine Learning OVEIVIEWcc.ueieecuieieiiiieeeiiieeeecieeeesteeeeetveeeseasaeessaseeeessseeeennns 51
Figure A.2. Data FOrmMat LADEIINGveiieiiee ettt e et e e te e e et e e et a e e eette e e sabeeeeeabbeeeessaeesansesaeanssaeennnes 52
Figure A.3. Training Code Dir€CtOry STIUCTUIEuuiiiii it e e e e s e e e e e s s aata e e e e e e eesasbaareeeeeessnsrereeeens 53
FIGUIE A 4. LATTE TraiNING cueveieieiieeeiiteee ettt e sttt st e et e s ettt e s st e e e e s b e e e s e aae e e e s ma e e e e s b e e e s emneeesanneeesanbaeesenneeesanneeeeanreeesannns 58
FIGUIE A.5. LATTE TESTING «ooeveieiiiteeeiiiee ettt sttt ettt e st e e e st e s e abe e e e s be e e e e s b e e e s enne e e s anbeeesaabeeeseanneeesanneeesanreeesnnnns 59
FIGUIE A.B. LATTE CONVEISION c.veeiieiiiiteeeeiiiete sttt e st e e ettt e sttt e st e s e e e s e aae e e e sme e e e e am b et e seana e e e sanse e e s e beeesaanneeesanneeesanreeesnnnns 59
Figure A.7.MOdel t0 C Array CONVEISIONcccciuieeiiiiieeeeiiteeeeeitteeeeitteeeesteeesesteeesasssaaaastsseeasssssesassesesassesessssasssassesesssssesennses 60

Figure B.1.
Figure B.2.
Figure B.3.
Figure C.1.
Figure C.2.
Figure C.3.
Figure C.4.

Wireshark Tool — Write Udp.port == 1486.........ueeeeiiiieeiiieeeciieeeeitee e eetee e e etteeeeste e e esaaaeesbaeeeesssseeeesssaeessrenanas 61
Source and Destination UDP PaCKetc.civcuiiiiiiiiiiiiie ittt sttt sttt sbe e s ba e sbeesbaeennee s 61
Wireshark tool — FIrst UDP PACKET.....uiiiuiiiiiiiiieiiiesiee sttt sttt st st sbe e sabaesabeessbaesabessnbaesnnee s 61
(o o T a1l o A o] o] [or L4 o o SR 62
Propel Patch Setup Window — Install Lattice Propelcccuieiieiiie ettt e 62
Propel Patch Setup Window — Select Installation FOIErcccuveviiiiiiiieiiic et 63
Propel Patch Setup Window — Start Menu SROMTCULcccuiiiieiie ettt 63

U ORI 1S = | Y oY g T o o Yol Ty PR 64
Figure C.6. INStallation COMPIETEAuviiiiiiii e e e e e e e e e sttt e e e e e e s e abetaeeeeeeeesastaareeeseesassaereeeeas 64
Figure C.7. Propel 2024.1 APPLICAtION ..uuiiiiiiii ettt e e s e e e e e s et b e e e e e e s e aataeeeeeeeesnstaaseeeseesnsranreeeens 65
(Ul O Y=Y [Tt T =T ot o VUSSPt 65
[T Ul O R 140 o To ol o o [=T ot PSPPSR 65
Figure C.10. Existing Project int0 WOTIKSPACEciiiciiiieiiiee ettt st e e et e e sate e e s saae e e e s baeeesnaeeeesnsaeeesnsseaesnnes 66
T U O B R 1 T o Yo o o =T ot PP PP 67
P O B o o o 1=T o A = S T U T T TSP 68
Figure C.13. C/CH+ BUIlA SEELINGS ..vveecveeiiiieiieecieeeciee ettt et e ete e e bt e e teeeeteeebeeebeeeabeeeseeeabasesaeeabaseseeentaeeasesetasenseeentaeenseeenes 69
Figure C.14. Manage Configuration — RelEase: SEt ACTIVE.........eiiiiuiiee ettt ettt ee e e e rte e e e e ebe e e e e eatee e ssabeeeeebbeeeennes 69
Figure C.15. Manage Configuration: APPlY @Nd ClIOSEceeccuiiiiiiiiie e ceree et e et e e te e e st e e e s tae e e s aeeeessnneeeesnsseeeennes 70
o= {U T O ST = 011 o I 2 o =Y o SRR 70
FIUre C.17. COMPIETING PrOCESS ..veiiivveeeeiiiieeeitee e scttee e ettt e e eetee e sttt e e esstaeesessteeessseee e ssaeesasseeesnseeeeanseeesannseessanseeesssseesannes 71
ST = (Ul O R T o oY oY1 N2 0 35 =Y o o] LToF- 4 oY o USSPt 71
T U O e Y=Y [=T ol D<o o] VU PP 71
U N ORI [0 o Jo] o fl o o] =Tl S TP TP U TR 72
Figure C.21. EXiSting Project iNtO WOIKSPACEuuiiiiiiiiciiiiiie ettt e ettt e e e e et e e e e e e s e aatbe s e e e e s eeanbaaaeeeeeeesnsaeaeeeeas 72
(0 N O [44 o Jo] o fl o o] [Tl S T T U T PP PT T TT 73
= Ul O A T = T 11 o N 2 o =Y o USSRt 74
FIgUre C.24. COMPIETING PrOCESS ...eeiiueeeeeiiiieeeitteeesiteeeestteeseeteeesetteeeesstaeeseseeeessseaeassaeesanssesesanseeeaansseesaanseeesanseeesssseeennnes 74
= (Ul O T o oY o YT Y o] o] [ot= [o TSRSt 74
T U N O A S TY =] [=T o DI T =T o o USRI 75

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

FIGUIE C.27. IMPOIT PrOJECT....iiiiiiiiiiiiie ettt st a e e s et e e e s b et e s e aa e e e s anb e e e s s b e e e s ssbeeesanbeeessbbeesnanns 75
Figure C.28. EXisting Project iNT0 WOTIKSPACEccoicuiiiieiiiieceeee ettt ettt e e st e e et e e e e ate e e ssataeeeeabseeesnsaeessnseeeesnssesennnes 75
= (Ul O A Y=Y =Y oY [T ot USSRt 76
= Ul O {0 R 11T T o 1 | USSRt 77
= (Ul O 3 I 0] o Yo) =T SSURRROE 77
FIGUIE C.32. BUII Al ettt ettt et e s bt e et esa bt e bt e s be e e bt e e b eeeabee s bee e bt e sabeeeneesabaeeneenane 78
FigUIe C.33. COMPIETING PrOCESS .. .veiiiieiiiiiiite ittt ettt sttt et sttt e st e bt e sttt e bt e s bt e e bt e st e e e bt e s beeebeesabeeenee s beeenneesane 78
Figure C.34. SOC_M@iN _SYSTEMLSDX ..eiitiiiiiiiiieitie ettt ettt sttt s e e bt e s bt e et e st e e e bt e s beeebeesbeesneesbeeeaneenane 79
Figure C.35. System INItialiZation FIlcooiiiiiiieieee ettt sttt e s bt e sbe e s b e e e bt e s beeesneenane 79
FIUIE C.36. Validate BULLONccueieieiiieeecciieecettes st e e et e et e e e sttt e e e tta e e e eataeeessbeeeasstaeeeensseeesnseeeeansseeeansaeessnseeaesnssesennnes 79
FIBUre C.37. GENEIate SGE BULLON .ccciiiiii e e e s e sese s e s e s e s e s e s e s e s e s e e e s e sesesesesesesesasesasesesesnsnsnsnsesnenns 80
(= (VN ORC T T 2F- o [T o]l o To) I 21U i o TSSOt 80
Figure C.39. s0C_Main_SYSYEM.IAf Fil.ii ittt st e st e bt e s b e e e sneesbeeenneenane 80
Figure C.40. LAV-AT-E70ESL-3LFGILI56Ccciieiieeeeeeeeeiteee et e ettt e e ettt e e e e e s bab et e e e e e s e anbaeaeeeeeesaanbaaeeaeesesanbnnaeaeens 80
Figure C.41. Lattice Radiant Device Selector for Main SYStEMc.cuiiiiiiiiiieiie et 81
Figure C.42. Strategy for Build Generation for Main SYSTEM........coiiiiiiiiiiiiee ettt s 81
Figure C.43. MAP Analysis Setting for Main System Bit File GENErationccccccvieeeiiiiiceiiee e eeceee e e e e e e 82
Figure C.44. PAR Setting for Main System Bit File GENEratioNnc.ceeccciiiiieiiie ettt e e eete e s sabe e e e s rbeeeennes 82
Figure C.45. PAR Timing Analysis Setting for Main System Bit File GENerationccccceeeeieiiiiiieeecciee e 83
FIGUIE C.46. IP EVAIUALION . ..iiiiciiie ettt et e ettt e e et e e e e bt e e e e ttbeeeeasaee e s sbaaeestaeeeessaeesasseaeeansseseassaeesansaeaeansseeennnes 83
FIGUIE C.A7. RUN Al BUELEON ..ottt st ettt ettt et e sa bt e e bt e s bt e e bee s beeeasee s beeebeesabeeeneesbaeenneenane 83
FIGUIE C.48. BItStrEam Fileei ittt ettt ettt e st e e bt e s bt e e bt e sab e e eabee s bee e bt e sabeeenneeebeeenneenane 84
Figure C.49. SOC_M@iN _SYSTEMLSDX . eiiuiiiiiieiieiiee ettt et sttt e et e st e st e s bt e s bt e sabeesabee s beeebeesabeeenneesabeeenneenane 84
Figure C.50. System INItialization FilEccuiieiciiii ettt e et e e et e e e st e e e eeate e e sabeeeesatbeeeessaeesassesaeanssaeeannes 84
FIUIE C.51. Validate BULLONccuiiiiiiiieee et e ettt ettt e e ettt e et e e e s bt e e e e tteeeeeataeeesaabaaeestaeeeessaeesaaseeeeansseeesssaeesassesaeanssesennes 85
FIgUre C.52. GENEIAte SGE BULLON .cccii i s s e e e s e s e s e e e s e s e e e s e e e e e e e e e e e eeseseseeesesesesasesasesasasnsnsens 85
= (VN O T 2 F- o [T o] Ko To) I 21U i o o TR SRRSOt 85
Figure C.54. soc_mMain_SySYEM.rdf fil@cooiiiiiieeee e st sttt 85
Figure C.55. LAV-AT-E7OESL-3LFGLL56Cccueeruiiieieeriieeitee sttt eieesteeesteesbeeesseesabeesseesbeesseesabeessseesabeeesseesabaeenneesbaeenseenane 85
Figure C.56. Lattice Radiant Device Selector for Main SYStEMc..ciiiciiie et e e tee e e st e s ssaaee e e s beeeeennes 86
Figure C.57. Strategy for Build Generation for IMain SYSTEM.........c.uiiiiiiiii ittt e et e e e eate e e e eabe e e e e bbeeeennes 86
Figure C.58. MAP Analysis Setting for Main System Bit File GENErationccccocueieeciiieeeiiee et eetee e esvee et e e 87
Figure C.59. PAR Setting for Main System Bit File GENEratioNccccciuiiiieiiie ettt et e e eate e e svee e e e breeeeanes 87
Figure C.60. PAR Timing Analysis Setting for Main System Bit File Generationc.cceeeeviiiiiiiieeecciee e 88
= {U Tl O o I | V= (V- [o TSRSt 88
FIGUIE C.62. RUN Al BULTON .. .eiiiiiii e iieee ettt e eetee sttt e s ettt e e et e e e s te e e e e s teeesessteeessaeeeessaeesaaseeesanseeeeansaeesanseessansneeessseeennnes 88
FIGUIE C.63. BIitStrEam File .. .uiiiieiiie ettt et e e sttt e e e sttt e s saate e e s aaeee e s taeeeanteeesanseeeeansaeesasseessnnseeeessseesannes 89
ST = (Ul O oY B Yo Yol g To Yo [STE] «) OSSPSRt 89
Figure C.65. SystemO INItialiZation.........uueeeiiiiiciiiei et e e e e st e e e e e s e bbbt e e e e e e e e e asbbareeeseessnnraereeeeas 89
U N Ol ST Y T Lo F =l 2 U o] o USSP 90
FIgUre C.67. GENEIAte SGE BULTON .cccii i e e e e s e s e s e s e e e s e e e s e e e s e e s se s e seseseseseseeesesesesesasesasnsasens 90
=V O oY J ¥ o [ol o o I TV o T USSRt 90
= (Ul O 2= TR Yo Yol g To Yo [STN o 1 1 [PSSPRRE 90
Figure C.70. LFD2NX-40-8BG256Ceertiirieertieeitesiteesieesteesteesbeesseesabeesbeesabeesseesabeesseesabaesseessbaeenseesbeesnseesaseeenseesnne 90
Figure C.71. Lattice Radiant Device Selector for NOde SYStEMeiiiiiiiii e e e e e s ee e e s ee e e e eanes 91
Figure C.72. Strategy for Build Generation for NOde SYSTEMuiiiiiiiiiiiee et e e 91
Figure C.73. MAP Analysis Setting for Node System Bit File Generationcccccoeveciiiiiii e 92
Figure C.74. PAR setting for Node System Bit File GENerationc..ooeiiiiiiiiiiii e e 92
Figure C.75. PAR Timing Analysis Setting for Node System Bit File Generationcccccceeeeiieciiieeiec e, 93
= (U Oy ST | V= [V F- Lo o TSRS 93
FIGUIE C.77. RUN Al BUTTON ...ciiiiiiie ettt e e see e ttee sttt e e et e e s e tte e e sttt e e e ateeeseaseeeesssseeeasssaeeeansseeesanseeeeansseesannseeesnnseeessnsseeennnes 94
FIGUIE C.78. BIitSTrEaM File....uiiiieeiiiiiiiee ettt et e e sttt e e ettt e e e aeaeeessteee e staeeeasteeesnseeeaansaeeeaanseeesnnseeaessseeeannes 94
T U s I D T=T o] [1V £ 0 T=Y oY o e o ST 95
Figure E.2. Creating New Deployment for MUIti-BOOt..........coiiiiiiiiiiiec et rrer e e e e e e r e e e s 95

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Automate 4.0 I.I.LATTICE

Reference Design

Figure E.3. Select Input File Windowccocueeriiiniiinieenieenneen.
Figure E.4. Advanced SPI Flash Options - Multi-Boot Tab Window .
Figure E.5. Select Output File Window
Figure E.6. Generate Deployment window.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 7

http://www.latticesemi.com/legal

= LATTICE

Tables

Table 2.1.Main SYSTEM MEMOIY IMIAP ..eiiiiiiieieiiiie ettt e st ee e ettt e eetteeestaeeeestaeeesssaeeesssseseassseeasnssasesssseesansssesssssseesssseeeane 17
Table 2.2. NOdE SYSTEM MEMOIY IMIAP ..eccuviieieiiiieceiiee sttt e e ettt e sttt e e e staeeeettaeeesasaeeesssseeeassaeessnsseeasssseeeansssessassssesasressane 19
Table 2.3. EtherConnect IP GIODal REGISTEISciiiciiieeiiee ettt e et e e e see e e st e e e ettaeeesataeeesstseeeessaeeensneeeansseeeannns 21
Table 2.4. EtherConnect IP Chain 1 REGISTEISciiiccuieeeiiieeeeiiee e eeite e st e e e ettt e e e sttee e e s taeeeestaeessaseeeesssseeeessaesesnsseesansresennes 22
Table 2.5. FIFO DIMA REEISTEI IMAP ..cciuuteiieiiiieeite ettt ettt ettt ettt et s b ettt e s bt e bt esab et s bt e s bt e e bt e s beeebee s beeenseeeabaeeseesbeeennneenns 22
Table 2.6. FIFO DMA CONEIOl REEISTEIS.uiiiiieiiiieitieiitt ettt ettt ettt ettt ettt sttt s bt e se e e sbe e sae e s b et e bt e s beeesseesbeeebeesbeeenneeeane 22
Table 2.7. DEST_BASE_ADDR REISTEI ...ccutiiiieitiieitieiitt ettt ettt sttt ettt et e s bt e sa et e bt e e sae e s b et e bt e s beeesseeebaeenseesbeeenneesane 23
Table 2.8. DEST_END_ADDR REZISTEIcicueiiiieiitieitieeite ettt ettt et ettt et tesb et e bt e sb e e sbee s bt e e bt e sabeeebee s beeesseeeabeeenneesbeeenneenane 23
Table 2.9. WL STAtUS REGISTEN ...uviiiciiiiiiiiie ettt etee ettt e e et e e e et e e e st eeestteeeesasaeeesataeeeasssaeessnsseeesssseeeasssesanssseesansresenne 23
Table 2.10. REAA StAtUS REGISTENiiiciiiiiiiiee e ettt e ettt e st ee e e e e et e e e s ta e e eetteeessasaeeesstseeeasssaeesnsseeesssseeeasssessssseeesanssesennes 23
Table 2.11. Motor Control and PDM Data CollECtOr REGISTEISc.uvieeiiieeeeiii e ceeee e etee ettt e ertre e e stre e e e str e e sraaae e e sareeeennes 25
Table 2.12. Motor Control 0 — MinimMUM RPIMcoiiiiiiiiiieeieiiet e eritee sttt e e sttt e ssaateessbeeeesabeeessasaeeesnbseesssssaeesassneessnsseessnnne 26
Table 2.13. Motor Control 1 — MaXimuUm RPIVM......cocuiiiiiiiieieiiie e ecitee st ee e s setee e s staee e e staeeesssaeeessaaeeeesnsseeessnseesssssneessnsseesannn 26
Table 2.14. Motor Control 2 — RPM Pl Control Loop Integrator Gain (K1)eeceeverieneeneerie et 27
Table 2.15. Motor Control 3 — RPM Pl Control Loop Proportional Gain (KP)cccecuereerieneeniieieeieneesiceeeie e 27
Table 2.16. Motor Control 6 — Synchronization Delay and CONTIrol..........coocciiiiiiiiee et eevee e e et e e 27
Table 2.17. DIr€CtION IMAPPINE cocvveiiiiiiie e ittt e ettt e eete e e setteeeestteeeeeteeeestseaeeastaeeeassaseeastasseanssasesanssseeanssaseaassasssassasesansreeennnn 28
Table 2.18. Motor Control Register 7 — TArgEt RPIV......c.uiii e ceee ettt e eete e e ste e st e e e e tte e e e sabaeeesatbeeeeataeesssaeeesnsreeennnns 28
Table 2.19. Motor Status REZISTEIr O — RPIMl........uiiiiiiiee e ciiee ettt e et e st e e e ette e e e etvae e e s tbeeeestaeeesabaaaesnsbaseessassessasesasreseannns 28
Table 2.20. MOtOr Status REGISTEI Lciiiiiiiieiiee ettt s bt sb e s bt e e bt e s bt e e bt e e beeesseesbeeesbeesbeeenneennns 28
Table 2.21. Predictive Maintenance Control REGISLEI Ococueiiiiiiiiiieiieeiee ettt ettt st s b e saee e 29
Table 2.22. Predictive Maintenance Control REGISLEI Lcocuiiiiiiiiiiiiieeiee ettt sttt st s e e saeeeaee 30
Table 2.23. Predictive Maintenance STatus REGISTEIcccuuiiic i cciiee ettt erte e et e e e e tte e e e sabe e e e sbbeeeeataeeesnaaeeeensreeennnes 30
Table 2.24. Predictive Maintenance Current/Voltage Data REGISTEYccvieiiiiiiiieciieeiee ettt estee et esteeeeree s tveeeane e 31
Table 2.25. Predictive Maintenance Current/Voltage Data REGISTEYccvieiieiiiiieiieciee et eeee et e et esteeeeteeestveeeane e 31
Table 2.26. Versa Board SWItCh StatUs REGISTENc.uiiiiiiiie ettt ree e st e e e e tte e e e sba e e e sbbeeeerataeesessaeeeensbeeeannes 31
Table 2.27. Versa Board LED and PMOD CONtrol REISLET ...cccuuiiiieiieeeiiieeeeiie e eseee e stee e sttt e st e e e sate e e enae e s ssnaneeesnseesnnnes 31
Table 2.28. ENCOAEr POSITION REGISTEI ...iiiiiiieieiiiecciiee ettt este e eete e st e et e e e saae e e sttt e e esteeessnseeeesnsseeeansseeesnsseeesasseesannee 32
Table 2.29. PWM_SYNC IRQ STAtUS REEISTENuuviiiiciiieeiiieeeeitiee e eettee e sttt e s ettt e s saaae e e sbteeessaaeessnneeeesnsseesenseessnnseeessnsseesanee 32
Table 3.1. Main System Resource ULIlIZationccceiiiiiiieiiii sttt ee sttt e e e srte e e e naee e e snaaeeesnreeeennes 36
Table 3.2. Main System Total ReSoUrce UtIliZationc..uviiiiiiiiic e e e raare e s 36
Table 3.3. Node System Resource UtIliZationceei ittt e e e et e e e e e s e e s st baa e e e e e e ssnsaareeaens 37
Table 3.4.Node System Total ReSource UtIliZatioNcccuiiiiiiiiiiicieeec e et e s et rar e e e e e e e e raareeee s 37
Table A.1. Predictive Maintenance Training Network TOPOIOZYuuviiiiiiiiiiiie et aee e e e e 54
Table A.1.Example of INfEreNCe OQULCOMESccuviiiiiiiieeiiieeeecee e eete e sttt e e et e e s etaee e e sbeeeeessteeessnseeeesssseesensseeesnsseeesssseesannee 60

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Abbreviations in This Document

A list of abbreviations used in this document.

= LATTICE

Abbreviation

Definition

AHBL Advanced High-performance Bus-Lite

Al Artificial Intelligence

API Application Programming Interface

BLDC Brushless DC

CCcu CNN Co-Processor Unit

CNN Convolutional Neural Network

CPU Central Processing Unit

DMA Direct Memory Access

FIFO First-In-First-Out

GMII Gigabit Media Independent Interface

ISR Interrupt Service Routines

ICMP Internet Control Message Protocol

LATTE Lattice Training Environment

ML Machine Learning

QSPI Quad Serial Peripheral Interface

RGMII Reduced Gigabit Media Independent Interface
RISC-V Reduced Instruction Set Computer-V

RTL Register-Transfer Level

SGMII Serial gigabit media-independent interface
UART Universal Asynchronous Receiver-Transmitter
DDR Double Data Rate

UDP User Data gram Protocol

LPDDR4 Low Power Double Data Rate Generation 4
TSEMAC Tri-Speed Ethernet Media Access Controller

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

The Automate 4.0 Reference Design serves as a comprehensive base for developing a wide range of industrial
solutions, including industrial Ethernet communication protocols like EtherCAT and Profinet, predictive maintenance,
open and closed motor control, and industrial robotics. This reference design is built based on the Lattice Avant™-E
GSRD to provide a robust and flexible platform for industrial applications.

The Automate 4.0 reference design is composed of two primary systems: the main system and the node system. Each
system plays a crucial role in the overall functionality and performance of the solution stack.

1.1. Automate 4.0 System Architecture Overview

1.1.1. Main System

The main system is built around the Avant-E FPGA. The key components and features of the main system include:

e Avant-E base RISC-V: The base RISC-V based SOC system that handles complex computations and control tasks.

e EtherConnect IP: Developed to facilitate Ethernet communication, enabling seamless data transfer between the
main and node systems.

e CNN Co-processor IP: Used for predictive maintenance application, ensuring efficient and accurate performance.

e Interface IP: Provides the necessary interfaces for connecting various peripherals and components within the
system.

e Soft RISC-V SoC Platform: A flexible and programmable system-on-chip that supports the integration of custom IP
blocks and firmware updates.

e Firmware Updates: Includes LWIP (Lightweight IP) and TCP/IP stack to establish a reliable connection with the host
system, allowing for control through the Automate 4.0 user interface.

The main system firmware and IP blocks are designed to enable robust communication and control capabilities, making
it a central hub for managing industrial automation tasks. The current reference design utilizes about 18% of FPGA
resources leaving almost more than half of the resources for customer specific glue logic and IP.

1.1.2. Node System

The node system utilizes the Certus™-NX FPGA, which is also built on a soft RISC-V SoC platform. Key components and

features of the node system include:

e Certus-NX FPGA: Provides a low power FPGA solution for local control and data acquisition tasks.

e Motor Control IP: Implements advanced algorithms for controlling motor speed, direction, and torque, ensuring
precise and efficient motor operation.

e Encoder IP: Used to monitor and provide feedback on motor position, enabling closed-loop control for enhanced
accuracy and performance.

e EtherConnect IP: Facilitates Ethernet communication with the main system, ensuring synchronized operation and
data exchange.

The node system is designed to operate in conjunction with the main system, providing localized control and feedback
for motor operations and other industrial processes.

1.2. Advantages of the Automate 4.0 Reference Design

e Ease of Use: The reference design is user-friendly, with all necessary components and connections pre-configured.
This enables customers to quickly bring their systems online, often within a few hours. The modular nature of the
design allows for easy customization and scalability, making it suitable for a wide range of industrial applications.

e Cost Savings: By providing a ready-to-use reference design, the Automate 4.0 reference design significantly
reduces development time and costs. You can leverage the pre-developed IP and firmware updates to accelerate
their project timelines and reduce overall expenses.

e Low Power design: The Automate 4.0 Reference Design is optimized for energy efficiency, which utilizes the Avant
and Lattice Nexus™ FPGA platforms that use the power optimized LUT-4 (Look-Up Table) architecture.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

In summary, the Automate 4.0 reference design offers an easy-to-use, cost-effective, and low power platform for
developing advanced industrial solutions. Its comprehensive set of components and pre-configured IP ensure that
customers can quickly and efficiently implement their projects, leading to faster time-to-market and reduced
development costs.

1.3. Automate 4.0 Components

The Automate Stack 4.0 release includes the following components:
e System on Chip (SOC)
e Main System IPs
e EtherConnect IP (with RGMII, FIFO DMA, CNN Co-Processor Unit (CCU), SPI Flash Controller, Multiport
extension, TSE MAC, and Reset Synchronizer.
e Node System IPs
e EtherConnect IP (With SGMII/RGMII (PHY or SFP), FIFO DMA, BLDC motor control IP, Data collector for
predictive maintenance
e Modbus, I2C Manager and SPI Manager
e Software
e Firmware (APIs)
e APIs to send instructions to motor control IP, collect status of motors and collect data for predictive
maintenance Compiled TensorFlow-Lite C++ library for RISC-V (Required for neural network inference).
TCP/IP Ethernet stack is also added
e User Interface
e Controls motor, collects status and data for predictive maintenance, displays warning when maintenance
required.
e Machine Learning
e Trained Neural Network for predictive maintenance
e Script to train network with user collected data.
Note: The generic RISC-V subsystem components are excluded from the list of components.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2. Design Overview

2.1. Theory of Operation

The overall architecture is shown in Figure 2.1. The Automate stack 4.0 consists of one Main System (MS) and multiple
Node Systems (NS) (maximum eight in a chain). The host is connected to the MS through ethernet cable. Application
software with user interface running on the host can send commands to the MS and receive motor maintenance data
from the system for Al training. The MS can propagate the commands to NS using OPCUA packets for motor control

and gather maintenance data from NS.

Hosts can also send/receive data from different peripherals connected to node other than motor.

For the main system, the Avant-E device is used for the demo design. For the node system, the Certus-NX Versa board
is used for demo design.

A

Automate
Main System

4

Ethernet Cable
Debug Port

(UART)

A

Automate
Node System

4

1G Interface

Ethernet Cable

_ Ethernet Cable

A

Automate Host PC
Node System (OPCUA Client)

A

Ethernet Cable

Automate
Node System

Ethernet Cable

-

Automate
Node System

Figure 2.1. Lattice Automate Stack 4.0 Top Level Block Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.2. FPGA Design

2.2.1. Main System

The Main System is a System on Chip (SoC) designed for industrial automotive applications. It is integrated with several
built-in Lattice Propel™ IP components, including a UART Controller that facilitates serial communication, QSPI Flash
GPIO that manages general-purpose input/output operations for QSPI flash memory, LPDDR that supports low-power
double data rate memory, and TSEMAC that provides triple-speed Ethernet MAC capabilities and the Scatter-Gather
DMA (SGDMA) enables high-performance data transfers between IPs, eliminating the need for active CPU intervention
and thus, improving overall system performance.

To further support industrial automotive applications, additional Intellectual Property (IP) components are integrated
as part of the Automate Stack IP. These include a CNN Accelerator that boosts performance for convolutional neural
networks, which is essential for advanced Al and machine learning tasks, FIFO DMA that ensures efficient data transfer
between system components using First-In-First-Out Direct Memory Access, and EtherConnect IP that adds advanced
Ethernet control features for improved network communication and management. The Automate Main System delivers
a powerful and flexible platform tailored for industrial automotive applications, ensuring high performance and
reliability. The Main System architecture is shown in Figure 2.2.

Automate Main System (Avant-E)
[l
TSE _ _ | External
[<] i 204 e [<] SGDMA [<] R - T
[l
RISC-V
CPU E
C
_ = _ _ | External
[<] Axi4 ic [»R4 LFODR | g [
[cl=—
[c]=
LEDs/
-
[<] GPIO |t g
System Memory H Axa
Axi4 Ic [c] To [c]= »Fg AP2IC
APB
_ | uarTto
[<] UART | g
[[Je—H
FIFO DMA
g—
Multi
[<] Boot
Config
[[le— =51
CNN Accelerator
-] [
- - Qsel o | External SPI
- = Flash - . Flash
Legend
D Propel Built-in IP
I:l Automate Stack IP
Ethi External
I:I External Hardware E - - Conneerct -+ - PHI::a
Controller
ﬂ Target

Figure 2.2. Automate 4.0 Main System Architecture

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.2.2. Lattice Main System 4.0 Architecture

This section describes architecture, dataflow details, and memory map address of the Lattice Automate Main System
4.0.

2.2.2.1. Lattice Main System 4.0 Architecture

The Main System architecture is shown in Figure 2.2. The AXI Interconnect has four controllers and eight targets.
e Four Controllers: RISC-V RX CPU Instruction Port, RISC-V RX CPU Data Port, FIFO DMA and CNN Co-processor

e Eight Targets: System memory, EtherConnect, FIFO DMA, CNN Co-processor, AXI2APB Bridge, SGDMA, and SPI
Flash Controller

The RISC-V RX CPU, DCFIFO DMA and CNN Co-processor can access data to the shared memory Data Ram, SPI Flash
Controller, EtherConnect, FIFO DMA, CNN Co-processor, and AXI2APB bridge directly and UART, TSE MAC, memory
controller, FPGA Config module, and GPIO through AXI2APB bridge. The UART, EtherConnect, and GPIO can generate
interrupts to RISC-V CPU.

2.2.2.2. Data Flow Details of the Main System 4.0

Automate Main System Multiboot Flow

The Avant-E device multi-boot supports booting from up to six patterns that reside in an external SPI Flash device. The
patterns include a Primary pattern, a Golden pattern, and up to four Alternate patterns, designated as Alternate
pattern 1 to Alternate pattern 4. The Avant-E device boots by loading the Primary pattern from the internal or external
Flash. If loading of the Primary pattern fails, the Avant-E device attempts to load the Golden pattern. When a
reprogramming of the bitstream is triggered through the toggling of the PROGRAMN pin or receiving a REFRESH
command, Alternate pattern 1 is loaded. Subsequent PROGRAMN/REFRESH event loads the next pattern defined in the

Multi-Boot configuration. The bitstream pattern sequence, target address of the Golden pattern, and target addresses
of the Alternate patterns are defined during the multi-boot configuration process in the Lattice Radiant™ Deployment
Tool as shown in Figure 2.3.

Radiant Deployment Tool- project0.ddt™ - | X
File Edit Help

o 2]] E o

o R DR B E D E £ B

External Memory: Advanced SPI Flash
Step 2 of 4: Advanced SPI Flash Options
Options User Data Files Multiple Boot
Multiple Boot
Golden Pattern: C:/Lattice_Automate_Stack/MainSystem/Main_System/Golden_MainSy:
Starting Address: 0x00CB0000 A
[Protect Golden Sector

Mumber of Alternate Patterns: 1 AV

Alternate Pattern 1: | C:/Lattice_Automate_Stack/MainSystem/Main_System/Primary_ ~
Starting Address: 001960000 ~

Next Alternate Pattern to Configure: | Primary Pattern b

Alternate Pattern 2:
Starting Address:

Next Alternate Pattern to Configure: Primary Fattern

Figure 2.3. Multiboot Tab of Deployment Tool

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Automate Main System Bootloader Flow

The Automate design has two firmware binaries and two FPGA bit files. One set of binary and bit file is golden, and the
other one is primary. The Golden image works as baseline version of system. The primary image is an updated version
of the system. The boot loader firmware supports CRC checking and switching between the primary Image and Golden
image. The Firmware has the option to manually boot FPGA image based on CRC check.

Upon performing CRC check on the binary file, if the primary binary got corrupted somehow, the booting occurs from
the golden one, but the bit file also must switch to golden. So, there is the firmware code in flash to switch the bit file
to golden. And the same happens when primary bit file got corrupted. That means booting is done from one of the two
sets of binary and bit file, firstly from primary and then from golden if the CRC check fails for primary set.

The main firmware is stored in the external SPI flash. During booting, the boot loader copies the instruction code from
the external flash to DDR4. Further, it sets up the ISR function pointer to this DDR4 memory address through the
memory controller. The LPDDR4 memory controller to write the instruction code to a specific DDR4 memory location.

Automate Main System Application Flow

The DDR4 memory is divided into two parts, one for the instruction code for booting and the other like it was used in
Automate 4.0 for buffering incoming and outgoing packets.

The SGDMA IP is used as data mover. It converts incoming UDP datagram from user application into AXI4 data and sends
to LPDDR and similarly it converts AXI4 data coming from LPDDR and send it to the user application network stack, which
basically does the data transfer between standard protocols.

RISC-V RX CPU can set the registers inside CNN Co-processor Unit (CCU) and start PDM operation. The CPU can poll
another register in CNN Co-processor Unit (CCU) to check its operation status. RISC-V RX can request for the new data
for predictive maintenance from node PDM data collector by sending instruction though EtherConnect IP.

The PDM data received from node through EtherConnect IP is transferred to data memory with DMA operation using
FIFO DMA block or is sent to host directly through Ethernet through the LPDDR4 using AXI IP and TSE MAC

For the motor control, the commands from the host PC (OPCUA Client) are received in the OPCUA Server running on
RISC-V RX CPU. The RISC-V RX CPU parses the command and sends the data to EtherConnect, which performs the
packetization and send to downstream Node Systems. The RISC-V CPU can gather predictive maintenance data from
downstream Node Systems through EtherConnect and send to the host through Ethernet.

The CPU can read data from EtherConnect through its AXI subordinate port, perform data processing, store the data at
Data Ram, and then send to host. Alternatively, EtherConnect can send downstream data to FIFO DMA through its FIFO
port, and FIFO DMA can write the data-to-data RAM. At the end of every predictive maintenance cycle in SW running on
RISC-V, an update is sent to the host through Ethernet.

RISC-V RX can also communicate with various peripherals connected to nodes through the SPI/I12C/UART interfaces other
than motor through host commands. The data flow from OPCUA Client (Host PC) to OPCUA Server (Main board) and vice
versa is shown below in Figure 2.4.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

Host PC

Ethernet
Port

OPCUA

To Host PC ¢«—— b

To Node Board ——

UART
(Debug Port)

A

Avant Board
(Main System)

FPGA

RGMIIIP g TSE_MAC_IP

A

AXI Interconnect

SGDMA IP

LPDDR4 Memory Controller
(DDR4)

T—+

Ethernet Port

e

EtherControl IP

(RGMII) < RISC-V RX

Figure 2.4. Client to Server Data Flow

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0

16

http://www.latticesemi.com/legal

2.2.2.3. Memory Map

The memory map of Main System is shown in Table 2.1.

Table 2.1.Main System Memory Map

= LATTICE

Base Address End Address Range(bytes) Block

0x40300000 0x40300FFF 4K SPI FLASH CONTROLLER
0x00000000 OxO0O0FFFFF M System Memory
0x40000000 0x40000FFF 1K GPIO

0x40001000 0x40004FFF 16K TSE MAC

0x40090000 0x400903FF 1K UART

0x40092000 0x40092FFF 4K LPDDR4 Mem Controller APB
0x40098000 0x40098FFF 4K SGDMA

0x40097000 0x40097FFF 4K FPGA CONFIG APB
0x40310000 0x40317FFF 32K FIFO DMA

0x40308000 0x4030FFFF 32K EtherConnect
0x40318000 0x40318FFF 4K CNN co-processor
0x80000000 OXBFFFFFFF 1G LPDDR4 AXI

F2000000 F20FFFFF M CLINT (CPU)

FC000000 FC3FFFFF aMm PLIC (CPU)

FO000400 FFFFFFFF 250M RESERVED (CPU)

2.2.3. Node System

The Node System architecture, shown in Figure 2.5, is same as the previous version. However, there is a new Encoder

Subsystem been introduced. In addition, the Motor Control and PDM Data Collector has been enhanced with the
capability to support closed loop feedback system where the motor positions are received from external EnDat Rotary
Encoder periodically for motor speed control during runtime.

The AHBL Interconnect with three target interfaces and 10 controller interfaces connecting to respective IPs, namely:
e AHBL Target Interfaces

e RISC-V CPU Instruction Cache

e RISC-V CPU Data Cache

. FIFO DMA
e AHBL Controller Interfaces
. ISR RAM

e Data Ram (SO and S1)
e Motor Control and PDM Data Collector (SO and S1)
e FIFODMA
e EtherConnect
e SPI Flash Controller with Prefetch Buffer
e AHBL2APB bridge
e Encoder Subsystem
APB Interconnect has five controller interfaces and one target interface connecting to respective IPs, namely:
e APB Target Interfaces
e AHBL to APB Bridge
e APB Controller Interfaces

e GPIO
o |2C
e SPI

e UART (Modbus)
e Encoder Subsystem

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

Refer to Appendix A. Predictive Maintenance with TensorFlow Lite to see the data flow and memory map of the node
system.

- Automate Stack IP
- External Hardware
|:| Propel Built-in IP
n Controller

Target

AHBL to APE Bridge

A

Ethernet (Downstream)

Figure 2.5. Node System Architecture

The Encoder Subsystem consists of the following components:

e APB Interconnect with two targets and one controller.

e SPI Controller IP where APB target interface is connected to the APB Interconnect and SPI controller interface is
connected to the EnDat2.2 Master IP.

e EnDat2.2 Master IP where the target is connected to the controller through the SPI interface of the SPI Controller
IP and EnDat interface is exported out from FPGA to external EnDat Rotary Encoder.

|:| External IP

- External Hardware
I:I Propel Built-in IP
n Controller

Target

SPI Controller

APB Interconnect

|

.
I EnDat 2.2
| Master IP
|

|

|

|

F 3

PWM_SYNC-

Figure 2.6. Encoder Subsystem Architecture

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 18

http://www.latticesemi.com/legal

2.2.3.1. Data Flow

The RISC-V CPU stream its firmware from external SPI Flash through the SPI Flash Controller. The CPU can also access
data to ISR RAM, Data RAM, access the register file inside EtherConnect, and control the registers at FIFO DMA and SPI
Flash Controller. Either RISC-V CPU or FIFO DMA can move the data stored at the register file inside EtherConnect to
Motor Control block. The RISC-V CPU or FIFO DMA can also move the data collected by PDM Data Collector back to

EtherConnect and send out through Ethernet upstream port.

= LATTICE

In addition, the firmware is also responsible to initialize the external EnDat encoder through communication through
SPI Controller and EnDat2.2 Master upon power-up.

2.2.3.2. Memory Map
The Node System memory map is defined in Table 2.2.

Table 2.2. Node System Memory Map

Range
Base Address | End Address Range (Bytes) (Bytges in Size (Kbytes) Block
hex)
0x80000 Ox807FF 2048 800 CPU PICTIMER
0x190000 Ox191FFF 8192 2000 8 CPU Instruction RAM
0x100000 0x107FFF 32768 8000 32 FIFO DMA
0x186C00 0x186FFF 1024 400 1 SPI Controller (Encoder Subsystem)
0x108000 Ox10FFFF 32768 8000 32 EtherConnect
0x184800 Ox184BFF 1024 400 GPIO
0x186000 Ox1863FF 1024 400 12C Master
0x184000 0x1843FF 1024 400 Motor Control and PDM Data
Collector
Port SO
0x185000 Ox185FFF 4096 1000 4 Motor Control and PDM Data
Collector
Port S1
0x0 Ox7FFFF 524288 80000 512 SPI Flash Controller
0x186800 Ox186BFF 1024 400 1 SPI Master
0xC0000 OxCFFFF 65536 10000 64 CPU Data Ram
Port SO
0xEO000 OXEFFFF 65536 10000 64 CPU Data Ram
Port S1
0x186400 Ox1867FF 1024 400 1 UART
0x80800 OxBFFFF 197632 30400 193 RESERVED
0xD0000 OxDFFFF 65536 10000 64 RESERVED
0xFO000 OxFFFFF 65536 10000 64 RESERVED
0x110000 Ox183FFF 468992 74000 458 RESERVED
0x184400 Ox1847FF 1024 400 1 RESERVED
0x184C00 Ox184FFF 1024 400 1 RESERVED

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.3. EtherConnect IP Design Details

2.3.1. Overview of Existing IP

EtherConnect IP block is designed for communication between two boards for information transfer and it is designed
based on the EtherConnect protocol. The physical interface can support speed up-to 1 Gbps (125 MHz clock). It
supports both SGMII and RGMII interfaces in physical layer as well as SFP interface for Node System and only supports
RGMII interfaces in physical layer for Main System.

The EtherConect block can be used as a manager as well as a node based on the SYSTEM_TYPE parameter.

As a manager, EtherConnect IP has the output FIFO interface to send bulk data to DMA FIFO block and as node, it has
the input FIFO interface to receive bulk data from DMA FIFO module.

As a manager, it works in four layers, such as AHBL layer, which is used to have connection with the RISCV CPU and
register interface; application layer, which consists of data generation and sampling layers for the application; protocol
layer, which is used to transmit and receive EtherConnect packets. Lastly, the physical layer transfer data with protocol
layer in GMII protocol standard and it has RGMII and SGMII blocks to transmit or receive data over physical channels in
RGMII or SGMII format.

The frame structure on protocol level is shown in Figure 2.7.

Preamble 55_55_55 3octets
Sfd ds loctet
Sequence num | 8’hxx loctet
Pkt tvpe 2 hxx
loctet
Slave number 6 hxx
Slave data len 8 hxx loctet
Res 2 hxx
Slave ID 6 hxx loctet
SlaveO data S'hxx 8 hxx 32octets
Slavel data 8’hxx 8 hxx 32octets
8 hxx
FCS 2octets
8 hxx
Error indication 8 hxx 1octet

Figure 2.7. Packet Structure

2.3.1.1. Normal Packet

The changes are made for normal packet only. The request and response packet structure of old version is described
below:

The normal frame type (00) has three types of packets:
e Packet type 01: Node Configuration

e Packet type 02: Node Status

e Packet type 03: PDM Data Fetching

For Configuration type packet, the data written in FIFO present in application layer is as follows: the first four bytes
indicate the packet type. The next four bytes indicate the node address. After that, the data is sent in the next four
bytes. The subsequent content of the packet is dummy data (00) for 52 bytes or in a generalized case:
(NODE_DATA_LENGTH - 12).

For Status type packet, the data written in FIFO present in application layer is as follows: the first four bytes indicate
the packet type. The next four bytes indicate the node address. The subsequent content of the packet is dummy data
(00) for 56 bytes or in a generalized case: (NODE_DATA_LENGTH - 8). The response of status packet is 32-bit status
value, which is fetched from a register (CH1_BASE_ADDR + 0x100).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

For PDM type packet, the data written in FIFO present in application layer is as follows: the first four bytes indicate the
packet type. The next four bytes indicate the node address. After that, the data is sent in the next four bytes. The next
four bytes in the packet indicate the data length. The subsequent content of the packet is dummy data (00) for 48
bytes or in a generalized case: (NODE_DATA_LENGTH - 16). The response of PDM packet is 4 kB PDM data which can be
stored in FIFO or can be send out through AXI Bus based on the value of control register.

2.3.2. Architecture

The packet communication remained the same as the previous released version. The request packets from the RISC-V
CPU passes to the node system through the main system connection while the response of the status packets is written
in a FIFO, which can be read by RISC-V CPU using the register BASE_ADDR + 0x2C.

2.3.2.1. Main System

The protocol layer and physical layer remains as it is in the new version. The changes are done in
axi_subordinate_0_bus_control for register addition and ether_connect_manager_data_capture module only for the
response received from node. One FIFO is introduced to store the response of status packet. The depth of FIFO = max
node data length x max number of nodes.

One local parameter, ETHER_EXTEN_EN, decides whether sampling of response in the application capture module is
done using the old architecture or the new architecture.

2.3.2.2. Node System

At Node System, the FIFO is used to store complete sampled data of both configuration packets and status packets.
Each node samples its own data only.

For the configuration packet, an interrupt is generated to indicate that the configuration is applied to the targeted
peripherals (motor, 12C, and SPI) at the targeted node.

For status packet, the status of the targeted peripherals (motor, 12C, and SPI) of the targeted node are stored in the
FIFO and the signal is generated that complete packet has been received in the FIFO and is ready to send response.

2.3.3. Register Map

The register map of the EtherConnect IP remains the same, except that one register is added to read the response of
status the packet, which is highlighted in Table 2.3 and one register (Node Motor Status Register) is removed .The data
is read from the status FIFO when AXI read command is issued for address BASE + 0x2C.

Table 2.3. EtherConnect IP Global Registers

EtherConnect Register Register Function Base Address Access
Name (0x40308000)

DMACTR_R DMA FIFO Enable/AXI Disable Register Base + 0x00 Read/Write
PHLNK_R PHY Link Status Register Base + 0x04 Read
NDACT_R Active Nodes Register Base + 0x08 Read
FSRPDM_R FIFO Status Register for PDM Data CDC Base + 0x0C Read
ETHINTR_R Interrupt Poll Register Base + 0x10 Read
CLRCVD_R Clear Interrupt Received Register Base + 0x14 Read/Write
TX_ALL_STRT_R Transaction start for all chains Base + 0x18 Read/Write
DTOUT_R Node Response PDM Data Register Base + 0x1C Read
IP_STATUS_R IP Busy Status Base + 0x20 Read/Write
AXI_TOUT_R AXI Bus Timeout Count Register Base + 0x28 Write
ND_STAT Node Status Response Base + 0x2C Read

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 2.4. EtherConnect IP Chain 1 Registers

= LATTICE

EtherConnect Register Function Base Address Access
Register Name (0x40308100)
TXSTR_R_1 Start Transaction Register Base + 0x00 Read/Write
PKTHD R_1 Packet Head Register Base + 0x04 Read/Write
FRNUM_R_1 Frame Number Register Base + 0x08 Read/Write
NDCNT_R_1 Number of Node Register Base + 0x0C Read/Write
NDLN_R_1 Node Data Length Register Base + 0x10 Read/Write
MTDT_R_1 Node Request Data Burst Register Base + 0x14 Read/Write
RQDT_R_1 Node Request Type Register Base + 0x18 Read/Write
RQAD R_1 Node Address Register Base + 0x1C Read/Write
CRCNT_R_1 CRC Count Register Base + 0x20 Read
INTR_R_1 Interrupt Info Register Base + 0x24 Read
FSRREQD_R_1 FIFO Status Register Request Data Base + 0x28 Read

. Base + 0x200 to Read
DLY R 1 Node Delay Register 0X2EC

2.4. FIFODMA

This block has two FIFO interfaces, one is active when it is used in the main system to collect the PDM data received by
the EtherConnect manager Bus 0. The other interface is active for node and has the PDM data from the motor control
data collector block. It has a Subordinate and a Manager interface where the Main System is in AX14 interface, while
the Node System is in AHBL interface. The register space for this block is as shown in Table 2.5.

The Subordinate interface is used to control DMA operations by external manager (which is CPU) and the Manager
interface is used to perform for DMA operations.

Table 2.5. FIFO DMA Register Map

Register Name Register Function Address Access
CNTR FIFO DMA Control Register Base + 0x00 Read/Write
DEST_BASE_ADDR Destination Base Address Register Base + 0x04 Read/Write
DEST_END_ADDR Destination End Address Register Base + 0x08 Read/Write
STATUS Write Status Register Base + 0x0C Read
STATUS_RD Read Status Register Base + 0x10 Read
Table 2.6. FIFO DMA Control Registers
CNTR Base +0x00
Byte 3 | | 1 | 0
Name CNTR
Default Reserved | Reserved | Reserved | 0
Access R/W

CNTRI[O]: Used to control read operation.
CNTRI[1]: Used to reset the destination register to destination base address.

CNTR[2-7]: Reserved

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 2.7. DEST_BASE_ADDR Register

= LATTICE

DEST_BASE_ADDR Base +0x04
Byte 3 | 2 | 1 | 0
Name DEST_BASE_ADDR
Default 0 I 0 I 0 | 0
Access R/W
DEST_BASE_ADDR[31:0]: Base Address Location
Table 2.8. DEST_END_ADDR Register
DEST_END_ADDR Base +0x08
Byte 3 | 2 | 1 | 0
Name DEST_END_ADDR
Default 0 | 0 | 0 | 0
Access R/W
DEST_END_ADDR[31:0]: END Address Location
Table 2.9. Write Status Register
STATUS Base +0x0C
Byte 3 | 2 | 1 | 0
Name STATUS
Default Reserved | Reserved | Reserved | 0
Access R
STATUS[2:0]: Write Status
000 = Disabled.
001 = Busy
010 = Done
100 = Error
Others = Reserved
STATUS[3:31]: Reserved
Table 2.10. Read Status Register
STATUS_RD Base +0x1C
Byte 3 | 2 | 1 | 0
Name STATUS_RD
Default Reserved | Reserved | Reserved | 0
Access R
STATUS_RD[2:0]: Read Status
000 = Disabled.
001 = Busy
010 = Done
100 = Error

Others = Reserved
STATUS_RD[3:31]: Reserved

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.5. LPDDR4 Controller

An LPDDR (Low Power Double Data Rate) controller is a specialized memory controller designed to interface with
LPDDR memory devices, which are widely used in mobile and embedded systems due to their low power consumption
and high performance. The controller manages data transfers between the processor and LPDDR memory, ensuring
efficient communication and optimal performance. In this system, LPDDR is used to store RISC-V program code and
data.

For more information about the IP core including register map information, refer to Memory Controller IP Core for
Avant Devices (FPGA-IPUG-02208).

2.6. QSPI Flash controller

A Quad Serial Peripheral Interface (QSPI) is a four-tri-state data line serial interface that is commonly used to program,
erase, and read SPI Flash memories. QSPI enhances the throughput of a standard SPI by four times since four bits are
transferred every clock cycle. A Dual Serial Peripheral Interface (DSPI) uses two tri-state data lines and used to program,
erase and read SPI Flash memories. DSPI performance is a comprise between QSPI and SPI since two bits are transferred
every clock cycle. In Main system, QSPI is used to read main application from the SPI Flash.

For more information about the IP core including register map information, refer to QSPI Flash Controller IP User Guide
(FPGA-IPUG-02248).

2.7. Scatter Gather DMA IP Design Details

A Scatter-Gather Direct Memory Access (SGDMA) controller is a specialized DMA engine designed to handle data
transfers between memory and peripherals efficiently. It supports scatter-gather operations, which allow data to be
transferred in non-contiguous blocks, improving flexibility and performance. In Main system, SGDMA is used to
autonomously handle data transfer of LPDDR to and from TSE MAC with minimum interaction by the CPU.

For more information about the IP core including register map information, refer to SGDMA Controller IP Core (FPGA-
IPUG-02131).

2.8. CNN Co-Processor Unit (CCU)

The CNN Co-Processor Unit (CCU) is used to accelerate inference process for Predictive Maintenance in the main
system.

For more details, refer to CNN Co-Processor Accelerator IP User Guide.

2.9. Motor Control and PDM Data Collector

The Motor Control and PDM Data Collector block has two AHBL subordinate interfaces and one APB manager interface:

e AHBL_SO Interface — access control to motor configuration and status registers for PWM channel output
controlling to external motor driver board.

e AHBL_S1 Interface — access control to predictive maintenance control and status registers for predictive
maintenance data collection from the motor.

e APB_MO Interface —initiate position fetching & update operation to the Encoder Subsystem when the Node
system is running in a closed loop system.

The Motor Control and PDM Data Collector block is capable to be run in both open loop and closed loop system based

on the input control ports exposed on the top level. This block is only available in the Node System. The captured data is

sent to the Main System and processed by the CNN Co-processor unit mentioned in the CNN Co-Processor Unit (CCU)

section. The steps to train the CNN model is further described in Appendix A.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53685
https://www.latticesemi.com/view_document?document_id=53685
https://www.latticesemi.com/view_document?document_id=54084
https://www.latticesemi.com/view_document?document_id=54084
https://www.latticesemi.com/view_document?document_id=53094
https://www.latticesemi.com/view_document?document_id=53094
https://www.latticesemi.com/view_document?document_id=53398

Automate 4.0
Reference Design

= LATTICE

AHBL S1

Interface

Target
Power

| Motor
Status &
Control

Target
RPM

| Vector ‘
Generator

Speed PI
Controller

Position to
RPM
Conversion

PDM
Status &
Control

Quadrature

Generator |

Signal

Processing

SVPWM
(16kHz)

Trenz - TEPO002
Motor Driver Board

u
Channels B

PWM

Figure 2.8. Motor Control and PDM Data Collector

The configuration and status registers accessible through the AHBL_SO Interface and AHBL_S1 Interface are described

in Table 2.11.
Table 2.11. Motor Control and PDM Data Collector Registers
Address
POEL D R Access Reset
Register Name Register Function 0x184000) Access Point Value
(AHBL_S1 Base —
0x185000)

MTRCRO Motor Control Register 0 — Min RPM Base + 0x00 Read/Write AHBL_SO 0x0
MTRCR1 Motor Control Register 1 — Max RPM Base + 0x04 Read/Write AHBL_SO 0x0
MTRCR2 Motor Control Register 2 — RPM PI KI Base + 0x08 Read/Write AHBL_SO 0x0
MTRCR3 Motor Control Register 3 —RPM PI KP Base + 0x0C Read/Write AHBL_SO 0x0
MTRCR4 Reserved Base + 0x10 Read AHBL_SO 0x0
MTRCRS5 Reserved Base + 0x14 Read AHBL_SO 0x0
MTRCR6 Motor Control Register 6 — Sync Delay Base + 0x18 Read/Write AHBL_SO 0x0

and Control
MTRCR7 Motor Control Register 7 — Target RPM Base + 0x1C Read/Write AHBL_SO 0x000A0000
MTRCRS8 Reserved Base + 0x20 Read/Write AHBL_SO 0x0
MTRCR9 Reserved Base + 0x24 Read/Write AHBL_SO 0x0
MTRSRO Motor Status Register 0 - RPM Base + 0x28 Read AHBL_SO 0x0
MTRSR1 Motor Status Register 1 — Limit SW and Base + 0x2C Read AHBL_SO 0x0

System Status
PDMCRO Predictive Maintenance Control Register Base + 0x30 Read/Write AHBL_SO 0x0

0
PDMCR1 Predictive Maintenance Control Register Base + 0x34 Read/Write AHBL_SO 0x0

1
PDMSR Predictive Maintenance Status Register Base + 0x38 Read AHBL_SO 0x0

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

25

http://www.latticesemi.com/legal

= LATTICE

Address
(eLLEL, EDEE- Access Reset
Register Name Register Function 0x184000) Access .
(AHBL_S1 Base - Point Value
0x185000)
PDMDDR Predictive Maintenance ADC Data Base + 0x3C Read AHBL_S1 0x0
Register
PDMQDR Predictive Maintenance ADC Data Base + 0x40 Read AHBL_S1 0x0
Register
BRDSW DIP and Push Button Switches Base + 0x50 Read AHBL_SO 0x0
BRDLEDS LEDs and 7-Segment Base + 0x54 Read/Write AHBL_SO OxFFFFFFFF
Reserved Reserved Base + 0x58 Read N/A N/A
Reserved Reserved Base + 0x5C Read N/A N/A
ENC_POS Encoder Position Base + 0x60 Read AHBL_SO 0x0
Reserved Reserved Base + 0x64 Read N/A N/A
PWM_SYNC_IRQ PWM_SYNC IRQ Status Base + 0x68 Read/Write AHBL_SO 0x0
Reserved Reserved Base + 0x6C Read N/A N/A
Reserved Reserved Base + 0x70 Read N/A N/A
Reserved Reserved Base + 0x74 Read N/A N/A
Table 2.12. Motor Control 0 — Minimum RPM
MTRCRO Base + 0x00
Byte 3 2 1 0
Name RPM_PI_DELAY MTRPOLES Reserved MINPWR
Default 0 0 0 0
Access R/W

MTRCRO[15:8]: Reserved
MTRCRO[7:0]: MINPWR — Minimum power for the initial open loop motor.
Note: The valid combination values of both TQ_PI_DELAY and MINPWR are 10 to (2% -1).
MTRCRO[23:16]: MTRPOLES — Number of motor stator pole pairs. The value must be configured according to the

datasheet for the specific motor. Valid values are up to 32 only.

MTRCRO[31:24]: RPM_PI_DELAY —Is the RPM PI update rate. Valid values are 1 to 255.

Table 2.13. Motor Control 1 — Maximum RPM

MTRCR1 Base + 0x04
Byte 3 2 1 | 0
Name MAXAMPS PWRGAIN MAXRPM
Default 0 0 0 | 0
Access R/W

MTRCR1[15:0]: MAXRPM — Maximum RPM is the upper limit RPM. Valid values are MINRPM to (26 -1).
MTRCR1[23:16]: PWRGAIN — Power gain for the initial open loop motor.
MTRCR1[31:24]: MAXAMPS — Breaker amps for the initial open loop motor.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 2.14. Motor Control 2 — RPM PI Control Loop Integrator Gain (kl)

= LATTICE

MTRCR2 Base + 0x08
Byte 3 | 1 | 0
Name RPMINT_MIN RPMINTK
Default 0 I 0 I 0
Access R/W

MTRCR2[15:0]: RPMINTK — The gain of the Integrator part of the RPM PI control loop. Valid values are 1 to (21 -1).
MTRCR2[31:16]: RPMINT_MIN — The Integrator Anti-Windup threshold. Valid values are 1 to (2 -1).

Table 2.15. Motor Control 3 — RPM PI Control Loop Proportional Gain (kP)

MTRCR3 Base + 0x0C
Byte 3 | 2 1 | 0
Name RPMINT_LIM RPMPRPK
Default 0 | 0 0 | 0
Access R/W

MTRCR3[15:0]: RPRMPRPK — The gain of the Proportional part of the RPM PI control loop. Valid values are 1 to (21 -1).
MTRCR3[31:16]: RPMINT_LIM — The Integrator Anti-Windup Clamp. Valid values are 1 to (2% -1).

Table 2.16. Motor Control 6 — Synchronization Delay and Control

MTRCR6 Base + 0x18
Byte 3 2 | 1 | 0
Name MTRCTRL SYNCDLY
Default 0 0 | 0 | 0
Access R/W

MTRCR6[21:0]: SYNCDLY? — Is the Motor control delay to compensate for Ethernet daisy-chain and processing delay.
Used to synchronize starting and stopping of multiple motors simultaneously. Valid values are 0 to (222 -1).
MTRCR6[23:22]: MTRCTRL_SYNDLYSF! — Sync Delay Scale Factor
00 = Disable Sync Delay (single motor control or sync not used).
01 = Sync Delay Units is nanoseconds (10)
10 = Reserved
11 = Reserved
MTRCR6[24]: RESET_PI — Reset the RPM PI Control
0 = Normal Operation
1 = Force the output to match the input (zero input values force the output to default of
120 rpm)
MTRCR6[25]: STOP — Hold the Motor in Position
0 = Normal Operation
1 = Stop the motor rotation
MTRCR6[26]: Reserved
MTRCR6[27]: ESTOP — Emergency Stop
0 = Normal Operation.
1 = Engage E-Brakes without sync delay or MTR_ENGAGE.!
MTRCR6[28]: ENABLE — Enable Motor Drivers
0 = Disable Motor Drivers
1 = Enable Motor Drivers

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

MTRCR6[29]: Reserved
MTRCR6[30]: DIRECTION — Direction of motor depending on the MTR_TYPE value.

Table 2.17. Direction Mapping

MTR_TYPE Direction
0 0 = Clockwise Rotation, 1 = Counter-Clockwise Rotation
1 1 = Clockwise Rotation, 0 = Counter-Clockwise Rotation

MTRCR6[31]: ENGAGE — Sync Signal to latch all Control Registers from AHBL clock domain (50—100 MHz) to Motor clock
domain (20 MHz). Write to all other control registers first (including this one with this bit off). Write to this register (read-
modify-write) to set this bit. It can also be used to synchronize multiple nodes.

0 = No Updates to Motor or PDM Control registers.

1 = Transfer all control register from AHBL holding registers to Motor PDM active registers.

Table 2.18. Motor Control Register 7 — Target RPM

MTRCR?7 Base + 0x1C
Byte 3 2 1 | 0
Name Reserved RPMTOL TRGRPM
Default 0 0 0 | 0
Access R/W

MTRCR7[15:0]: TRGRPM — Target RPM. Valid values are 0 to (2%¢ -1).

MTRCR7 [16]: MTR_TYPE — The value of this bit determines the behavior of the value in the DIRECTION to be
interpreted by the Motor Control IP.

Note: For Anaheim motor, this bit must be set to 0.

MTRCR7 [31:17]: Reserved

Table 2.19. Motor Status Register 0 — RPM

MTRSRO Base + 0x28
Byte 3 | 2 1 | 0
Name Reserved MTRSTRPM
Default 0 | 0 0 | 0
Access R
MTRSRO[15:0]: MTRSTRPM — Current Motor RPM. Valid values are 0 to (226 -1).1
MTRSRO[31:16]: Reserved.
Table 2.20. Motor Status Register 1
MTRSR1 Base + 0x2C
Byte 3 | 2 | 1 | 0
Name MTRSR1
Default 0 | 0 | 0 | 0
Access R

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

MTRSR1[0]: MTRSTR_MOV — Motor Moving
0 = Motor Stopped or coasting
1 = Motor Moving under control
MTRSR1[1]: ACCEL — Motor Accelerating
0 = Motor Not Accelerating
1 = Motor Accelerating
MTRSR1[2]: DECL - Motor Deaccelerating
0 = Motor Not Deaccelerating
1 = Motor Deaccelerating
MTRSR1[3]: RPM_LOCK - Motor at Target RPM
0 = Motor Not @ Target RPM
1 = Motor @ Target RPM
MTRSR1[4]: MTRSTR_STOP
0 = Motor not stopped
1 = Motor at zero RPM
MTRSR1[5]: MTRSTR_VLD_RPM
0 = RPM to Theta period calculation is still in process or invalid RPM request
1 = RPM to Theta period calculation is complete
MTRSR1[6]: |_LOOP_CONTROL
0 = Open Loop
1 = Close Loop
MTRSR1[7]: DRIVE_FAULT
0 = Drive fault not occurred.
1 = Drive fault occurred. This bit is coming from motor driver board that driving to the actual motor when
overcurrent fault detected from protection circuit.
MTRSR1[8]: ECB_TRIPPED
0 = ECB tripped not occurred.
1 = ECB tripped occurred due to the feedback current received from motor driver board exceeded the value
configured to MAXAMPS.
MTRSR1[10:9]: ENC_POS_BIT
2’b00 = Reserved
2’b01 = EnDat Encoder.
2’b10-2’b11 = Reserved
MTRSR1[30:11]: Reserved
MTRSR1[31]: ENC_LINK_STAT
0 = Encoder link is not established.
1 = Encoder link is established.

Table 2.21. Predictive Maintenance Control Register 0

PDMCRO Base + 0x30
Byte 3 | 2 | 1 | 0
Name PDMCRO
Default 0 | 0 | 0 | 0
Access R/W

PDMCROI[0]: START — Start PDM data collection.
0 = Collection not started
1 = Collection started
PDMCRO[1]: PKDTEN — PDM Normalization Peak Detect Enable
0 = PDM Peak Detect is Disabled
1 = PDM Peak Detect is Enabled

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

PDMCRO[2]: FOLDEN — Enable Single Folding of PDM data
0 = Single Fold disabled
1 = Single Fold enabled
PDMCRO[3]: 2FOLDEN — Enable Double Folding of PDM data. All PDM training data was captured using Double Folding.
0 = Double Folding disabled
1 = Double Folding enabled
PDMCRO[4]: CONTINUOUS — Collect data as long as START = 1.
0 = Fixed — Collect PDM data for set number of rotations
1 = Continuous — Collect PDM data continuously (counting rotations in status reg)
PDMCRO[5]: TBD
PDMCRO[6]: CALIB — ADC offset calibration
0 = Normal operation
1 = Calibrate ADC offsets (motor not running)
PDMCRO[7]: ADCH — ADC Channel Select for PDMDDR and PDMQDR registers
0 = ADC Channel = Amps
1 = ADC Channel = Volts
PDMCRO[15:8]: PREREVS — Pre-Data Collection Revolutions
Number of Theta (Field Vector) revolutions to ignore before Data Collection. All PDM training data is captured using a
value of 15.
PDMCRO[31:16]: DCREVS — Data Collection Revolutions
Theta (Field Vector) revolutions to capture PDM data (armature revs scale based on number of motor stator poles.

The motor used for training has 4-poles — 16 Theta rotations equate to four motor shaft rotations). Valid values 1 to
65,536. All PDM training data was captured using 200 rotations.

Table 2.22. Predictive Maintenance Control Register 1

PDMCR1 Base + 0x34
Byte 3 | 2 | 1 | 0
Name PDMCR1
Default 0 | 0 | 0 | 0
Access R/W
PDMCR1: TBD
Table 2.23. Predictive Maintenance Status Register
PDMSR Base + 0x38
Byte 3 | 2 | 1 | 0
Name PDMSR
Default 0 | 0 | 0 | 0
Access R

PDMSR [0]: DONE — PDM activity status
0 =PDM is not done with collecting data
1 =PDM is done with collecting data
PDMSR [1]: BUSY — PDM activity status
0 =PDM is not active
1 =PDM is busy collecting data
PDMSR [2]: CAL_DONE — ADC Offset Calibration status
0 = Offset calibration is not done
1 = Offset calibration is done
PDMSR [3]: READY — PDM Data Collector status
0 = Not ready to collect data
1 = Ready to collect data

www.latticesemi.com/legal

http://www.latticesemi.com/legal

PDMSR [15:4]: Reserved

= LATTICE

PDMSR [31:16]: PDMSR_ROT — Current count of Theta rotations PDM data has been collected for.

Table 2.24. Predictive Maintenance Current/Voltage Data Register

PDMDDR Base + 0x3C
Byte 3 | 2 1 | 0
Name ADC1 ADCO
Default 0 | 0 0 | 0
Access R
PDMDDR [15:0]: ADCO Voltage or Current reading Phase A?
PDMDDR [31:16]: ADC1 Voltage or Current reading Phase B!
Table 2.25. Predictive Maintenance Current/Voltage Data Register
PDMQDR Base + 0x40
Byte 3 | 2 1 | 0
Name ADC3 ADC2
Default 0 | 0 0 | 0
Access R
PDMAQDR [15:0]: ADC2 Voltage or Current reading Phase C*
PDMAQDR [31:16]: ADC3 Voltage or Current reading of DC supply?
Table 2.26. Versa Board Switch Status Register
BRDSW Base + 0x50
Byte 3 2 1 0
Name Reserved Reserved Reserved PBSW
Default 0 0 0 0
Access R
PBSW [0]: SW5 — Pushbutton 2
0 = Switch active (pressed)
1 = Switch inactive
PBSW [1]: SW3 — Pushbutton 1
0 = Switch active (pressed)
1 = Switch inactive
PBSW [2]: SW2 — Pushbutton 3
0 = Switch active (pressed)
1 = Switch inactive
PBSW [7:3]: Reserved.
Bits [31:8]: Reserved.
Table 2.27. Versa Board LED and PMOD Control Register
BRDLEDS Base + 0x54
Byte 3 2 1 0
Name Reserved Reserved 7SEG LED
Default OxF OxF OxF OxF
Access R/W
LED [0]: LED D18 —0 = On, 1 = Off

LED [1]:
LED [2]:
LED [3]:

LED D19 -0 =0n, 1 = Off
LED D20 -0 =0n, 1 = Off
LED D21 -0=0n, 1 = Off

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

LED [4]: LED D22 - 0 = On, 1 = Off
LED [5]: LED D23 -0 = On, 1 = Off
LED [6): LED D24 — 0 = On, 1 = Off
LED [7]: LED D25 -0 = On, 1 = Off

7SEG [0]:
7SEG [1]:
7SEG [2]:
7SEG [3]:
7SEG [4]:
7SEG [5]:
7SEG [6]:
7SEG [7]:

D36 Segment a—0=0n, 1 = Off
D36 Segment b —0=0n, 1 = Off
D36 Segment c—0 = On, 1 = Off
D36 Segment d —0 =0On, 1 = Off
D36 Segment e —0 = On, 1 = Off
D36 Segment f — 0= 0On, 1 = Off
D36 Segment g —0=0n, 1 = Off
D36 Segment dp —0 = On, 1 = Off

Bits [31:16]: Reserved.

Table 2.28. Encoder Position Register

PDMQDR Base + 0x60
Byte 3 | 2 | 0
Name
Default 0 | 0 | 0
Access

ENC_POS [31:0]: Motor position received from Encoder. The resolution depends on the specific Encoder model used.
For Endat Encoder, it is up to resolution of 25 bits.

Table 2.29. PWM_SYNC IRQ Status Register

PDMQDR Base + 0x60
Byte 3 | 2 0
Name Reserved PWM_SYNC_IRQ
Default 0 | 0 0
Access R

PWM_SYNC_IRQ [0]: IRQ status whenever PWM_SYNC is issued out from Motor Control and PDM Data Collector IP.
PWM_SYNC_IRQ [7:1]: Reserved.

2.10. SPI Controller IP

The Serial Peripheral Interface (SPI) is a high-speed synchronous, serial, and full-duplex interface that allows a serial
bitstream of configured length, 8, 16, 24, or 32 bits to be shifted into and out of the device at a programmed bit-
transfer rate. The Lattice SPI Controller IP Core is normally used to communicate with external SPI target devices such
as display drivers, SPI EPROMS, and analog-to-digital converters. The SPI Controller IP is used to be integrated in Node
System SoC design as defined in node system top level architectural diagram. This IP can be controlled by C/C++ APIs of
node system CPU to read/write data from/to certain SPI based peripheral/sensor. These C/C++ based APIs can be
controlled by Main System as well.

For the SPI controller IP within Encoder Subsystem, it is used to communicate with the third-party Encoder Master IP
for data communication on the Encoder initialization and status monitoring purpose.

For more details, refer to SPI Controller IP User Guide (FPGA-IPUG-02069).

2.10.1. SPI Controller Register Map

For the register description, refer to the chapter 5 from SPI Controller IP User Guide (FPGA-IPUG-02069) for more
details.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52473
https://www.latticesemi.com/view_document?document_id=52473

= LATTICE

2.10.2. Programming Flow

2.10.2.1. Initialization

The following SPI Controller registers must be set properly before performing the SPI transaction:
e CHP_SEL_REG - Set 1'b1 to the bit for the corresponding target. Set 1'b0 to other bits.

e CHP_SEL_POL_REG - Can be configured once after reset since this setting is usually fixed.

e CLK_PRESCL_REG — Set based on target sclk_o frequency.

e CLK_PRESCH_REG - Set based on target sclk_o frequency.

The host device needs to update the above registers only when SPI Controller is switching to different target device. No
need to perform the initialization again if the next transaction is for the currently selected target device.

For more details, refer to SPI Controller IP User Guide (FPGA-IPUG-02069).

2.10.2.2. Transmit/Receive Operation
For more details on the general recommended operation flow, refer to SPI Controller IP User Guide (FPGA-IPUG-02069).

For the SPI controller IP within Encoder Subsystem, the following sequence is used for data communication to any
register defined in the third-party Encoder Master IP during Encoder initialization stage:

Write to FIFO_RST_REG to assert reset on both TX and RX FIFOs in the SPI Controller.

Write to INT_STAT_REG to reset all interrupt status bits in the SPI Controller.

Write to FIFO_RST_REG to de-assert reset on both TX and RX FIFOs in the SPI Controller.

Write to WORD_CNT_RST_REG to reset the word count in the SPI Controller.

Write to TGT_WORD_CNT_REG according to the number of words to transfer in the SPI Controller.

Write n-word data to WR_DATA_REG, amounting to less than or equal to Transmit FIFO depth. If target n-word is
greater than the Transmit FIFO depth, check the interrupt for Transmit FIFO full, INT_STATUS_REG.tx_fifo_full_int,
before writing data to WR_DATA_REG to avoid data loss.

Clear the pending interrupts in INT_STATUS_REG as needed.

Read INT_STATUS_REG. Check if the pending interrupt is tr_cmp_int. This indicates that the SPI target has
completed transmitting the target n-word data.

9. Clear the pending interrupt in INT_STATUS_REG.
10. If CFG_REG.only_write = 1'b0, read the n-word data in RD_DATA_REG.

Note: Based on the third-party Encoder Master IP specification, two header bytes are required to be transmitted.

oV ks wN R

2.11. 12C Controller IP

The 12C (Inter-Integrated Circuit) bus is a simple, low-bandwidth, short-distance protocol. It is often seen in systems
with peripheral devices that are accessed intermittently. It is commonly used in short-distance systems, where the
number of traces on the board must be minimized. The device that initiates the transmission on the 12C bus is
commonly known as the Controller, while the device being addressed is called the Target. The I12C Controller IP is used
to be integrated in Node System SoC design as defined in node system top level architectural diagram. This IP can be
controlled by C/C++ APIs of node system CPU to read/write data from/to certain I12C based peripheral/sensor. These
C/C++ based APIs can be controlled by Main System as well.

For more information about the IP core including register map information, refer to 12C Controller IP User Guide (FPGA-
IPUG-02071).

2.12. UARTIP

The Universal Asynchronous Receiver/Transmitted (UART) Transceiver IP core performs serial-to-parallel conversion of
data characters received from a peripheral UART device and parallel-to-serial conversion of data characters received
from the host locater insider the FPGA through an APB interface. In this system, UART is usually connected to terminal
character printing and debugging purpose.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52473
https://www.latticesemi.com/view_document?document_id=52473
https://www.latticesemi.com/view_document?document_id=52458
https://www.latticesemi.com/view_document?document_id=52458

= LATTICE

For more information about the IP core including register map information, refer to UART IP User Guide (FPGA-IPUG-
02105)

2.13. EnDat 2.2 Master IP

The EnDat 2.2 Master IP handles the communication with EnDat Rotary Encoder. This simplifies the transmission of
position data and additional data to the higher-level application.

The EnDat 2.2 Master IP consists of the following interfaces:

e EnDat interface that communicate to the external EnDat Rotary Encoder during initialization stage as well as the
normal operation stage for control and monitoring.

e SPlinterface for communication with SPI Controller where the initialization sequence is performed by CPU. During
normal operation, the Motor Control and PDM Data Collector initiates the transaction through the SPI Controller
periodically to retrieve encoder position values through receive registers as defined in the EnDat 2.2 Master IP.

For more details, refer to the representative through the Heidenhain website to inquire about EnDat 2.2 Master IP.

PWM_SYNC
EnDat 2.2 Master IP
h 4
EnDat
Interface SPI
< > EnDat and S'SI SPI1Slave < >
Protocol Engine (Interface)

Control and
Status
Registers

Figure 2.9. EnDat 2.2 Master IP Core Functional Block Diagram

2.14. SPI Flash Controller

The SPI Flash Controller is designed to stream data from external flash to FPGA using quad SPI data lines through
execute-in-place (XiP) access. It has a prefetch buffer to enable cache feature for internal block of FPGA. This block
does not have any configuration register for controlling as the basic settings (static configuration) are configured only
during build generation. This block does not support flash data write operation as it is only used in the Node System
SoC only for instruction streaming to RISC-V from external SPI flash. This block is only supporting Micron and Macronix
currently.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52880
https://www.latticesemi.com/view_document?document_id=52880
https://www.heidenhain.com/

= LATTICE

SPI Flash Controller

Prefetch |q—
Buffer

Quad SPI
AHBL_S Interface

Interface

Figure 2.10. SPI Flash Controller IP Core Functional Block Diagram

2.15. TSE MAC

Tri-Speed Ethernet Media Access Controller (TSEMAC) IP core is a complex core containing all necessary logic,
interfacing and clocking infrastructure necessary to integrate an external industry-standard Ethernet PHY with an
internal processor efficiently and with minimal overhead. The TSEMAC IP core supports the ability to transmit and
receive data between the standard interfaces, such as APB or AHB-Lite, and an Ethernet network. The main function of
TSEMAC IP is to ensure that the Media Access rules specified in the 802.3 IEEE standard are met while transmitting a
frame of data over Ethernet. On the receiving side, the TSEMAC extracts different components of a frame and transfers
them to higher applications through the FIFO interface. In this system, TSEMAC is configured to RGMII mode and MDIO
interface is used to control the external PHY control and status registers.

For more information about the IP core including register map information, refer to Tri-Speed Ethernet MAC IP User
Guide (FPGA-IPUG-02084).

2.16. FPGA Config Module Design

The Multi-Boot Configuration is used to trigger an internal FPGA REFRESH/PROGRAMN command to LMMI logic. This
core IP implements an APB endpoint which decodes the RISC-V CPU command data. The LMMI host FSM inside is used
to execute the soft reset to load the next or alternate bitstream and application software data onto the FPGA.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52476
https://www.latticesemi.com/view_document?document_id=52476

= LATTICE

3. Resource Utilization
The resource utilization for the Main System is shown in Table 3.1 and Table 3.2.

Table 3.1. Main System Resource Utilization

. . LL.IT4 L.UT4 PFU 1/0 1/0 DSP

Slls8 LUT4 Logic Dlsg;:)htlxlted T::II: Registers | Registers | Buffers | MULT EBR
soc_golden_gsrd 46600(9) 16224(0) 6696(0) | 43618(2) 2(0) 107(46) | 10(0) 205(0)
apb_interconnect0_inst 108(0) 0(0) 0(0) 6(0) 0(0) 0(0) 0(0) 0(0)
axi2apb0_inst 253(0) 0(0) 54(0) 198(0) 0(0) 0(0) 0(0) 0(0)
axi4_interconnectO_inst 11467(0) 6522(0) 712(0) | 11308(0) 0(0) 0(0) 0(0) 0(0)
axi4_interconnectl_inst 2287(0) 1764(0) 90(0) 2955(0) 0(0) 0(0) 0(0) 0(0)
axi_register_slice0_inst 165(1) 0(0) 0(0) 307(0) 0(0) 0(0) 0(0) 0(0)
cnn_coproccesor0_inst 711(0) 0(0) 374(0) | 1009(0) 0(0) 0(0) 4(0) 0(0)
cpuO_inst 4980(0) 252(0) 1262(0) | 3404(0) 0(0) 0(0) 6(0) 15(0)
etherconnect0_inst 5109(0) 96(0) 894(0) | 2944(0) 0(0) 0(0) 0(0) 17(0)
fifo_dmal_inst 543(0) 0(0) 294(0) | 613(0) 0(0) 0(0) 0(0) 8(0)
gpio0_inst 115(0) 0(0) 0(0) 97(0) 0(0) 8(0) 0(0) 0(0)
Ipddrd_mc_contr0_inst 7871(0) 1482(0) 1056(0) | 8992(0) 0(0) 49(0) 0(0) 25(0)
mbconfig0_inst 14(0) 0(0) 0(0) 64(0) 1(0) 0(0) 0(0) 0(0)
mpmc0_inst 3027(0) 714(0) 350(0) | 4173(0) 0(0) 0(0) 0(0) 18(0)
o0sc0_inst 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
pll0_inst 22(0) 0(0) 0(0) 15(0) 0(0) 0(0) 0(0) 0(0)
gspi0_inst 3104(0) 0(0) 346(0) | 2149(0) 0(0) 4(0) 0(0) 0(0)
rst_syncO_inst 43(0) 0(0) 32(0) 36(0) 0(0) 0(0) 0(0) 0(0)
sgdma0_inst 1519(0) 0(0) 556(0) | 2085(0) 0(0) 0(0) 0(0) 8(0)
sysmem0_inst 1248(0) 0(0) 180(0) | 692(0) 0(0) 0(0) 0(0) 112(0)
tse_macO0_inst 2741(0) 3840(0) 412(0) | 1842(0) 0(0) 0(0) 0(0) 2(0)
tse_to_rgmii_bridge0_inst 620(0) 1554(0) 36(0) 119(0) 0(0) 0(0) 0(0) 0(0)
uart0_inst 644(0) 0(0) 48(0) 608(0) 1(0) 0(0) 0(0) 0(0)
Table 3.2. Main System Total Resource Utilization

LUT4 70410

PFU Register 44520

1/0 Buffers 85

EBR 157

The resource utilization for the Node System is shown in Table 3.3 and Table 3.4.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 3.3. Node System Resource Utilization

= LATTICE

. . LL.jT4 L.UT4 PFU 1/0 1/0 DSP Large
Blocks LUT4 Logic DIS:II_\bI;ted T:::: Registers | Registers | Buffers | MULT EBR RAM
soc_node_top 15818(2) 702(0) |4768(0)|13061(1)| 19(4) | 77(65) | 27.5(0) | 70(0) 1(0)
dut_inst 15816(1) 702(0) |4768(0)|13060(0)| 15(0) | 12(0) | 27.5(0) | 70(0) 1(0)
ISR_RAM_inst 50(0) 0(0) 0(0) 30(0) 0(0) 0(0) 0(0) 4(0) 0(0)
ahbl0_inst 188(0) 0(0) 0(0) 505(0) 0(0) 0(0) 0(0) 0(0) 0(0)
ahbl2apb0_inst 286(0) 0(0) 0(0) 190(0) 0(0) 0(0) 0(0) 0(0) 0(0)
apb0_inst 28(0) 0(0) 0(0) 8(0) 0(0) 0(0) 0(0) 0(0) 0(0)
cpu0_inst 2608(2) 0(0) 432(0) | 1659(2) | 0(0) 0(0) 0(0) 2(0) 0(0)
dma_fifo_inst 477(0) 0(0) 310(0) | 545(0) 0(0) 0(0) 0(0) 16(0) 0(0)
encoder_subsys_inst 2971(0) 0(0) 480(0) | 1914(0) 4(0) 0(0) 0(0) 2(0) 0(0)
ether_control_inst 3116(0) 288(0) |1282(0)| 3053(0) | 0(0) 6(0) 0(0) 27(0) 0(0)
gpio0_inst 64(0) 0(0) 0(0) 50(0) 3(0) 0(0) 0(0) 0(0) 0(0)
i2c_master0_inst 435(0) 24(0) 126(0) | 506(0) 0(0) 2(0) 0(0) 0(0) 0(0)
motor_control_data_collector_inst | 3164(0) 366(0) 2004(0) | 3888(0) 3(0) 0(0) | 27.5(0) | 18(0) 0(0)
pllO_inst 21(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
spi_flash_controllerQ_inst 154(0) 0(0) 38(0) 191(0) 4(0) 4(0) 0(0) 1(0) 0(0)
spi_master0_inst 280(0) 24(0) 50(0) | 307(0) 0(0) 0(0) 0(0) 0(0) 0(0)
sysmemO_inst 102(0) 0(0) 0(0) 68(0) 0(0) 0(0) 0(0) 0(0) 1(0)
uart0_inst 198(0) 0(0) 46(0) | 146(0) 1(0) 1(0) 0(0) 0(0) 0(0)
Table 3.4.Node System Total Resource Utilization
LUT4 21288
PFU Register 13061
1/0 Buffers 77
EBR 70

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4. Firmware

4.1. Main System Boot Flow

System Memory QSPI Flash DDR
-boot- . Pri . Pri
! boqt u-boot.bin r|maryTApp u-boot.bin rlmaryTApp
spl.bin Crc.bin Crc.bin
o0 1 0x21A0000 mzsxxooooM

2 3

Reset Vector Ox0

Figure 4.1. Main System Boot Flow

Below is the main system boot up sequence:

1. U-Boot SPLis run upon power up.
2. SPL copy U-Boot Proper from flash address 0x21A0000 to DDR address 0x80100000 and jump to 0x80100000.

3. U-Boot Proper copy FreeRTOS application from flash address 0x28A0000 to 0x80000000 and jump to 0x80000000.

4.2. Node System Boot Flow
There is no bootloader for node system. The node system runs the firmware from the SPI flash XIP. Refer to the Node
System APIs for more information.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5. Software APIs

5.1. Main System

5.1.1. Tasks of the Main System

The Main System acts as an interface between the user interface and the node-system, which controls the motor IP.
The commands are then sent to the nodes for configuration through EtherConnect IP. The Main System also enables
the user interface to monitor various parameters of the motors. The system also receives commands from the GPIO
switches attached on the board and sends these commands to the nodes for configuration through EtherConnect as
well.

The tasks to be carried out by the Main System can be categorized as follows:

System Initialization

This APl is used to configure the EtherConnect and establish communication between the Main system and nodes.
This takes place as soon as there is a power cycle or reset is pressed.

Handle all the interrupts (GPIO, EtherConnect) and respond to the interrupts by taking appropriate actions.
Communication with the host system, Node System, and mechanical switches occur through interrupts and the
Main System takes appropriate actions based on the interrupts caused. The priority order of all the interrupts is
GPIO > EtherConnect.

Switch Configuration over GPIO

You can start, stop, accelerate, and decelerate the motors with the help of switches provided. The Main System
configures the node motor IP as per the switch configuration.

Communicate with host system user interface over Ethernet

The host system user interface sends configuration data and status check commands to the Main System, and the
Main System responds based on the command.

Communicate with Node System and motor IP over EtherConnect

As per the commands received by the Main System, it creates particular burst packets to send to the Node System,
that the Node System then receives and implements them. This communication between the main and Node
System happens over EtherConnect and at a given time, a maximum of 256 bytes can only be transmitted from
either direction.

Below are the available APIs for the operations:

ISR3_ EtherConnect

static void EtherConnect _isr (void *ctx)

The primary function of the EtherConnect ISR function is to set the interrupt flag, acknowledge the interrupt, and
return a value. The EtherConnect interrupt is used as an acknowledgement of the completion of a single
transaction of a command sent by the Main System to the Node System. The IRQ value for EtherConnect is IRQ3.
System Initialisation API

int system_initialisation (void)

This APl is present in the main.c file. It does not take any parameter and returns an integer value. It returns 0 if
everything is successfully completed or a — 1 if there is an error.

This APl is used to establish communication between the Main System and the Node System. It enables the DMA
FIFO module and sends 10 broadcast packets to detect the number of nodes available and active in the whole
setup. By reading the PHY Link Status register, it affirms whether the communication is established or not, and
accordingly, turns ON the Main System LEDs. This APl then sends three training packets and one normal packet to
the Node System through the EtherConnect to affirm the connection establishment with the Node System.
Motor Configuration API

int motor_config_api(uint32_t address, uint32_t data, uint32_t multi)

This APl is present in the main.c file. It needs three parameters namely:

e address: signifies a register in the Motor Control IP

e data: what needs to be written in that register

e multi: data to be transmitted on multiple chains or selected chains only

It returns the following integer values:

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e 0:if everything is correct

e —1:if there was any error

The APl is called when there is a requirement to configure a register in the Motor Control IP of the Node System.
The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst
packet indicates that a particular packet is for Motor Configuration and for which nodes this packet is intended.
Once the burst packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a
Start Transaction Register. After the Node System completes the task successfully, the Main System receives an
interrupt and validates the value of the interrupt info register. Upon the confirmation of the value of the interrupt
info register, this APl returns a 0 value or a —1 if there is an error.

Motor Status API

int motor_status_api(uint32_t address, uint32_t multi)

This APl is present in the main.c file. It needs one parameter:

e address: signifies a register in the Motor Control IP

e multi: EtherConnect packet to be transmitted on multiple chains or selected chains only

It returns the following integer values:

e 0:if all tasks are successfully completed

e —1:ifthereisan error

The API is called when there is a requirement to read a register in the Motor Control IP of the Node System.

The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst packet
indicates that a particular packet is for Motor Status Read and for which nodes this packet intended. Once the burst
packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start Transaction
Register. After the Node System has taken appropriate actions successfully, the Main System receives an interrupt,
and it validates the value of the interrupt info register. Upon the confirmation of the value of the interrupt info
register, this APl returns a O value or a -1 if there is an error.

PDM Data Fetch API

int pdm_data_fetch_api(uint32_t total_size, uint32_t node_addr, uint32_t pdm_data_base_addr)

The API is present in the main.c file. It needs one parameter:

e total_size: the size of the PDM data required from user interface

e node_addr: node select value sent in packet

e pdm_data_base_addr: PDM base address

It returns the following integer values:

e 0:if all tasks are successfully completed

e —1l:ifthereisan error

The API is called when there is a requirement to read a bulk maintenance data from the Motor Control IP of the
Node System.

The maximum data that can be transferred in a single transaction from node to Main System is 256 bytes.
Therefore, if the total_size is larger than 256 bytes, chunks of 256 bytes are requested one by one until the
total_size requirement is met.

This API first configures the DMA register by writing the destination base and destination end address in specific
registers. The API creates burst packets which are sent to the Node System over EtherConnect. The header in the
burst packet indicates that a particular packet is for PDM Data Fetch and for which node this packet intended.
Once the burst packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a
Start Transaction Register. After the Node System completes the task successfully, the Main System receives an
EtherConnect interrupt, and it validates the value of the interrupt info register. The value of the DMA status
register is to be validated as confirmation of the same. A successful validation signifies that a single chunk of data

is successfully written into the Main System memory. This process is repeated until all the chunks are received by
the Main System.

The final EtherConnect interrupt is then received from the Node System signifying the completion of the PDM data
fetch command for the total_size. Upon confirmation of the value of the interrupt info register, this APl returns
with 0 value.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e PDM bulk Data Fetch API
int pdm_bulk_data_fetch_api (uint32_t total_size, uint32_t node_addr)
The API is present in the main.c file. It needs two parameters:
e total_size: the size of the PDM data required from user interface
e node_addr: node select value sent in packet
It returns the following integer values:
e 0:if all tasks are successfully completed
e —1:ifthereisan error
The API is called when there is a requirement to read a bulk maintenance data from the Motor Control IP of the
Node System.
This APl is extended version of PDM Data Fetch API, as total size of data fetch depends on number of active nodes
present in that chain.

5.1.2. IwIP Ethernet and UDP stack

The Ethernet and UDP stack are based on IwlP stack. The implementation is ported into the FreeRTOS framework. The
connection from the Main to Host user interface is managed by the IwIP stack communicating through the UDP
protocol.

The Ethernet stack performs the following tasks:

e Receive — Polling ethernet data packet from the SGDMA Rx Buffer and forwards the packet to the higher software
stack for processing the OPCUA data from the Host user interface

e Transmit — Sends the data from the OPCUA stack to the Host user interface

The UDP stack includes the following:

e ICMP —Respond and reply to ICMP queries from Host GUI to the Main system

e Addressing — Assigning IP address and MAC address to the Main system

e Payload — Decoding the payload from the Host GUI to the OPCUA and encapsulating the payload to the sent to the
Host user interface.

5.1.3. OPCUA PubSub

In the PubSub model, a publisher component, which can define DataSets that contain Variables or EventNotifiers. The
Publisher publishes DataSetMessages, which contain DataChanges or Events. The sender defines in Datasets what is
sent, instead of the receiver. The Publishers are the source of data and the Subscribers consume that data.
Communication in PubSub is message-based. Publishers send messages to a Message Oriented Middleware,
Subscribers express interest in specific types of data, and process messages that contain this data. OPCUA PubSub
supports two different Message Oriented Middleware variants, namely UDP based, and Ethernet based protocol.
Subscribers and Publishers use datagram protocols like UDP. The core component of the Message Oriented Middleware
is a message broker. Subscribers and Publishers use standard messaging protocols like UDP or MQTT to communicate
with the pub-sub.

The OPCUA defines two different network types for PubSub.

e Local Network — which can use UDP Broadcast (or Unicast in some cases) or Ethernet APL. The messages are
optimized binary UADP, which is defined in the OPCUA specifications. Only the OPCUA subscribers can interpret
the messages.

e Message Queue Broker —which can be an MQTT or AMQP broker, in practice. In this case, the messages are
typically JSON messages, although UADP can be used for improved performance. The OPC Foundation has defined
a standard content structure for the messages, but basically any JSON subscriber can interpret them.

The Main System module implements the following functions:
e Generic variable Create_ UADP_NetwokMessage ()
e Generic variables UADP NetworkMessage_parse ()

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://savannah.nongnu.org/projects/lwip/

= LATTICE

5.1.4. Create_UADP_NetworkMessage

5.1.4.1. NetworkMessage Header

The NetworkMessage is a container for DataSetMessages and includes information shared between DataSetMessages.

The following are the parameters of the network message header:

e UADPVersion — The UADPVersion for this specification version is 1.

e UADPFlags — This flag enabled group header, Payload header, Publisherld.

e ExtendedFlagsl — The ExtendedFlags1 must be omitted, if bit 7 of the UADPFlags is false. The Publisherld type is of
DataType Uint16.

e ExtendedFlags2 — The ExtendedFlags2 must be omitted if bit 7 of the ExtendedFlags1 is false.

e Publisherld — The Id of the Publisher that sent the data. Valid DataType are Uintger (unsigned integer) and String.

e DataSetClassld — The DataSetClassld associated with the DataSets in the NetworkMessage.

Extended
Network Payload Network
Message GroupHeader y Payload
Header Message
Header
Header

Figure 5.1. UADP Version

l..n
1 Byte 1 Byte 1 Byte Byte 16 Byte
4 N
. Extended Extended .

Version/Flags flagsl flags2 PublisherlD DataSetClassld
N 4
4 N

NetworkMessage Header

G J

1 Byte 2 Byte 4 Byte 2 Byte 2 Byte
~

Network Sequence

GroupFlags WriterGroupld | GroupVersion Message q
Number
Number
J
N
Group Header

J

8 Byte 2 Byte n Byte
. . Promoted
TimeStamp Pico Seconds Fields

[Extended Network Message Header]

Figure 5.2. UADP Message Packet Header

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.1.5. GroupHeader
The group header must be omitted, if bit 5 of the UADPFlags is false.

GroupFlags — GroupFlags is used for writerGroupld, GroupVersion enabled, NetworkMessageNumber enabled,
SequenceNumber enabled.

WriterGroupld — Unique id for the WriterGroup in the Publisher.

GroupVersion — Version of the header and payload layout configuration of the NetworkMessages sent for the
group.

NetworkMessage Number — Unique number of a NetworkMessage combination of Publisherld and WriterGroupld
within one PublishinglInterval.

SequenceNumber — Sequence number for the NetworkMessage.

5.1.6. Extended NetworkMessage Header

Timestamp — The time the NetworkMessage was created.

PicoSeconds — Specifies the number of 10 picoseconds intervals which shall be added to the timestamp.
PromotedFields — PromotedFields are provided, the number of DataSetMessages in the Network Message shall be
one.

5.1.6.1. Payload
Payload is defined with exact data of Node variables like nodelds, requestType, and these values. UADP packet format
size is 64 bytes, header size is 20 bytes, and payload size is 44 bytes.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Start

A
Initialize write group config
and enabled content mask
Group Header, Writer
Group ID, Publisher ID, and
Payload Header flags

4

Initialize data set message

structure according to the

UADP default configuration
flags

4

Send data set message into
send network message to
create new message
header part

break Check writer Group

Pubsub encoding type

Initialize network message
structure using data set
message and writer group
config and prepare network
message header

Prepare the payload in
encode network message
depends on the user
interface response

A 4
End

Figure 5.3. Create_UADP_NetworkMessage

UADP_NetworkMessage_parse

This module parses the data received from the publisher. The publisher sends the 64 bytes OPCUA pubsub message,
which holds the 20 bytes NetworkMessage header and, 44 bytes payload. In payload, the data gets the node IDs, and
these node IDs identify the method call or node variables or method variables. After identification, create an UDP data
response header, csv nodeid, request type and value, and write the UDP data request on LPDDR memory and get the
UDP data response from LPDDR memory. Parse data get method nodelds then called the method according to the
method nodeld such as startmotor, stop motor, and power off.

void uadp_network_parse(unsigned int *Buffer);

The API is present in the UADP_NetworkMessage.c file. This gets the network message buffer from the user interface
side.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Automate 4.0 :I.LATTICE

Reference Design

& Capturing from Wi-Fi - (] >
file Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

- e X ResmFirElEaaan
[[udo.port == 1456 £3 -]+
No. Tme Source Destraton Protocel Length Info

114 4.003041

Frame 114: 106 bytes on wire (848 bits), 196 bytes captured (348 @1 00 Se 00 00 16 68 ec <5 92 Sb b4 €8 08 45 00 “h
Ethernet II, Src: IntelCor S9a:15bibd (6Biecic5:i9a:5biba), Dsti IPw @@ Sc 8 11 06 00 ff 11 21 9¢ c@ a8 @1 22 b @0 \ !
Internet Protecol Version 4, Src: 192.168.1.34, Dat: 224.0.0.22 916 63 ce 03 cu 00 45 ss @0 T1 01 77.cc 91 64 e
User Dategram Protocol, Src Port: 1456, Dst Port: 1480 x Z; ;g ;; ;; ;g g; g"" éé ;g ;; g; ,;; x ;"; gg e
Data (64 bytes) OO G0 ©2 00 0O 00 BO B0 00 GO OO GO B8 @8 08 00

o9 20 o0 00 20 00 00 00 o0 00

< > |« >

@ 7 WE: <dve captre n progress > Packets: 1422 - Duplaywed: 1 (0,1%) Profike: Default

Figure 5.4. UADP Network Message Format

udp_response_func

This module writes the udp data request to the LPDDR4 memory and gets the udp data response from LPDDR4 memory.
void udp_response_func()

This APl is present in the UADP_NetworkMessage.c file. It does not require any parameter.

method_callbacks

This module checks the method id and calls the method like start motor, stop motor, power off, update config, and run
pdm.

void method_callbacks(unsigned char method)

This APl is present in the UADP_NetworkMessage.c file. It gets the method nodelD parameter.

rfl_update_config
This module updates the motor variable configuration like rpm, breaker amps, number of Poles, and max power.

void rfl _update_config()
This APl is present in the UADP_NetworkMessage.c. file. It does not require any parameter.

start_motor

This function starts motor if motor is off or update target rpm of node.

void start_motor()

This APl is present in the UADP_NetworkMessage.c file. It does not require any parameter.

stop_motor

This function stops motor of all nodes. This function works when one of the motors is running.
void stop_motor()

This APl is present in the UADP_NetworkMessage.c file. It does not require any parameter.

poweroff_motor

This function stops the power supply of all nodes. This function works when one of the motors is running. This function
is disabled if all motors are off.

void poweroff _motor()

This APl is present in the UADP_NetworkMessage.c file. It does not require any parameter.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0 45

http://www.latticesemi.com/legal

= LATTICE

get_background

This function queries the Rpmlock, motor voltage and motor status in background.

void get_background()

This APl is present in the UADP_NetworkMessage.c file. It does not require any parameter.

run_pdm
This module collects the PDM data to generate the PDM image.
void run_pdm();

This APl is present in the UADP_NetworkMessage.c file. It does not require any parameter.

5.2. Node System APIs

5.2.1. Tasks of the Node System

The Node System acts to control the Motor Control and PDM Data Collector and get its status as commanded by the
Main System. It communicates with the Main System by receiving commands through EtherConnect. It performs the
actions and responds to the Main System with interrupts as acknowledgement for the tasks executed.

The tasks to be carried out by a master system can be categorized as follows:

e Communicate with the master system over EtherConnect

e As per the commands sent by the Main System, the Node System is supposed to perform the following tasks:
e Configures the peripherals (Motor Control, 12C, SPI, and Modbus).
e Provides the status of the peripherals (Motor Control, 12C, SPI, and Modbus).
e Provides the PDM data collected through Motor Control and PDM Data Collector.

e Perform key functions

5.2.2. Key Functions

e main () function
int main (void)
Upon a power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts
(EtherConnect, UART).
The main function then waits for the ether_interrupt_flag to get high. The EtherConnect ISR sets the flag,
ether_interrupt_flag when a command is received from the Main System. When the main function finds that the
flag is set, it reads the INTERRUPT STATUS register to decode which command is received. Based on the value of
this register, the main function calls the appropriate functions.

e Node peripherals init
u08 general_init (void)
Upon a power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts
for UART, EtherConnect. It also initializes the external Encoder as well as Modbus, SPI, and 12C protocols.

e ISR1_ EtherConnect
static void EtherConnect _isr (void *ctx)
The primary function of the EtherConnect ISR function is to set the interrupt flag, acknowledge/clear the interrupt
and return an integer value. The EtherConnect interrupts are used as indicators of the receipt of a command sent by
the Main System to the Node System. The IRQ value for EtherConnect is 0.

e Node Configuration API
int node_config_api(void)
The API is present in the main.c file. It does not require any parameter.
It returns the following integer values:
e 0-If all tasks are successfully completed
e —1-Ifthereisan error

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The APl is called when the main function receives a Node Config command in its Interrupt Status Register. This API
reads the NODE ADDRESS register. This register contains an address of the peripherals (12C, Modbus, SPI, and
Motor Control) which is supposed to be configured. Next, the NODE CONFIG DATA register is read. This register
has the configuration data. This data is then written into the address. If there is a read or write error, the API
returns a —1 value. Once completed, the API returns a 0 value.
Node Status API
int node_status_api(void)
The API is present in the main.c file. It does not require any parameter. This returns the following integer values:
e 0 —ifall tasks are successfully completed
e -—1-ifthereisan error
The API is called whenever the main function receives a Node Status command in its Interrupt Status Register. This
API reads the NODE ADDRESS register. This register contains an address of the Node peripherals (Modbus, SPI, 12C,
Motor IP) whose configuration value is supposed to be read. This address is then read and stored in a local variable
data. This data is then written into the NODE STATUS register. If there is any read or write error, the APl sends -1
value back. If everything goes okay, the API returns 0 value.
PDM Data Fetch API
int pdm_data_fetch_api(void)
The API is present in the main.c file. It does not require any parameter. This returns the following integer values:
e 0 -ifall tasks are successfully completed
e —1-ifthereisan error
The API first reads the size of PDM data required from the PDM ADDRESS register. It then writes the base address
value and the end address (base address + size) value at the designated registers in the FIFO DMA Module. It then
enables the FIFO DMA module by sending writing 0x00000003 first and then 0x00000000 to the FIFO DMA CONTROL
register. Once done, it polls the DMA STATUS register for the indication of completion of the PDM data fetch. Once
it receives the done value, it sets the DMA DONE INDICATE register. If there is any read or write error, the APl sends
-1 value back. If everything goes okay, the API returns 0 value.
Node Peripheral APIs
e |2C Master

The following are the 12C BSP functions used in the main.c file for writing and reading the 12C slave data:

e uint8_ti2c_master_write (struct i2cm_instance x this_i2cm, uint16_t address, uint8_t data_size, uint8_t x

data_buffer)
e uint8_ti2c_master_read (struct i2cm_instance x this_i2cm, uint16_t address, uint8_t read_length,
uint8_t x data_buffer)

e SPl Master

The following are the SPI BSP functions used in the main.c file for writing and reading SPI slave data:

e uint8_t spi_master_write (struct spim_instance x this_spim, uint8_t data_size, uint8_t x data_buffer)

e uint8_t spi_master_read (struct spim_instance x this_spim, uint8_t read_length, uint8_t x data_buffer)
e Modbus RTU Master

The following are the Modbus module functions used in the main.c file for writing and reading Modbus RTU

slave data:

e eMBErrorCode eMBMasterlnit (eMBMode eMode, void *dHUART, ULONG ulBaudRate, void *dHTIM)
This function initializes the ASCIl or RTU module and calls the init functions of the porting layer to prepare the
hardware. Note that the receiver is still disabled, and no Modbus frames are processed until eMBMasterEnable ()
is called.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

eMBErrorCode eMBMasterPoll(void)

This function must be called periodically. The timer interval required is given by the application dependent Modbus
slave timeout. Internally thefunction calls xMBMasterPortEventGet () and waits for an event from the receiver or
transmitter state machines.

e unsigned int modbus_req (unsigned int mod_addr, unsigned int mod_data)

This function parses the data received from Main system and fetch slave id command type and data from it. This
calls the functions below based on the command type.

e eMBMasterReqWriteHoldingRegister (slaveid, regnum, regdata, timeout)

e eMBMasterReqWriteCoil (slaveid, regnum, regdata, timeout)

OPCUA init

void opcua_init(void)

This APl is called to initialize the OPCUA header format. In this API, store the publisher ID and writer ID these IDs
are used into pub-sub communication.

OPCUA Packet Parse

void opcua_EtherConnect_parse(void)

This APl parse the OPCUA packet which gets from the ethernet to have the information about nodes. Nodes
information like node_ld, request_type and payload.

OPCUA header response

void opcua_header_response_loaded (unsigned int *response_packet)

This APl is loaded the default UADP network message header, which have the information about writer ID,
publisher ID, and writer group ID and use of these IDs in the OPCUA pub-sub communication.

Encoder init

uint8_t encoder_init(encoder_id)

This APl is called to initialize the specific Encoder model according to the initialization sequence described in
specification from third party vendor.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6. Communications

This section describes the communications between the host to the Main System and the communication between the
Main System and the Node Systems. Detailed breakdown of message vocabulary and packet structure may be covered
in a separate document.

6.1. Communication between Host and Main System

Initially, this connection is implemented using an Ethernet interface. Most of the messages must be ASCII to facilitate
debugging using a terminal program on the Host.

6.1.1. Messages from Host to Main System
e Motor Configuration and Control

e PDM Configuration and Control

e Request Motor Status

e Request PDM Status

e Request PDM Data — Normal

e Request PDM Data — Extended

6.1.2. Messages from Main System to Host

e System Information (Link Status, Connected Nodes, Local Delay of Nodes, and others)
e Motor Status

e PDM Status

e PDM Data — Normal

e PDM Data — Extended

6.2. Communication between Main System and Node System(s)

The physical connection between the Main System and Node System is implemented using Ethernet Cat-5 cables. The
physical connection between the first Node System and subsequent Node System(s) also uses Ethernet Cat-5 cables, in
a daisy-chain fashion for both chains.

6.2.1. Messages from Main System to Node System
e Motor Configuration and Control

e PDM Configuration and Control

e Request Motor Status

e Request PDM Status

e Request PDM Data — Normal

e Request PDM Data — Extended

6.2.2. Messages from Node System to Main System

o Node Information (Link Status, Connected Nodes, and Local Delay)
e Motor Status

e PDM Status

e PDM Data — Normal

e PDM Data — Extended

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

To Host PC

Host PC
OPCUA

A

p Ethernet Port

" > UART ¢)

To Node Board 4«——»{ Ethernet Port €¢——— P

(Debug Port)

TSE MAC IP (RGMII)

SGDMA IP

AXI IP

A

LPDDR Memory Controller
(DDR4)

4

A

RISC-V RX

EtherConnect IP
(RGMII)

FPGA

Avant-E Board
(Main System)

Figure 6.1. Data Flow from Host to Node System through the Main System

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0

50

http://www.latticesemi.com/legal

= LATTICE

Appendix A. Predictive Maintenance with TensorFlow Lite

A.1. Overview

The Predictive Maintenance (PDM) section outlines the steps necessary (shown in Figure A.1) for rebuilding the model
with your own data. It begins with the data capturing process, followed by the algorithm used to train the Convolutional
Neural Network (CNN) model, which includes details on the neural network architecture, the training process, and model
testing and accuracy. Finally, it covers the algorithm for running inference on the device, including the compilation of the
TensorFlow Micro library and optimization for the CNN co-processor.

Data Capture and Labeling

Model Training

Identify Neural Network Topology

.

Implement training algorithm

I

Test the accuracy of the training

I

Freeze the quantized model and
convert to C array for RISC-V

consumption

On Device Inferencing

v
Integrate C array to RISC-V project

-

Implement TensorflowMicro library

to interpret C array, setup Tensor
resources and run inference

Add CNN Co-processor
optimization

Figure A.1. Predictive Maintenance Machine Learning Overview

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

A.2. Data Capture and Labeling

The Automate user interface offers essential motor control IP to streamline the data capturing process, as detailed in
the Motor Control and PDM Data Collector section. The data format and methodology are further explained in the
accompanying whitepaper. Once the motor data is captured, it is categorized into good and bad data, which are then
labeled and stored in folders named 0 and 1 respectively, with 0 indicating good motor data and 1 indicating bad motor
data. Note that for this example, the training is performed with data set collected with 800 rpm. Inference is performed
with test data ranging from 800 to 1500 rpm.

P! I

T T

NAA

BadRobotC0013_0.png

-
BadRobotC0018_0.png

A_\,
\7

AL

e

N BV

VX

N
/N

A

A
v
&

‘ -
N

Figure A.2. Data Format Labeling

A.3. Model Training

This section describes the training process outlined in Figure A.1

A.3.1. Training Code Structure

Download the Lattice predictive maintenance demo training code. The link to download the code is available in the
Lattice Automate page and the directory structure is shown in Figure A.3. The Identify Neural Network Architecture
(Informational) and Implement Training Algorithm sections describe the network topology and background for tuning
purposes. The readers need not fully comprehend the details in Identify Neural Network Architecture (Informational)
and Implement Training Algorithm. They can proceed with the model training with the details in the Training Framework
section that describes a tool to facilitate the process.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://bit.ly/2ZDlNpR
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/Automate

= LATTICE

~ PDM_RELEASE
v configs
example-experiment.yaml
v data
> test
> train
v sources

augment.py

callbacks.py

dataset.py
imporks.py
layers.py
model.py
README.md

= requirements.txt

Figure A.3. Training Code Directory Structure

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

A.3.2. Identify Neural Network Architecture (Informational)

This section provides information on the Convolution Neural Network Configuration of the Predictive Maintenance

design.

Table A.1. Predictive Maintenance Training Network Topology

Input Gray Scale Image (64 x 64 x 1)

Firel

Conv3x3-8

Batchnorm

RelLU

Maxpool

Fire2

Conv3x3-8

Batchnorm

RelU

Fire3

Conv3x3-16

Batchnorm

RelLU

Maxpool

Fired

Conv3x3 -16

Batchnorm

RelLU

Fire5

Conv3x3-16

Batchnorm

RelU

Maxpool

Fire6

Conv3x3-22

Batchnorm

RelU

Fire7

Conv3x3-24

Batchnorm

RelLU

Maxpool

Dropout

Dropout - 0.80

logit

FC—(3)

Conv3x3 — # where:

Conv3x3 — 3 x 3 Convolution filter Kernel size

- The number of filters

For example, Conv3x3 - 8 = 8 3 x 3 convolution filter

Batchnorm: Batch Normalization
FC — # where:

FC — Fully connected layer

- The number of outputs

In Table A.1, the layer contains Convolution (conv), batch normalization (BN), ReLU, pooling, and dropout layers. Output
of layer logit is (Broken [0], Normal [1], Unknown [2]) 3 values.

e Llayer Information
e Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels) which convolves with input layer/image and generates activation map (such as
feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each of these
filters can be thought of as feature identifiers, like straight edges, simple colors, and curves and other high-
level features. For example, the filters on the first layer convolve around the input image and “activate” (or
compute high values) when the specific feature (say curve) it is looking for is in the input volume.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

ReLU (Activation Layer)

After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward.
The purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear
operations during the conv layers (just element wise multiplications and summations).In the past, nonlinear
functions like tanh and sigmoid were used, but researchers found out that ReLU layers work far better because
the network is able to train a lot faster (because of the computational efficiency) without making a significant
difference to the accuracy. The RelU layer applies the function f(x) = max (0, x) to all the values in the input
volume. In basic terms, this layer just changes all the negative activations to 0. This layer increases the
nonlinear properties of the model and the overall network without affecting the receptive fields of the conv
layer.

Pooling Layer

After some RelLU layers, programmers may choose to apply a pooling layer. It is also referred to as a down
sampling layer. In this category, there are also several layer options, with Maxpooling being the most popular.
This basically takes a filter (normally of size 2x2) and a stride of the same length. It then applies it to the input
volume and outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once you know that a specific feature is in the original input
volume (a high activation value results), its exact location is not as important as its relative location to the
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost. The second is that it
controls over fitting. This term refers to when a model is so tuned to the training examples that it is not able to
generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or
99% on the training set, but only 50% on the test data.

Batchnorm Layer

Batch normalization layer reduces the internal covariance shift. To train a neural network, perform
pre-processing to the input data. For example, you can normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). Reason being preventing the early saturation of
non-linear activation functions like the sigmoid function, assuring that all input data is in the same range of
values, etc.

But the problem appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt
themselves to a new distribution in every training step. This problem is known as internal covariate shift.
Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following below process during training time:

e Calculate the mean and variance of the layers input.

e Normalize the layer inputs using the previously calculated batch statistics.

e Scales and shifts to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be carefree
about weight initialization, works as regularization in place of dropout and other regularization techniques.
Drop-out Layer

Dropout layers have a very specific function in neural networks. After training, the weights of the network are
so tuned to the training examples they are given that the network does not perform well when given new
examples. The idea of dropout is simplistic in nature. This layer drops out a random set of activations in that
layer by setting them to zero. It forces the network to be redundant. The network must be able to provide the
right classification or output for a specific example even if some of the activations are dropped out. It makes
sure that the network is not getting too “fitted” to the training data and thus helps alleviate the over fitting
problem. An important note is that this layer is only used during training, and not during test time.

Fully connected Layer

This layer basically takes an input volume (whatever the output is of the conv or ReLU or pool layer preceding it)
and outputs an N dimensional vector where N is the number of classes that the program must choose from.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Quantization

Quantization is a method to bring the neural network to a reasonable size, while also achieving high performance
accuracy. This is especially important for on-device applications, where the memory size and number of
computations are necessarily limited. Quantization for deep learning is the process of approximating a neural
network that uses floating-point numbers by a neural network of low bit width numbers. This dramatically
reduces both the memory requirement and computational cost of using neural networks.

The above architecture provides nonlinearities and preservation of dimension that help to improve the robustness of the
network and control over fitting.

A.3.3. Implement Training Algorithm

The layers described in the previous section are implemented in the code snippet below.

def m

p
i

#
X
name=
X
X
X

n X +

name

X X

X H

name

X X X

n X H

name

X X

X H

name

X X X

#
X
name=

ake_resnet_model(input_shape, num_classes, name=None):
rint(input_shape)
nputs = tf.keras.layers.Input(shape=input_shape[1:], name="input")

Fire 1

= Conv2D(filters=8, kernel size=3, strides=1, padding="SAME", use_bias=False,
"firel conv")(inputs)

BatchNormalization(fused=True, name="firel bn")(x)
Activation(activation="relu", name="firel relu")(x)
MaxPooling2D(name="firel_mp")(x)

Fire 2

= Conv2D(filters=8, kernel size=3, strides=1, padding="SAME", use_bias=False,
"fire2_conv")(x)

= BatchNormalization(fused=True, name="fire2 bn")(x)

= Activation(activation="relu", name="fire2 relu")(x)

Fire 3

= Conv2D(filters=16, kernel_size=3, strides=1, padding="SAME", use_bias=False,
"fire3_conv")(x)

BatchNormalization(fused=True, name="fire3_bn")(x)
Activation(activation="relu", name="fire3_relu")(x)
MaxPooling2D(name="fire3_mp") (x)

Fire 4

= Conv2D(filters=16, kernel size=3, strides=1, padding="SAME", use_bias=False,
"fired4 conv")(x)

= BatchNormalization(fused=True, name="fire4 bn")(x)

= Activation(activation="relu", name="fire4 relu")(x)

Fire 5

= Conv2D(filters=16, kernel size=3, strides=1, padding="SAME", use_bias=False,
"fire5_conv")(x)

BatchNormalization(fused=True, name="fire5_ bn")(x)
Activation(activation="relu", name="fire5_relu")(x)
MaxPooling2D(name="fire5_mp") (x)

Fire 6
= Conv2D(filters=22, kernel size=3, strides=1, padding="SAME", use_bias=False,
"fire6_conv")(x)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

x = BatchNormalization(fused=True, name="fire6_bn")(x)

x = Activation(activation="relu", name="fire6_relu")(x)

Fire 7

x = Conv2D(filters=24, kernel_size=3, strides=1, padding="SAME", use_bias=False,
name="fire7_conv")(x)

X = BatchNormalization(fused=True, name="fire7_bn")(x)

x = Activation(activation="relu", name="fire7_relu")(x)

X = MaxPooling2D(name="fire7_mp")(x)

X = Dropout(rate=0.8)(x)

x = Flatten()(x)

x = Dense(units=num_classes, use_bias=True, activation="linear", name="dense")(x)
model = tf.keras.Model(inputs=inputs, outputs=[x], name=name)
return model

A.3.4. Training Framework

To streamline the training and testing process, Lattice offers a training tool called Lattice Training Environment (LATTE).

This tool is written in Python and is available upon request (refer to Technical Support Assistance). Please refer to the

accompanied LATTE document on the installation steps. Once the LATTE package is installed, you have access to the

following APIs to execute training, testing and model conversion.

e Jatte train — Trains a model with the specified architecture, producing a model binary as the output.

e Jatte test — Tests the accuracy of the model binary. Typically, 80% of the dataset is used for training, while 20% is
reserved for testing.

e Jatte convert — Converts the model to a TensorFlow Lite (tflite) format, suitable for smaller devices such as
microcontrollers or RISC-V cores.

After unzipping the code folder, run the commands below:
pip install opencv-python (Note that this is for first time setup only)
latte train configs/example-experiment.yaml sources/imports.py -r

latte test configs/example-experiment.yaml sources/imports.py
latte convert configs/example-experiment.yaml sources/imports.py

While LATTE is OS agnostic, the subsequent chapters describe the output of running the above APIs in Linux
environment (Ubuntu 20.04). Below printout shows an output report from running “latte train” API running.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3 $ latte train configs/example-experiment.yaml sources/im
LATTE - Lattice sensAI Neural Networks Training Environment v2.8.8
Loading and parsing config file 'configs/example-experiment.yaml'
Loading user code from 'sources/imports.py'
Info - project: LATTE-Quantization-PDM
Info - description: Automate Predictive Maintenance with quantization and FPGA Simulator
[WARNING] Sending previous checkpoints to trash
[WARNING] Sending previcus best model to trash
[INFO] Instantiating model 'PredictiveMaintenanceClassifier'
[None, 64, 64, 3]
1

KerasTensor(type_spec=TensorSpec(shape=(None, 64, 3), dtype=tf.float32, name="input'), name='input', description="created by layer 'input'")
ierasTensor(type_spec:Tensanpec(shape:(None, 32, 8), dtype=tf.float32, name=None), name='firel_mp/MaxPool:0', description="created by layer 'firel_mp'")
3

I:.erasTensor(type;pec:TensorSpec(shape:(None, 32, 8), dtype=tf.float32, name=None), name='fire2_relu/Relu:®@', description="created by layer 'fire2_relu'")
:erasTensor(type_spec:TensorSpec(shape:(wone, 16, 16), dtype=tf.float32, name=None), name='fire3_mp/MaxPool:0', descripticn="created by layer 'fire3_mp'")
fierasTensor(typeispec:TensorSpec(shape:(None, 16, 16, 16), dtype=tf.float32, name=None), name='fire4_relu/Relu:@', description="created by layer 'fired4_relu
fierasTensor(typEispEc:TEnsc-rSpec(shape:(wone, 8, 8, 16), dtype=tf.float32, name=None), name='fire5_mp/MaxPoo ', description="created by layer 'fire5_mp'")
If\’erasTensor(type_spec:TensurSpecf_shape:(None, 8, 8, 22), dtype=tf.float32, name=None), name='fire6_relu/Relu:0', descr created by layer 'fire6_relu'")
ﬁeras‘rensor(type;peczTEnsorSpec(shap 4, 4, 24), dtype=tf.float32, name=None), name='fire7_mp/MaxPoo ', description="created by layer 'fire7_mp'")
:sggﬁelr_nis;g{gpeispecﬂensorSpec(shap 3), dtype=tf.float32, name=None), name='dense/BiasAdd:@', description="created by layer 'dense'")

[INFO Model number of parameters: 16,067 (15,847 trainable, non-trainable)
[INFO Instantiating and initializing train dataset handler 'PdmDatasetHandler'
[INFO 5 for training, and 20 for evaluation
[INFO

[INFO

[INFO

[INFO

[INFO Evaluation samples

[INFO Evaluation batch size

[INFO Evaluation batches: 28

[INFO Best metric is 'accuracy' (higher is better)

[INFO Instantiating optimizer 'Ada

[INFO Training 2024-11-

[INFO * Epoch i
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch
[INFO Epoch ain lo:
[INFO Epoch : i
[INFO Epoch 2
[INFO Epoch ain lo
[INFO Epoch : i
[INFO Epoch : :
[INFO Epoch : ain lo:
[INFO Epoch : ain lo:
[INFO Epoch i
[INFO Epoch : : Train loss:
[INFO Epoch : ain lo:
[INFO Epoch 3 in lo
[INFO ST a = 1.00000
[INFO 2 5:10:44 (duration: 34s)

7

Eval i a E 85 E 0.41685
B Eval ics:
Eval
Eval
B Eval
Eval
Eval
2 Eval i : 5 2 (+0.80056) |
Eval)
Eval
Eval i a : glolele 5 pO (+0.00028) |
B Eval i :42)
Eval
Eval
B Eval
S Eval
Eval
B Eval
Eval
; Eval
©.00072 Eval
90127 Eval
4 Eval
Eval
2 Eval
Eval
Eval
Eval
Eval
Eval

—
o000
MOonloeo
[T
[T

—
=]

R
(i A 1 A
Biwmwmmn; e

=
=]
o

R
o oo

PP — -
o o
[T]
Wowwmonm

=]

—
o 0o
=

i
=]

(i A A A
[]

—
oo
G ;nn o

=
=]
o

—
=

=l

oo

o

—
=]
Il
o

JRPR—— -
o o
[T]
Wowwmonm

lo
lo

[ml]
[El]

=
R R R R R R R R R R R R R R R T

Figure A.4. LATTE Training

A.3.5. Testing the Accuracy of the Trained Model

The LATTE API /atte test facilitates testing of the trained model using FPGA simulator. The FPGA simulator needs to be
installed to simulate the model accuracy running on FPGA. The FPGA simulator is included in the LATTE release package.

The trained model provided in Automate 4.0 achieves the test accuracy of 99.956% as shown in Figure A.5..

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

(fpga) B S latte test configs/example-experiment.yaml sources/imports.py
[INFO LATTE - Lattice sensAI Neural Networks Training Environment v2.8.0

[INFO Loading and parsing config file 'configs/example-experiment.yaml’

[INFO Loading user code from 'sources/imports.py'

[INFO Info - project: LATTE-Quantization-PDM

[INFO Info - description: Automate Predictive Maintenance with quantization and FPGA Simulator

[INFO Instantiating model 'PredictiveMaintenanceClassifier'

[INFO] Test - Losses: total=0.00193, cce=0,00193 | Metrics: accuracy=0,99956
[INFO] Testing finished on 2024-11-22 16:13:15 (duration: 1s)
(fpga) : $

Figure A.5. LATTE Testing

A.3.6. Converting the Trained Model

The LATTE API latte convert facilitates conversion of the model to deploy on FPGA. The output of this command is a tflite
model file.

(fpga) H % latte convert configs/example-experiment.yaml sources/imports.py
[INFO LATTE - Lattice sensHI Neural Networks Tralnlng Environment v2.8.0

[INFO Loading and parsing config file 'configs/example-experiment.yaml’

[INFO Loading user code from 'sources/imports.py'

[INFO Info - project: LATTE-Quantization-PDM

[INFO Info - description: Automate Predictive Maintenance with quantization and FPCGA Simulator

[INFO Instantiating model 'PredictiveMaintenanceClassifier’

Model number of parameters: 16,867 (15,847 trainable, 226 non-trainable)
Loading best medel weights from '/home/anonymous/code/LATTE/PDM_release/configs/example-experiment/best-model/model-weights-11
Conversion started on 2024-11-22 16:14:37
Running converter 'tflite'
Found untraced functions such as _jit_compiled_convolution_op, _jit_compiled_convolution op, _jit_compiled_convolution_op, _jit_compiled_convolution op, _jit_compiled_convolut
on_op while saving (showing 5 of 7). These functions will not be directly callable after loading.
] Meodel converted to /home/anonymous/code/LATTE/PDM_release/configs/example-experiment/convert/model-tflite-best.tflite
] Conversion finished on 2024-11-22 16:14:40 (duration: 3s)

Figure A.6. LATTE Conversion

The tflite model is then translated into a C-Array using the xxd tool. This step is necessary for the model to be
recognized by the FPGA RISC-V. The quickest way to run xxd in Windows environment is by installing Git Bash terminal
and run the xxd command with it.

$ xxd -i your-tflite-model-path.tflite > out_c_array.cc

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

VErsT1on

01-14 by Juergen Weigert et a

§ cd Downloads/

v wxd -1 new_model_quant.t

Figure A.7.Model to C Array Conversion

A.4. On Device Inferencing

Th inference is executed on the main system RISC-V core. The RISC-V core requires a library to understand the converted
trained model, which is the TensorFlowMicro library described in A.4.1.

A.4.1. Implementing the TensorflowMicro Library

The Automate 4.0 main project offers a reference for integrating the TensorFlow Micro library into a RISC-V project.
This library is based on an open-source implementation, which can be accessed in the Tensorflow Lite Micro Github
page.

The algorithm divided into two parts: setup and compute. The setup() function handles target initialization, tensor
arena size allocation, model retrieval (the c array), mutable operation resolver allocation, interpreter addition, and
tensor memory allocation. The compute function then processes the input data (motor data) and runs the invoke
function, which returns the inference outcome. The inference output provides a confidence level number for both
good and bad categories for each input data. The category with the higher confidence value determines the inference
result.

Table A.1.Example of Inference Outcomes

Input (Motor data) Inference Output (Good) Inference Output (Bad) Summary
a 53 -12 Good condition
b 7 23 Maintenance required

A.4.2. CNN Co-processor Optimization

The CNN co-processor IP, as described in the CNN Co-Processor Unit (CCU) section, is required to enhance convolution
operations. To utilize the CNN co-processor effectively, you need to use the modified conv.h file available in the RISC-V
Propel project. With the optimization provided by the CNN coprocessor, the inference process time is significantly

reduced.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://github.com/tensorflow/tflite-micro
https://github.com/tensorflow/tflite-micro

Automate 4.0 :I.LATT’CE

Reference Design

Appendix B. Setting Up the Wireshark Tool

Note: To download the wireshark tool: https://www.wireshark.org/download.html.
To set up the wireshark tool, perform the following:

1. Open the Wireshark tool and select the network (Ethernet).

2. Click on the Ethernet network.

3. Click the Run (B) button.
4. Check the UDP message use port filter udp.port == 1486 on the top bar.

[[udp.port == 1486
Ho. Time Source Destination Protocol Length Info
86.638453 [192.168.]192.168.1.4 voP 106 53599 + 1486 Len=64
Frame 8: 106 bytes on wire (848 bits), 106 bytes captured (848 bits) on interface \Device\NPF_{5E299874 © aa cd ef 12 34 56 50 81 40 7e 83 a9 08 00 45 00 4w @ E
Ethernet II, Src: HP_7e:83:a9 (50:81:40:7e:83:a9), Dst: aa:cd:ef:12:34:56 (aa:cd:ef:12:34:56) 10 @@ Sc 84 f5 00 00 80 11 @0 00 O a8 01 02 c0 a8 \
Internet Protocol Version 4, Src: 192.168.1.2, Dst: 192.168.1.4 0020 Sf 05 ce 00 48 83 bo 2 63 64 6
User Datagram Protocol, Src Port: 53599, Dst Port: 1486 BRBAG7 68 61 62 63 64 65 66 67 68 61 62 63 64 65 66
Data (64 bytes) 0040 n7 68 tfl bf’ (.,1 t?d ‘f“ bb (‘;7 (fs 61 62 <‘>3 64 65 66fchabcdef ghabcdef
BLETNG7 68 61 62 63 64 65 66 67 68 61 62 63 64 gh.
0060 62 63 64 65

Figure B.1. Wireshark Tool — Write udp.port == 1486

5. Check both the source and destination IP.

[ludp
No. Time Source Destination Protocol Length Info

2690... 6.993534 192.168.1.2 192.168.1.4 ubp 106 53599 > 1486 Len=64
 2691..7.305692 192.168.1.4 ;192.168.1.2 EUDP 106 1500 -» 1482 Len=64

Figure B.2. Source and Destination UDP Packet

6. Click on the UDP packet.

% Judp
No. Time Source Destnation Protocol Length Info
2690.. 6.993534 192.168.1.2 [192.168.1.4 uoP 106 53599 + 1486 Len=64
2691... 7.305692 192.168.1.4 192.168.1.2 uop 106 1500 + 1482 Len=64
<
Frame 2690840: 106 bytes on wire (848 bits), 106 bytes captured (848 bits) on interface \Device\NPF_{5E aa cd ef 12 34 56 50 81 40 7e 83 a9 08 00 45 00 4P @~ E
Ethernet II, Src: HP_7e:83:a90 (50:81:40:7e:83:a9), Dst: aa:cd:ef:12:34:56 (aa:cd:ef:12:34:56) ¢ 00 Sc 85 62 00 00 80 11 00 00 cO a8 01 02 c0 a8 -\
Internet Protocol Version 4, Src: 192.168.1.2, Dst: 192.168.1.4 0020 01 04 d1 5f 05 ce 00 48 83 bo CRCFRCERILENL H ¢
User Datagram Protocol, Src Port: 53599, Dst Port: 1486 [X3C0N67 68 61 62 63 64 65 66 67 68 61 62 63 64 65 66flllchabcdef ghabcdef
Data (64 bytes) 0040 SyE3 Lt:l lf) t," t_jd 135 bb Lj7 l'JR 61 l’;] tji %-/l L)S u ghabcdef ghabcdef
EUEING7 68 61 62 63 64 65 66 67 68 61 62 63 64 65 66 g
0060 8 61 62 63 64 65 66

Figure B.3. Wireshark tool — First UDP Packet

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 61

http://www.latticesemi.com/legal
https://www.wireshark.org/download.html

Automate 4.0
Reference Design

= LATTICE

Appendix C. Automate Stack 4.0 Bit and Binary Generation

C.1. Installing the Propel SDK 2024.1

For steps on installing the Propel 2024.1, see the Official Documentation and Training page.

C.2. Installing the Propel Patch 2024.1

To install the Propel Patch, perform the following:

1. Double-click on the application to install the patch.

Name Date modified

4 Propel2024.1_patch_automate_ 2303071856 15-03-2023 04:15 PM

Figure C.1. Propel Patch Application

2. Click Next on the succeeding windows.

{1 Propel 2024.1 Patch 2303071856 Setup

Install Lattice Propel 2024.1

EATTICE

Lattice brings
intelligence to the
edge with innovative

processing and ‘Welcome to the Lattice Propel 2024.1 Installation Wizard.

connectivity solutions.

= LATTICE

FPGA: Leading To ensure a smooth instalation process, close all the other applications.

portfolio of lowest
power and smallest
size devices

Comprehensive
Resources:

Full suite of IP,
reference designs
and evaluation kits

Next » Qui

Figure C.2. Propel Patch Setup Window - Install Lattice Propel

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0

62

http://www.latticesemi.com/legal
https://www.latticesemi.com/LatticePropel

Automate 4.0
Reference Design

= LATTICE

3 Propel2024.1Patch 2303071856 Setup

Select Installation Folder

Specify the folder where Lattice Propel2024.1 to be installed.
Cr\lscc\propel 20241

LATTICE

Lattice brings
intelligence to the
edge with innovative
processing and
connectivity solutions.

FPGA: Leading
portfolio of lowest
power and smallest
size devices

Comprehensiva
Resources:

Full suite of IP,
reference designs
and evaluation kits

x
= LATTICE

Figure C.3. Propel Patch Setup Window - Select Installation Folder

03 Propel20

-1Patch 2303071836 Setup

Start Menu Shortcut
Select the Start Menu under which you want to create the shortout for this software. You can also enter & new
name to create a new folder for this software.,

Lattice Propel 2024 1
Accessibility
Accessories
Administrative Tools
Maintenance
Raspberry Pi
Startup
System Tools
Windows PowerShell
WPS Office
SKPlayer
T-Zip
Docklight V2.4
Kyocera
Lattice Propel 2024.1
Lattice Radiant Software 2024.1
Lattice Radiant Software 3.1
Lattice Semiconductor
Microsoft Office Tools
MNotepad++
NVIDIA Corporation
Oracle VM VirtualBox
RealVNC
5D Association

== LATTICE

Figure C.4. Propel Patch Setup Window — Start Menu Shortcut

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0

63

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

3.

4.

Click Finish.

Wait for the installation process to 100%.

U3 Propel 2024.1Patch 2303071856 Setup

Install Lattice Propel 2024.1

LATTICE
PRO®PEL

Easy to Use System Integration Environment

Drag and Drop IP Instantiation
Correct by Construction Methodology
Tel Scripting Commands

< Back

&

BUILDER

Figure C.5. Installation Process

€3 Propel 20241 Patch 2303071856 Setup

Lattice Propel 2024.1 Installation Completed

Lattice brings
intelligence to the
edge with innovative
processing and
connectivity solutions.

FPGA: Leading
portfolio of lowest
power and smallest
size devices

Comprehensive
Resources:

Full suite of IP,
reference designs
and evaluation kits

Click Finish to exit Lattice Propel 2024.1 Installation Wizard.

= LATTICE

Finigh

Figure C.6. Installation Completed

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0

64

http://www.latticesemi.com/legal

Automate 4.0 :I.LATTICE

Reference Design

C.3. Generating the Binary in the Main System

C.3.1. Primary Main System

To generate the binary in the primary main system, perform the following:

1. Double-click Lattice Propel SDK 2023.2 to open the dialogue box as shown in Figure C.7.

58
s

Lattice
Propel

20241

Figure C.7. Propel 2024.1 Application

2. To select the workspace, browse to the template location or where your project is located.

3. Select \Main_System\Primary_MainSystem by clicking on Browse. Click Launch to launch the workspace.

Lattice Propel Launcher X

Select a directory as workspace

Lattice Propel uses the workspace directory to store its preferences and development artifacts.

Workspace: ! 1te_4_O_ReIease\Main_System\Primary_MainSysterT{ V‘ Browse...

[_] Use this as the default and do not ask again
» Recent Workspaces

Launch Cancel

Figure C.8. Select Directory

4. Click Import projects or go File > Import to import the firmware project template.

There are no projects in your workspace.
To add a project:

Create a new Lattice SoC Design
Project

ﬁ Create a new Lattice C/C++ Project

™% Create a project...

E=1 lmport projects...

Figure C.9. Import Project

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0 65

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

5. Select the existing project in the workspace from the general list and click Next.

S Import

Select

Create new projects from an archive file or directory.

Select an import wizard:

| type filter text

v [General
& Archive File
=2 Existing Projects into Workspace
[File System
[T Preferences
[} Projects from Folder or Archive
» [= GfC++
» = Git
5 [Install

@ < Back Finish

Cancel

Figure C.10. Existing Project into Workspace

6. Select the root directory and browse template location.

7. Select the project as shown in Figure C.11: \Main_System\Primary_MainSystem.

8. Click Finish.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

66

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

 Import O X
Import Projects B
& Some projects cannot be imported because they already exist in the workspace 4
@ R todl (ol s [(T o1y Vil Main_Systern\Primary_MainSysterm\c_main_system_4_Cjiid Browse...
(O Select archive file: ~ Browse...
Projects:
U Select All
Deselect All
Refresh

< >

Options

[] Search for nested projects

L] Copy projects into workspace

[Close newly imported projects upon completion

[] Hide projects that already exist in the workspace

Working sets

[]Add project to working sets New...

Working sets: ~ Select...

@ < Back Next > Finish Cancel

Figure C.11. Import Project

9. Right-click on the firmware project folder c_ main_system_4_0 and select Properties.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 67

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

> 12 c_main_sy

I c_main_systel

E E

Go Into
Open in New Window
Show In

Copy
Paste

Delete

Remove from Context
Source

Move...

Rename...

Import...

Export...

Build Project

Clean Project

Refresh

Close Project

Close Unrelated Project

Alt+Shift+W >

Ctrl+C
Ctrl+V
Delete
Ctrl+Alt+Shift+ Down

F2

F5

Build Configurations

Open Properties Dialog

Build Targets

Index

Profiling Tools

Run As

Debug As

Profile As

Restore from Local History...
Create Lattice Application Template
Update Lattice C/C++ Project...
Run C/C++ Code Analysis
Team

Compare With

Configure

Source

Validate

Properties

Alt+Enter

T T 1T

Figure C.12. Properties

10. Drop-down the c/c++ build and select Settings. Click Manage configuration.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

68

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

type filter text

Resource
Builders
~ C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Edit
C/C++ General
MCu
Project Natures
Project Reference:
Run/Debug Settir
SystemVerilog Prc

! Properties for ¢_main_system_4_0

C/C++ Build

Configuration: |Default [Active]

= Builder Settings ® Behavior < Refresh Policy
Builder
Builder type: External builder
Use default build command
Build command: = ${cross_make}
Configure build arguments in the Behavior tab.

Makefile generation
Generate Makefiles automatically Expand Env. Variable Refs in Makefiles

~ | Manage Configurations...

Variables...

Task Tags Build location
Validation
Build directory: | ${workspace_loc:/c_main_system_4_0}/Default
Workspace... File system...| Variables...
< > Restore Defaults Apply
@ Apply and Close Cancel

Figure C.13. C/C++ Build Settings

11. Select Release and apply Set Active. Click OK.

12. Click Apply and Close.

c_main_system_4_0: Manage Configu... X

Configur... Description Status
Default Active

Release

| oK Cancel

Set Active New... Delete Rename...

Figure C.14. Manage Configuration — Release: Set Active

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

69

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

:: Properties for c_main_system_4_0] s
) q Sow v g
type filter text C/C++ Build)
Resource
Builders G . Rel P -
« C/C++ Build Configuration: Release Manage Configurations...
Build Variables
Environment El Builder Settings ® Behavior «* Refresh Policy
Logging
Settings Builder
Tool Chain Edi Builder type: External builder v
C/C++ General Use default build command
MCU
. Build command: ${cross make} Variables...
Project Natures
Project Reference: Configure build arguments in the Behavior tab.
Run/Debug Settir Makefile generation
SystemVerilog Pre Generate Makefiles automatically Expand Env. Variable Refs in Makefiles
Task Te
as. a.gs Build location
Validation
Build directory: | ${workspace_loc:/c_main_system_4_0}/Release
Workspace... | File system... Variables...
< > Restore Defaults Apply
@ Apply and Close Cancel

Figure C.15. Manage Configuration: Apply and Close

13. Right-click on the firmware project folder c_main_system_4_0 and select the option as shown in Figure C.16. to
build the project.

= Automate-Stack (in ¢ Open in New Window
Show In Alt+Shift+W >
= Copy Ctrl+C
Paste Ctrl+V
¥ Delete Delete
Remove from Context Ctrl+Alt+Shift+ Down
Source >
Move...
Rename... F2
21 Import...
1 Export...
Build Project Incremental Build of Selected Projects
Clean Project
2] Refresh F5
Close Project
e el Dt

Figure C.16. Build Project

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

70

http://www.latticesemi.com/legal

Automate 4.0

Reference Design

=LATTICE
console.

14. Wait for the process to complete to 100%. After completion, the message shown in Figure C.17 appears on the

Finished building: c_main_system_4_@cnn.lst

srec_cat.exe "@..\crc_add.txt" && srec_cat.exe "@..\nocrc_add.txt"

10:10:44 Build Finished. @ errors, © warnings. (took 1m:22s.948ms)

Figure C.17. Completing Process

15. To locate the binary file to below path: \Main_System\Primary_MainSystem\c_main_system_4_0_cnn\Release
C.3.2. Golden Main System

To generate the binary in the golden main system, perform the following:
1.

Double-click Lattice Propel SDK 2024.1 to open the dialogue box as shown in below fig.

T
Lattice

Propel
2024.1

2.

Figure C.18. Propel 2024.1 application
3.

launch the workspace.

To select the workspace, browse to the template location or where your project is located.
Select \MainSystem\Golden_MainSystem\ by clicking on the Browse option as shown below. Click Launch to

i_% Lattice Propel Launcher

Select a directory as workspace

Lattice Propel uses the workspace directory to store its preferences and development artifacts.

Workspace: y ate_4_O_ReIease\Main_System\GoIden_MainSysterr{ v ‘

Browse...

[] Use this as the default and do not ask again
» Recent Workspaces

Launch
4,

Cancel

Figure C.19. Select Directory

Click Import projects or go to File > Import to import firmware project template.

FPGA-RD-02302-1.0

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

71

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

There are no projects in your workspace.
To add a project:

Create a new Lattice SoC Dezign
Project

ﬁ Create a new Lattice C&/C++ Project

™4 Create a project...

E=1 lmport projects...

Figure C.20. Import Project

5. Select Existing Project in Workspace from the General list and click Next as shown below.

Q Import

Select

Create new projects from an archive file or directory.

O *

4

Select an import wizard:

| type filter text

w = General
‘@ Archive File
1=# Existing Projects into Workspace
[} File System
[} Preferences
[} Projects from Folder or Archive
» (= C/C++
» = Git
3 = Install

@ < Back Finish

Cancel

Figure C.21. Existing Project into Workspace

6. Select the root directory and browse template location.

7. Select the project as shown in Figure C.22: \MainSystem\Golden_MainSystem.

8. Click Finish.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

72

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

Import O

X
Import Projects I"J;L/

7|
Select a directory to search for existing Eclipse projects.

(®) Select root directory: | C\Automate_4_0_Release\Main_System\Golden_MainSy: ~ Browse...
(O select archive file: Browse...
Projects:
Golden_App (C\Automate_4_0_Release\Main_System\Golden_MainSystem\Go Select All
Deselect All
Refresh

< >

Options

[|Search for nested projects

[] Copy projects into workspace

[| Close newly imported projects upon completion

[THide projects that already exist in the workspace

Working sets

[Add project to working sets New...

Waorking sets; Select...

@ < Back Next > Cancel

Figure C.22. Import Project

9. Right click on the firmware project folder Golden_App and select the option as shown in Figure C.23 to build the
project.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 73

http://www.latticesemi.com/legal

Automate 4.0 :I.LATTICE

Reference Design

File Edit ~ - o = — = .
New 5
g -
Go Into |

1S Gole Open in New Window
Show In Alt+Shift+W >

E Copy Ctrl+C
Paste Ctrl+V

X Delete Delete
Remove from Context Ctrl+Alt+Shift+ Down
Source >

Move...

Rename... F2

1 |mport...
i Export...

Build Project Incremental Build of Selected Projects
Clean Project

Refresh F5

Close Project

Close Unrelated Project

Build Configurations >
Build Targets >

Index >

Drafilina Trnl b3

Figure C.23. Build Project

10. Wait for the process to complete to 100%. After completion, the message shown below appears on the console.

Finished building: Golden_App.lst

srec_cat.exe "@..\crc_add.txt" && srec_cat.exe "@..\nocrc_add.txt"

10:47:00 Build Failed. 1 errors, © warnings. (took 8m:1ls.764ms)

Figure C.24. Completing Process

11. To locate the binary file to below path: \MainSystem\Golden_MainSystem\Golden_App\Release.

C.3.3. Node System

To generate the binary in the node system, perform the following:
1. Double-click Lattice Propel SDK 2024.1 to open the dialogue box.

58
s

Lattice
Propel

20241

Figure C.25. Propel Application

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0 74

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

2. To select the workspace, browse to the template location \NodeSystem by clicking on the Browse option as shown
below. Click Launch to launch the workspace.

$ Lattice Propel Launcher x

Select a directory as workspace

Lattice Propel uses the workspace directory te store its preferences and development artifacts,

Workspace: g Browse...

[[] Use this as the default and do not ask again
» Recent Workspaces

Figure C.26. Select Directory

3. Click Import projects or go to File > Import to import firmware project template.

There are no projects in your workspace.
To add a project:

Create a new Lattice SoC Design
Project
S Create a new Lattice &/ C++ Project
Y Createa project...
=1 |mport projects...

Figure C.27. Import Project

4. Select Existing Project in Workspace from the General list and click Next.

% Import O *

Select

Create new projects from an archive file or directory. l E‘\“ E I

Select an import wizard:

| type filtter text |

w (= General -

JE Archive File
(- Existing Projects into Workspace
[} File System
[C] Preferences
[} Projects from Folder or Archive

(= C/C++

(= Git

® < Back Finish Cancel

Figure C.28. Existing Project into Workspace

5. Select root directory and browse template location.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 75

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

6. Select project as shown in below: \NodeSystem.

7. Click Finish.

G Import

Import Projects

{1y No projects are found to import

[ORARL I LI e Stack'NodeSystem'\c_node system 4 O Browse...
() Select archive file: Browse...
Projects:
Select All
Deselect All
Refresh
Options
[[] Search for nested projects
[] Copy projects into workspace
[Close newly imported projects upon completion
[[] Hide projects that already exist in the workspace
Working sets
DAdd project to working sets Mew...
Working sets! Select...
@ < Back Next > Finish Cancel

Figure C.29. Select Project

8. Right-click on the firmware project folder c_node_system_4_0 and select the option as shown in Figure C.30 to
clean the project before building.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

76

http://www.latticesemi.com/legal

Automate 4.0 :.
Reference Design

LATTICE

I7 Project Explarer 2% Y & T B8 | [€ manc X
= — 466 prir
By New > 257 #endif

Go Into 165
469 rety
Open in New Window 478}
471
Show In Alt+Shift+W > 472
) 4738 f*
Z| Copy Ctrl+C 474 * node |
Paste Ctrl+V 475 * [ibrig
476 * at wi
Delete Delete 477 * It t
Remove from Context Ctrl+Alt+Shift+Down 478
g 5 479 ¥ (@par
ource 458)
Move... 481 * {@ret
482 :
Rename... F2 483 int nods
484 {
g | rt...
kel P 485 unsj
iy Export.. 436 int
487 /* B
Build Project 488
Clean Project 489 opcy
498
Close Project 492 1
) 493
Close Unrelated Project 404 1
Build Configurations » Set Active »
Build Targets ¥ Manage...
Index ’ Build Al
Profiling Tools ¥ Clean All

Figure C.30. Clean All

9. After selecting the option as shown in Figure C.30, observe the console and wait for the process to complete to
100%. After completion, the message shown below appears on the console.

BJ Console X _}/lf Registers| 4 Terminal . Problems| (3 Exccutables| G Debugger Console| [J Memory| 5 Call Hicrarchy | ®| LG HeEBE 2R B

CDT Build Console [c_node _system _4.0]

./src/FreeModbus/functions/mbutils.o ./src/FreeModbus/ascii/mbascii.o ./src/FreeModbus/app/user_mb_app.o ./src/FreeModbus/app/user_mb_app_m.o ./src/FreeModbus/mb.o
./src/Freetiodbus/mb_m.o ./src/Enceder/enceder.c ./src/main.o ./src/utils.o c_node_system 4 8.1st c_nede_system 4 @.siz ./src/bsp/driver/riscv_mc/crt@.d ./src/bsp/driver/uart/uart.d
./src/bsp/driver/spi_controller/spi_master.d ./src/bsp/driver/riscv_mc/cache.d ./src/bsp/driver/riscv_mc/exit.d ./src/bsp/driver/riscv_mc/interrupt.d ./src/bsp/driver/riscv_mc/iob.d
./src/bsp/driver/riscv_mc/pic.d ./src/bsp/driver/riscv_mc/reg_access.d ./src/bsp/driver/riscv_me/stdlib.d ./src/bsp/driver/riscv_mc/timer.d ./src/bsp/driver/riscv_me/util.d
./src/bsp/driver/i2c_master/i2c_master.d ./src/bsp/driver/gpio/gpic.d ./src/Freetodbus/tep/mbtcp.d . /src/FreeModbus/rtu/mberc.d ./src/Freetodbus/rtu/mbrtu.d
./src/Freetiodbus/rtu/mbrtu_m.d . /src/Freetodbus/port/portevent.d ./src/Freetiodbus/pert/portevent_m.d ./src/Freetodbus/port/pertserial.d . /src/Frectiodbus/port/pertserial m.d
./src/Freetodbus/port/porttimer.d ./src/Freetiodbus/port/porttimer_m.d . /src/Freetodbus/functions/mbfunccoils.d ./src/FreeModbus/functions/mbfunccoils_m.d
./src/Freetiodbus/functions/mbfuncdiag.d ./src/Freetodbus/functiens/mbfuncdisc.d ./src/Freetiodbus/functions/mbfuncdisc_m.d ./src/Freetodbus/functions/mbfuncholding.d
./src/FreeModbus/functions/mbfuncholding_m.d ./src/Freetodbus/functions/mbfuncinput.d ./src/Freeodbus/functions/mbfuncinput_m.d ./src/FreeModbus/functions/mbfuncother.d
./src/Freetiodbus/functions/mbutils.d ./src/Frectiodbus/ascii/mbascii.d ./src/Freetiodbus/app/user_mb_app.d ./src/Freetiodbus/app/user_mb_app_m.d ./src/Freetiedbus/mb.d
./src/FreeModbus/mb_m.d ./src/Encoder/encoder.d ./src/main.d ./src/utils.d c_node_system_4_8.elf

13:41:06 Build Finished. @ errors, @ warnings. (took 498ms)

Figure C.31. Console

10. After cleaning, right-click on the ¢_node_system_4_0 and select the option as shown in Figure C.32 to build the
project.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 77

http://www.latticesemi.com/legal

Automate 4.0 :I.LATTICE

Reference Design

{5 Project Explorer X = <|q_> 7 & = 8 |[[g maine %
=% c_nod- = 0 466 printf
73 soc_ni New ? #endif
- Go Into
return
Open in Mew Window
Show In Alt+Shift+W >
[B Copy Ctrl+C * node_con
Paste Ctrl+V * f@brief
* at which
3 Delete Delete * Tt then i
Remove from Context Ctrl+Alt+Shift+Down :
79 * (dparam
Source > oo |
436
Move... 431 * [@return
452 /
Epal 2 483= int node_co
fxy Import. fff { -
462 unsigne
£y Export.. 486 int i =
487 /* Read
Build Project 488
Clean Project fi: opcua_e
Refresh 35 201 1F(node
Close Project 492 {
. 493 reg|
Close Unrelated Project 494 }
Build Configurations > Set Active »
Build Targets > Manage...
o ’ Build Al
Profiling Tocls > Clean All
@ FRunAs » Build Selected...

Figure C.32. Build All

11. Wait for the process to complete to 100%. After completion, the message below appears on the console.

) Console % Ui} Registers| & Terminal| [5. Problems| (3 Executables| 53 Debugger Cnsole| [J Memory| * Call Hierarchy X| L v S| BEEBE #rB-H-=0
CDT Build Consale [c_node_system_4_0]
Finished building: c_node_system 4_8.mem -

Invoking: Lattice Multi Memory Deployment (CODE SEGMENT)
riscv-none-embed-objcopy -0 binary --gap-fill @ -j .text -j .ctors -j .dters "c_node_system_4_8.elf" tmp; srec_cat tmp -Binary -byte-swap 4 -DISable Header -Output
"¢_node_system_4 @ Code.mem” -MEM 32

Finished building: c_node_system_4__Code.mem

Invoking: Lattice Multi Memory Deployment (DATA SEGMENT)
riscv-none-embed-objcopy -0 binary --gap-fill @ -j .rodata -j .data -j .bss "c_node_system 4_6.elf” tmp; srec_cat tmp -Binary -byte-swap 4 -DISable Header -Output
"c_node_system_4_@ Data.mem” -MEM 32

Finished building: c_node_system_4__Data.mem

13:44:27 Build Finished. @ errors, 18 warnings. (took 25s.588ms)

Figure C.33. Completing Process
12. To locate the binary file and .mem file to below path:
\NodeSystem\node_system_4_0\c_node_system_4_0\Debug.

C.4. Generating the Bit File in the Main System

C.4.1. Primary Main System

To generate the bit file in the primary main system, perform the following:
1. Open the Propel builder 2024.1 tool.

2. Click on the open design symbol and go to the below path:
Main_System\Primary_MainSystem\soc_main_system_4_0\soc_main_system_4_0.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0 78

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

3. If you do not have the propel patch, open directly from where the project is located. Make sure that there is no
space in the folder name.
4. Select the soc_main_system_4_0.sbx file and the design opens.
lib 12/19/2024 9:23 PM File folder
lib 12/19/2024
| soc_main_system_4_0.layout LAYOUT File 20KB
| soc_main_systemn_4_0.sbx SBX File 1]
soc_main_system_4_0.v V File
| soc_main_system_4_0_tmplv V File

9 soc_main_system_4_0_tmpl.vhd

vhd Archive

Figure C.34. soc_main_system.sbx

Double-click on the system0_inst. A pop-up window appears as shown in Figure C.35.

% Module/® Block Wizard

_memary
Set the following paremeners to confure this compontet.

iagraen sysmemd

sysmemO

—[HHAx1_so
—[HHAxt_s1

axi_aclk_i

axi_resetn_i

Conkigure [P
Ganensd
Pecperty
 Gemeral
Interface
Memeey Address Depth 11 - 40550401
Data Bus Widthoits)
Memary Type
Port Count
ECC Enabie

A0 1D Widih
= Data Streamer
Enabée Dsa Streamer

= Initiakiration
Initiskize Memory
Initiakzation File Formut
Initiskzation File

Pt 50 Semings

Purt 51 Setnngs

Value

A
114688

188

a
hes
steStack 4 0_eBoot/AstomateStack_3_0_uBaotu-bootispl/u-buot-splmem | ...

system_memory

Mo DRC issues ane found.

Figure C.35. System Initialization File

Initialize the data memory with the generated u-boot-spl.mem file in the \AutomateStack_4_0_uBoot\u-boot\spl
folder of the AutomateStack_4_0_uBoot.

7. Click Generate and Validate.

File Edit Wiew Design Tools Window Help
=4 e, ® e
Design View Validate Design j

Figure C.36. Validate Button

Click Generate SGE.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 79

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

File Edit View Design Tools Window Help

sER 9C ol [P S

Design View O Generate id

Figure C.37. Generate SGE Button

9. Open the Radiant tool in the Propel Builder interface.

File Edit View Design Tocls Window Help

cOH O C "li=e QIFIRN

Design View O

'Y r’ﬁ;

Schematic Addre Run Radiant |

Figure C.38. Radiant Tool Button

Note: No need to change the below settings just ensure that these settings are enabled.

a. Open the generated Radiant Project in the Radiant Tool:
\Main_System\Primary_MainSystem\soc_main_system_4_0

b. Select the soc_main_system_4_0.rdf file and the project opens.

|:| soc_main_system_4_0.rdf 12/19/2024 .03 PM RDF File 6 KB

Figure C.39. soc_main_sysyem.rdf File

c. Double-click LAV-AT-E70ES1-3LFG1156.

~ 2 soc_main_system_4_0
B LAV-AT-E70ES1-3LFG1156C

v Strategies

Figure C.40. LAV-AT-E70ES1-3LFG1156C

Select Family: LAV-AT

Select Device: LAV-AT-E70ES1

Select Operating Condition: Commercial

Select Package: LFG1156

Performance Grade: 9_High-Performance_1.0V
Part Number: LAV-AT-E70ES1-3LFG1156C

S ®m o oo

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0 80

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

Device Selector %
Select Device: Device Information:
Family: Device: Core Voltage: 0.82v
iCE40UP (iCE40 UltraPlus) LAV-AT-E70ES1 EYSIRECe: Se2000
LAV-AT (Avant) LO1Es A0
LFCPNX (CertusPro-NX) Regiles £
LFD2NX (Certus-NX) EBR Blocks: 990
LFMX05 (MachX05-NX) DORPHY: 3
LIFCL (CrossLink-NX) s L)
PlLs: 11
DiLs: 13
PCSs: 0
PIO Cells: 557
PIO Pins: 557
4 »
Operating Condition: Package:
Commercial ¥ | |LFG1156 ~
Performance Grade:
3 -
Part Number:
LAV-AT-E70ES1-3LFG1156C v
Onl a Sheet for Device
oK Cancel Help
Figure C.41. Lattice Radiant Device Selector for Main System
j. Set Frequency parameter to 200 MHz.
Strategies - Strategy1 X
Description:
Process Al ¥ | | Default
- Synthesize Design e Type Value -
Constraint Propagat ¢, 1+ Radiant Settings to Synplify Pro GUI List Yes
g F5M Compiler T/F
LSE
— Fanout Guide Num 1000
- Post-Synthesis
— Force GSR List Auto
Post-Synthesis Timir
o) Frequency (MHz) Mum 200
- Map Design
= Library Directori Di
Map Timing Analysis orary Firectones r
+ =] Place & Route Design Mumber of Critical Paths MNum
[=] Place & Route Timin MNumber of Start/End Points Num
= 10 Timing Analysis Output Metlist Format List None -
El Timing Simulation
[=] Bitstream
L] »
oK. Cancel Help

Figure C.42. Strategy for Build Generation for Main System

k. Goto the Strategy and select the Map Design.

I. Go to Map Timing Analysis and select the highlighted part as shown in Figure C.43.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

81

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

Strategies - Strategy1

Description:
Process
* [Synthesize Design Na:ne Type
- Constraint Propagation Command Line Options Text
lify P
El Synplify Pro Number of End Points Num 10
| LSE

Number of Paths Per Constraint Num 10

MNumber of Paths Per Endpoint Num 1

Number of Unconstrained Paths Num 10
! _Report Format List Lattice Standard
 Bspeed for Hold Analysis List

- '_' Post-Synthesis

fﬁ_ Post-Synthesis Timing Analysis
* [=] Map Design

[=]:Map Timing Analysis
+ [=] Place & Route Design

[=] Place & Route Timing Analysis
Tﬁ 10 Timing Analysis Timing Analysis Options List Standard Setup and Hold Analysis

Speed for Setup Analysis List default

'___' Timing Simulation

[~ Bitstream

Figure C.43. MAP Analysis Setting for Main System Bit File Generation

m. Go to Place & Route Design and select the settings as shown in Figure C.44.

Strategies - Strategyl

Description:
Process
v [Synthesize Design N:me Type
f— Constraint Propagation Command Line Options Text -exp nbrforceHoldTimeCorrection=1
| Synplify Pro . . '
- Disable Aute Held Timing Correction T/F
LSE
— Disable Timing Driven T/F
~ = Post-Synthesis

-) . . Impose Hold Timing Cormrection T/F
| Post-Synthesis Timing Analysis

= = Map Design
[=] Map Timing Analysis

= [=]iPlace & Route Design |
[=] Place & Route Timing Analysis
[Z] 10 Timing Analysis Placement Save Best Run [1-100]

Mumber of Host Machine Cores

Placement Iteration Start Point

Placement lterations [0-100]

f_f Timing Simulation
=1 Bitstream Run Placement Only T/F
Speed Grade for Hold Optimization List
Speed Grade for Setup Optimization List
T/F

=3

top Once Timing is Met

Figure C.44. PAR Setting for Main System Bit File Generation

n. Go to Place and Route Timing Analysis and select the settings shown in Figure C.45.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 82

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

Strategies - Strategy1

Description:
Process
M Synthesize Design Name =
_ Constraint Propagation Command Line Options Text
— Synplify Pro Number of End Points Num 10

| LSE

— Number of Paths Per Constraint Num 10
- Post-Synthesis 3
,) . . Mumber of Paths Per Endpoint Mum 1
Post-Synthesis Timing Analysis
fa— . Number of Unconstrained Paths Num 10

- Map Design

f— . . Renart Farmat List | attice Standard
Map Timing Analysis - -
v [Place & Route Design Speed for Hold Analysis List m
=) Place & Route Timing Analysis | Speed for Setup Analysis List default
Timing Analysis Options List Standard Setup and Hold Analysis

10 Timing Analysis
B Timing Simulation

| Bitstream

Figure C.45. PAR Timing Analysis Setting for Main System Bit File Generation

10. Go to Bitstream and select the IP Evaluation if you want to generate the non-licensed bit file. If you want to
generate licensed bit file, uncheck the IP Evaluation box.

Note: You need to request for license file from official website of Lattice Semiconductor.

Strategies - Strategyl X
Description:
Process All - | Default
- Synthesize Design Name Type Value
j— Synplify Pro Command Line Options Text
LSE

. Enable Early 10 Wakeup T/F
- Post-Synthesis

— Enahle Timmina Chacle TIE .|
Post-Synthesis Timi
. s T lation M
- Map Design
Output Format List Bit File (Binary)

B Map Timing Analysic
= Register Initializati T/F
- Place & Route Design egister nfialzation / =

[=] Place & Route Timin
[Flo Timing Analysis

Timing Simulation
DE_Bitstream

oK Cancel Help

Figure C.46. IP Evaluation

11. Click Run All to generate the bit file. Wait for the bit generation and check the output logs.

File Edit View Project Tools Window Help

&R 9 e @aaqa 2L ee
|> Synthesize Design | Map Design | Place & Route Design | Export Files |

| Qe Run Al A x £ Start Page | Reports X

Figure C.47. Run All Button

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 83

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

12. To locate the bit stream file follow the below path:

\Main_System\Primary_MainSystem\soc_main_system_4_0\impl_1.

| soc_main_system_4_0_impl_1.bgn 12/19/2024 8:22 PM BGN File 11 KB
| soc_main_system_4_0_impl_1.bit 12/19/2024 8:22 PM BIT File 12,928 KB

Figure C.48. Bitstream File

C.4.2 Golden Main System

To generate the bit file in the golden main system, perform the following:

1.
2.

5.

Open the Propel builder 2024.1 tool.
Click on the open design symbol and go to the below path:
\Main_System\Golden_MainSystem\soc_main_system_3_1\soc_main_system_4_0.

If you do not have the Propel patch, open directly from where project is located. Make sure that there no space in
the folder name.

Select the soc_main_system_4_0.sbx file to open the design.

lib 12/19/2024 9:23 PM File folder
lib A

| soc_main_system_4_0.layout

File folder

LAYOUT File 20 KB

soc_main_systern_4_0.sbx SBX File
soc_main_system_4_0.v V File
| soc_main_system_4_0_tmplv W File 5KB

9 soc_main_system_4_0_tmplvhd vhd Archive 8 KB

Figure C.49. soc_main_system.sbx

Double-click on the systemO_inst. A pop-up window appears as below.

A Module ® Bock Waard ES
L onfupare {ammganent from Modale systen memory Yerson 2.2.0
St o Folowng parametars b3 coriure thet componeet.
Cisgram sysmemd =
-~ Caneral ¥ o t
Property iabe
= General
nteriace A
Memory Address Depth [1 - 4045080 114688
sysmem0Q e _
Memaey Type [15]
Port Count ?
ECC Enable
+ A
= I—SO AXH D Width 5
= Data Streamer
— I S1 RS —
—axi_aclk_i < w——
ntipize Memory [-]
—axi_resetn_i e et A ottt A.5 sl b bt e
system_memory
-’
Mo DRC mswes are found.
Gocee atn Cancel

Figure C.50. System Initialization File

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 84

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

6. Initialize Data memory with generated u-boot-spl.mem file in the AutomateStack_4_0_uBoot\u-boot\spl folder of
AutomateStack_4_0_uBoot.

7. Click Generate and Validate.

File Edit VWiew Design Tools Window Help

.......

s =Rl 9 C a] [Eo] [P

Design View Validate Design j|

Figure C.51. Validate Button

8. Click the Generate SGE button.

File Edit View Design Tools Window Help

L= N
sEHRA OC Lalse!) I
Design View O Generate ig

Figure C.52. Generate SGE Button

9. Open the Radiant tool in the Propel builder interface.

File Edit View Design Tools Window Help

s B M ¢ mEGEx O HERS

DESi..g: View . Schematic Addre Run Radiant |

Figure C.53. Radiant Tool Button

Note: No need to change the below settings; just ensure that these settings are enabled.

a. Open the generated Radiant Project in the Radiant Tool:
Main_System\Golden_MainSystem\soc_main_system_4_0\.

b. Select the soc_main_system_4_0.rdf file and the project opens.

|j soc_main_system_4_0.rdf 12/16/2024 %03 PM RDF File & EB

Figure C.54. soc_main_sysyem.rdf file

c. Double-click LAV-AT-E70ES1-3LFG1156.

+ E soc_main_system_4 0
8 LAV-AT-E70ES1-3LFG1156C

v Strategies

Figure C.55. LAV-AT-E70ES1-3LFG1156C

Select Family: LAV-AT

Select Device: LAV-AT-E70ES1

Select Operating Condition: Commercial
Select Package: LFG1156

@ -0 o

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0 85

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

h. Performance Grade: 9_High-Performance_1.0V
i. Part Number: LAV-AT-E70ES1-3LFG1156C

Device Selector %
Select Device: Device Information:
Family: Device: Core Voltage: 0.82v
iCE40UP (iCE40 UltraPlus) LAV-AT-ET0ES1 System LCs: 637000
LAV-AT (Avant) LuTs: 397440
LFCPNX (CertusPro-NX) Registers: 397440
LFD2NX (Certus-NX) EBR Blocks: 990
LFMX05 (MachX05-NX) DORPHY: 3
LIFCL (CrossLink-NX) DSPs: 1800
PlLs: 11
DLLs: 13
PCSs: 0
PIO Cells: 557
PIO Pins: 557
4 3
Operating Condition: Package:
Commercial ¥ | LFG1156 v
Performance Grade:
3 -
Part Number:
LAV-AT-E70ES1-3LFG1156C e
Onl
oK Cancel Help
Figure C.56. Lattice Radiant Device Selector for Main System
j. Set Frequency parameter to 200 MHz.
Strategies - Strategyl *
Description:
Process Al v | Default
- Synthesize Design Name Type Value -
[=] Constraint Propagati . . . :
Export Radiant Settings to Synplify Pro GUI List Yes
F5M Compiler T/F
Fanout Guide MNum 1000
A Post-Synthesis .
— Force G5R List Auto
Post-Synthesis Timir
. Frequency (MHz) Mum 200
r Map Design
= Library Directori Di
Map Timing Analysis torany Hirectones r
- Place & Route Design MNumber of Critical Paths Mum
[=] Place & Route Timin Number of Start/End Points Mum
= |0 Timing Analysis Output Metlist Format List Mone -
Tiring Simulation
Bitstream
4 3
QK Cancel Help

Figure C.57. Strategy for Build Generation for Main System

k. Go to the Strategy and select the Map Design and select the Map Timing Analysis. Apply the settings shown in

Figure C.58.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

86

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

Strategies - Strategy1

Description:
Process
¥ [Synthesize Design Name Type
j— Constraint Propagation Command Line Options Text
lify P
— Synplify Pro Mumber of End Points Num 10
| LSE

MNumber of Paths Per Constraint Num 10
MNumber of Paths Per Endpoint Num 1
Number of Unconstrained Paths Num 10

- '_' Post-Synthesis
fﬁ Post-Synthesis Timing Analysis
* [=] Map Design

El {Map Timing Analysis ! Report Format List Lattice Standard
.= pla'ce & Route Design " | Speed for Hold Analysis Lit m
[=] Place & Route Timing Analysis Speed for Setup Analysis List default
=0 Tirning Analysis Timing Analysis Options List Standard Setup and Hold Analysis

T_1 Timing Simulation

[~ Bitstream

Figure C.58. MAP Analysis Setting for Main System Bit File Generation

|. Goto Place & Route Design and select the settings shown in Figure C.59.

Strategies - Strategyl

Description:

Process

v [Synthesize Design NaAme Type
f— Ccnst_ramt Propagation Command Line Options Text -exp nbrforceHoldTimeCorrection=1
f— Synplify Pro Disable Auto Hold Timing Correction T/F

LSE
— Disable Timing Driven T/F
~ = Post-Synthesis

-) . . Impose Hold Timing Cormrection T/F
| Post-Synthesis Timing Analysis

- '_‘ Map Design
[=] Map Timing Analysis
= [=]iPlace & Route Design |
[=] Place & Route Timing Analysis
[=1 10 Timing Analysis
f_f Timing Simulation
"= Bitstream Run Placement Only T/F
Set Speed Grade for Hold Optimization List m
Set Speed Grade for Setup Optimization List 1

MNumber of Host Machine Cores
Placement Iteration Start Point

Placement lterations [0-100]

Figure C.59. PAR Setting for Main System Bit File Generation

m. Go to Place and Route Timing Analysis and select the settings shown in Figure C.60.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 87

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

-

Strategies - Strategy1

Description:

Process

Synthesize Design
"= Constraint Propagation
] Synplify Pro
| LSE
] Post-Synthesis

] Post-Synthesis Timing Analysis

| Map Design
=] Map Timing Analysis
| Place & Route Design

Na‘me
Command Line Options
Number of End Points
Number of Paths Per Constraint
Mumber of Paths Per Endpoint
Number of Unconstrained Paths

Report Format

Speed for Hold Analysis

=] [Place & Route Timing Analysis

Speed for Setup Analysis

10 Timing Analysis
B Timing Simulation

| Bitstream

Timing Analysis Options

Type
Text
Num 10
Num 10
Num 1
Num 10
List Lattice Standard
List m
List default
List Standard Setup and Hold Analysis

10. Go to Bitstream and select the IP Evaluation if you want to generate the non-licensed bit file. If you want to

Figure C.60. PAR Timing Analysis Setting for Main System Bit File Generation

generate licensed bit file, uncheck the IP Evaluation box.

Note: You need to request for license file from official website of Lattice Semiconductor.

Strategies - Strategyl

Description:

Process

- Synthesize Design

B Synplify Pro

[=] LsE
- [F] Post-Synthesis

B Post-Synthesis Timir
- [F] Map Design

B Map Timing Analysic

+ [=] Place & Route Design
[=] Place & Route Timin
B 10 Timing Analysis

B Timing Simulation

S

MName Type

Command Line Options Text
Enable Early 10 Wakeup T/F
Enable Timing Check T/F
‘IP Evaluation T/F

Output Format List Bit File (Binary)

Register Initialization T/F

OK

All - | | Default

Value

Cancel Help

Figure C.61. IP Evaluation

11. Click Run All to generate the bit file. Wait for the bit generation and check the output logs.

File Edit View Project Tools

-6- A 9

Window Help

Qe IH il 0@

Map Design | Place & Route Design | Export Files |

> Synthesize Design

Run All
QU+ et

M ox 0} Start Page

_| Reports

Figure C.62. Run All Button

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

88

http://www.latticesemi.com/legal

Automate 4.0 :I.LATTICE

Reference Design

12. To locate the bit stream file, follow the below path:
\Main_System\Golden_MainSystem\soc_main_system_4_0\impl_1.

| | soc_main_system_4 0_impl_1.bgn 12/19/2024 32 PM BGM File 11 KB
| | soc_main_systern_4_0_impl_1.bit 12/19/2024 6:32 PM BIT File 12,928 KB
Figure C.63. Bitstream File
C.4.3. Node System
1. Open the Propel builder 2024.1 tool.
2. Click on the open design symbol and go to the below path:
NodeSystem\node_system_4_0\soc_node\soc_node.
Mame Date modified Type Size
dib 14-12-2023 10:06 PM File folder
application 14-12-2023 05:00 PM File folder
lib 15-12-2023 10:51 AM File folder
| | soc_nodelayout 15-12-2023 10:51 AM LAY OUT File 9 KB
|] soc_nodesbx 15-12-2023 10:51 AM SBX File 2,076 KB
Figure C.64. soc_node.sbx
3. Double-click on the systemO_inst. A pop-up window appears on the screen as shown below.
%, Module/IP Block Wizard X
Confi C t from IP system_memory Version 2.0.0
Set the following parameters to configure this component.
Diagram sysmem0 Caonfigure IP
General Port 50 Settings Port 51 Settings
Property Value
~ General
Sysmemo Interface AHBL
Memory Address Depth [1-32768] | 32768
Drata Bus Width (bits) 32
Memaory Type LRAM
_H BL_SO Port Count 2
ECC Enable
—H BI_ Sl Enable Arbiter
- ~ FIFO Streamer
] Cl k i Enable FIFO Streamer
— resetn_i ~ Initialization
Initialize Memary
Initialization File Format hex
System memory Initialization File Wfufc_node_system_3_1/Debug/c_node_system_3_1...
4 ¥ ” Mo DRC issues are found.
Generate Cancel

Figure C.65. SystemO Initialization

4. Initialize the data memory with the generated ¢_node_system_4_0_Data.mem file in debug folder of C project.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0 89

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

5. Click Validate.

File Edit View Design Tools Window Help

S= = 2]
s = L al [Ee] (SRR
Design View Validate Design §

Figure C.66. Validate Button

6. Click the Generate SGE button.

File Edit View Design Tools Window Help

s = HE O U= () IS
Design View O Generate id

Figure C.67. Generate SGE Button

7. Open the Radiant tool from the Propel builder interface or open directly.

File Edit View Design Tools Window Help

s =R 9O C e Rt s e

Design View [m|
B

Schematic Addre Run Radiant |

Figure C.68. Radiant Tool Button

Note: No need to change the below settings; just ensure that these settings are enabled.
a. Open the generated Radiant Project in the Radiant Tool: NodeSystem\node_system_4_0\soc_node.
b. Select the soc_node.rdf file and the project opens.

|j soc_node 18-12-2023 01:12 PM RDF File 1KE

Figure C.69. soc_node.rdf file

c. Click on the LFD2NX-40-8BG256C.

|:| soc_node
E iLFD2MNX-40-8BG236C:

= Strategies

Figure C.70. LFD2NX-40-8BG256C

Select Family: LFD2NX

Select Device: LFD2NX-40

Select Operating Condition: Commercial
Select Package: CABGA256

> m oo o

Performance Grade: 8_High-Performance_1.0V
Part Number: LFD2NX-40-8BG256C

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0 90

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

Device Selector >
Select Device: Device Information:
Family: Device: Core Voltage: 1.00V
iCE4DUP (iCE40 UltraPlus) | LFD2ZNX-17 Logic Cells: 39000
LAN-AT (Lattice Avant) LFD2MX-40 LUTs: 32256
LFCPMX (CertusPro-Mix) Registers: 32756
LFD2MX (Certus-MX) EBR Blocks: 84
LFMX O35 (MachX035-NX)
. LRAM: 2
LIFCL (CrossLink-MNX)
DSP (18x18 Multiplier): 56
ADC Blocks: 1
PLLs: 3
DLLs: 2
L] 4 PCSs: 1
Operating Condition: Package: AlUs: 1
Commercial * | CABGA256 - DPHYs: 0
Performance Grade: PIO Cells: i85
i PIO Pins: 185
8_High-Performance_1.0W -
Fart Number:
LFD2NX-40-8BG256C =
Online Data Sheet for Device
oK Cancel Help
Figure C.71. Lattice Radiant Device Selector for Node System
j. Set Frequency parameter to 150 MHz.
Strategies - Strategyl *
Description:
Process = Al ¥ | Default
- Synthesize Design Name Type Value -
— ST Export Radiant Settings to Synplify Pro GUI List Yes
— LE F5M Compiler TF
- Post-Synthesis A
— Fanout Guide MNum 1000
Post-Synthesis Tirn .
— Force GSR List False
- Map Design
— X ‘ Frequency (MHz) Mum 150
Map Timing Analy
+ [Z] Place & Route Design Library Dlrecto.r.les Dir
=1 Place & Route Tirr MNumber of Critical Paths MNum -
[Flo Timing Analysis
B8] Timing Simulation
T — »
OK Cancel Help

Figure C.72. Strategy for Build Generation for Node System

k. Go to the Strategy and click the Map Design. Select the Map Timing Analysis and apply the settings shown in
Figure C.73.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0

91

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

Description:

Process

-

Synthesize Design

B Synplify Pro

[=] LsE
= Post-Synthesis

B Post-Synthesis Timir
= Map Design

|| Map Timing Analysis
[=] Place & Route Design

[=] Place & Route Timin

B 10 Timing Analysis
B Timing Sirmulation

[=] Bitstream

Name Type
MNumber of End Points MNum

MNumber of Paths Per Constraint Mum
Mumber of Paths Per Endpoint ~ Mum

Mumber of Unconstrained Paths Mum

All <

Value
10
10
1
10

Report Format List Lattice Standard

Speed for Hold Analysis List & High-Performance_1.0V
Speed for Setup Analysis List 8 High-Performance_ 1.0V
Timing Analysis Options List Standard Setup and Hold Analysis

oK Cancel

Default

Help

Figure C.73. MAP Analysis Setting for Node System Bit File Generation

I. Goto Place & Route Design and select the settings shown below.

Strategies - Strategyl

Description:

Process

-

Synthesize Design

B Synplify Pro

[=] LsE
B Post-Synthesis

B Post-Synthesis Timir
B Map Design

[=] Map Timing Analysic

Place & Route Design

[=] Place & Route Timin

o Timing Analysis

B Timing Simulation

[=] Bitstream

Ps
MName

Path-based Placement
Placement Iteration Start Point
Placement lterations [0-100]
Placement Save Best Run [1-100]

Al ¥ | Default
Type Value *
List Off
Num 1
Num 10
Num 10

Prioritize Hold Correction Over Setup Performance | T/F

Run Placement Only

Set Speed Grade for Hold Optimization
Set Speed Grade for Setup Optimization
Stop Once Timing is Met

T/F

List m

List Default
TF

oK Cancel

Help

Figure C.74. PAR setting for Node System Bit File Generation

m. Go to Place and Route Timing Analysis and select the settings shown in Figure C.75.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0

92

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

Strategies - Strategyl

= Tiring Simulation

[=] Bitstream

Description:
Process Al ¥ | Default
. . FS
- Synthesize Design MName Type Value
j— Synplify Pro Command Line Options Text
LSE
. Number of End Points Num 10
- Post-Synthesis .
— Murmber of Paths Per Constraint Mum 10
Post-Synthesis Timir .
— Murmber of Paths Per Endpoint Num 1
- Map Design
= . .| Mumber of Unconstrained Paths Mum 10
Map Timing Analysis
o] Report F t List Lattice Standard
- Place & Route Design o — : e ——
Speed for Held Analysis List m
= 10 Timing Analysis Speed for Setup Analysis List default
Tirning Analysis Options List Standard Setup and Held Analysis

0K Cancel Help

8. Go to Bitstream and select the IP Evaluation if you want to generate non-licensed bit file. If you want to generate

Figure C.75. PAR Timing Analysis Setting for Node System Bit File Generation

the licensed bit file, uncheck the IP Evaluation box.

Note: You need to request for license file from official website of Lattice Semiconductor.

Strategies - Strategy

Description:
Process All - | Default
- Synthesize Design Mame Type Value
j— Synplify Pro Command Line Options | Text
LSE
- Enable Early 10 Wakeup T/F
A Post-Synthesis
e Enable Timing Check T/F
Post-Synthesis Timir
=1 Mao b .)" IIP Evaluation T/F I
- ap Design
= Map Timing Analvsi Qutput Format List Bit File (Binary)
ap Timing Analysis
| Register Initializati TF B
A Place & Route Design cgsterniizlization / L
[=] Place & Route Timin
= 10 Timing Analysis
[=] Timing Simulation
4 .3
OK Cancel Help

Figure C.76. IP Evaluation

9. Click Run All to generate the bit file. Wait for the bit generation and check the output logs.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0

93

http://www.latticesemi.com/legal

Automate 4.0 :.'LATT’CE

Reference Design

File Edit View Project Tools Window Help

o-&-B 9 C QQ Q@ ol ©e
E Synthesize Design | Map Design | Place & Route Design | Export Files |

QiR Al Ls 2 x 0 Start Page | Reports X

Figure C.77. Run All Button

10. To locate the bit stream file, follow the below path: \NodeSystem\node_system_4_0\soc_node\impl_1.

D soc_node_impl_T.bgn 08-07-2024 03:29 PM BGM File 19 KB
D soc_node_impl_1.bit 08-01-2024 03:29 PM BIT File G35 KB

Figure C.78. Bitstream File

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

94

http://www.latticesemi.com/legal

Automate 4.0 :I.LATTICE
Reference Design

Appendix E. Creating the MCS File

The following steps provide the procedure for generating a Multi-Boot PROM hex file using the Radiant Deployment
tool. This procedure is an example for three total bitstream, primary pattern, golden pattern, Alternate pattern 1.

To create the MCS file, perform the following:

1. Open the Lattice Radiant Programmer > Tools > Deployment Tool.

a Radiant Programmer - Untitled.xcf *
File Edit View FRun Tools Help
ﬁ i'_‘l’ = 1:} Deployment Tool |
Enable Status Download Debugger
. TTA £ Programming File Utility

Operation Device Family

Bypass Generic JTAG Device
® Custom Flash Device...

Figure E.1. Deployment Tool

2. Select External Memory for the Function Type and Advanced SPI Flash for the Output File Type.
3. Select OK.

H Radiant Deployment Tool - Getting Started ? x>

(@ Create New Deployment

Function Type: External Memory v

Output File Typ¢ ‘Advanced SPI Flash P

Open an Existing De| ment
pe ng Dep

Recent Files:

Figure E.2. Creating New Deployment for Multi-Boot

4. For Step 1 of 4: Select input files window, apply the settings below.

a. Click the file name field to browse and select the primary bitstream file to be used to create the PROM hex
file. The device family and device fields auto populate based on the bitstream files selected.

b. Select Next.

Radiant Deployment Tool- project0.ddt* - O *
File Edit Help

AR DD D E DB fE

External Memory: Advanced SPI Flash

Step 1 of 4: Select Input File(s)

File Mame (*.bit *.rbt *.bin *.hex) Device Family Device

1 systern_4_0/impl_1/soc_main_syster_4_0_impl_1.bit I.. LAV-AT_ENG LAV-AT-ETOEST

Figure E.3. Select Input File Window

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02302-1.0 95

http://www.latticesemi.com/legal

= LATTICE

For Step 2 of 4: Advanced SPI Flash Options window, apply the settings below.
a. Goto the Multiple Boot tab.
b. Select the Multi-Boot option.
Click on the Golden pattern browse button to select the Primary pattern bitstream.

d. The starting address of the Golden pattern is automatically assigned. You can change it by clicking on the drop-
down menu.

e. Inthe number of Alternate patterns field, select the number of patterns to include through the drop-down
menu.

f. Inthe Alternate Pattern 1 field, click on the browse button to select the golden pattern bitstream. The starting
address of the primary pattern is automatically assigned. You can change it by clicking on drop down menu.

g. The address of next Alternate pattern to configure field is automatically populated. This is the pattern that is
loaded during the next PROGRAMN/REFRESH event. You can change the pattern by clicking on the drop-down
menu.

h. Select Next.

Radiant Deployment Tool- project0.ddt* -] X
File Edit Help

AR H RS EDE DB L E

External Memory: Advanced SPI Flash
Step 2 of 4: Advanced SPI Flash Options
Options ~ UserDataFiles Multiple Boot
Multiple Boot
Golden Pattern: Ci/Lattice_Automate_Stack/MainSystemMain_SystemGolden_MainSy: »
Starting Address: 0x00CBO00D R
[Protect Golden Sector

Mumber of Alternate Patterns: 1 R

Alternate Pattern 1: C:/Lattice_Automate_Stack/MainSystem/Main_System/Primary_ ~
Starting Address: 0x0 1360000 s

Mext Alternate Pattern to Configure: | Primary Pattern b

Alternate Pattern 2:
Starting Address:

Mext Alternate Pattern to Configure: Primary Patiern

Figure E.4. Advanced SPI Flash Options - Multi-Boot Tab Window

Note: The starting address of golden pattern must be more than the size of primary pattern and the starting
address of alternate pattern 1 must be more than the starting address + size of golden pattern. Otherwise, it
generates an error.

For Step 3 of 4: Select output file window, apply the settings below.
a. Specify the name of the output PROM hex file in the output file 1 field.
b. Select Next.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

= LATTICE

Radiant Deployment Tool- project0.ddt™ — O
File Edit Help

B @&

H e = 2 o E 2

External Memory: Advanced SPI Flash

Step 3 of 4: Select Output File(s)

Output File1: | _MainSystem /soc_main_system_4_0/impl_1/soc_main_system_4_0_impl_1.mcs

Figure E.5. Select Output File Window

7. For Step 4 of 4: Generate Deployment window, apply the settings below.

Review the summary information.

b. If everything is correct, click Generate. The generate deployment pane indicates the PROM file is successfully

generated.

Save the deployment setting by selecting File > Save.

d. To exit, go to File > Exit.

File Edit Help

N EH R DD E DR L E

Radiant Deployment Tool- project0.ddt* - O *

External Memory: Advanced SPI Flash

Step 4 of 4: Generate Deployment

View File
Deployment Tool v ~
Input File: C:/Lattice_Rutomate Stack/MainSystem/Main System/Primary MainSyst
Options:
Cutput Format: Intel Hex
SPI Flash Size (Mb): 1024
SPI Flash Read Mode: Standard Read
Byte Wide Bit Mirror: Off
Retain Bitstream Header: Off
Optimize Memory Space: Off
Multiple Boot: Off
Golden Pattern: On
Golden Starting Address: C:/Lattice_Automate_Stack/MainSystem/Main Sy ¥
£ >
T TG T TP O g G OO L
Lattice_Automate_Stack/MainSystemMain_System/Primary_MainSystem/soc_main_system_4_0/impl_1/ A
soc_main_system_4_0_impl_1.bit™ -format int -flashsize 1024 -golden "C:/Lattice_Automate_Stack/MainSystem,
Main_System/Golden_MainSystem/Golden_MainSystem /soc_main_system_4_0/impl_1/
soc_main_system_4_0_impl_1.bit" -goldenadd 0x00CBO000 -multi 1 -altfile "C: /Lattice_Automate_Stack/
MainSystem,Main_System, Primary_MainSystem/soc_main_system_4_0fimpl_1/soc_main_system_4_0_impl_1.bit"
-address 0x01960000 -next prim -of "C: Lattice_Automate_Stack/MainSystem/Main_System,
Primary_MainSystem soc_main_system_4_0/impl_1/soc_main_system_4_0_impl_1.mcs"™
v
L
VLattice_Automate_Stack\MainSystemMain_System'Primary_MainSystemsoc_main_system_4_0%mpl_1\soc_main, L
Format: Intel Hex
Qutput File: C:/Lattice_Automate_Stack/MainSystem Main_System Primary_MainSystem/soc_main_system_4_0/
impl_1/soc_main_system_4_0_impl_1.mcs
Sector 0x01960000: C:
\Lattice_Automate_Stack\MainSystemMain_System'Primary_MainSystem\soc_main_system_4_0%mpl_1\soc_main,
Start generation.
Generating Intel Hex PROM File.....
Successfully generate flle(s)
C
Lattice_Automate_Stack\MainSystemMain_System'Primary_MainSystemsoc_main_system_4_0Ympl_1\soc_main,
Lattice Radiant Deployment Tool has exited successfully, Y]
< 3
Previous Generate

Figure E.6. Generate Deployment window

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0

97

http://www.latticesemi.com/legal

Automate 4.0 :.'LATT’CE

Reference Design

8. Once configured, you can program the .mcs file in the external flash using the Radiant Programmer.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 98

http://www.latticesemi.com/legal

Automate 4.0 :I.LATT’CE

Reference Design

References

e Lattice Automate

Other references:

e Lattice Radiant FPGA design software

e Lattice Insights for Lattice Semiconductor training courses and learning plans

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 99

http://www.latticesemi.com/legal
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/Automate
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
https://www.latticesemi-insights.com/

Automate 4.0 :I.LATT’CE

Reference Design

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, please refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 100

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

Automate 4.0

Reference Design :..LATT’CE

Revision History

Revision 1.0, February 2025

Section Change Summary
All

Initial preliminary release.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 101

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Automate 4.0
	Contents
	Abbreviations in This Document
	1. Introduction
	1.1. Automate 4.0 System Architecture Overview
	1.1.1. Main System
	1.1.2. Node System

	1.2. Advantages of the Automate 4.0 Reference Design
	1.3. Automate 4.0 Components

	2. Design Overview
	2.1. Theory of Operation
	2.2. FPGA Design
	2.2.1. Main System
	2.2.2. Lattice Main System 4.0 Architecture
	2.2.2.1. Lattice Main System 4.0 Architecture
	2.2.2.2. Data Flow Details of the Main System 4.0
	Automate Main System Multiboot Flow
	Automate Main System Bootloader Flow
	Automate Main System Application Flow

	2.2.2.3. Memory Map

	2.2.3. Node System
	2.2.3.1. Data Flow
	2.2.3.2. Memory Map

	2.3. EtherConnect IP Design Details
	2.3.1. Overview of Existing IP
	2.3.1.1. Normal Packet

	2.3.2. Architecture
	2.3.2.1. Main System
	2.3.2.2. Node System

	2.3.3. Register Map

	2.4. FIFO DMA
	2.5. LPDDR4 Controller
	2.6. QSPI Flash controller
	2.7. Scatter Gather DMA IP Design Details
	2.8. CNN Co-Processor Unit (CCU)
	2.9. Motor Control and PDM Data Collector
	2.10. SPI Controller IP
	2.10.1. SPI Controller Register Map
	2.10.2. Programming Flow
	2.10.2.1. Initialization
	2.10.2.2. Transmit/Receive Operation

	2.11. I2C Controller IP
	2.12. UART IP
	2.13. EnDat 2.2 Master IP
	2.14. SPI Flash Controller
	2.15. TSE MAC
	2.16. FPGA Config Module Design

	3. Resource Utilization
	4. Firmware
	4.1. Main System Boot Flow
	4.2. Node System Boot Flow

	5. Software APIs
	5.1. Main System
	5.1.1. Tasks of the Main System
	5.1.2. lwIP Ethernet and UDP stack
	5.1.3. OPCUA PubSub
	5.1.4. Create_UADP_NetworkMessage
	5.1.4.1. NetworkMessage Header

	5.1.5. GroupHeader
	5.1.6. Extended NetworkMessage Header
	5.1.6.1. Payload
	UADP_NetworkMessage_parse
	udp_response_func
	method_callbacks
	rfl_update_config
	start_motor
	stop_motor
	poweroff_motor
	get_background
	run_pdm

	5.2. Node System APIs
	5.2.1. Tasks of the Node System
	5.2.2. Key Functions

	6. Communications
	6.1. Communication between Host and Main System
	6.1.1. Messages from Host to Main System
	6.1.2. Messages from Main System to Host

	6.2. Communication between Main System and Node System(s)
	6.2.1. Messages from Main System to Node System
	6.2.2. Messages from Node System to Main System

	Appendix A. Predictive Maintenance with TensorFlow Lite
	A.1. Overview
	A.2. Data Capture and Labeling
	A.3. Model Training
	A.3.1. Training Code Structure
	A.3.2. Identify Neural Network Architecture (Informational)
	A.3.3. Implement Training Algorithm
	A.3.4. Training Framework
	A.3.5. Testing the Accuracy of the Trained Model
	A.3.6. Converting the Trained Model

	A.4. On Device Inferencing
	A.4.1. Implementing the TensorflowMicro Library
	A.4.2. CNN Co-processor Optimization

	Appendix B. Setting Up the Wireshark Tool
	Appendix C. Automate Stack 4.0 Bit and Binary Generation
	C.1. Installing the Propel SDK 2024.1
	C.2. Installing the Propel Patch 2024.1
	C.3. Generating the Binary in the Main System
	C.3.1. Primary Main System
	C.3.2. Golden Main System
	C.3.3. Node System

	C.4. Generating the Bit File in the Main System
	C.4.1. Primary Main System
	C.4.2 Golden Main System
	C.4.3. Node System

	Appendix E. Creating the MCS File
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, February 2025

