

Automate 4.0

Reference Design

FPGA-RD-02302-1.0

February 2025

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 2

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

Inclusive Language
This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and
other items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases
such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 3

Contents
Contents ... 3
Abbreviations in This Document... 9
1. Introduction .. 10

1.1. Automate 4.0 System Architecture Overview ... 10
1.1.1. Main System ... 10
1.1.2. Node System .. 10

1.2. Advantages of the Automate 4.0 Reference Design ... 10
1.3. Automate 4.0 Components ... 11

2. Design Overview ... 12
2.1. Theory of Operation .. 12
2.2. FPGA Design .. 13

2.2.1. Main System ... 13
2.2.2. Lattice Main System 4.0 Architecture .. 14
2.2.3. Node System .. 17

2.3. EtherConnect IP Design Details ... 20
2.3.1. Overview of Existing IP ... 20
2.3.2. Architecture .. 21
2.3.3. Register Map .. 21

2.4. FIFO DMA .. 22
2.5. LPDDR4 Controller... 24
2.6. QSPI Flash controller ... 24
2.7. Scatter Gather DMA IP Design Details .. 24
2.8. CNN Co-Processor Unit (CCU) ... 24
2.9. Motor Control and PDM Data Collector .. 24
2.10. SPI Controller IP .. 32

2.10.1. SPI Controller Register Map ... 32
2.10.2. Programming Flow ... 33

2.11. I2C Controller IP .. 33
2.12. UART IP .. 33
2.13. EnDat 2.2 Master IP .. 34
2.14. SPI Flash Controller ... 34
2.15. TSE MAC .. 35
2.16. FPGA Config Module Design ... 35

3. Resource Utilization .. 36
4. Firmware ... 38

4.1. Main System Boot Flow... 38
4.2. Node System Boot Flow .. 38

5. Software APIs .. 39
5.1. Main System .. 39

5.1.1. Tasks of the Main System ... 39
5.1.2. lwIP Ethernet and UDP stack .. 41
5.1.3. OPCUA PubSub ... 41
5.1.4. Create_UADP_NetworkMessage ... 42
5.1.5. GroupHeader .. 43
5.1.6. Extended NetworkMessage Header ... 43

5.2. Node System APIs ... 46
5.2.1. Tasks of the Node System .. 46
5.2.2. Key Functions ... 46

6. Communications ... 49
6.1. Communication between Host and Main System ... 49

6.1.1. Messages from Host to Main System ... 49
6.1.2. Messages from Main System to Host ... 49

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 4

6.2. Communication between Main System and Node System(s) ... 49
6.2.1. Messages from Main System to Node System ... 49
6.2.2. Messages from Node System to Main System ... 49

Appendix A. Predictive Maintenance with TensorFlow Lite ... 51
A.1. Overview ... 51
A.2. Data Capture and Labeling .. 52
A.3. Model Training .. 52

A.3.1. Training Code Structure ... 52
A.3.2. Identify Neural Network Architecture (Informational) .. 54
A.3.3. Implement Training Algorithm ... 56
A.3.4. Training Framework ... 57
A.3.5. Testing the Accuracy of the Trained Model ... 58
A.3.6. Converting the Trained Model ... 59

A.4. On Device Inferencing ... 60
A.4.1. Implementing the TensorflowMicro Library .. 60
A.4.2. CNN Co-processor Optimization .. 60

Appendix B. Setting Up the Wireshark Tool ... 61
Appendix C. Automate Stack 4.0 Bit and Binary Generation .. 62

C.1. Installing the Propel SDK 2024.1 .. 62
C.2. Installing the Propel Patch 2024.1 ... 62
C.3. Generating the Binary in the Main System .. 65

C.3.1. Primary Main System .. 65
C.3.2. Golden Main System... 71
C.3.3. Node System ... 74

C.4. Generating the Bit File in the Main System ... 78
C.4.1. Primary Main System .. 78
C.4.2 Golden Main System.. 84
C.4.3. Node System ... 89

Appendix E. Creating the MCS File ... 95
References .. 99
Technical Support Assistance ... 100
Revision History ... 101

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 5

Figures
Figure 2.1. Lattice Automate Stack 4.0 Top Level Block Diagram ... 12
Figure 2.2. Automate 4.0 Main System Architecture ... 13
Figure 2.3. Multiboot Tab of Deployment Tool .. 14
Figure 2.4. Client to Server Data Flow .. 16
Figure 2.5. Node System Architecture .. 18
Figure 2.6. Encoder Subsystem Architecture .. 18
Figure 2.7. Packet Structure ... 20
Figure 2.8. Motor Control and PDM Data Collector ... 25
Figure 2.9. EnDat 2.2 Master IP Core Functional Block Diagram .. 34
Figure 2.10. SPI Flash Controller IP Core Functional Block Diagram ... 35
Figure 4.1. Main System Boot Flow .. 38
Figure 5.1. UADP Version .. 42
Figure 5.2. UADP Message Packet Header ... 42
Figure 5.3. Create_UADP_NetworkMessage .. 44
Figure 5.4. UADP Network Message Format .. 45
Figure 6.1. Data Flow from Host to Node System through the Main System... 50
Figure A.1. Predictive Maintenance Machine Learning Overview .. 51
Figure A.2. Data Format Labeling ... 52
Figure A.3. Training Code Directory Structure .. 53
Figure A.4. LATTE Training .. 58
Figure A.5. LATTE Testing ... 59
Figure A.6. LATTE Conversion ... 59
Figure A.7.Model to C Array Conversion .. 60
Figure B.1. Wireshark Tool – Write udp.port == 1486 .. 61
Figure B.2. Source and Destination UDP Packet ... 61
Figure B.3. Wireshark tool – First UDP Packet .. 61
Figure C.1. Propel Patch Application .. 62
Figure C.2. Propel Patch Setup Window – Install Lattice Propel .. 62
Figure C.3. Propel Patch Setup Window – Select Installation Folder ... 63
Figure C.4. Propel Patch Setup Window – Start Menu Shortcut .. 63
Figure C.5. Installation Process ... 64
Figure C.6. Installation Completed ... 64
Figure C.7. Propel 2024.1 Application .. 65
Figure C.8. Select Directory .. 65
Figure C.9. Import Project ... 65
Figure C.10. Existing Project into Workspace ... 66
Figure C.11. Import Project ... 67
Figure C.12. Properties ... 68
Figure C.13. C/C++ Build Settings ... 69
Figure C.14. Manage Configuration – Release: Set Active .. 69
Figure C.15. Manage Configuration: Apply and Close .. 70
Figure C.16. Build Project ... 70
Figure C.17. Completing Process .. 71
Figure C.18. Propel 2024.1 application ... 71
Figure C.19. Select Directory .. 71
Figure C.20. Import Project ... 72
Figure C.21. Existing Project into Workspace ... 72
Figure C.22. Import Project ... 73
Figure C.23. Build Project ... 74
Figure C.24. Completing Process .. 74
Figure C.25. Propel Application .. 74
Figure C.26. Select Directory .. 75

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 6

Figure C.27. Import Project ... 75
Figure C.28. Existing Project into Workspace ... 75
Figure C.29. Select Project .. 76
Figure C.30. Clean All .. 77
Figure C.31. Console ... 77
Figure C.32. Build All ... 78
Figure C.33. Completing Process .. 78
Figure C.34. soc_main_system.sbx ... 79
Figure C.35. System Initialization File ... 79
Figure C.36. Validate Button ... 79
Figure C.37. Generate SGE Button .. 80
Figure C.38. Radiant Tool Button .. 80
Figure C.39. soc_main_sysyem.rdf File ... 80
Figure C.40. LAV-AT-E70ES1-3LFG1156C .. 80
Figure C.41. Lattice Radiant Device Selector for Main System ... 81
Figure C.42. Strategy for Build Generation for Main System.. 81
Figure C.43. MAP Analysis Setting for Main System Bit File Generation .. 82
Figure C.44. PAR Setting for Main System Bit File Generation ... 82
Figure C.45. PAR Timing Analysis Setting for Main System Bit File Generation ... 83
Figure C.46. IP Evaluation ... 83
Figure C.47. Run All Button ... 83
Figure C.48. Bitstream File .. 84
Figure C.49. soc_main_system.sbx ... 84
Figure C.50. System Initialization File ... 84
Figure C.51. Validate Button ... 85
Figure C.52. Generate SGE Button .. 85
Figure C.53. Radiant Tool Button .. 85
Figure C.54. soc_main_sysyem.rdf file ... 85
Figure C.55. LAV-AT-E70ES1-3LFG1156C .. 85
Figure C.56. Lattice Radiant Device Selector for Main System ... 86
Figure C.57. Strategy for Build Generation for Main System.. 86
Figure C.58. MAP Analysis Setting for Main System Bit File Generation .. 87
Figure C.59. PAR Setting for Main System Bit File Generation ... 87
Figure C.60. PAR Timing Analysis Setting for Main System Bit File Generation ... 88
Figure C.61. IP Evaluation ... 88
Figure C.62. Run All Button ... 88
Figure C.63. Bitstream File .. 89
Figure C.64. soc_node.sbx .. 89
Figure C.65. System0 Initialization .. 89
Figure C.66. Validate Button ... 90
Figure C.67. Generate SGE Button .. 90
Figure C.68. Radiant Tool Button .. 90
Figure C.69. soc_node.rdf file ... 90
Figure C.70. LFD2NX-40-8BG256C .. 90
Figure C.71. Lattice Radiant Device Selector for Node System .. 91
Figure C.72. Strategy for Build Generation for Node System ... 91
Figure C.73. MAP Analysis Setting for Node System Bit File Generation ... 92
Figure C.74. PAR setting for Node System Bit File Generation ... 92
Figure C.75. PAR Timing Analysis Setting for Node System Bit File Generation ... 93
Figure C.76. IP Evaluation ... 93
Figure C.77. Run All Button ... 94
Figure C.78. Bitstream File .. 94
Figure E.1. Deployment Tool .. 95
Figure E.2. Creating New Deployment for Multi-Boot .. 95

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 7

Figure E.3. Select Input File Window .. 95
Figure E.4. Advanced SPI Flash Options - Multi-Boot Tab Window .. 96
Figure E.5. Select Output File Window ... 97
Figure E.6. Generate Deployment window... 97

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 8

Tables
Table 2.1.Main System Memory Map .. 17
Table 2.2. Node System Memory Map ... 19
Table 2.3. EtherConnect IP Global Registers .. 21
Table 2.4. EtherConnect IP Chain 1 Registers ... 22
Table 2.5. FIFO DMA Register Map ... 22
Table 2.6. FIFO DMA Control Registers... 22
Table 2.7. DEST_BASE_ADDR Register .. 23
Table 2.8. DEST_END_ADDR Register ... 23
Table 2.9. Write Status Register ... 23
Table 2.10. Read Status Register .. 23
Table 2.11. Motor Control and PDM Data Collector Registers ... 25
Table 2.12. Motor Control 0 – Minimum RPM ... 26
Table 2.13. Motor Control 1 – Maximum RPM ... 26
Table 2.14. Motor Control 2 – RPM PI Control Loop Integrator Gain (kI) .. 27
Table 2.15. Motor Control 3 – RPM PI Control Loop Proportional Gain (kP) ... 27
Table 2.16. Motor Control 6 – Synchronization Delay and Control .. 27
Table 2.17. Direction Mapping ... 28
Table 2.18. Motor Control Register 7 – Target RPM... 28
Table 2.19. Motor Status Register 0 – RPM .. 28
Table 2.20. Motor Status Register 1 ... 28
Table 2.21. Predictive Maintenance Control Register 0 ... 29
Table 2.22. Predictive Maintenance Control Register 1 ... 30
Table 2.23. Predictive Maintenance Status Register .. 30
Table 2.24. Predictive Maintenance Current/Voltage Data Register ... 31
Table 2.25. Predictive Maintenance Current/Voltage Data Register ... 31
Table 2.26. Versa Board Switch Status Register ... 31
Table 2.27. Versa Board LED and PMOD Control Register ... 31
Table 2.28. Encoder Position Register .. 32
Table 2.29. PWM_SYNC IRQ Status Register .. 32
Table 3.1. Main System Resource Utilization .. 36
Table 3.2. Main System Total Resource Utilization .. 36
Table 3.3. Node System Resource Utilization ... 37
Table 3.4.Node System Total Resource Utilization ... 37
Table A.1. Predictive Maintenance Training Network Topology .. 54
Table A.1.Example of Inference Outcomes .. 60

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 9

Abbreviations in This Document
A list of abbreviations used in this document.

Abbreviation Definition

AHBL Advanced High-performance Bus-Lite

AI Artificial Intelligence

API Application Programming Interface

BLDC Brushless DC

CCU CNN Co-Processor Unit

CNN Convolutional Neural Network

CPU Central Processing Unit

DMA Direct Memory Access

FIFO First-In-First-Out

GMII Gigabit Media Independent Interface

ISR Interrupt Service Routines

ICMP Internet Control Message Protocol

LATTE Lattice Training Environment

ML Machine Learning

QSPI Quad Serial Peripheral Interface

RGMII Reduced Gigabit Media Independent Interface

RISC-V Reduced Instruction Set Computer-V

RTL Register-Transfer Level

SGMII Serial gigabit media-independent interface

UART Universal Asynchronous Receiver-Transmitter

DDR Double Data Rate

UDP User Data gram Protocol

LPDDR4 Low Power Double Data Rate Generation 4

TSEMAC Tri-Speed Ethernet Media Access Controller

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 10

1. Introduction
The Automate 4.0 Reference Design serves as a comprehensive base for developing a wide range of industrial
solutions, including industrial Ethernet communication protocols like EtherCAT and Profinet, predictive maintenance,
open and closed motor control, and industrial robotics. This reference design is built based on the Lattice Avant™-E
GSRD to provide a robust and flexible platform for industrial applications.

The Automate 4.0 reference design is composed of two primary systems: the main system and the node system. Each
system plays a crucial role in the overall functionality and performance of the solution stack.

1.1. Automate 4.0 System Architecture Overview

1.1.1. Main System

The main system is built around the Avant-E FPGA. The key components and features of the main system include:

• Avant-E base RISC-V: The base RISC-V based SOC system that handles complex computations and control tasks.

• EtherConnect IP: Developed to facilitate Ethernet communication, enabling seamless data transfer between the
main and node systems.

• CNN Co-processor IP: Used for predictive maintenance application, ensuring efficient and accurate performance.

• Interface IP: Provides the necessary interfaces for connecting various peripherals and components within the
system.

• Soft RISC-V SoC Platform: A flexible and programmable system-on-chip that supports the integration of custom IP
blocks and firmware updates.

• Firmware Updates: Includes LWIP (Lightweight IP) and TCP/IP stack to establish a reliable connection with the host
system, allowing for control through the Automate 4.0 user interface.

The main system firmware and IP blocks are designed to enable robust communication and control capabilities, making
it a central hub for managing industrial automation tasks. The current reference design utilizes about 18% of FPGA
resources leaving almost more than half of the resources for customer specific glue logic and IP.

1.1.2. Node System

The node system utilizes the Certus™-NX FPGA, which is also built on a soft RISC-V SoC platform. Key components and
features of the node system include:

• Certus-NX FPGA: Provides a low power FPGA solution for local control and data acquisition tasks.

• Motor Control IP: Implements advanced algorithms for controlling motor speed, direction, and torque, ensuring
precise and efficient motor operation.

• Encoder IP: Used to monitor and provide feedback on motor position, enabling closed-loop control for enhanced
accuracy and performance.

• EtherConnect IP: Facilitates Ethernet communication with the main system, ensuring synchronized operation and
data exchange.

The node system is designed to operate in conjunction with the main system, providing localized control and feedback
for motor operations and other industrial processes.

1.2. Advantages of the Automate 4.0 Reference Design
• Ease of Use: The reference design is user-friendly, with all necessary components and connections pre-configured.

This enables customers to quickly bring their systems online, often within a few hours. The modular nature of the
design allows for easy customization and scalability, making it suitable for a wide range of industrial applications.

• Cost Savings: By providing a ready-to-use reference design, the Automate 4.0 reference design significantly
reduces development time and costs. You can leverage the pre-developed IP and firmware updates to accelerate
their project timelines and reduce overall expenses.

• Low Power design: The Automate 4.0 Reference Design is optimized for energy efficiency, which utilizes the Avant
and Lattice Nexus™ FPGA platforms that use the power optimized LUT-4 (Look-Up Table) architecture.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 11

In summary, the Automate 4.0 reference design offers an easy-to-use, cost-effective, and low power platform for
developing advanced industrial solutions. Its comprehensive set of components and pre-configured IP ensure that
customers can quickly and efficiently implement their projects, leading to faster time-to-market and reduced
development costs.

1.3. Automate 4.0 Components
The Automate Stack 4.0 release includes the following components:

• System on Chip (SOC)

• Main System IPs

• EtherConnect IP (with RGMII, FIFO DMA, CNN Co-Processor Unit (CCU), SPI Flash Controller, Multiport
extension,TSE MAC, and Reset Synchronizer.

• Node System IPs

• EtherConnect IP (With SGMII/RGMII (PHY or SFP), FIFO DMA, BLDC motor control IP, Data collector for
predictive maintenance

• Modbus, I2C Manager and SPI Manager

• Software

• Firmware (APIs)

• APIs to send instructions to motor control IP, collect status of motors and collect data for predictive
maintenance Compiled TensorFlow-Lite C++ library for RISC-V (Required for neural network inference).
TCP/IP Ethernet stack is also added

• User Interface

• Controls motor, collects status and data for predictive maintenance, displays warning when maintenance
required.

• Machine Learning

• Trained Neural Network for predictive maintenance

• Script to train network with user collected data.
Note: The generic RISC-V subsystem components are excluded from the list of components.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 12

2. Design Overview

2.1. Theory of Operation
The overall architecture is shown in Figure 2.1. The Automate stack 4.0 consists of one Main System (MS) and multiple
Node Systems (NS) (maximum eight in a chain). The host is connected to the MS through ethernet cable. Application
software with user interface running on the host can send commands to the MS and receive motor maintenance data
from the system for AI training. The MS can propagate the commands to NS using OPCUA packets for motor control
and gather maintenance data from NS.

Hosts can also send/receive data from different peripherals connected to node other than motor.

For the main system, the Avant-E device is used for the demo design. For the node system, the Certus-NX Versa board
is used for demo design.

Automate

Main System

Automate

Node System

Automate

Node System

Automate

Node System

Automate

Node System

Ethernet Cable

Ethernet Cable

Debug Port

(UART)

Host PC

(OPCUA Client)

Ethernet Cable

Ethernet Cable

E
th

e
rn

e
t

C
a
b

le

1
G

 I
n

te
rf

a
c
e

Figure 2.1. Lattice Automate Stack 4.0 Top Level Block Diagram

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 13

2.2. FPGA Design

2.2.1. Main System

The Main System is a System on Chip (SoC) designed for industrial automotive applications. It is integrated with several
built-in Lattice Propel™ IP components, including a UART Controller that facilitates serial communication, QSPI Flash
GPIO that manages general-purpose input/output operations for QSPI flash memory, LPDDR that supports low-power
double data rate memory, and TSEMAC that provides triple-speed Ethernet MAC capabilities and the Scatter-Gather
DMA (SGDMA) enables high-performance data transfers between IPs, eliminating the need for active CPU intervention
and thus, improving overall system performance.

To further support industrial automotive applications, additional Intellectual Property (IP) components are integrated
as part of the Automate Stack IP. These include a CNN Accelerator that boosts performance for convolutional neural
networks, which is essential for advanced AI and machine learning tasks, FIFO DMA that ensures efficient data transfer
between system components using First-In-First-Out Direct Memory Access, and EtherConnect IP that adds advanced
Ethernet control features for improved network communication and management. The Automate Main System delivers
a powerful and flexible platform tailored for industrial automotive applications, ensuring high performance and
reliability. The Main System architecture is shown in Figure 2.2.

Figure 2.2. Automate 4.0 Main System Architecture

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 14

2.2.2. Lattice Main System 4.0 Architecture

This section describes architecture, dataflow details, and memory map address of the Lattice Automate Main System
4.0.

2.2.2.1. Lattice Main System 4.0 Architecture

The Main System architecture is shown in Figure 2.2. The AXI Interconnect has four controllers and eight targets.

• Four Controllers: RISC-V RX CPU Instruction Port, RISC-V RX CPU Data Port, FIFO DMA and CNN Co-processor

• Eight Targets: System memory, EtherConnect, FIFO DMA, CNN Co-processor, AXI2APB Bridge, SGDMA, and SPI
Flash Controller

The RISC-V RX CPU, DCFIFO DMA and CNN Co-processor can access data to the shared memory Data Ram, SPI Flash
Controller, EtherConnect, FIFO DMA, CNN Co-processor, and AXI2APB bridge directly and UART, TSE MAC, memory
controller, FPGA Config module, and GPIO through AXI2APB bridge. The UART, EtherConnect, and GPIO can generate
interrupts to RISC-V CPU.

2.2.2.2. Data Flow Details of the Main System 4.0

Automate Main System Multiboot Flow

The Avant-E device multi-boot supports booting from up to six patterns that reside in an external SPI Flash device. The
patterns include a Primary pattern, a Golden pattern, and up to four Alternate patterns, designated as Alternate
pattern 1 to Alternate pattern 4. The Avant-E device boots by loading the Primary pattern from the internal or external
Flash. If loading of the Primary pattern fails, the Avant-E device attempts to load the Golden pattern. When a
reprogramming of the bitstream is triggered through the toggling of the PROGRAMN pin or receiving a REFRESH
command, Alternate pattern 1 is loaded. Subsequent PROGRAMN/REFRESH event loads the next pattern defined in the

Multi-Boot configuration. The bitstream pattern sequence, target address of the Golden pattern, and target addresses
of the Alternate patterns are defined during the multi-boot configuration process in the Lattice Radiant™ Deployment
Tool as shown in Figure 2.3.

Figure 2.3. Multiboot Tab of Deployment Tool

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 15

Automate Main System Bootloader Flow

The Automate design has two firmware binaries and two FPGA bit files. One set of binary and bit file is golden, and the
other one is primary. The Golden image works as baseline version of system. The primary image is an updated version
of the system. The boot loader firmware supports CRC checking and switching between the primary Image and Golden
image. The Firmware has the option to manually boot FPGA image based on CRC check.

Upon performing CRC check on the binary file, if the primary binary got corrupted somehow, the booting occurs from
the golden one, but the bit file also must switch to golden. So, there is the firmware code in flash to switch the bit file
to golden. And the same happens when primary bit file got corrupted. That means booting is done from one of the two
sets of binary and bit file, firstly from primary and then from golden if the CRC check fails for primary set.

The main firmware is stored in the external SPI flash. During booting, the boot loader copies the instruction code from
the external flash to DDR4. Further, it sets up the ISR function pointer to this DDR4 memory address through the
memory controller. The LPDDR4 memory controller to write the instruction code to a specific DDR4 memory location.

Automate Main System Application Flow

The DDR4 memory is divided into two parts, one for the instruction code for booting and the other like it was used in
Automate 4.0 for buffering incoming and outgoing packets.

The SGDMA IP is used as data mover. It converts incoming UDP datagram from user application into AXI4 data and sends
to LPDDR and similarly it converts AXI4 data coming from LPDDR and send it to the user application network stack, which
basically does the data transfer between standard protocols.

RISC-V RX CPU can set the registers inside CNN Co-processor Unit (CCU) and start PDM operation. The CPU can poll
another register in CNN Co-processor Unit (CCU) to check its operation status. RISC-V RX can request for the new data
for predictive maintenance from node PDM data collector by sending instruction though EtherConnect IP.

The PDM data received from node through EtherConnect IP is transferred to data memory with DMA operation using
FIFO DMA block or is sent to host directly through Ethernet through the LPDDR4 using AXI IP and TSE MAC

For the motor control, the commands from the host PC (OPCUA Client) are received in the OPCUA Server running on
RISC-V RX CPU. The RISC-V RX CPU parses the command and sends the data to EtherConnect, which performs the
packetization and send to downstream Node Systems. The RISC-V CPU can gather predictive maintenance data from
downstream Node Systems through EtherConnect and send to the host through Ethernet.

The CPU can read data from EtherConnect through its AXI subordinate port, perform data processing, store the data at
Data Ram, and then send to host. Alternatively, EtherConnect can send downstream data to FIFO DMA through its FIFO
port, and FIFO DMA can write the data-to-data RAM. At the end of every predictive maintenance cycle in SW running on
RISC-V, an update is sent to the host through Ethernet.

RISC-V RX can also communicate with various peripherals connected to nodes through the SPI/I2C/UART interfaces other
than motor through host commands. The data flow from OPCUA Client (Host PC) to OPCUA Server (Main board) and vice
versa is shown below in Figure 2.4.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 16

TSE_MAC_IPRGMII IP

AXI Interconnect

SGDMA IP

AXI IP

LPDDR4 Memory Controller
(DDR4)

RISC-V RX
EtherControl IP

(RGMII)

Ethernet
Port

UART
(Debug Port)

Ethernet Port

Host PC
OPCUA

To Node Board

Avant Board
(Main System)

FPGA

To Host PC

Figure 2.4. Client to Server Data Flow

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 17

2.2.2.3. Memory Map

The memory map of Main System is shown in Table 2.1.

Table 2.1.Main System Memory Map

Base Address End Address Range(bytes) Block

0x40300000 0x40300FFF 4K SPI FLASH CONTROLLER

0x00000000 0x000FFFFF 1M System Memory

0x40000000 0x40000FFF 1K GPIO

0x40001000 0x40004FFF 16K TSE MAC

0x40090000 0x400903FF 1K UART

0x40092000 0x40092FFF 4K LPDDR4 Mem Controller APB

0x40098000 0x40098FFF 4K SGDMA

0x40097000 0x40097FFF 4K FPGA CONFIG APB

0x40310000 0x40317FFF 32K FIFO DMA

0x40308000 0x4030FFFF 32K EtherConnect

0x40318000 0x40318FFF 4K CNN co-processor

0x80000000 0xBFFFFFFF 1G LPDDR4 AXI

F2000000 F20FFFFF 1M CLINT (CPU)

FC000000 FC3FFFFF 4M PLIC (CPU)

F0000400 FFFFFFFF 250M RESERVED (CPU)

2.2.3. Node System

The Node System architecture, shown in Figure 2.5, is same as the previous version. However, there is a new Encoder
Subsystem been introduced. In addition, the Motor Control and PDM Data Collector has been enhanced with the
capability to support closed loop feedback system where the motor positions are received from external EnDat Rotary
Encoder periodically for motor speed control during runtime.

The AHBL Interconnect with three target interfaces and 10 controller interfaces connecting to respective IPs, namely:

• AHBL Target Interfaces

• RISC-V CPU Instruction Cache

• RISC-V CPU Data Cache

• FIFO DMA

• AHBL Controller Interfaces

• ISR RAM

• Data Ram (S0 and S1)

• Motor Control and PDM Data Collector (S0 and S1)

• FIFO DMA

• EtherConnect

• SPI Flash Controller with Prefetch Buffer

• AHBL2APB bridge

• Encoder Subsystem

APB Interconnect has five controller interfaces and one target interface connecting to respective IPs, namely:

• APB Target Interfaces

• AHBL to APB Bridge

• APB Controller Interfaces

• GPIO

• I2C

• SPI

• UART (Modbus)

• Encoder Subsystem

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 18

Refer to Appendix A. Predictive Maintenance with TensorFlow Lite to see the data flow and memory map of the node
system.

Figure 2.5. Node System Architecture

The Encoder Subsystem consists of the following components:

• APB Interconnect with two targets and one controller.

• SPI Controller IP where APB target interface is connected to the APB Interconnect and SPI controller interface is
connected to the EnDat2.2 Master IP.

• EnDat2.2 Master IP where the target is connected to the controller through the SPI interface of the SPI Controller
IP and EnDat interface is exported out from FPGA to external EnDat Rotary Encoder.

Figure 2.6. Encoder Subsystem Architecture

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 19

2.2.3.1. Data Flow

The RISC-V CPU stream its firmware from external SPI Flash through the SPI Flash Controller. The CPU can also access
data to ISR RAM, Data RAM, access the register file inside EtherConnect, and control the registers at FIFO DMA and SPI
Flash Controller. Either RISC-V CPU or FIFO DMA can move the data stored at the register file inside EtherConnect to
Motor Control block. The RISC-V CPU or FIFO DMA can also move the data collected by PDM Data Collector back to
EtherConnect and send out through Ethernet upstream port.

In addition, the firmware is also responsible to initialize the external EnDat encoder through communication through
SPI Controller and EnDat2.2 Master upon power-up.

2.2.3.2. Memory Map

The Node System memory map is defined in Table 2.2.

Table 2.2. Node System Memory Map

Base Address End Address Range (Bytes)
Range
(Bytes in
hex)

Size (Kbytes) Block

0x80000 0x807FF 2048 800 2 CPU PIC TIMER

0x190000 0x191FFF 8192 2000 8 CPU Instruction RAM

0x100000 0x107FFF 32768 8000 32 FIFO DMA

0x186C00 0x186FFF 1024 400 1 SPI Controller (Encoder Subsystem)

0x108000 0x10FFFF 32768 8000 32 EtherConnect

0x184800 0x184BFF 1024 400 1 GPIO

0x186000 0x1863FF 1024 400 1 I2C Master

0x184000 0x1843FF 1024 400 1 Motor Control and PDM Data
Collector
Port S0

0x185000 0x185FFF 4096 1000 4 Motor Control and PDM Data
Collector
Port S1

0x0 0x7FFFF 524288 80000 512 SPI Flash Controller

0x186800 0x186BFF 1024 400 1 SPI Master

0xC0000 0xCFFFF 65536 10000 64 CPU Data Ram
Port S0

0xE0000 0xEFFFF 65536 10000 64 CPU Data Ram
Port S1

0x186400 0x1867FF 1024 400 1 UART

0x80800 0xBFFFF 197632 30400 193 RESERVED

0xD0000 0xDFFFF 65536 10000 64 RESERVED

0xF0000 0xFFFFF 65536 10000 64 RESERVED

0x110000 0x183FFF 468992 74000 458 RESERVED

0x184400 0x1847FF 1024 400 1 RESERVED

0x184C00 0x184FFF 1024 400 1 RESERVED

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 20

2.3. EtherConnect IP Design Details

2.3.1. Overview of Existing IP

EtherConnect IP block is designed for communication between two boards for information transfer and it is designed
based on the EtherConnect protocol. The physical interface can support speed up-to 1 Gbps (125 MHz clock). It
supports both SGMII and RGMII interfaces in physical layer as well as SFP interface for Node System and only supports
RGMII interfaces in physical layer for Main System.

The EtherConect block can be used as a manager as well as a node based on the SYSTEM_TYPE parameter.

As a manager, EtherConnect IP has the output FIFO interface to send bulk data to DMA FIFO block and as node, it has
the input FIFO interface to receive bulk data from DMA FIFO module.

As a manager, it works in four layers, such as AHBL layer, which is used to have connection with the RISC V CPU and
register interface; application layer, which consists of data generation and sampling layers for the application; protocol
layer, which is used to transmit and receive EtherConnect packets. Lastly, the physical layer transfer data with protocol
layer in GMII protocol standard and it has RGMII and SGMII blocks to transmit or receive data over physical channels in
RGMII or SGMII format.

The frame structure on protocol level is shown in Figure 2.7.

Figure 2.7. Packet Structure

2.3.1.1. Normal Packet

The changes are made for normal packet only. The request and response packet structure of old version is described
below:

The normal frame type (00) has three types of packets:

• Packet type 01: Node Configuration

• Packet type 02: Node Status

• Packet type 03: PDM Data Fetching

For Configuration type packet, the data written in FIFO present in application layer is as follows: the first four bytes
indicate the packet type. The next four bytes indicate the node address. After that, the data is sent in the next four
bytes. The subsequent content of the packet is dummy data (00) for 52 bytes or in a generalized case:
(NODE_DATA_LENGTH - 12).

For Status type packet, the data written in FIFO present in application layer is as follows: the first four bytes indicate
the packet type. The next four bytes indicate the node address. The subsequent content of the packet is dummy data
(00) for 56 bytes or in a generalized case: (NODE_DATA_LENGTH - 8). The response of status packet is 32-bit status
value, which is fetched from a register (CH1_BASE_ADDR + 0x100).

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 21

For PDM type packet, the data written in FIFO present in application layer is as follows: the first four bytes indicate the
packet type. The next four bytes indicate the node address. After that, the data is sent in the next four bytes. The next
four bytes in the packet indicate the data length. The subsequent content of the packet is dummy data (00) for 48
bytes or in a generalized case: (NODE_DATA_LENGTH - 16). The response of PDM packet is 4 kB PDM data which can be
stored in FIFO or can be send out through AXI Bus based on the value of control register.

2.3.2. Architecture

The packet communication remained the same as the previous released version. The request packets from the RISC-V
CPU passes to the node system through the main system connection while the response of the status packets is written
in a FIFO, which can be read by RISC-V CPU using the register BASE_ADDR + 0x2C.

2.3.2.1. Main System

The protocol layer and physical layer remains as it is in the new version. The changes are done in
axi_subordinate_0_bus_control for register addition and ether_connect_manager_data_capture module only for the
response received from node. One FIFO is introduced to store the response of status packet. The depth of FIFO = max
node data length × max number of nodes.

One local parameter, ETHER_EXTEN_EN, decides whether sampling of response in the application capture module is
done using the old architecture or the new architecture.

2.3.2.2. Node System

At Node System, the FIFO is used to store complete sampled data of both configuration packets and status packets.
Each node samples its own data only.

For the configuration packet, an interrupt is generated to indicate that the configuration is applied to the targeted
peripherals (motor, I2C, and SPI) at the targeted node.

For status packet, the status of the targeted peripherals (motor, I2C, and SPI) of the targeted node are stored in the
FIFO and the signal is generated that complete packet has been received in the FIFO and is ready to send response.

2.3.3. Register Map

The register map of the EtherConnect IP remains the same, except that one register is added to read the response of
status the packet, which is highlighted in Table 2.3 and one register (Node Motor Status Register) is removed .The data
is read from the status FIFO when AXI read command is issued for address BASE + 0x2C.

Table 2.3. EtherConnect IP Global Registers

EtherConnect Register
Name

Register Function Base Address

(0x40308000)

Access

DMACTR_R DMA FIFO Enable/AXI Disable Register Base + 0x00 Read/Write

PHLNK_R PHY Link Status Register Base + 0x04 Read

NDACT_R Active Nodes Register Base + 0x08 Read

FSRPDM_R FIFO Status Register for PDM Data CDC Base + 0x0C Read

ETHINTR_R Interrupt Poll Register Base + 0x10 Read

CLRCVD_R Clear Interrupt Received Register Base + 0x14 Read/Write

TX_ALL_STRT_R Transaction start for all chains Base + 0x18 Read/Write

DTOUT_R Node Response PDM Data Register Base + 0x1C Read

IP_STATUS_R IP Busy Status Base + 0x20 Read/Write

AXI_TOUT_R AXI Bus Timeout Count Register Base + 0x28 Write

ND_STAT Node Status Response Base + 0x2C Read

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 22

Table 2.4. EtherConnect IP Chain 1 Registers

EtherConnect

Register Name
Register Function

Base Address

(0x40308100)
Access

TXSTR_R_1 Start Transaction Register Base + 0x00 Read/Write

PKTHD_R_1 Packet Head Register Base + 0x04 Read/Write

FRNUM_R_1 Frame Number Register Base + 0x08 Read/Write

NDCNT_R_1 Number of Node Register Base + 0x0C Read/Write

NDLN_R_1 Node Data Length Register Base + 0x10 Read/Write

MTDT_R_1 Node Request Data Burst Register Base + 0x14 Read/Write

RQDT_R_1 Node Request Type Register Base + 0x18 Read/Write

RQAD_R_1 Node Address Register Base + 0x1C Read/Write

CRCNT_R_1 CRC Count Register Base + 0x20 Read

INTR_R_1 Interrupt Info Register Base + 0x24 Read

FSRREQD_R_1 FIFO Status Register Request Data Base + 0x28 Read

DLY_R_1 Node Delay Register
Base + 0x200 to
0x2FC

Read

2.4. FIFO DMA
This block has two FIFO interfaces, one is active when it is used in the main system to collect the PDM data received by
the EtherConnect manager Bus 0. The other interface is active for node and has the PDM data from the motor control
data collector block. It has a Subordinate and a Manager interface where the Main System is in AXI4 interface, while
the Node System is in AHBL interface. The register space for this block is as shown in Table 2.5.

The Subordinate interface is used to control DMA operations by external manager (which is CPU) and the Manager
interface is used to perform for DMA operations.

Table 2.5. FIFO DMA Register Map

Register Name Register Function Address Access

CNTR FIFO DMA Control Register Base + 0x00 Read/Write

DEST_BASE_ADDR Destination Base Address Register Base + 0x04 Read/Write

DEST_END_ADDR Destination End Address Register Base + 0x08 Read/Write

STATUS Write Status Register Base + 0x0C Read

STATUS_RD Read Status Register Base + 0x10 Read

Table 2.6. FIFO DMA Control Registers

CNTR Base +0x00

Byte 3 2 1 0

Name CNTR

Default Reserved Reserved Reserved 0

Access R/W

CNTR[0]: Used to control read operation.
CNTR[1]: Used to reset the destination register to destination base address.
CNTR[2-7]: Reserved

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 23

Table 2.7. DEST_BASE_ADDR Register

DEST_BASE_ADDR Base +0x04

Byte 3 2 1 0

Name DEST_BASE_ADDR

Default 0 0 0 0

Access R/W

DEST_BASE_ADDR[31:0]: Base Address Location

Table 2.8. DEST_END_ADDR Register

DEST_END_ADDR Base +0x08

Byte 3 2 1 0

Name DEST_END_ADDR

Default 0 0 0 0

Access R/W

DEST_END_ADDR[31:0]: END Address Location

Table 2.9. Write Status Register

STATUS Base +0x0C

Byte 3 2 1 0

Name STATUS

Default Reserved Reserved Reserved 0

Access R

STATUS[2:0]: Write Status
 000 = Disabled.
 001 = Busy
 010 = Done
 100 = Error
 Others = Reserved
STATUS[3:31]: Reserved

Table 2.10. Read Status Register

STATUS_RD Base +0x1C

Byte 3 2 1 0

Name STATUS_RD

Default Reserved Reserved Reserved 0

Access R

STATUS_RD[2:0]: Read Status
 000 = Disabled.
 001 = Busy
 010 = Done
 100 = Error
 Others = Reserved

STATUS_RD[3:31]: Reserved

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 24

2.5. LPDDR4 Controller
An LPDDR (Low Power Double Data Rate) controller is a specialized memory controller designed to interface with
LPDDR memory devices, which are widely used in mobile and embedded systems due to their low power consumption
and high performance. The controller manages data transfers between the processor and LPDDR memory, ensuring
efficient communication and optimal performance. In this system, LPDDR is used to store RISC-V program code and
data.

For more information about the IP core including register map information, refer to Memory Controller IP Core for
Avant Devices (FPGA-IPUG-02208).

2.6. QSPI Flash controller
A Quad Serial Peripheral Interface (QSPI) is a four-tri-state data line serial interface that is commonly used to program,
erase, and read SPI Flash memories. QSPI enhances the throughput of a standard SPI by four times since four bits are
transferred every clock cycle. A Dual Serial Peripheral Interface (DSPI) uses two tri-state data lines and used to program,
erase and read SPI Flash memories. DSPI performance is a comprise between QSPI and SPI since two bits are transferred
every clock cycle. In Main system, QSPI is used to read main application from the SPI Flash.

For more information about the IP core including register map information, refer to QSPI Flash Controller IP User Guide
(FPGA-IPUG-02248).

2.7. Scatter Gather DMA IP Design Details
A Scatter-Gather Direct Memory Access (SGDMA) controller is a specialized DMA engine designed to handle data
transfers between memory and peripherals efficiently. It supports scatter-gather operations, which allow data to be
transferred in non-contiguous blocks, improving flexibility and performance. In Main system, SGDMA is used to
autonomously handle data transfer of LPDDR to and from TSE MAC with minimum interaction by the CPU.

For more information about the IP core including register map information, refer to SGDMA Controller IP Core (FPGA-
IPUG-02131).

2.8. CNN Co-Processor Unit (CCU)
The CNN Co-Processor Unit (CCU) is used to accelerate inference process for Predictive Maintenance in the main
system.

For more details, refer to CNN Co-Processor Accelerator IP User Guide.

2.9. Motor Control and PDM Data Collector
The Motor Control and PDM Data Collector block has two AHBL subordinate interfaces and one APB manager interface:

• AHBL_S0 Interface – access control to motor configuration and status registers for PWM channel output
controlling to external motor driver board.

• AHBL_S1 Interface – access control to predictive maintenance control and status registers for predictive
maintenance data collection from the motor.

• APB_M0 Interface – initiate position fetching & update operation to the Encoder Subsystem when the Node
system is running in a closed loop system.

The Motor Control and PDM Data Collector block is capable to be run in both open loop and closed loop system based
on the input control ports exposed on the top level. This block is only available in the Node System. The captured data is
sent to the Main System and processed by the CNN Co-processor unit mentioned in the CNN Co-Processor Unit (CCU)
section. The steps to train the CNN model is further described in Appendix A.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53685
https://www.latticesemi.com/view_document?document_id=53685
https://www.latticesemi.com/view_document?document_id=54084
https://www.latticesemi.com/view_document?document_id=54084
https://www.latticesemi.com/view_document?document_id=53094
https://www.latticesemi.com/view_document?document_id=53094
https://www.latticesemi.com/view_document?document_id=53398

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 25

Figure 2.8. Motor Control and PDM Data Collector

The configuration and status registers accessible through the AHBL_S0 Interface and AHBL_S1 Interface are described
in Table 2.11.

Table 2.11. Motor Control and PDM Data Collector Registers

Register Name Register Function

Address

(AHBL_S0 Base –
0x184000)

(AHBL_S1 Base –
0x185000)

Access
Access

Point

Reset

Value

MTRCR0 Motor Control Register 0 – Min RPM Base + 0x00 Read/Write AHBL_S0 0x0

MTRCR1 Motor Control Register 1 – Max RPM Base + 0x04 Read/Write AHBL_S0 0x0

MTRCR2 Motor Control Register 2 – RPM PI KI Base + 0x08 Read/Write AHBL_S0 0x0

MTRCR3 Motor Control Register 3 – RPM PI KP Base + 0x0C Read/Write AHBL_S0 0x0

MTRCR4 Reserved Base + 0x10 Read AHBL_S0 0x0

MTRCR5 Reserved Base + 0x14 Read AHBL_S0 0x0

MTRCR6 Motor Control Register 6 – Sync Delay
and Control

Base + 0x18 Read/Write AHBL_S0 0x0

MTRCR7 Motor Control Register 7 – Target RPM Base + 0x1C Read/Write AHBL_S0 0x000A0000

MTRCR8 Reserved Base + 0x20 Read/Write AHBL_S0 0x0

MTRCR9 Reserved Base + 0x24 Read/Write AHBL_S0 0x0

MTRSR0 Motor Status Register 0 - RPM Base + 0x28 Read AHBL_S0 0x0

MTRSR1 Motor Status Register 1 – Limit SW and
System Status

Base + 0x2C Read AHBL_S0 0x0

PDMCR0 Predictive Maintenance Control Register
0

Base + 0x30 Read/Write AHBL_S0 0x0

PDMCR1 Predictive Maintenance Control Register
1

Base + 0x34 Read/Write AHBL_S0 0x0

PDMSR Predictive Maintenance Status Register Base + 0x38 Read AHBL_S0 0x0

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 26

Register Name Register Function

Address

(AHBL_S0 Base –
0x184000)

(AHBL_S1 Base –
0x185000)

Access
Access

Point

Reset

Value

PDMDDR Predictive Maintenance ADC Data
Register

Base + 0x3C Read AHBL_S1 0x0

PDMQDR Predictive Maintenance ADC Data
Register

Base + 0x40 Read AHBL_S1 0x0

BRDSW DIP and Push Button Switches Base + 0x50 Read AHBL_S0 0x0

BRDLEDS LEDs and 7-Segment Base + 0x54 Read/Write AHBL_S0 0xFFFFFFFF

Reserved Reserved Base + 0x58 Read N/A N/A

Reserved Reserved Base + 0x5C Read N/A N/A

ENC_POS Encoder Position Base + 0x60 Read AHBL_S0 0x0

Reserved Reserved Base + 0x64 Read N/A N/A

PWM_SYNC_IRQ PWM_SYNC IRQ Status Base + 0x68 Read/Write AHBL_S0 0x0

Reserved Reserved Base + 0x6C Read N/A N/A

Reserved Reserved Base + 0x70 Read N/A N/A

Reserved Reserved Base + 0x74 Read N/A N/A

Table 2.12. Motor Control 0 – Minimum RPM

MTRCR0 Base + 0x00

Byte 3 2 1 0

Name RPM_PI_DELAY MTRPOLES Reserved MINPWR

Default 0 0 0 0

Access R/W

MTRCR0[15:8]: Reserved
MTRCR0[7:0]: MINPWR – Minimum power for the initial open loop motor.
Note: The valid combination values of both TQ_PI_DELAY and MINPWR are 10 to (216 -1).
MTRCR0[23:16]: MTRPOLES – Number of motor stator pole pairs. The value must be configured according to the
datasheet for the specific motor. Valid values are up to 32 only.
MTRCR0[31:24]: RPM_PI_DELAY – Is the RPM PI update rate. Valid values are 1 to 255.

Table 2.13. Motor Control 1 – Maximum RPM

MTRCR1 Base + 0x04

Byte 3 2 1 0

Name MAXAMPS PWRGAIN MAXRPM

Default 0 0 0 0

Access R/W

MTRCR1[15:0]: MAXRPM – Maximum RPM is the upper limit RPM. Valid values are MINRPM to (216 -1).
MTRCR1[23:16]: PWRGAIN – Power gain for the initial open loop motor.
MTRCR1[31:24]: MAXAMPS – Breaker amps for the initial open loop motor.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 27

Table 2.14. Motor Control 2 – RPM PI Control Loop Integrator Gain (kI)

MTRCR2 Base + 0x08

Byte 3 2 1 0

Name RPMINT_MIN RPMINTK

Default 0 0 0 0

Access R/W

MTRCR2[15:0]: RPMINTK – The gain of the Integrator part of the RPM PI control loop. Valid values are 1 to (216 -1).
MTRCR2[31:16]: RPMINT_MIN – The Integrator Anti-Windup threshold. Valid values are 1 to (216 -1).

Table 2.15. Motor Control 3 – RPM PI Control Loop Proportional Gain (kP)

MTRCR3 Base + 0x0C

Byte 3 2 1 0

Name RPMINT_LIM RPMPRPK

Default 0 0 0 0

Access R/W

MTRCR3[15:0]: RPMPRPK – The gain of the Proportional part of the RPM PI control loop. Valid values are 1 to (216 -1).
MTRCR3[31:16]: RPMINT_LIM – The Integrator Anti-Windup Clamp. Valid values are 1 to (216 -1).

Table 2.16. Motor Control 6 – Synchronization Delay and Control

MTRCR6 Base + 0x18

Byte 3 2 1 0

Name MTRCTRL SYNCDLY

Default 0 0 0 0

Access R/W

MTRCR6[21:0]: SYNCDLY1 – Is the Motor control delay to compensate for Ethernet daisy-chain and processing delay.
Used to synchronize starting and stopping of multiple motors simultaneously. Valid values are 0 to (222 -1).
MTRCR6[23:22]: MTRCTRL_SYNDLYSF1 – Sync Delay Scale Factor
 00 = Disable Sync Delay (single motor control or sync not used).
 01 = Sync Delay Units is nanoseconds (10-9)
 10 = Reserved
 11 = Reserved
MTRCR6[24]: RESET_PI – Reset the RPM PI Control

 0 = Normal Operation
 1 = Force the output to match the input (zero input values force the output to default of
 120 rpm)

MTRCR6[25]: STOP – Hold the Motor in Position
 0 = Normal Operation
 1 = Stop the motor rotation

MTRCR6[26]: Reserved
MTRCR6[27]: ESTOP – Emergency Stop

 0 = Normal Operation.
 1 = Engage E-Brakes without sync delay or MTR_ENGAGE.1

MTRCR6[28]: ENABLE – Enable Motor Drivers
 0 = Disable Motor Drivers
 1 = Enable Motor Drivers

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 28

MTRCR6[29]: Reserved
MTRCR6[30]: DIRECTION – Direction of motor depending on the MTR_TYPE value.

Table 2.17. Direction Mapping

MTR_TYPE Direction

0 0 = Clockwise Rotation, 1 = Counter-Clockwise Rotation

1 1 = Clockwise Rotation, 0 = Counter-Clockwise Rotation

MTRCR6[31]: ENGAGE – Sync Signal to latch all Control Registers from AHBL clock domain (50–100 MHz) to Motor clock
domain (20 MHz). Write to all other control registers first (including this one with this bit off). Write to this register (read-
modify-write) to set this bit. It can also be used to synchronize multiple nodes.

 0 = No Updates to Motor or PDM Control registers.
 1 = Transfer all control register from AHBL holding registers to Motor PDM active registers.

Table 2.18. Motor Control Register 7 – Target RPM

MTRCR7 Base + 0x1C

Byte 3 2 1 0

Name Reserved RPMTOL TRGRPM

Default 0 0 0 0

Access R/W

MTRCR7[15:0]: TRGRPM – Target RPM. Valid values are 0 to (216 -1).
MTRCR7 [16]: MTR_TYPE – The value of this bit determines the behavior of the value in the DIRECTION to be
interpreted by the Motor Control IP.
Note: For Anaheim motor, this bit must be set to 0.
MTRCR7 [31:17]: Reserved

Table 2.19. Motor Status Register 0 – RPM

MTRSR0 Base + 0x28

Byte 3 2 1 0

Name Reserved MTRSTRPM

Default 0 0 0 0

Access R

MTRSR0[15:0]: MTRSTRPM – Current Motor RPM. Valid values are 0 to (216 -1).1
MTRSR0[31:16]: Reserved.

Table 2.20. Motor Status Register 1

MTRSR1 Base + 0x2C

Byte 3 2 1 0

Name MTRSR1

Default 0 0 0 0

Access R

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 29

MTRSR1[0]: MTRSTR_MOV – Motor Moving

 0 = Motor Stopped or coasting

1 = Motor Moving under control

MTRSR1[1]: ACCEL – Motor Accelerating

0 = Motor Not Accelerating

1 = Motor Accelerating

MTRSR1[2]: DECL - Motor Deaccelerating

0 = Motor Not Deaccelerating

1 = Motor Deaccelerating

MTRSR1[3]: RPM_LOCK - Motor at Target RPM

0 = Motor Not @ Target RPM

1 = Motor @ Target RPM

MTRSR1[4]: MTRSTR_STOP

0 = Motor not stopped

1 = Motor at zero RPM

MTRSR1[5]: MTRSTR_VLD_RPM

0 = RPM to Theta period calculation is still in process or invalid RPM request

1 = RPM to Theta period calculation is complete

MTRSR1[6]: I_LOOP_CONTROL

0 = Open Loop

1 = Close Loop

MTRSR1[7]: DRIVE_FAULT

0 = Drive fault not occurred.

1 = Drive fault occurred. This bit is coming from motor driver board that driving to the actual motor when

overcurrent fault detected from protection circuit.

MTRSR1[8]: ECB_TRIPPED

0 = ECB tripped not occurred.

1 = ECB tripped occurred due to the feedback current received from motor driver board exceeded the value

configured to MAXAMPS.

MTRSR1[10:9]: ENC_POS_BIT

2’b00 = Reserved

2’b01 = EnDat Encoder.

2’b10 - 2’b11 = Reserved

MTRSR1[30:11]: Reserved

MTRSR1[31]: ENC_LINK_STAT

0 = Encoder link is not established.

1 = Encoder link is established.

Table 2.21. Predictive Maintenance Control Register 0

PDMCR0 Base + 0x30

Byte 3 2 1 0

Name PDMCR0

Default 0 0 0 0

Access R/W

PDMCR0[0]: START – Start PDM data collection.
0 = Collection not started
1 = Collection started

PDMCR0[1]: PKDTEN – PDM Normalization Peak Detect Enable
0 = PDM Peak Detect is Disabled
1 = PDM Peak Detect is Enabled

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 30

PDMCR0[2]: FOLDEN – Enable Single Folding of PDM data
0 = Single Fold disabled
1 = Single Fold enabled

PDMCR0[3]: 2FOLDEN – Enable Double Folding of PDM data. All PDM training data was captured using Double Folding.
0 = Double Folding disabled
1 = Double Folding enabled

PDMCR0[4]: CONTINUOUS – Collect data as long as START = 1.
0 = Fixed – Collect PDM data for set number of rotations
1 = Continuous – Collect PDM data continuously (counting rotations in status reg)

PDMCR0[5]: TBD
PDMCR0[6]: CALIB – ADC offset calibration

0 = Normal operation

1 = Calibrate ADC offsets (motor not running)

PDMCR0[7]: ADCH – ADC Channel Select for PDMDDR and PDMQDR registers

0 = ADC Channel = Amps

1 = ADC Channel = Volts

PDMCR0[15:8]: PREREVS – Pre-Data Collection Revolutions

Number of Theta (Field Vector) revolutions to ignore before Data Collection. All PDM training data is captured using a

value of 15.

PDMCR0[31:16]: DCREVS – Data Collection Revolutions

Theta (Field Vector) revolutions to capture PDM data (armature revs scale based on number of motor stator poles.

The motor used for training has 4-poles – 16 Theta rotations equate to four motor shaft rotations). Valid values 1 to
65,536. All PDM training data was captured using 200 rotations.

Table 2.22. Predictive Maintenance Control Register 1

PDMCR1 Base + 0x34

Byte 3 2 1 0

Name PDMCR1

Default 0 0 0 0

Access R/W

PDMCR1: TBD

Table 2.23. Predictive Maintenance Status Register

PDMSR Base + 0x38

Byte 3 2 1 0

Name PDMSR

Default 0 0 0 0

Access R

PDMSR [0]: DONE – PDM activity status
 0 = PDM is not done with collecting data
 1 = PDM is done with collecting data
PDMSR [1]: BUSY – PDM activity status
 0 = PDM is not active
 1 = PDM is busy collecting data
PDMSR [2]: CAL_DONE – ADC Offset Calibration status
 0 = Offset calibration is not done
 1 = Offset calibration is done
PDMSR [3]: READY – PDM Data Collector status
 0 = Not ready to collect data
 1 = Ready to collect data

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 31

PDMSR [15:4]: Reserved
PDMSR [31:16]: PDMSR_ROT – Current count of Theta rotations PDM data has been collected for.

Table 2.24. Predictive Maintenance Current/Voltage Data Register

PDMDDR Base + 0x3C

Byte 3 2 1 0

Name ADC1 ADC0

Default 0 0 0 0

Access R

PDMDDR [15:0]: ADC0 Voltage or Current reading Phase A1
PDMDDR [31:16]: ADC1 Voltage or Current reading Phase B1

Table 2.25. Predictive Maintenance Current/Voltage Data Register

PDMQDR Base + 0x40

Byte 3 2 1 0

Name ADC3 ADC2

Default 0 0 0 0

Access R

PDMQDR [15:0]: ADC2 Voltage or Current reading Phase C1
PDMQDR [31:16]: ADC3 Voltage or Current reading of DC supply1

Table 2.26. Versa Board Switch Status Register

BRDSW Base + 0x50

Byte 3 2 1 0

Name Reserved Reserved Reserved PBSW

Default 0 0 0 0

Access R

PBSW [0]: SW5 – Pushbutton 2
 0 = Switch active (pressed)
 1 = Switch inactive
PBSW [1]: SW3 – Pushbutton 1
 0 = Switch active (pressed)
 1 = Switch inactive
PBSW [2]: SW2 – Pushbutton 3
 0 = Switch active (pressed)
 1 = Switch inactive
PBSW [7:3]: Reserved.
Bits [31:8]: Reserved.

Table 2.27. Versa Board LED and PMOD Control Register

BRDLEDS Base + 0x54

Byte 3 2 1 0

Name Reserved Reserved 7SEG LED

Default 0xF 0xF 0xF 0xF

Access R/W

LED [0]: LED D18 – 0 = On, 1 = Off
LED [1]: LED D19 – 0 = On, 1 = Off
LED [2]: LED D20 – 0 = On, 1 = Off
LED [3]: LED D21 – 0 = On, 1 = Off

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 32

LED [4]: LED D22 – 0 = On, 1 = Off
LED [5]: LED D23 – 0 = On, 1 = Off
LED [6]: LED D24 – 0 = On, 1 = Off
LED [7]: LED D25 – 0 = On, 1 = Off
7SEG [0]: D36 Segment a – 0 = On, 1 = Off
7SEG [1]: D36 Segment b – 0 = On, 1 = Off
7SEG [2]: D36 Segment c – 0 = On, 1 = Off
7SEG [3]: D36 Segment d – 0 = On, 1 = Off
7SEG [4]: D36 Segment e – 0 = On, 1 = Off
7SEG [5]: D36 Segment f – 0 = On, 1 = Off
7SEG [6]: D36 Segment g – 0 = On, 1 = Off
7SEG [7]: D36 Segment dp – 0 = On, 1 = Off
Bits [31:16]: Reserved.

Table 2.28. Encoder Position Register

PDMQDR Base + 0x60

Byte 3 2 1 0

Name ENC_POS

Default 0 0 0 0

Access R

ENC_POS [31:0]: Motor position received from Encoder. The resolution depends on the specific Encoder model used.
For Endat Encoder, it is up to resolution of 25 bits.

Table 2.29. PWM_SYNC IRQ Status Register

PDMQDR Base + 0x60

Byte 3 2 1 0

Name Reserved PWM_SYNC_IRQ

Default 0 0 0 0

Access R

PWM_SYNC_IRQ [0]: IRQ status whenever PWM_SYNC is issued out from Motor Control and PDM Data Collector IP.
PWM_SYNC_IRQ [7:1]: Reserved.

2.10. SPI Controller IP
The Serial Peripheral Interface (SPI) is a high-speed synchronous, serial, and full-duplex interface that allows a serial
bitstream of configured length, 8, 16, 24, or 32 bits to be shifted into and out of the device at a programmed bit-
transfer rate. The Lattice SPI Controller IP Core is normally used to communicate with external SPI target devices such
as display drivers, SPI EPROMS, and analog-to-digital converters. The SPI Controller IP is used to be integrated in Node
System SoC design as defined in node system top level architectural diagram. This IP can be controlled by C/C++ APIs of
node system CPU to read/write data from/to certain SPI based peripheral/sensor. These C/C++ based APIs can be
controlled by Main System as well.

For the SPI controller IP within Encoder Subsystem, it is used to communicate with the third-party Encoder Master IP
for data communication on the Encoder initialization and status monitoring purpose.

For more details, refer to SPI Controller IP User Guide (FPGA-IPUG-02069).

2.10.1. SPI Controller Register Map

For the register description, refer to the chapter 5 from SPI Controller IP User Guide (FPGA-IPUG-02069) for more
details.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52473
https://www.latticesemi.com/view_document?document_id=52473

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 33

2.10.2. Programming Flow

2.10.2.1. Initialization
The following SPI Controller registers must be set properly before performing the SPI transaction:

• CHP_SEL_REG – Set 1’b1 to the bit for the corresponding target. Set 1’b0 to other bits.

• CHP_SEL_POL_REG – Can be configured once after reset since this setting is usually fixed.

• CLK_PRESCL_REG – Set based on target sclk_o frequency.

• CLK_PRESCH_REG – Set based on target sclk_o frequency.

The host device needs to update the above registers only when SPI Controller is switching to different target device. No
need to perform the initialization again if the next transaction is for the currently selected target device.

For more details, refer to SPI Controller IP User Guide (FPGA-IPUG-02069).

2.10.2.2. Transmit/Receive Operation
For more details on the general recommended operation flow, refer to SPI Controller IP User Guide (FPGA-IPUG-02069).

For the SPI controller IP within Encoder Subsystem, the following sequence is used for data communication to any
register defined in the third-party Encoder Master IP during Encoder initialization stage:

1. Write to FIFO_RST_REG to assert reset on both TX and RX FIFOs in the SPI Controller.

2. Write to INT_STAT_REG to reset all interrupt status bits in the SPI Controller.

3. Write to FIFO_RST_REG to de-assert reset on both TX and RX FIFOs in the SPI Controller.

4. Write to WORD_CNT_RST_REG to reset the word count in the SPI Controller.

5. Write to TGT_WORD_CNT_REG according to the number of words to transfer in the SPI Controller.

6. Write n-word data to WR_DATA_REG, amounting to less than or equal to Transmit FIFO depth. If target n-word is
greater than the Transmit FIFO depth, check the interrupt for Transmit FIFO full, INT_STATUS_REG.tx_fifo_full_int,
before writing data to WR_DATA_REG to avoid data loss.

7. Clear the pending interrupts in INT_STATUS_REG as needed.

8. Read INT_STATUS_REG. Check if the pending interrupt is tr_cmp_int. This indicates that the SPI target has
completed transmitting the target n-word data.

9. Clear the pending interrupt in INT_STATUS_REG.

10. If CFG_REG.only_write = 1’b0, read the n-word data in RD_DATA_REG.

Note: Based on the third-party Encoder Master IP specification, two header bytes are required to be transmitted.

2.11. I2C Controller IP
The I2C (Inter-Integrated Circuit) bus is a simple, low-bandwidth, short-distance protocol. It is often seen in systems
with peripheral devices that are accessed intermittently. It is commonly used in short-distance systems, where the
number of traces on the board must be minimized. The device that initiates the transmission on the I2C bus is
commonly known as the Controller, while the device being addressed is called the Target. The I2C Controller IP is used
to be integrated in Node System SoC design as defined in node system top level architectural diagram. This IP can be
controlled by C/C++ APIs of node system CPU to read/write data from/to certain I2C based peripheral/sensor. These
C/C++ based APIs can be controlled by Main System as well.

For more information about the IP core including register map information, refer to I2C Controller IP User Guide (FPGA-
IPUG-02071).

2.12. UART IP
The Universal Asynchronous Receiver/Transmitted (UART) Transceiver IP core performs serial-to-parallel conversion of
data characters received from a peripheral UART device and parallel-to-serial conversion of data characters received
from the host locater insider the FPGA through an APB interface. In this system, UART is usually connected to terminal
character printing and debugging purpose.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52473
https://www.latticesemi.com/view_document?document_id=52473
https://www.latticesemi.com/view_document?document_id=52458
https://www.latticesemi.com/view_document?document_id=52458

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 34

For more information about the IP core including register map information, refer to UART IP User Guide (FPGA-IPUG-
02105)

2.13. EnDat 2.2 Master IP
The EnDat 2.2 Master IP handles the communication with EnDat Rotary Encoder. This simplifies the transmission of
position data and additional data to the higher-level application.

The EnDat 2.2 Master IP consists of the following interfaces:

• EnDat interface that communicate to the external EnDat Rotary Encoder during initialization stage as well as the
normal operation stage for control and monitoring.

• SPI interface for communication with SPI Controller where the initialization sequence is performed by CPU. During
normal operation, the Motor Control and PDM Data Collector initiates the transaction through the SPI Controller
periodically to retrieve encoder position values through receive registers as defined in the EnDat 2.2 Master IP.

For more details, refer to the representative through the Heidenhain website to inquire about EnDat 2.2 Master IP.

EnDat and SSI
Protocol Engine

SPI Slave
(Interface)

Control and
Status

Registers

EnDat 2.2 Master IP

EnDat
Interface SPI

PWM_SYNC

Figure 2.9. EnDat 2.2 Master IP Core Functional Block Diagram

2.14. SPI Flash Controller
The SPI Flash Controller is designed to stream data from external flash to FPGA using quad SPI data lines through
execute-in-place (XiP) access. It has a prefetch buffer to enable cache feature for internal block of FPGA. This block
does not have any configuration register for controlling as the basic settings (static configuration) are configured only
during build generation. This block does not support flash data write operation as it is only used in the Node System
SoC only for instruction streaming to RISC-V from external SPI flash. This block is only supporting Micron and Macronix
currently.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52880
https://www.latticesemi.com/view_document?document_id=52880
https://www.heidenhain.com/

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 35

Prefetch
Buffer

SPI Flash Controller

AHBL_S
Interface

Quad SPI
Interface

Figure 2.10. SPI Flash Controller IP Core Functional Block Diagram

2.15. TSE MAC
Tri-Speed Ethernet Media Access Controller (TSEMAC) IP core is a complex core containing all necessary logic,
interfacing and clocking infrastructure necessary to integrate an external industry-standard Ethernet PHY with an
internal processor efficiently and with minimal overhead. The TSEMAC IP core supports the ability to transmit and
receive data between the standard interfaces, such as APB or AHB-Lite, and an Ethernet network. The main function of
TSEMAC IP is to ensure that the Media Access rules specified in the 802.3 IEEE standard are met while transmitting a
frame of data over Ethernet. On the receiving side, the TSEMAC extracts different components of a frame and transfers
them to higher applications through the FIFO interface. In this system, TSEMAC is configured to RGMII mode and MDIO
interface is used to control the external PHY control and status registers.

For more information about the IP core including register map information, refer to Tri-Speed Ethernet MAC IP User
Guide (FPGA-IPUG-02084).

2.16. FPGA Config Module Design
The Multi-Boot Configuration is used to trigger an internal FPGA REFRESH/PROGRAMN command to LMMI logic. This
core IP implements an APB endpoint which decodes the RISC-V CPU command data. The LMMI host FSM inside is used
to execute the soft reset to load the next or alternate bitstream and application software data onto the FPGA.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52476
https://www.latticesemi.com/view_document?document_id=52476

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 36

3. Resource Utilization
The resource utilization for the Main System is shown in Table 3.1 and Table 3.2.

Table 3.1. Main System Resource Utilization

Blocks LUT4 Logic

LUT4

Distributed

RAM

LUT4

Ripple

Logic

PFU

Registers

I/O

Registers

I/O

Buffers

DSP

MULT
EBR

soc_golden_gsrd 46600(9) 16224(0) 6696(0) 43618(2) 2(0) 107(46) 10(0) 205(0)

apb_interconnect0_inst 108(0) 0(0) 0(0) 6(0) 0(0) 0(0) 0(0) 0(0)

axi2apb0_inst 253(0) 0(0) 54(0) 198(0) 0(0) 0(0) 0(0) 0(0)

axi4_interconnect0_inst 11467(0) 6522(0) 712(0) 11308(0) 0(0) 0(0) 0(0) 0(0)

axi4_interconnect1_inst 2287(0) 1764(0) 90(0) 2955(0) 0(0) 0(0) 0(0) 0(0)

axi_register_slice0_inst 165(1) 0(0) 0(0) 307(0) 0(0) 0(0) 0(0) 0(0)

cnn_coproccesor0_inst 711(0) 0(0) 374(0) 1009(0) 0(0) 0(0) 4(0) 0(0)

cpu0_inst 4980(0) 252(0) 1262(0) 3404(0) 0(0) 0(0) 6(0) 15(0)

etherconnect0_inst 5109(0) 96(0) 894(0) 2944(0) 0(0) 0(0) 0(0) 17(0)

fifo_dma1_inst 543(0) 0(0) 294(0) 613(0) 0(0) 0(0) 0(0) 8(0)

gpio0_inst 115(0) 0(0) 0(0) 97(0) 0(0) 8(0) 0(0) 0(0)

lpddr4_mc_contr0_inst 7871(0) 1482(0) 1056(0) 8992(0) 0(0) 49(0) 0(0) 25(0)

mbconfig0_inst 14(0) 0(0) 0(0) 64(0) 1(0) 0(0) 0(0) 0(0)

mpmc0_inst 3027(0) 714(0) 350(0) 4173(0) 0(0) 0(0) 0(0) 18(0)

osc0_inst 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

pll0_inst 22(0) 0(0) 0(0) 15(0) 0(0) 0(0) 0(0) 0(0)

qspi0_inst 3104(0) 0(0) 346(0) 2149(0) 0(0) 4(0) 0(0) 0(0)

rst_sync0_inst 43(0) 0(0) 32(0) 36(0) 0(0) 0(0) 0(0) 0(0)

sgdma0_inst 1519(0) 0(0) 556(0) 2085(0) 0(0) 0(0) 0(0) 8(0)

sysmem0_inst 1248(0) 0(0) 180(0) 692(0) 0(0) 0(0) 0(0) 112(0)

tse_mac0_inst 2741(0) 3840(0) 412(0) 1842(0) 0(0) 0(0) 0(0) 2(0)

tse_to_rgmii_bridge0_inst 620(0) 1554(0) 36(0) 119(0) 0(0) 0(0) 0(0) 0(0)

uart0_inst 644(0) 0(0) 48(0) 608(0) 1(0) 0(0) 0(0) 0(0)

Table 3.2. Main System Total Resource Utilization

LUT4 70410

PFU Register 44520

I/O Buffers 85

EBR 157

The resource utilization for the Node System is shown in Table 3.3 and Table 3.4.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 37

Table 3.3. Node System Resource Utilization

Blocks LUT4 Logic

LUT4

Distributed

RAM

LUT4

Ripple

Logic

PFU

Registers

I/O

Registers

I/O

Buffers

DSP

MULT
EBR

Large

RAM

soc_node_top 15818(2) 702(0) 4768(0) 13061(1) 19(4) 77(65) 27.5(0) 70(0) 1(0)

dut_inst 15816(1) 702(0) 4768(0) 13060(0) 15(0) 12(0) 27.5(0) 70(0) 1(0)

ISR_RAM_inst 50(0) 0(0) 0(0) 30(0) 0(0) 0(0) 0(0) 4(0) 0(0)

ahbl0_inst 188(0) 0(0) 0(0) 505(0) 0(0) 0(0) 0(0) 0(0) 0(0)

ahbl2apb0_inst 286(0) 0(0) 0(0) 190(0) 0(0) 0(0) 0(0) 0(0) 0(0)

apb0_inst 28(0) 0(0) 0(0) 8(0) 0(0) 0(0) 0(0) 0(0) 0(0)

cpu0_inst 2608(2) 0(0) 432(0) 1659(2) 0(0) 0(0) 0(0) 2(0) 0(0)

dma_fifo_inst 477(0) 0(0) 310(0) 545(0) 0(0) 0(0) 0(0) 16(0) 0(0)

encoder_subsys_inst 2971(0) 0(0) 480(0) 1914(0) 4(0) 0(0) 0(0) 2(0) 0(0)

ether_control_inst 3116(0) 288(0) 1282(0) 3053(0) 0(0) 6(0) 0(0) 27(0) 0(0)

gpio0_inst 64(0) 0(0) 0(0) 50(0) 3(0) 0(0) 0(0) 0(0) 0(0)

i2c_master0_inst 435(0) 24(0) 126(0) 506(0) 0(0) 2(0) 0(0) 0(0) 0(0)

motor_control_data_collector_inst 3164(0) 366(0) 2004(0) 3888(0) 3(0) 0(0) 27.5(0) 18(0) 0(0)

pll0_inst 21(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

spi_flash_controller0_inst 154(0) 0(0) 38(0) 191(0) 4(0) 4(0) 0(0) 1(0) 0(0)

spi_master0_inst 280(0) 24(0) 50(0) 307(0) 0(0) 0(0) 0(0) 0(0) 0(0)

sysmem0_inst 102(0) 0(0) 0(0) 68(0) 0(0) 0(0) 0(0) 0(0) 1(0)

uart0_inst 198(0) 0(0) 46(0) 146(0) 1(0) 1(0) 0(0) 0(0) 0(0)

Table 3.4.Node System Total Resource Utilization

LUT4 21288

PFU Register 13061

I/O Buffers 77

EBR 70

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 38

4. Firmware

4.1. Main System Boot Flow

u-boot-
spl.bin

System Memory QSPI Flash DDR

u-boot.bin
Primary_App

Crc.bin
u-boot.bin

Primary_App
Crc.bin

2 3

1

Reset Vector 0x0

0x0 0x21A0000 0x28A0000 0x80100000 0x80000000

Figure 4.1. Main System Boot Flow

Below is the main system boot up sequence:

1. U-Boot SPL is run upon power up.

2. SPL copy U-Boot Proper from flash address 0x21A0000 to DDR address 0x80100000 and jump to 0x80100000.

3. U-Boot Proper copy FreeRTOS application from flash address 0x28A0000 to 0x80000000 and jump to 0x80000000.

4.2. Node System Boot Flow
There is no bootloader for node system. The node system runs the firmware from the SPI flash XIP. Refer to the Node
System APIs for more information.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 39

5. Software APIs

5.1. Main System

5.1.1. Tasks of the Main System

The Main System acts as an interface between the user interface and the node-system, which controls the motor IP.
The commands are then sent to the nodes for configuration through EtherConnect IP. The Main System also enables
the user interface to monitor various parameters of the motors. The system also receives commands from the GPIO
switches attached on the board and sends these commands to the nodes for configuration through EtherConnect as
well.

The tasks to be carried out by the Main System can be categorized as follows:

• System Initialization
This API is used to configure the EtherConnect and establish communication between the Main system and nodes.
This takes place as soon as there is a power cycle or reset is pressed.

• Handle all the interrupts (GPIO, EtherConnect) and respond to the interrupts by taking appropriate actions.

Communication with the host system, Node System, and mechanical switches occur through interrupts and the
Main System takes appropriate actions based on the interrupts caused. The priority order of all the interrupts is
GPIO > EtherConnect.

• Switch Configuration over GPIO
You can start, stop, accelerate, and decelerate the motors with the help of switches provided. The Main System
configures the node motor IP as per the switch configuration.

• Communicate with host system user interface over Ethernet
The host system user interface sends configuration data and status check commands to the Main System, and the
Main System responds based on the command.

• Communicate with Node System and motor IP over EtherConnect
As per the commands received by the Main System, it creates particular burst packets to send to the Node System,
that the Node System then receives and implements them. This communication between the main and Node
System happens over EtherConnect and at a given time, a maximum of 256 bytes can only be transmitted from
either direction.

Below are the available APIs for the operations:

• ISR3_ EtherConnect
static void EtherConnect _isr (void *ctx)
The primary function of the EtherConnect ISR function is to set the interrupt flag, acknowledge the interrupt, and
return a value. The EtherConnect interrupt is used as an acknowledgement of the completion of a single
transaction of a command sent by the Main System to the Node System. The IRQ value for EtherConnect is IRQ3.

• System Initialisation API
int system_initialisation (void)
This API is present in the main.c file. It does not take any parameter and returns an integer value. It returns 0 if
everything is successfully completed or a – 1 if there is an error.
This API is used to establish communication between the Main System and the Node System. It enables the DMA
FIFO module and sends 10 broadcast packets to detect the number of nodes available and active in the whole
setup. By reading the PHY Link Status register, it affirms whether the communication is established or not, and
accordingly, turns ON the Main System LEDs. This API then sends three training packets and one normal packet to
the Node System through the EtherConnect to affirm the connection establishment with the Node System.

• Motor Configuration API
int motor_config_api(uint32_t address, uint32_t data, uint32_t multi)

This API is present in the main.c file. It needs three parameters namely:

• address: signifies a register in the Motor Control IP

• data: what needs to be written in that register

• multi: data to be transmitted on multiple chains or selected chains only

It returns the following integer values:

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 40

• 0: if everything is correct

• –1: if there was any error
The API is called when there is a requirement to configure a register in the Motor Control IP of the Node System.

The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst

packet indicates that a particular packet is for Motor Configuration and for which nodes this packet is intended.

Once the burst packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a

Start Transaction Register. After the Node System completes the task successfully, the Main System receives an

interrupt and validates the value of the interrupt info register. Upon the confirmation of the value of the interrupt

info register, this API returns a 0 value or a –1 if there is an error.

• Motor Status API
int motor_status_api(uint32_t address, uint32_t multi)

This API is present in the main.c file. It needs one parameter:

• address: signifies a register in the Motor Control IP

• multi: EtherConnect packet to be transmitted on multiple chains or selected chains only

It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

The API is called when there is a requirement to read a register in the Motor Control IP of the Node System.

The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst packet

indicates that a particular packet is for Motor Status Read and for which nodes this packet intended. Once the burst

packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start Transaction

Register. After the Node System has taken appropriate actions successfully, the Main System receives an interrupt,

and it validates the value of the interrupt info register. Upon the confirmation of the value of the interrupt info

register, this API returns a 0 value or a –1 if there is an error.

• PDM Data Fetch API
int pdm_data_fetch_api(uint32_t total_size, uint32_t node_addr, uint32_t pdm_data_base_addr)

The API is present in the main.c file. It needs one parameter:

• total_size: the size of the PDM data required from user interface

• node_addr: node select value sent in packet

• pdm_data_base_addr: PDM base address

It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

The API is called when there is a requirement to read a bulk maintenance data from the Motor Control IP of the

Node System.

The maximum data that can be transferred in a single transaction from node to Main System is 256 bytes.
Therefore, if the total_size is larger than 256 bytes, chunks of 256 bytes are requested one by one until the
total_size requirement is met.

• This API first configures the DMA register by writing the destination base and destination end address in specific
registers. The API creates burst packets which are sent to the Node System over EtherConnect. The header in the
burst packet indicates that a particular packet is for PDM Data Fetch and for which node this packet intended.
Once the burst packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a
Start Transaction Register. After the Node System completes the task successfully, the Main System receives an
EtherConnect interrupt, and it validates the value of the interrupt info register. The value of the DMA status
register is to be validated as confirmation of the same. A successful validation signifies that a single chunk of data
is successfully written into the Main System memory. This process is repeated until all the chunks are received by
the Main System.
The final EtherConnect interrupt is then received from the Node System signifying the completion of the PDM data
fetch command for the total_size. Upon confirmation of the value of the interrupt info register, this API returns
with 0 value.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 41

• PDM bulk Data Fetch API
int pdm_bulk_data_fetch_api (uint32_t total_size, uint32_t node_addr)

The API is present in the main.c file. It needs two parameters:

• total_size: the size of the PDM data required from user interface

• node_addr: node select value sent in packet

It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

The API is called when there is a requirement to read a bulk maintenance data from the Motor Control IP of the
Node System.
This API is extended version of PDM Data Fetch API, as total size of data fetch depends on number of active nodes
present in that chain.

5.1.2. lwIP Ethernet and UDP stack

The Ethernet and UDP stack are based on lwIP stack. The implementation is ported into the FreeRTOS framework. The
connection from the Main to Host user interface is managed by the lwIP stack communicating through the UDP
protocol.

The Ethernet stack performs the following tasks:

• Receive – Polling ethernet data packet from the SGDMA Rx Buffer and forwards the packet to the higher software
stack for processing the OPCUA data from the Host user interface

• Transmit – Sends the data from the OPCUA stack to the Host user interface

The UDP stack includes the following:

• ICMP – Respond and reply to ICMP queries from Host GUI to the Main system

• Addressing – Assigning IP address and MAC address to the Main system

• Payload – Decoding the payload from the Host GUI to the OPCUA and encapsulating the payload to the sent to the
Host user interface.

5.1.3. OPCUA PubSub

In the PubSub model, a publisher component, which can define DataSets that contain Variables or EventNotifiers. The
Publisher publishes DataSetMessages, which contain DataChanges or Events. The sender defines in Datasets what is
sent, instead of the receiver. The Publishers are the source of data and the Subscribers consume that data.
Communication in PubSub is message-based. Publishers send messages to a Message Oriented Middleware,
Subscribers express interest in specific types of data, and process messages that contain this data. OPCUA PubSub
supports two different Message Oriented Middleware variants, namely UDP based, and Ethernet based protocol.
Subscribers and Publishers use datagram protocols like UDP. The core component of the Message Oriented Middleware
is a message broker. Subscribers and Publishers use standard messaging protocols like UDP or MQTT to communicate
with the pub-sub.

The OPCUA defines two different network types for PubSub.

• Local Network – which can use UDP Broadcast (or Unicast in some cases) or Ethernet APL. The messages are
optimized binary UADP, which is defined in the OPCUA specifications. Only the OPCUA subscribers can interpret
the messages.

• Message Queue Broker – which can be an MQTT or AMQP broker, in practice. In this case, the messages are
typically JSON messages, although UADP can be used for improved performance. The OPC Foundation has defined
a standard content structure for the messages, but basically any JSON subscriber can interpret them.

The Main System module implements the following functions:

• Generic variable Create_UADP_NetwokMessage ()

• Generic variables UADP NetworkMessage_parse ()

http://www.latticesemi.com/legal
https://savannah.nongnu.org/projects/lwip/

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 42

5.1.4. Create_UADP_NetworkMessage

5.1.4.1. NetworkMessage Header

The NetworkMessage is a container for DataSetMessages and includes information shared between DataSetMessages.
The following are the parameters of the network message header:

• UADPVersion – The UADPVersion for this specification version is 1.

• UADPFlags – This flag enabled group header, Payload header, PublisherId.

• ExtendedFlags1 – The ExtendedFlags1 must be omitted, if bit 7 of the UADPFlags is false. The PublisherId type is of
DataType Uint16.

• ExtendedFlags2 – The ExtendedFlags2 must be omitted if bit 7 of the ExtendedFlags1 is false.

• PublisherId – The Id of the Publisher that sent the data. Valid DataType are Uintger (unsigned integer) and String.

• DataSetClassId – The DataSetClassId associated with the DataSets in the NetworkMessage.

Network
Message
Header

GroupHeader
Payload
Header

Extended
Network
Message
Header

Payload

Figure 5.1. UADP Version

Version/Flags
Extended

flags1
Extended

flags2
PublisherID DataSetClassId

1 Byte 1 Byte 1 Byte
1 .n
Byte 16 Byte

NetworkMessage Header

GroupFlags WriterGroupId GroupVersion
Network
Message
Number

Sequence
Number

1 Byte 2 Byte 4 Byte 2 Byte 2 Byte

Group Header

TimeStamp Pico Seconds
Promoted

Fields

8 Byte 2 Byte n Byte

Extended Network Message Header

Figure 5.2. UADP Message Packet Header

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 43

5.1.5. GroupHeader
The group header must be omitted, if bit 5 of the UADPFlags is false.

• GroupFlags – GroupFlags is used for writerGroupId, GroupVersion enabled, NetworkMessageNumber enabled,
SequenceNumber enabled.

• WriterGroupId – Unique id for the WriterGroup in the Publisher.

• GroupVersion – Version of the header and payload layout configuration of the NetworkMessages sent for the
group.

• NetworkMessage Number – Unique number of a NetworkMessage combination of PublisherId and WriterGroupId
within one PublishingInterval.

• SequenceNumber – Sequence number for the NetworkMessage.

5.1.6. Extended NetworkMessage Header
• Timestamp – The time the NetworkMessage was created.

• PicoSeconds – Specifies the number of 10 picoseconds intervals which shall be added to the timestamp.

• PromotedFields – PromotedFields are provided, the number of DataSetMessages in the Network Message shall be
one.

5.1.6.1. Payload
Payload is defined with exact data of Node variables like nodeIds, requestType, and these values. UADP packet format
size is 64 bytes, header size is 20 bytes, and payload size is 44 bytes.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 44

Start

Initialize write group config

and enabled content mask

Group Header, Writer

Group ID, Publisher ID, and

Payload Header flags

Initialize data set message

structure according to the

UADP default configuration

flags

Send data set message into

send network message to

create new message

header part

Check writer Group

Pubsub encoding type
break

Initialize network message

structure using data set

message and writer group

config and prepare network

message header

Prepare the payload in

encode network message

depends on the user

interface response

End

No

Yes

Figure 5.3. Create_UADP_NetworkMessage

UADP_NetworkMessage_parse

This module parses the data received from the publisher. The publisher sends the 64 bytes OPCUA pubsub message,
which holds the 20 bytes NetworkMessage header and, 44 bytes payload. In payload, the data gets the node IDs, and
these node IDs identify the method call or node variables or method variables. After identification, create an UDP data
response header, csv nodeid, request type and value, and write the UDP data request on LPDDR memory and get the
UDP data response from LPDDR memory. Parse data get method nodeIds then called the method according to the
method nodeId such as startmotor, stop motor, and power off.

void uadp_network_parse(unsigned int *Buffer);

The API is present in the UADP_NetworkMessage.c file. This gets the network message buffer from the user interface
side.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 45

Figure 5.4. UADP Network Message Format

udp_response_func
This module writes the udp data request to the LPDDR4 memory and gets the udp data response from LPDDR4 memory.

void udp_response_func()
This API is present in the UADP_NetworkMessage.c file. It does not require any parameter.

method_callbacks
This module checks the method id and calls the method like start motor, stop motor, power off, update config, and run
pdm.

void method_callbacks(unsigned char method)
This API is present in the UADP_NetworkMessage.c file. It gets the method nodeID parameter.

rfl_update_config

This module updates the motor variable configuration like rpm, breaker amps, number of Poles, and max power.

void rfl_update_config()
This API is present in the UADP_NetworkMessage.c. file. It does not require any parameter.

start_motor
This function starts motor if motor is off or update target rpm of node.

void start_motor()
This API is present in the UADP_NetworkMessage.c file. It does not require any parameter.

stop_motor
This function stops motor of all nodes. This function works when one of the motors is running.

void stop_motor()
This API is present in the UADP_NetworkMessage.c file. It does not require any parameter.

poweroff_motor
This function stops the power supply of all nodes. This function works when one of the motors is running. This function
is disabled if all motors are off.

void poweroff_motor()
This API is present in the UADP_NetworkMessage.c file. It does not require any parameter.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 46

get_background
This function queries the Rpmlock, motor voltage and motor status in background.

void get_background()
This API is present in the UADP_NetworkMessage.c file. It does not require any parameter.

run_pdm
This module collects the PDM data to generate the PDM image.

void run_pdm();

This API is present in the UADP_NetworkMessage.c file. It does not require any parameter.

5.2. Node System APIs

5.2.1. Tasks of the Node System

The Node System acts to control the Motor Control and PDM Data Collector and get its status as commanded by the
Main System. It communicates with the Main System by receiving commands through EtherConnect. It performs the
actions and responds to the Main System with interrupts as acknowledgement for the tasks executed.

The tasks to be carried out by a master system can be categorized as follows:

• Communicate with the master system over EtherConnect

• As per the commands sent by the Main System, the Node System is supposed to perform the following tasks:

• Configures the peripherals (Motor Control, I2C, SPI, and Modbus).

• Provides the status of the peripherals (Motor Control, I2C, SPI, and Modbus).

• Provides the PDM data collected through Motor Control and PDM Data Collector.

• Perform key functions

5.2.2. Key Functions
• main () function

int main (void)

Upon a power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts
(EtherConnect, UART).
The main function then waits for the ether_interrupt_flag to get high. The EtherConnect ISR sets the flag,
ether_interrupt_flag when a command is received from the Main System. When the main function finds that the
flag is set, it reads the INTERRUPT STATUS register to decode which command is received. Based on the value of
this register, the main function calls the appropriate functions.

• Node peripherals init
u08 general_init (void)
Upon a power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts

for UART, EtherConnect. It also initializes the external Encoder as well as Modbus, SPI, and I2C protocols.

• ISR1_ EtherConnect
static void EtherConnect _isr (void *ctx)

The primary function of the EtherConnect ISR function is to set the interrupt flag, acknowledge/clear the interrupt

and return an integer value. The EtherConnect interrupts are used as indicators of the receipt of a command sent by

the Main System to the Node System. The IRQ value for EtherConnect is 0.

• Node Configuration API
int node_config_api(void)

The API is present in the main.c file. It does not require any parameter.

It returns the following integer values:

• 0 – If all tasks are successfully completed

• –1 – If there is an error

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 47

The API is called when the main function receives a Node Config command in its Interrupt Status Register. This API
reads the NODE ADDRESS register. This register contains an address of the peripherals (I2C, Modbus, SPI, and
Motor Control) which is supposed to be configured. Next, the NODE CONFIG DATA register is read. This register
has the configuration data. This data is then written into the address. If there is a read or write error, the API
returns a –1 value. Once completed, the API returns a 0 value.

• Node Status API
int node_status_api(void)

The API is present in the main.c file. It does not require any parameter. This returns the following integer values:

• 0 – if all tasks are successfully completed

• –1 – if there is an error

The API is called whenever the main function receives a Node Status command in its Interrupt Status Register. This
API reads the NODE ADDRESS register. This register contains an address of the Node peripherals (Modbus, SPI, I2C,
Motor IP) whose configuration value is supposed to be read. This address is then read and stored in a local variable
data. This data is then written into the NODE STATUS register. If there is any read or write error, the API sends –1
value back. If everything goes okay, the API returns 0 value.

• PDM Data Fetch API
int pdm_data_fetch_api(void)

The API is present in the main.c file. It does not require any parameter. This returns the following integer values:

• 0 – if all tasks are successfully completed

• –1 – if there is an error

The API first reads the size of PDM data required from the PDM ADDRESS register. It then writes the base address

value and the end address (base address + size) value at the designated registers in the FIFO DMA Module. It then

enables the FIFO DMA module by sending writing 0x00000003 first and then 0x00000000 to the FIFO DMA CONTROL

register. Once done, it polls the DMA STATUS register for the indication of completion of the PDM data fetch. Once

it receives the done value, it sets the DMA DONE INDICATE register. If there is any read or write error, the API sends

–1 value back. If everything goes okay, the API returns 0 value.

• Node Peripheral APIs

• I2C Master

The following are the I2C BSP functions used in the main.c file for writing and reading the I2C slave data:

• uint8_t i2c_master_write (struct i2cm_instance × this_i2cm, uint16_t address, uint8_t data_size, uint8_t ×
data_buffer)

• uint8_t i2c_master_read (struct i2cm_instance × this_i2cm, uint16_t address, uint8_t read_length,
uint8_t × data_buffer)

• SPI Master

The following are the SPI BSP functions used in the main.c file for writing and reading SPI slave data:

• uint8_t spi_master_write (struct spim_instance × this_spim, uint8_t data_size, uint8_t × data_buffer)

• uint8_t spi_master_read (struct spim_instance × this_spim, uint8_t read_length, uint8_t × data_buffer)

• Modbus RTU Master

The following are the Modbus module functions used in the main.c file for writing and reading Modbus RTU
slave data:

• eMBErrorCode eMBMasterInit (eMBMode eMode, void *dHUART, ULONG ulBaudRate, void *dHTIM)
This function initializes the ASCII or RTU module and calls the init functions of the porting layer to prepare the
hardware. Note that the receiver is still disabled, and no Modbus frames are processed until eMBMasterEnable ()
is called.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 48

• eMBErrorCode eMBMasterPoll(void)
This function must be called periodically. The timer interval required is given by the application dependent Modbus

slave timeout. Internally thefunction calls xMBMasterPortEventGet () and waits for an event from the receiver or

transmitter state machines.

• unsigned int modbus_req (unsigned int mod_addr, unsigned int mod_data)

This function parses the data received from Main system and fetch slave id command type and data from it. This

calls the functions below based on the command type.

• eMBMasterReqWriteHoldingRegister (slaveid, regnum, regdata, timeout)

• eMBMasterReqWriteCoil (slaveid, regnum, regdata, timeout)

• OPCUA init
void opcua_init(void)

This API is called to initialize the OPCUA header format. In this API, store the publisher ID and writer ID these IDs

are used into pub-sub communication.

• OPCUA Packet Parse
void opcua_EtherConnect_parse(void)

This API parse the OPCUA packet which gets from the ethernet to have the information about nodes. Nodes

information like node_Id, request_type and payload.

• OPCUA header response
void opcua_header_response_loaded (unsigned int *response_packet)

This API is loaded the default UADP network message header, which have the information about writer ID,

publisher ID, and writer group ID and use of these IDs in the OPCUA pub-sub communication.

• Encoder init
uint8_t encoder_init(encoder_id)

This API is called to initialize the specific Encoder model according to the initialization sequence described in

specification from third party vendor.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 49

6. Communications
This section describes the communications between the host to the Main System and the communication between the
Main System and the Node Systems. Detailed breakdown of message vocabulary and packet structure may be covered
in a separate document.

6.1. Communication between Host and Main System
Initially, this connection is implemented using an Ethernet interface. Most of the messages must be ASCII to facilitate
debugging using a terminal program on the Host.

6.1.1. Messages from Host to Main System
• Motor Configuration and Control

• PDM Configuration and Control

• Request Motor Status

• Request PDM Status

• Request PDM Data – Normal

• Request PDM Data – Extended

6.1.2. Messages from Main System to Host
• System Information (Link Status, Connected Nodes, Local Delay of Nodes, and others)

• Motor Status

• PDM Status

• PDM Data – Normal

• PDM Data – Extended

6.2. Communication between Main System and Node System(s)
The physical connection between the Main System and Node System is implemented using Ethernet Cat-5 cables. The
physical connection between the first Node System and subsequent Node System(s) also uses Ethernet Cat-5 cables, in
a daisy-chain fashion for both chains.

6.2.1. Messages from Main System to Node System
• Motor Configuration and Control

• PDM Configuration and Control

• Request Motor Status

• Request PDM Status

• Request PDM Data – Normal

• Request PDM Data – Extended

6.2.2. Messages from Node System to Main System
• Node Information (Link Status, Connected Nodes, and Local Delay)

• Motor Status

• PDM Status

• PDM Data – Normal

• PDM Data – Extended

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 50

TSE MAC IP (RGMII)

SGDMA IP

AXI IP

LPDDR Memory Controller
(DDR4)

UART
(Debug Port)

Ethernet Port

Host PC
OPCUA

Avant-E Board
(Main System)

FPGA

RISC-V RX

EtherConnect IP
(RGMII)

Ethernet Port

To Host PC

To Node Board

Figure 6.1. Data Flow from Host to Node System through the Main System

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 51

Appendix A. Predictive Maintenance with TensorFlow Lite

A.1. Overview
The Predictive Maintenance (PDM) section outlines the steps necessary (shown in Figure A.1) for rebuilding the model
with your own data. It begins with the data capturing process, followed by the algorithm used to train the Convolutional
Neural Network (CNN) model, which includes details on the neural network architecture, the training process, and model
testing and accuracy. Finally, it covers the algorithm for running inference on the device, including the compilation of the
TensorFlow Micro library and optimization for the CNN co-processor.

Figure A.1. Predictive Maintenance Machine Learning Overview

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 52

A.2. Data Capture and Labeling
The Automate user interface offers essential motor control IP to streamline the data capturing process, as detailed in
the Motor Control and PDM Data Collector section. The data format and methodology are further explained in the
accompanying whitepaper. Once the motor data is captured, it is categorized into good and bad data, which are then
labeled and stored in folders named 0 and 1 respectively, with 0 indicating good motor data and 1 indicating bad motor
data. Note that for this example, the training is performed with data set collected with 800 rpm. Inference is performed
with test data ranging from 800 to 1500 rpm.

Figure A.2. Data Format Labeling

A.3. Model Training
This section describes the training process outlined in Figure A.1

A.3.1. Training Code Structure

Download the Lattice predictive maintenance demo training code. The link to download the code is available in the
Lattice Automate page and the directory structure is shown in Figure A.3. The Identify Neural Network Architecture
(Informational) and Implement Training Algorithm sections describe the network topology and background for tuning
purposes. The readers need not fully comprehend the details in Identify Neural Network Architecture (Informational)
and Implement Training Algorithm. They can proceed with the model training with the details in the Training Framework
section that describes a tool to facilitate the process.

http://www.latticesemi.com/legal
https://bit.ly/2ZDlNpR
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/Automate

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 53

Figure A.3. Training Code Directory Structure

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 54

A.3.2. Identify Neural Network Architecture (Informational)

This section provides information on the Convolution Neural Network Configuration of the Predictive Maintenance
design.

Table A.1. Predictive Maintenance Training Network Topology

Input Gray Scale Image (64 x 64 x 1)

Fire1

Conv3x3 – 8 Conv3x3 – # where:

 Conv3x3 – 3 x 3 Convolution filter Kernel size

 # - The number of filters

For example, Conv3x3 - 8 = 8 3 x 3 convolution filter

Batchnorm: Batch Normalization

FC – # where:

 FC – Fully connected layer

 # - The number of outputs

Batchnorm

ReLU

Maxpool

Fire2

Conv3x3 – 8

Batchnorm

ReLU

Fire3

Conv3x3 – 16

Batchnorm

ReLU

Maxpool

Fire4

Conv3x3 – 16

Batchnorm

ReLU

Fire5

Conv3x3 – 16

Batchnorm

ReLU

Maxpool

Fire6

Conv3x3 – 22

Batchnorm

ReLU

Fire7

Conv3x3 – 24

Batchnorm

ReLU

Maxpool

Dropout Dropout - 0.80

logit FC – (3)

In Table A.1, the layer contains Convolution (conv), batch normalization (BN), ReLU, pooling, and dropout layers. Output
of layer logit is (Broken [0], Normal [1], Unknown [2]) 3 values.

• Layer Information

• Convolutional Layer
In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels) which convolves with input layer/image and generates activation map (such as
feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each of these
filters can be thought of as feature identifiers, like straight edges, simple colors, and curves and other high-
level features. For example, the filters on the first layer convolve around the input image and “activate” (or
compute high values) when the specific feature (say curve) it is looking for is in the input volume.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 55

• ReLU (Activation Layer)
After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward.
The purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear
operations during the conv layers (just element wise multiplications and summations).In the past, nonlinear
functions like tanh and sigmoid were used, but researchers found out that ReLU layers work far better because
the network is able to train a lot faster (because of the computational efficiency) without making a significant
difference to the accuracy. The ReLU layer applies the function f(x) = max (0, x) to all the values in the input
volume. In basic terms, this layer just changes all the negative activations to 0. This layer increases the
nonlinear properties of the model and the overall network without affecting the receptive fields of the conv
layer.

• Pooling Layer
After some ReLU layers, programmers may choose to apply a pooling layer. It is also referred to as a down
sampling layer. In this category, there are also several layer options, with Maxpooling being the most popular.
This basically takes a filter (normally of size 2x2) and a stride of the same length. It then applies it to the input
volume and outputs the maximum number in every sub region that the filter convolves around.
The intuitive reasoning behind this layer is that once you know that a specific feature is in the original input
volume (a high activation value results), its exact location is not as important as its relative location to the
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost. The second is that it
controls over fitting. This term refers to when a model is so tuned to the training examples that it is not able to
generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or
99% on the training set, but only 50% on the test data.

• Batchnorm Layer
Batch normalization layer reduces the internal covariance shift. To train a neural network, perform
pre-processing to the input data. For example, you can normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). Reason being preventing the early saturation of
non-linear activation functions like the sigmoid function, assuring that all input data is in the same range of
values, etc.
But the problem appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt
themselves to a new distribution in every training step. This problem is known as internal covariate shift.
Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following below process during training time:

• Calculate the mean and variance of the layers input.

• Normalize the layer inputs using the previously calculated batch statistics.

• Scales and shifts to obtain the output of the layer.
This makes the learning of layers in the network more independent of each other and allows you to be carefree
about weight initialization, works as regularization in place of dropout and other regularization techniques.

• Drop-out Layer

Dropout layers have a very specific function in neural networks. After training, the weights of the network are
so tuned to the training examples they are given that the network does not perform well when given new
examples. The idea of dropout is simplistic in nature. This layer drops out a random set of activations in that
layer by setting them to zero. It forces the network to be redundant. The network must be able to provide the
right classification or output for a specific example even if some of the activations are dropped out. It makes
sure that the network is not getting too “fitted” to the training data and thus helps alleviate the over fitting
problem. An important note is that this layer is only used during training, and not during test time.

• Fully connected Layer
This layer basically takes an input volume (whatever the output is of the conv or ReLU or pool layer preceding it)
and outputs an N dimensional vector where N is the number of classes that the program must choose from.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 56

• Quantization
Quantization is a method to bring the neural network to a reasonable size, while also achieving high performance
accuracy. This is especially important for on-device applications, where the memory size and number of
computations are necessarily limited. Quantization for deep learning is the process of approximating a neural
network that uses floating-point numbers by a neural network of low bit width numbers. This dramatically
reduces both the memory requirement and computational cost of using neural networks.

The above architecture provides nonlinearities and preservation of dimension that help to improve the robustness of the
network and control over fitting.

A.3.3. Implement Training Algorithm

The layers described in the previous section are implemented in the code snippet below.

def make_resnet_model(input_shape, num_classes, name=None):

 print(input_shape)

 inputs = tf.keras.layers.Input(shape=input_shape[1:], name="input")

 # Fire 1

 x = Conv2D(filters=8, kernel_size=3, strides=1, padding="SAME", use_bias=False,
name="fire1_conv")(inputs)

 x = BatchNormalization(fused=True, name="fire1_bn")(x)

 x = Activation(activation="relu", name="fire1_relu")(x)

 x = MaxPooling2D(name="fire1_mp")(x)

 # Fire 2

 x = Conv2D(filters=8, kernel_size=3, strides=1, padding="SAME", use_bias=False,
name="fire2_conv")(x)

 x = BatchNormalization(fused=True, name="fire2_bn")(x)

 x = Activation(activation="relu", name="fire2_relu")(x)

 # Fire 3

 x = Conv2D(filters=16, kernel_size=3, strides=1, padding="SAME", use_bias=False,
name="fire3_conv")(x)

 x = BatchNormalization(fused=True, name="fire3_bn")(x)

 x = Activation(activation="relu", name="fire3_relu")(x)

 x = MaxPooling2D(name="fire3_mp")(x)

 # Fire 4

 x = Conv2D(filters=16, kernel_size=3, strides=1, padding="SAME", use_bias=False,
name="fire4_conv")(x)

 x = BatchNormalization(fused=True, name="fire4_bn")(x)

 x = Activation(activation="relu", name="fire4_relu")(x)

 # Fire 5

 x = Conv2D(filters=16, kernel_size=3, strides=1, padding="SAME", use_bias=False,
name="fire5_conv")(x)

 x = BatchNormalization(fused=True, name="fire5_bn")(x)

 x = Activation(activation="relu", name="fire5_relu")(x)

 x = MaxPooling2D(name="fire5_mp")(x)

 # Fire 6

 x = Conv2D(filters=22, kernel_size=3, strides=1, padding="SAME", use_bias=False,
name="fire6_conv")(x)

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 57

 x = BatchNormalization(fused=True, name="fire6_bn")(x)

 x = Activation(activation="relu", name="fire6_relu")(x)

 # Fire 7

 x = Conv2D(filters=24, kernel_size=3, strides=1, padding="SAME", use_bias=False,
name="fire7_conv")(x)

 x = BatchNormalization(fused=True, name="fire7_bn")(x)

 x = Activation(activation="relu", name="fire7_relu")(x)

 x = MaxPooling2D(name="fire7_mp")(x)

 x = Dropout(rate=0.8)(x)

 x = Flatten()(x)

 x = Dense(units=num_classes, use_bias=True, activation="linear", name="dense")(x)

 model = tf.keras.Model(inputs=inputs, outputs=[x], name=name)

 return model

A.3.4. Training Framework

To streamline the training and testing process, Lattice offers a training tool called Lattice Training Environment (LATTE).
This tool is written in Python and is available upon request (refer to Technical Support Assistance). Please refer to the
accompanied LATTE document on the installation steps. Once the LATTE package is installed, you have access to the
following APIs to execute training, testing and model conversion.

• latte train – Trains a model with the specified architecture, producing a model binary as the output.

• latte test – Tests the accuracy of the model binary. Typically, 80% of the dataset is used for training, while 20% is
reserved for testing.

• latte convert – Converts the model to a TensorFlow Lite (tflite) format, suitable for smaller devices such as
microcontrollers or RISC-V cores.

After unzipping the code folder, run the commands below:

pip install opencv-python (Note that this is for first time setup only)

latte train configs/example-experiment.yaml sources/imports.py -r

latte test configs/example-experiment.yaml sources/imports.py

latte convert configs/example-experiment.yaml sources/imports.py

While LATTE is OS agnostic, the subsequent chapters describe the output of running the above APIs in Linux
environment (Ubuntu 20.04). Below printout shows an output report from running “latte train” API running.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 58

Figure A.4. LATTE Training

A.3.5. Testing the Accuracy of the Trained Model

The LATTE API latte test facilitates testing of the trained model using FPGA simulator. The FPGA simulator needs to be
installed to simulate the model accuracy running on FPGA. The FPGA simulator is included in the LATTE release package.

The trained model provided in Automate 4.0 achieves the test accuracy of 99.956% as shown in Figure A.5..

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 59

Figure A.5. LATTE Testing

A.3.6. Converting the Trained Model

The LATTE API latte convert facilitates conversion of the model to deploy on FPGA. The output of this command is a tflite
model file.

Figure A.6. LATTE Conversion

The tflite model is then translated into a C-Array using the xxd tool. This step is necessary for the model to be
recognized by the FPGA RISC-V. The quickest way to run xxd in Windows environment is by installing Git Bash terminal
and run the xxd command with it.

$ xxd -i your-tflite-model-path.tflite > out_c_array.cc

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 60

Figure A.7.Model to C Array Conversion

A.4. On Device Inferencing
Th inference is executed on the main system RISC-V core. The RISC-V core requires a library to understand the converted
trained model, which is the TensorFlowMicro library described in A.4.1.

A.4.1. Implementing the TensorflowMicro Library

The Automate 4.0 main project offers a reference for integrating the TensorFlow Micro library into a RISC-V project.
This library is based on an open-source implementation, which can be accessed in the Tensorflow Lite Micro Github
page.

The algorithm divided into two parts: setup and compute. The setup() function handles target initialization, tensor
arena size allocation, model retrieval (the c array), mutable operation resolver allocation, interpreter addition, and
tensor memory allocation. The compute function then processes the input data (motor data) and runs the invoke
function, which returns the inference outcome. The inference output provides a confidence level number for both
good and bad categories for each input data. The category with the higher confidence value determines the inference
result.

Table A.1.Example of Inference Outcomes

Input (Motor data) Inference Output (Good) Inference Output (Bad) Summary

a 53 -12 Good condition

b 7 23 Maintenance required

A.4.2. CNN Co-processor Optimization

The CNN co-processor IP, as described in the CNN Co-Processor Unit (CCU) section, is required to enhance convolution
operations. To utilize the CNN co-processor effectively, you need to use the modified conv.h file available in the RISC-V
Propel project. With the optimization provided by the CNN coprocessor, the inference process time is significantly
reduced.

http://www.latticesemi.com/legal
https://github.com/tensorflow/tflite-micro
https://github.com/tensorflow/tflite-micro

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 61

Appendix B. Setting Up the Wireshark Tool
Note: To download the wireshark tool: https://www.wireshark.org/download.html.

To set up the wireshark tool, perform the following:

1. Open the Wireshark tool and select the network (Ethernet).

2. Click on the Ethernet network.

3. Click the Run () button.

4. Check the UDP message use port filter udp.port == 1486 on the top bar.

Figure B.1. Wireshark Tool – Write udp.port == 1486

5. Check both the source and destination IP.

Figure B.2. Source and Destination UDP Packet

6. Click on the UDP packet.

Figure B.3. Wireshark tool – First UDP Packet

http://www.latticesemi.com/legal
https://www.wireshark.org/download.html

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 62

Appendix C. Automate Stack 4.0 Bit and Binary Generation

C.1. Installing the Propel SDK 2024.1
For steps on installing the Propel 2024.1, see the Official Documentation and Training page.

C.2. Installing the Propel Patch 2024.1
To install the Propel Patch, perform the following:

1. Double-click on the application to install the patch.

Figure C.1. Propel Patch Application

2. Click Next on the succeeding windows.

Figure C.2. Propel Patch Setup Window – Install Lattice Propel

http://www.latticesemi.com/legal
https://www.latticesemi.com/LatticePropel

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 63

Figure C.3. Propel Patch Setup Window – Select Installation Folder

Figure C.4. Propel Patch Setup Window – Start Menu Shortcut

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 64

3. Wait for the installation process to 100%.

Figure C.5. Installation Process

4. Click Finish.

Figure C.6. Installation Completed

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 65

C.3. Generating the Binary in the Main System

C.3.1. Primary Main System

To generate the binary in the primary main system, perform the following:

1. Double-click Lattice Propel SDK 2023.2 to open the dialogue box as shown in Figure C.7.

Figure C.7. Propel 2024.1 Application

2. To select the workspace, browse to the template location or where your project is located.

3. Select \Main_System\Primary_MainSystem by clicking on Browse. Click Launch to launch the workspace.

Figure C.8. Select Directory

4. Click Import projects or go File > Import to import the firmware project template.

Figure C.9. Import Project

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 66

5. Select the existing project in the workspace from the general list and click Next.

Figure C.10. Existing Project into Workspace

6. Select the root directory and browse template location.

7. Select the project as shown in Figure C.11: \Main_System\Primary_MainSystem.

8. Click Finish.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 67

Figure C.11. Import Project

9. Right-click on the firmware project folder c_main_system_4_0 and select Properties.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 68

Figure C.12. Properties

10. Drop-down the c/c++ build and select Settings. Click Manage configuration.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 69

Figure C.13. C/C++ Build Settings

11. Select Release and apply Set Active. Click OK.

Figure C.14. Manage Configuration – Release: Set Active

12. Click Apply and Close.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 70

Figure C.15. Manage Configuration: Apply and Close

13. Right-click on the firmware project folder c_main_system_4_0 and select the option as shown in Figure C.16. to
build the project.

Figure C.16. Build Project

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 71

14. Wait for the process to complete to 100%. After completion, the message shown in Figure C.17 appears on the
console.

Figure C.17. Completing Process

15. To locate the binary file to below path: \Main_System\Primary_MainSystem\c_main_system_4_0_cnn\Release.

C.3.2. Golden Main System

To generate the binary in the golden main system, perform the following:

1. Double-click Lattice Propel SDK 2024.1 to open the dialogue box as shown in below fig.

Figure C.18. Propel 2024.1 application

2. To select the workspace, browse to the template location or where your project is located.

3. Select \MainSystem\Golden_MainSystem\ by clicking on the Browse option as shown below. Click Launch to
launch the workspace.

Figure C.19. Select Directory

4. Click Import projects or go to File > Import to import firmware project template.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 72

Figure C.20. Import Project

5. Select Existing Project in Workspace from the General list and click Next as shown below.

Figure C.21. Existing Project into Workspace

6. Select the root directory and browse template location.

7. Select the project as shown in Figure C.22: \MainSystem\Golden_MainSystem.

8. Click Finish.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 73

Figure C.22. Import Project

9. Right click on the firmware project folder Golden_App and select the option as shown in Figure C.23 to build the
project.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 74

Figure C.23. Build Project

10. Wait for the process to complete to 100%. After completion, the message shown below appears on the console.

Figure C.24. Completing Process

11. To locate the binary file to below path: \MainSystem\Golden_MainSystem\Golden_App\Release.

C.3.3. Node System

To generate the binary in the node system, perform the following:

1. Double-click Lattice Propel SDK 2024.1 to open the dialogue box.

Figure C.25. Propel Application

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 75

2. To select the workspace, browse to the template location \NodeSystem by clicking on the Browse option as shown
below. Click Launch to launch the workspace.

Figure C.26. Select Directory

3. Click Import projects or go to File > Import to import firmware project template.

Figure C.27. Import Project

4. Select Existing Project in Workspace from the General list and click Next.

Figure C.28. Existing Project into Workspace

5. Select root directory and browse template location.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 76

6. Select project as shown in below: \NodeSystem.

7. Click Finish.

Figure C.29. Select Project

8. Right-click on the firmware project folder c_node_system_4_0 and select the option as shown in Figure C.30 to
clean the project before building.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 77

Figure C.30. Clean All

9. After selecting the option as shown in Figure C.30, observe the console and wait for the process to complete to
100%. After completion, the message shown below appears on the console.

Figure C.31. Console

10. After cleaning, right-click on the c_node_system_4_0 and select the option as shown in Figure C.32 to build the
project.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 78

Figure C.32. Build All

11. Wait for the process to complete to 100%. After completion, the message below appears on the console.

Figure C.33. Completing Process

12. To locate the binary file and .mem file to below path:
\NodeSystem\node_system_4_0\c_node_system_4_0\Debug.

C.4. Generating the Bit File in the Main System

C.4.1. Primary Main System

To generate the bit file in the primary main system, perform the following:

1. Open the Propel builder 2024.1 tool.

2. Click on the open design symbol and go to the below path:
Main_System\Primary_MainSystem\soc_main_system_4_0\soc_main_system_4_0.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 79

3. If you do not have the propel patch, open directly from where the project is located. Make sure that there is no
space in the folder name.

4. Select the soc_main_system_4_0.sbx file and the design opens.

Figure C.34. soc_main_system.sbx

5. Double-click on the system0_inst. A pop-up window appears as shown in Figure C.35.

Figure C.35. System Initialization File

6. Initialize the data memory with the generated u-boot-spl.mem file in the \AutomateStack_4_0_uBoot\u-boot\spl
folder of the AutomateStack_4_0_uBoot.

7. Click Generate and Validate.

Figure C.36. Validate Button

8. Click Generate SGE.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 80

Figure C.37. Generate SGE Button

9. Open the Radiant tool in the Propel Builder interface.

Figure C.38. Radiant Tool Button

Note: No need to change the below settings just ensure that these settings are enabled.

a. Open the generated Radiant Project in the Radiant Tool:
\Main_System\Primary_MainSystem\soc_main_system_4_0

b. Select the soc_main_system_4_0.rdf file and the project opens.

Figure C.39. soc_main_sysyem.rdf File

c. Double-click LAV-AT-E70ES1-3LFG1156.

Figure C.40. LAV-AT-E70ES1-3LFG1156C

d. Select Family: LAV-AT

e. Select Device: LAV-AT-E70ES1

f. Select Operating Condition: Commercial

g. Select Package: LFG1156

h. Performance Grade: 9_High-Performance_1.0V

i. Part Number: LAV-AT-E70ES1-3LFG1156C

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 81

Figure C.41. Lattice Radiant Device Selector for Main System

j. Set Frequency parameter to 200 MHz.

Figure C.42. Strategy for Build Generation for Main System

k. Go to the Strategy and select the Map Design.

l. Go to Map Timing Analysis and select the highlighted part as shown in Figure C.43.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 82

Figure C.43. MAP Analysis Setting for Main System Bit File Generation

m. Go to Place & Route Design and select the settings as shown in Figure C.44.

Figure C.44. PAR Setting for Main System Bit File Generation

n. Go to Place and Route Timing Analysis and select the settings shown in Figure C.45.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 83

Figure C.45. PAR Timing Analysis Setting for Main System Bit File Generation

10. Go to Bitstream and select the IP Evaluation if you want to generate the non-licensed bit file. If you want to
generate licensed bit file, uncheck the IP Evaluation box.

Note: You need to request for license file from official website of Lattice Semiconductor.

Figure C.46. IP Evaluation

11. Click Run All to generate the bit file. Wait for the bit generation and check the output logs.

Figure C.47. Run All Button

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 84

12. To locate the bit stream file follow the below path:
\Main_System\Primary_MainSystem\soc_main_system_4_0\impl_1.

Figure C.48. Bitstream File

C.4.2 Golden Main System

To generate the bit file in the golden main system, perform the following:

1. Open the Propel builder 2024.1 tool.

2. Click on the open design symbol and go to the below path:

\Main_System\Golden_MainSystem\soc_main_system_3_1\soc_main_system_4_0.

3. If you do not have the Propel patch, open directly from where project is located. Make sure that there no space in
the folder name.

4. Select the soc_main_system_4_0.sbx file to open the design.

Figure C.49. soc_main_system.sbx

5. Double-click on the system0_inst. A pop-up window appears as below.

Figure C.50. System Initialization File

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 85

6. Initialize Data memory with generated u-boot-spl.mem file in the AutomateStack_4_0_uBoot\u-boot\spl folder of
AutomateStack_4_0_uBoot.

7. Click Generate and Validate.

Figure C.51. Validate Button

8. Click the Generate SGE button.

Figure C.52. Generate SGE Button

9. Open the Radiant tool in the Propel builder interface.

Figure C.53. Radiant Tool Button

Note: No need to change the below settings; just ensure that these settings are enabled.

a. Open the generated Radiant Project in the Radiant Tool:
Main_System\Golden_MainSystem\soc_main_system_4_0\.

b. Select the soc_main_system_4_0.rdf file and the project opens.

Figure C.54. soc_main_sysyem.rdf file

c. Double-click LAV-AT-E70ES1-3LFG1156.

Figure C.55. LAV-AT-E70ES1-3LFG1156C

d. Select Family: LAV-AT

e. Select Device: LAV-AT-E70ES1

f. Select Operating Condition: Commercial

g. Select Package: LFG1156

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 86

h. Performance Grade: 9_High-Performance_1.0V

i. Part Number: LAV-AT-E70ES1-3LFG1156C

Figure C.56. Lattice Radiant Device Selector for Main System

j. Set Frequency parameter to 200 MHz.

Figure C.57. Strategy for Build Generation for Main System

k. Go to the Strategy and select the Map Design and select the Map Timing Analysis. Apply the settings shown in
Figure C.58.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 87

Figure C.58. MAP Analysis Setting for Main System Bit File Generation

l. Go to Place & Route Design and select the settings shown in Figure C.59.

Figure C.59. PAR Setting for Main System Bit File Generation

m. Go to Place and Route Timing Analysis and select the settings shown in Figure C.60.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 88

Figure C.60. PAR Timing Analysis Setting for Main System Bit File Generation

10. Go to Bitstream and select the IP Evaluation if you want to generate the non-licensed bit file. If you want to
generate licensed bit file, uncheck the IP Evaluation box.

Note: You need to request for license file from official website of Lattice Semiconductor.

Figure C.61. IP Evaluation

11. Click Run All to generate the bit file. Wait for the bit generation and check the output logs.

Figure C.62. Run All Button

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 89

12. To locate the bit stream file, follow the below path:
\Main_System\Golden_MainSystem\soc_main_system_4_0\impl_1.

Figure C.63. Bitstream File

C.4.3. Node System

1. Open the Propel builder 2024.1 tool.

2. Click on the open design symbol and go to the below path:

NodeSystem\node_system_4_0\soc_node\soc_node.

Figure C.64. soc_node.sbx

3. Double-click on the system0_inst. A pop-up window appears on the screen as shown below.

Figure C.65. System0 Initialization

4. Initialize the data memory with the generated c_node_system_4_0_Data.mem file in debug folder of C project.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 90

5. Click Validate.

Figure C.66. Validate Button

6. Click the Generate SGE button.

Figure C.67. Generate SGE Button

7. Open the Radiant tool from the Propel builder interface or open directly.

Figure C.68. Radiant Tool Button

Note: No need to change the below settings; just ensure that these settings are enabled.

a. Open the generated Radiant Project in the Radiant Tool: NodeSystem\node_system_4_0\soc_node.

b. Select the soc_node.rdf file and the project opens.

Figure C.69. soc_node.rdf file

c. Click on the LFD2NX-40-8BG256C.

Figure C.70. LFD2NX-40-8BG256C

d. Select Family: LFD2NX

e. Select Device: LFD2NX-40

f. Select Operating Condition: Commercial

g. Select Package: CABGA256

h. Performance Grade: 8_High-Performance_1.0V

i. Part Number: LFD2NX-40-8BG256C

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 91

Figure C.71. Lattice Radiant Device Selector for Node System

j. Set Frequency parameter to 150 MHz.

Figure C.72. Strategy for Build Generation for Node System

k. Go to the Strategy and click the Map Design. Select the Map Timing Analysis and apply the settings shown in
Figure C.73.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 92

Figure C.73. MAP Analysis Setting for Node System Bit File Generation

l. Go to Place & Route Design and select the settings shown below.

Figure C.74. PAR setting for Node System Bit File Generation

m. Go to Place and Route Timing Analysis and select the settings shown in Figure C.75.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 93

Figure C.75. PAR Timing Analysis Setting for Node System Bit File Generation

8. Go to Bitstream and select the IP Evaluation if you want to generate non-licensed bit file. If you want to generate
the licensed bit file, uncheck the IP Evaluation box.

Note: You need to request for license file from official website of Lattice Semiconductor.

Figure C.76. IP Evaluation

9. Click Run All to generate the bit file. Wait for the bit generation and check the output logs.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 94

Figure C.77. Run All Button

10. To locate the bit stream file, follow the below path: \NodeSystem\node_system_4_0\soc_node\impl_1.

Figure C.78. Bitstream File

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 95

Appendix E. Creating the MCS File
The following steps provide the procedure for generating a Multi-Boot PROM hex file using the Radiant Deployment
tool. This procedure is an example for three total bitstream, primary pattern, golden pattern, Alternate pattern 1.

To create the MCS file, perform the following:

1. Open the Lattice Radiant Programmer > Tools > Deployment Tool.

Figure E.1. Deployment Tool

2. Select External Memory for the Function Type and Advanced SPI Flash for the Output File Type.

3. Select OK.

Figure E.2. Creating New Deployment for Multi-Boot

4. For Step 1 of 4: Select input files window, apply the settings below.

a. Click the file name field to browse and select the primary bitstream file to be used to create the PROM hex
file. The device family and device fields auto populate based on the bitstream files selected.

b. Select Next.

Figure E.3. Select Input File Window

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 96

5. For Step 2 of 4: Advanced SPI Flash Options window, apply the settings below.

a. Go to the Multiple Boot tab.

b. Select the Multi-Boot option.

c. Click on the Golden pattern browse button to select the Primary pattern bitstream.

d. The starting address of the Golden pattern is automatically assigned. You can change it by clicking on the drop-
down menu.

e. In the number of Alternate patterns field, select the number of patterns to include through the drop-down
menu.

f. In the Alternate Pattern 1 field, click on the browse button to select the golden pattern bitstream. The starting
address of the primary pattern is automatically assigned. You can change it by clicking on drop down menu.

g. The address of next Alternate pattern to configure field is automatically populated. This is the pattern that is
loaded during the next PROGRAMN/REFRESH event. You can change the pattern by clicking on the drop-down
menu.

h. Select Next.

Figure E.4. Advanced SPI Flash Options - Multi-Boot Tab Window

Note: The starting address of golden pattern must be more than the size of primary pattern and the starting
address of alternate pattern 1 must be more than the starting address + size of golden pattern. Otherwise, it
generates an error.

6. For Step 3 of 4: Select output file window, apply the settings below.

a. Specify the name of the output PROM hex file in the output file 1 field.

b. Select Next.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 97

Figure E.5. Select Output File Window

7. For Step 4 of 4: Generate Deployment window, apply the settings below.

a. Review the summary information.

b. If everything is correct, click Generate. The generate deployment pane indicates the PROM file is successfully
generated.

c. Save the deployment setting by selecting File > Save.

d. To exit, go to File > Exit.

Figure E.6. Generate Deployment window

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 98

8. Once configured, you can program the .mcs file in the external flash using the Radiant Programmer.

http://www.latticesemi.com/legal

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 99

References
• Lattice Automate

Other references:

• Lattice Radiant FPGA design software

• Lattice Insights for Lattice Semiconductor training courses and learning plans

http://www.latticesemi.com/legal
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/Automate
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
https://www.latticesemi-insights.com/

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 100

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, please refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

Automate 4.0
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02302-1.0 101

Revision History

Revision 1.0, February 2025

Section Change Summary

All Initial preliminary release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Automate 4.0
	Contents
	Abbreviations in This Document
	1. Introduction
	1.1. Automate 4.0 System Architecture Overview
	1.1.1. Main System
	1.1.2. Node System

	1.2. Advantages of the Automate 4.0 Reference Design
	1.3. Automate 4.0 Components

	2. Design Overview
	2.1. Theory of Operation
	2.2. FPGA Design
	2.2.1. Main System
	2.2.2. Lattice Main System 4.0 Architecture
	2.2.2.1. Lattice Main System 4.0 Architecture
	2.2.2.2. Data Flow Details of the Main System 4.0
	Automate Main System Multiboot Flow
	Automate Main System Bootloader Flow
	Automate Main System Application Flow

	2.2.2.3. Memory Map

	2.2.3. Node System
	2.2.3.1. Data Flow
	2.2.3.2. Memory Map

	2.3. EtherConnect IP Design Details
	2.3.1. Overview of Existing IP
	2.3.1.1. Normal Packet

	2.3.2. Architecture
	2.3.2.1. Main System
	2.3.2.2. Node System

	2.3.3. Register Map

	2.4. FIFO DMA
	2.5. LPDDR4 Controller
	2.6. QSPI Flash controller
	2.7. Scatter Gather DMA IP Design Details
	2.8. CNN Co-Processor Unit (CCU)
	2.9. Motor Control and PDM Data Collector
	2.10. SPI Controller IP
	2.10.1. SPI Controller Register Map
	2.10.2. Programming Flow
	2.10.2.1. Initialization
	2.10.2.2. Transmit/Receive Operation

	2.11. I2C Controller IP
	2.12. UART IP
	2.13. EnDat 2.2 Master IP
	2.14. SPI Flash Controller
	2.15. TSE MAC
	2.16. FPGA Config Module Design

	3. Resource Utilization
	4. Firmware
	4.1. Main System Boot Flow
	4.2. Node System Boot Flow

	5. Software APIs
	5.1. Main System
	5.1.1. Tasks of the Main System
	5.1.2. lwIP Ethernet and UDP stack
	5.1.3. OPCUA PubSub
	5.1.4. Create_UADP_NetworkMessage
	5.1.4.1. NetworkMessage Header

	5.1.5. GroupHeader
	5.1.6. Extended NetworkMessage Header
	5.1.6.1. Payload
	UADP_NetworkMessage_parse
	udp_response_func
	method_callbacks
	rfl_update_config
	start_motor
	stop_motor
	poweroff_motor
	get_background
	run_pdm

	5.2. Node System APIs
	5.2.1. Tasks of the Node System
	5.2.2. Key Functions

	6. Communications
	6.1. Communication between Host and Main System
	6.1.1. Messages from Host to Main System
	6.1.2. Messages from Main System to Host

	6.2. Communication between Main System and Node System(s)
	6.2.1. Messages from Main System to Node System
	6.2.2. Messages from Node System to Main System

	Appendix A. Predictive Maintenance with TensorFlow Lite
	A.1. Overview
	A.2. Data Capture and Labeling
	A.3. Model Training
	A.3.1. Training Code Structure
	A.3.2. Identify Neural Network Architecture (Informational)
	A.3.3. Implement Training Algorithm
	A.3.4. Training Framework
	A.3.5. Testing the Accuracy of the Trained Model
	A.3.6. Converting the Trained Model

	A.4. On Device Inferencing
	A.4.1. Implementing the TensorflowMicro Library
	A.4.2. CNN Co-processor Optimization

	Appendix B. Setting Up the Wireshark Tool
	Appendix C. Automate Stack 4.0 Bit and Binary Generation
	C.1. Installing the Propel SDK 2024.1
	C.2. Installing the Propel Patch 2024.1
	C.3. Generating the Binary in the Main System
	C.3.1. Primary Main System
	C.3.2. Golden Main System
	C.3.3. Node System

	C.4. Generating the Bit File in the Main System
	C.4.1. Primary Main System
	C.4.2 Golden Main System
	C.4.3. Node System

	Appendix E. Creating the MCS File
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, February 2025

