s LATTICE

SEDC Controller IP

IP Version: v1.1.0

User Guide

FPGA-IPUG-02290-1.1

September 2025

= LATTICE

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and
other items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases
such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

= LATTICE

Contents

(600 1 (= o) K3 PSP OP OSSP P OO PTRON 3
Abbreviations in This Document
1. Introduction.....cccccceeeviieeiniciieeiiiieeene
1.1. Overview of the IP...
1.2. Quick Facts ..ccceereriieeeeiiec e,
1.3. IP Support Summary
1.4. =T L U1 =TSSP OROROON 9
1.5. [RTol=T o Ty T T= 2 1) (o] o s = [SRS 9
1.5.1. Ordering Part NUMDEIcoi i ceeee ettt e et e e et e e e sttt e e eat e e e seasaeeesataeeeaassseeesnsaeeesnsseaeanseeeennnneas 9
1.6. MiNIMUM DEVICE REGUITEIMENTS ...uuuuiiiiieiiiiiiiiieitieiiietateteuetateretararerererereberebarebebaaareaatebeberebabesssesesssesssssssssnsessssrnsnns 9
1.7. NAMING CONVENTIONS ...eiiiiiiiii ittt e s e bt b et e s s b e e e s e bt e e sbb e e e s s b e e e sanae e e snaeessanraeesaanns
O B [o] 4 =T Tol - AU 1 T TR PPRURRNt
1.7.2. SIBNAIINGIMES .ttt ettt ettt e bt e e bt e bt e s bt e e be e e bt e e bt e s b et e bt e e b et e ebbe e bt e e nabeenneeesareennes
0 T N {1 o 10 =3\ =0 =TSR SUUUNE
N S V| Vot o o F=1 I D =Ty ol T o] 4 o o FS USRS
2.1, IP Architecture Overview
2.1.1. SEDC Hard Block Overview
2.1.2. SEDC Controller IP Configuration IMOGEScooiuieiiiiiiiieeiet ettt ettt ettt et sree s b e s saee e 13
2.1.3. SEDC CONTIOIET IP FIOW...utiiiieiiieiiiiieeee e ee ettt e e e e ettt e e e e e e eaae e e e e e e seeaasaeeeeeeeesasbseseaeeeesnntaaseaeeeeeannsnnneeeens
2.2. (61 o Tol 4 =TT PO PO PO P OO UUPRRUSPPPPRRTI
2.3. [T PSPPSRI
2.4, (8Tl T} =Y =TT SS RSNt
T | e T = 10 U=y =Y gl D= T ol o) o] o F PSPPSR
B e 0 F= I D <YYol T 14 o o USRS
4.1. (0o Yol |l [21 (<] o 7 [l SRR
4.2. 2Ty =] o [N T = ol ISP
4.3. Control Interfaceccccccvvvenneenn.
4.4, Monitor Interface.......cccccccueennn.
5. Designingwiththe IP.......cccooiiiiiiiiiiiie s
5.1. Generating and Instantiating the IP
5.1.1. Generated Files and File Structure
5.2. (BT Fd oI FaY o] (=Y g =T o1 = 1 4 Lo o OSSR USURN
5.3. YT Lol A VA L0 d d TSI =Y =T = SR
5.4. RUNNING FUNCLIONAI SIMUIATION ..eeiiiiiiie st et e e et e e st e e e st e e e e snteeessnnneeesnseeeeannns
LT o B Y 10 01 o o o 2T U1 TSR
5.4.2. Limitations of the SEDC Hard Block Simulation MOdElccoccuiiieeiiiiiiiiiee et 28
5.4.3. Testbhench FIles and StrUCTUIEuviiiii i e e s ettt e e e e e s esab b e e e e e e e e s astaaaeeeeeeenassaaneeaeas
5.4.4. INPUEL SEIMUIUS PatEINS ...uiiiiiiiiceieee et e e e e e s ettt e e e e e e s e aetaeeeeeeeeeastaaaeeeeeesnnsaeneeaens
LT D11 o TU = =41 = PP PURPRRPRt
7. Design Considerations
7.1. Asynchronous Reset (arst_i) Timing Requirements

7.2. Assert and Hold auto_correct_i High throughout a Complete SEDC SCaNcccevevcuveeeeiiieeeeiieeeeieeeesieee s 33
7.3. Assert and Hold continuous_i High throughout Consecutive SEDC SCaNScccevevciveeeeriieeeeieeeeceieeeesiveeesnns 33
7.4. Process Error Information Only when status_update_0 ASSErtSccccciiieiieeiieiiiiiieee e e eeerree e e e e 33
7.5. Availability of Clock Divider Value after INitializationcccouiiiieiiio e 34
7.6. Add Debouncer on Signal Driven by Mechanical SWitCh/BUttonc...ooveeiiieeieeiciie et e e 34
7.7. Implement Reset Synchronizer for Asynchronous Reset Signal.........ccceeiivieeieiieie e e e 34
8. KNOWN ISSUBS ..ttt ettt e e st e et e e e s s r e et e e e s e s r e et e e e s e s e nr e e et e e e e e s ar et et e e e se e nn e e e e e e e sennnnnee 35
8.1. Incorrect Clock Divider Value in SIMUIGTIONciiiiiiiiiiiee ettt st s 35
8.2. SEDC Unable to Detect Errors After 1-bit or 2-bit SEI Bitstream INjection........ccceccvveeieiieie e, 35
8.3. Error Bit and Region Location Mismatch Between Hardware and Radiant SEI Bitstream Profile .35
Appendix A. o 1] ol B WA |12) 4 o] o SRR 37

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SEDC Controller IP :..LATTICE

User Guide

Appendix B. Walkthrough of Example Simulation Waveformsccociiiiieiiiiiiieiiceeeeee e
Appendix C. Example of Including +define+LSCC_SEDC_CONTROLLER_RTL_SIM in Generated *.f File

Appendix D. Example Verilog/SystemVerilog Code on Asynchronous Reset Timing Requirements..........cccccevveeeveens
Appendix E. Example Verilog/SystemVerilog Code for DEDOUNCETcccveiiiieeiieiiieeccee ettt et et
Appendix F. Example Verilog/SystemVerilog Code for Reset SyNnChronizer.........ccccuveecveeiiieieceeeciee et
(0] L] 0] o [ol Y- OSSP RUPPTPRRTP
TeChNIiCal SUPPOIT ASSISTANCE . .eeeiuiiiiiieitie ettt et st e b e e bt e bt e s bt e e bt e s bt e e bt e s b e e e bt e sabeeeseesabeeenseesbeeenneenane
REVISION HISTOTY ..ttt et st e st e s e bt e e s sb e e e s s b et e s e sb e s e s asba e e s sbb e e e esnbaeesannaeeesnaeeeaas

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02290-1.1 4

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 2.1. SEDC Controller IP BIOCK DI@ram.......cccueeiiiieiieiiieeiee ettt sttt ettt ettt e st e st e s e e bt e sabeeenneesbeesnneenane 11
Figure 2.2. SEDC Hard Block System BlOCK DIi@gramccc.uueeeccuieeiiiiieeeciiieeeitee e siteeeesta e e e e eee e e saseeeesstaeeesansaeesnseeeesnssesennnns 12
Figure 2.3. SEDC CoONtroller IP FIOWCNAIT......ccccuiiii ettt ettt e ettt e e st e e et e e e e ete e e saseeeesntaeeesssaeesnseeeesnsseeennnns 14
Figure 2.4. SEDC Controller IP Clock Domain BlOCK Diagramccueeeeiiiieieiiieeciieeesiieeeeitee e seireeeestaeeesneeeessnseeeessseeesnnes 15
Figure 2.5. SEDC Controller IP Resets BIOCK DI@gramcciccuiiiiiiiiieeeiieieeeieeestiee e e stee e e e ete e e siteeeesataeessnsaessnseeeesssseeennnns 16
Figure 5.1. MOdUIE/IP BIOCK WIiZAIc..oouiieieieiesiesie sttt ettt sttt s b et et e st e besaeeb e et et e beseesbesaeeneeneensenes 22
FIgUIe 5.2. [P CONFIGUIALION ..ottt ettt ettt et e sttt e bt e s bt e s bt e s b e e eabee s beeeabeesabeesneesabeeenneenane 23
Figure 5.3. Check GENErated RESUILcoovii ittt st e st e e bt e s b e e e bt e sbeeesnee s beeenneenane 23
Figure 5.4. SIMUIGTION WIZAI.......ooiiiiieieeiiieecetes ettt e et e st e e e e te e e e s atte e e s abeee e staeesanssaeessseeeassaeesansseeesnseeeesnsseeennnns 25
Figure 5.5. Add @nd REOTUEI SOUICEcciiiuiiieeeiiee e ctee e ettt e eettee e sttt e e e ttaeeeeataeeessaeeeastaeeaassseesasseeeeansseeesassseesanseeeesnsseeennns 25
Figure 5.6. Parse HDL files for SIMUIGtIONccciiii et s e e et e e e e ete e e st e e e e ataeeesnseeessnseeeesnsseeennnes 26
FIBUIE 5.7, SUMIMIAIY e re e s e s e s e se s e s e s e s e s e s e s e s s s e s e s e sesesesesasasasasasasasasasasesesssesasssesasesssesnsssesesnsssnsnsnsesnsesnsnsns 26
Figure 5.8. SIMUIGtion WaveTOrmoi ittt ettt et s e st e st e st e st e e e beesabeeeseesabeeeneenane 27
Figure 5.9. SIMUlation COMPIETION LOG......eiiiuieiiiieiieiite ettt ettt sttt sttt e st e st e st esbee s beeesbeesbeeeneesabeeenneenane 27
Figure 5.10. TESTDENCN STIUCTUIEoiiiiiiie ettt st et e st e st e e st e e s abee st e e ebeesabeeeseesabeeeneenane 29
Figure 8.1. Combination of 1-bit and 2-bit SEI BitSTrEamSceevuiiriiiiiieiie ettt st saee e 35
Figure 8.2. ExXample of 1-bit SEI BItSTrEaMccccuiiiiiiiieecciieecetee ettt e e e sttt e ee e e e st e e e e s ttaeeeeateeesabeeeesstaeesensaeesansesaessseseannes 35
Figure 8.3. Reveal Analyzer Waveform for 1-bit SEI BitStreamcccccuiiiieiiie ettt e e ere e e s sava e e e e areeeenens 36
Figure B.1. Asynchronous Reset and Triggering of SEDC Scan in Continuous Mode.........cccceeviiieeeiiiieeeecieeeccieeeeeivee e 38
Figure B.2. 1-bit Error Occurrence and Manual Error Correction/ReSUME SCANceeveierierieriereeteeeeiensesiesie e eseeeenaenes 38
Figure B.3. CRC Error Occurrence and AUtO RESUME SCANiiiiiiiiiiiiieiiee ettt et sbe e st ee st sbee s bt e e et e sbeessneesbeeenneesane 39

Figure B.4. End of First SEDC Scan and Triggering/1-bit Error Occurrence of Second SEDC Scan in Continuous Mode39
Figure B.5. End of Second SEDC Scan and Triggering/Error Occurrences/End of Third SEDC Scan in Continuous and

FANU} o]0 g F- Yol =14 foT ol @eT g g=Toru o] o N1V, o Te |13 PSSP 39
Figure B.6. Triggering/Error Occurrences/End of SEDC Scan in One-Shot MOAEccveeeuieeiieieireeeiieeeciee e eeaeeeetee e 40
Figure B.7. ADOITING OF SEDC SCAN ...c.uuiiiieiiiieeeiiee ettt e ettt e eette e e settee e e tteeeseattaee s sbeaaestseeeassaeesasseseaansseseaassaeesassesaesnssesennes 40
Tables

Table 1.1. Summary of the SEDC CONTIOIEI IPcouueiie ettt e e e st e e e et e e e stb e e e esataeeesabaeaestreseenssaeaeannenas 7
Table 1.2. SEDC Controller IP SUPPOIrt REAMINESSceiiiiieiiiiiiie ettt e e st e e e e e st e e e e e e setabtaeeeeeesesastaasaeaseesnnssraneeeens 8
Table 2.1. SEDC CONErOlEr IP IMOQUIESooeieeiiieciiie ettt e e et e e e staee e e st e e e s ate e e snaeeeesntseeeenseeeesnsneeesnnseesannee 11
Table 2.2. SEDC Controller IP Configuration IMOGESuuiiieiuiiriiciieeeiiiee ettt e esee e e sttt e e st e e saaeeeessbaeessnreeessseeessnsseesnnnes 13
Table 2.3. SEDC CONTIOIIEI IP PrOCESSESuveeieiuriieiiiieeeitieeeeitieeesstteessteeeeasseeeesassaeeessseeesassseessassessessssnessssseesssssseessnsseesannes 14
Table 2.4. SEDC_CLK Frequencies with Different Clock Divider ValUesc..cviveiieriiiieeieiiee e esieeseree e saee e svree e 15
TabIE 2.5, USEE INTEITACES ... viie et cciee ettt et e et e e e e ette e e e tteeeesbbeeeestaeeeaasaaeeasbaeseanssaeesaaseaeeastaseeanssseesassaeeeansseeeannes 17
Table 3.1. SEDC CoNtroller [P AttriDULEScci it se e e e e e et e e e e e e se bbb e e e e e e eesnnbaareeeeeeannsaareeeens 18
I o] I 3 @ o Yol 2o o USSP 19
I] I A U TY =Y oo o YU SURR P 19
LI o £ TR 1o) o I o T 3SR 19
LI o] (T S 1V T o1 ol 2 o SR SRRSNE 21
Table 5.1. GENEIrated Fil LISt ...ccuuiiiiciiie ettt e e e s e e e et e e e e et ae e e s s teeeeanseeeesnseaeesssaeesannseeesnsneeesnsreenannes 24
Table 5.2. Testbench Components and File LIStccciiiiiiiiiiie et e e e et r e e e e e e st e e e e e e e e ennbaaaeeaans 28
Table 5.3, INPUL SEIMUIUS DESCIIPLIONuiiiiei ettt e e e e st e e e e e e s e sbbt e e e e e e e sesaatbaseeeeeeanantaaaseseseanansaaseeaens 30
Table A. L. RESOUICE ULIlZAtION ...ciii ittt e e e e e s et e e e e e e e s e bbtaeeeeaeseasaatbaseaeesesnntaaeeasesesnnnsaeseeaens 37

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Abbreviations in This Document

A list of abbreviations used in this document.

= LATTICE

Abbreviation

Definition

ASCII American Standard Code for Information Interchange
ASR Address Shift Register

CRAM Configuration Random Access Memory
CRC Cyclic Redundancy Check

CRC32 Cyclic Redundancy Check — 32 bits
DSR Data Shift Register

DUT Design Under Test

EBR Embedded Block RAM

ECC Error Correction Code

FPGA Field Programmable Gate Array
FSM Finite State Machine

GPIO General Purpose 1/0

GUI Graphical User Interface

HDL Hardware Description Language
1/O Input/Output

IP Intellectual Property

LMMI Lattice Memory Mapped Interface
LSE Lattice Synthesis Engine

LUT Lookup Table

osc Oscillator

PDC Post-Synthesis Design Constraint
PLL Phase Locked Loop

POR Power On Reset

RAM Random Access Memory

RTL Register Transfer Level

SEC Soft Error Correction

SED Soft Error Detection

SEDC Soft Error Detection/Correction
SEU Single Event Upset

TMR Triple Modular Redundancy

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

Soft error detection (SED) and soft error correction (SEC), collectively referred to as soft error detection and correction
(SEDC), are features that enable the detection and correction of soft errors in the configuration memory of an FPGA
device. This document describes the SEDC Controller IP.

1.1. Overview of the IP

The SEDC Controller IP is designed to ensure the effective and reliable operation of the SEDC system by integrating
additional soft logic around the SEDC hard block. This integration simplifies the interface and enhances overall
functionality, making it easier for users to implement and benefit from advanced error detection and correction
features. The IP manages state transitions, drives inputs, captures outputs, and provides internal feedback, all while
ensuring robust performance and high reliability through the implementation of triple modular redundancy (TMR).
This IP is suitable for applications requiring high reliability and robust error detection and correction, such as:

e Aerospace and defense: Ensuring system reliability in harsh environments

e Automotive: Enhancing safety and reliability in critical systems

e Industrial automation: Maintaining system integrity in industrial control systems

e Medical devices: Providing reliable operation in life-critical applications

e Telecommunications: Ensuring data integrity in communication systems

1.2. Quick Facts
Table 1.1. Summary of the SEDC Controller IP

i Supported Devices Lattice Avant™, Certus™-N2
IP Requirements
IP Changes Refer to the SEDC Controller IP Release Notes (FPGA-RN-02081).
. Supported User Interface General purpose 1/0 (GP10)
Resource Utilization - —
Resources Refer to Appendix A. Resource Utilization.

IP Core v1.0.0 — Lattice Radiant™ Software 2025.1
IP Core v1.1.0 — Lattice Radiant Software 2025.1.1

Design Tool Support Synthesis Synopsys® Synplify Pro® for Lattice

Refer to the Lattice Radiant Software User Guide for the list of
supported simulators.

Lattice Implementation

Simulation

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=54662

SEDC Controller IP

User Guide

= LATTICE

1.3. IP Support Summary

Table 1.2. SEDC Controller IP Support Readiness

IP Radiant Synthesis Mapping Place and Timing Bitstream Simulation
Version Version Synplify LSE Route Generation RTL Post- Post-Route Post-Route
Pro Synthesis Gate-Level Gate-Level
and Timing
1.0.0 2025.1 Yes — Yes Yes Closed at Yes Yes Yes Yes Yes
80 MHz

FPGA-IPUG-02290-1.1

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

http://www.latticesemi.com/legal

= LATTICE

1.4. Features

Key features of the SEDC Controller IP include:
e Soft IP features (soft logic)

Modes: Supports four modes of operation through combinations of the following:

e One-shot or continuous scanning

e No error correction or automatic error correction

Finite state machine (FSM): Controls the system's operational states and ensures smooth transitions between
them

Signal management: Efficiently handles the signals sent to and received from the SEDC hard block, ensuring
seamless communication

Error and status reporting: Monitors the SEDC hard block output ports to provide accurate error and status
reporting

Simulation support: Supports error injection for easy simulation of system response

Triple modular redundancy (TMR): Ensures high reliability by applying TMR to critical registers, protecting
against errors

Simplified interfaces: Simplifies the Lattice memory mapped interface (LMMI) with internal translation, making
it easier for users to implement and interact with the SEDC hard block

e Hard IP features (SEDC hard block)

Frame by frame SED check

Multiple regions (four regions as hardware default) run in parallel for fast SED and SEC performance

1-bit and multi-bit error detection

Error correction code (ECC) to correct 1-bit errors at the frame level

32-bit cyclic redundancy check (CRC32) calculation on the entire configuration RAM (CRAM) in parallel with
ECC

Programmable SED clock with a wide frequency range

Force error capability for system-level simulation

1.5. Licensing Information

The SEDC Controller IP is provided at no additional cost with the Lattice Radiant software.

1.5.1. Ordering Part Number

The SEDC Controller IP does not require an ordering part number.

1.6. Minimum Device Requirements

The minimum device requirements for the SEDC Controller IP are as follows:

e Supports SEDC.

e Meets the resource utilization as captured in Table A.1. Resource utilization for soft logic (LUTs and registers) by
this IP is relatively small and primarily dependent on logic optimization by synthesis and place-and-route.
Therefore, Lattice does not expect significant differences in resource utilization across different devices.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SEDC Controller IP
User Guide

= LATTICE

1.7. Naming Conventions

1.7.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.7.2. Signal Names

Signal names that end with:

e _nareactive low (asserted when value is logic 0)
e _jareinputsignals

e _oareoutputsignals

1.7.3. Attribute Names

Attribute names in this document are formatted in title case and italicized (Attribute Name).

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02290-1.1

10

http://www.latticesemi.com/legal

2. Functional Description

2.1. IP Architecture Overview

= LATTICE

Figure 2.1 shows the SEDC Controller IP block diagram. The IP includes several modules as described in Table 2.1.
Additionally, an inverter is implemented on the internal connection between the top-level input port arst_i and the
LMMIRESET_N port of the SEDC hard block. This inverter ensures that the appropriate signal level is presented at the
SEDC hard block so that reset operations of all modules in the IP are aligned.

SEDC Controller IP (Iscc_sedc_controller)

SEDC State Machine
(Iscc_sedc_controller_state_machine)

dki
arsti

dlk_i

SEDC Output Capture
(Iscc_sedc_controller_output_capture)
ki

arst_i
halt_i
sedc_run_i

halt_i
sedc_run_i
continuous_i

arst_i

continuous_i
auto_correct_i

auto_correct_i

current_state_i[4:0]

resume_scan_i

resume_scan_i

clki
status_update_i arst_i
current_state_o[4:0] current_state_i[4:0]

SEDC LMMI Host
(Iscc_sedc_controller_Immi_host)

Immiclk_o

status_update_o
o status_update_o

Immiwrrd_n_o

bit_loc_o9:
frm_loc_o[13:

Immioffset_o[7:0] bit_loc_o[9:0]
frm_loc_o[13:0]
rgn_loc_o[4:0]

clk_div_o[7:0]

Immiwdata_o[15:0] loc_o[4:
rgn_loc_old

clk_div_o[7

crc_err_i

mult_err_i

cre_err_o

cre_erm_o

mult_err_o
mult_err_o

sedcenable_o —‘

sing_err_o

sing_err_o

err_o

err_o

sedc_error_i

sedc_error_o

sedc_error_o
sedc_done_o

sedc_done_i

sedc_done_o

sedc_busy_o

sedc_busy_o

sedc_busy_i L
LMMICLK

LMMIREQUEST
LMMIWRRD_N
LMMIOFFSET(7:0]
LMMIWDATA[15:0]
SEDCENABLE

4>D.—> LMMIRESET_N

sededone_i

Immirdata_i[15:0]
Immiready_i

SEDC Hard Block
(SEDCA)

SEDCERROR
SEDCDONE

sedcerror_i
sedcdone_i
SEDCBUSY sedcbusy_i
LMMIRDATA[15:0] Immirdata_i[15:0]
LMMIREADY Immiready_i
LMMIRDATAVALID i

{ Immirdatavalid_i

Figure 2.1. SEDC Controller IP Block Diagram

Table 2.1. SEDC Controller IP Modules

Module Module Name in HDL

Description

SEDC State Machine Iscc_sedc_controller_state_machine

This module contains the FSM that performs state transition
based on user input signals and/or feedback signals from the
SEDC output capture module and SEDC hard block. Internal
registers are implemented with TMR.

SEDC LMMI Host Iscc_sedc_controller_Immi_host

This module drives the inputs of the SEDC hard block based on
the state of the FSM. Internal registers are implemented with
TMR.

SEDCA Primitive SEDCA

Primitive representing the SEDC hard block. Refer to the SEDC
Hard Block Overview section for more information.

SEDC Output Capture Iscc_sedc_controller_output_capture

This module monitors and captures the output signals from the
SEDC hard block into internal registers and reports out the
signals to the top-level output ports as necessary, based on the
state of the FSM. The module also provides feedback signals to
the state machine. Internal registers are implemented with
TMR.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.1.1. SEDC Hard Block Overview

Figure 2.2 shows the system-level view of the SEDC hard block. The SEDC hard block is part of the configuration
(sysCONFIG) block in supported FPGA devices. Configuration data is divided into frames across multiple regions,
allowing the FPGA device to be programmed either as a whole or in specific regions. The SED hardware reads serial
data from the FPGA device configuration memory frame-by-frame in the background while the device is in user
function mode and performs ECC calculations on every frame of configuration data.

CRAM Controller | ______ CRAM Controller o CRAM Controller N
(SED/SEC) (SED/SEC) (SED/SEC)
° 3 o °
° o o
° ° ° SEDC Hard Block E
z
CRC (Region) CRC (Region) CRC (Region) o
@
LMMI
FPGA FABRIC
y
CRAM Controller | ______ CRAM Controller N CRAM Controller
(SEDISEC) (SEDISEC) (SEDISEC)
SEDC_CLK
° 3 3
° o o
° ° ° CFG_CLK
CRC (Region) CRC (Region) CRC (Region)
FPGA Device

Figure 2.2. SEDC Hard Block System Block Diagram

When a 1-bit error is detected, an error indicator for 1-bit error is generated and the SED resumes operation. If SEC is
enabled, the 1-bit error is corrected before the SED resumes operation. The corrected value is rewritten to the frame

using ECC information. If multiple 1-bit errors are detected within a frame of configuration data, an error indicator for
multi-bit error is generated.

In parallel, cyclic redundancy check (CRC) is calculated for the entire CRAM content along with ECC. After ECC is
calculated on all frames of the configuration data, CRC is calculated for the configuration data in the entire device.
Full-chip CRC and frame-by-frame ECC calculations do not include the embedded block RAM (EBR). EBRs provide a
separate and optional ECC for SED or SEC of the EBR content. Distributed RAM data stored in the CRAM are masked
during SED or SEC because RAM content may change during user operation and hence cannot be covered by the SEDC
hard block without generating false SEDC errors. The distributed RAM enable bit set in CRAM is covered during SED or
SEC.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.1.2. SEDC Controller IP Configuration Modes

The SEDC Controller IP has four different configuration modes as described in Table 2.2. The SEDC Controller IP only
configures the SEDC hard block in one-shot and no auto-correction modes. All other modes are supported through soft
logic around the SEDC hard block.

Table 2.2. SEDC Controller IP Configuration Modes

SEDC Mode

Error Correction Mode

Description

Continuous Mode

Auto-Correction Mode

The SEDC Controller IP continuously scans frames. Scanning
continues regardless of any errors detected.

If a 1-bit error is detected, the IP notifies the user about the error,
corrects the error automatically, and resumes scanning frames
(without re-checking whether error is corrected) immediately after
the correction.

If a multi-bit or CRC error is detected, the IP continues scanning
frames without halting and notifies the user about the error.

Continuous Mode

No Auto-Correction Mode

The SEDC Controller IP continuously scans frames. Scanning halts
only when a 1-bit error is detected and continues after manual
intervention.

If a 1-bit error is detected, the IP halts and notifies the user about
the error. The IP only resumes scanning frames after the error is
corrected through manual intervention.

If a multi-bit or CRC error is detected, the IP continues scanning
frames without halting and notifies the user about the error.

One-Shot Mode

Auto-Correction Mode

The SEDC Controller IP performs a one-time scan of all frames.
Scanning continues regardless of any errors detected until all
frames are scanned.

If a 1-bit error is detected, the IP notifies the user about the error,
corrects the error automatically, and resumes scanning frames
(without re-checking whether error is corrected) immediately after
the correction.

If a multi-bit or CRC error is detected, the IP continues scanning
frames without halting and notifies the user about the error.

One-Shot Mode

No Auto-Correction Mode

The SEDC Controller IP performs a one-time scan of all frames.
Scanning halts only when a 1-bit error is detected and continues
after manual intervention until all frames are scanned.

If a 1-bit error is detected, the IP halts and notifies the user about
the error. The IP only resumes scanning frames after the error is
corrected through manual intervention.

If a multi-bit or CRC error is detected, the IP continues scanning
frames without halting and notifies the user about the error.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.1.3. SEDC Controller IP Flow

Figure 2.3 shows the high-level flowchart of the SEDC Controller IP. Because of the complexity of the FSM, which
comprises over 30 states, this flowchart does not capture details on the complete implementation of the internal FSM.
However, this flowchart attempts to facilitate the conceptual understanding of the SEDC Controller IP flow.

sedc_run_i == 1'b0

Initialization

| |
| |
EDC Scan ! '
continuous_i == 1'b1 s Sca | sedc_done_o == 1'b1 !
Stop | :
|
| |
| |
| |
| |
| T
| |
| |
| |
SEDC Scan : :Yes Read and Report SEDC
S T »<_ sedc_error_o ==1'bl +—| Status and Configuration
tart | : Register Values
|
| |

Main loop

crc_err_o==1'b1

Correct and/or
Resume SEDC Scan

esume_scan_i==1'b

an
edc_run_i==1'b

mult_err_o == 1'b1

auto_correct_i==1'b1

No

7NO\
Abort »>

sedc_busy_o ==1'b0

Figure 2.3. SEDC Controller IP Flowchart

Table 2.3 describes each of the processes. For more details on IP behaviors, you can explore the testbench that
simulates IP behavior as illustrated by the example waveforms in the Walkthrough of Example Simulation Waveforms
section. Follow the steps in the Running Functional Simulation section so that the necessary simulation files are
included when launching the simulation.

Table 2.3. SEDC Controller IP Processes

Process

Description

Initialization

Clears all output registers that drive the output signals crc_err_o, mult_err_o, sing_err_o, err_o,
bit_loc_o, frm_loc_o, rgn_loc_o, and clk_div_o to 0.

Configures the SEDC hard block through LMMI write transactions.

Reads the clock divider value from the SEDC hard block through LMMI read transaction and updates
the register that drives the output signal clk_div_o.

SEDC Scan Start

Internal soft logic drives the SEDCENABLE signal of the SEDC hard block high to start a SEDC scan.
The output signal sedc_busy_o asserts high once the SEDC hard block starts the scan.

Read and Report
SEDC Status and
Configuration
Register Values

Reads the SEDC hard block status and configuration register values through LMMI read transactions.
Captures these values into output registers that drive the output signals crc_err_o, mult_err_o,
sing_err_o, err_o, bit_loc_o, frm_loc_o, rgn_loc_o, and clk_div_o.

Asserts the output signal status_update_o high momentarily for one clock cycle after the error
status and locations of all output registers are ready to be read.

Correct and/or
Resume SEDC Scan

Performs error correction and/or resumes scan by informing the SEDC hard block through LMMI
write transaction.

The output signal sedc_error_o is de-asserted low by the SEDC hard block once it completes the
error correction and/or resumes the scan operation.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Process Description

SEDC Scan Stop e Indicates the SEDC hard block has finished the current SEDC scan cycle on all frames.

e De-asserts the output signal sedc_busy_o low.

e Asserts the output signal sedc_done_o high momentarily for one clock cycle, immediately after the
sedc_busy_o signal is de-asserted low.

e Internal soft logic drives SEDCENABLE signal of the SEDC hard block low.

Abort e Aborts the SEDC Controller IP operation gracefully from any state.

° Stops all LMMI transactions and/or current SEDC scan.

e Clears all output registers to 0.

2.2. Clocking

Figure 2.4 shows the high-level block diagram of the clock domain for the SEDC Controller IP. There are two clock
domains within the sysCONFIG block namely SEDC_CLK and LMMI clock. However, only the LMMI clock is accessible by
the SEDC Controller IP. SEDC_CLK is hardened to be sourced from the internal oscillator of the FPGA device. The single
clock input for the entire IP (clk_i) can be driven by an external clock source (through an FPGA 1/0O pin), PLL, or
oscillator. This clock is used to clock all soft logic registers and drive the LMMICLK of the SEDC hard block. For the clock
frequencies supported by the SEDC Controller IP, refer to Table 4.1. The PLL and oscillator can be instantiated through
the FPGA device PLL IP and OSC IP from the Lattice Radiant software IP Catalog, respectively.

SEDC Controller IP

Fabric Configuration

SEDC LMMI Host

SEDC State l T SEDCA Hard

Machine Block
SEDC

Output Capture

External Clock Source (through FPGA Pin)

Oscillator

Figure 2.4. SEDC Controller IP Clock Domain Block Diagram

While the SEDC_CLK is not accessible by the SEDC Controller IP, its frequency can be adjusted through the Clock Divider
attribute. Table 2.4 lists the SEDC_CLK frequencies with different clock divider values, calculated using the following
equation:

400
Clock Divider Value

Table 2.4. SEDC_CLK Frequencies with Different Clock Divider Values

SEDC_CLK (MHz) =

Clock Divider Value SEDC_CLK Frequency (MHz)
2 200

3 133.33

256 1.56

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Clock frequency settings are important for optimizing both performance and power consumption. A slower clk_i
correspondingly slows the SEDC Controller IP response time. However, the power impact is small because of the SEDC
Controller IP’s relatively small resource usage (see resource utilization captured in Table A.1). The selection of
SEDC_CLK directly impacts the SEDC scan and correction times. For example, with the lowest clock divider value of 2,
the SEDC_CLK frequency is 200 MHz, resulting in shorter scan and correction times. Conversely, with the highest clock
divider value of 256, the SEDC_CLK frequency is 1.56 MHz, resulting in longer scan and correction times. While the
power impact of the SEDC Controller IP is generally small, it can become significantly more pronounced during
continuous operation, making careful clock frequency management crucial for maintaining optimal system
performance and efficiency.

2.3. Reset

Figure 2.5 shows the high-level block diagram of the resets for the SEDC Controller IP. There are two reset types
namely asynchronous reset (arst_i) and synchronous halt (halt_i). Both resets can be driven by user logic outside of the
IP, GPIO, or other primitives.

SEDC Controller IP

Fabric Config
SEDC LMMI Host
halt_i (e
SEDC State l I SEDCA Hard
Machine Block
SEDC
Output Capture
>
halt_i

User Logic
or
GPIO
or
Primitive

Figure 2.5. SEDC Controller IP Resets Block Diagram

For asynchronous reset, you must assert this reset high and wait at least 60 ps after the device is configured and has
entered user mode before releasing it low. Following this, you can proceed to start the SEDC scan operation. For any
subsequent assertions of asynchronous reset, the minimum duration of reset assertion is 84 ns. Asynchronous reset,
when asserted high, resets the LMMI logic of the SEDC hard block and immediately clears all the registers in the SEDC
state machine, SEDC LMMI host, and SEDC output capture modules to 0. The SEDC LMMI host also drives 0 to all its
signals feeding into the SEDC hard block. Note that an inverter is implemented before asynchronous reset is connected
to the LMMIRESET_N port of the SEDC hard block because LMMIRESET_N is an active low signal. If asynchronous reset
is asserted high during an on-going SEDC Controller IP operation, the SEDC state machine immediately returns to the
initialization state. After the initialization state, the SEDC Controller IP only allows you to start a new SEDC scan after
the SEDC hard block is no longer busy.

The halt reset is used to gracefully abort an on-going SEDC Controller IP operation from any state. At the positive clock
edge when halt is high, the SEDC state machine enters the abort state, which immediately causes the SEDC LMMI host
to stop LMMI transactions and/or the SEDC scan. All registers in the SEDC output capture module are reset to 0. At the
immediate positive clock edge after halt is low, the SEDC state machine returns to the initialization state when the
SEDC hard block is no longer busy. The minimum duration of reset assertion for halt is one full clock cycle.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.4. User Interfaces

Table 2.5 lists the available user interfaces of the SEDC Controller IP.

Table 2.5. User Interfaces

User Interface Communication Standard | Description

Clock Digital/Binary A single clock input for the entire IP (clk_i) that can be driven by an
external clock source (through GPIO), PLL, or oscillator. Clocks all soft
logic registers and drives the LMMICLK of the SEDC hard block.

Reset Digital/Binary There are two resets: asynchronous reset (arst_i) and synchronous
halt (halt_i). Both resets can be driven by user logic outside of the IP,
GPIO, or other primitives. Asynchronous reset resets the LMMI logic of
the SEDC hard block and immediately clears all the registers in the
SEDC state machine, SEDC LMMI host, and SEDC output capture
modules to 0. Halt gracefully aborts an on-going SEDC Controller IP
operation from any state.

Control Digital/Binary Input signals (sedc_run_i, continuous_i, auto_correct_i, and
resume_scan_i) to control IP operations such as:
e Continuous mode
. Executes SEDC scans continuously, one after another.
e Error correction and resume scan
e Performs error correction on correctable error.
e Resumes scan upon error detection.
e Configures SEC as either automatic or manual.
. IP handles LMMI communications with the SEDC hard block,
eliminating need for user involvement.

Monitor Digital/Binary Output signals (status_update_o, bit_loc_o, frm_loc_o, rgn_loc_o,
clk_div_o, crc_err_o, sing_err_o, mult_err_o, err_o, sedc_error_o,
sedc_done_o, and sedc_busy_o) to monitor the IP such as:
e Error status and location
e Reports error status and location information. IP retrieves
information from the SEDC hard block through LMMI,
eliminating the need for user involvement.
e Error statuses include 1-bit error (correctable), multi-bit
error (uncorrectable), and CRC error.
. Error locations include bit location, frame location, and
region location.
e Clock divider value
e Reports the clock divider value. IP retrieves information from
the SEDC hard block through LMMI, eliminating the need for
user involvement.
. SEDC scan status
e Reports the status of the current SEDC can (busy or done).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. IP Parameter Description

The configurable attributes of the SEDC Controller IP are shown in the following table. You can configure the IP by
setting the attributes accordingly in the IP Catalog’s Module/IP wizard of the Lattice Radiant software.

Wherever applicable, default values are in bold.

Table 3.1. SEDC Controller IP Attributes

One-Shot Mode,
Port-Driven Dynamic
Mode

Attribute Selectable Values | Description
Configuration
SEDC Mode Continuous Mode, Specifies the SEDC mode and determines whether the SEDC mode is

static (Continuous Mode or One-Shot Mode) or dynamic (Port-Driven
Dynamic Mode, switches between static modes).

When Port-Driven Dynamic Mode is selected, an additional user interface
port continuous_i is exposed.

Error Correction Mode

Auto-Correction
Mode,

No Auto-Correction
Mode,

Port-Driven Dynamic
Mode

Determines whether the error correction mode is automatic (Auto-
Correction Mode), manual (No Auto-Correction Mode), or dynamically
switches between the two (Port-Driven Dynamic Mode).

When No Auto-Correction Mode is selected, an additional user port
interface resume_scan_i is exposed.

When Port-Driven Dynamic Mode is selected, two additional user
interface ports auto_correct_i and resume_scan_i are exposed.

Clock Divider

2-256

Specifies the clock divider value for the SEDC. The mapping of Clock
Divider setting (N) to the hardware value reported in clk_div_ois N—1.
For example, when Clock Divider = 2, the clk_div_o readout is 1.

Disable Triple Modular
Redundancy

Checked, Unchecked

Specifies whether to disable the TMR on all registers (checked). For
highest reliability, Lattice recommends this remain unchecked (TMR
enabled).

Clock Frequency (MHz) 0.0000000—- Specifies the clock frequency for port clk_i. For highest reliability, Lattice
80.0000000 recommends rounding off to a conservative number.
CRAM Error Injection in Simulation

Types of Error Injection

No CRAM Error,
Simulate Correctable
CRAM Error, Simulate
Uncorrectable CRAM
Error, Simulate CRC
CRAM Error

Determines whether to enable the fake error injection capability in
simulation, and if so, the type of error to inject.

CRAM Error Location in Simulation

Bit Error Location

0-1023

Specifies the data shift register (DSR) bit location of the fake error
injected.

Applicable when Types of Error Injection = Simulate Correctable CRAM
Error.

Frame Error Location

0-16383

Specifies the address shift register (ASR) bit location of the fake error
injected.

Applicable when Types of Error Injection = Simulate Correctable CRAM
Error or Simulate Uncorrectable CRAM Error.

Region Error Location

0-31

Specifies the region location of the fake error injected.
Applicable when Types of Error Injection = Simulate Correctable CRAM

Error or Simulate Uncorrectable CRAM Error.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4. Signal Description

This section describes the SEDC Controller IP ports.

4.1. Clock Interface

Table 4.1. Clock Port

Port Type Description
clk_i Input Input clock that drives all soft logic registers and the LMMICLK of the SEDC
hard block.

Clock frequency must not exceed 80 MHz.

4.2. Reset Interface

Table 4.2. Reset Ports

Port Type Description

arst_i Input Asynchronous reset to reset all soft logic registers and the LMMI logic of the
SEDC hard block when asserted high. This signal must be asserted high and
can only be released low 60 ps after the device is configured and has entered
user mode. Subsequent assertions require a minimum reset assertion duration
of 84 ns. The SEDC state machine module proceeds to initialize the SEDC hard
block at the immediate positive clock edge after the de-assertion of this signal.

halt_i Input Reset to abort the entire IP operation from any state when asserted high.

It is synchronous to clk_i. The minimum duration of assertion is one full clock
cycle. The SEDC state machine module returns to the initialization state when
the SEDC hard block is no longer busy. This occurs at the immediate positive
clock edge after de-assertion of this signal.

4.3. Control Interface

Table 4.3. Control Ports

Port Type Description

sedc_run_i Input Signal to start and run the SEDC scan. This signal must remain high until

sedc_busy_o is asserted high. Following this, it can continue to remain high or

be de-asserted any time.

Requirements in each SEDC Mode:

e Continuous Mode — This signal may remain high from one SEDC scan to
the next, as long as you want to run the SEDC scans continuously.

e One-Shot Mode — This signal must be re-asserted high after the assertion
of sedc_done_o to start a new SEDC scan.

e Port-Driven Dynamic Mode — This signal must be re-asserted high after
the assertion of sedc_done_o if continuous_i is low to start a new SEDC
scan. If continuous_i is high from one SEDC scan to the next, this signal
must also remain high to run the SEDC scans continuously.

Requirements in each Error Correction Mode:

e Auto-Correction Mode — This signal can be high or low when an error
occurs because it does not impact error correction and/or resumption of
the current SEDC scan.

e No Auto-Correction Mode — This signal must be re-asserted or remain
high together with the assertion of resume_scan_i when an error occurs
to perform error correction and/or resume the current SEDC scan.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Port Type Description
e Port-Driven Dynamic Mode — This signal must be re-asserted or remain
high together with the assertion of resume_scan_i if auto_correct_i is low
when an error occurs to perform error correction and/or resume the
current SEDC scan. If auto_correct_i is high when an error occurs, this
signal can be high or low because it does not impact error correction
and/or resumption of the current SEDC scan.
continuous_i Input Signal to run the SEDC scan continuously.
1 - Continuous mode
0 —One-shot mode
This signal must remain high together with sedc_run_i from one SEDC scan to
the next to run the SEDC scans continuously.
Exposure of this signal depends on the configuration of SEDC Mode:
e Continuous Mode — This signal is tied off to 1’b1 internally and not
exposed as a user interface port.
e One-Shot Mode — This signal is tied off to 1’b0 internally and not exposed
as a user interface port.
e Port-Driven Dynamic Mode — This signal is exposed as a user interface
port.
auto_correct_i Input Signal to perform automatic error correction and/or resume the SEDC scan
when an error occurs.
1 — Auto-Correction Mode is ON
0 — Auto-Correction Mode is OFF
This signal must remain high throughout the SEDC scan (if one-shot) or
consecutive SEDC scans (if continuous) to ensure smooth automatic error
correction and/or resumption of the SEDC scan when an error occurs, while
also providing the benefit of minimal latency.
Exposure of this signal depends on the configuration of Error Correction Mode:
e Auto-Correction Mode — This signal is tied off to 1’b1 internally and not
exposed as a user interface port.
e No Auto-Correction Mode — This signal is tied off to 1’b0 internally and
not exposed as a user interface port.
e Port-Driven Dynamic Mode — This signal is exposed as a user interface
port.
resume_scan_i Input Signal to perform error correction and/or resume the SEDC scan manually

when a 1-bit error occurs.

If Auto-Correction Mode is OFF, whenever 1-bit error is detected, this signal

must be asserted/remain high together with sedc_run_i after the assertion of

status_update_o.

Exposure of this signal depends on the configuration of Error Correction Mode:

e Auto-Correction Mode — This signal is tied off to 1’b0 internally and not
exposed as a user interface port.

e No Auto-Correction Mode — This signal is exposed as a user interface
port.

e Port-Driven Dynamic Mode — This signal is exposed as a user interface
port.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

4.4. Monitor Interface

Table 4.4. Monitor Ports

= LATTICE

Port Type Description
status_update_o Output Signal to indicate that the status and configuration register outputs are ready
to be read, which includes crc_err_o, mult_err_o, sing_err_o, err_o, bit_loc_o,
frm_loc_o, and rgn_loc_o.
This signal is asserted high momentarily for one clock cycle only. Consume the
error statuses and locations immediately when status_update_o is asserted
high. Otherwise, the error statuses and locations may become outdated or
invalid.
bit_loc_0[9:0] Output Signal to indicate the DSR bit location of the last 1-bit error.
frm_loc_o[13:0] Output Signal to indicate the ASR frame location of the last 1-bit/multi-bit error.
rgn_loc_o[4:0] Output Signal to indicate the region location of the last 1-bit/multi-bit error.
clk_div_o[7:0] Output Signal to indicate the clock divider value.
crc_err_o Output Signal to indicate the occurrence of a CRC error.
Asserted high when CRC error occurs.
mult_err_o Output Signal to indicate the occurrence of a multi-bit error.
Asserted high when multi-bit error occurs.
sing_err_o Output Signal to indicate the occurrence of a 1-bit error.
Asserted high when 1-bit error occurs.
err_o Output Signal to indicate the occurrence of an error.
Asserted high when an error occurs.
sedc_error_o Output Signal to indicate whether SEDC has detected an error.
Asserted high when an error occurs.
sedc_done_o Output Signal to indicate whether the SEDC scan has finished.
This signal is asserted high momentarily for one clock cycle only.
sedc_busy_o Output Signal to indicate whether the SEDC scan is running.

1 - SEDC scan is running.
0-SEDC canis idle.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5. Designing with the IP

This section provides information on how to generate the IP Core using the Lattice Radiant software and how to run
simulation and synthesis. For more details on the Lattice Radiant software, refer to the Lattice Radiant Software User
Guide.

5.1. Generating and Instantiating the IP

You can use the Lattice Radiant software to generate IP modules and integrate them into the device architecture. The
steps below describe how to generate the SEDC Controller IP in the Lattice Radiant software.

To generate the SEDC Controller IP:

1. Create a new Lattice Radiant software project or open an existing project.

2. Inthe IP Catalog tab, double-click SEDC Controller under IP on Local > Architecture_Modules category. The
Module/IP Block Wizard opens as shown in Figure 5.1. Enter values in the Component name and the Create in
fields and click Next.

=]

Generate Component from Module sedc_controller Version 1.0.0
This wizard will guide you through the configuration, generation and instantiation of this Module/IP. Enter
the following information to get started.

Component name: | sedc_controller_demo

Create in: C:/Radiant_Projects/sedc_controller_1 Browse...

Mext > Cancel

Figure 5.1. Module/IP Block Wizard
3. In the next Module/IP Block Wizard window, customize the selected SEDC Controller IP using drop-down lists and

check boxes. Figure 5.2 shows an example configuration of the SEDC Controller IP. For details on the configuration
options, refer to the IP Parameter Description section.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SEDC Controller IP
User Guide

LATTICE

|2 Module/IP Blo

‘Configure Component from Module sedc_controller Version 1.0.0
Set the follawing parameters to configure this component.

Diagram sedc_contraller_demo Configure sedc_controller_dema:

Property
sedc_controller_demo
~ Configuration
bit_loc_o[9:0]m= SEDC Mode
clk_div_o[7:0)m= Error Correction Mode
cre_err o— Clock Divider [2 - 256]
Disable Triple Modular Redundancy
err_of—
~ CRAM Error Injection in Simulation
—jarst frm_loc_o[13:0]m= Types of Error Injection
—clk_i mult_err_of— ~ CRAM Error Location in Simulation
—halt_i rgn_loc_o[4:0]m=
—{sedc_run_i sedc_busy_of—
sedc_done_oj—
sedc_error_oj—
sing_err_of—
status_update_of—
sedc_controller
4 »
User Guide Mo DRC issues are found.

Value

Continuous Mode
Auto-Correction Mode

2

Mo CRAM Error

< Back Generate Cancel

Figure 5.2. IP Configuration

4.
shown in Figure 5.3.

J Mo

Check Generated Result

design,

Check the generated component results in the panel below. Uncheck option 'Insert to project’ if you do not want to add this component to your

Companent 'sedc_controller_ demo' is successfully generated,
Module: sedc_controller Version: 1.0.0

Vendor: latticesemi.com

Language: Verilog

Generated files:

IP-XACT_component: componentxm|
IP-XACT_design: design.xml

black_box_verilog: rtl/sedc_controller_demo_bb.sv
cfg: sedc_controller_demo.cfg

IP package file: sedc_controller_demo.ipx

template verilog: misc/sedc_controller dema_tmpl.sv
dependency_file: testbench/dut_inst.y
dependency_file: testbench/dut_params.v
timing_constraints: constraints/sedc_controller_demo.ldc
template_vhdl: misc/sedc_controller_demo_tmplvhd
top_level_system_verilog: rtl/sedc_controller_dema.sv

Insert to project

<Back | Finish

Click Generate. The Check Generated Result dialog box opens, showing design block messages and results as

Figure 5.3. Check Generated Result

5.
fields shown in Figure 5.1.

Click Finish. All the generated files are placed under the directory paths in the Create in and the Component name

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02290-1.1

23

http://www.latticesemi.com/legal

= LATTICE

5.1.1. Generated Files and File Structure

The generated SEDC Controller IP package includes the closed-box (<Component name>_bb.sv) and instance templates
(<Component name>_tmpl.sv/vhd) that can be used to instantiate the core in a top-level design. An example RTL
top-level reference source file (<Component name>.sv) that can be used as an instantiation template for the module is
also provided. You may also use this example as the starting template for your top-level design. The generated files are
listed in Table 5.1.

Table 5.1. Generated File List

Attribute Description

<Component name>.ipx This file contains the information on the files associated to the generated IP.
<Component name>.cfg This file contains the parameter values used in IP configuration.
component.xml Contains the ipxact: component information of the IP.

design.xml Documents the configuration parameters of the IP in IP-XACT 2014 format.
rtl/<Component name>.sv This file provides an example RTL top file that instantiates the module.
rtl/<Component name>_bb.v This file provides the synthesis closed-box.

misc/<Component name>_tmpl.sv These files provide instance templates for the module.

misc /<Component name>_tmpl.vhd

5.2. Design Implementation

Completing your design includes additional steps to specify analog properties, pin assignments, and timing and physical
constraints. You can add and edit the constraints using the Device Constraint Editor or by manually creating a PDC file.

Post-synthesis design constraint files (.pdc) contain both timing and non-timing constraint.pdc source files for storing
logical timing/physical constraints. Constraints that are added using the Device Constraint Editor are saved to the
active .pdc file. The active post-synthesis design constraint file is then used as input for post-synthesis processes.

Refer to the relevant sections in the Lattice Radiant Software User Guide for more information on how to create or edit
constraints and how to use the Device Constraint Editor.

5.3. Specifying the Strategy

The Radiant software provides two predefined strategies: Area and Timing. It also enables you to create customized
strategies. For details on how to create a new strategy, refer to the Strategies section of the Lattice Radiant Software
user guide.

5.4. Running Functional Simulation
You can run functional simulation after the IP is generated.

To run functional simulation:

1. Click the @ button located on the Toolbar to initiate the Simulation Wizard shown in Figure 5.4.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SEDC Controller IP
User Guide

= LATTICE

Simulation Wizard

Simulator Project Name and Stage

Enter name and directory for your simulation project. Choose simulator and the process
stage you wish to simulate, Available stages are automatically displayed.

Project

Project name: sedc_controller_demo

Project location: | C:/Radiant_Projects/sedc_controller_1 Browsze...

Simulator
@ QuestaSim

CuestaSim Qrun
Irvoke

Process Stage
@ RTL

Post-Synthesis
Post-Route Gate-Level
Post-Route Gate-Level+Timing

< Back Mext = Cancel

Figure 5.4. Simulation Wizard

2. Click Next to open the Add and Reorder Source window as shown in Figure 5.5.

3.

Simulation Wizard

Add and Reorder Source
Add HDL type source files and place test bench files under the design files.

Source Files: o La T

4 03
C:/Radiant_Projects/sedc_contraller_1/sedc_controller_dema/rtl/sedc_controller_demo.sv
C:/Radiant_Projects/sedc_contraller_1/sedc_controller_demo/testbench/sedc_controller_clk_gen.sv
C:/Radiant_Projects/sedc_cantroller_1/sedc_contraller_demo/testbench/sedc_controller_input_stimulus_gen.sv
C:/Radiant_Projects/sedc_cantroller_1/sedc_controller_demo/testbench/sedc_controller_output_monitor.sv
C:/Radiant_Projects/sedc_controller_1/sedc_controller_demo/testbench/sedc_controller_state_machine.sv

C:/Radiant_Projects/sedc_contraller_1/sedc_controller_demo/testbench/th_top.sv

Automatically set simulation compilation file order.

Uncheck this if you want to follow the file order from "Input Files" on File List.

< Back Next = Cancel

Figure 5.5. Add and Reorder Source

Click Next. The Parse HDL files for simulation window opens as shown in Figure 5.6.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02290-1.1

25

http://www.latticesemi.com/legal

SEDC Controller IP
User Guide

= LATTICE

4. Click Next. The Summary window opens as shown in Figure 5.7. Change the time of Default Run as shown to run

Simulation Wizard

Parse HDL files for simulation
Parse HDL files for simulation.

Simulation top parsing finished.

-- Analyzing VHDL file Ci/lscc/radiant/2025.1.0.133.0_2/cae_library/synthesis/vhdl/lav-atuvhd -
-- Analyzing Verilog file 'C:/Radiant_Projects/sedc_controller_1/sedc_controller_demo/ril/
sedc_controller_demo.sv' (VERI-1482)

-- Analyzing Verilog file 'C:/Radiant_Projects/sedc_controller_1/sedc_controller_demo/testbench/
sedc_controller_clk_gen.sv' (VERI-1482)

-- Analyzing Verilog file 'C:/Radiant_Projects/sedc_controller_1/sedc_controller_demo/testbench/
sedc_controller_input_stimulus_gen.sv' (VERI-1482)

-- Analyzing Verilog file 'C:/Radiant_Projects/sedc_controller_1/sedc_controller_demo/testbench/
sedc_controller_output_monitor.sv' (VERI-1482)

-- Analyzing Verilog file 'C:/Radiant_Projects/sedc_controller_1/sedc_controller_demo/testbench/
sedc_controller_state_machine.sv' (VERI-1482)

-- Analyzing Verilog file 'C:/Radiant_Projects/sedc_controller_1/sedc_controller_demo/testbench/th_top.sv'
(VERI-1482)

Hdl files parsing messages are saved at: C:/Radiant_Projects/sedc_controller_1/sedc_controller_dema/

hdlparser.log -
Simulation Top Module: | th_top -
< Back MNext = Cancel

Figure 5.6. Parse HDL files for Simulation

the full simulation.

5. Click Finish to run the simulation. The waveform in Figure 5.8 shows an example simulation result.

2] Simulation Wizard

Summary

Simulater : QuestaSim Qrun

Project Name : sedc_controller_demo

Project Location : C:/Radiant_Projects/sedc_controller_1

Simulation Stage : RTL

Simulation Files :
C:/Radiant_Projects/sedc_controller_1/sedc_controller_demo/rtl/sedc_controller_demo.sv
C:/Radiant_Projects/sedc_controller_1/sedc_controller_demo/testbench/sedc_controller_clk_gen.sv

C:/Radiant_Projects/sedc_contreller_1/sedc_controller_demo/testbench/sedc_controller_input_stim

D adinmdt Nemimetrfrmdr mmembemllne 1 lrnde cmebenllme Adomn e fbmetlnme el femcl e cmmbemlme modbeme b -v-!’v
4
Launch Simulator GUI
Design Optimization - Full Debug Add top-level signals to waveform display
E Run simulation
Default Run 0 |ns *| (0 means 'run -all’)
Simulator Resclution | default
< Back Finish Cancel

Figure 5.7. Summary

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02290-1.1

26

http://www.latticesemi.com/legal

= LATTICE

e - Defit

e

He-gd & @B
Jeo B s

R

R

95 o 0515323

100 ps-4| [l (¥ 4 9 Bt L-B-L2-9-99-9

Figure 5.8. Simulation Waveform

5.4.1. Simulation Results

The testbench embedded with the SEDC Controller IP undergoes multiple stimulus patterns to exercise different
scenarios, depending on the configured attributes, until the simulation is successfully completed. The Transcript
window displays this information as shown in Figure 5.9.

] Transcript
¢ run -all
&
[+ 3000 ps: Current State = reset
83000 ps: Current State = run_sede_with_run_always_high

= run_sedc_with_run_always_high_and_tmr_err_inj

= run_sedc_continuously with halt

= run_sedc with run_always high

= run_sedc_with_run_always_high_and_tmr_err_inj

= run_ssdc_with run_always high

= run_sedc with run always high and tmr err_inj

=
[+

#

2

#

[# 12223000 ps: Current State

¢

#

[+ 24373000 ps: Current State

#

=

[¢ 27642000 ps: Current State = stop all signals
#

2

[+ 28153000 ps: Current State

2

2

+ 34162000 ps: Current State = stop_all signals
=

[+

[+ 34673000 ps: Current State

2

#

40688000 ps: Current State = stop_all signals
[+

#

[+ 41193000 ps: Current State

#

=

[+ 47202000 ps: Current State

#

2

[+ 53283000 ps: Current State = end

=

2

A% Note:
Time:

o

[vSIM 6

$finish

: C:/Radiant_Projects/ssdc_contr
53282510 ps Iteration: 3 Instance

oller 1/sedc controller demo/testbench/sedc controller GUCPUT monitor.sv(1437
ftb_top/sedc_controller_output_monitor_inst

Figure 5.9. Simulation Completion Log

Some example simulation waveforms are provided and explained in Appendix B. The walkthrough of these simulation
waveforms, along with the explanations in the Limitations of the SEDC Hard Block Simulation Model, Testbench Files
and Structure, and Input Stimulus Patterns sections, should facilitate your understanding when you simulate for other
IP configurations with the embedded testbench.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.4.2. Limitations of the SEDC Hard Block Simulation Model

The simulation model of the SEDC hard block is a simplified representation and does not reflect the actual hardware. It
is designed to provide a functional demonstration with the following limitations:

Behaviors are transactionally accurate instead of cycle accurate.

1-bit error and multi-bit error injections are mutually exclusive, whereas actual hardware can experience both
error types in the same or different SEDC scans.
A 1-bit error is reported in the first and all subsequent SEDC scans, but actual hardware corrects the error and does
not report the error again in subsequent scans unless another 1-bit error occurs in the same error location.

There is no capability to inject multiple 1-bit errors or multi-bit errors, whereas actual hardware can experience
this scenario in the same or different SEDC scans.

5.4.3. Testbench Files and Structure

The SEDC Controller IP comes with a testbench to demonstrate how to drive the input signals of the IP, observe the IP
responses, and view the output signals. The testbench generates the appropriate input stimulus to the DUT depending
on the configured attributes as described in the IP Parameter Description section. You may use this testbench as a
reference to evaluate how to build your design around the functionality of the SEDC Controller IP. The testbench
components and their respective files are described in Table 5.2, and the testbench structure is illustrated in

Figure 5.10.
Table 5.2. Testbench Components and File List
Component File Description
Testbench Top tb_top.sv The top-level testbench module that integrates all other

components and coordinates the simulation.

Clock Generator

sedc_controller_clk_gen.sv

Generates the clock signal required for the SEDC Controller IP
operation.

Input Stimulus
Generator

sedc_controller_input_stimulus_gen.sv

Generates the input stimulus signals based on the configured
attributes to test the SEDC Controller IP.

Stimulus State
Machine

sedc_controller_stimulus_state_machine.sv

Implements the state machine that controls the sequence of
input stimuli to exercise different scenarios.

Output Monitor

sedc_controller_output_monitor.sv

Monitors and captures the output signals from the SEDC
Controller IP for verification purposes.

DUT

<Component name>.sv

The DUT, which is the SEDC Controller IP itself, generated by
the IP generation process described in the Generating and
Instantiating the IP section, allowing you to verify its
functionality and performance.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Clock Generator
(sedc_controller_clk_gen)

clk_gen_o

>

Input Stimulus Generator
(sedc_controller_input_stimulus_gen)

clk_gen_i ck_o

arst_o
halt_o

sedc_run_o
continuous_o
auto_correct_o

resume_scan_o

sedc_busy_i
sedc_done_i
sedc_error_i

status_update_i

tb_interface

Testbench Top (tb_top)

i clk_i

¥ arst_i

halt_i

» sedc_run_i

¥ continuous_i

| auto_correct_i

» resume_scan_i

SEDC Controller IP
(Iscc_sedc_controller)

cre_err_o
mult_err_o
sing_err_o

err_o

bit_loc_o[9:0]
frm_loc_o[13:0]
rgn_loc_o[4:0]
clk_div_o[7:0]

sedc_busy_o
sedc_done_o

sedc_error_o

status_update_o

4

4

4

L

Stimulus State Machine
(sedc_controller_stimulus_state_machine)
clk_gen_i tb_interface
sim_done_o
state_done_i

Output Monitor
(sedc_controller_output_monitor)

cre_err_i
mult_err_i
sing_err_i

err_i

bit_loc_i[9:0]
frm_loc_i[13:0]
rgn_loc_i[4:0]
clk_div_i[7:0]

sedc_busy_i
sedc_done_i

sedc_error_i

status_update_i

clk_i

arst_i
halt_i

sedc_run_i
continuous_i
auto_correct_i

resume_scan_i

tb_interface
sim_done_i
state_done_o

Figure 5.10. Testbench Structure

www.latticesemi.com/legal

== LATTICE

http://www.latticesemi.com/legal

= LATTICE

5.4.4. Input Stimulus Patterns

The input stimulus generator of the testbench consists of different input stimulus patterns as described in Table 5.3.
You may add the signal path tb_top/tb_interface/cur_state_str to the wave GUI in QuestaSim to monitor the current
stimulus state string of the interface.

Table 5.3. Input Stimulus Description

Input Stimulus Pattern Name?-2

Description

reset

Asserts the asynchronous reset signal (arst_i) high.
Demonstrates the ability to handle asynchronous reset and ensures all internal states and
outputs are properly initialized to their default values.

run_sedc_with_run_always_high

Drives the sedc_run_i signal high.
Demonstrates continuous operation of the SEDC scan without interruptions.

run_sedc_with_run_always_high_

and_tmr_err_inj

Drives the sedc_run_i signal high and injects TMR errors.
Demonstrates the ability to handle errors on TMR registers.

run_sedc_continuously_with_halt

Drives the sedc_run_i signal high and asserts the halt_i signal during busy cycles
(sedc_busy_o is high).
Demonstrates the ability to handle halts during continuous operation.

run_sedc_with_run_always_high_

and_manual_resume

Drives the sedc_run_i signal high and asserts the resume_scan_i signal after
status_update_o is high.

Demonstrates the ability to perform manual error correction/resume scan when an error
occurs.

run_sedc_with_run_always_high_

manual_resume_and_tmr_err_inj

Drives the sedc_run_i signal high and asserts the resume_scan_i signal after
status_update_o is high, with TMR error injection.

Demonstrates the ability to handle errors on TMR registers and perform manual error
correction/resume scan.

run_sedc_with_run_always_high_

and_auto_cor

Drives the sedc_run_i signal high and asserts the auto_correct_i signal.
Demonstrates the ability to automatically correct errors during operation.

run_sedc_with_run_always_high_

auto_cor_and_tmr_err_inj

Drives the sedc_run_i signal high and asserts the auto_correct_i signal, with TMR error
injection.

Demonstrates the ability to handle errors on TMR registers and automatically correct errors
during operation.

run_sedc_one_shot_with_halt

Drives the sedc_run_i signal high in one-shot mode and asserts the halt_i signal during busy
cycles (sedc_busy_o is high).
Demonstrates the ability to handle halts during one-shot operation.

run_sedc_one_shot

Drives the sedc_run_i signal high in one-shot mode.
Demonstrates the SEDC one scan cycle operation.

run_sedc_one_shot_and_tmr_err
_inj

Drives the sedc_run_i signal high in one-shot mode and injects TMR errors.
Demonstrates the ability to handle errors on TMR registers during one-shot operation.

run_sedc_one_shot_with_manual
_resume

Drives the sedc_run_i signal high in one-shot mode and asserts the resume_scan_i signal
after status_update_o is high.

Demonstrates the ability to perform manual error correction/resume scan during one-shot
operation.

run_sedc_one_shot_with_auto_
cor

Drives the sedc_run_i signal high in one-shot mode and asserts the auto_correct_i signal.
Demonstrates the ability to automatically correct errors during one-shot operation.

run_sedc_one_shot_with_auto_
cor_and_tmr_err_inj

Drives the sedc_run_i signal high in one-shot mode and asserts the auto_correct_i signal,
with TMR error injection.

Demonstrates the ability to handle errors on TMR registers and automatically correct errors
during one-shot operation.

run_sedc_one_shot_with_manual
_resume_and_tmr_err_inj

Drives the sedc_run_i signal high in one-shot mode and asserts the resume_scan_i signal
after status_update_o is high, with TMR error injection.

Demonstrates the ability to handle errors on TMR registers and perform manual error
correction/resume scan during one-shot operation.

run_sedc_continuously

Drives the sedc_run_i signal high continuously.
Demonstrates continuous operation without interruptions.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Input Stimulus Pattern Name.2

Description

run_sedc_continuously_and_tmr_
err_inj

Drives the sedc_run_i signal high continuously and injects TMR errors.
Demonstrates the ability to handle errors on TMR registers during continuous operation.

run_sedc_continuously_with_
manual_resume

Drives the sedc_run_i signal high continuously and asserts the resume_scan_i signal after
status_update_o is high.

Demonstrates the ability to perform manual error correction/resume scan during
continuous operation.

run_sedc_continuously_with_
manual_resume_and_tmr_err_inj

Drives the sedc_run_i signal high continuously and asserts the resume_scan_i signal after
status_update_o is high, with TMR error injection.

Demonstrates the ability to handle errors on TMR registers and perform manual error
correction/resume scan during continuous operation.

run_sedc_continuously_with_auto
_cor

Drives the sedc_run_i signal high continuously and asserts the auto_correct_i signal.
Demonstrates the ability to automatically correct errors during continuous operation.

run_sedc_continuously_with_auto
_cor_and_tmr_err_inj

Drives the sedc_run_i signal high continuously and asserts the auto_correct_i signal, with
TMR error injection.

Demonstrates the ability to handle errors on TMR registers and automatically correct errors
during continuous operation.

stop_all_signals

De-asserts all input signals.
Demonstrates the ability to stop all signals and ensure the DUT is in a known idle state.

default_state

Default state with no actions.

end

End state that indicates the end of the simulation.

Notes:

1.

If Disable Triple Modular Redundancy = Checked in the IP Catalog’s Module/IP wizard, *_tmr_err_inj input stimulus patterns will

not inject TMR errors.

TMR error injection by *_tmr_err_inj input stimulus patterns is guarded with ifdef macros by default because the injection
involves hierarchical references that only work for RTL simulation. Refer to the example in Appendix C on how to add
+define+LSCC_SEDC_CONTROLLER_RTL_SIM in the *.f file generated by the Simulation Wizard if you want to observe the
behavior. This must only be applied when you have selected RTL under Process Stage in the Simulation Wizard as shown in
Figure 5.4. You must recompile the simulation files for this directive to take effect.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6. Debugging

You may use the Reveal Inserter and Reveal Analyzer tools contained in the Radiant software for design debugging.
Reveal continuously monitors signals within the FPGA for specific conditions, which can range from simple to complex.
When the trigger condition occurs, Reveal can save signal values preceding, during, and following the event for
analysis, including a waveform presentation. The data can be saved to a value change dump file (.vcd), which can be
used with tools such as QuestaSim, or to an ASCIl tabular format that can be used with tools such as Excel.

Before running the Reveal Analyzer, use the Reveal Inserter to add Reveal modules to your design. In these modules,
specify the signals to monitor, define the trigger conditions, and other options. Reveal supports multiple logic analyzer
cores using a hard or soft JTAG interface. You can have up to 15 modules, typically one for each clock region of interest.
When the modules are set up, regenerate the bitstream data file to program the FPGA.

For more information, refer to the Reveal User Guide for Radiant Software.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

7. Design Considerations

7.1. Asynchronous Reset (arst_i) Timing Requirements

To ensure the SEDC Controller IP is properly initialized, it is compulsory that you assert the asynchronous reset signal
(arst_i) high for at least 60 us after the device is configured and has entered user mode. Once this occurs, you can
de-assert the asynchronous reset signal low and start the SEDC scan operation. For any subsequent assertion of the
asynchronous reset signal, the minimum duration of assertion is 84 ns.

An example Verilog/SystemVerilog code to implement the 60 us and 84 ns requirements is shown in Appendix D.

7.2. Assert and Hold auto_correct_i High throughout a Complete SEDC Scan

To ensure the proper functioning of automatic error correction and scan resumption in the SEDC Controller IP during a
complete scan, it is crucial that you assert and hold the auto_correct_i signal high. This action enables the automatic
correction and resume scan mechanism in the SEDC Controller IP, ensuring that detected 1-bit correctable errors are
promptly corrected (uncorrectable errors are not corrected) during the scan process thereby allowing the scan to
resume.

This step is only required if you want to perform automatic error correction for the entire scan. If you do not want to
enable automatic error correction for the next scan, you can de-assert the auto_correct_i signal. It is important to note
that this functionality is only applicable if you set the Error Correction Mode to Port-Driven Dynamic Mode as described
in the IP Parameter Description section. For other settings, this port is tied off internally and not exposed.

Additionally, the auto_correct_i signal must be held high when you drive the sedc_run_i signal high and remain high
until the sedc_done_o signal from the IP asserts high, indicating the completion of the scan. Although the flowchart in
Figure 2.3 illustrates that the SEDC Controller IP only monitors these signals at the appropriate states (which you have
no visibility of at the top-level ports), it is essential that you manage the auto_correct_i and sedc_run_i signals based
on the state of sedc_done_o to ensure proper operation.

7.3. Assert and Hold continuous_i High throughout Consecutive SEDC Scans

To ensure seamless operation during consecutive SEDC scans, it is crucial that you assert and hold the continuous_i
signal high. This action enables continuous mode in the SEDC Controller IP, allowing it to perform back-to-back scans
without interruption.

Additionally, the sedc_run_i signal must be held high to initiate and maintain the scanning process. The scan is
considered complete when the sedc_done_o signal asserts high, indicating the end of the current scan. If you want to
stop the continuous scanning process starting from a particular scan, you can de-assert the continuous_i signal. It is
important to note that this functionality is only applicable if you set the SEDC Mode to Port-Driven Dynamic Mode as
described in the IP Parameter Description section. For other settings, this port is tied off internally and not exposed.

Although the flowchart in Figure 2.3 illustrates that the SEDC Controller IP only monitors these signals at the
appropriate states (which you have no visibility of at the top-level ports), it is essential that you manage the
continuous_i and sedc_run_i signals based on the state of sedc_done_o to ensure proper operation.

7.4. Process Error Information Only when status_update_o Asserts

While error information might be available earlier than the status_update_o signal, depending on the internal state
machine states of the SEDC Controller IP, it is not advisable for you to consume this information until status_update_o
asserts. This signal indicates that the SEDC Controller IP has updated the status and configuration register outputs,
making them ready for consumption. The outputs include crc_err_o, mult_err_o, sing_err_o, err_o, bit_loc_o,
frm_loc_o, and rgn_loc_o.

Additionally, you must consume the error information immediately when status_update_o asserts high. Otherwise, the
error information may become outdated or invalid. This includes scenarios where subsequent errors occur within the

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

same SEDC scan and status_update_o asserts high again, or the error information is cleared at the end of the SEDC
scan.

By waiting for the assertion of the status_update_o signal, you ensure that you are processing the most accurate and
up-to-date error information. Consuming the error information prematurely, before the status_update_o signal
asserts, or not consuming the error information promptly when status_update_o asserts, can lead to incorrect error
handling and potentially unreliable system behavior.

7.5. Availability of Clock Divider Value after Initialization

The clk_div_o signal, which indicates the clock divider value, is available immediately following the initialization of the
SEDC Controller IP. Unlike error-related signals, the status_update_o signal does not assert when clk_div_o is updated.
You do not have to wait until a scan is complete to read this value.

7.6. Add Debouncer on Signal Driven by Mechanical Switch/Button

When dealing with signals driven by mechanical switches or buttons, it is essential that you add a debouncer to filter
out noise and ensure a clean signal. Mechanical switches often produce spurious signals due to contact bounce, which
can cause multiple transitions and lead to erroneous behavior in digital circuits.

A debouncer can be implemented using a shift register, as shown in the example Verilog/SystemVerilog code in
Appendix E. This ensures that the signal is stable and reliable, preventing unintended multiple transitions and
improving the overall performance of the SEDC Controller IP.

7.7. Implement Reset Synchronizer for Asynchronous Reset Signal

To ensure reliable operation of the asynchronous reset signal (arst_i) within the single clock domain of the SEDC
Controller IP, it is essential that you implement a reset synchronizer. This helps to avoid metastability issues and
ensures that the reset signal is properly synchronized with the clock.

A typical reset synchronizer can be implemented using a series of flip-flops as shown in the example
Verilog/SystemVerilog code in Appendix F. By implementing a reset synchronizer, you can mitigate the risks associated
with the asynchronous reset signal and improve the overall reliability of the SEDC Controller IP.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SEDC Controller IP :I.LATTICE

User Guide

8. Known Issues

8.1. Incorrect Clock Divider Value in Simulation

When simulating the SEDC Controller IP, the clock divider value is always incorrectly reported as 0 on the output port
clk_div_o. This issue occurs regardless of the functional simulation type namely RTL, Post-Synthesis, Post-Route
Gate-Level, or Post-Route Gate-Level+Timing. This is a known issue in the Lattice Radiant software 2025.1 and will be
fixed in a future Lattice Radiant software release.

8.2. SEDC Unable to Detect Errors After 1-bit or 2-bit SEI Bitstream Injection

The SEDC hard block fails to detect errors in random 1-bit or 2-bit SEI bitstreams generated using the Radiant SEl tool,
after these bitstreams are injected into the device. This issue is not specific to any particular block, bit, or frame
location. It is a known issue in the Lattice Radiant software 2025.1 and will be fixed in a future Lattice Radiant software
release.

As a workaround, generate additional 1-bit and 2-bit SEI bitstreams targeting different blocks. Aim for eight different
combinations of 1-bit and 2-bit SEI bitstreams, an example as shown in Figure 8.1. With more SEI bitstreams, the
probability of detecting 1-bit or 2-bit SEDC errors increases when testing on hardware.

il
Enable D SEl File Name Bit Method Block Site Frame Bit In Frame
1 0 impl_1_sei_0 1 Bit Unused PFU R67C80B data frame 3120 | bit 824
2 1 impl_1_sei_1 1 Bit Unused DsP data frame 2519 | bit 800
3 3| 2 impl_1_sei_2 1Bit Unused ANY R29C79F data frame 3269 | bit 364
4 H=E 3 impl_1_sei_3 1Bit Random Routing N/A data frame 1362 | bit 898
) . . D 176 | data frame 3247 | bit

5 4 impl_1_sei_4 2 Bit Unused PFU,DSP R data frame 3247 | bit

-) . . R43C81F data frame 3009 | bit
6 impl_1_sei_5 2 Bit Unused PFU,PFU RAACSIA data frame 3009 | bit

_)) . D a frame 1949 | bit 1
7 HE 6 impl_1_sei_6 2 Bit Unused DSP,DSP o frame 1949 | bit 1

7 i Unclassifie /A data frame 1020 | bit 27
I | impl_1_sei_7 2 Bit Random Unclassified N/A data frame 1020 | bit 12

Figure 8.1. Combination of 1-bit and 2-bit SEI Bitstreams

8.3. Error Bit and Region Location Mismatch Between Hardware and Radiant SEI
Bitstream Profile

The following mismatches are observed in error location reporting:

e Error bit mismatch: This issue randomly occurs in 1-bit SEI bitstreams generated by the Radiant SEl tool. It is not
specific to any bit or frame location.

e Error region mismatch: This issue affects all SEl bitstreams generated by the Radiant SEI tool.

As an example, a 1-bit SEI bitstream profile is generated using the Radiant SEI tool for the Avant-X device (LAV-AT-X70-
1LFG1156C). The 1-bit error is injected at bit 824 in frame number 3120 located at site R67C80B.

-

Enable ID SEI File Name Bit Method Block Site Frame Bit In Frame

1 impl_1_sei_0 1 Bit Unused PFU R67C808 jata frame 3120 | bit

Figure 8.2. Example of 1-bit SEI Bitstream

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02290-1.1 35

http://www.latticesemi.com/legal

= LATTICE

After injecting the 1-bit SEI bitstream into the Avant-X device, the hardware detects and reports the following error
locations through the SEDC Controller IP as shown in the Reveal analyzer waveform in Figure 8.3.

e Error bit location: 868

e Error frame location: 3120

e Errorregion location: 23

Bus/signal Dawa 0:2024 0:2032 0:2040 0:2048 0:2056 0:2064 02072 0:2080 0:2088 0:2096 0:2104 02112 02120
.
sedc_sip_inst/arst_i 0
sedc_sip_inst/halt_ 0
sedc_sip_inst/sedc_run_i 1
sedc_sip_inst/continuous_i [
sede_sip_inst/auto_correct_i 0
sedc_sip_inst/resume_scan_i 0
sedc_sip_inst/status_update_o 0
sedc_sip_inst/sedc_busy_o 1

sedc_sip_inst/sedc_done_o

sedc_sip_inst/sedc_error_o 1

» sedc_sip_inst/bit_loc_o o
» sede_sip_inst/frm_loc_o 0
» sedc_sip_inst/rgn_loc_o o

sedc_sip_inst/err_o

sedc_sip_inst/sing_err_o 0
sedc_sip_inst/mult_err_o 0
sede_sip_inst/crc_err_o 0

b sadr sin inst/clk div n 1

Figure 8.3. Reveal Analyzer Waveform for 1-bit SEI Bitstream

The hardware testing results show mismatches for the error bit and error region locations when compared to the 1-bit
SEI bitstream profile. This is a known issue in the Lattice Radiant software 2025.1 and will be fixed in a future Lattice
Radiant software release.

As there is currently no workaround for this issue, you can ignore the error locations reported by the SEDC Controller
IP.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Appendix A. Resource Utilization

Table A.1 shows a sample resource utilization of the SEDC Controller IP v1.0.0 on LAT-AT-X70-1LFG1156C using the Lattice
Radiant software 2025.1 across different IP configurations that impact resource utilization. Note that resource utilization
may vary depending on the version of the SEDC Controller IP and Lattice Radiant software used.

Table A.1. Resource Utilization

IP Configuration Slices LUTs Registers SEDC
SEDC Mode Error Correction Disable Clock
Mode Triple Frequency
Modular (MHz)
Redundancy
Continuous Auto-Correction Unchecked 5.0000000 225/198720 | 350/397440 | 204/397440 | 1/1
Mode Mode
Continuous No Auto-Correction | Unchecked 15.0000000 | 215/198720 | 340/397440 | 201/397440 | 1/1
Mode Mode
Continuous Port-Driven Unchecked 20.0000000 | 193/198720 | 312/397440 | 201/397440 | 1/1
Mode Dynamic Mode
One-Shot Mode | Auto-Correction Unchecked 25.0000000 | 191/198720 | 314/397440 | 201/397440 | 1/1
Mode
One-Shot Mode | No Auto-Correction | Unchecked 30.0000000 | 211/198720 | 338/397440 | 201/397440 | 1/1
Mode
One-Shot Mode | Port-Driven Unchecked 40.0000000 | 208/198720 | 338/397440 | 201/397440 | 1/1
Dynamic Mode
Port-Driven Auto-Correction Unchecked 50.0000000 | 204/198720 | 318/397440 | 201/397440 | 1/1
Dynamic Mode Mode
Port-Driven No Auto-Correction | Unchecked 60.0000000 | 194/198720 | 314/397440 | 201/397440 | 1/1
Dynamic Mode Mode
Port-Driven Port-Driven Unchecked 80.0000000 231/198720 375/397440 | 201/397440 1/1
Dynamic Mode Dynamic Mode
Continuous Auto-Correction Checked 5.0000000 117/198720 | 217/397440 | 41/397440 1/1
Mode Mode
Continuous No Auto-Correction | Checked 15.0000000 | 122/198720 | 235/397440 | 42/397440 1/1
Mode Mode
Continuous Port-Driven Checked 20.0000000 | 122/198720 | 235/397440 | 42/397440 1/1
Mode Dynamic Mode
One-Shot Mode | Auto-Correction Checked 25.0000000 | 127/198720 | 242/397440 | 41/397440 1/1
Mode
One-Shot Mode | No Auto-Correction | Checked 30.0000000 | 129/198720 | 247/397440 | 42/397440 1/1
Mode
One-Shot Mode Port-Driven Checked 40.0000000 133/198720 255/397440 | 42/397440 1/1
Dynamic Mode
Port-Driven Auto-Correction Checked 50.0000000 | 127/198720 | 240/397440 | 41/397440 1/1
Dynamic Mode Mode
Port-Driven No Auto-Correction | Checked 60.0000000 | 126/198720 | 243/397440 | 42/397440 1/1
Dynamic Mode Mode
Port-Driven Port-Driven Checked 80.0000000 122/198720 231/397440 | 42/397440 1/1
Dynamic Mode Dynamic Mode

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Appendix B. Walkthrough of Example Simulation Waveforms

The example simulation waveforms provided and explained in this section are based on LAT-AT-X70-1LFG1156C and the
IP configuration as follows:

e SEDC Mode = Port-Driven Dynamic Mode

e Error Correction Mode = Port-Driven Dynamic Mode

e Types of Error Injection = Simulate Correctable CRAM Error

e BitError Location =124

e fFrame Error Location = 5678

e Region Error Location =9

Trigger SEDC scan in continuous mode

Figure B.1. Asynchronous Reset and Triggering of SEDC Scan in Continuous Mode

Internal soft logic of the IP has queried the SEDC status/
configuration registers through LMMI, and updated the error
status, error locations, and clock divider value accordingly
(assertion of sing_err_o indicating 1-bit correctable error)

22
i

Time taken for 1-bit error to be corrected and current SEDC scan to resume

Figure B.2. 1-bit Error Occurrence and Manual Error Correction/Resume Scan

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Internal soft logic of the IP has queried the SEDC status/
configuration registers through LMMI, and updated the error
status, error locations, and clock divider value accordingly
(assertion of crc_err_o indicating CRC error)

Time taken for current SEDC scan to auto resume

Figure B.3. CRC Error Occurrence and Auto Resume Scan

Time taken between Similar error occurrence/reporting observed
first and second SEDC and handling mechanism in the first scan
scans ' are present in the second scan

Figure B.4. End of First SEDC Scan and Triggering/1-bit Error Occurrence of Second SEDC Scan in Continuous Mode

Trigger third SEDC scan with Similar error occurrence/reporting CRC error occurred near the end of the third
automatic error correction/ observed in previous scans is SEDC scan, in which the SEDC scan resumed
resume present in third scan automatically before finishing

Epee
i

[
(54

St

i

;

Figure B.5. End of Second SEDC Scan and Triggering/Error Occurrences/End of Third SEDC Scan in Continuous and
Automatic Error Correction Modes

www.latticesemi.com/legal

http://www.latticesemi.com/legal

«LATTICE

CRC error occurred near the end of the SEDC scan,
in which the SEDC scan resumed automatically
before finishing

1-bit error occurred and
reported

Figure B.6. Triggering/Error Occurrences/End of SEDC Scan in One-Shot Mode

Assert halt_i high to abort the entire IP operation
(min duration of one full clock cycle)

Figure B.7. Aborting of SEDC Scan

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Appendix C. Example of Including
+define+LSCC_SEDC_CONTROLLER_RTL_SIM in
Generated *.f File

The following code shows an example of how to include the +define+LSCC_SEDC_CONTROLLER_RTL_SIM directive to
simulate the behavior of TMR error injection. In the *.f file generated by the Simulation Wizard, you must add the
directive before the file list (ensure that you include this change only if you have selected RTL under Process Stage in
the Simulation Wizard).

-L work
-reflib pmi work
-reflib lav_atx

+define+LSCC_SEDC CONTROLLER RTL SIM

"C:/Radiant Projects/sedc controller 1/sedc controller demo/rtl/sedc controller demo.sv"
"C:/Radiant Projects/sedc controller 1/sedc controller demo/testbench/sedc controller clk gen
.sv" - B - B - - -
"C:/Radiant Projects/sedc controller 1/sedc controller demo/testbench/sedc controller input s
timulus_genfsv" a a B a B a a
"C:/Radiant Projects/sedc controller 1/sedc controller demo/testbench/sedc controller output
monitor.sv" B B B B a B B
"C:/Radiant Projects/sedc controller 1/sedc controller demo/testbench/sedc controller stimulu
s_state_macﬁine.sv" a a a a B a
"C:/Radiant Projects/sedc controller 1/sedc controller demo/testbench/tb top.sv"

-sv

-optionset VOPTDERUG

+noacc+pmi_ work.*

tnoacc+lav atx.*

-vopt.options
-suppress vopt-7033
—end

-gui
-top tb_ top
-vsim.options
-suppress vsim-7033,vsim-8630,3009,3389
—-end

-do "view wave"

-do "add wave /*"
-do "run -all"

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Appendix D. Example Verilog/SystemVerilog Code on
Asynchronous Reset Timing Requirements

The following code shows an example implementation to meet the asynchronous reset timing requirements in
Verilog/SystemVerilog.

module async reset timing (
input wire clk i, // System clock
input wire arst i, // Asynchronous reset input
output wire arst o // Delayed asynchronous reset output

parameter [34:0] CLK FREQ HZ = 80000000; // Clock frequency in Hz (80 MHz)
parameter [34:0] INITIAL RESET DELAY US = 60; // Initial reset delay in ps (60 ns)
parameter [34:0] MIN RESET ASSERTION NS = 84; // Minimum reset assertion in ns (84 ns)

localparam [34:0] INITIAL RESET DELAY = ((INITIAL RESET DELAY US * CLK FREQ HZ) /
1000000) + 1; // Initial reset delay
localparam [34:0] MIN RESET ASSERTION = ((MIN RESET ASSERTION NS * CLK FREQ HZ) /

1000000000) + 1; // Minimum reset assertion time

// Internal registers
reg [31:0] counter r;

reg initial reset done r;
reg arst r;

// Initialize registers

initial begin
counter r = 32'b0;
initial reset done r = 1'b0;
arst r = 1'bl;

end

// Wire assignment
assign arst o = arst r;

always @ (posedge clk i or posedge arst i) begin
if (arst i) begin
counter r <= 32'b0;
arst r <= 1'bl;
end
else if (!initial reset done r) begin
if (counter r < INITIAL RESET DELAY) begin
counter r <= counter r + 1;
end
else begin
arst r <= 1'b0;
initial reset done r <= 1'bl;
end
end
else begin
if (counter r < MIN RESET ASSERTION) begin
counter r <= counter r + 1;
end
else begin
arst r <= 1'b0;
end
end
end

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SEDC Controller IP == LATTICE

User Guide

endmodule

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02290-1.1 43

http://www.latticesemi.com/legal

= LATTICE

Appendix E. Example Verilog/SystemVerilog Code for
Debouncer

The following code shows an example implementation of a debouncer in Verilog/SystemVerilog.

module debounce (
input wire clock,
input wire IN,
output reg OUT

parameter M = 8;
reg [M:0] shift; // Shift register to wait for stable input

always @ (posedge clock) begin
shift <= {shift, IN}; // Shift register
if (~|shift)
OUT <= 1'b0;
else if (&shift)
OUT <= 1'bl;
else
OUT <= OUT;
end
endmodule

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Appendix F. Example Verilog/SystemVerilog Code for Reset
Synchronizer

The following code shows an example implementation of a reset synchronizer in Verilog/SystemVerilog.

module reset_synchronizer (
input wire arst i, // Asynchronous reset input
input wire clk i, // Clock input
output wire arst o // Synchronized reset output

)i
reg [1:0] sync_ff r; // Synchronizer flip-flops

initial begin
sync_ff r = 2'bll;
end

always @ (posedge clk i or posedge arst i) begin
if (arst i) begin
sync_ff r <= 2'bll; // Set both flip-flops to 1 on asynchronous reset
end else begin
sync ff r <= {sync ff r[0], 1'b0}; // Shift the reset signal through the flip-flops
end
end

assign arst o = sync ff r[1]; // Output the synchronized reset signal

endmodule

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SEDC Controller IP :..LATT’CE

User Guide

References

e SEDC Controller IP Release Notes (FPGA-RN-02081)

e Lattice Avant SED/SEC User Guide (FPGA-TN-02290)

e Avant-E web page

e Avant-G web page

e Avant-X web page

e Lattice Radiant Software web page

e Lattice Solutions IP Cores web page

e Lattice Solutions Reference Designs web page

e Lattice Insights for Lattice Semiconductor training courses and learning plans

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02290-1.1 46

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=54662
https://www.latticesemi.com/view_document?document_id=54078
https://www.latticesemi.com/en/Products/FPGAandCPLD/Avant-E
https://www.latticesemi.com/en/Products/FPGAandCPLD/Avant-G
https://www.latticesemi.com/en/Products/FPGAandCPLD/Avant-X
https://www.latticesemi.com/radiant
https://www.latticesemi.com/solutionsearch?qiptype=6da9534f318a4969a6b5e7dc9081bdba&active=ipcore
https://www.latticesemi.com/solutionsearch?qiptype=3614c818569f4eecb0602ba20a521a41&active=refdesign
https://www.latticesemi-insights.com/

SEDC Controller IP :..LATT’CE

User Guide

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, please refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02290-1.1 47

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

SEDC Controller IP :I.LATT’CE
User Guide

Revision History

Revision 1.1, IP v1.1.0, September 2025

Section Change Summary
Introduction Added IP core version to Lattice Implementation in Table 1.1. Summary of the SEDC Controller
IP.

Revision 1.0, IP v1.0.0, June 2025
Section Change Summary

All Initial release.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02290-1.1 48

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	SEDC Controller IP
	Contents
	Abbreviations in This Document
	1. Introduction
	1.1. Overview of the IP
	1.2. Quick Facts
	1.3. IP Support Summary
	1.4. Features
	1.5. Licensing Information
	1.5.1. Ordering Part Number

	1.6. Minimum Device Requirements
	1.7. Naming Conventions
	1.7.1. Nomenclature
	1.7.2. Signal Names
	1.7.3. Attribute Names

	2. Functional Description
	2.1. IP Architecture Overview
	2.1.1. SEDC Hard Block Overview
	2.1.2. SEDC Controller IP Configuration Modes
	2.1.3. SEDC Controller IP Flow

	2.2. Clocking
	2.3. Reset
	2.4. User Interfaces

	3. IP Parameter Description
	4. Signal Description
	4.1. Clock Interface
	4.2. Reset Interface
	4.3. Control Interface
	4.4. Monitor Interface

	5. Designing with the IP
	5.1. Generating and Instantiating the IP
	5.1.1. Generated Files and File Structure

	5.2. Design Implementation
	5.3. Specifying the Strategy
	5.4. Running Functional Simulation
	5.4.1. Simulation Results
	5.4.2. Limitations of the SEDC Hard Block Simulation Model
	5.4.3. Testbench Files and Structure
	5.4.4. Input Stimulus Patterns

	6. Debugging
	7. Design Considerations
	7.1. Asynchronous Reset (arst_i) Timing Requirements
	7.2. Assert and Hold auto_correct_i High throughout a Complete SEDC Scan
	7.3. Assert and Hold continuous_i High throughout Consecutive SEDC Scans
	7.4. Process Error Information Only when status_update_o Asserts
	7.5. Availability of Clock Divider Value after Initialization
	7.6. Add Debouncer on Signal Driven by Mechanical Switch/Button
	7.7. Implement Reset Synchronizer for Asynchronous Reset Signal

	8. Known Issues
	8.1. Incorrect Clock Divider Value in Simulation
	8.2. SEDC Unable to Detect Errors After 1-bit or 2-bit SEI Bitstream Injection
	8.3. Error Bit and Region Location Mismatch Between Hardware and Radiant SEI Bitstream Profile

	Appendix A. Resource Utilization
	Appendix B. Walkthrough of Example Simulation Waveforms
	Appendix C. Example of Including +define+LSCC_SEDC_CONTROLLER_RTL_SIM in Generated *.f File
	Appendix D. Example Verilog/SystemVerilog Code on Asynchronous Reset Timing Requirements
	Appendix E. Example Verilog/SystemVerilog Code for Debouncer
	Appendix F. Example Verilog/SystemVerilog Code for Reset Synchronizer
	References
	Technical Support Assistance
	Revision History
	Revision 1.1, IP v1.1.0, September 2025
	Revision 1.0, IP v1.0.0, June 2025

