s LATTICE

Lattice Radiant Software Constraints
Propagation Engine

Application Note

FPGA-AN-02097-1.0

February 2025

Lattice Radiant Software Constraints Propagation Engine .':LATTICE

Application Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The
information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered
inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have
been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE
PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK
USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE
REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF
FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and other
items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as
register names and state names it has been necessary to continue to utilize older terminology for compatibility.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02097-1.0 2

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

= LATTICE

Contents
(600) {=T0) KPP PP PP PP PP PP PPPPPPPPPPPPPPRE 3
Abbreviations iN ThiS DOCUMENT.......ciiiiiiitiiiiee et erite e sttt e e sttt e srtte e e sbteeesasteeesassaeesssbaeesssseeesasseeeesssaeessnsseessssseeesnnseeesnnns 4
O [o Yo (¥ Tot o o [T RRRUPR 5
1.1. F Y0 [T o ol TSP PPORPPPPPPRRP 5
2. Constraints Propagation ENGINE .o 6
2.1 CPE RUIES . ettt sttt ettt st e st e s et e st e sab e e s abeesabe e s abeesabeesabeesa b e e sabeesabeesabeesabaeenbeesabaeebeesabaesnbeesares 6
2.2. CPE Usage and RECOMMENAATIONeiiiiiiiiiieiiie et stee et e ettt e e e st e e e e tta e e s ate e e e sabaeeeenstaeesnnseeeesnsseeeentseesnnnnes 8
2.3. CPE OULPUL FIlBS ettt e e st e et e st e et esa bt e e bt e s b e e e bt e sabeeebeesabeeeneesabeeeneesares 9
23,1 CPErEPOIt.EXE fl cneeieiiieeit ettt st st st bt e et s bt e e abe e sbeeeareena 9
D T O N CT =Y o1l = =T I o Foll o TSRS 9
3. Post-Synthesis CONStraint Propagationcueociiiiiiriiiiie ettt ettt et b e e bt e b bt e e b e eneeeanes 10
3.1. IP DIireCtory and File STIUCTUIEoii ittt ettt e e et e e et e e e s bbe e e e ataeeeenbaaeesabraeeesssaeeeansaaeessreeaan 10
3.2. [P CoNStraint File COMPATiSON ...cuiieieiiiiecciiee e cttee e ettt e ee e e e st e e e e s tte e e seatteeesbbeeaessaeeeensaaeesnssaeeasssaeeeasseeesnsrenann 12
L YU 410 T VPP PP PP PPPPPPPPPPPPPIRS 13
2] =T T ol RS 14
TEChNICAl SUPPOIT ASSISTANCE ...eiuviiiiiiiiiieite ettt ettt ettt be e s at e s bt e e s bt e e bt e e s abeeabe e e sabeesbeeesaseenseeesaneeseeesnneeneeas 15
REVISION HISTOTY ...teiiiiiiiiiiiete ettt sttt e s e bt e e s b e e e e s b et e e e s bt e et mbe e e e s b et e e e s b e e e sennn e e e snnbeeesabaeesennneesnnns 16
Figures
o= UL I A B O =3 =T o Yo Y 4 A o PR SRRI
Figure 2.2, CPE-gENEIated.IaC FilE ...uuiiiiiieieiee ettt e et e e sttt e e e st e e e s et e e e saseeeessbeeeesnsaeeeesseeeeansseeeannaneesssneanns
Figure 3.1. Object Names in Different SyNthesis TOOISccccuiiiiiiiiiiieeee e e e e st e e e satee e esnneeas
Figure 3.2. IP Constraint File Structure COMPATiSONceeiiieieiiiiiieee e e ceiitree e e e e sesttreeeeeesesataaeeeeeeeasaataereeseeessastraneeeseessassssneeeeas
Figure 4.1. Constraint Propagation Flow in the Lattice Radiant SOftWare.........cceoiiuiiiieiiiii et

Tables

Table 2.1. CPE Rules fOr IN0Ored CoONSTIaiNtS. . ..uii i iii i iiereciieeeesiee e estee e esee e e sttt eeesate e e ssaeeeeesbeeeessaseeesssseeeesnsseeesnsseeesenssnessnsseeeens
Table 2.2. CPE Rules for RESOIVEA CONSEIAINTS. ...ccuuiiiiiiiiieeiiieiieeitt sttt ettt ettt e sat e s bt e sate s bt e e sabeesbteesabeesbeeesaseenseas
Table 2.3. Timing Constraint RESOIULION SUMIMAIYccuuiiiiciiee et e eere e e et e e e st e e esaaee e e snteeeessteeeesnsaneesnseeeans

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Radiant Software Constraints Propagation Engine .':LATTICE

Application Note

Abbreviations in This Document

A list of abbreviations used in this document.

Abbreviation Definition

CPE Constraints Propagation Engine
FDC FPGA Design Constraints

FPGA Field Programmable Gate Array
IP Intellectual Property

LDC Lattice Design Constraints

LSE Lattice Synthesis Engine

PAR Place And Route

PDC Physical Design Constraints
RTL Register Transfer Level

Sl Signal Integrity

SDC Synopsys Design Constraints
TCE Timing Constraints Editor

uDB Unified Database

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02097-1.0 4

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

Lattice Radiant™ software is a comprehensive design environment for Lattice Semiconductor FPGAs. It offers a suite of tools
for all design stages, from project management, design entry, simulation, synthesis, place and route, in-system logic
analysis, and more.

To ensure your design meets its performance goals on the FPGA, you must provide accurate timing constraints to the
design. The implementation tool in the Radiant software reads the provided constraints and optimizes your design
accordingly. You often define constraints at the top level of your design and include additional constraint files for custom
intellectual property (IP) cores or those generated by the Radiant software such as the IP Catalog. However, constraints
defined by the module or at IP level may not always have the correct hierarchical names, leading to potential issues during
synthesis.

To address this challenge, the Radiant software introduces the Constraints Propagation Engine (CPE). This feature
propagates sub-hierarchical constraints and resolves conflicts between your constraints and IP constraints. The CPE
compiles input constraints from multiple .sdc or ./dc files, from both of your IP and user constraints, and creates a unified
.Idc file for the synthesis tools. It operates seamlessly before synthesis, requiring no manual intervention.

The CPE activates only when your design includes an .ipx file with .sdc or .Idc files, it does not support .fdc files. By
performing a Design Rule Check (DRC) on all input constraints and generating a new constraint file that supports
hierarchical constraints, the CPE ensures that soft IP constraints are prioritized in the top module. This enables cross-IP
optimization during logic synthesis, maximizing the impact of your supplied constraints.

This document provides an in-depth look at how the Constraints Propagation Engine works and how it can help you to
optimize your FPGA designs.

1.1. Audience

The intended audience for this document includes FPGA design engineers using the Radiant software. The technical
guidelines assumes that you have some basic knowledge on the SDC constraints usage.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2. Constraints Propagation Engine

In the Radiant software, CPE is executed during pre-synthesis and pre-MAP stages. During pre-synthesis stage, CPE is
executed right before synthesis to make sure all the required IP constraints are propagated, and any conflicts are resolved
on the pre-synthesis netlist objects.

2.1.

CPE Rules

The CPE is executed only when an IP with an .sdc or ./dc constraints file is instantiated in the user design. CPE does not
resolve conflicts within user constraints. User constraints conflicts are handled by the Radiant software timer. Constraints
resolution rules applies only if there is a conflict between user constraints and IP constraints. The rules are as follow:

e Create_clock constraint on an IP port is ignored.

Constraint example 1 on an IP port: create_clock -name {clk_ip_a} -period 10 [get_ports clk]

Constraint example 2 on an IP port: create_clock -name {clk_ip_b} -period 10 [get_ports clk]

Resolution: IP level create clock constraint is ignored.

Reason: Clocks must always be defined on the top-level ports.

Clocks on the input side of an IP are clocks that could potentially drive other circuits. In addition, such clocks give
rise to incorrect slack calculations at input ports, output ports, and inter-clock paths if defined on the IP.

User Action: Redefine the clock constraint on the top module ports.

Example: create_clock -name clk -period 10 [get_clocks clk_in]

e Input/output delay constraint on an IP port is ignored.

Constraint: set_input_delay -clock [get_clock virt_clk] 9 [get_ports in1]
Resolution: Ignored.

Reason: IP level input delay is not propagated.

User Action: Redefine the constraint at the top-level input ports.
Example: set_input_delay -clock [get_clock virt_clk] 9 [get_ports in_top1]

Note: If input/output delay constraints on IP ports come with pads (10 Buffers), only then the constraint is propagated.
e set_clock_groups constraints are ignored.

Constraint: set_clock_groups -group [get_clocks clk] -group [get_clocks clk2]

Resolution: Ignored.

Reason: Clock group constraints may be hazardous if these clocks are used in other parts of the design that needs
to be timed.

e set_clock_latency constraint on an IP clock is ignored.

Constraint: set_clock_latency 3 -source [get_clocks clk]
Resolution: Ignored.

Reason: Clock latency constraint is not propagated.

User Action: Redefine the constraint on the top-level clock.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The following table provides information on the CPE rules for ignored constraints.

Table 2.1. CPE Rules for Ignored Constraints

Constraint Input Source Resolution Rule
Module Status
create_clock -name {clk_ip_a} -period 10 IP Ignored Clocks on the input side of an IP are clocks that
[get_ports clk] could potentially drive other circuits. In addition,
such clocks could give rise to incorrect slack
create_clock -name {clk_ip_b} -period 10 IP lgnored calculations at input ports, output ports and inter-
[get pgrts clk] - clock paths if defined on the IP.
set_input_delay -clock [get_clock sysclk] 9 IP Ignored IP-level input delay not propagated. Redefine at
[get_portsin_1] top-level input port.
set_clock_groups -group [get_clocks clk] -group | IP Ignored Constraint is ignored because at least one clock is
[get_clocks clk2] not internal. This is hazardous if these clocks are
not used in other parts of the designs that need to
be timed.
set_clock_latency 3 -source [get_clocks clk] IP Ignored Clock latency constraint is not propagated.

The following table provides information on the CPE rule for resolved constraints.

Table 2.2. CPE Rules for Resolved Constraints

-to [get_ports b_out]

IP_B/b_in] -to [get_pins IP_B/b_out]

Constraint Input Source Resolution | Constraint Output Description
Module Status
create_clock -name {clk_top} -period 5 | Top Resolved create_clock -name {clk_top} -period 5 Constraint is
[get_ports clk_in] [get_ports gclk] preserved.
create_generated_clock -divide_by 2 - | IP Resolved create_generated_clock -divide_by 2- Propagated and
source [get_ports clkb] [get_pins source [get_pins IP_B/clkb] [get_pins name adjusted.
b_out] IP_B/b_out]
set_multicycle_path 2 -from [get_pins | IP Resolved set_multicycle_path 2 -from [get_pins Propagated and
ff1/Q] -to [get_pins ff2/D] instA/ff1/Q] -to [get_pins instA/ff2/D] name adjusted
because it does not
involve clocks.
set_clock_uncertainty 2 [get_clocks IP Resolved set_clock_uncertainty 2 [get_clocks Internal clock
internalclk] IP_C/internalclk] uncertainty still
accepted.
set_max_delay -from [get_ports b_in] | IP Resolved set_max_delay -from [get_pins Maximum and
-to [get_ports b_out] 5 IP_B/b_in] -to [get_pins IP_B/b_out] 5 minimum delay is
always propagated.
set_false_path -from [get_ports b_in] IP Resolved set_false_path -from [get_pins False path

propagated when
clocks are not used.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.2. CPE Usage and Recommendation

The following lists the CPE usage and recommendations:
e If you have an IP instantiated in your design, run through the synthesis flow.

e Check the IP constraints that are propagated by the CPE using the CPE generated output files.
e Refer to the Timing Constraints Resolution Summary section, specifically the User Action to Keep the Constraint
guidance within the Radiant software help documentation.

Table 2.3. Timing Constraint Resolution Summary

Constraint Input Source Resolution Constraint Output Resolution User Action to Keep
Module | Status Method the Constraint
create clock -name {clk_top} - Top Resolved Create_clock -name Constraint No action needed.
period 5 [get_ports gclk] {clk_top} -period 5 preserved.
[get_ports gclk]

create_clock -name {clk_ip_a}- | IP_A Ignored Constraint #1 Conflict with Confirm satisfaction
period 10 [get_ports clk] Constraint #1. with top-level clock.
create_clock -name {clk_ip_b}- | IP_B Ignored Defined on IP input port Ignore. Redefine IP-level clock
period 10 [get_ports clkb] on appropriate top-

level port.
create_generated_clock - IP_B Resolved create_generated_clock Propagated and No action needed.
divide_by 2 -source [get_ports -divide_by 2 -source name adjusted.
clkb] [get_pinsb_out] [get_pins IP B/clkb]

[get_pins IP B/b_out]

set_input_delay -clock IP_B Ignored Removed IP-level input Redefine at top-level
[get_clock sysclk] 9 [get_ports delay not input port.
b_in] propagated.
set_clock_groups -group IP_B Ignored Removed At least one clock Translate to
[get_clocks_clk] -group is not internal. set_false_path and use
[get_clocks clk2] appropriate

user/custom IP-level

objects.
set_max_delay -from IP_B Resolved set_max_delay -from Maximum and No action needed.
[get_ports b_in] -to [get_ports [get_pins IP_B/b_in] -to minimum delay
b_out] 5 [get_pins IP_B/b_out] 5 always

propagated.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Radiant Software Constraints Propagation Engine - LATTICE

Application Note

2.3. CPE Output Files

The CPE generates some output files. This section provides information on the output files that are generated by the CPE.

2.3.1. CPEreport.txt file

The CPE generates a CPEReport.txt file that contains information on the removed and propagated constraints. This file can
be found in the project implementation directory. The following figure shows an example of a CPEreport.txt file.

Fle E6e Fomt View tap Removed constraints

-name {clki_i} -period 13.889 [get_ports clki_i] originating in instance pll@ was removed because it conflicts with a top-level constraint.
create_clock -name {clki_i)} -period 13.889 [get_ports clki_i] originating in instance plll was removed because it conflicts with a top-level constraint,
create_clock -name {eclk_i} -period 1.60751 [get_ports eclk_i] originating in instance port[@].slvs was removed because it conflicts with a top-level constraint.
create_clock -name {eclk_i} -period 1.60751 [get_ports eclk_i] originating in instance port[1].slvs was removed because it conflicts with a top-level constraint.
-name {eclk_i} -period 1.60751 [get_ports eclk_i] originating in instance port[2].slvs was removed because it conflicts with a top-level constraint.
-name {eclk i instance port[3].slvs was removed because it conflicts with a top-level constraint.
and kept.

IO_TYPE constraint - Refclk originating in instance plll was updated to # IO_TYPE constraint - Refclk and kept.
#For PLL originating in instance port[@].slvs was updated to #For PLL and kept.
#For DOR originating in instance port[8].slvs was updated to #For DDR and kept.

o g in instance port[0].slvs was updated to
8. md kept.

I0_TYPE constraints originating in instance port[@].slvs was updated to ### IO_TYPE constraints and kept. Ke pt Constra | nts

1dc_set_port -iobuf {I0O_TYPE=SLVS} [get_ports clk_o] originating in instance port[@].slvs was updated to ldc_set_port -iobuf {IO_TYPE~SLVS} [get_ports sout_clk_©] and kept.
1dc_set_port -iobuf {IO_TYPE=SLVS} [get_ports {data_o[@]}] originating in instance port[@].slvs was updated to ldc_set_port -fobuf {IO_TYPE=SLVS} [get_ports {sout_data_0[0]}] and kept.
1dc_set_port -fobuf {I0O_TYPESLVS) [get_ports {data_o[1]}]) originating in instance port[@].slvs was updated to ldc_set_port -fobuf {IO_TYPE=SLVS} [get_ports {sout_data ©[1]}] and kept.

1dc_set_port -fobuf {IO_TYPE=SLVS} [get_ports {data_o[2]}] originating in instance port[0].slvs was updated to ldc_set_port -iobuf {IO_TYPE~SLVS} [get_ports {sout_data_©[2]}] and kept.

1dc_set_port -iobuf {IO_TYPE=SLVS} [get_ports {data_o[3]}] originating in instance port{8].slvs was updated to ldc_set_port -iobuf {IO_TYPE=SLVS) [get_ports {sout_data_8[3]}] and kept.

#For PLL originating in instance port[1].slvs was updated to #For PLL and kept.

#For DOR originating in instance port[1].slvs was updated to #For DOR and kept.

iginating in instance port[1].slvs was updated to
and kept.

Figure 2.1. CPEReport.txt File

2.3.2. CPE Generated .Idc File

The CPE generates an ./dc file that is an effective constraints file after constraints propagation and resolution. This file is
consumed by the synthesis tools for synthesis. This file can be used to check propagated constraints. This file is also located
in the project implementation directory. The file name for this ./dc file ends with *_impl_1_cpe.ldc. The following figure
shows an example of a CPE-generated ./dc file.

Removed constraints originating
e corm_camsb_mei_1_con ke 3 |
I ###File created by Lattice CPE. Do not modify.iff from DPHY-RX LDC f||e

- Clock -name Yto. 2% 3) ~Poricd 21.737 [(get.pins (Icam tx I11/CIK.Byce 2t % 17
#0riginal File: C: /Ul~rl/kcalllbo\mlo-diltm LN(O !‘D USB3 V1 u)lcpm(g»(O TO USB3 vx/cs-xx CANO_TO Usa!/c nx_cam2usb/source/IMXcam rx/constrairgs/IMXcam_rx.ldc

##original File:
lock -name (IMcam_rx_Il_clk_byte_o_c) -pericd 21.73% (get_nets (IMXcam zx_

X sn)/cpnx_cm usb/source/IMXcam_rx/constraints/IMKcam_rx.ldc

)i
##0riginal File: C:/Users/kcala/Downloads/CPNX_CAMO_TO_USB3_V1 (1)/CPNX_CAMO_TO_USB3I_V1/CPNX_CAMO_TO_USB3/cpnx_cam2usb/source/IMXcam_rx/constraints/IMXca:
4 Pcreate_clock -name (clk_byte i) -pericd 21.739 [get_pins {b2p_Il/clk byte_i }] Kept constraints or Igmatmg
0 #00riginal File: C:/Users/kcala/Downloads/CPNX_CAMO_TO_USBI_Vi (1) /CPNX_CANO_TO_USB3_V1/CPNX_CAMO_TO_USB3/cpnx_i P p.1dc
i1 #create_clock -name {clk_pixel_i) -pericd €.793 [get_pins {b2p_Il/clk_pixel i)] fI'OI‘n the OSC LDC f||e
12 Moriginal File: C: /u..n/xcn./mmxo.d-/cwn c»w To uss3 v. (1) /CPNX_CAMO_TO USB3 vucpm: cmo -e USB3/cpnx_cam2usb/source/b2p/constraints/b2p.ldc

1 Teate_clock -name (int_osc_. _out_o) -per. eT_pins (int_osc_int.
14 lonqmn File: C: /uun/kcuo/ownxomn/cm cmo 70_! vsn3 vx (1) /CPNX_CAND_TO_USB3 nlcwx cmo TO_USB3/cpnx_cam2usb/source/int_osc/constraints/int_osc.ldc

original File: ¢: .
there are multicy ths within the design other than RAW12, RAWM, RAK1E.
#10ziginal File: C:/Users/kcala/Downloads/CPNX_CAMO_TO_USBI Vi (1)/CPNX_CAMO_TO_USB3_V1/CPNX_CAMO_T
to constrain these paths, please copy the COnstraints below to your post-synthesis constraints
wc_pix_sync* and pix_out_cntz®
i C:/Users/kcala/Downloads/CPNX_CAMO_TO_USB3I_V1 (1)/CPNX_CAMO_TO_USB3_V1/CPNX_CAMO_TO_USB3/cpnx_cam2usb/scurce/b2p/constraints/b2p.ldc

otlist, or the PAR timing results, for the corrrect path and net names of these registers.
(1) /CPNX_CAMO_TO_USB3I_V1/CPNX_CANO_TO_USB3/cpnx_cam2, source/b2p, b2p.lde
CA!LE for RAN12, RAW14, RAN1E. do NOT copy for RANI2, RAW14, RAW1E 11!
C:/Users/kcala/Downloads/CPNX_CAMO_TO_USBI_V1 (1)/CPNX_CAMO_TO_USBI_V1/CPNX_CAMO_TO_USB3/cpnx_ b/scurce/b2p, ints/b2p.ldc
h -setup -from [get_nets (b2p_I1/lscc_byte2pixel_inst/lscc_byteZpixel_core/pixcnt® b2p_Il/lscc_byte2pixel_inst/genblké.lscc_byte2pixel_core/wc_pix_sync_o
pixel_inst/genblkd.lscc_byte2pixel_core/wc_pix_sync*)] -to [get_nets {b2p_Il/lscc_bytelpixel_inst/genblkd.lscc_byteZpixel_core/pix_out_cntr_o*
/1scc_byte2pixel_inst/lscc_byte2pixel_core/pix_out_cntr® 1] 7
inal File: C:/Users/kcala/Downloads/CENX_CAMO_TO_USB3_V1 (1)/CPNX_CAMO_TO_USBI_V1/CPNX_CAMO_TO_USB3/cpnx_cam2usb, 2p, b2p.ldc
multicycle_path -hold -from [get_nets (b2p_I1/lscc_byteZpixel_inst/lscc_byte2pixel_core/pixcnte B2p_I1/1scc_bytezpixel_inst/genblki.lscc_bytelpixel_core/we_pix_sync_o®

/1scc_byte2pixel_inst/genblk4.lscc_byte2pixel_core/wc_pix_sync*)] -to [get_nets (b2p_Il/lscc_bytelpixel_inst/genblkd.lscc_bytelpixel_core/pix_out_cntr_ov
/1scc_bytelpixel_inst/lscc_byteZpixel_core/pix_out_cntz®)] 6
2 lﬂonq:n-l File: C:/Users/kcala/Downloads/CPNX_CAMO_TO_USBI_VI (1)/CPNX_CANO_TO_USB3_V1/CPNX_CAMO_TO_USB3/cpnx_cam2usb P, ts/b2p. 1dc

SB3/cpnx_cam2usb/source/b2p/constraints/b2p. 1dc
(*.pdc) and modify the hierachy/net_names of the ff. registers - pixent®,

Figure 2.2. CPE-generated.ldc File

2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02097-1.0 9

http://www.latticesemi.com/legal

= LATTICE

3. Post-Synthesis Constraint Propagation

Prior to the Radiant software version 2024.1, IP pre-synthesis timing constraints are not automatically propagated, and you
must manually copy and paste these constraints into the post-synthesis constraint (.pdc) files for them to take effect. This is
because object names are changed in the synthesis stage as they undergo transformation from the logical to physical
representation. During this stage, the tool also performs optimization to the netlist.

Depending on the synthesis tool used, the resulting object names can be different as shown in Figure 3.1. Object Names in
Different Synthesis Tools. In this example, the register c in the original RTL file is synthesized to c_regand c_6__| 0in the
Synplify Pro and LSE tools, respectively.

FDIP3DX \c_reg[0] (

.D (c_s[01);
RTL .SP (VCC) ;

module top (clk, rst, 1d, q); -CK (clk c); _

.CD (rst_c);

input clk, rstl Q (cli1);
input 1d;)i
output g;

FDIP3DX c 6 I 0 (
reg [1:0] <; D {c_6__ N 2[c]1):
reg d- .5P (VCC_net),

.CK ({clk_c);
.CD (GND_net) ; -
)

(cleD)
)

Figure 3.1. Object Names in Different Synthesis Tools

To address the limitations, the Radiant software versions 2024.1 and later support post-synthesis IP timing constraint

propagation. This is achieved through several framework enhancements including:

e Support for IP timing constraints in various compilation design stages and different synthesis tools.

e Support for IP timing constraints in a single file, enabled by the TCL commands and pre-defined Radiant software
variables.

e Simplification of constraint file suffixes.

3.1. IP Directory and File Structure

When an IP is generated from the IP Catalog in the Radiant software, a collection of files related to the configured IP are
created and organized in the directory as shown below on the machine’s disk, where the timing constraint file are organized
under the constraints folders as a constraint.sdc file. Some IPs might still contain <component_name>.ldc for backward
compatibility.
<component_name>
<component_name>.cfg
<component_name>.ipx
component.xml
design.xml
rtl
<component_name>.v
<component_name>_bb.v
constraints
constraint.sdc
<component_name>. ldc
testbench
<design testbench files>
<other IP related files>

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

To ensure the timing constraints are effective in a single file, the Radiant software versions 2024.1 and later incorporated
an internal TCL interpreter to correctly identify constraints meant for different implementation stages and synthesis tools.
The following two variables are added to this interpreter:

e Sradiant(stage), where the valid values are presyn and premap.

e Sradiant(synthesis), where the valid values are Ise and synpro.

The following code snippet shows an example of how multiple timing constraints can be written in a single file with the
introduction of TCL variables for different stages and synthesis tools.

set var 5
if {$radiant(stage) == "presyn"} {
create_clock -period 10 -name myclk [get ports clk]
}
if {$radiant(synthesis) == "lse"} {
LSE
if {$radiant(stage) == "presyn"} {
set_max_delay -from [get_cells {c[@]}] $var
} elseif {$radiant(stage) == "premap"} {
set_max_delay -from [get cells {c_6 I O.ff inst}] [expr $var+20]
}
} else {
synplify
if {$radiant(stage) == "presyn"} {
set_max_delay -from [get_cells {c[0]}] 10
} elseif {$radiant(stage) == "premap"} {
set_max_delay -from [get cells {c_reg[@0].ff _inst}] 25.0
}
}

set_false_path -from [get ports {q}]

Note that constraints from the previous stage are propagated to the next stage if they are not dropped. Hence, it is
unnecessary to duplicate them in multiple stages unless there is a need to overwrite or include additional constraints.

Any constraints that are outside of the if-else statement are evaluated multiple times. In the example above, the
set_false_path constraint is duplicated for different engines.

Note: It is for the IP developer only — user constraint does not support single constraint file style.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Radiant Software Constraints Propagation Engine .':LATTICE

Application Note

3.2. IP Constraint File Comparison

The following figure highlights the key differences between the LPDDR4 constraint files generated in the Radiant software
v2023.1 and the Radiant software v2024.1. The introduction of new framework has led to the creation of a new
constraint.sdc file within the Constraint Files folder.

Radiant 2023.1 Radiant 2024.1

~He v B
B rooNx-50-TASG2S6I B LFCPNX-S0-9ASG256C
A Strategees ' Strategies
Area T Aeal
T Timing T Tiwing
'/ Strategyl "/ Strategy!
= 7 impl_1 (Synplity Pro) = 7 impl_1 (Synpiity Pro)
* [Input Files - input Files
¥ . ddrd old/ddrd old.ipx * ¢ ddrd_new/ddrd_new.lpx
’ RTL Files » RTL Fdes

- Conatraint Files v Constrmnt Files

Constramts/odrd_okd.kic constrants/constraint sac o
») Testbench Fies constrants/dded newli S FOr backward compatibility,
dré_od.cfq » 13 Testbench Files Jdc is still supported
- Pre-Synthesis Constrant Flies daed_newcly
h_gwm Pre-Synthesis Congtraint Files
= ¥=—— Synthesis Tool Folder removed
v Post-Synthesis Constraint Files » [Post-Synthesis Constraint Files y S,
top pdc
top.pde
Debug Files Debug Files
Script Fdes Script “:’
Analysis Files Analyss Files)
Programming Files Programening Files

Figure 3.2. IP Constraint File Structure Comparison

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02097-1.0 12

http://www.latticesemi.com/legal

Lattice Radiant Software Constraints Propagation Engine .':LATTICE

Application Note

4. Summary

The Radiant software provides different mechanisms to handle timing constraints, both in pre and post-synthesis stages.
The following figure summarizes the entire constraint propagation flow, including the input and output of each stage.

IP SDC

Design SDC Design and IP RTL (<IP>.5dc)

Propagated
constraints

v v L

LSE Synplify Pro

I

Synthesized netlist
(*.vm) / Output
Constraint File (*.1dc)

IP SDC

Post-Synthesis (<IP> sdc)

MAP PDC

PAR

Figure 4.1. Constraint Propagation Flow in the Lattice Radiant Software

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02097-1.0 13

http://www.latticesemi.com/legal

Lattice Radiant Software Constraints Propagation Engine .':LATTICE

Application Note

Reference

e Lattice Radiant Software web page
e Lattice Radiant Timing Constraints Methodology (FPGA-AN-02059)
e Lattice Insights web page for Lattice Semiconductor training courses and learning plans

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02097-1.0 14

http://www.latticesemi.com/legal
https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
https://www.latticesemi.com/view_document?document_id=53772
https://www.latticesemi-insights.com/

Lattice Radiant Software Constraints Propagation Engine .':LATTICE

Application Note

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.
For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/ Support/AnswerDatabase.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02097-1.0 15

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/%20Support/AnswerDatabase

Lattice Radiant Software Constraints Propagation Engine

Application Note

= LATTICE

Revision History

Revision 1.0, February 2025

Section

Change Summary

All

Initial release.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02097-1.0

16

http://www.latticesemi.com/legal

LATTIC E

tttttttttttt

http://www.latticesemi.com/

	Lattice Radiant Software Constraints Propagation Engine
	Contents
	Abbreviations in This Document
	1. Introduction
	1.1. Audience

	2. Constraints Propagation Engine
	2.1. CPE Rules
	2.2. CPE Usage and Recommendation
	2.3. CPE Output Files
	2.3.1. CPEreport.txt file
	2.3.2. CPE Generated .ldc File

	3. Post-Synthesis Constraint Propagation
	3.1. IP Directory and File Structure
	3.2. IP Constraint File Comparison

	4. Summary
	Reference
	Technical Support Assistance
	Revision History
	Revision 1.0, February 2025

