s LATTICE

Lattice sensAl Neural Networks Training
Environment

User Guide

FPGA-UG-02226-1.1

May 2025

Lattice sensAl Neural Networks Training Environment :..LATTICE

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and
other items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases
such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-UG-02226-1.1 2

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

Lattice sensAl Neural Networks Training Environment :.'LATTICE

User Guide

Contents

Contents ..o

Abbreviations in This Document

N 1 4 o T [¥ ot o Y T PRSPPI
1.1. [O0o T ol =T o | £ T PP PP OPPRR PPN 5
1.2. Features6

N 1 =11 o o O OO O OO U PRUPRROPPRRUPPRTNE 7
2.1, =T E=To T Lo TSR OTOROON 7
2.2. (VA o T Yo I8 =L o1V T oY o ' 0 T=Y o | S 7
2.3. Package Installation7

3. COMMANG LINE USBEE ..ttt ettt ettt ettt ettt et ettt e bt e s bt e bt e e bt e e bt e s abe e e seeeabeeesaeeeabe e e seeebeeesatesabeeeseesnbeeenseenane 8

V.V T [1Y PSP 9
4.1. PYENON COUE ...ttt e ittt e e a e s a bt e s at e e sa b e e sab e e sab e e sateesabeesabeesabeeenteesabeennneesaneennees 9
4.2. CONFIGUIALION FIlB ..ttt st e b et e st e bt esa b e e eab e e sabeeeat e e sabeesabeesabeenaeeesaneennes 10
4.3. LI L IO U UP P PPPUPPPN 11
44, =] ST UP PP PUPPPN 12
4.5. (60 21 VZ=T 5] To T o ISP PP PPPPPTRPPRE 12

L2 02] =1 T ol PP 13

TeChNICAl SUPPOIT ASSISTANCE ...eeiiutiiiiieetie ettt ettt e st e s bt e bt e s bt e s bt e e bt e e bt e s beeenbeeeabeeeseeebeeeneesbeeenneenane 14

AT T o I o TES) (o T TSP UT PP UPPPR PPN 15

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-UG-02226-1.1 3

http://www.latticesemi.com/legal

=LATTICE

Abbreviations in This Document

A list of abbreviations used in this document.

Abbreviation Definition

LATTE Lattice sensAl Neural Networks Training Environment

LSCQuant Lattice sensAl Neural Networks Quantizer

DNN Deep Neural Network

GPU Graphics Processing Unit

WSL2 Windows Subsystem for Linux version 2

FPGA Field Programmable Gate Arrays

SIGINT Interrupt signal, usually sent to a command line process by hitting the keyboard keys CTRL-C

SIGTERM Termination signal, usually sent to a process through an operating system task manager or the kill
process command

CLI Command Line Interface

YAML Yet Another Markup Language

JSON JavaScript Object Notation

WandB Weights & Biases, a platform used for managing machine learning experiments and models

NumPy Numerical Python

HDF5 Hierarchical Data Format version 5

PB Protocol Buffer

ONNX Open Neural Network Exchange

TFLite TensorFlow Lite

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

1. Introduction

This document serves as an introductory guide for Lattice sensAl™ Neural Networks Training Environment (LATTE),
covering its core features, concepts, workflows, installation procedures, and basic usage instructions. LATTE has been
designed to standardize DNN training code to eliminate the repetitive task of writing boilerplate code whenever a new
DNN model is developed. By providing a unified framework, LATTE streamlines the development process, ensuring
consistency and efficiency across various projects.

1.1. Concepts

LATTE is first and foremost a Python package providing a set of Python classes and utility functions that simplifies the
development of the training process of DNN models. It is also a command line program latte that will help perform the
three most common tasks that need to be done when it comes to DNN models: training, testing, and converting
models.

The mains concepts are as follows:
e The main interaction with LATTE is through the command line program; the program has two main inputs:

e A path to a configuration file (written in YAML or JSON), or a path to a folder containing a file named:
config.yaml, config.yml or config.json.

e A pathto a Python module a . py file or to a Python package, a folder that contains a file __init__.py, which
contains the code or import some other code to provide to LATTE.

e The configuration file contains a few main sections which contain, among other things:

e The DNN model to be trained, tested or converted, is specified by the name of the Python class or the function
that should be used to instantiate the model, along with the required parameters.

The datasets for training and testing are specified by the names of the Python classes implemented by the user
for loading the datasets and generating batches of data (dataset handlers).

The losses and metrics to be computed during training and testing can be standard Keras losses or metrics, or
user-defined ones.

The hyper-parameters related for training and testing the model include batch size, number of epochs,
optimizer, the learning rate and more.

The format to which the trained DNN model should be converted to.

e The configuration file contains all the parameters that describe a specific experiment, such as training, testing or
converting and keeps them separate from the Python code.

e This allows for easier experiment tracking, as creating a new experiment can be accomplished by copying an
existing configuration file, giving the file a new name, and changing some of the parameters in the new file.

e If LATTE is provided with a path to a configuration file, it will create a folder which has the same name as the
file (minus the file extension) to store all the artefacts related to running the training, the testing, and the
conversion, such as the train checkpoints, the best model checkpoints, the logs, the converted model files, etc.

e If LATTE is provided with a path to folder that contains configuration file named config.yaml,
config.yml or config.json, then the artifacts will be stored alongside the configuration file in that folder.

e The code in the Python module or package minimally consists of:
e The model implementation as a function that returns a Keras Model, or as a subclass of the Keras Model class.
e The implementation of the dataset handler class(es).

e Some calls to LATTE’s functions that register the user-defined classes and functions that implement the model,
the dataset handlers, the custom losses and metrics if any.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

1.2. Features
The important features of LATTE include:

Separation of hyper-parameters and Python code.
Automatic checkpoint saving occurs after each pass over the training dataset after each epoch during training.
Automatic checkpoint restoration when restarting training, if existing checkpoints are detected.

Ability to stop training at any time with the keyboard keys combination CTRL-C (SIGINT) in the CLI or by sending an
interrupt signal (SIGTERM) with a task manager or the kill command.

Automatic logging files generation when training, testing, and converting models.

Automatic creation of Tensorboard summaries for all losses and metrics at each epoch, for training, validation, and
testing

e The learning rate is also logged at each epoch when using a learning rate scheduler.
Support for Weights and Biases (WandB)

e The losses, metrics, learning rate are logged at each epoch, the training checkpoints and converted models are
uploaded as artifacts.

Support for standard Keras loss and metrics that takes the targets and the predictions as inputs

e Support custom losses and metrics that can also take the model’s inputs and some per-sample metadata as
inputs along with the targets and the predictions.

Base Python classes to derive new classes from to create dataset handlers
e Easily write dataset handlers by overloading only a few methods.

e Base classes for writing dataset handler using TensorFlow operations or just plain Python or NumPy
operations.

Powerful callback system that allows for custom code to be executed at every major step during training, testing,
and conversion of models.

Support models conversion to HDF5 (Keras .h5 files), frozen PB, ONNX, and TFLite.
Powerful configuration substitution system

e A parameter value in the configuration file can refer to other parts of the configuration to avoid repetition and
share some common values.

e A parameter value can be set to the content of other YAML, JSON, or text files.
e Can define parameters containing paths relative to the configuration file itself.
e (Can set a parameter value to some runtime value such as the number of steps per epoch.

Default LATTE’s behaviors can be altered by setting some environment variables.

Any parameter in the configuration file provided can be overwritten by providing a new value as an argument to the
LATTE command.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

2. Installation

2.1. Prerequisites
This section lists all the prerequisites and system requirements for using the LATTE package.
e Python version 3.8 or later

e TensorFlow version 2.7 to 2.15 (2.16 or later is not supported)

Note:

TensorFlow 2.10 is the last release that supports native GPU training on Windows. When training on Windows with a
GPU, ensure the installed TensorFlow version does not exceed 2.10. There is also the option to perform training
through WSL2. Please see Install TensorFlow with pip for more information.

2.2. Python Environment

LATTE is a Python package that needs to be installed in the Python environment used for training DNN. If an
environment has already been created for other SensAl tools such as, the Lattice sensAl Neural Networks Quantizer
(LSCQuant), activate that environment and then install LSCQuant in it. If there is no such environment, then it should
be created. To create and manage Python environments more easily, especially for dependencies such as CUDA and
CuDNN it is recommended to use Miniconda or Anaconda. Miniconda can be downloaded from this link: Installing
Miniconda. After installation, you can create a new Python environment by running the following commands in a CLI:

conda create -n fpga python~=3.10.0
conda activate fpga

In this example, the environment is named fpga, but you can choose any name. If you plan to use a GPU for training
DNNSs, install CUDA and CuDNN in the environment using the conda command:

conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0

From this point on, any other Python packages should be installed using the pip command in the environment. The
TensorFlow package should be installed as follows:

pip install tensorflow~=2.10.0 numpy~=1.24.0

2.3. Package Installation

To install LATTE in the Python environment that is currently activated, the following command must be run from the
folder containing the LATTE Wheael (.whl) file:

pip install -U ./latte-x.y.z-py3-none-any.whl

where x.y.z is dependent on the exact version of the package. On Windows, replace the character /by | in the
command above.

Running the latte command below should successfully display the installed version of LATTE:

latte -V

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.tensorflow.org/install/pip#windows-native
https://www.anaconda.com/download/success
https://www.anaconda.com/download/success

=LATTICE

3. Command Line Usage

Installing the LATTE package in a Python environment will also install a command line program named latte in that
environment; it will be available only when the Python environment is activated. This program is the main way of
interacting with LATTE.

Running the command without specifying a mode (see below) can be used to get some useful information about LATTE.
These options and their documentation can be seen by executing the command latte --help.

The latte command is used as follows:
latte MODE [OPTIONS] CONFIGURATION CODE

where

e MODE is either train, test, or convert; this specifies what will be performed by LATTE, i.e., perform model training,
perform model testing, or perform model conversion.

e OPTIONS is an optional list of different command line options to use for the given mode; running
LATTE MODE --help will display a list of the different options available for the given mode.

e CONFIGURATION is either a path to a YAML or JSON file, or a path to a folder containing
config.yaml, config.yml or config.json.

e CODE is either a path to a Python file (.py), or a path to a Python package, which is a folder containing at the very
least a file named __init__.py).

For more information about the content of the configuration file or the Python code, refer to the documentation

provided alongside the LATTE Python package.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

4. Workflow

An example of a typical DNN model development workflow with LATTE is presented in the following sections.

4.1. Python Code

The first step is to write the necessary Python code. This code should have the following:
e Model Creation:

e Develop your model either as a function that returns a tf.keras.Model, functional or sequential or as a
subclass of tf.keras.Model. Avoid hardcoding hyperparameters unless they are unlikely to change. Instead,
make hyperparameters configurable through the function or class __init__ method, allowing easy adjustments
via the configuration file.

e Dataset Handler:

e Create a dataset handler to read and format the inputs and targets for training the model. Like for the model,
include as many parameters as possible in the __init__ method.

e Custom Losses and Metrics:

e If the required losses or metrics are not available in Keras, implement them yourself. A loss can be a function
or a subclass of tf.keras.losses.Loss, while a metric should be a subclass of tf.keras.metrics.Metric, in most
cases a subclass of tf.keras.metrics.Mean should be defined. The losses or metrics parameters should be
arguments in the function or class __init__ method.

e Create a Python file to import and register the model, the dataset handler, and any custom losses or metrics using
the appropriate function or decorator from the latte Python package.

The code below shows how a simple image classification model would look like. Here, a small Keras functional model is
defined in a function my_model, which is registered in LATTE using the register_model function. It takes as input the
shape of the input image, and the number of categories. For the dataset handler, a subclass MyDatasetHandler is derived
from one of the available base classes in LATTE (here NumpyDatasetHandler). The only parameter passed to the dataset
handler is the path to the dataset. The first mandatory method implemented is finding all the PNG images in images
folder in the provided dataset path, and all text files in labels folder. The category ID of each image file is contained in a
text which name corresponds to the image file. The second mandatory method loads the image and the corresponding
label, then returns them.

from pathlib import Path

import cv2

from tensorflow.keras import layers, models

from latte.dataset import register_dataset_handler, NumpyDatasetHandler
from latte import register_model

@register_model
def my_model(input_shape, num_classes):
input = layers.Input(shape=input_shape, name="input")
= layers.Conv2D(32, (3, 3), use_bias=False)(inputs)
= layers.BatchNormalization()(x)
= layers.ReLU()(x)
= layers.MaxPooling2D((2, 2))(x)
layers.Conv2D(64, (3, 3), use_bias=False)(x)
= layers.BatchNormalization()(x)
= layers.ReLU()(x)
= layers.Flatten()(x)
= layers.Dense(num_classes, activation=None)(x)
model = models.Model(inputs=[input], outputs=[x])

X X X X X X X X X
]

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/Model
https://www.tensorflow.org/api_docs/python/tf/keras/losses/Loss
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Metric
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Mean

=LATTICE

return model

@register_dataset_handler
class MyDatasetHandler(NumpyDatasetHandler):
def __init__ (self, data_path, **kwargs):
super().__init__ (**kwargs)
self. data_path = Path(data_path)

def _get input_data(self):
image files = sorted(list(self. data_path.glob("images/*.png")))
label files = sorted(list(self._data_path.glob("labels/*.txt")))
return image_files, label_files

def _process_sample(self, inputs, targets, metadata):
image = cv2.imread(inputs, cv2.IMREAD_GRAYSCALE)
image = image.astype(np.float32) / 255.0
with open(targets, mode="rt") as label file:
label = np.int32(label file.read())
return image, label, metadata

For a more complex and working code example, refer to the example code and configuration that is provided alongside
the LATTE Python package.

4.2. Configuration File

The next step is to write an appropriate configuration file to perform an experiment. This file refers to the registered
code objects above and defines some hyper-parameters. The YAML configuration below shows how a configuration file
would look for the example code presented in the previous section.

model:
class_name: "my_model"
config:
input_shape: [32, 32, 3]
num_classes: 10
train:
lr: 0.0001
epochs: 10
optimizer:
class_name: "Adam"
train_dataset_handler:
class_name: "MyDatasetHandler"
config:
data_path: "mydataset/train"
batch_size: 32
losses:
- class_name: "SparseCategoricalCrossentropy'
name: "crossentropy"
config:
from_logits: true

metrics:
- class_name: "SparseCategoricalAccuracy"”
name: "accuracy"

www.latticesemi.com/legal

http://www.latticesemi.com/legal

=LATTICE

best_metric: "accuracy"
best_metric_higher_is better: true
test:
dataset_handler:
class_name: "MyDatasetHandler"
config:
data_path: "mydataset/test"
batch_size: 32
convert:
converters:
- class_name: "h5"
- class_name: "onnx"
config:
opset: 13
The configuration file is divided into four sections: model, train, test, and convert. The model used by LATTE is defined
in the model section: it specifies the class name of the model that is registered in the code and the value of its
parameters. The other three main sections define configuration for each of the three modes that can be used in LATTE.

The train section defines the learning rate, the optimizer, the name and parameters of the dataset handler to use the
one that is registered in the code, and a loss and a metric. Here the loss and metric used are standard Keras loss and
metric, and as such, there is no need to register them in the code.

The test section only defines the dataset handler to use for the test dataset. Here the same dataset handler is used,
only the path to the dataset changes.

The convert section defines which conversion format should be used, and their parameters, if any.

For a more complex and working configuration example, refer to the example code and configuration that is provided
alongside the LATTE Python package.

4.3. Train

To perform training with the example code and configuration presented above, the following command can be
executed in the folder where the code and the configuration file reside:

latte train configuration.yaml code.py

Running this command for the first time will create a folder named configuration, which will store the log files, the
Tensorboard summaries, the train checkpoints, and the best model checkpoint. At any point, the training can be
stopped by performing the keyboard combination CTRL+C. Then, if the same command above is rerun, the training will
be resumed at the epoch where the execution was stopped. It is possible with this command to use the option -,
which will remove the checkpoints and the Tensorboard logs from the configuration folder, thus forcing the model to
be trained from scratch. Note that the checkpoints and logs are simply moved to the trash bin and can be restored if
this option is used by mistake.

Once the model training is completed, the usual iterative development process begins. For instance, one might want to
train again with different parameters; to do so, a copy of the file configuration.yaml could be made and named
configuration-2.yaml, and the parameters changed. A folder named configuration-2 would be created by LATTE when
running with this configuration file, thus preserving the data in the folder of the first experiment. When the code needs
to be changed between two experiments, one way to ensure that older experiments can be rerun is to write the code
in a backward-compatible way, or simply use a code versioning tool such as Git and commit the code changes before
running the experiment.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice sensAl Neural Networks Training Environment :.'LATTICE

User Guide

4.4. Test

The trained model can be tested by running the following command:

latte test configuration.yaml code.py

The test losses and metrics will be displayed after the test dataset has been processed by LATTE.

4.5. Conversion

When the model is ready to be deployed, it can be converted into the specified format by running the following
command:

latte convert configuration.yaml code.py

Here, the converted model files are generated into the folder configuration/convert.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-UG-02226-1.1 12

http://www.latticesemi.com/legal

Lattice sensAl Neural Networks Training Environment ...'LATTICE

User Guide

Reference

e Lattice sensAl™ Neural Networks Training Environment - Installer

e Lattice Insights for Lattice Semiconductor training courses and learning plans

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02226-1.1

13

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=54548
https://www.latticesemi-insights.com/

Lattice sensAl Neural Networks Training Environment ...'LATTICE

User Guide

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.
For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-UG-02226-1.1

14

http://www.latticesemi.com/legal
https://www.latticesemi.com/techsupport
https://www.latticesemi.com/Support/AnswerDatabase

Lattice sensAl Neural Networks Training Environment

User Guide

=LATTICE

Revision History

Revision 1.1, May 2025

Section

Change Summary

Prerequisites and Installation

Updated the Miniconda installation link in the Python Environment section.

References

Replaced LATTE web page (variation 2.8.0) with Lattice sensAl™ Neural Networks
Training Environment - Installer.

Revision 1.0, November 2024

Section

Change Summary

All

Initial release.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-UG-02226-1.1

15

http://www.latticesemi.com/legal

s=LATTICE

https://www.latticesemi.com/

	Lattice sensAI Neural Networks Training Environment
	Contents
	Abbreviations in This Document
	1. Introduction
	1.1. Concepts
	1.2. Features

	2. Installation
	2.1. Prerequisites
	2.2. Python Environment
	2.3. Package Installation

	3. Command Line Usage
	4. Workflow
	4.1. Python Code
	4.2. Configuration File
	4.3. Train
	4.4. Test
	4.5. Conversion

	Reference
	Technical Support Assistance
	Revision History
	Revision 1.1, May 2025
	Revision 1.0, November 2024

