

Lattice Nexus 2 sysl/O User Guide

Preliminary Technical Note

FPGA-TN-02365-0.81

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language FAQ# 6878 for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

Content	S	
Abbrevia	ations in This Document	5
1. Inti	roduction	6
2. sys	I/O Overview	
3. sys	I/O Banking Scheme	8
3.1.	VCC (0.82 V)	9
3.2.	VCCIO Wide Range (1.2 V/1.8 V/2.5 V/3.3 V)	
3.3.	VCCIO High Performance (0.9 V/1.0 V/1.1 V/1.2 V/1.35 V/1.8 V)	9
3.4.	VCCAUX (1.8 V)	9
3.5.	Standby	
3.6.	High Performance sysl/O Buffer Pairs (On Bottom Side)	10
3.7.	Wide Range sysI/O Buffer Pair (On Top Sides)	11
4. Vcc	10 Requirement for I/O Standards	12
5. sys	I/O Buffer Configurations	
5.1.	Programmable Drive Strength	13
5.2.	Programmable Slew Rate	14
5.3.	Tri-state Control	14
5.4.	Open-Drain Control	
5.5.	Differential Input Termination	14
5.6.	ESD Protection Diode	
5.7.	Soft MIPI D-PHY Support	15
6. Sof	tware sysI/O Attributes	16
6.1.	IO_TYPE	16
6.2.	PULLMODE	16
6.3.	HYSTERESIS	17
6.4.	VREF	17
6.5.	OPENDRAIN	17
6.6.	SLEWRATE	17
6.7.	DIFFRESISTOR	17
6.8.	TERMINATION	17
6.9.	DRIVE STRENGTH	17
6.10.	LOC	18
Appendi	ix A. HDL Attributes	19
	ix B. sysI/O Buffer Design Rules	
Appendi	ix C. sysI/O Attributes Using Lattice Radiant Device Constraint Editor User Interface	22
Referen	ces	23
Technica	al Support Assistance	24
Revision	History	25

3

Figures

Figure 3.1. LN2-CT-06/10 sysI/O Banking	8
Figure 3.2. LN2-CT-16/20 sysI/O Banking	9
Figure 3.3. High Performance sysI/O Buffer Pair for Bottom Side	
Figure 3.4. Wide Range sysl/O Buffer for Top Side	
Figure 5.1. Off-Chip and On-Chip Solutions	
Figure 5.2. MIPI Primitive Symbol	
Figure C.1. Port Sheet of Device Constraint Editor	22
Tables	
Table 4.1. Input Mixed Mode for Wide Range Input Buffers	12
Table 4.2. Input Mixed Mode for High Performance Input Buffers	
Table 5.1. Programmable Drive Strength Values at Various V _{CCIO} Voltages for Wide Range Output Driver	
Table 5.2. Programmable Drive Strength Values at Various V _{CCIO} Voltages for High Performance Output Driver	13
Table 5.3. MIPI Port List	
Table 6.1. IO_TYPE Attribute Values	16

Abbreviations in This Document

A list of abbreviations used in this document.

Abbreviation	Definition
DDR	Double Data Rate
DRC	Design Rule Check
ESD	Electrostatic Discharge
xSPI	eXpanded Serial Peripheral Interface
GPIO	General Purpose Input/Output
HDL	Hardware Description Language
HPIO	High-Performance Input/Output
HSUL	High-Speed Unterminated Logic
I3C	MIPI Improved Inter-Integrated Circuit
LMMI	Lattice Memory Mapped Interface
LVCMOS	Low Voltage Complementary Metal Oxide Semiconductor
LVDS	Low-Voltage Differential Signaling
LVSTL	Low-Voltage Swing Terminated Logic
MIPI	Mobile Industry Processor Interface
ODT	On-Die Termination
PIO	Programmable Input/Output
POD	Pseudo Open Drain
PVT	Process Voltage Temperature
SLVS	Scalable Low-Voltage Signaling
SSO	Simultaneous Switching Output
SSTL	Stub Series Terminated Logic
VHDL	VHSIC Hardware Description Language
VHSIC	Very High Speed Integrated Circuit
WRIO	Wide Range Input/Output

1. Introduction

The sysI/O™ buffers in the Lattice Nexus™ 2 FPGAs are designed to support a wide range of interfaces. Two types of I/O are offered, wide range (WR) I/O on the top and high performance (HP) I/O on the bottom. They give the ability to easily interface with other devices using advanced system I/O standards. This technical note describes the sysI/O standards available and how to implement them using Lattice Radiant™ design software. For detailed information about supported sysI/O standards, refer to Lattice Nexus 2 Platform — Overview Data Sheet (FPGA-DS-02122).

2. sysl/O Overview

The key features of the sysI/O block are:

- Wide range I/O (WRIO) banks support single-ended standards only. High performance I/O (HPIO) banks support differential standards as well as single-ended standards.
- Wide range I/O banks located on the top of the device operate with V_{CCIO} of 3.3 V down to 1.2 V. High-performance I/O banks located on the bottom side operate with V_{CCIO} of 1.8 V down to 0.9 V.
- Wide range I/O banks support the weak pull-up, weak pull-down, and bus-keeper mode. High performance I/O banks support the weak pull-up, weak pull-down, bus-keeper, I3C pull-up, and Failsafe mode that is for the Low-Voltage Differential Signaling (LVDS) receiver only.
- Bottom HPIO banks support on-chip dynamic differential input 100 Ω termination. Single-end termination with a programmable resistor is supported in all banks.
- Always-On inputs hysteresis on LVCMOS.
- All banks support the runt pulse glitch filter.
- Programmable Slew Rate on all outputs.
- Programmable Open-Drain on all outputs.
- Electrostatic Discharge (ESD) protection diodes on all General Purpose Input/Output (GPIO) in all banks.
- Support eXpanded Serial Peripheral Interface (xSPI), for both configuration and user mode on WRIO.
- High Performance I/O banks support programmable Thevenin input On-Die Termination (ODT) of $30/34/40/48/60/80/120/240~\Omega$ dynamically. This is available on every input pin. ODT can be connected to V_{CCIO} , V_{SSIO} , or parallel.
- Per I/O Support configuration earlier than bitstream configuration both on WRIO and HPIO, the I/O buffer and IOLOGIC are configured by Lattice Memory Mapped Interface (LMMI) registers.

3. sysI/O Banking Scheme

LN2-CT-16/20 devices have 11 banks and LN2-CT-06/10 devices have eight banks. Top side banks are wide range (WR) I/O supporting V_{CCIO} up to 3.3 V. There is a total of 52 I/O, distributed into three WR I/O banks. Additionally, LN2-CT-16/20 devices and LN2-CT-06/10 devices have three more WR I/O banks, amounting to a total of six WR I/O banks with 104 I/O. Bottom side banks are high performance (HP) I/O supporting V_{CCIO} up to 1.8 V. Each HP bank has 52 I/O. In addition, high performance banks support internal trainable VREF signal, VREF_INT, and external VREF signal, VREF_EXT. External VREF enters the bank through the configurable I/O. Figure 3.1 shows the location of each bank of the LN2-CT-06/10 device, six banks on the top side and two banks on the bottom side. Figure 3.2 shows the location of each bank of the LN2-CT-16/20 device, six banks on the top side and five banks on the bottom side.

Note: SERDES is supported in Lattice Nexus 2 devices.

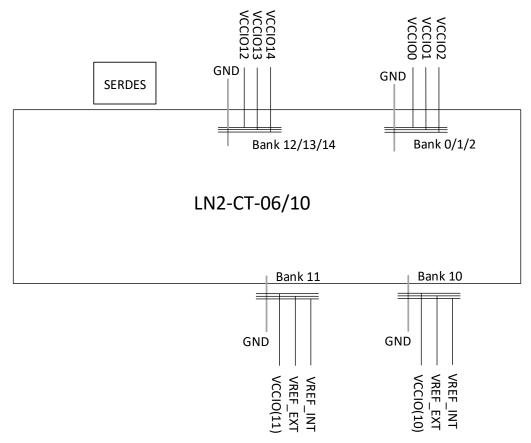


Figure 3.1. LN2-CT-06/10 sysI/O Banking

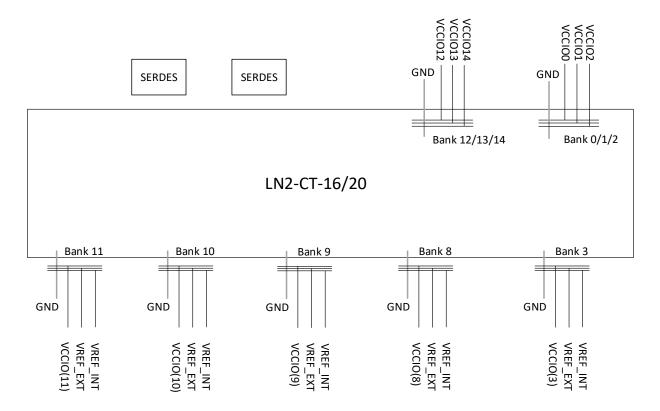


Figure 3.2. LN2-CT-16/20 sysI/O Banking

3.1. VCC (0.82 V)

This is the core supply. This V_{CC} supply is used to power the control logic. The control signals and data signals from the I/O logic are then translated to a higher supply of the I/O buffers.

3.2. VCCIO Wide Range (1.2 V/1.8 V/2.5 V/3.3 V)

Banks on the topside have a V_{CCIO} supply that operates from 3.3 V down to 1.2 V.

3.3. VCCIO High Performance (0.9 V/1.0 V/1.1 V/1.2 V/1.35 V/1.8 V)

Bottom side banks operate with V_{CCIO} of 1.8 V down to 0.9 V. Standards such as LVDS, SSTL, HSUL, LVSTL, POD, and SLVS are only supported on these banks.

3.4. VCCAUX (1.8 V)

In addition to the bank V_{CCIO} supplies and a V_{CC} core logic supply, Lattice Nexus 2 devices have a V_{CCAUX} auxiliary supply that powers the differential and referenced input buffers.

3.5. Standby

Using Standby mode dynamically powers down the bank. It disables the differential/reference receiver, true differential driver, current mirrors, and bias circuits.

In Standby mode, differential drivers and differential input buffers can be powered down to save power. Standby mode is enabled on a bank-by-bank basis. Each bank has user-routed input signals to enable the Standby mode, that is, the dynamic power-down mode.

3.6. High Performance sysI/O Buffer Pairs On Bottom Side

The I/O pair consists of two single-ended output drivers and two sets of single-ended input buffers, both ratioed and referenced. The A pad referenced input buffer can also be configured as a differential input. Each I/O has a weak pull-up, pull-down, or bus-keeper feature. These are disabled in the output mode. The two pads in the pair are referred to as True and Comp, where the True pad is associated with the positive side of the differential I/O and the Comp or complement pad is associated with the negative side.

Programmable Thevenin input termination (30/34/40/48/60/80/120/240 Ω) is available on every input pin dynamically, that is, ODT. ODT can be connected to V_{CCIO}, V_{SSIO}, or parallel.

Every pair has a programmable 100 Ω differential input termination resistor. Every pair also has a true LVDS and SLVS200 T_x driver. They have an independent tri-state capability.

The single-ended driver associated with the complementary pad can be optionally driven by the complement of the data that drives the single-ended driver associated with the true pad. This allows a pair of single-ended drivers to be used to drive complementary outputs with the lowest possible skew between the signals. Pads A and B form a DIFF I/O pair.

When this option is selected, the tri-state control for the driver associated with the complementary pad is driven by the same signal as the tri-state control for the driver associated with the true pad.

Refer to the High Performance sysI/O block diagram in Figure 3.3.

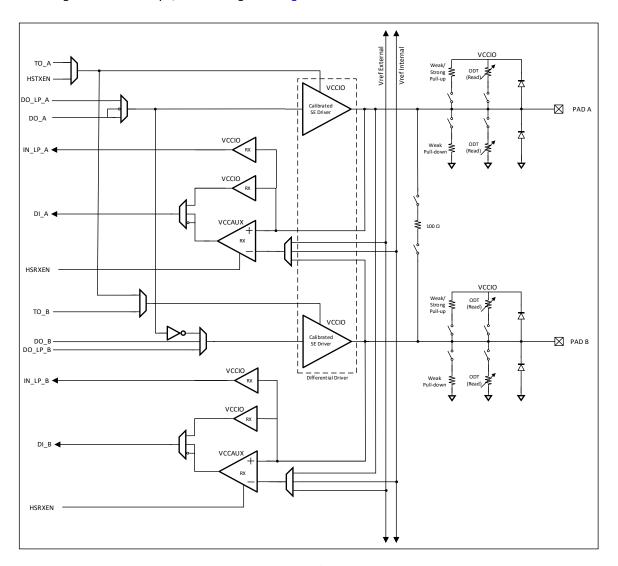


Figure 3.3. High Performance sysI/O Buffer Pair for Bottom Side

3.7. Wide Range sysl/O Buffer Pair On Top Side

The I/O pair consists of two single-ended output drivers and two sets of single-ended input buffers that are ratioed. Each I/O has a weak pull-up, pull-down, or bus-keeper feature. These are disabled in the output mode. The two pads in the pair are referred to as True and Comp, where the True pad is associated with the positive side of the Complementary I/O, and the Comp or complement pad is associated with the negative.

The single-ended driver associated with the complementary pad can be optionally driven by the complement of the data that drives the single-ended driver associated with the True pad. This allows a pair of single-ended drivers to be used to drive complementary outputs with the lowest possible skew between the signals. Pads A and B form a Complementary I/O pair. When this option is selected, the tri-state control for the driver associated with the complement pad is driven by the same signal as the tri-state control for the driver associated with the True pad.

Figure 3.4 shows the wide range I/O pair block diagram.

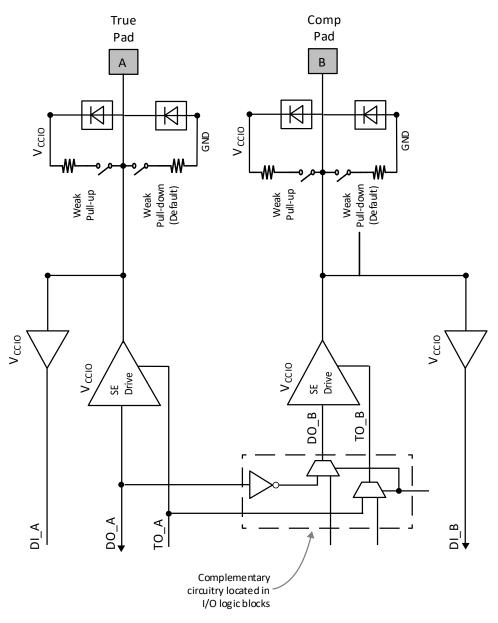


Figure 3.4. Wide Range sysl/O Buffer for Top Side

4. V_{CCIO} Requirement for I/O Standards

Each I/O bank of a device built on the Lattice Nexus 2 platform has a separate V_{CCIO} supply pin that can be connected to 0.9 V, 1.0 V, 1.1 V, 1.2 V, 1.35 V, 1.8 V for bottom banks and 1.2 V, 1.8 V, 2.5 V, 3.3 V for top banks. These voltages are used to power the output I/O standard and source the drive strength for the output. On the input side, each pad is connected to ratioed V_{CCIO} input buffers. Table 4.1 shows the input mixed mode for wide range input buffers while Table 4.2 shows the input mixed mode for high performance input buffers.

Table 4.1. Input Mixed Mode for Wide Range Input Buffers

v (v)		Input Si	gnaling (V)	
V _{CCIO} (V)	LVCMOS12	LVCMOS18	LVCMOS25	LVCMOS33
1.2	✓	_	_	_
1.8	_	✓	_	_
2.5	_	_	✓	_
3.3	_	_	_	√

Table 4.2. Input Mixed Mode for High Performance Input Buffers

V (V)		Input Si	gnaling (V)	
V _{ccio} (V)	LVCMOS09	LVCMOS10	LVCMOS12	LVCMOS18
0.9	✓	_	_	_
1.0	✓	✓	_	_
1.2	✓	✓	✓	_
1.8	✓	✓	✓	✓

5. sysI/O Buffer Configurations

This section describes the various sysI/O features available on the Lattice Nexus 2 device.

5.1. Programmable Drive Strength

All single-ended drivers have programmable drive strength. Table 5.1 and Table 5.2 show the programmable drive strength of all the I/O standards available in devices built on the Lattice Nexus 2 devices. The maximum current allowed per bank as well as the package thermal limit current should be taken into consideration when selecting the drive strength.

Table 5.1. Programmable Drive Strength Values at Various Vccio Voltages for Wide Range Output Driver

I/O Type	Drive Strength
LVCMOS33	50RS ¹ , 4 mA, 8 mA, 12 mA
LVCMOS25	50RS ¹ , 4 mA, 8 mA, 12 mA
LVCMOS18	50RS ¹ , 4 mA, 8 mA, 12 mA
LVCMOS12	6 mA, 8 mA
SUBLVDSE	50RS ¹
LVDSE	12 mA

Note:

1. 50RS is an additional drive strength setting to mitigate reflection issues when driving an unterminated open transmission line trace of 50 Ω .

Table 5.2. Programmable Drive Strength Values at Various V_{CCIO} Voltages for High Performance Output Driver

І/О Туре	Drive Strength
LVCMOS18	50RS ¹ , 4 mA, 8 mA, 12 mA
LVCMOS12	4 mA, 8 mA, 12 mA
LVCMOS10	2 mA, 4 mA, 8 mA
LVCMOS09	2 mA, 4 mA, 8 mA
HSUL12	34 Ω, 40 Ω, 48 Ω
SSTL135	34 Ω, 40 Ω
POD11	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
POD12	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
LVSTL11_I	34 Ω, 40 Ω, 48 Ω, 60 Ω,8 0 Ω, 120 Ω, 240 Ω
LVSTL11_II	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
LVDS	_
SLVS	_
SUBLVDSE	50RS ¹
LVDSE	12 mA
HSUL12D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
SSTL135D	34 Ω, 40 Ω
LVSTL11D_I	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
LVSTL11D_II	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
POD11D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
POD12D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω

Note:

1. 50RS is an additional drive strength setting to mitigate reflection issues when driving an unterminated open transmission line trace of 50 Ω .

13

5.2. Programmable Slew Rate

The single-ended output buffer for each device I/O pin has programmable output slew rate control that can be configured for either low-noise performance, SLEWRATE=SLOW, or high-speed performance, SLEWRATE=FAST. Each I/O pin has an individual slew rate control that allows designers to specify slew rate control on a pin-by-pin basis. Slew rate control affects both the rising and falling edges. Slew rates vary as a function of drive and PVT conditions. Slow slew rate reduces SSO noise as well as reflections for WRIO if only WRIO is applicable. The software default for slew rate is SLEWRATE=SLOW. Slow slew rate reduces SSO noise as well as reflections for both WRIO and HPIO if both types are applicable.

Differential standards are not impacted by slew rate settings. However, slew rate settings have some impact on emulated differential standards, as they use single-ended output buffers and complementary outputs.

5.3. Tri-state Control

On the output side, each single-ended driver has a separate tri-state control. The differential driver has a tri-state control as well.

5.4. Open-Drain Control

In addition to the tri-state control, the single-ended drivers also support open-drain operation on each I/O independently. Unlike non-open-drain output which consists of a source and sink section, an open-drain output is composed of only the sink section of the output driver. You can implement an open-drain output by turning on the OPENDRAIN attribute in the software.

5.5. Differential Input Termination

Lattice Nexus 2 devices support a programmable $100~\Omega$ input termination between all pairs on the bottom banks. The input termination of $100~\Omega$ can be programmed between on and off. Figure 5.1 shows the discrete off-chip and on-chip solutions for dedicated differential input termination. The differential termination is implemented using parallel legs that turn on and off to compensate for PVT variation. The termination also applies to input termination. It is either dynamic, enabled when the output buffer is put in tri-state, or it is static and always on. This is to support MIPI and BIDI applications.

Figure 5.1. Off-Chip and On-Chip Solutions

5.6. ESD Protection Diode

There is an ESD protection diode to all I/O banks. I/O pins are clamped to Vccio and GND by the ESD diode.

FPGA-TN-02365-0.81

5.7. Soft MIPI D-PHY Support

The following primitive should be used when implementing soft MIPI D-PHY I/O in Lattice Nexus 2 devices for High Speed (HS) as well as Low Power (LP) mode for RX and TX. The MIPI primitive is supported in HP banks on the bottom side of the device.

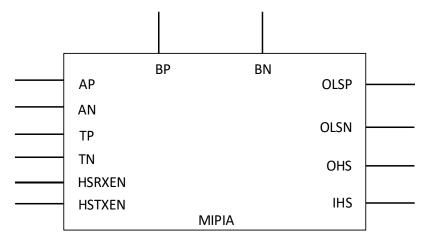


Figure 5.2. MIPI Primitive Symbol

Table 5.3. MIPI Port List

Port	I/O	Description
ВР	I/O	Bidirectional PAD A used for D-PHY Clock/Data in both HS and LP mode
BN	I/O	Bidirectional PAD B used for D-PHY Clock/Data in both HS and LP mode
AP	I	Input from fabric to PAD A – used for LP Tx function only
AN	I	Input from fabric to PAD B – used for LP Tx function only
HSRXEN	I	Enable to receive HS differential signals
HSTXEN	I	Enable to transmit HS differential signals
TP	I	Tri-state for PAD A
TN	I	Tri-state for PAD B
OLSP	0	LP Rx signal from BP
OLSN	0	LP Rx signal from BN
OHS	0	HS Rx signal from BP/BN differential
IHS	I	De-serialized input from DDR output register

When IO_TYPE is MIPI, the MIPI primitive above should be instantiated in the design. Otherwise, the software Design Rule Check (DRC) errors out. The output from the MIPI D-PHY buffer can only be used with the Double Data Rate (DDR) registers. Refer to Lattice High-Speed I/O and External Memory Interface User Guide (FPGA-TN-02300) for details on building MIPI D-PHY interfaces.

6. Software sysI/O Attributes

The sysI/O attributes can be specified in the Hardware Description Language (HDL), using Device Constraint Editor, or in Pre-Synthesis Constraint Editor/Post-Synthesis Timing Constraint Editor (.ldc/.pdc).

6.1. IO_TYPE

This attribute is used to set the sysI/O standard for an I/O. The V_{CCIO} required to set these I/O standards is embedded in the attribute names. Table 6.1 lists the available I/O types.

Table 6.1. IO_TYPE Attribute Values

sysI/O Signaling Standard	IO_TYPE
Default	LVCOMS33/LVCOMS18 ¹
LVDS	LVDS
LVDS Emulation	LVDSE
Sub-LVDS	SUBLVDS
Sub-LVDS Emulation	SUBLVDSE
SLVS	SLVS
MIPI_DPHY	MIPI_DPHY
LVSTL 1.1V Class I	LVSTL11_I
LVSTL 1.1V Class II	LVSTL11_II
LVSTL 1.1V Class I Differential	LVSTL11D_I
LVSTL 1.1V Class II Differential	LVSTL11D_II
POD 1.1V	POD11
POD 1.1V Differential	POD11D
POD 1.2V	POD12
POD 1.2V Differential	POD12D
HSUL 1.2V	HSUL12
HSUL 1.2V Differential	HSUL12D
SSTL 1.35V	SSTL135
HSUL 1.2V	HSUL12
LVCMOS 3.3V	LVCMOS33
LVCMOS 2.5V	LVCMOS25
LVCMOS 1.8V	LVCMOS18
LVCMOS 1.2V	LVCMOS12
LVCMOS 1.0V	LVCMOS10
LVCOMS 0.9V	LVCOMS09

Note:

6.2. PULLMODE

The PULLMODE options can be enabled for each I/O pin independently. The PULLMODE settings are not available when I/O pins are programmed as output. It is available for I/O pins in Input mode and Bi-direction mode.

Values: UP, DOWN, NONE, I3C, FAILSAFE, KEEPER

Default: DOWN is for standards mentioned above. Others are defaulted to NONE.

FPGA-TN-02365-0.81

^{1.} If PIO is placed to WR bank, the default value is LVCOMS18. If PIO is placed to HP bank, the default value is LVCOMS18.

6.3. HYSTERESIS

Hysteresis is always enabled when LVCMOS Receive is enabled. There is no built-in hysteresis in the differential receiver.

Values: ON, NA

Default: ON is for LVCMOS for input and bidirectional standards. Others are defaulted to NA.

6.4. VREF

Each bank supports external V_{REF} and internal V_{REF} . Each I/O pair can be configured to select either one of the available V_{REF} signals. DDR5, LPDDR4, and DDR4 must use internal V_{REF} .

Values: OFF, VREF EXT, VREF INT

Default: OFF

6.5. OPENDRAIN

The OPENDRAIN option is available for all LVCOMS output buffers.

An I/O can be assigned independently to be an open-drain when this attribute is turned on.

Values: OFF, ON Default: OFF

6.6. SLEWRATE

Each I/O pin has an individual slew rate control. This allows you to specify slew rate control on a pin-by-pin basis. Slew rate control is not a valid attribute for inputs.

Values: SLOW, FAST, NA

Default: SLOW

Hardware default: SLOW

6.7. DIFFRESISTOR

This attribute is used to provide differential termination. It is available only for differential I/O types.

Values: OFF, 100 Default: OFF

6.8. TERMINATION

The I/O supports single-ended input parallel termination to $V_{\text{CCIO}}/2$. All input parallel terminations use a Thevenin termination scheme.

Values: OFF, 34, 40, 48, 60, 80, 120, 240

Default: OFF

6.9. DRIVE STRENGTH

The DRIVE STRENGTH attribute is available for the output and bidirectional I/O standards. The default drive value depends on the I/O standard used.

FPGA-TN-02365-0.81

Table 6.2. Drive Strength Values

Output Standard	Drive	DiffDrive	V _{ccio}
Single Ended Interfaces		·	
LVCMOS33	4 mA, 8 mA, 12 mA, 50RS ¹	_	3.3
LVCMOS25	4 mA, 8 mA, 12 mA, 50RS ¹	_	2.5
LVCMOS18	4 mA, 8 mA, 12 mA, 50RS ¹	_	1.8
LVCMOS12	4 mA, 6 mA, 8 mA, 12mA	_	1.2
LVCOMS10	2 mA, 4 mA, 8 mA	_	1.0
LVCOMS09	2 mA, 4 mA, 8 mA	_	0.9
LVCMOS33 (Open-Drain)	4 mA, 8 mA, 12 mA	_	3.3
LVCMOS25 (Open-Drain)	4 mA, 8 mA, 12 mA	_	3.3, 2.5
LVCMOS18 (Open-Drain)	4 mA, 8 mA, 12 mA	_	3.3, 2.5, 1.8
LVCMOS12 (Open-Drain)	4 mA, 6 mA, 8 mA, 12 mA	_	3.3, 2.5, 1.8, 1.2
LVCOMS10 (Open-Drain)	2 mA, 4 mA, 8 mA	_	1.8, 1.2, 1.0
LVCOMS09 (Open-Drain)	2 mA, 4 mA, 8 mA	_	1.8, 1.2, 1.0, 0.9
HSUL12	34 Ω, 40 Ω, 48 Ω	_	1.2
SSTL135	34 Ω, 40 Ω	_	1.35
POD11	$34~\Omega, 40~\Omega, 48~\Omega, 60~\Omega, 80~\Omega, 120~\Omega, 240~\Omega$	_	1.1
POD12	$34~\Omega, 40~\Omega, 48~\Omega, 60~\Omega, 80~\Omega, 120~\Omega, 240~\Omega$	_	1.2
LVSTL11_I	$34~\Omega, 40~\Omega, 48~\Omega, 60~\Omega, 80~\Omega, 120~\Omega, 240~\Omega$	_	1.1
LVSTL11_II	$34~\Omega, 40~\Omega, 48~\Omega, 60~\Omega, 80~\Omega, 120~\Omega, 240~\Omega$	_	1.1
Differential Interfaces			
LVDS	_	3.5 mA	1.8
SLVS	_	2.0 mA	1.2, 1.8
SUBLVDSE	50RS ¹	_	1.8
LVDSE	12 mA	_	2.5
HSUL12D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω	_	1.2
SSTL135D	34 Ω, 40 Ω	_	1.35
LVSTL11D_I	$34~\Omega, 40~\Omega, 48~\Omega, 60~\Omega, 80~\Omega, 120~\Omega, 240~\Omega$	_	1.1
LVSTL11D_II	$34~\Omega, 40~\Omega, 48~\Omega, 60~\Omega, 80~\Omega, 120~\Omega, 240~\Omega$	_	1.1
POD11D	$34~\Omega, 40~\Omega, 48~\Omega, 60~\Omega, 80~\Omega, 120~\Omega, 240~\Omega$	_	1.1
POD12D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω	_	1.2

Note:

1. 50RS is an additional drive strength setting to mitigate reflection issues when driving an unterminated open transmission line trace of 50 Ω . It is only offered for 3.3 V, 2.5 V, and 1.8 V LVCMOS outputs.

6.10. LOC

This location attribute can be used to make pin assignments to the I/O ports in the design. This attribute is used when the pin assignments are made in the HDL source code or in the constraint editor.

Appendix A. HDL Attributes

IO_TYPE

```
VHDL:
ATTRIBUTE IO_TYPE: string;
ATTRIBUTE IO TYPE OF portA: SIGNAL IS "LVCMOS18";
ATTRIBUTE IO_TYPE OF portB: SIGNAL IS "LVCMOS33";
ATTRIBUTE IO_TYPE OF portC: SIGNAL IS "LVCMOS25";
Verilog:
output [4:0] portA /* synthesis IO_TYPE="LVCMOS33" DRIVE="12" PULLMODE="UP" SLE- WRATE="FAST"*/;
OPENDRAIN
VHDL:
ATTRIBUTE OPENDRAIN: string;
ATTRIBUTE OPENDRAIN OF q lvcoms33 17: SIGNAL IS "ON";
Verilog:
output [4:0] portA /* synthesis attribute OPENDRAIN of q_lvcoms33_17 is ON */;
DRIVE
VHDI:
ATTRIBUTE DRIVE: string;
ATTRIBUTE DRIVE OF portD: SIGNAL IS "8";
output [4:0] portA /* synthesis DRIVE = "8" */;
DIFFDRIVE
VHDL:
ATTRIBUTE DIFFDRIVE: string;
ATTRIBUTE DIFFDRIVE OF portF: SIGNAL IS "3.5";
output [4:0] portF/* synthesis IO_TYPE="LVDS" DIFFDRIVE="3.5" */;
TERMINATION
VHDL:
ATTRIBUTE TERMINATION: string;
ATTRIBUTE TERMINATION OF portF: SIGNAL IS "60";
output [4:0] portA /* synthesis IO_TYPE="LVCOMS18" TERMINATION = "60"*/;
DIFFRESISTOR
ATTRIBUTE DIFFRESISTOR: string;
ATTRIBUTE DIFFERESISTOR OF portF: SIGNAL IS "100";
output [4:0] portA /* synthesis IO_TYPE="LVDS" DIFFRESISTOR = "100"*/;
PULLMODE
VHDL:
ATTRIBUTE PULLMODE: string;
ATTRIBUTE PULLMODE OF portF: SIGNAL IS "UP";
Verilog:
output [4:0] portA /* synthesis IO_TYPE="LVCMOS33" PULLMODE = "UP"*/;
```


SLEWRATE

```
VHDL:

ATTRIBUTE SLEWRATE: string;

ATTRIBUTE SLEWRATE OF portF: SIGNAL IS "FAST";

Verilog:
output [4:0] portA /* synthesis IO_TYPE="LVCMOS33" SLEWRATE = "FAST"*/;

HYSTERESIS

VHDL:

ATTRIBUTE HYSTERESIS: string;

ATTRIBUTE HYSTERESIS OF portF: SIGNAL IS "ON";

Verilog:
output [4:0] portA /* synthesis IO_TYPE="LVCMOS25" HYSTERESIS = "ON"*/;

LOC

VHDL:

ATTRIBUTE LOC : string;

ATTRIBUTE LOC : string;

ATTRIBUTE LOC OF output_vector : SIGNAL IS "H5";

Verilog:
Input rst /* synthesis LOC="H5" */;
```

VREF

To set User Vref Locate:

- 1. After opening the design project, choose **Tools > Device Constraint Editor**.
- 2. Select the Global tab at the bottom of the view.

ldc_create_vref -name TESTING_SITE 8

- 3. Double-click the cell beside **Vref Locate**. A dialog opens.
- 4. For each available site, click on the desired row and enter a unique name in the VREF Name field.

Syntax

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02365-0.81

Appendix B. sysI/O Buffer Design Rules

- Only one V_{CCIO} level is allowed in a given bank. As such, all IO_TYPES of that bank should be compatible with the V_{CCIO} level.
- Banks at the top side of the device can support single-ended I/O and emulated outputs differential.
- Bottom banks support differential inputs and outputs as well as single-ended I/O.
- When an output is configured as an OPENDRAIN, the PULLMODE is set to NONE.
- When an output is configured as an OPENDRAIN, it can be placed independent of Vccio.
- When a ratioed input buffer is placed in a bank with a different V_{CCIO} (mixed mode), the Pull mode options of Up are no longer available.
 - The IO_TYPE attribute for a differential buffer can only be assigned to the TRUE pad. The Lattice Radiant design tool automatically assigns the other I/O of the differential pair to the complementary pad.
- DIFFRESISTOR termination is available on all sysI/O pairs of bottom banks.
- If none of the pins are used for a given bank, the V_{CCIO} of the bank should be tied to VCCAUX except for the JTAG bank.

Appendix C. sysI/O Attributes Using Lattice Radiant Device Constraint Editor User Interface

sysI/O buffer attributes can be assigned using the Device Constraint Editor in the Lattice Radiant software. The Port Assignments Sheet lists all the ports in a design and all the available sysI/O attributes in multiple columns. Click on each of these cells for a list of all the valid I/O preferences for that port. Each column takes precedence over the next. Therefore, when you choose a particular IO_TYPE, the columns for the PULLMODE, DRIVE, SLEWRATE, and other attributes list only the valid entries for that IO_TYPE.

Pin locations can be locked by using the Pin column of the Port Tab Sheet or by using the Pin Tab Sheet. You can right-click on a cell and go to **Assign Pins** to see a list of available pins.

In Device Constraint Editor, go to **Design > Constraint DRC** to look for incorrect pin assignments.

All the preferences assigned using the Device Constraint Editor are written into the post-synthesis constraint file (.pdc). Figure C.1 shows the Port Sheet of the Device Constraint Editor.

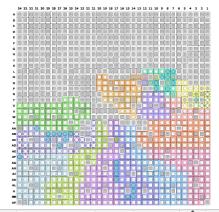


Figure C.1. Port Sheet of Device Constraint Editor

For further information on how to use Device Constraint Editor, refer to the Lattice Radiant Help documentation, which is available in the Help menu option of the software.

22

References

• Certus Nexus 2 web page

A variety of technical notes for the Lattice Nexus 2 platform are available.

- High-Speed PCB Design Considerations (FPGA-TN-02178)
- Lattice Nexus 2 Embedded Memory User Guide (FPGA-TN-02366)
- Lattice Nexus 2 Hardware Checklist (FPGA-TN-02382)
- Lattice High-Speed I/O and External Memory Interface User Guide (FPGA-TN-02300)
- Lattice Nexus 2 Platform Overview Data Sheet (FPGA-DS-02122)
- Lattice Nexus 2 Platform Specifications Data Sheet (FPGA-DS- 02121)
- Lattice Nexus 2 Power User Guide (FPGA-TN-02381)
- Lattice Nexus 2 sysCLOCK PLL Design and User Guide (FPGA-TN-02364)
- Lattice Nexus 2 sysDSP User Guide (FPGA-TN-02362)
- Lattice Nexus 2 sysCONFIG User Guide (FPGA-TN-02370)
- Lattice Memory Mapped Interface and Lattice Interrupt Interface User Guide (FPGA-UG-02039)
- sub-LVDS Signaling Using Lattice Devices (FPGA-TN-02028)
- Thermal Management (FPGA-TN-02044)
- Using TraceID (FPGA-TN-02084)

Other references:

- Lattice Insights for Lattice Semiconductor training courses and learning plans
- Lattice Radiant FPGA design software

Technical Support Assistance

 $Submit\ a\ technical\ support\ case\ through\ www.latticesemi.com/techsupport.$

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

Revision History

Revision 0.81, October 2024

Section	Change Summary		
All	Globally changed the platform name from Lattice Khronos to Lattice Nexus 2.		
sysI/O Banking Scheme	 Changed LKH-CT/MH20 to LN2-CT-16/20 in this section. Changed LKH-CT/MH10 to LN2-CT-06/10 in this section. In Figure 3.1. LN2-CT-06/10 sysl/O Banking: changed Bank 3 to Bank 10 and updated VCCIO (3) to VCCIO (10) accordingly; changed Bank 8 to Bank 11 and updated VCCIO (8) to VCCIO (11) accordingly; showed VCCIO12, VCCIO13, and VCCIO14 separately; showed VCCIO0, VCCIO1, and VCCIO2 separately. In Figure 3.2. LN2-CT-16/20 sysl/O Banking: removed a SERDES block; changed VCCIO (4) to VCCIO (8) in Bank 8; changed VCCIO (8) to VCCIO (10) in Bank 9; changed VCCIO (8) to VCCIO (10) in Bank 10; changed VCCIO (9) to VCCIO (11) in Bank 11; showed VCCIO12, VCCIO13, and VCCIO14 separately; showed VCCIO0, VCCIO1, and VCCIO2 separately. 		

Revision 0.80, August 2024

Section	Change Summary
All	Initial preliminary release.

www.latticesemi.com