Lattice Diamond 3.14
Programming Tools User Guide

= LATTICE

October 15, 2024

Copyright

Copyright © 2024 Lattice Semiconductor Corporation. All rights reserved. This
document may not, in whole or part, be reproduced, modified, distributed, or publicly
displayed without prior written consent from Lattice Semiconductor Corporation
(“Lattice”).

Trademarks

All Lattice trademarks are as listed at www.latticesemi.com/legal. Synopsys and
Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks
of Aldec, Inc. QuestaSim is a trademark or registered trademark of Siemens Industry
Software Inc. or its subsidiaries in the United States or other countries. All other
trademarks are the property of their respective owners.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS”
WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING
WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY,
NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LATTICE HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN
LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Lattice may make changes to these materials, specifications, or information, or to the
products described herein, at any time without notice. Lattice makes no commitment to
update this documentation. Lattice reserves the right to discontinue any product or
service without notice and assumes no obligation to correct any errors contained
herein or to advise any user of this document of any correction if such be made. Lattice
recommends its customers obtain the latest version of the relevant information to
establish that the information being relied upon is current and before ordering any
products.

Lattice Diamond 3.14 Programming Tools User Guide 2

http://www.latticesemi.com/legal

Type Conventions Used in This Document
Convention Meaning or Use

Bold Items in the user interface that you select or click. Text that you type
into the user interface.

<l[talic> Variables in commands, code syntax, and path names.

Ctri+L Press the two keys at the same time.

Courier Code examples. Messages, reports, and prompts from the software.
Omitted material in a line of code.

Omitted lines in code and report examples.

[] Optional items in syntax descriptions. In bus specifications, the
brackets are required.

() Grouped items in syntax descriptions.
{1} Repeatable items in syntax descriptions.

| A choice between items in syntax descriptions.

Lattice Diamond 3.14 Programming Tools User Guide

= LATTICE

Contents

Chapter 1 Programming Tools Description 7
Programmer 7
Deployment Tool 7
Programming File Utility 8
Download Debugger 8
Model 300 8
Embedded Flow 8
Driver Installation 9

Chapter2 Programmer Overview 10

Usage and flow 11
Programmer Design Flow 11
Programming Basics 11
In-System Programming 13
Programming Algorithm Basics 13
Programming Times 14
USERCODE 15
Programming Hardware 16
Programming Software 16
Embedded Programming 17
FPGA Configuration 17
Serial Peripheral Interface Flash 17

Chapter 3 Deployment Tool Overview 18
Deployment Tool Function Types 20
Output File Types 20
File Conversion Output File Types 20
Tester Output File Types 22
Embedded System Output File Types 23
External Memory Output File Types 24

Lattice Diamond 3.14 Programming Tools User Guide

CONTENTS

Chapter 4 Embedded Flow Overview 26

JTAG Full VME Embedded 37
VME File Format 37
JTAG Full VME Embedded Flow 40
JTAG Full VME Embedded System Memory 41
JTAG Full VME Embedded Basic Operation 42
VME Source Code 43
JTAG Full VME Embedded Programming Engine 43
RAM Size Requirement for VME 44
ROM Size Requirement for JTAG Full VME Embedded 46
JTAG Full VME Embedded Required User Changes 46
Program Memory Requirement 48
Program Memory Allocation 48
Sample Program Size 49
VME File Size 50
Using JTAG Full VME Embedded 59
Generating VME Files 59
Testing VME Files 60
Converting an SVF File to VME File 60
Choosing the File-Based or EPROM-Based Version 60
Customizing for the Target Platform 61
Advanced Issues 61
EPROM-based JTAG Full VME Embedded User Flow 61
Programming Engine Flow 63
VME Byte Codes 77
Unsupported SVF Syntax 80

JTAG Slim VME Embedded 81
JTAG Slim VME Embedded Source Code 82
Using the PC-based JTAG Slim VME Embedded 83
Using the 8051-based JTAG Slim VME Embedded 84
VME Algorithm Format 85
VME Data Format 88
VME Required User Changes 89
Program Memory Requirement 90
Program Memory Allocation 90
Sample Program Size 91
VME File Size 92
Generating JTAG Slim VME Embedded Files 92
JTAG Slim VME Embedded Source Code 93
8051 JTAG Slim VME Embedded User Flow 95
Programming Engine Flow 96
VME Algorithm and Format 107

Slave SPI Embedded 109
Requirements 109
Slave SPI Embedded Algorithm Format 111
Slave SPI Embedded Data Format 112
Generating Slave SPI Embedded Files 112
Modifications 113
Usage 120
Return Codes from Slave SPI Embedded 120
Programming Considerations for SSPIEM modification with Aardvark SPI
APIs 121

I2C Embedded 121

Lattice Diamond 3.14 Programming Tools User Guide 5

CONTENTS

Masters and Slaves 122

LFMNX, MachX02, MachXO3D, MachXO3L, MachXO3LF, or
MachXO3LFP Slave 12C Programming 122

Using the PC-based 12C Embedded Programming 123

Using the 8051-based 12C Programming 124

I2C Algorithm Format 125

I2C Data Format 126

I2C Embedded Programming Required User Changes 127

Generating 12C Files 128

Programming Considerations for SSPIEM and I2CEM modification with
Aardvark 12C APIs 132

sysCONFIG Embedded 132
sysCONFIG Embedded Flow 133
sysCONFIG Embedded Bitstream Format 134
sysCONFIG Embedded Bitstream Structure 135
sysCONFIG Embedded Basic Operation 136
sysCONFIG Embedded Source Code 138
sysCONFIG Embedded Engine 139
Sample Program Size 141
Generating a sysCONFIG Embedded Bitstream 142
sysCONFIG SPI Port AC Parameters 142
sysCONFIG Interface 145

156

Revision History 158

Lattice Diamond 3.14 Programming Tools User Guide 6

= LATTICE Chapterl

Programming Tools Description

This user guide is intended to provide users with basic information, and
references on where to find more detailed information, to assist in configuring
and programming Lattice devices using Diamond Programmer and related
tools including Deployment Tool, Programming File Utility, Download
Debugger, and Model 300 Programmer.

Programmer

Diamond Programmer is a system for programming devices. The software
supports both serial and concurrent (turbo) programming of Lattice devices
using PC and Linux environments. The tool also supports embedded
microprocessor programming. Refer to “Programmer Overview” on page 10.

Deployment Tool

Deployment Tool is a stand-alone tool available from the Diamond
Accessories. The Deployment Tool graphical user interface (GUI) is separate
from the Diamond design environment.

The Deployment Tool allows you to generate files for deployment for single
devices, a chain of devices, and can also convert data files to other formats
and use the data files it produces to generate other data file formats. Refer to
“Deployment Tool Overview” on page 18.

Lattice Diamond 3.14 Programming Tools User Guide 7

PROGRAMMING TooOLS DESCRIPTION : Programming File Utility

Programming File Utility

Programming File Utility allows the viewing and editing of different format
programming files.The Programming File Utility is a stand-alone tool that
allows you to view and compare data files. When comparing two data files, the
software generates an output (.out) file with the differences highlighted in red.

Detailed information and procedures on how to use the Programming File
Utility are contained in the “Using Programming File Utility” section of the
Lattice Diamond online help or in the stand-alone Programming File Utility
online help.

Download Debugger

Model 300

Download Debugger is a utility for debugging programming for debugging
Serial Vector Format (SVF) files, Standard Test And Programming Language
(STAPL) files, and Lattice Embedded (VME) files. Download Debugger allows
you to program a device, and edit, debug, and trace the process of SVF,
STAPL, and VME files. Download Debugger also allows you to create, edit, or
view a VME file in hexadecimal format.

Detailed information and procedures on how to use the Download Debugger
are contained in the “Debugging SVF, STAPL, and VME Files” section of the
Lattice Diamond online help or in the stand-alone Download Debugger online
help.

The Model 300 Programmer is a simple engineering device programmer that
allows you to perform single-device programming directly from a PC or Linux
environment. The Model 300 Programmer software and hardware support all
JTAG devices produced by Lattice, with device Vcc of 1.8, 2.5, 3.3, and 5.0V.

Detailed information and procedures on how to use the Model 300 hardware
and software are contained in the “Using the Model 300 Programmer” section
in the Lattice Diamond online help or in the stand-alone Model 300 online
help.

Embedded Flow

Programming flow using a processor to read the contents of a stored
programming file and programming the FPGA. Lattice provides the option to
generate several different file formats for different embedded target options.
Refer to “Embedded Flow Overview” on page 26.

Lattice Diamond 3.14 Programming Tools User Guide 8

PROGRAMMING TOOLS DESCRIPTION : Driver Installation

Driver Installation

A utility is available for installing programming drivers after the Diamond or
Programmer software has been installed. Refer to the topic “Installing/
Uninstalling Parallel Port Driver and USB Driver on a PC” in the Lattice
Diamond online help or in the stand-alone Programmer online help.

Lattice Diamond 3.14 Programming Tools User Guide 9

= LATTICE Chapter 2

Programmer Overview

Diamond Programmer is integrated into the Lattice Diamond software, and is
also available as a standalone tool. Both versions come with online help that
provides essential information for using the tool to program Lattice devices.
The two versions are virtually identical, except for the following differences:

Integrated Mode

When Programmer is used in integrated mode, it checks that the bitstream
(.bit) or JEDEC file (.jed) selected in the Diamond project (.xcf) matches the
file generated by the project. If the file does not match when the file is
originally selected, a warning dialog informs the user that the file is not the
one generated by the project. If an existing .xcf is opened, and the file is not
the correct one generated by the project, the file section for that device is
highlighted in red in the Diamond graphical user interface.

Standalone Mode

The stand-alone Programmer supports mature Lattice devices. A “Mature
Device” license feature (LSC_PROGRAMMER_MATURE) is required in your
license file to enable these devices. Without the license, Programmer will list
the mature devices in the Device Selection and will be able to Scan the
devices, but will not be able to program mature devices. The only operation
available is Bypass. With the Mature Device license, full support is available.

Diamond Integrated Programmer (Programmer integrated into the Lattice
Diamond software) will list the mature devices in the Device Selection and will
be able to Scan the devices, but will not be able to program mature devices,
even with the Mature Device license. The only operation available is Bypass.

Full support is only available when running Diamond Programmer as a stand-
alone tool.

Lattice Diamond 3.14 Programming Tools User Guide 10

PROGRAMMER OVERVIEW : Usage and flow

Usage and flow

Programming is the process changing the state of a non-volatile
programmable element (such as embedded Flash and external SPI Flash
devices) by downloading data from JEDEC, bitstream, or hex files transmitted
to the download cable through the host computer’s serial communications
port; from an embedded system; or from a third party programmer.

Configuring is the process of changing the state of a volatile programmable
element (such as SRAM in the FPGA).

Before programming or configuring an FPGA, you need to create and verify
your design, and then generate data files. To download a data file into the
target device, use the Programmer tool which is integrated into the Diamond
software, and also available in a standalone version.

Programmer Design Flow

The design flow for creating and downloading a design chain is the same,
whether you select the devices and settings from the software or use an
existing chain configuration file.

1. Create a design and compile it to a JEDEC, ISC, hex, or bitstream data
file.

2. Using Programmer, create a new chain configuration or open an existing
one.

Add devices to the chain, and select the data file and operation for each.

4. Arrange the order of the devices in the chain and edit the options for each
device as needed.

5. Program the daisy-chained devices using the Program toolbar command.

Figure 1 on page 12 describes the Lattice programming process.

Programming Basics

To successfully program devices in-system, there are a few simple
requirements that must first be met. The first of these requirements is that the
devices on the board must be correctly connected into an 1149.1 scan chain.
This scan chain can be used for either programming or testing the board.

To program using Programmer a description of the scan chain must be
developed. This description, called a chain file, contains basic information
about all of the devices in the chain. For the Lattice devices, it includes the
device type, the operation to be performed, and the data file, if required by the
operation. Additional information in the chain file can include the state of the I/
O pins during programming, along with security requirements. If the chain
includes non-Lattice devices, the instruction register length is required for
these devices. The instruction register length can be found from the BSDL file
or the SVF file for the device.

Lattice Diamond 3.14 Programming Tools User Guide 1

PROGRAMMER OVERVIEW : Usage and flow

Figure 1: Programming Design Flow

Lattice Diamond Software
" Data
File
Eﬁﬂce_ B Diamond
Database
iy Programmer
T e e
L XCF Writer ,Il = —j |
e
— ¥CF Model B
== -‘:;::_‘ ==
| Data Chain Structure [
—l-l VM Processor Ii Reﬁ a;d Eue
: Data File
| Cable Driver |

<

—
-
—

Program
Device

Another requirement for successful programming is thoughtful board design.
The signals used in a scan chain (TCK, TMS, TDI, and TDO) rarely operate
as fast as the data path signals on the board. However, correct board layout
methodologies, such as buffering for large chains and termination resistors,
are required to ensure trouble-free operation. Some Lattice devices have
some additional pins (TRST, ispEN, PROGRAMN, INITN, DONE, SLEEPN,
and TOE) that can affect boundary scan programming and test if not taken
care of properly.

Atfter all of these requirements have been met, it should be relatively
straightforward to program any number of devices on a board. You can

Lattice Diamond 3.14 Programming Tools User Guide 12

PROGRAMMER OVERVIEW : Usage and flow

program the devices using a PC or Linux system and a board test system
connected by one of the following cables:

A Lattice parallel port cable with the 8-pin AMP connector or 10-pin
JEDEC connector

A Lattice USB port cable

In-System Programming

After you have compiled your design to a data file (JEDEC, hex, or bitstream)
and device programming is necessary, you must serially shift the fuse map (a
fuse map file is a design file that has the fuse data already pre-arranged in
exactly the same format as the physical layout of the fuse array of the device)
data into the device along with the appropriate addresses and commands.

Lattice non-volatile FPGA devices use embedded flash memory and require
only TTL-level programming signals. An integrated state machine controls the
sequence of programming operations, such as identifying the device, shifting
in the appropriate data and commands, and controlling internal signals to
program and erase the embedded Flash in the device. Programming consists
of serially shifting the logic implementation stored in a data file into the device
along with appropriate addresses and commands, programming the data into
the embedded Flash, and shifting the data from the logic array out for device
programming verification.

Most of Lattice’s devices use the IEEE 1149.1-1993 Boundary Scan Test
Access Port (TAP) as the primary interface for in-system programming.

Programming Algorithm Basics

Programming a device is similar to programming any piece of memory, such
as an EPROM or a Flash memory. The device can be thought of as an array
that is programmed one row at a time. The programming information is
provided to the software in the form of a data file that must be converted into
the row and column fuse map data. Before a non-volatile device can be
programmed, it first has to be erased. After the device has been erased, the
programming data can be loaded and the device programmed. After the
device has been programmed, it will be verified by reading out the data in the
device and comparing it to the original.

Figure 2 on page 14 shows the basic programming flow for the device. It does
not include the data file conversion into fuse map data, for it assumes that

Lattice Diamond 3.14 Programming Tools User Guide 13

PROGRAMMER OVERVIEW : Usage and flow

step has already been done. This programming flow will be the same,
regardless of the programming hardware used.

Figure 2: Basic Device Programming Flow

Praload
or Save
I Siates?

Preload/Gave 1'0s
Lising
SAMPLE/PRELOAD

Entar Pregramming
Mode

¥

Erase Devics

[]

Program Devica

[]

Warify Davica

Program Security

Exit Programming
Moda

Reset Device

Note

If the device will not be programmed in-circuit (that is, by a cable or an embedded
processor), it is not necessary to preload or save the 1/O states.

Programming Times

The time it takes to program a device can often determine where in the
manufacturing process a device, or group of devices, is programmed. A board
test system costing hundreds of thousands of dollars to purchase and as
much as one dollar per minute to operate can be an expensive alternative to
programming if programming times are too long. In many instances, it is more
cost-effective to buy a couple of PCs and program the devices using these
much cheaper systems.

The time it takes to completely program a device is based on the time it takes
to first erase the device, then to program each row in the device, and finally to

Lattice Diamond 3.14 Programming Tools User Guide 14

PROGRAMMER OVERVIEW : Usage and flow

verify the device. The erase time for all devices is between 100 ms and 200
ms. A single row is programmed in 10 ms to 50 ms, depending on the device.
The verification process is the quickest of the required steps in the
programming sequence and mainly depends on the time required to shift the
verification data out of any given device.

The benefit of minimal programming times is much more obvious on board
test systems, because they are included as a part of the test program and are
running at the fastest speed possible. Additionally, there is no translation
needed to or from the data file, since this has already been done by
Programmer.

USERCODE

User-programmable identification can ease problems associated with
document control and device traceability. Every Lattice 1149.1-compliant
device contains a 32-bit register that is accessible through the optional IEEE
1149.1 USERCODE instruction. This user-programmable ID register is
basically a user’s notepad provided in Flash or SRAM cells on each device.

In the course of system development and production, the proliferation of PLD
architectures and patterns can be significant. To further complicate the
record-keeping process, design changes often occur, especially in the early
stages of product development. The task of maintaining which pattern goes
into what device for which socket becomes exceedingly difficult. Once a
manufacturing flow has been set, it becomes important to “label” each PLD
with pertinent manufacturing information, which is beneficial in the event of a
customer problem or return. A USERCODE register is incorporated into
devices to store such design and manufacturing data as the manufacturer’'s
ID, programming date, programmer make, pattern code, checksum, ISC data
file CRC, PCB location, revision number, or product flow. This assists you with
the complex chore of record maintenance and product flow control. In
practice, the user-programmable USERCODE register can be used for any of
a number of ID functions.

Within 32 bits available for data storage, you may find it helpful to define
specific fields to make better use of the available storage. A field may use
only one bit (or all bits), and can store a wide variety of information. The
possibilities for these fields are endless, and their definition is completely up
to you.

Even with the device’s security feature enabled, the USERCODE register can
still be read. With a pattern code stored in the USERCODE register, you can
always identify which pattern has been used in a given device. As a second
safety feature, when a device is erased and re-programmed, the USERCODE
identification is automatically erased. This feature prevents any situation in
which an old USERCODE might be associated with a new pattern.

It is your responsibility to update the USERCODE when reprogramming. The
USERCODE information is not included in the fuse map checksum reading.

Lattice Diamond 3.14 Programming Tools User Guide 15

PROGRAMMER OVERVIEW : Usage and flow

Loading the USERCODE instruction makes the USERCODE available to be
shifted out in the Shift-DR state of the TAP controller. The USERCODE
register can be read while the device is in normal functional operation,
allowing the device to be scanned while operating.

Programming Hardware

All programming specifications, such as the programming cycle and data
retention, are guaranteed when programming devices over the commercial
temperature range (0 to 70 degrees C). It is critical that the programming and
bulk erase pulse width specifications are met by the programming platform to
ensure proper in-system programming. The details of device programming
are invisible to you if you use Lattice programming hardware and software.

Computer Hardware

Programming is most commonly performed on a PC or Linux system using
the parallel port cable or the USB port cable.

Parallel Port Cable

The cable uses the parallel port of a PC or Linux system for in-system
programming of all Lattice devices. Programmer generates programming
signals from the parallel port and passes them through the cable to the JTAG
port of the devices. With this cable and a connector on the printed circuit
board, no additional components are required to program a device. Refer to
the cable data sheet for more detailed specifications and ordering information.

Hardware design considerations for new boards include whether the
hardware designer will be using boundary scan test operations or low-voltage
(3.3 V-1.8 V) devices. In a system using 3.3 V devices, the cable version 2.0
should be used. This cable operates with either a 3.3 V or 5 V power source.
In a system using 1.8 V devices, cable version 3.0 must be used. This cable
operates with a power of 1.8 V10 5.0 V.

USB Port Cable

The USB port cable uses the USB port of a PC or Linux system for in-system
programming of all Lattice devices. Programmer generates programming
signals from the USB port and passes them through the USB port cable to the
JTAG, Slave SPI, or I°C port of the device. Be sure to use JTAGI2C Interface
Programming mode with the USB cable for the 12C port.

Programming Software

Programmer supports programming of all Lattice devices in a serial daisy
chain programming configuration in a PC or Linux environment. The software
is built around a graphical user interface. Any required data files are selected

Lattice Diamond 3.14 Programming Tools User Guide 16

PROGRAMMER OVERVIEW : Usage and flow

by browsing with a built-in file manager. The software supports both serial and
concurrent (turbo) programming of all Lattice devices. Any non-Lattice
devices that are compliant with IEEE 1149.1 can be bypassed after their
instruction register lengths are defined in the chain description. Any non-
Lattice devices that are compliant with IEEE 1532 can be programmed using
an IEEE 1532-compliant BSDL and ISC data file. Programmable devices from
other vendors can be programmed through the vendor supplied SVF file.

Embedded Programming

Programmer embedded source code is available for programming devices in
an embedded or customized environment. The programming source code is
written in ANSI-standard C language, which can be easily incorporated into
an embedded system or tester software to support programming of devices.
This code supports such common operations as Erase, Program, Verify, and
Secure. After completion of the logic design and creation of a JEDEC file,
Programmer can create the data files required for in-system programming on
customer-specific hardware: PCs, testers, or embedded systems.

FPGA Configuration

Programmer provides efficient and economical alternatives to large and
expensive PROMs that are normally used for configuring FPGA devices.

Because SRAM-based FPGA devices are volatile, they require
reconfiguration on power cycles. This means that external configuration data
must be held in a non-volatile device. On systems that require quick
configurations or that do not have processor resources readily available, a
dedicated serial PROM can be used. But such a PROM has to be large to
accommodate large FPGA devices or multiple devices.

A much easier solution is to use a low-cost, industry-standard flash memory
device combined with a LatticeECP/EC, LatticeECP2, LatticeECP3, and
LatticeSCM/SC device.

Serial Peripheral Interface Flash

Programmer, combined with a Lattice cable download, supports the
programming of Serial Peripheral Interface (SPI) flash devices.

Several Lattice FPGAs can be configured directly from an external serial
peripheral interface (SPI) flash memory devices. Because of their bitstream
compression capability, these Lattice FPGAs allow the use of smaller-capacity
SPI memory devices.

For an up-to-date list of Lattice devices that can be configured using SPI
flash, as well as a list of supported SPI flash devices, refer to the topic “Serial
Peripheral Interface (SPI) Flash Support” in the Lattice Diamond online help
or in the stand-alone Programmer online help.

Lattice Diamond 3.14 Programming Tools User Guide 17

= LATTICE Chapter 3

Deployment Tool Overview

Deployment Tool is a stand-alone tool available from the Diamond
Accessories and is also available with stand-alone Programmer. The
Deployment Tool graphical user interface (GUI) is separate from the Diamond
and stand-alone Programmer design environment.

The Deployment Tool allows you to generate files for deployment for single
devices, a chain of devices, and can also convert data files to other formats
and use the data files it produces to generate other data file formats. A four-
step wizard allows you to select deployment type, input file type, and output
file type.

For more information about Creating a New Deployment, refer to the User
Guides > Programming the FPGA > Deploying the Design with the
Deployment Tool > Creating a New Deployment section of the Diamond Help.

A basic block diagram of the Deployment Tool flow is shown in Figure 3 on
page 19.

Lattice Diamond 3.14 Programming Tools User Guide 18

DEPLOYMENT ToOL OVERVIEW

Figure 3: Deployment Tool Flow

select Type/Tanget

v

Select Output File Type/Format

v

Select Input Data File

Detect Target
Device

Display Message and Prompt User to
Select Target Device

4'4

Select Generation Options

I
: select Output File {Optional) |
I Default: Same file name and directory as |
I Input Data File. I
|

Generate File

File Generation

S LiemsshilT Display Error Message

Lattice Diamond 3.14 Programming Tools User Guide

DEPLOYMENT TooL OVERVIEW : Deployment Tool Function Types

Deployment Tool Function Types

There are four function types available in Deployment Tool:
File Conversion
Tester
Embedded System
External Memory

The function types are accessed from the Function Type dropdown menu on
the Deployment Tool Getting Started dialog box, as shown in Figure 4.

Figure 4: Deployment Tool Function Types

Diamond Deployment Toal - Getting Started l D

@ Create New Deployment

Function Type: File Canversion

Qutput File Type:

Embedded System
) External Memory
() Open an Existing Deployment

Recentf

les:

oK] [Close

Output File Types

Each function type outputs different file types. This section describes all of the
file types that are output by the five function types.

File Conversion Output File Types

The File Conversion function outputs four different file types, as shown in
Figure 5 on page 21. The output types are defined as follows:

Lattice Diamond 3.14 Programming Tools User Guide 20

DEPLOYMENT ToOL OVERVIEW : Output File Types

Figure 5: File Conversion Output File Types

Diamond Deployment Toal - Getting Started @éj

@ Create New Deployment

Function Type: File Conversion A ‘

OutputFile Type: |1EEE 1532 1SC Data File

ist| Application Spedific BSDL File
JEDEC File

Bitstream

JEDEC to Hex

oK] I Close

IEEE 1532 ISC Data File

Converts JEDEC files to IEEE 1532 compliant ISC (In System Configuration)
data files, which are used in conjunction with IEEE 1532 compliant BSDL files
to program a device.

JEDEC File

Converts the following file types JEDEC, Binary Bitstream, ASCII Bitstream,
or IEEE 1532 ISC into a JEDEC file. The USERCODE, USERCODE format,
and set the Program Security Fuse for the JEDEC file.

Bitstream

Takes a JEDEC, Binary Bitstream, or ASCII Bitstream file and can convert it
into the following output formats Binary Bitstream, ASCII Bitstream, Intel Hex,
Motorola Hex, and Extended Tektronix Hex. Users can specify the Program
Security Bit, Verify ID Code, Frequency, Compression, CRC Calculation,
USERCODE format, and USERCODE.

JEDEC to Hex

Converts JEDEC (*.jed) file type to either ASCIl Raw Hex (*.hex) or Binary
Raw Hex (*.bin) file type.

Note

The JEDEC to Hex feature supports JEDEC files generated by Lattice software.
Using self-modified JEDEC files, corrupted JEDEC files, or JEDEC files generated
using other software may result in incorrect data being generated, hanging, or
crashing.

This feature does not support the following:
Encrypted JEDEC files
SED CRC
TAG Memory
USERCODE

Feature Row

Lattice Diamond 3.14 Programming Tools User Guide 21

DEPLOYMENT ToOL OVERVIEW : Output File Types

Refer to the Deployment Tool online help for information about specific device
support.

Tester Output File Types

The Tester function outputs five different file types, as shown in Figure 6.

Figure 6: Tester Output File Types

Diamond Deployment Toal - Getting Started l ? iz-]

@ Create New Deployment

Function Type: Tester - ‘

Qutput File Type:

SVF - Single Device

e
ist| SVF - JTAG Chain
STAPL - Single Device
STAPL - JTAG Chain
ATE

oK] I Close

The output types are defined as follows:
SVF - Single Device

SVF Single Takes one of the following user data files types JEDEC, ASCII
Bitstream, Binary Bitstream, or IEEE 1532 ISC and then select an operation to
generate an SVF (Serial Vector Format) file. Depending on the data file
selected then a certain set of operation for the device are available to be
selected. The user is able to check several options which will modify the SVF
file.

SVF - JTAG Chain

Takes an XCF file generated by Programmer and generates an SVF file.
There are several options available that modify the SVF file including write
header and comments, and set maximum data size per row.

STAPL - Single Device

Takes a JEDEC, ASCII Bitstream, Binary Bitstream, or IEEE 1532 ISC and
then depending on the input file type gives a set of available operation that
can be performed on the device. A STAPL (Standard Test And Programming
Language) file is generated using the data file and operation.

STAPL - JTAG Chain

Generates a STAPL file for testing using only an XCF file generated by
Programmer.

Lattice Diamond 3.14 Programming Tools User Guide 22

DEPLOYMENT ToOL OVERVIEW : Output File Types

ATE

Takes an XCF file and then the user is able to specify Tester Type, whether or
not to skip the verify step in erase program verify or to split into separate files.
An ATE (Automated Test Equipment) is a serial vector file specific to a test
equipment vendor.

Refer to the Deployment Tool online help for information about specific device
support.

Embedded System Output File Types

The Embedded System function outputs five different file types, as shown in
Figure 7.

Figure 7: Embedded System Output File Types

Diamond Deployment Toal - Getting Started l ? iz-]

@ Create New Deployment

Function Type: Embedded System M ‘

Output File Type: | 7TAG Full VME Embedded

ist| JTAG Slim VME Embedded
Slave SPI Embedded

12C Embedded
sysCONFIG Embedded

oK] I Close

The output types are defined as follows:
JTAG Full VME Embedded

Takes an XCF as an input file, then the user can check options such as
Compress VME, include Header along with several other options. This
operation generates a VME file which is a compressed hexadecimal
representation of an SVF files.

JTAG Slim VME Embedded

VME is a compressed version of a VME file. To generate a Slim VME file an
XCF file must be specified, then specify whether it is a Compressed VME file
and whether or not to generate a HEX file. This operation outputs an
algorithm VME file and a data VME file.

Slave SPI Embedded
This file type allows field upgrades via the slave SPI port. This operation can

be given an XCF, Binary Bitstream, and ASCII Bitstream as an input file. If an
Bitstream file is given then the operation for the device must be specified

Lattice Diamond 3.14 Programming Tools User Guide 23

DEPLOYMENT ToOL OVERVIEW : Output File Types

along with whether or not to compress the embedded file and whether or not
to generate a HEX file. If an XCF file is given there are no other operations or
options the user needs to provide. This operation will output an algorithm file
(.sea) and a data file (.sed).

I2C Embedded

12C embedded files enable field upgrades via the e port. If an XCF file is
specified then the user is given the option to compress the embedded files,
generate a hex file, include comments, and if there should be a fixed pulse
width. If a Bitstream file is specified then the previous options are available
along with selecting the device operation and specifying the length of the 12C
Slave Address. Two files will be generated a data file (.ied) and an algorithm
file (.iea).

sysCONFIG Embedded

Takes an XCF file as input and generates a CPU (.cpu) file which can be used
for field upgrades via the slave parallel or slave serial modes.

Refer to the Deployment Tool online help for information about specific device
support.

Also, refer to “Embedded Flow Overview” on page 26.

External Memory Output File Types

The External Memory function outputs four different file types, as shown in
Figure 8 on page 24. The output types are defined as follows:

Figure 8: External Memory Output File Types

Diamond Deployment Toal - Getting Started l ? iz-]

@ Create New Deployment

Function Type: External Memory T ‘

Output File Type: | Hex Conversion

ist Dual Boot
Advanced SPI Flash
sysCONFIG Daisy Chain

oK] I Close

Hex Conversion

Converts a file JEDEC, Binary Bitstream, ASCII Bitstream, Binary, or Hex to
various Hexadecimal file formats which are used to configure the external SPI
Flash memory of a device. The output file formats are Intel Hex, Motorola
Hex, and Extended Tektronix Hex. The user is also able to set the Program

Lattice Diamond 3.14 Programming Tools User Guide 24

DEPLOYMENT ToOL OVERVIEW : Output File Types

Security bit, Verify ID Code, Frequency, compression, CRC Calculations and
also the Starting Address.

Dual Boot

Takes two JEDEC, Binary Bitstream or ASCII Bitstream files and then creates
a single hex file to configure primary and golden sectors of an external SPI
Flash. The output format can be Intel Hex, Motorola Hex, and Extended
Tektronix Hex. The device will usually boot form the primary sector unless
there is a problem then it will boot from the gold sector.

Ping-Pong Boot

Takes two Binary Bitstream or ASCII Bitstream files and then creates a single
hex file to configure primary and secondary sectors of an external SPI Flash.
The output format can be Intel Hex, Motorola Hex, and Extended Tektronix
Hex. The device will boot form the primary or secondary sector by user
selection

Advanced

This operation is for generating hex files which handles more complicated
operations such as Multiple Boot, and Quad /O to configure external memory.
Users can set the output hex format, how big the SPI Flash size is, whether or
not to do a byte wide bit mirror, retain the bitstream header, and Whether or
not to optimize the memory space. Another option is to set multiple user data
file and where each of those data file's starting address should be in memory.

sysCONFIG Daisy Chain
This is used when multiple devices are in a daisy chain and configured from a
single SPI flash or CPU. This operation will take two Binary or ASCII

bitstreams and convert them into a single hex file.

Refer to the Deployment Tool online help for information about specific device
support.

Lattice Diamond 3.14 Programming Tools User Guide 25

2 LATTICE Chapter U

Embedded Flow Overview

Lattice Embedded VME enables in-field upgrades of Lattice programmable
devices by suitable embedded processors, and consists of the following:

JTAG Full VME Embedded
Enable field upgrades via the JTAG port.
JTAG Slim VME Embedded

Featured s reduced foot print and is designed for microcontrollers with limited
resources, such as 8051 processors.

Slave SPI Embedded

Enable field upgrades via the slave SPI port.
12C Embedded

Enable field upgrades via the 12C port.
sysCONFIG Embedded

Enable field upgrades via the slave parallel or slave serial modes.
There are three components to Embedded VME

ANSI C source code, which is shipped with Diamond Programmer. The
user compiles this ANSI C Source code into their target system.

Algorithm VME File, which contains the programming algorithm for the
target FPGA. The Algorithm VME file is generated using the Deployment
Tool.

Data VME File, which contains the data that will be programmed into the
FPGA. The Data VME file is generated using the Deployment Tool.

Lattice Diamond 3.14 Programming Tools User Guide 26

EMBEDDED FLOW OVERVIEW :

For all five embedded types, the Embedded VME support is comprised of C
source files that users must port into their embedded systems for the purpose
of programming Lattice devices. The porting process is also known as the
customization and compiling process. The end product of the porting process
will be the Embedded VME in compiled form, which will reside in the
embedded systems.

Depending on the port interface, such as JTAG, SPI, or IZC, the user can
select one of the five embedded VME types.

Figure 9 shows an example of Full VME embedded file generation for the
JTAG port.

Figure 9: Full Embedded VME Flow

The programming data and programming instructions are compiled into a
binary VME file format for the driver to load into the target devices. The VME
file can be provided to the driver as a stand-alone file or linked together with
the driver.

Figure 10 shows a high-level example of a file-based embedded VME used
for field upgrades.

Porting of the JTAG VME into Embedded Systems

Porting JTAG Embedded VME is simple and the requirements are very simple
to follow:
AC Requirements:

TCK Fmax = 25 MHz.

TCK Rise Time and Fall Time = 50ns maximum.

Delay function resolution and accuracy = 1 millisecond minimum.

DC Requirements:

I/O voltage level of the driver = 1/O voltage level of the VCC JTAG port of
the target devices. The VCC that power the JTAG port can be:

VCC core (All EE based devices)

Lattice Diamond 3.14 Programming Tools User Guide 27

EMBEDDED FLOW OVERVIEW :

Figure 10: Example Embedded VME Programming Configuration

Customer Board

P ‘ Device(s)

CPU

VCCIO (MachXO devices)
VCCJ (All SRAM based and Flash based FPGA devices)

Programming current = 1 Ampere maximum.

JTAG Programmability of Lattice Devices
Lattice's devices can be classified into three groups based on
programmability:

SRAM based only devices (volatile devices).

EE based devices (non-volatile devices).

Flash based devices (non-volatile devices).

Note

For information on configuring the Lattice iCE40 family of devices from an
embedded processor, refer to TN1248, iCE40 Programming and Configuration
Guide.

The SRAM based only devices are the easiest devices to support in terms of

Embedded VME porting for they normally do not require accurate timing.

The EE based devices are much more challenging for they require the 1
millisecond resolution and accurate timing.

The Flash based devices are the most challenging among the three types.
The delay function not only must have the 1 millisecond resolution and

Lattice Diamond 3.14 Programming Tools User Guide

28

EMBEDDED FLOW OVERVIEW :

accuracy, it also must be able to provide the cumulative delay time up to 150
seconds — the worst case erase time of some Flash based devices.

Figure 11: ispMACH4000 Fixed Delay Time Programming Flow

| Shift In Erase_All Instruction |

|Step Ta Run-Testldle State, Erase Stan|

Delay For 200ms

i

| ExitRun-Testdle State, Erese Stop |

!

Initialize Address

| Shift In Program Instruction |

l

—.‘ Shift In Programming Data ‘

l

| Step ToRun-Testldle State, Program Start |

l

| Delay For 13ms |

|Exit Fun-Test!dle State, Pragram Stop |

Mo

§

‘fes

f

The EE based devices are supported by the programming flow generally
referred to as the fixed pulse width flow. The Flash based devices require the
looping programming flow. The most critical requirement to ensure the
devices are programmed reliably rests on the accuracy of the delay function.

If the devices are not given the required programming delay time, the Flash
based devices will fail the verification during programming. It will be worse if
failure happens during Flash erase.

When the erase operation is terminated before completion due to insufficient
delay time, the Flash will have an unknown pattern residing in it which might
cause the device entering the contentious state. When the device is in
contentious state, it will be very hot and would not respond to further
programming commands. EE based devices may not fail verification but they
will fail to meet the 10 year data retention as specified.

All Lattice EE and Flash based devices are designed with the over-stress and
over-charge protection technology. This technology is very critical to the
superior In-System Programmability of Lattice’s non-volatile devices. The

Lattice Diamond 3.14 Programming Tools User Guide 29

EmMBEDDED FLOW OVERVIEW

Figure 12: MachXO Looping Programming Flow

+
| ShiftTn Erase_AllTnsfruction |

!
JStep To Run-Testle Stae, Erase Star

[ShiftIn Status Instruction |
!

—.| Delay For 200ms |

Initialize Address

4.| Shift In Data Shift Instruction |
I

| Shift In Programming Data |

l

‘ Shift In Program Instruction ‘

_.‘ Step TaRun-Testldle State, Program Start‘
v

| Delay For 1ms |

é

i
ES

devices cannot be damaged when given an erase delay time or programming
delay time longer than the minimum specified.

The accuracy of the delay function discussed in this document will focus only
on meeting the minimum requirement. It means that when the delay function
is called to generate, for example, 100 ms delay time (by calling the delay
function 100 times), as long as the resulting delay time is equal to or greater
than 100 ms, the delay time is considered accurate.

The only undesirable side effect of applying longer erase delay time or
programming delay time to the devices is on the programming throughput.
Diamond Programmer provides precise delay timing to meet the programming
specification and optimizing on throughput.

The Deployment Tool software will automatically determine whether the
device requires the fixed delay time programming flow or the looping

Lattice Diamond 3.14 Programming Tools User Guide 30

EMBEDDED FLOW OVERVIEW :

programming flow when generating the VME file. Also, the device specific
programming algorithm details, such as row size, the maximum loop count,
and the delay required per each loop, are all embedded into the VME file
automatically.

If interested to find out the details of their VME files, simply convert the binary
VME files into the corresponding text based SVF file format using the
Download Debugger shipped with Diamond Programmer.

The verify flow is identical for the looping and fixed pulse programming flow.
The delay required for the verify flow is usually ~100us per row. The VME file
still requires 1 millisecond delay per row since the PC cannot provide
accurate timing if the delay is less than 1 millisecond.

Thus, the only Embedded VME implementation challenge is the development
of an accurate delay function to provide 1 millisecond minimum delay time.

Embedded VME Porting Detail

Step 1: Customize JTAG Embedded VME by modifying hardware.c
Figure 13: Map Four GPIO Pins from the CPU to the Four JTAG Pins

VCCJ or VCC or VCCIO

TCL Lattice
= | @
!

Test Header

The pin mapping index table on the hardware.c must be revised to match with
your board layout. On the PCB that is the target for porting the Embedded
VME, it is important and a good practice to route the JTAG port to a test
header for easy access using an oscilloscope or connecting to Programmer
for debugging.

Lattice Diamond 3.14 Programming Tools User Guide 31

EmMBEDDED FLOW OVERVIEW

All VME files begin with IDCODE verification to ensure the JTAG port pins are
mapped and connected properly.

unsigned short g_usOutPort = 0x378;

These lines of
code can be
commented
out. They do
not need to be
mapped.

JEE R AR AR AR AR AR AR AR R A AR A R A R A AR AR A AR A AR AR A A I XA AR KRR AR AR AR AR K

*

* This is the definition of the bit locations of each respective
* signal in the global variable g siIspPins.

* NOTE:

users must add their own implementation here to define
the bit location of the signal to target their hardware.
The example below is for the Lattice download cable on
on the parallel port.

FAE AR ARk Rk Ak A AR A AR A AR AR AR R A AR E R AR AR AR A A AR AR AR R ARk R

const unsigned char g_ucPinTDI = 0x01; /* Bit address of TDI signal */
const unsigned char g ucPinTCK = 0x02; /* Bit address of TCK signal */
const unsigned char g ucPinTMS = 0x04; /* Bit address of TMS signal */
const unsigned char g ucPinENABLE = 0x08; /* Bit address of chip enable */
const unsigned char g _ucPinTRST = 0x10; /* Bit address of TRST signal */
const unsigned char g_ucPinTDO = 0x40; /* Bit address of TDO signal */

Modify the Delay Function

When porting Embedded VME to a native CPU environment, the speed of the
CPU or the system clock that drives the CPU is usually known. The speed or
the time it takes for the native CPU to execute one loop then can be
calculated.

The for loop usually is compiled into the ASSEMBLY code as shown below:

LOOP: EDC RA;
JNZ LOOP;

If each line of assembly code needs four (4) machine cycles to execute, the
total number of machine cycles to execute the loop is 2 x 4 = 8.

Usually: system clock = machine clock (the internal CPU clock).

Note

Some CPUs have a clock multiplier to double the system clock for the machine clock.

Let the machine clock frequency of the CPU be F (in MHz), then one machine
cycle = 1/F.

The time it takes to execute one loop = (1/F) x 8.
It is obvious that the formula can be transposed into one microsecond = F/8.

Example: The CPU internal clock is set to 48 MHz, then one microsecond =
48/8 = 6.

Lattice Diamond 3.14 Programming Tools User Guide 32

EmMBEDDED FLOW OVERVIEW

The C code shown below can be used to create the millisecond accuracy. All
that needs to be changed is the CPU speed.

void ispVMDelay(unsigned\short a usTimeDelay)

{

unsigned short delay inde =
unsigned short loop index
unsigned short ms_ index
unsigned short us index
unsigned short cpu frequency =

= o o o o

w =

; // Enter your CPU frequency here in MHzZ.

if (a_usTimeDelay & 0x8000) { /*Test for unit*/
a usTimeDelay &= ~0x8000; /*unit in milliseconds*/

}

else { // unit in microseconds
a usTimeDelay = a usTimeDelay/1000; //convert to millisecond
if (a_usTimeDelay <= 0) {
a usTimeDelay = 1; //delay is 1 millisecond minimum

}
}

//users can replace the following section of code by their own
for(ms_index = 0;ms_index < a usTimeDelay; ms_index++) {
// Loop 1000 times to produce the milliseconds delay
for (us_index = 0; us_index < 1000; us_index++) {
// each loop should delay for 1 microsecond or more.
loop index = 0;
do {} //use do loop to force at least one loop
while (loop_ index++ < cpu frequency/8);

Step 2: Calibration

It is important to confirm if the delay function is indeed providing the accuracy
required. Itis also important to confirm the TCK frequency. As an example, we
will estimate the minimum system clock frequency of the native CPU that

does not require the TCK to be slowed down. The TCK could be generated by
the following code.

writePort (g ucPinTCK, 0x00);
writePort (g_ucPinTCK, 0x01) ;

Let the number of system clocks to execute one line of code = 8 clocks.
The total number of clock for one pulse =2 x 8 = 16.

The total amount of time for one pulse = 1/F x 16.

Lattice devices TCK frequency max = 25 MHz.

The equation becomes: 1/25 = 1/F x 16.

The maximum frequency of the CPU: F = 16 x 25 = 400 MHz.

Lattice Diamond 3.14 Programming Tools User Guide 33

EMBEDDED FLOW OVERVIEW :

If the system clock of the native CPU is faster than 400 MHz, the TCK pulses
must be slowed down to meet the 25 MHz maximum specification.

The setup time and hold time of TDI, TMS, and TDO relative to TCK is not of
concern for Embedded VME is constructed in the fashion that it is not possible
to violate that requirement whenever the frequency of TCK is within the
specification.

Figure 14: JTAG Embedded VME Delay Calibration

VCCJ or VCC or VCCIO

TCK Latt

THAS

| FPGA

@

The calibrate function in Embedded VME can be launched by using the —c
switch to cause the waveform as follow captured on the scope with the probe
attached to the TCK wire.

If the pulse width is found to be smaller than 1 millisecond, then increase the
cpu_frequency value until 1 millisecond delay is captured by the calibration
function.

If the TCK frequency is found to be faster than 25 MHz, then change the
sclock() function in hardware.c as shown below. The IdleTime normally is

Lattice Diamond 3.14 Programming Tools User Guide 34

EmMBEDDED FLOW OVERVIEW

Figure 15: JTAG Embedded VME Delay Calibration TCK Waveforms

o

calibration

i/
*
*
*
* It is important to confirm if the delay function is indeed providing
* the accuracy regquired. Also one other important parameter needed

* checking is the clock freguency.

* Calibration will help to determine the system clock freguency

* and the loop per micro value for one microsecond delay of the target
* gpecific hardware.

*
*

R Rk A R R R R R kA A A AR R R AR AR R R R R AR R SRR R IR F R R I AR AR AR R IR ARk Rk Rk ke ok ok

void calibration (void)

//Apply 2 pulses to TCK.
writePort(g _ucPinTCEK, 0x00)
writePort(g_ucPinTCK, 0x01)
writePort(g_ucPinTCEK, 0x00);
writePort(g ucPinTCK, 0x01)
writePort(g _ucPinTCK, 0x00)

//delay for 1 millisecond. Pass on 1000 or 0x8001 both = 1lms delay.
ispVMDelay (0x8001) ;

//Apply 2 pulses to TCK.
writePort(g _ucPinTCK, 0x01)
writePort(g _ucPinTCK, 0x00);
)
)

writePort(g ucPinTCK, 0x01); s
: 5 i) 3 This line of code launches the dela
writePort(g ucPinTCK, 0x00); Y

} ! function to produce the 1-millisecond
pulse width the ispVME driver must

) be able to provide accurately.

40ns min.

~

Same as
VCC-JTAG

l

millisecond
min.

50ns max.

Lattice Diamond 3.14 Programming Tools User Guide

35

EmMBEDDED FLOW OVERVIEW

initialized to 0. If it is initialized to 1, then the TCK frequency is effectively
reduced by half. Use this technique to reduce the TCK frequency until
meeting the specification.

/iiiiii*iit**i'i"ir**i'****i'**'ii*i'iiii1*t***t***t******ii*iiiiiiit*itt**tt*******i*

* sclock
*

* Apply a pulse to TCK.

*

* This function is located here so that users can modify to slow down TCK if

* it is too fast (> 25MHZ). Users can change the IdleTime assignment from 0 to
*

*

*

1, 2... to effectively slowing down TCK by half, quarter...

Fhkhkhkhkhkhkhkdhkhkdkdkhkdkdrdddrdddddddrrdrdrrrrdrrdrdddddd

s ke ek k kR kK /
Initialize to 1 if need to reduce
TCK speed by half.

void sclock()

{
unsigned short IdleTime = 0; //change to = 0 if need to slow down TCK
unsigned short usIdleIndex = 0;

IdleTime++;
for (usIdleIndex = 0; usIdleIndex < IdleTime; usIdleIndex++) {
writePort(g_ucPinTCK, 0x01);

}

for (usIdleIndex = 0; usIdleIndex < IdleTime; usIdleIndex++) {
writePort (g_ucPinTCK, 0x00);

}
}

Step 3: Program Devices

Once the calibration is done, the Embedded VME (actually the JTAG port
driver) is ready to program the devices. The device specific programming
information is all self-contained in the VME file.

The VME file actually has six major sections:

Check the IDCODE,

Erase the device,

Program the device,

Verify the device,

Program the done fuse,

o ok~ 0w b=

Wake-up the device.

IDCODE check failure is the most common failure when porting Embedded
VME. It is a good practice to generate a Verify IDCODE only VME file first.
Run the VME file. If it passes, then the JTAG port to GPIO mapping is

confirmed. Once the port mapping is confirmed, then the programming VME

file can be used.
Accurate timing is very critical to program devices reliably.

Using the calibration routine provided by Embedded VME will achieve the
accurate timing.

Lattice Diamond 3.14 Programming Tools User Guide

36

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

JTAG Full VME Embedded

The JTAG Full VME Embedded VME software brings programming software
to embedded applications. Using Lattice Semiconductor’s Diamond
Programmer and Deployment Tools, you are provided with all necessary
capabilities for programming devices in a single or multiple device chain.
Developed to solve many programming issues facing today’s PLD users,
JTAG Full VME Embedded provides advanced features including fast
programming times, and small file sizes.

The JTAG Full VME Embedded software is a simplified version of the full
Diamond Programmer. By making it serial vector format (SVF) file centric,
JTAG Full VME Embedded is better targeted for embedded systems. Lattice
JTAG devices are supported and users are able to program competitor
devices through a simple SVF file translator. Lattice JTAG devices are those
devices that can be programmed using the IEEE 1149.1 boundary scan TAP
controller interface. Users are able to quickly and efficiently program chains of
devices using this powerful utility, thus improving productivity and lowering
costs.

An advantage of JTAG Full VME Embedded over vendor or architecture-
specific methods is that once it is developed, it supports all present and future
devices. As long as the programming flow can be described as an SVF file,
the main engine does not have to change. For embedded environments, it is
important to have deterministic memory requirements. By pre-processing the
SVF file, it is possible to know the exact resources required to implement the
programming algorithm and to store the programming data. The nature of the
SVF file also allows the resources available to determine how the file is
processed. Large shift instructions can be broken into multiple instructions if
the embedded system does not have enough RAM available to store the
entire row in one pass. Since the SVF file is serial in nature, it can be
segmented to fit available RAM, PROM or FLASH memory.

The JTAG Full VME Embedded source code is designed to be hardware and
platform independent. A VME data file, or VME file, runs on all JTAG Full VME
Embedded applications.

See Also
JTAG Full VME Embedded Basic Operation

VME File Format

A VME file is simply an SVF file that has been compressed. SVF file includes
algorithm and data file in ASCII format, and VME file is the SVF file in the
optimized binary format. Compared with SVF file, VME files require minimized
memory space to store the bitstream file and has optimized code size. SVF
keywords such as SIR and SDR are replaced with the byte codes 0x11 and
0x12, respectively. This reduces the VME file by writing only one byte of data,
the byte codes, instead of writing the entire SVF keyword, which would use
more characters.

Lattice Diamond 3.14 Programming Tools User Guide 37

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

JTAG Full VME Embedded file supports compression to reduce the VME file
size by compressing the data and address streams. A looping compression is
also employed to reduce the file size even further by taking advantage of the
repeating SVF constructs. The following describes each compression
scheme.

Compressed VME Files

The compression scheme is applied to the address and data stream following
SIR and SDR, respectively. These streams will try to be compressed by 0x00,
OxFF, or by 4-bit count.

For example, consider the following line in a SVF file:

SDR 102 TDI (20000000000000000000000000) ;

The address stream is ©20000000000000000000000000°. The repeating
zeros in the stream can be easily compressed by 0x00. Compression with
OxFF works in the same manner, except that instead of the data stream

containing zeros, it would contain ‘F’s.

Compression by 4-bit count works by looking for repeating patterns within the
data stream that are not zeros or ‘F’s.

For example, consider the following line in a SVF file:

SDR 80 TDI (7FS7F97F97FST7F9TFOTF9) ;

The repeating 4-bit count in this example would be ‘7F9,’ because it repeats
throughout the data stream. The 4-bit would be written only once in the VME
file, and would be followed by the number of repetitions found within the data
stream.

The compression scheme reduces the file size by not extrapolating repeating
information within the address and data streams. That task is left for the VME

processor.

Looping VME Files

In an SVF file, repeating constructs can be observed. The looping scheme
takes advantage of these constructs by creating a template with the repeating
information, and the differentiating date is replaced by a placeholder. The
differentiating data will be written after the construct.

For example, the following data is found in a SVF file:

SIR 5 TDI (01);

SDR 102 TDI (20000000000000000000000000) ;

SIR 5 TDI (02);

SDR 80 TDI (7/BFFF/BFFFF7BFFFTBFF) ;

SIR 5 TDI (07);

Lattice Diamond 3.14 Programming Tools User Guide 38

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

RUNTEST IDLE 3 TCK 1.20E-002 SEC;

SIR 5 TDI (01);

SDR 102 TDI (10000000000000000000000000) ;
SIR 5 TDI (02);

SDR 80 TDI (FFFF/FFFFFFFFFFFFFFF) ;

SIR 5 TDI (07);

RUNTEST IDLE 3 TCK 1.20E-002 SEC;

SIR 5 TDI (01);

SDR 102 TDI (08000000000000000000000000) ;
SIR 5 TDI (02);

SDR 80 TDI (FFFFFFFFFFFFFFFFFFFF) ;

SIR 5 TDI (07);

RUNTEST IDLE 3 TCK 1.20E-002 SEC;

The looping template is built based on the repeating SIR lines. Notice how the
TDI values for the SIR commands are a repeating sequence of 01, 02, and
07. In this case the resulting template would be:

SIR 5 TDI (01);

SDR 102 TDI VAR;

SIR 5 TDI (02);

SDR 80 TDI VAR;

SIR 5 TDI (07);

RUNTEST IDLE 3 TCK 1.20E-002 SEC;

VAR is written in place to hold the data that does not repeat. The non-
repeating data will get written into the VME file following each template. The
example above would look like this in the VME file:

LOOP 3

SIR 5 TDI (01);

Lattice Diamond 3.14 Programming Tools User Guide 39

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

SDR 102 TDI VAR;

SIR 5 TDI (02);

SDR 80 TDI VAR;

SIR 5 TDI (07);

RUNTEST IDLE 3 TCK 1.20E-002 SEC;

ENDLOOP

(20000000000000000000000000)

(7BFFF7/BFFFF7BFFF7BFF)

(10000000000000000000000000)

(FFFF7FFFFFFFFFFFFFEF)

(08000000000000000000000000)

(FFFFFFFFFFFFFFFFFFEF)

The ‘LOOP 3’ tells the VME processor to loop the template three times. Each
time it encounters a ‘VAR', it will grab the first available line of data following
the ‘ENDLOOP’ and replace ‘VAR’ with it. This technique reduces the file

significantly by keeping the similar constructs to a minimal, and only writing
the differences.

JTAG Full VME Embedded Flow

The JTAG Full VME Embedded System allows you to program a device using
the microprocessor in an embedded system. When you install the VM
software, a separate VMEmbedded folder containing the VME source code
and executables is installed on your hard drive. Compiling the VME source
code gives you an executable file that you can store in your system’s memory
for programming using the JTAG port.

Lattice Diamond 3.14 Programming Tools User Guide 40

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

The following figure illustrates the JTAG Full VME Embedded flow.

Diamond

See Also 1 Generating VME Files
Testing VME Files

JTAG Full VME Embedded System
Memory

The following figure illustrates JTAG Full VME Embedded system memory.

Data Type Sample C Code
J— —
/_ = Change
Stack Run Time ny functionia b och While
Memory int stackVars; Program
Segment ¢ e tackyaze; Runs
i g:n D’E?‘}éﬁéﬁ:, nallocis); Char_lge
H R;”n Time %S SE%; = :T:; PWhlle
e emory R o v) rogram
Composites x Baan o gk = Runs
p Segment Rellais) = of =
E OfAnbl Fixed Memory | Static int prime(S] = {1,3,5,7,11}; |:|
Xecutable —
P Data ghar hello(g);
rogram peHeilrs 2l File Size
Segment Run Fime Data | BEpeie) £ 12 Varies With
REITOIE) = Device
= Bitstream
char hello[§] = {'h','=','1','l','0',0}; Size
Constant Data
\ i —=
Code B =y I;algn'mfc"neno\n";; File Size Is
Segment regramEnie || Fixed

The Compiler can be directed to link the The Code Segment is typically The Data Segment contains
Constant Data to the Code Segmentto placed in a non-volatile memory data structures that have
recduce RAM usage (PROM or FLASH) been preallocated storage.

See Also
JTAG Full VME Embedded Basic Operation

Lattice Diamond 3.14 Programming Tools User Guide 41

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

JTAG Full VME Embedded Basic

Operation
There are three modes of JTAG Full VME Embedded operation.

File Mode Under the file mode, data is stored in a file system such as a
hard drive or a DOS flash. The data file is accessed using C library calls, such
as fopen, fread, and fclose. The file read operations collect data into the
system memory. The system memory of the Embedded system must be able
to store the entire bitstream from the file in a contiguous block of memory. The
memory block can be allocated in one of the three locations.

Data Segment — You can pre-determine how many bytes of data the
bitstream will require and then create an uninitialized array variable to
hold the data. This permanently allocates a portion of the Data Segment.
For example:

char programmingData[0x10000]; // allocate 64K

Stack Segment — You can pre-determine how many bytes of data the
bitstream will require and then create an uninitialized array variable to
hold the data. Depending upon the function call sequence, this may or
may not permanently allocate a portion of the system memory. See the
example code below.

int MyFunction () {
char bitstreamArray[0x10000];
}

Heap Segment — You can determine at runtime how many bytes of data
the bitstream will require and then dynamically allocate an uninitialized
array variable to hold the data. You are responsible for freeing the
memory when it is not being used any longer. Below is an example.

char *bitstreamData;
bitstreamData = (char *)malloc (numberOfBitstreamBytes) ;

Static Linking Mode

Under the static linking mode, the bitstream data is converted from the file on
the hard drive into a C source code file. The C source code defines a byte
array. The byte array is exactly the size of the bitstream. The byte array can
be linked into either the Code Segment or the Data Segment. The memory
allocated for the bitstream is permanently consumed.

PROM Mode

Under the PROM-based mode, the bitstream file is converted from the file on
the hard drive into an Intel HEX file. The HEX file is loaded into a non-volatile
memory using a PROM programming tool. The HEX file data is placed in the
non-volatile memory at a known address (that is, a fixed address). The user C
code initializes a pointer. The pointer is given the starting address of the HEX
byte stream. The memory used by the bitstream is permanently allocated in
the non-volatile memory.

Lattice Diamond 3.14 Programming Tools User Guide 42

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

See Also
JTAG Full VME Embedded System Memory

VME Source Code

The JTAG Full VME Embedded source code is written in standard ANSI C
and is simplified with embedded applications in mind. Most embedded
applications have greater limits on program and data sizes than PC or
workstation applications. The areas most likely to differ between platforms are
the timing delay function and hardware port manipulation.

The current version of the JTAG Full VME Embedded software is available
through the Programmer installation. The installation creates a sub-directory
called VMEmbedded, where the pre-compiled executables, source code, and
readme.txt can be found.

There are four sets of embedded-related source code that are shipped with
Programmer.

VME - The file-based VME is the programming engine that accepts VME
files as command line arguments to process the devices. By default, the
executable compiled from this source code targets Windows operating
systems. You can make small modifications to make the compiled
executable accommodate other platforms.

VME_eprom — The PROM-based VME is the programming engine that
requires compiling a HEX file, which is a C-programming file, with the
source code to create an executable engine that can be embedded onto
the embedded system.

svf2vme — The svf2vme is a command line utility that can convert SVF
files into VME files.

vme2hex — The vme2hex is a command line utility that can convert VME
files into HEX files.

Among all the source codes, only the hardware.c file requires user changes.
You should customize the hardware.c file according to your target platform.

JTAG Full VME Embedded
Programming Engine

The programming engine of the JTAG Full VME Embedded software is driven
by the byte codes of the VME format file. It manipulates the 1/0O ports and
sends commands to the customer firmware. The commands sent from the
programming engine requires the 1/0 system to be connected to the device's
JTAG port. The VME byte codes instruct the engine as to what sequence of
functions to follow in order to shift in instructions, move the TAP controller
state machine, shift data in and out of the device, and observe delay. The
engine has the following three layers.

User interface layer (ispvm_ui.c) — Directs inputs and outputs.

Lattice Diamond 3.14 Programming Tools User Guide 43

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Processor layer (ivm_core.c) — Decodes commands, checks CRC prior to
processing, and does optional decompression.

Physical layer (hardware.c) — Shifts data to target device. This is the only
file that you need to edit. See Customizing for the Target Platform for
details.

The following figure illustrates JTAG Full VME Embedded JTAG port
programming engine.

i
VME e Tl
=
File Monitor -
¢ [Mumerical Ope'_"’“d il Current Bit Count
e [Defs Tupe Resister |y | I IR Fator
1w Flow Corrol Register |t gl TIR Register
WME File Size — ?ﬁﬁéegxr
P Reister Decorripress b ENDDREISH;
Current Data b
7 > Byt Corler - IC] - [ENDIR Biate
Hamn T — @ | Curert JTAG Siate
& 1—] Hext JTAG State =
Findter WG H g
—f T0'O Buffer] —= 1p|
|l MASH, Effer E e — 1o
PassiFail | Read Back Buffer
Register E A Stus Pedister E
t [imer]
A
I
Ul Layer Processor Layer Physical Layer
Legend | Size (bits) Type Legend | Description
[1 signed char Optional features enabled by the VME, CPU or SCM file
P 8 unsigned char B Continue or Exit decision flag (Go / No Go)
i Memaory allocated at run time using malloc{) as
L 16532 (Note 1) integer Freed requirgl by the VME, CPU or SCM{ile. 0
< 16 unsigned short integer Gray out means not used.

RAM Size Requirement for VME

To calculate the worst-case size of memory needed to program a device, in
terms of bytes, locate the size of the largest register in the device. This is
usually the data shift register. Divide that number by eight, and then multiply
the quotient by two: one for TDI and one for TDO. If the device has MASK,
multiply the quotient by three instead of two.

This method only calculates the RAM requirements for the data of the device.
It does not account for transient variables that are used to execute the
programming algorithm. Transient variables are more difficult to calculate
because they appear in and out of scope often. Also, a variable size may
depend on the microprocessor’s register size. For example, an integer
variable on a 32-bit system is four bytes while the same variable on a 16-bit
system is only two bytes.

To approximate the RAM requirement for the run-time variables, add twenty
percent to the required RAM.

Lattice Diamond 3.14 Programming Tools User Guide 44

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

RAM Calculation Example

The following is a partial SVF for the M4A3 32/32 device:

SIR 6 DI (03);

SDR 80 DI (00000000000000000040);

SIR 6 DI (04);

SDR 202 DI (200);

SIR 6 DI (07);

SDR 202 DI (200)
TDO (000410410410410410410410410104104104104104104104104)
MASK (210410410410410410410410410104104104104104104104104);

The largest data frame size in this device is 202 bits. Therefore, TDI, TDO,
and MASK each require 26 bytes, making it a total of 3*26 = 78 bytes. To
account for run-time variables, the total required size would be 78 * 1.2 = 94
bytes.

To verify that the calculation is correct, convert the SVF file to VME, and use
the VME2HEX utility to convert from VME to HEX. This utility generates the
vme_file.h file, which gives the definitive memory size requirement.
The variables that are of concern to memory are:

MaskBuf

TdiBuf

TdoBuf

HdrBuf

TdrBuf

HirBuf

TirBuf

HeapBuf

CRCBuf

CMASKBuf
As expected, MaskBuf, TdiBuf, and TDOBuf each requires 26 bytes. If the
device were in a chain, HdrBuf (Header Data Register), TdrBuf (Trailer Data

Register), HirBuf (Header Instruction Register), and TriBuf (Trailer Instruction
Register) would need extra bytes.

If the VME file had been generated with the looping option, HeapBuf would
require extra bytes as well. Looping requires slightly more RAM but
significantly less ROM. When the VME file has not been looped, it does not
require any additional RAM, but ROM size can significantly increase. This

Lattice Diamond 3.14 Programming Tools User Guide 45

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

trade-off is file-dependent.If the original SVF were 1532-compliant, CRCBuf
and CMASKBuf would require extra bytes as well.

ROM Size Requirement for JTAG Full
VME Embedded

To calculate the worst-case ROM size for a given device, multiply the number
of frames by the frame size. Divide that number by eight to obtain the required
ROM size, in terms of bytes.

This method assumes that the SVF file will be generated with the turbo option.
If the SVF file were generated with the sequential option, the worst-case ROM
size would be doubled.

This method only calculates the ROM requirements for the data. It does not
account for opcodes that are used to translate the algorithm of the device. To
approximate the ROM requirement for the algorithm opcodes, add twenty
percent to the required ROM.

The actual ROM requirement might be significantly less than the theoretical
worst-case requirement because SVF2VME utilizes two compression
techniques, compression and looping, to decrease the VME file. The file size
difference is file-dependent.

ROM Size Calculation Example The following example calculates the
worst-case ROM size for the device LC4128:

Frame size = 740
X Number of frames = 100

Data ROM size = 74000 bits
Data ROM size = 74000
x 1.2

Overall ROM size = 88800 bits

JTAG Full VME Embedded Required

User Changes

To make the JTAG Full VME Embedded or JTAG Slim VME Embedded
software work on your target system, you need to modify the following C
functions in the hardware.c source code.

Timer

The engine requires the ability to delay for fixed time periods. The minimum
granularity of the delay is 1 microsecond. You can determine the type of delay.
This can be a simple software timing loop, a hardware timer, or an operating
system call, for example, sleep().

Lattice Diamond 3.14 Programming Tools User Guide 46

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Port Initialization

The firmware needs to place the port I/O into a known state. The software
assumes this has occurred.

Get Data Byte

The engine calls the GetByte() function to collect one byte from the JTAG Full
VME Embedded or CPU bytestream.
Modify Port Register

The engine, as it parses the bitstream data, changes an in-memory copy of
the data to be written onto the 1/0O pins. Calls to this function do not modify the
I/O pins. The engine uses virtual types (for example, DONE_PIN) which this
function turns into physical I/0 pin locations (for example, 0x400).

Output Data Byte

The engine calls this function to write the in-memory copy onto the I/O pins.
Input Status

This function is used by the engine to read back programming status
information. The function translates physical pin locations (for example,
0x400) into virtual types used by the engine (for example, DONE_PIN).

Output Configuration Pins

Some systems may wish to use the FPGA CFG pins, and have the
Embedded system control them. There is a separate function call to
manipulate the CFG pins.

Bitstream Initialization

You must determine how you plan to get the bitstream into your memory
system, pre-compiled, HEX file based, or dynamically installed. Whichever
method you use the data structures which pin to the bitstream need to be
initialized prior to the first GetByte function call.
See Also

Customizing for the Target Platform

VME Source Code

JTAG Slim VME Embedded Source Code

Lattice Diamond 3.14 Programming Tools User Guide 47

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedded

Program Memory Requirement

The following figure illustrates the JTAG Full VME Embedded program

memory requirement.

Data Type Sample C Code
/ Change
Run Time char *hello; . . While
Heap Memory hello = (char *Jmalloci(5): Prugram
= R
Segment = uns
. Fized ME"’IDW static int prime[s] = {1,3,5,7,11};
Composites
ofian Data EE?iD?S]E[?%;ﬁ; e —— il e
Executable Segment Run Time Data h:HgH% - File Based: Varies With
hella[3] = '1'; my_desighyme Device
Program hello[E] = 'o'; Bitstream
A Size
Char hello[5] ={'h','e’,"1','1",'0'};
e —
Constant Data PROM Based:
my_design.obj
Code Program Code e e et 1o F"Eii:;; Is
_ Segment +

The compiler can be directed to link the PROM Based: More Code, Less RAM. File Based: Less Code, More RAM.

constant data to the Code Segment to
reduce the RAM usage.

The bitstream is linked into program
as constant data, thus more
resources needed for Code Segment.

Program Memory Allocation

memory allocation.

The bitstream is not part of
program, thus less resources
needed for Code Segment.

The following figure illustrates the JTAG Full VME Embedded program

Heap And
Data o Heap
Segment Segment
Use RAK
Only Data
: * Segment - PROM Based: The bitstream
o is compiled as constant data
Sagment . Code and linked into the program.
A S Segment
(/"'
Parallel ¥ ¥
FLASH DRAM
Common £E
Program
Memory Ll praw
Resources
Arrangement
Al Progmam All Program Internal SRAM TXormal RAM
ey Memeriea Program Memor?es Onl
N Are External Are Internal Y

Memories Only

Lattice Diamond 3.14 Programming Tools User Guide

48

EMBEDDED FLOW OVERVIEW JTAG Full VME Embedded

Sample Program Size

This page provides sample program size for JTAG Full VME Embedded,
JTAG Slim VME Embedded, and sysCONFIG Embedded.

JTAG Port non-JTAG Port Total
Embedded Tool

JTAG Full VME JTAG Slim sysCONFIG

Bitst L Hi Embedded VME Embedded
Istream Locartion Embedded
32-Bit 16-Bit 8-Bit 32-Bit 16-Bit

File Based 52KB 21KB 4.2KB 48KB 19KB |As Shown
(Bitstream File External)
PROM Based 52KB 21KB 4.2KB 48KB 19KB |As Shown +
(Bitstream File Integrated) VME File Size

By 8051 Compiler:

B 4 C | SPYMPROIECT\ISPYMS Y STEMDEBUGN SPSLIMYMEMBEDDED\SOURCECODENSRCELIM_YME_BOSINELIMPRI {8051} o
= @ dm_pro.c [C51] code=2960 const=0 xdata=106 pdata=0 da

idata=0 bit=0

B opeodeh [C51] code=0 const=0 xdata=0 pdata=0 data=0 idata=0 bit=0
B hardware.c [C51] code=34 const=0 xdata=0 pdata=0 data=1 idata=0 bt=0
@ sim_vme.c [C51] code=254 const=0 xdata=0 pdata=0 data=29 idata=0 bit=0

By Microsoft 32-Bit Compiler:

Slim VME Size = 4200 Bytes

Name / g Sizg“\
Flispvme.exe [/ szkm
™ hargware.obj [3xe | JTAG Full VME Program Size - 52 K Bytes
D ispvm il VO 16KR ﬂl
D vm_core.obj N, 20 Ks//
Name f’/ S;!\\\
Blcpusim.exe [aBKE | sysCONFIG Program Size - 48 K Bytes
© cpu_core.cby | e |
™ cpu_sim.obj \ sk]
D main fobj N TKB
. -

By Microsoft 16-Bit Compiler:

T
Name Size \\
SNSPVMEEXE [21k ~ .
D hardware.oby [2k : JTAG Full VME Program Size - 21 K Bytes
D ispvm _ui.ob; \ oke
Diwvm core.obj N1l1KE S

Pl
Mame / /" Sie \\
s [18KB sysCONFIG Program Size - 19 K Bytes
D cpu core.cbj | 7kB | “ *
™ gpul sim.obj \ sk |
™ main_f.obj \ 2k
\“\-\.__//

Lattice Diamond 3.14 Programming Tools User Guide

49

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedded

Device

LC4032V/B/C/ZC
LA4032V/ZC

LC4064V/B/C/ZC-3210
LA4064V/ZC-3210

LC4064V/B/C/ZC
LA4064V/ZC

LC4128V/B/C/ZC

LA4128V/ZC

LC4256V/B/C/ZC

LC4256V/B/C-16010

LC4384V/B/C

LC4512V/B/C

LC4032ZE

LC4064ZE

VME File Size

The following table compares VME file sizes taking typical Lattice devices for
examples.

Device Row Size JTAG Slim VME
(Bits) Embedded File Size
No Compression
(1K Byte = 1024 Bytes)
Algorithm File Size
Data File Size
ispMACH 4000

Programming Mode: Turbo

Operation: Erase, Program, Verify

172 1KB
3KB
352 1KB
4KB
356 1KB
5KB
740 1KB
10KB
1592 1KB
19KB
1624 1KB
20KB
2616 1KB
31KB
3632 1KB
43KB
ispMACH 4000ZE

Programming Mode: Turbo

Operation: Erase, Program, Verify

172

356

1KB
3KB
1KB
5KB

VME File Size
No Compression
(1K Byte = 1024 Bytes)

8KB

12KB

13KB

22KB

41KB

43KB

65KB

89KB

8KB

13KB

Lattice Diamond 3.14 Programming Tools User Guide

50

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedded

Device

LC4128ZE

LC4256ZE

ispPAC-POWRG07

ispPAC-POWRGAT6

ispPAC-POWR1014/14A

ispPAC-POWR1220AT8/2

LFEC/ECP-1E

LFEC/ECP-3E

LFEC/ECP-6E

LFEC/ECP-10E

LFEC/ECP-15E

LFEC/ECP-20E

Device Row Size

(Bits)

740

1592

JTAG Slim VME
Embedded File Size
No Compression
(1K Byte = 1024 Bytes)

Algorithm File Size
Data File Size
1KB
10KB
1KB
19KB

ispPAC Power Manager Il

Programming Mode: Sequential

Operation: Erase, Program, Verify

81

56

123

243

1KB
2KB
1KB
1KB
1KB
6KB
1KB
13KB

LatticeEC/ECP

Programming Mode: Sequential

Operation: Fast Program

470

558

754

1094

1270

1358

1KB
75KB
1KB
125KB
1KB
216KB
1KB
378KB
1KB
518KB
1KB
641KB

VME File Size
No Compression
(1K Byte = 1024 Bytes)

22KB

41KB

9KB

1KB

18KB

39KB

75KB

126KB

217KB

379KB

519KB

642KB

Lattice Diamond 3.14 Programming Tools User Guide

51

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedd

ed

Device

LFEC/ECP-33E

LFXP3C/E

LFXP6C/E

LFXP10C/E

LFXP15C/E

LFXP20C/E

LCMXO3D-4300HC

LCMXO3D-4300ZC

LCMXO3D-9400HC

LCMXO3D-9400ZC

LCMXO3D-9400HE

Device Row Size
(Bits)

1798

LatticeXP

JTAG Slim VME
Embedded File Size
No Compression
(1K Byte = 1024 Bytes)

Algorithm File Size
Data File Size
1KB
957KB

Programming Mode: Sequential

Operation: FLASH Erase, Program, Verify

558

734

2148

2500

2676

LFMNX

1KB
117KB
1KB
189KB
1KB
340KB
1KB
494KB
1KB
611KB

Programming Mode: Sequential

Operation: FLASH Erase, Program, Verify

1560

1560

2376

2376

2376

49KB (x2)
115KB (x2)
49KB (x2)
115KB (x2)
222KB (x2)
107KB (x2)
222KB (x2)
107KB (x2)
222KB (x2)
107KB (x2)

VME File Size
No Compression
(1K Byte = 1024 Bytes)

958KB

437KB

673KB

1087KB

1565KB

1930KB

409KB (x2)

409KB (x2)

989KB (x2)

989KB (x2)

989KB (x2)

Lattice Diamond 3.14 Programming Tools User Guide

52

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedd

ed

Device

LCMXO256C/E

LCMXO640C/E

LCMXO1200C/E

LCMX02280C/E

LCMX02-256ZE

LCMXO2-256HC

LCMXO2-640ZE

LCMX0O2-640HC

LCMX02-1200ZE

LCMX0O2-1200HC

LCMX02-640UHC

Device Row Size
(Bits)

MachXO

JTAG Slim VME
Embedded File Size
No Compression
(1K Byte = 1024 Bytes)

Algorithm File Size

Data File Size

Programming Mode: Sequential

Operation: FLASH Erase, Program, Verify

192

320 (used BSCAN
Length)

424 (used BSCAN
Length)

544 (used BSCAN
Length)

MachX02

1KB
8KB
1KB
17KB
1KB
35KB
1KB
62KB

Programming Mode: Sequential

Operation: FLASH Erase, Program, Verify

504

504

888

888

1080

1080

1080

1KB
11KB

1KB
11KB
13KB
24KB
13KB
24KB
33KB
48KB
33KB
48KB
33KB
48KB

VME File Size
No Compression
(1K Byte = 1024 Bytes)

36KB

70KB

111KB

195KB

42KB

42KB

89KB

89KB

172KB

172KB

172KB

Lattice Diamond 3.14 Programming Tools User Guide

53

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedded

Device

LCMX02-2000ZE

LCMXO2-2000HC

LCMX0O2-1200UHC

LCMXO2-2000HE

LCMX02-4000ZE

LCMX02-4000HC

LCMXO2-2000UHC

LCMXO2-4000HE

LCMX0O2-2000UHE

LCMX0O2-7000ZE

LCMXO2-7000HE

LCMX0O2-7000HC

LCMXO3D-4300HC

Device Row Size JTAG Slim VME
(Bits) Embedded File Size
No Compression
(1K Byte = 1024 Bytes)
Algorithm File Size
Data File Size
1272 41KB
68KB
1272 41KB
68KB
1272 41KB
68KB
1272 41KB
68KB
1560 49KB
115KB
1560 49KB
115KB
1560 49KB
115KB
1560 49KB
115KB
1560 49KB
115KB
1992 127KB
198KB
1992 127KB
198KB
1992 127KB
198KB
MachXO3D

Programming Mode: Sequential

Operation: FLASH Erase, Program, Verify

1560

49KB (x2)
115KB (x2)

VME File Size
No Compression
(1K Byte = 1024 Bytes)

243KB

243KB

243KB

243KB

409KB

409KB

409KB

409KB

409KB

700KB

700KB

700KB

409KB (x2)

Lattice Diamond 3.14 Programming Tools User Guide

54

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedded

Device

LCMXO3D-4300ZC

LCMXO3D-9400HC

LCMX0O3D-9400ZC

LCMXO3D-9400HE

LCMXO3L-2100C

LCMXO3L-4300C

LCMXO3L-6900C

LCMXO3LFP-4300HC

LCMXO3LFP-6900HC

LCMXO3LFP-9400HC

Device Row Size
(Bits)

1560

2376

2376

2376

MachXO3L

JTAG Slim VME
Embedded File Size
No Compression
(1K Byte = 1024 Bytes)

Algorithm File Size
Data File Size
49KB (x2)
115KB (x2)
222KB (x2)
107KB (x2)
222KB (x2)
107KB (x2)
222KB (x2)
107KB (x2)

Programming Mode: Sequential

Operation: FLASH Erase, Program, Verify

1272

1560

1992

MachXO3LF

41KB

68KB

49KB

115KB

127KB

198KB
P

Programming Mode: Sequential

Operation: FLASH Erase, Program, Verify

1560

2376

2376

49KB (x2)
115KB (x2)
222KB (x2)
107KB (x2)
222KB (x2)
107KB (x2)

VME File Size
No Compression
(1K Byte = 1024 Bytes)

409KB (x2)

989KB (x2)

989KB (x2)

989KB (x2)

243KB

409KB

409KB (x2)

989KB (x2)

989KB (x2)

Lattice Diamond 3.14 Programming Tools User Guide

55

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedded

Device

LPTM20

LPTM21

LFE2-6E/SE

LFE2-12E/SE

LFE2-20E/SE

LFE2-35E/SE

LFE2-50E/SE

LFE2-70E/SE

LFE2M20E/SE

LFE2M35E/SE

Device Row Size
(Bits)

JTAG Slim VME
Embedded File Size
No Compression
(1K Byte = 1024 Bytes)

Algorithm File Size

Data File Size

Platform Manager 2

Programming Mode: Sequential

Operation: FLASH Erase, Program, Verify

888 20KB
14KB
1080 40KB
22KB

LatticeECP2/2S

Programming Mode: Sequential

Operation: Fast Program

752 1KB
190KB
752 1KB
364KB
1018 1KB
565KB
1284 1KB
800KB
1643 1KB
1140KB
2032 1KB
1700KB
LatticeECP2M/2MS

Programming Mode: Sequential

Operation: Fast Program

1615

2042

1KB
756KB

1KB
1258KB

(1K Byte = 1024 Bytes)

VME File Size
No Compression

94KB

158KB

191KB

365KB

566KB

802KB

1141KB

1702KB

758KB

1259KB

Lattice Diamond 3.14 Programming Tools User Guide

56

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedded

Device

LFE2MS0E/SE

LFE2M70E/SE

LFE2M100E/SE

LFXP2-5E

LFXP2-8E

LFXP2-17E

LFXP2-30E

LFXP2-40E

LFE3-17E/EA

LFE3-35E/EA

LFE3-70E/EA

LFE3-95E/EA

Device Row Size
(Bits)

2419

2799

3120

JTAG Slim VME
Embedded File Size
No Compression
(1K Byte = 1024 Bytes)

Algorithm File Size
Data File Size
1KB
2022KB
1KB
2535KB
1KB
3281KB

LatticeXP2

Programming Mode: Sequential

Operation: FLASH Erase, Program, Verify

638 1KB
154KB
772 1KB
243KB
2188 1KB
446KB
2644 1KB
731KB
3384 1KB
1017KB
LatticeECP3

Programming Mode: Sequential

Operation: Fast Program

2584

3416

6724

6724

1KB
503KB
1KB
882KB
1KB
2333KB
1KB
2333KB

VME File Size
No Compression
(1K Byte = 1024 Bytes)

2023KB

2537KB

3282KB

561KB

859KB

1423KB

2308KB

3176KB

505KB

883KB

2336KB

2336KB

Lattice Diamond 3.14 Programming Tools User Guide

57

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedded

Device Device Row Size JTAG Slim VME VME File Size
(Bits) Embedded File Size No Compression
No Compression (1K Byte = 1024 Bytes)
(1K Byte = 1024 Bytes)
Algorithm File Size
Data File Size
LFE3-150E/EA 8380 1KB 3719KB
3714KB
ECP5U
Programming Mode: Sequential
Operation: Fast Program
LFE5U-85F 1136 ‘ 1KB ‘ 85KB
1883KB
ECP5UM
Programming Mode: Sequential
Operation: Fast Program
LFE5SUMB85F 1136 ‘ 1KB ‘ 85KB
1883KB
LatticeSC/SCM
Programming Mode: Sequential
Operation: Fast Program
LFSC3GA15E 1043 1KB 543KB
LFSCM3GA15E 542KB
LFSC3GA25E 1316 1KB 701KB
LFSCM3GA25E 700KB
LFSC3GA40E 1652 1KB 1078KB
LFSCM3GA40E 1076KB
LFSC3GAS80E 2156 1KB 2723KB
LFSCM3GABSOE 2719KB
LFSC3GA115E 2639 1KB 3088KB
LFSCM3GA115E 3084KB
Important!

If the VME file size is more than 64K bytes, the VME Embedded driver must be
compiled as a 32-bit program. A 16-bit program can only address up to 64K bytes of
memory maximum.

Lattice Diamond 3.14 Programming Tools User Guide 58

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Using JTAG Full VME Embedded

The procedure of generating and processing the VME can be done by using
the Programmer graphical user interface.

Table 1: JTAG Full VME Program Descriptions

Program Description

JTAG Full VME Embedded The file-based JTAG Full VME Embedded is the
(file-based) programming engine that accepts VME files as
command line arguments to process the device(s).

The EPROM-based JTAG Full VME Embedded is the
programming engine that requires compiling a HEX file,
which is a C-programming file, with the source code to
create an executable engine that can be embedded
onto the embedded system.

JTAG Full VME Embedded
(EPROM-based)

svf2vme The svf2vme is a command line utility that can convert
SVF files into VME files.

vme2hex The vme2hex is a command line utility that can convert
VME files into HEX files.

Generating VME Files

AVME file is a variation of an SVF file that has been compressed into a binary
file. It allows you to program a device from the microprocessor on your printed
circuit board. The VME files can be created in Deployment Tool by selecting
Lattice Programmer-generated an XCF file. An XCF file is a configuration file
used by Diamond Programmer and for programming devices in a JTAG daisy
chain. The XCF file contains information about each device, the data files
targeted, and the operations to be performed.

In Deployment Tool, the JTAG Full VME Embedded software will then take the
device chain information and generate the VME file. If a non-Lattice device is
in the chain, you must add a JTAG-SVF device and supply the SVF file. For
chains with JTAG-SVF devices, JTAG Full VME Embedded generates two
VME files. You can use one or both files to program the device.

To generate a VME file:

1. In Programmer, create a project, and add the target devices into the chain
with the appropriate operations and data files. If a non-Lattice device is in
the chain, set the device as a JTAG-SVF device and provide the
appropriate SVF file, SVF vendor, and TCK frequency. Refer to
Programmer online help for more information on how to use Programmer.

2. Save the Programmer project (.xcf).
In Deployment Tool, choose Create New Deployment.

4. For Function Type, choose Embedded System.

Lattice Diamond 3.14 Programming Tools User Guide 59

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

5. For Output Type, choose JTAG Full VME Embedded, then click OK.
6. Inthe Step 1 of 4 dialog box, select the XCF file, and click Next.

7. In the Step 2 of 4 dialog box, elect the desired file options. For detailed
option descriptions, including the option that allows you to generate a
HEX (.c) file, see the Deployment Tool online help.

8. Click Next.

9. In the Step 3 of 4 dialog box, in the Output File box, specify the location
and file name of the VME file.

10. Click Next.
11. In the Step 4 of 4 dialog box, click Generate.

Deployment Tool generates the VME file depending upon the options you
have chosen, and returns a message indicating that the process succeeded
or failed.

Testing VME Files

Use the Download Debugger to process the VME file using any of the Lattice
programming cables. Refer to Download Debugger online help for details.
This processor can run through port 0x0378 of the parallel port using the
Lattice download cable.

VME files can also be processed using the command line. See Running the
Deployment Tool from the Command Line online help for details.

Converting an SVF File to VME File

VME files can also be generated the traditional way by using the svf2vme
source code. The utility will expect an SVF file as argument.

Choosing the File-Based or EPROM-
Based Version

To generate a PROM-based VME, select the “Generate HEX (.c) File” option
in the Deployment Tool Step 2 of 4 dialog box.The programming engines of
the file-based and PROM-based processors are identical in the way they
handle the VME commands. Their difference lies in the way they interface
with VME data. For a convenient demo, the file-based version assigns a file
pointer to the binary VME file directly. The pointer is assigned based on a
command line argument. With some minor modification, this version is useful
for embedded high-level 32-bit microprocessors that can dynamically allocate
RAM and have large amounts of data and code memory. For more modest

Lattice Diamond 3.14 Programming Tools User Guide 60

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

embedded systems or smaller processors, the PROM-based version is useful
because the memory resources are completely defined when compiling the
executable.The VME file is converted to one or more C files and a header file
that are compiled with the core routines.

Customizing for the Target Platform

The main routines that will require customization are in the hardware.c file.
They include the routines for reading from and writing to the JTAG pins and a
delay routine. These routines are well commented in hardware.c and are at
the top of the file. In readPort(), a byte of data is read from the input port. In
writePort(), a byte of data is written to the output port. In ispVMDelay(), the
system delays for the specified number of milliseconds or microseconds. The
port mapping is set at the top of the hardware.c file.

The source code files are written in ANSI C. The JTAG Full VME Embedded
source codes are located in the <install_path>\embedded_source directory.
See Also

JTAG Full VME Embedded Required User Changes

Advanced Issues

Since SVF files are serial in nature, many vendors have options on the type of
operations to be performed when generating the SVF files. If an SVF file is too
large for the targeted embedded application, consider removing optional
operations or breaking up the operations by creating multiple SVF files. This
approach is much better than arbitrarily dividing the VME file.

EPROM-based JTAG Full VME
Embedded User Flow

This appendix details the steps the user must take to use the EPROM-based
JTAG Full VME Embedded.

Step 1. Create Chain With Programmer

Using Programmer, add the target devices into the chain with the appropriate
operations and data files. If a non-Lattice device is in the chain, set the device
as a JTAG-SVF device and provide the appropriate SVF file, SVF vendor, and
TCK frequency. For more information on supporting non-Lattice devices, see
Programmer’s on-line help documentation.

Step 2. Generate VME File

Lattice Diamond 3.14 Programming Tools User Guide 61

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Figure 16: EPROM-based JTAG Full VME Embedded User Flow

1 Create Chain {xef)
with Programmer

Generate VME Using
Deplovment Tool

3 Test Using
Download Debuzger

4 Nodify Epror-based
Source Code

5 Compile Source Code
wl Hex Files

Nodify sowrce code
8 file hardware.c

Compile source code
and YIVIE HEX files

Use the Deployment Tool to generate the VME file. Refer to the Deployment
Tool online help for more information on Deployment Tool.

Step 3. Convert VME to HEX

A HEX file can be created from a VME file by using the vmeZ2hex source code
that is shipped with Programmer, or by selecting the Generate HEX (.c) File
option in Deployment Tool. This source code can be found in the installation
path of Programmer, under the

<install_path>\embedded source\vmembedded\sourcecode\svf2vme. A HEX
file is a C-programming language file that has the VME byte codes converted
and stored in an array.

Step 4. Modify EPROM-based Source Code

The file hardware.c must be modified to target the embedded system. In
particular, the following functions must be changed to be able to write, read,
and observe the delay, respectively:

void writePort (unsigned char a ucPins, unsigned char
a_ucvValue)

unsigned char readPort ()

void ispVMDelay (unsigned int delay time)
Step 5. Compile Source Code and HEX Files

Combine the source code and HEX files into a project to be compiled. This
may be done by using a microcontroller compiler.

Lattice Diamond 3.14 Programming Tools User Guide 62

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Programming Engine Flow

The programming engine of the JTAG Full VME Embedded is driven by the
byte codes of the VME file. The byte codes instruct the programming engine
as to what sequence of functions to follow in order to shift in instructions,
move the TAP controller state machine, shift data in and out of the device, and
observe delays.

The TAP controller is a synchronous state machine that is based on the TMS
(Test Mode Select) and TCK (Test Clock) signals of the TAP and controls the
sequence of operations of the circuitry defined by the IEEE 1149.1 standard.
The TCK signal can be driven at a maximum of 25 MHz. JTAG devices in the
chain may limit the TCK speed. Confirm the Maximum TCK for all the devices
in the programming chain.

Figure 17: TAP Controller State Diagram

%‘ Test-Logic-
RESET

| Taes =00

TG =1

Select | IMs
DR -5 can

Run-Test!
lcdle

Capture-DA

5 hift-DR

.
THE =3 ThYS =0
- ‘[Exitz-DR | - | Exig-IR]
L.

}T?\ i

! r
Update-DR [— | update-Ir
THE T'\.:’- i
a
ra

Contrel 5 ignal: TMS

In the Shift-DR state, a decoder is present to select which shift register is
enabled and connects it between TDI and TDO. The following are the shift
registers: Address Shift Register, Data Shift Register, 32-bit Shift Register,
and Bypass. The 32-bit Shift Register is used to store the ID code and

Lattice Diamond 3.14 Programming Tools User Guide 63

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

USERCODE. The first bit clocked into any of the registers is placed into the
MSB, and data is shifted towards TDO as additional bits are clocked in.

Figure 18: Shift Registers

Address Shift Register

Drata Shift Fegister
TDD

LI
JGLI

TDI
32-bit Shift Register

Bypass

The engine core is implemented as a switch statement. The cases in this
switch statement perform specialized functions based on the byte code and
its operand(s). These functions may end up calling other switch statements,
calling the engine core recursively, setting global variable values, or
interfacing with the device directly. Once the byte code instruction has been
executed, it returns to the main switch statement to process the next byte.

The processor begins by calculating the 16-bit CRC of the VME file and
comparing it against the expected CRC. If that is successful, the processor
then verifies the version of the VME file to make sure it is supportable. The
version is an eight byte ASCII of the format <Major
Version>.<Minor Version>, where <Major Version> and <Minor
Version> are digits 0-9. If the version verification fails, the processor
returns the error code —4 to indicate a file error.

The Main Engine Switch calls the appropriate case statements based on the
incoming byte code from the VME. Unrecognized byte codes will result in the
program exiting with the error code —4 to indicate a file error.

STATE Case Statement

The STATE case statement expects a state following the STATE byte code to
instruct the processor to step the IEEE 1149.1 bus to the next state. The state
must be a valid stable state, which is IRPAUSE, DRPAUSE, RESET, or IDLE

SIR Case Statement

The SIR case statement begins by extracting the size of the register. The size
will be used later to indicate how many bits of data will be sent or read back
from the device. If the flow control has been set to CASCADE, then the
processor shifts the device to the SHIFTIR. The presence of CASCADE in the
flow control indicates that the SIR instruction is targeting over 64Kb of data
and has been broken down to ease the memory requirements.

Lattice Diamond 3.14 Programming Tools User Guide 64

EMBEDDED FLOW OVERVIEW :

JTAG Full VME Embedded

Figure 19: Main Engine Switch

True
Yerify CRC/

start ¥ME ¥Yersion

False

End

Figure 20: STATE Case Statement

STATE
stepto

Main Engine
Switch

Extract the next state to

STATE
SIR
SDR

XSDR
WAIT
TCK
ENDDR
ENDIR
HIR
TIR
HDR
TDR
MEM
YENDOR
SETFLOW
HEAP
REPEAT
ENDLOOP
END¥ME
SHR
SHL
FREQUENCY
YUES
COMMENT
HEADER
LCOUNT

LVDS

Ivlain Engine
Switch

If CASCADE has not been set, then the processor shifts the device into the
safe state IRPAUSE, and then to SHIFTIR. If HIR exists (see HIR Case
Statement), then the processor will bypass the HIR. The SIR sub-switch is a
switch that is based off of the byte codes that can potentially be found after

the SIR byte code.

The TDI byte code indicates that there is data that needs to be shifted into the
device. The data following the TDI byte will be extracted and decompressed,
if compression were selected, and held in memory until it is ready to be

shifted into the device.

Lattice Diamond 3.14 Programming Tools User Guide

65

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Figure 21: SIR Case Statement

Fake

SR Ertrat Regiter Bite Cascade RPATUZE SHIFTIR
True
True
SHIFTIR Bypas: HIE HIE
Fake
SIR Sb-garich
1 o Ay MASE DMASE COMTIHUE

The TDO byte code indicates that there is data that needs to be read and
verified from the device. The data following the TDO byte will be extracted
and decompressed, if compression were selected, and held in memory until it
is ready to be compared against data in the device.

The XTDO byte code indicates that the TDO data is the TDI data of the
previous frame, such as in the case of concurrent, or turbo, programming.
Data will not follow the XTDO byte code, resulting in a smaller VME. Instead,
the previous frame’s TDI data will be used as the current TDO data.

The MASK byte code indicates that there is mask data that needs to be used
when comparing the TDO values against the actual values read from the
device. The data following the MASK byte will be extracted and
decompressed, if compression were selected, and held in memory until it is
ready to be used when comparing against data in the device.

The DMASK byte code indicates that there is dynamic mask data that needs
to be used when comparing the boundary scan. The data following the
DMASK byte will be extracted and decompressed, if compression were
selected, and held in memory until it is ready to be used when comparing
against the boundary scan.

The CONTINUE byte code terminates the SIR instruction. When this byte is
encountered, it indicates that the processor is ready to send or read and verify
data from the device using the data it is currently holding in memory. If any
byte codes other than TDI, TDO, XTDO, MASK, DMASK, and CONTINUE
were encountered in the SIR Sub-switch, the program will exit with the error
code —4, indicating a file error.

If the TDO or XTDO byte code were encountered in the SIR sub-switch, then
that indicates that the SIR instruction is going to read data from the device,
else the SIR instruction is going to send data to the device.

If reading and verifying data from the device were successful, the processor
checks if the CASCADE flag has been set. If it is set, the control returns to the
Main Engine Switch. If the flag is off, the processor checks if TIR exists (see
TIR Case Statement). If it exists, then the trailer devices must be bypassed.
Next, it shifts the device to the stable state that followed the ENDIR byte code

Lattice Diamond 3.14 Programming Tools User Guide 66

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

(see ENDIR Case Statement). The control returns back to the Main Engine
Switch.

Figure 22: SIR Case Statement Continued

Fake

COMTIHUE Werify SIE Send
True
True
SIE Read
Fake Trae
Trae . . -
Vi Caccade Tifair Bregie Smrtich,
Fake
Fake
True True
E P—— TIR Bypass TIR.
Fake Taks
Shift ENDIR State Skt ENDIR Stite
Retom Verky Failre Tilain Brighe Sarkch
End

If reading and verifying data from the device were unsuccessful, the
processor checks if the vendor has been set to Xilinx. If the vendor is Xilinx,
repeat the read loop up to 30 times before returning an error. If the vendor is
not Xilinx, the processor bypasses the TIR if there are trailer devices. Next, it
shifts the device to the stable state that followed the ENDIR byte code. The
error code returned is —1 to indicate a verification failure.

If TDO or XTDO were not encountered in the SIR sub-switch, then the
processor sends data to the device. If the CASCADE flag has been set, the
control returns to the Main Engine Switch. If TIR exists, then the trailer
devices must be bypassed. Next, it shifts the device to the stable state that
followed the ENDIR byte code. The control returns back to the Main Engine
Switch.

SDR Case Statement

The SDR case statement works similar to the SIR. It begins by extracting the
size of the register. The size will be used later to indicate how many bits of
data will be sent or read back from the device. If the flow control has been set
to CASCADE, then the processor shifts the device to the SHIFTIR. The
presence of CASCADE in the flow control indicates that the SDR instruction is
targeting over 64Kb of data and has been broken down to ease the memory
requirements.

Lattice Diamond 3.14 Programming Tools User Guide 67

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Figure 23: SDR Case Statement

Fake

SR Edrait Regiter Bis Cascade DEPAUZE SHIFTDR
True
True
SHIFTLR Eypass HDR HDE
Fake
SCR Sub-swritch
01 L0 Moo MIASE DMASE CONTIHUE

If CASCADE has not been set, then the processor shifts the device into the
safe state DRPAUSE, and then to SHIFTDR. If HDR exists (see HDR Case
Statement), then the processor will bypass the HDR. The SDR sub-switch is a
switch that is based off the byte codes that can potentially be found after the
SDR byte code.

The TDI byte code indicates that there is data that needs to be shifted into the
device. The data following the TDI byte will be extracted and decompressed,
if compression were selected, and held in memory until it is ready to be
shifted into the device.

The TDO byte code indicates that there is data that needs to be read and
verified from the device. The data following the TDO byte will be extracted
and decompressed, if compression were selected, and held in memory until it
is ready to be compared against data in the device.

he XTDO byte code indicates that the TDO data is the TDI data of the
previous frame, such as in the case of concurrent, or turbo, programming.
Data will not follow the XTDO byte code, resulting in a smaller VME. Instead,
the previous frame’s TDI data will be used as the current TDO data.

The MASK byte code indicates that there is mask data that needs to be used
when comparing the TDO values against the actual values read from the
device. The data following the MASK byte will be extracted and
decompressed, if compression were selected, and held in memory until it is
ready to be used when comparing against data in the device.

The DMASK byte code indicates that there is dynamic mask data that needs
to be used when comparing the boundary scan. The data following the
DMASK byte will be extracted and decompressed, if compression were
selected, and held in memory until it is ready to be used when comparing
against the boundary scan.

The CONTINUE byte code terminates the SDR instruction. When this byte is
encountered, it indicates that the processor is ready to send or read and verify
data from the device using the data it is currently holding in memory. If any
byte codes other than TDI, TDO, XTDO, MASK, DMASK, and CONTINUE
were encountered in the SDR Sub-switch, the program will exit with the error
code —4, indicating a file error.

Lattice Diamond 3.14 Programming Tools User Guide 68

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Figure 24: SDR Case Statement Continued

Fake

COHTIHUE Verify SDE Send
Trae
Trae
SOE. Foad
Fake Tre
Ll s Cascads D Erigiee Swtich
Fake
Fake
True True
DR S — TDR Eypass TDR
Fake Fake
it EHDDR Stae St BNDDER fate
Retom Verky Failre Tiain Erighe Sarkch
End

If the TDO or XTDO byte code were encountered in the SDR sub-switch, then
that indicates that the SDR instruction is going to read data from the device,
else the SDR instruction is going to send data to the device.

If reading and verifying data from the device were successful, the processor
checks if the CASCADE flag has been set. If it is set, the control returns to the
Main Engine Switch. If the flag is off, the processor checks if TDR exists (see
TDR Case Statement). If it exists, then the trailer devices must be bypassed.
Next, it shifts the device to the stable state that followed the ENDDR byte
code (see ENDDR Case Statement). The control returns back to the Main
Engine Switch.

If reading and verifying data from the device were unsuccessful, the
processor checks if the vendor has been set to Xilinx. If the vendor is Xilinx,
repeat the read loop up to 30 times before returning an error. If the vendor is
not Xilinx, the processor bypasses the TIR if there are trailer devices. Next, it
shifts the device to the stable state that followed the ENDIR byte code. The
error code returned is —1 to indicate a verification failure.

If TDO or XTDO were not encountered in the SDR sub-switch, then the
processor sends data to the device. If the CASCADE flag has been set, the
control returns to the Main Engine Switch. If TDR exists, then the trailer
devices must be bypassed. Next, it shifts the device to the stable state that
followed the ENDDR byte code. The control returns back to the Main Engine
Switch.

Lattice Diamond 3.14 Programming Tools User Guide 69

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

XSDR Case Statement

The XSDR case statement works exactly like the SDR case statement, except
that it sets the EXPRESS flag. The EXPRESS flag indicates to the processor
that the VME is performing concurrent programming. Therefore, the TDO data
shall use the previous frame’s TDI data. This reduces the VME size drastically
because the data is not duplicated.

WAIT Case Statement

The WAIT case statement expects a number following the WAIT byte code to
represent the number of milliseconds of delay the device must observe. The
delay is observed immediately. The user must update the delay function in the
source code to make the target embedded system observe the delay duration
correctly.

Figure 25: WAIT Case Statement

WAIT O i -
TCK Case Statement

The TCK case statement expects a number following the TCK byte code to
represent the number of clocks that the device must remain in the run test idle
state. The clock cycles are executed immediately into the device.

Figure 26: TCK Case Statement

oK Extract the number of Ilain Engine
clock cyeles in BTI Switch

ENDDR Case Statement

The ENDDR case statement expects a state following the ENDDR byte code
to represent the TAP state that the processor shall move the device to after an
SDR instruction. This state will be stored in a global variable.

Lattice Diamond 3.14 Programming Tools User Guide 70

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Figure 27: ENDDR Case Statement

ENDDR Extract ENDDE. state and Ilain Ergine
assign to global variable Switch

ENDIR Case Statement

The ENDIR case statement expects a state following the ENDIR byte code to
represent the TAP state that the processor shall move the device to after an
SIR instruction. This state will be stored in a global variable.

Figure 28: ENDIR Case Statement

ENDIR. Extract ENDIR. state and Ilain Ergine
assign to global variable Switch

HIR Case Statement

The HIR case statement expects a number following the HIR byte code to
represent the number of header devices. The number will be stored in a
global variable and the processor will issue this number of bypasses prior to
executing an SIR instruction.

Figure 29: HIR Case Statement

HIR s Nt
TIR Case Statement

The TIR case statement expects a number following the TIR byte code to
represent the number of trailer devices. The number will be stored in a global
variable and the processor will issue this number of bypasses after executing
an SIR instruction.

Figure 30: TIR Case Statement

TIR Extract TIR munber and Ilain Ergine
assign to global varishle Switch

Lattice Diamond 3.14 Programming Tools User Guide 71

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

HDR Case Statement

The HDR case statement expects a number following the HDR byte code to
represent the number of header register bits. The number will be stored in a
global variable and the processor will issue this number of bypasses prior to
executing an SDR instruction.

Figure 31: HDR Case Statement

HDR g i o
TDR Case Statement

The TDR case statement expects a number following the TDR byte code to
represent the number of trailer register bits. The number will be stored in a
global variable and the processor will issue this number of bypasses after
executing an SDR instruction.

Figure 32: TDR Case Statement

TDR Extract TDR. rurober and Ilain Ergine
assign to global varishle Switch

MEM Case Statement

The MEM case statement expects a number following the MEM byte code to
represent the maximum frame size in bits. Memory buffers will be allocated for
TDI, TDO, MASK, and DMASK data according to the maximum number.

Figure 33: MEM Case Statement

Extract numnber indicating Main Engine
the tnasrnum frame size Switch

VENDOR Case Statement

The VENDOR case statement expects the vendor type following the
VENDOR byte code to represent the vendor the VME supports. Different

Lattice Diamond 3.14 Programming Tools User Guide 72

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

vendors require different programming algorithms that must be supported.
This byte notifies the embedded processor to enable the specified vendor
support.

Figure 34: VENDOR Case Statement

Main Engine

WVENDOR, Extract the wvendar type Switch

SETFLOW Case Statement

The SETFLOW case statement expects an instruction following the
SETFLOW byte code to instruct the embedded processor to enable certain
properties during execution. This is useful for cascading and looping VME
files, where the processor flow must change in order to take advantage of
these features.

Figure 35: SETFLOW Case Statement

Main Engine

SETFLOW Extract flow control code :
Switch

RESETFLOW Case Statement

The RESETFLOW case statement works to reset the properties enabled
during the SETFLOW case statement.

Figure 36: RESETFLOW Case Statement

Main Fngine

RESETFLOW Extract flow control code :
Switch

HEAP Case Statement

The HEAP case statement expects a number following the HEAP byte code to
indicate the size of the upcoming repeat loop. In the file-based JTAG Full
VME Embedded, this size is used to dynamically allocate memory to hold the
repeat loop. In the EPROM-based embedded, the heap array is set to point to
the heap buffer in the HEX file.

Lattice Diamond 3.14 Programming Tools User Guide 73

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Figure 37: HEAP Case Statement

Extract the size of the Iain Engine
repeat loop Switch

REPEAT Case Statement

The REPEAT case statement is executed if the VME were generated with the
looping option. A looping VME attempts to reduce the VME size by forming
loops around similar algorithm. Following the REPEAT byte code, a number
indicating the number of repeats is extracted. The heap buffer is build by
reading the number of HEAP size (see HEAP case statement) bytes and
storing them in memory. Recursive calls are made back to the Main Engine
Switch, which will process the byte codes within the heap buffer. The
recursive calls end when the repeat size is zero.

Figure 38: REPEAT Case Statement

Build Heap
REPEAT E et R ey Buffer In
mize
Ilemory
_ True
Lecrement Reu::u_rswelj,r_ Call While Bepeat
Fepeat Size MR Enge Size = [
awitch
Falze
Ilain Engine
Swrtch

ENDLOOP Case Statement

The ENDLOOP byte code terminates a loop iteration and shall be
encountered only when the embedded processor is processing a repeat loop.
This byte code shall always be the last byte of the heap buffer. When this byte
code is found, the control returns back to the looping control, where the repeat
size gets decremented and the next iteration of the loop begins, unless the
repeat size is zero.

Lattice Diamond 3.14 Programming Tools User Guide 74

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Figure 39: ENDLOOP Case Statement

ENDLOOP End a loop interation

ENDVME Case Statement

The ENDVME case statement exits the main engine switch. This byte code is
the last byte of the VME.

Figure 40: ENDVME Case Statement

ENDVIVE Ezit main engine switch

SHR Case Statement

The SHR case statement expects a number following the SHR byte code to
perform a right shift on the TDI data buffer. At this point the TDI data buffer
should store the register address. By simply right shifting the register address
to increment to the next frame instead of having the VME contain several
register address buffers, the VME size is reduced.

Figure 41: SHR Case Statement

Eztract the number of Main Engine

Sl right shifis to execute Switch

SHL Case Statement

The SHL case statement works similar to the SHR case statement, except
that it shifts to the left.

Figure 42: SHL Case Statement

Extract the number of left Main Engine

e shifts to execute Switch

Lattice Diamond 3.14 Programming Tools User Guide 75

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

FREQUENCY Case Statement

The FREQUENCY case statement expects a number following the
FREQUENCY byte code to establish the TCK frequency.

Figure 43: FREQUENCY Case Statement

FREQUENCY Main Engine

Set TCK frequency Switch

VUES Case Statement

The VUES case statement sets the flow control register to indicate that the
VME is invoking the Continue If Fail feature. Under this condition, if the
USERCODE verification fails, then the embedded processor continues with
programming the data. If the USERCODE verification passes, then the
processor exits without programming.

COMMENT Case Statement

The COMMENT case statement is executed if the VME file were generated to
support SVF comments. This statement expects a number to indicate the size
of the comment. The comment is then read one byte at a time and displayed
onto the terminal. It ends when the number of bytes processed equals the
number indicating the size of the comment.

Figure 44: COMMENT Case Statement

COMMENT Extral_:t comment size Main Engine
and display comment Switch

HEADER Case Statement

The HEADER case Statement is executed if the VME file were generated with
header information. Currently, this feature is not supported.

Figure 45: HEADER Case Statement

HEADER Extrfn:t header size Main I_Engine
and ignore header Switch

Lattice Diamond 3.14 Programming Tools User Guide 76

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

LCOUNT Case Statement

The LCOUNT case statement is executed if the VME file targets FLASH or
PROM devices. It allows the engine to repeatedly check the status of the
device before programming the next block of data. This statement expects a
number to indicate the number of status checks before issuing a failure return
code. The engine will use an index to point to the repeated commands in a
buffer and issue them to the device. The index is reset after each iteration.
This will continue until the number of status checks gets decremented to zero,
or until the status is verified to be true.

Figure 46: LCOUNT Case Statement

Build LCOUNT
LCOUNT Extract) Buffer In
Repeat Size Memory
True
Decrement ;et_:ur;zsm_alv call While Repeat
Repeat Size i, ENGINE Size > 0

Switch
False
False

Verify
Status

True ; .
Main Engine

Switch

LVDS Case Statement

The LVDS case statement informs the processor about the number of LVDS
pairs and which are paired. This ensures that the processor will drive opposite
values back into the pairs.

VME Byte Codes

Appendix C lists the byte codes that are found in the VME and interpreted by
the embedded processor.

General Opcode Value Description
VMEHEXMAX 60000L Sets the HEX file maximum size to 60K
SCANMAX 64000L Sets the maximum data burst to 64K

Lattice Diamond 3.14 Programming Tools User Guide 77

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Formatting Opcode Value Description
CONTINUE 0x70 Indicates the end of a VME line
ENDVME 0x7F Indicates the end of a VME file
ENDFILE 0xFF Indicates the end of file
JTAG Opcode Value Description
RESET 0x00 Traverse to TLR
IDLE 0x01 Traverse to RTI
IRPAUSE 0x02 Traverse to PAUSE IR
DRPAUSE 0x03 Traverse to PAUSE DR
SHIFTIR 0x04 Traverse to SHIFT IR
SHIFTDR 0x05 Traverse to SHIFT DR
Flow Control oy
Value Description
Opcode
INTEL PRGM 0x0001 Intelligent programming in effect
CASCADE 0x0002 Currently splitting large SDR
REPEATLOOP 0x0008 Currently executing a repeat loop
Indicates the next stream needs a right
SHIFTRIGHT 0x0080 .
shift
Indicates the next stream needs a left
SHIFTLEFT 0x0100 .
shift
VERIFYUES 0x0200 Indicates Continue If Fail flag

Data Type Register Value Description
Opcode
EXPRESS 0x0001 Simultaneous program and verify
SIR DATA 0x0002 SIR is the active SVF command
SDR_DATA 0x0004 SDR is the active SVF command
COMPRESS 0x0008 Data is compressed
TDI DATA 0x0010 TDI data is present
TDO_DATA 0x0020 TDO data is present
MASK DATA 0x0040 MASK data is present
HEAP IN 0x0080 Data is from the heap
LHEAP IN 0x0200 Data is from the intelligent data buffer
VARIABLE 0x0400 Data is from a declared variable
CRC_DATA 0x0800 CRC data is present
CMASK DATA 0x1000 CMASK data is present
RMASK DATA 0x2000 RMASK data is present
READ DATA 0x4000 READ data is present
DMASK DATA 0x8000 DMASK data is present
Hardware Opcode Value Description
signalENABLE 0x1C Assert the ispEN pin
signalTMS 0x1D Assert the MODE or TMS pin
signalTCK 0x1E Assert the SCLK or TCK pin
signalTDI 0x1F Assert the SDI or TDI pin
signalTRST 0x20 Assert the RESTE or TRST pin
Vendor Opcode Value Description
VENDOR 0x56 Indicates vendor opcode is following
LATTICE 0x01 Indicates Lattice or JTAG device
ALTERA 0x02 Indicates Altera device

Lattice Diamond 3.14 Programming Tools User Guide 78

EMBEDDED FLOW OVERVIEW

JTAG Full VME Embedded

XILINX [0x03 Indicates Xilinx device |
SVF Opcode || Value Description
ENDDATA 0x00 Indicates the end of the current SDR data stream
RUNTEST 0x01 Indicates the duration to stay at the stable state
ENDDR 0x02 Indicates the stable state after SDR
ENDIR 0x03 Indicates the stable state after SIR
ENDSTATE 0x04 Indicates the stable state after RUNTEST
TRST 0x05 Assert the TRST pin
HIR 0x06 Specifies the sum of IR bits at lead
TIR 0x07 Specifies the sum of IR bits at end
HDR 0x08 Specifies the number of devices at lead
TDR 0x09 Specifies the number of devices at end
ispEN 0x0A Assert the ispEN pin
FREQUENCY 0x0B Specifies the maximum clock rate to run the state machine
STATE 0x10 Move to the next stable state
SIR 0x11 Indicates the instruction stream is following
SDR 0x12 Indicates the data stream is following
TDI 0x13 Indicates the data stream following is fed into the device
TDO 0x14 Indicates the data stream is to be read and compare
MASK 0x15 Indicates the data stream following is the output mask
Indicates the data stream following is for simultaneous shift in and
XSDR 0x16 .
shift out
YTDT 0x17 Indicates the data stream following is for shift in only and it must
X
be stored for verifying on the next XSDR call
Y70 0x18 Indicates there is no data stream following, instead it should be
X
retrieved from the previous XTDI token
MEM 0x19 Indicates the size of the memory needed to be allocated.
WAIT 0x1A Indicates the duration of the delay at IDLE state
TCK 0x1B Indicates the number of clocks to pulse to TCK
HEAP 0x32 Indicates the size of the memory needed to hole the loop
REPEAT 0x33 Indicates the beginning of a reap loop
LEFTPAREN 0x35 Indicates the beginning of the data following the loop
Indicates a place holder for the data if looping option has been
VAR 0x55
selected
SEC 0x1C Indicates the absolute time in seconds that must be observed
SMASK 0x1D Indicates the mask for TDI data
MAX 0x1E Indicates the absolute maximum wait time
ON 0x1F Assert the targeted pin
OFF 0x20 Dis-assert the targeted pin
SETFLOW 0x30 Change the Flow Control Register
RESETFLOW 0x31 Clear the Flow Control Register
CRC 0x47 Indicates which bits may be used in CRC calculation
CMASK 0x48 Indicates which bits shall be used in CRC calculation
RMASK 0x49 Indicates which bits shall be used in Read and Save
READ 0x50 Indicates which bits may be used in Read and Save
ENDLOOP 0x59 Indicates the end of the repeat loop
SECUREHEAP 0x60 Byte encoded to secure the HEAP structure
SVF Opcode || Value Description
VUES 0x61 Indicates Continue If Fail option has been selected
DMASK 0x62 Indicates SVF file has DMASK
COMMENT 0x63 Support SVF comments in VME file
HEADER 0x64 Support header in VME file
FILE CRC 0x65 Support CRC-protected VME file
LCOUNT 0x66 Support intelligent programming.
LDELAY 0x67 Support intelligent programming.
LSDR 0x68 Support intelligent programming.
LHEAP 0x69 Memory needed to hold intelligent data buffer
LVDS 0x71 Support LVDS

[Value |

Description

! Return Codes

Lattice Diamond 3.14 Programming Tools User Guide

79

EmMBEDDED FLow OVERVIEW : JTAG Full VME Embedded

Value returned when the expected data does
VME VERIFICATION ERROR -1 .
- - not match the actual data of the device
Value returned when the VME file cannot be
VME FILE READ FAILURE -2
- - - read
Value returned when the version is not sup-
VME VERSION FAILURE -3
- - ported
Value returned when an invalid opcode is
VME INVALID FILE -4
- - encountered
Value returned when a command line argument
VME ARGUMENT FAILURE -5 o)
- - is invalid
Value returned when the expected CRC does
VME CRC FAILURE -6
- - not match the calculated CRC.

Unsupported SVF Syntax

The following are the SVF syntax not supported by the SVF2VME utility:
TRST - The TRST command is ignored.
PIO - The PIO command will cause SVF2VME to exit with an error.

PIOMAP - The PIOMAP command will cause SVF2VME to exit with an
error.

MAXIMUM - The optional parameter MAXIMUM is ignored. This may be
found in the RUNTEST command.

SMASK - The optional parameter SMASK is ignored. This may be found
in the HDR, HIR, TDR, TIR, SIR, or SDR commands.

Explicit state transitions in the STATE command that contain non-stable
states will cause SVF2VME to exit with an error. Only transitions between
stable states are supported in the table below.

STATE RESET is supported. However, it is strongly discouraged to be
included into the SVF file. This statement causes the undesirable effect of
having all the devices in the entire JTAG chain to be reseted.

Lattice Diamond 3.14 Programming Tools User Guide 80

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

The following table indicates the paths taken between stable states.

Current State || New State State Path
RESET RESET RESET (NO CLOCK)
RESET IDLE RESET-IDLE
RESET DRPAUSE RESET-IDLE-DRSELECT-DRCAPTURE-DREXIT1-DRPAUSE
RESET-IDLE-DRSELECT-IRSELECT-IRCAPTURE-IREXIT1-
RESET IRPAUSE
IRPAUSE
IDLE RESET IDLE-DRSELECT-IRSELECT-RESET
IDLE IDLE IDLE (NO CLOCK)
IDLE DRPAUSE IDLE-DRSELECT-DRCAPTURE-DREXIT1-DRPAUSE
IDLE IRPAUSE IDLE-DRSELECT-IRSELECT-IRCAPTURE-IREXIT1-IRPAUSE
DRPAUSE RESET DRPAUSE-DREXIT2-DRUPDATE-DRSELECT-IRSELECT-RESET
DRPAUSE IDLE DRPAUSE-DREXIT2-DRUPDATE-IDLE
DRPAUSE DRPAUSE DRPAUSE (NO CLOCK)
DRPAUSE-DREXIT2-DRUPDATE-DRSELECT-IRSELECT-
DRPAUSE IRPAUSE
IRCAPTURE-IREXIT1-IRPAUSE
IRPAUSE RESET IRPAUSE-IREXIT2-IRUPDATE-DRSELECT-IRSELECT-RESET
IRPAUSE IDLE IRPAUSE-IREXIT2-IRUPDATE-IDLE
IRPAUSE-IREXIT2-IRUPDATE-DRSELECT-DRCAPTURE-
IRPAUSE DRPAUSE
DREXIT1-DRPAUSE
IRPAUSE IRPAUSE IRPAUSE (NO CLOCK)

JTAG Slim VME Embedded

The JTAG Slim VME Embedded software, based on the serial vector format
file, enables you to quickly and efficiently program chains of devices, thus
improving productivity and lowering costs. The JTAG Slim VME Embedded
code is designed for microcontrollers with limited resources, such as the 8051
microcontroller.

The JTAG Slim VME Embedded software behaves the same as the JTAG Full
VME Embedded. The difference is it is geared to a 8051 processor. The C
code adds memory space keywords specific to the 8051 processor. The size
of the devices which can be programmed are limited by the amount of
contiguous SRAM available to the 8051 processor.

The JTAG Slim VME Embedded is available with installations of Diamond
Programmer. Its advantages over other embedded systems include:

Footprint of less than 3KB ROM — The small footprint is made possible
by optimizing the JTAG Slim VME Embedded programming engine to use
the least amount of code in the most efficient fashion.

Reduced RAM usage — The memory usage is fixed at a minimal set for
all IEEE 1532-compliant devices. The number of global and local
variables has been reduced to a minimum, and no data buffers are
required to be held in memory.

Compressible algorithm and data — The programming data, calculated
by multiplying the frame size by the number of frames, can increase the
ROM requirement substantially. For example, the device LC51024MV(B)
has a frame size of 2624 with 388 frames, resulting in 125 KB of ROM.
Fortunately, the JTAG Slim VME Embedded can compress the
programming data into sizes that are much smaller. The compression is
performed frame by frame and is data file dependent.

Lattice Diamond 3.14 Programming Tools User Guide 81

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

Sequential chain programming — The JTAG Slim VME Embedded can
process multiple devices in the same chain, with mixed operations in
sequential mode.

See Also

Using the PC-based JTAG Slim VME Embedded
Using the 8051-based JTAG Slim VME Embedded

JTAG Slim VME Embedded Source
Code

The source code for both the PC-based and the 8051-based JTAG Slim VME
Embedded can be found in the
<install_path>\embedded_source\slimembedded directory.

Each project has the following files. The major entry point for JTAG Slim VME
Embedded is slim_vme.c.

slim_vme.c

The slim_vme.c file is the only file that differs between the PC-based and the
8051-based embedded solutions. This difference is due to the way each of
these interfaces to the VME algorithm and data files through the entry point.
This file contains the main and entry point functions.

slim_pro.c

The slim_pro.c file provides the programming engine for the JTAG Slim VME
Embedded. The engine operates on the commands in the VME algorithm,
and fetches data from the VME data, if necessary. The engine is responsible
for functions such as sending data, verifying data, observing timing delay,
stepping through the state machine, decompression, and so on.

hardware.c

The only file that you should modify is hardware.c. This file contains the
functions to read and write to the port and the timing delay function. You must
update these functions to target the desired hardware. The released version
targets the parallel port of the PC at address 0x0378 using Lattice’s download
cable.

opcode.h

The opcode.h file contains the definitions of the byte codes used in the VME
algorithm format and programming engine.

debug.h

The debug.h file will print out debugging information if the preprocessor switch
VME_DEBUG is defined in the project. This is an optional file to include.

Lattice Diamond 3.14 Programming Tools User Guide 82

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

windriver.c and windriver.h

The windriver.c and windriver.h files target the JTAG Slim VME Embedded to
Windows. These files will be compiled if the preprocessor switch
VME_WINDOWS is defined in the project file. These files should be omitted
when compiling the 8051-based JTAG Slim VME Embedded onto an
embedded platform.

See Also
VME Algorithm Format
VME Data Format

Using the PC-based JTAG Slim VME
Embedded

The PC-based JTAG Slim VME Embedded is a quick and easy way to
validate the VME files and the JTAG Slim VME Embedded programming
engine by successfully processing the target chain of IEEE 1532 compliant
devices using the parallel port of the PC.

The JTAG Slim VME Embedded system uses a compressed binary variation
of SVF files, called VME, as input. Like the SVF file, the VME file contains
high-level IEEE 1149.1 bus operations. These operations consist of scan
operations and movements between the IEEE 1149.1 TAP states. However,
unlike the SVF file, where the programming algorithm of the device is
intermeshed with the programming data, the VME file is separated into a VME
algorithm file and a VME data file. This separation of the algorithm and data
allows the optimization of the JTAG Slim VME Embedded programming
engine. It also allows you to mix VME data files with VME algorithm files,
provided the chain and operations are the same.

Figure 9 shows an example of Slim VME embedded file generation for the
JTAG port.

Figure 47: Slim VME Embedded VME Flow

Deployment

Lattice Diamond 3.14 Programming Tools User Guide 83

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

The JTAG Slim VME Embedded capability is enabled only if all the following
conditions are met:

All the devices in the chain are IEEE-1532 compliant.
Sequential mode is selected.
Synchronize Enable and Disable setting is unchecked.
Operation is not Read and Save or a display operation such as Calculate
Checksum or Display ID.
See Also
Generating JTAG Slim VME Embedded Files

Using the 8051-based JTAG Slim VME
Embedded

To program embedded systems using the 8051-based JTAG Slim VME
Embedded, you must generate the VME files as HEX to create the VME
algorithm and data files as C programming files. Each file contains a C
programming style byte buffer that holds the VME algorithm or data.

The HEX files must be compiled along with the 8051-based JTAG Slim VME
Embedded source code. The source code contains handles that allow the
compiler to link the buffers of the hexadecimal files to the main source code.
The only source code file that you need to modify is the hardware.c file. You
must implement methods to write and read to the hardware port, as well as
observe the timing delay. You must modify the following functions according to
the target platform:

readPort
writePort
ispVMDelay
The following are optional functions that you may wish to modify in the

hardware.c file in order to enable and disable the hardware conditions before
and after processing:

EnableHardware

DisableHardware

See Also
Generating JTAG Slim VME Embedded Files
JTAG Slim VME Embedded Source Code

Lattice Diamond 3.14 Programming Tools User Guide 84

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

VME Algorithm Format

The VME algorithm file contains byte codes that represent the programming
algorithm of the device or chain.

VME Symbol HEX Value
STATE 0x01
SIR 0x02
SDR 0x03
TCK 0x04
WAIT 0x05
ENDDR 0x06
ENDIR 0x07
HIR 0x08
TIR 0x09
HDR O0x0A
TDR 0x0B
BEGIN_REPEAT 0x0C
FREQUENCY 0x0D
TDI O0x0E
CONTINUE O0xOF
END_FRAME 0x10
TDO 0x11
MASK 0x12
END_REPEAT 0x13
DATA 0x14
PROGRAM 0x15
VERIFY 0x16
ENDVME 0x17
DTDI 0x18
DTDO 0x19

The byte codes perform the same operations as the SVF commands, with the
exception of BEGIN_REPEAT, CONTINUE, END _FRAME, END_ REPEAT,
DATA, PROGRAM, VERIFY, ENDVME, DTDI, and DTDO.

Lattice Diamond 3.14 Programming Tools User Guide 85

EMBEDDED FLOW OVERVIEW

JTAG Slim VME Embedded

The byte codes BEGIN_REPEAT, END_REPEAT, PROGRAM, VERIFY,
DTDI, and DTDO are used to support a repeating VME algorithm structure to
minimize the algorithm size, a feature that the linear SVF does not provide.

The byte code CONTINUE appears at the end of every SIR and SDR
instruction as a terminator.

The byte code END_FRAME appears at the end of every frame in the VME
data as a terminator.

Translation from the SVF file to VME algorithm file is done command by

command. For example, the following SVF line:

SIR 8 TDI

(16);

will be converted to the following VME line, in binary:

0x02 0x08 OxOE 0x68

The VME Algorithm file is similar to the SVF file with the following differences:

VME Algorithm uses byte codes from the table below to represent SVF
commands

Fuse data and USERCODE have been removed

Looping algorithm

The following is an example of an EPV VME Algorithm file and the SVF
translation for the LC4064V device:

Table 2: VME Algorithm Example

VME Algorithm Format Serial Vector Format (SVF) Description

0x0A 0x00 HDR O0;

0x08 0x00 HIR 0;

0x0B 0x00 TDR O;

0x09 0x00 TIR O;

0x06 0x03 ENDDR DRPAUSE;

0x07 0x02 ENDIR IRPAUSE;

0x01 0x01 STATE IDLE;

0x02 0x08 Ox0E 0x68 O0x0F SIR 8 TDI (16); Shift in the IDCODE
instruction

0x01 0x01 STATE IDLE;

0x03 0x20 0x0OE OxFF OxFF OxFF SDR 32 TDI (FFFFFFFF) TDO | Verify the IDCODE

0xFF 0x11 0xC2 0x09 0x01 0x80 (01809043) MASK (OFFFFFFEF) ;

0x12 OxFF OxFF 0xFO OxOF

0x02 0x08 O0x0E 0x38 O0xO0F SIR 8 TDI (1C); Shift in the PRELOAD
instruction

0x03 0x44 0x0OE 0x00 0x00 0x00 | SDR 68 TDI (00000000000000000) ; Shift all zero data into

0x00 0x00 0x00 0x00 0x00 0x00 boundary scan cells

0x0F

0x02 0x08 0xOE 0xA8 OxOF SIR 8 TDI (15); Shift in ENABLE instruction

0x01 0x01 0x04 0x03 0x05 0Ox14 | RUNTEST IDLE 3 TCK 2.00E-002 SEC; Execute RUNTEST instruction

0x01 0x01

0x02 0x08 0x0E 0xCO OxOF SIR 8 TDI (03); Shift in ERASE instruction

0x01 0x01 0x04 0x03 0x05 0x64 | RUNTEST IDLE 3 TCK 1.00E-001 SEC; Execute RUNTEST instruction

0x01 0x01

0x02 0x08 Ox0E 0x84 O0OxO0F SIR 8 TDI (21); Shift in ADDRESS INIT
instruction

Lattice Diamond 3.14 Programming Tools User Guide 86

EMBEDDED FLOW OVERVIEW

JTAG Slim VME Embedded

Table 2: VME Algorithm Example (Continued)

0x01 0x01 STATE IDLE;

0x02 0x08 0xO0E 0xE4 Ox0F SIR 8 TDI (27); Shift in PROGRAM INCR
instruction

0x0C Ox5F 0x15 N/A Begin PROGRAM repeat loop
of size 95

VME Algorithm Format Serial Vector Format (SVF) Description

0x03 0xE0 0x02 0x18 0xI4 0xO0F SDR 352 DTDI (DATA); Notice the forth Dbyte 1is
0x18, which is actually
DTDI. DTDI instructs the
processor to send in data
from the data buffer

0x01 0x01 0x04 0x03 0x05 0xOD | RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x01 0x01

0x13 N/A Terminate the repeat
algorithm

0x02 0x08 0xO0E 0x58 Ox0F SIR 8 TDI (1A); Shift in PROGRAM USERCODE
instruction

0x03 0x20 0x18 0x14 OxOF SDR 32 DTDI (DATA); Shift in the USERCODE The
USERCODE can be found in
the data buffer.

0x01 0x01 0x04 0x03 0x05 0x0D | RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x01 0x01

0x02 0x08 0x0E 0x80 OxOF SIR 8 TDI (01); Shift in ADDRESS SHIFT
instruction

0x03 0x5F O0xOE 0x00 0x00 0x00 | SDR 95 TDI | Shift in beginning address

0x00 0x00 0x00 0x00 0x00 0x00 | (400000000000000000000000) ;

0x00 0x00 0x02 0xOF

0x02 0x08 0xO0E 0x54 Ox0OF SIR 8 TDI (2A); Shift in READ INC
instruction

0x0C Ox5F 0x16 N/A Begin VERIFY repeat loop of
size 95

0x01 0x01 0x04 0x03 0x05 0x01 | RUNTEST IDLE 3 TCK 1.00E-003 SEC; Execute RUNTEST instruction

0x01 0x01

0x03 0xEO 0x02 0x0OE 0x00 0x00 | SDR 352 TDI (0000000000000 Verify the frame against

0x00 0x00 0x00 0x00 0x00 0x00 | 00000000000000000000000000 the data in the data buffer

0x00 0x00 0x00 0x00 0x00 0x00 | 00000000000000000000000000

0x00 0x00 0x00 0x00 0x00 0x00 | 00000000000000000000000) DTDO

0x00 0x00 0x00 0x00 0x00 0x00 | (DATA);

0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x19 0x14 OxOF

0x13 N/A Terminate the repeat
algorithm

0x02 0x08 Ox0E 0xE8 O0xO0F SIR 8 TDI (17); Shift in USERCODE
instruction

0x03 0x20 O0xOE OxFF OxFF OxFF | SDR 32 TDI (FFFFFFFF) Verify the USERCODE against

OxFF 0x19 0x14 OxOF DTDO (DATA) ; the USERCODE in the data
buffer

0x02 0x08 0xO0E 0xF4 OxOF SIR 8 TDI (2F); Shift in PROGRAM DONE
instruction

0x01 0x01 0x04 0x03 0x05 Ox0D | RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x01 0x01

0x01 0x01 STATE IDLE;

0x02 0x08 0xOE 0x78 Ox0F SIR 8 TDI (lE); Shift in DISABLE
instruction

0x01 0x01 0x04 0x03 0x05 0x0D | RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x01 0x01

0x17 N/A End VME Algorithm

Lattice Diamond 3.14 Programming Tools User Guide

87

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

See Also
JTAG Slim VME Embedded Source Code
VME Data Format
Generating JTAG Slim VME Embedded Files

VME Data Format

While the VME algorithm file contains the programming algorithm of the
device, the VME data file contains the fuse and USERCODE patterns.

The first byte in the file indicates whether the data file has been compressed.
A byte of 0x00 indicates that no compression was selected, and 0x01
indicates that compression was selected. When compression has been
selected, each frame is preceded by a frame compression byte to indicate
whether the frame is compressible. This is necessary because even though
you might elect to compress the VME data file, it is possible that a
compressed frame will actually be larger than an uncompressed frame. When
that happens, the frame is not compressed at all and the frame compression
byte of 0x00 notifies the processor that no compression was performed on the
frame.

When compression has not been selected, the VME data file becomes a
direct translation from the data sections of the SVF file. The END_FRAME
byte, 0x10, is appended to the end of every frame as a means for the
processor to verify that the frame has indeed reached the end.

Uncompressed VME Data Format Compressed VME Data Format
0x00 0x01

<Frame 1>0x10 <Compress Byte><Frame 1>0x10
<Frame 2>0x10 <Compress Byte><Frame 2>0x10
<Frame N>0x10 <Compress Byte><Frame N>0x10

The compression scheme used is based on the consecutive appearance of
the OxFF byte in a frame. This byte is ubiquitous because an all 0xFF data file
is a blank pattern. When a consecutive number of n OxFF bytes are
encountered, the VME data file will have the byte O0xFF followed by the
number n converted to hexadecimal, where n cannot exceed 255. For
example, if the following were a partial data frame

FFFFFFFFFFFFFFFFFFFF1 2FFFFEFE

the resulting compressed data would be

O0xFF 0x0A 0x12 OxFF 0x03

Lattice Diamond 3.14 Programming Tools User Guide 88

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

When the processor encounters the first byte 0xFF, it gets the next byte to
determine how many times 0xFF is compressed. The next byte is 0x0A,
which is ten in hexadecimal. This instructs the processor that OxFF is
compressed ten times. The following byte is 0x12, which is processed as it is.
The next byte is again OxFF followed by 0x03, which instructs the processor
that OxFF is compressed three times.
See Also

JTAG Slim VME Embedded Source Code

VME Algorithm Format

Generating JTAG Slim VME Embedded Files

VME Required User Changes

To make the JTAG Full VME Embedded or JTAG Slim VME Embedded
software work on your target system, you need to modify the following C
functions in the hardware.c source code.

Timer

The engine requires the ability to delay for fixed time periods. The minimum
granularity of the delay is 1 microsecond. You can determine the type of delay.
This can be a simple software timing loop, a hardware timer, or an operating
system call, for example, sleep().

Port Initialization

The firmware needs to place the port I/O into a known state. The
programming software assumes this has occurred.

Get Data Byte

The engine calls the GetByte() function to collect one byte from the VME or
CPU bytestream.

Modify Port Register

The engine, as it parses the bitstream data, changes an in-memory copy of
the data to be written onto the 1/0O pins. Calls to this function do not modify the
I/O pins. The engine uses virtual types (for example, DONE_PIN) which this
function turns into physical 1/0 pin locations (for example, 0x400).

Output Data Byte

The engine calls this function to write the in-memory copy onto the I/O pins.

Input Status

This function is used by the engine to read back programming status
information. The function translates physical pin locations (for example,
0x400) into virtual types used by the engine (for example, DONE_PIN).

Lattice Diamond 3.14 Programming Tools User Guide 89

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

Output Configuration Pins

Some systems may wish to use the FPGA CFG pins. There is a separate
function call to manipulate the CFG pins.

Bitstream Initialization

You must determine how you plan to get the bitstream into your memory
system, pre-compiled, HEX file based, or dynamically installed. Whichever
method you use the data structures which pin to the bitstream need to be
initialized prior to the first GetByte function call.
See Also

Customizing for the Target Platform

VME Source Code

JTAG Slim VME Embedded Source Code

Program Memory Requirement

The following figure illustrates the JTAG Slim VME Embedded program
memory requirement.

Data Type Sample C Code
Change
Run Time ﬁh_?fl' ”EE"Tﬁ; p— . While
Heap Memory ello = (char =Jmalloc(s); Program
— R
Segment = uns
" Fixed Memo static int prime[s] = {1,2,5,7,11%};
Composites o
ofan Data nemnorey 2t File Size
hell - _ i
Executable Segment RunTimeData| helisti] Fils Based: Varies With
hello[3] my_design.yme Device
Program hello[Fli= 0% Bitstream
a— Char hello[s] ={'h','e’,"1","1", "0’} Size
S —
Constant Data PROM Based:
my_design.obj
Code main() File Size Is
Program Code L printf("Hellown"); -
_ | Segment o i Fixed
v

The compiler can be directed to link the PROM Based: More Code, Less RAM. File Based: Less Code, More RAM.
constant data to the Code Segmentto The bitstream is linked into program The bitstream is not part of
reduce the RAM usage. as constant data, thus more program, thus less resources
resources needed for Code Segment. needed for Code Segment.

Program Memory Allocation

The following figure illustrates the JTAG Slim VME Embedded program
memory allocation.

Lattice Diamond 3.14 Programming Tools User Guide

90

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

Heap And

Data % Heap
Segment Segment
Use RAK L
L Only | Data
— g * Segment - PROM Based: The bitstream
o is compiled as constant data
Segment o Code and linked into the program.
iy e Segment
I
/"‘
Common
Program
Memory
Resources
Arrangement
All Program All Program Internal SRAM External RAM
Memoties | Program
Memories Program M ies Onl
N Are External Are Internal emories Only

Memories Only

Sample Program Size

This page provides sample program size for JTAG Full VME Embedded,
JTAG Slim VME Embedded, and sysCONFIG Embedded.

JTAG Port non-JTAG Port Total
Embedded Tool
JTAG Full VME JTAG Slim sysCONFIG
Bitst Locati Embedded VME Embedded
Iscrean Location Embedded
32-Bit 16-Bit 8-Bit 32-Bit 16-Bit

File Based 52KB 21KB 4.2KB 48KB 19KB |As Shown
(Bitstream File External)
PROM Based 52KB 21KB 4.2KB 48KB 19KB |As Shown +
(Bitstream File Integrated) VME File Size

Lattice Diamond 3.14 Programming Tools User Guide

91

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

By 8051 Compiler:

B C:\iSFVIPROIECT)SPY M RCECODE\SRC\SLIM_VME_BDS1\SLIMPR] {8051}
+ @ dim_pro.c [C51] code: const=0 xdata=106 pdata=0 1 idata=0 bit=0
B opcode h [C51] code=0 const=0 xdata=0 pdata=0 data=0 idata=0 bit=0
+ B hardware.c [C51] code=34 const=0 xdata=0 pdata=0 data= 1 idata=0 bit=0
B dm_vme.c [C51] code=254 const=0 xdata=0 pdata=0 data=2 kata=0 bit=0

Slim VME Size = 4200 Bytes
By Microsoft 32-Bit Compiler:

Mame / (‘EZE\
Slispvme.exe / 52KB A)
™ hardware.ob [s | JTAG Full VME Program Size - 52 K Bytes
D ispvm_ui. |\ 16KB /FI
D ivm_core,ob _20KB

I [\\‘_/
o L\
Blcpusim exe [48K | sysCONFIG Program Size - 48 K Bytes
D cpu_core.obj | e |
™ cpu_sim.obj \ eke |
™ man fobj _7KB /

S

By Microsoft 16-Bit Compiler:

T
Name /7 Se| ™
CNISPVME EXE {21k , e
D harchwar [e | JTAG Full VME Program Size - 21 K Bytes
D ispvm_ui.ob; \ ek /
Drivin_core.obj \1~1 KB ./
T

Narme / 7 Size \.\
Dsmes {1skE sysCONFIG Program Size - 19 K Bytes
™ cpu core.chi | 7ke | N N
D cpur sim.oby \ 6kB /
™ main_f.obj \ 2k /

\\ _//

VME File Size

Refer to “WME File Size” on page 50 for a table that compares VME file sizes
taking typical Lattice devices for examples.

Generating JTAG Slim VME Embedded
Files

The Slim VME files can be generated by using Deployment Tool as described
as follows.

In Programmer, create a project, and add the target Lattice IEEE 1532
compliant devices into the chain with the appropriate operations and data
files. Refer to Programmer online help for more information on how to use
Programmer.

1. Save the Programmer project (.xcf).
2. In Deployment Tool, choose Create New Deployment.

3. For Function Type, choose Embedded System.

Lattice Diamond 3.14 Programming Tools User Guide 92

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

Figure 48: Slim VME File Generation Flow

Deployment
Tool

Algorithm Data
WME File WME File

4. For Output Type, choose JTAG Slim VME Embedded, then click OK.
In the Step 1 of 4 dialog box, select the XCF file, and click Next.

6. To have the software check for a USERCODE match between the device
and the VME file before programming, select the Verify USERCODE,
Program Device if Fails option.

Note

Synchronize Enable and Disable has been turned on while using Sequential mode, the
software will force the VME file into Turbo mode.

7. In the Step 2 of 4 dialog box, elect the desired file options. For detailed
option descriptions, including the option that allows you to generate a
HEX (.c) file, see the Deployment Tool online help. To significantly reduce
the ROM required for storing the VME Data buffer in the embedded
system, select Compress VME File.

8. Click Next.

9. In the Step 3 of 4 dialog box, in the Output File box, specify the location
and file name of the VME algorithm and data files.

10. Click Next.
11. In the Step 4 of 4 dialog box, click Generate.
Deployment Tool generates the VME files depending upon the options you

have chosen, and returns a message indicating that the process succeeded
or failed.

JTAG Slim VME Embedded Source
Code

Both the PC and 8051-based JTAG Slim VME Embedded source code can be
found in the installation path of Programmer under the
<install_path>\embedded_source\slimembedded\sourcecode directory.

Each project requires the following files:

Lattice Diamond 3.14 Programming Tools User Guide 93

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

slim_vme.c

The file slim_vme.c is the only file to differ between the PC-based and 8051-
based embedded solutions. This difference is due to the way each interfaces
to the VME Algorithm and Data files through the entry point. This file contains
the main and entry point functions.

slim_pro.c

The file slim_pro.c provides the programming engine of the JTAG Slim VME
Embedded. The engine operates on the commands in the VME Algorithm,
and fetches data from the VME Data if necessary. The engine is responsible
for functions such as sending data, verifying data, observing timing delay,
stepping through the state machine, decompression, and so on.

hardware.c

The only file that should be modified by the user is hardware.c. This file
contains the functions to read and write to the port and the timing delay
function. The user must update these functions to target the desired hardware
being used. The released version targets the parallel port of the PC at
address 0x0378 using Lattice's download cable.

opcode.h

The file opcode.h contains the definitions of the byte codes used in the VME
Algorithm format and programming engine.

debug.h

The file debug.h prints out debugging information if the preprocessor switch
VME_DEBUG were defined in the project. This is an optional file to
include.windriver.c and windriver.h

The files windriver.c and windriver.h target the JTAG Slim VME Embedded to
Windows 95 and 98. These files are compiled if the preprocessor switch
VME_WINDOWS were defined in the project file. These files should be
omitted when compiling the 8051-based JTAG Slim VME Embedded onto an
embedded platform.

Lattice Diamond 3.14 Programming Tools User Guide 94

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

8051 JTAG Slim VME Embedded User
Flow

This appendix details the steps the user must take to use the 8051-based
JTAG Slim VME Embedded.

Figure 49: 8051 JTAG Slim VME Embedded User Flow

Programmer

Create chain wiIEEE
1532 devices

3 Deplovment
Todl

Check HEX checkhox

5 Check Compress Data
checkbox (optional)

Nodify sowrce code
file hardware.c

7 Compile source code
and VIVIE HEX files

Step 1. Create Chain with Lattice IEEE 1532 Compliant Devices using
Programmer

Using Programmer, add the target IEEE 1532 compliant devices into the
chain with the appropriate operations and data files. All the devices in the
chain must be IEEE 1532 compliant. For more information on supporting non-
Lattice devices, see Programmer’s on-line help documentation.

Step 2. Generate VME File

Use the Deployment Tool to generate the VME file. By checking the HEX
check box, the VME Algorithm and Data files will be generated as C-
programming files with the Algorithm and Data stored in C-style byte buffers.
Refer to Deployment Tool online help for more information on using the
Deployment Tool.

Step 4. Modify Source Code File hardware.c
The 8051-based source code files are written in ANSI C and can be found in

the installation path of Programmer under the <install_path>\
embedded_source\slimembedded\sourcecode\slim_vme 8051 directory. The

Lattice Diamond 3.14 Programming Tools User Guide 95

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

file hardware.c is the only file that is required to be modified by the user. The
user must modify the following functions according to the target platform:

readPort
writePort

ispVMDelay

The following are optional functions that the user may wish to modify in order
to enable and disable the hardware conditions before and after processing:

EnableHardware

DisableHardware
Step 5. Compile Source Code and VME HEX Files

Combine the source code and VME HEX files generated into a project to be
compiled. This may be done by using a microcontroller development tool to
create the project. The source codes windriver.c, windriver.h, and debug.h
shall not be required to be added into the project.

Programming Engine Flow

The programming engine of the JTAG Slim VME Embedded is driven by the
byte codes of the VME Algorithm file. The Algorithm byte codes instruct the
programming engine as to what sequence of functions to follow in order to
shift in instructions, move the TAP controller state machine, shift data in and
out of the device, and observe delays.

The TAP controller is a synchronous state machine that is based on the TMS
(Test Mode Select) and TCK (Test Clock) signals of the TAP and controls the
sequence of operations of the circuitry defined by the IEEE 1149.1 standard.
The TCK signal can be driven at a maximum of 25 MHz for current Lattice
IEEE 1532 Compliant devices.

In the Shift-DR state, a decoder is present to select which shift register is
enabled and connects it between TDI and TDO. The following are the shift
registers: Address Shift Register, Data Shift Register, 32-bit Shift Register,
and Bypass. The 32-bit Shift Register is used to store the ID Code and
USERCODE. The first bit clocked into any of the registers is placed into the
MSB, and data is shifted one bit towards TDO as additional bits are clocked
in.

The engine core is implemented as a switch statement. The cases in this
switch statement perform specialized functions based on the byte code and
its operand(s). These functions may end up calling other switch statements,
calling the engine core recursively, setting global variable values, or
interfacing with the device directly. Once the byte code instruction has been
executed, it returns back to the main switch statement to process the next
byte.

Lattice Diamond 3.14 Programming Tools User Guide 96

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

Figure 50: TAP Controller State Diagram

Test-Logic-Beset.
a
1
Fam- Test/Tdk Select-DR-Seam Sekot-IR: Scan

1} o

Captre-DE Captmre-IE
0 0 0 1
Shift-D R Shift-TR.
1 1
1 1
Exil-DE Extl-IR
o 0 1] o
Pase-DR Pause-IR
: 1
a o
Exid-DE Exd2-IR
1 1
Tpdate-DE. Panse-IR

1 1} 1 1}

Figure 51: Shift Registers

Address Shift Register

Drata Shift Fegister

LI
JGLI

DI TDO

32-bit Shift Register

Bypass

The processor begins by verifying the VME version of the algorithm file. The
version is an eight byte ASCII of the format _SVME<Major Version>.<Minor
Version>, where <Major Version>and <Minor Version> are digits 0-9.
If the version verification fails, the processor returns the error code
ERR_WRONG_VERSION, or -4.

The Main Engine Switch calls the appropriate case statements based on the
incoming byte code from the VME Algorithm buffer. Unrecognized byte codes
will trigger the UNKNOWN case statement.

Lattice Diamond 3.14 Programming Tools User Guide 97

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

HIR Case Statement

The HIR case statement expects a number following the HIR byte code to
represent the number of header devices. The number will be stored in a
global variable and the processor will issue this number of bypasses prior to
executing an SIR instruction.

Figure 52: Main Engine Switch

HIE.

TIER.

TLCE.
ENDLCE
ENDIR

WAIT

i Vasify TME Main Engine oK

Versiom Switch

False STATE

Erd SIR
SDR
BEGIN_FEFEAT
END_REPEAT
ENDVME

UHEHOWH

Figure 53: HIR Case Statement

Extract HIE nuraber and Ilain Ergine

HIR assign to global varidble Switch

Lattice Diamond 3.14 Programming Tools User Guide 98

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

TIR Case Statement

The TIR case statement expects a number following the TIR byte code to
represent the number of trailer devices. The number will be stored in a global
variable and the processor will issue this number of bypasses after executing
an SIR instruction.

Figure 54: TIR Case Statement

TIR Extract TIR munber and Ilain Ergine
assign to global varishle Switch

HDR Case Statement

The HDR case statement expects a number following the HDR byte code to
represent the number of header register bits. The number will be stored in a
global variable and the processor will issue this number of bypasses prior to
executing an SDR instruction.

Figure 55: HDR Case Statement

HDR g i o
TDR Case Statement

The TDR case statement expects a number following the TDR byte code to
represent the number of trailer register bits. The number will be stored in a
global variable and the processor will issue this number of bypasses after
executing an SDR instruction.

Figure 56: TDR Case Statement

TDR. Ex'lr_act TDER numbe_r and Iviain Ergine
assign to global varishle Switch

ENDDR Case Statement

The ENDDR case statement expects a state following the ENDDR byte code
to represent the TAP state that the processor shall move the device into after
an SDR instruction. This state will be stored in a global variable.

Lattice Diamond 3.14 Programming Tools User Guide 99

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

Figure 57: ENDDR Case Statement

ENDDR Extract ENDDE. state and Ilain Ergine
assign to global variable Switch

ENDIR Case Statement

The ENDIR case statement expects a state following the ENDIR byte code to
represent the TAP state that the processor shall move the device into after an
SIR instruction. This state will be stored in a global variable.

Figure 58: ENDIR Case Statement

ENDIR. Extract ENDIR. state and Ilain Ergine
assign to global variable Switch

WAIT Case Statement

The WAIT case statement expects a number following the WAIT byte code to
represent the number of milliseconds of delay the device must observe. The
delay is observed immediately. The user must update the delay function in the
source code to make the target embedded system observe the delay duration
correctly.

Figure 59: WAIT Case Statement

WAIT e -
TCK Case Statement

The TCK case statement expects a number following the TCK byte code to
represent the number of clocks that the device must remain in the run test idle
state. The clock cycles are executed immediately into the device.

Figure 60: TCK Case Statement

Extract the number of Ilain Engine
clock cyeles in BTI Switch

Lattice Diamond 3.14 Programming Tools User Guide 100

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

STATE Case Statement

The STATE case statement expects a state following the STATE byte code to
instruct the processor to step the IEEE 1149.1 bus to the next state. The state
must be a valid stable state, which is IRPAUSE, DRPAUSE, RESET, or IDLE

Figure 61: STATE Case Statement

STATE Extract the next state to Ilain Engine
step to Switch

SIR Case Statement

Figure 62: SIR Case Statement

SIR. Extract Regicter Shift state to Shift ctate to
Eits IRPATTEE SHIFTIR
Trae
Bypase HIE HIE.
SIR Sk Faky
1 DTDI DO DTDO MASE UHEHOWH CONTIMUE

The SIR case statement begins by extracting the size of the register. The size
will be used later to indicate how many bits of data will be sent or read back
from the device. The processor then shifts the device into the safe state
IRPAUSE, and then to the state SHIFTIR. If HIR exists (see HIR Case
Statement), then the processor will bypass the HIR. The SIR sub-switch is a
switch that is based off of the byte codes that can potentially be found after
the SIR byte code.

The TDI byte code indicates that there is data that needs to be shifted into the
device. The processor will set the TDI index variable to point to the location
where the TDI data begins in the algorithm buffer.

The DTDI byte code indicates that there is data to that needs to be shifted into
the device. Unlike the TDI byte code, the DTDI byte code signals that the data
will be coming from the data buffer. If the data buffer has compression turned
on, the first byte of the data frame will be checked to see if the frame was
indeed compressible.

The TDO byte code indicates that there is data that needs to be read and
verified from the device. The processor will set the TDO index variable to
point to the location where the TDO data begins in the algorithm buffer.

Lattice Diamond 3.14 Programming Tools User Guide 101

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

The DTDO byte code indicates that there is data that needs to be read and
verified from the device. Unlike the TDO byte code, the DTDO byte code
signals that the data will be coming from the data buffer. If the data buffer has
compression turned on, the first byte of the data frame will be checked to see
if the frame were indeed compressible.

The MASK byte code indicates that there is mask data that needs to be used
when comparing the TDO values against the actual values scanned out of the
device. The processor will set the MASK index variable to point to the location
where the MASK data begins in the algorithm buffer.

The UNKNOWN case statement is the default for unrecognized byte codes.
This case returns the error code ERR_ALGO_FILE_ERROR, or -5, to indicate
an error in the algorithm.

The CONTINUE byte code terminates the SIR instruction. When this byte is
encountered, it indicates that the TDI, DTDI, TDO, DTDO, and MASK indexes
are pointing to their correct locations and the processor is ready to send or
read and verify data from the device.

Figure 63: SIR Case Statement Continued

Fake
T 0 or

CONTIMUE DTDO SIE Send
True
True
SIE Read
Fake
True True
TIR Eypass TIR TIR Eypass TIR
Fake Fake
Shift EHDIE Shiftt EMD' IR
State State
Fetamn Weriy Mai Engine
Failire Swrich

If the TDO or DTDO byte code were encountered in the SIR sub-switch, then
that indicates that the SIR instruction is going to read data from the device,
else the SIR instruction is going to send data to the device.

If reading and verifying data from the device were successful, the processor
checks if TIR exists (see TIR Case Statement). If TIR exists, then the trailer
devices must be bypassed. Next it shifts the device to the stable state that
followed the ENDIR byte code (see ENDIR Case Statement). The control
returns back to the Main Engine Switch.

Lattice Diamond 3.14 Programming Tools User Guide 102

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

If reading and verifying data from the device were unsuccessful, the
processor checks if TIR exists. If TIR exists, then the trailer devices must be
bypassed. Next it shifts the device to the stable state that followed the ENDIR
byte code. The error code ERR_VERIFY_FAIL, or -1, is returned and the
program exits.

If TDO or DTDO were not encountered in the SIR sub-switch, then the
processor sends data to the device. If TIR exists, then the trailer devices must
be bypassed. Next it shifts the device to the stable state that followed the
ENDIR byte code. The control returns back to the Main Engine Switch.

SDR Case Statement

The SDR case statement works similar to the SIR. It begins by extracting the
size of the register. The size will be used later to indicate how many bits of
data will be sent or read back from the device. The processor then shifts the
device into the safe state DRPAUSE, and then to the state SHIFTDR. If HDR
exists (see HDR Case Statement), then the processor will bypass the HDR.
The SDR sub-switch is a switch that is based off of the byte codes that can
potentially be found after the SDR byte code.

The TDI byte code indicates that there is data that needs to be shifted into the
device. The processor will set the TDI index variable to point to the location
where the TDI data begins in the algorithm buffer.

The DTDI byte code indicates that there is data to that needs to be shifted into
the device. Unlike the TDI byte code, the DTDI byte code signals that the data
will be coming from the data buffer. If the data buffer has compression turned
on, the first byte of the data frame will be checked to see if the frame were
indeed compressible.

The TDO byte code indicates that there is data that needs to be read and
verified from the device. The processor will set the TDO index variable to
point to the location where the TDO data begins in the algorithm buffer.

The DTDO byte code indicates that there is data that needs to be read and
verified from the device. Unlike the TDO byte code, the DTDO byte code
signals that the data will be coming from the data buffer. If the data buffer has
compression turned on, the first byte of the data frame will be checked to see
if the frame were indeed compressible.

The MASK byte code indicates that there is mask data that needs to be used
when comparing the TDO values against the actual values scanned out of the
device. The processor will set the MASK index variable to point to the location
where the MASK data begins in the algorithm buffer.

The UNKNOWN case statement is the default for unrecognized byte codes.
This case returns the error code ERR_ALGO_FILE_ERROR, or -5, to indicate
an error in the algorithm.

The CONTINUE byte code terminates the SDR instruction. When this byte is
encountered, it indicates that the TDI, DTDI, TDO, DTDO, and MASK indexes

Lattice Diamond 3.14 Programming Tools User Guide 103

EMBEDDED FLOW OVERVIEW

JTAG Slim VME Embedded

are pointing to their correct locations and the processor is ready to send or
read and verify data from the device.

Figure 64: SDR Case Statement

SDE Extract Regicter Ehdt state to
Eits DETAUSE
Trae
Bypass HDR
SDE ub-swrich
DI DTDI DO jubigile} MIASE THENOWH
Figure 65: SDR Case Statement Continued
Fake
T00 ox
COMTIHUE DTDO SDR Send
True
True
SDR
Fead
Fake
True True
TDER Eypass TDR TDE Eypass TDR
Fake Fake
Shit ENDDE Shift END DR
State State
EReturn Verify M Engine

Fuihre

Swrich

Shift state to
SHIFTDE

Fake

COMTTHIUTE

If the TDO or DTDO byte code were encountered in the SDR sub-switch, then
that indicates that the SDR instruction is going to read data from the device,
else the SDR instruction is going to send data to the device.

If reading and verifying data from the device were successful, the processor
checks if TDR exists (see TDR Case Statement). If TDR exists, then the trailer
devices must be bypassed. Next it shifts the device to the stable state that
followed the ENDDR byte code (see ENDDR Case Statement). The control
returns back to the Main Engine Switch.

Lattice Diamond 3.14 Programming Tools User Guide

104

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

If reading and verifying data from the device were unsuccessful, the
processor checks if TDR exists. If TDR exists, then the trailer devices must be
bypassed. Next it shifts the device to the stable state that followed the
ENDDR byte code. The error code ERR_VERIFY_FAIL, or -1, is returned and
the program exits.

If TDO or DTDO were not encountered in the SDR sub-switch, then the
processor sends data to the device. If TDR exists, then the trailer devices
must be bypassed. Next it shifts the device to the stable state that followed
the ENDDR byte code. The control returns back to the Main Engine Switch.

BEGIN_REPEAT Case Statement

The BEGIN_REPEAT byte code makes it possible to loop the programming
algorithm, thus requiring less ROM to hold the algorithm. Programming each
frame requires one pass through the repeat loop. The ROM saved is
substantial when one considers that a device can have several thousand
frames. Instead of extrapolating the set of byte codes needed to program the
frame several thousand times, only one set will be sufficient.

The BEGIN_REPEAT case statement begins by extracting the repeat size.
The repeat size is typically the number of frames in the device that is to be
programmed. After the repeat size has been obtained, the next byte to extract
is the PROGRAM or VERIFY token. If the PROGRAM byte were present,
then a pointer must be set in the data buffer to designate the beginning of the
programming data. If the VERIFY byte were present, then the processor must
return to the beginning location of the data buffer. This method allows
programming and verification to use one set of data, thus reducing the ROM
required to hold the data buffer by half.

While the repeat size, or number of un-programmed frames, is greater than
zero, the algorithm index is set to point to the beginning of the repeat and a
recursive call is made to the Main Engine Switch to program the frame. When
the frame is processed, the Main Engine Switch returns the control to the
BEGIN_REPEAT case statement. The repeat size is decremented and the
process repeats until there are no frames left. The control then returns to the
Main Engine Switch. While in the repeat loop, any errors such as verification
or algorithm errors would result in the repeat loop returning the error code and
the program would exit.

END_ REPEAT Case Statement

The END_REPEAT case statement works alongside the BEGIN_REPEAT
case statement. When the END_REPEAT byte code is encountered, it returns
the control to the caller, which is the recursive call made by BEGIN_REPEAT.
The END_REPEAT byte code appears at the end of the set of byte codes
needed to program a frame.

Lattice Diamond 3.14 Programming Tools User Guide 105

EmMBEDDED FLow OVERVIEW : JTAG Slim VME Embedded

Figure 66: BEGIN_REPEAT Case Statement

Extract Fepeat Extract Prograr
BEGIN_REFEAT Size or Verify Token
) True
S Recu_rswely_ Call Whils Repeat
Repeat Size Main Engine Size=0
Switch
False
Ivlain Frgine

Switch

Figure 67: END_REPEAT Case Statement

Main Engine

END_REPEAT Switch

ENDVME Case Statement

The ENDVME case statement is the only case where the program can return
a passing value. The case statement checks if HDR exists (see HDR Case
Statement). If HDR exists, then that indicates that there are still header
devices that need to be programmed, thus the control returns to the Main
Engine Switch. If HDR does not exist, the return value is returned to the caller,
which is the entry point function and the program ends.

Figure 68: ENDVME Case Statement

ENDVIVE Ezit main engine switch

UNKNOWN Case Statement

The UNKNOWN case statement is the default for unrecognized byte codes.
This case returns the error code ERR_ALGO_FILE_ERROR, or -5, to indicate

an error in the algorithm.

106

Lattice Diamond 3.14 Programming Tools User Guide

EMBEDDED FLOW OVERVIEW

JTAG Slim VME Embedded

Figure 69: UNKNOWN Case Statement

UMEMOWN

Return Algorithm
Enor

VME Algorithm and Format

The VME Algorithm and Data files are created by deconstructing an SVF file.
An SVF file is an ASCII file that contains the programming algorithm and data
needed to program the device. The programming algorithm is described by
statements that control the IEEE 1149.1 bus operations. When generating the
VME files, Deployment Tool separates the algorithm and data into the VME
Algorithm and Data files, respectively.

VME Algorithm Format

The VME Algorithm file is similar to the SVF file with the following differences:

VME Algorithm uses byte codes from the table below to represent SVF
commands

Fuse data and USERCODE have been removed

Looping algorithm

The following is an example of an EPV VME Algorithm file and the SVF
translation for the LC4064V device:

Table 3: VME Algorithm Example

VME Algorithm Format Serial Vector Format (SVF) Description

0x0A 0x00 HDR 0;

0x08 0x00 HIR O;

0x0B 0x00 TDR 0;

0x09 0x00 TIR 0;

0x06 0x03 ENDDR DRPAUSE;

0x07 0x02 ENDIR IRPAUSE;

0x01 0x01 STATE IDLE;

0x02 0x08 Ox0E 0x68 O0x0F SIR 8 TDI (16); Shift in the IDCODE
instruction

0x01 0x01 STATE IDLE;

0x03 0x20 O0xOE OxFF OxFF OxFF | SDR 32 TDI (FFFFFFFF) TDO | Verify the IDCODE

0xFF 0x11l 0xC2 0x09 0x01 0x80 (01809043) MASK (OFFFFFEF) ;

0x12 OxFF OxFF 0xFO OxOF

0x02 0x08 0xO0E 0x38 OxOF SIR 8 TDI (1C); Shift in the PRELOAD
instruction

0x03 0x44 OxOE 0x00 0x00 0x00 | SDR 68 TDI (00000000000000000) ; shift all zero data into

0x00 0x00 0x00 0x00 0x00 0x00 boundary scan cells

0x0F

0x02 0x08 0xOE 0xA8 Ox0F SIR 8 TDI (15); Shift in ENABLE instruction

0x01 0x01 0x04 0x03 0x05 0x14 | RUNTEST IDLE 3 TCK 2.00E-002 SEC; Execute RUNTEST instruction

0x01 0x01

0x02 0x08 0x0OE 0xCO OxOF SIR 8 TDI (03); Shift in ERASE instruction

Lattice Diamond 3.14 Programming Tools User Guide

107

EMBEDDED FLOW OVERVIEW

JTAG Slim VME Embedded

Table 3: VME Algorithm Example (Continued)

0x01 0x01 0x04 0x03 0x05 0Ox64 | RUNTEST IDLE 3 TCK 1.00E-001 SEC; Execute RUNTEST instruction

0x01 0x01

0x02 0x08 O0x0E 0x84 O0xO0F SIR 8 TDI (21); Shift in ADDRESS INIT
instruction

0x01 0x01 STATE IDLE;

0x02 0x08 O0x0E 0xE4 O0xOF SIR 8 TDI (27); Shift in PROGRAM INCR
instruction

0x0C Ox5F 0x15 N/A Begin PROGRAM repeat loop
of size 95

VME Algorithm Format Serial Vector Format (SVF) Description

0x03 0xE0 0x02 0x18 0x14 O0xOF | SDR 352 DIDI (DATA); Notice the forth byte 1is
0x18, which is actually
DTDI. DTDI instructs the
processor to send in data
from the data buffer

0x01 0x01 0x04 0x03 0x05 O0x0D | RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x01 0x01

0x13 N/A Terminate the repeat
algorithm

0x02 0x08 O0x0E 0x58 O0xO0F SIR 8 TDI (1A); Shift in PROGRAM USERCODE
instruction

0x03 0x20 0x18 0x14 OxOF SDR 32 DTDI (DATA); Shift in the USERCODE The
USERCODE can be found in
the data buffer.

0x01 0x01 0x04 0x03 0x05 0x0D | RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x01 0x01

0x02 0x08 0xO0E 0x80 OxOF SIR 8 TDI (01); Shift in ADDRESS SHIFT
instruction

0x03 0x5F Ox0E 0x00 0x00 0x00 | SDR 95 TDI | Shift in beginning address

0x00 0x00 0x00 0x00 0x00 0x00 (400000000000000000000000) ;

0x00 0x00 0x02 O0xOF

0x02 0x08 0Ox0E 0x54 O0xOF SIR 8 TDI (2RA); Shift in READ INC
instruction

0x0C O0x5F 0x16 N/A Begin VERIFY repeat loop of
size 95

0x01 0x01 O0x04 0x03 0x05 Ox01 | RUNTEST IDLE 3 TCK 1.00E-003 SEC; Execute RUNTEST instruction

0x01 0x01

0x03 OxEO0 0x02 O0xOE 0x00 0x00 | SDR 352 TDI (0000000000000 Verify the frame against

0x00 0x00 0x00 0x00 0x00 0x00 | 00000000000000000000000000 the data in the data buffer

0x00 0x00 0x00 0x00 0x00 0x00 | 00000000000000000000000000

0x00 0x00 0x00 0x00 0x00 0x00 | 00000000000000000000000) DTDO

0x00 0x00 0x00 0x00 0x00 0x00 (DATA) ;

0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x19 0x14 OxOF

0x13 N/A Terminate the repeat
algorithm

0x02 0x08 0xO0E 0xE8 Ox0OF SIR 8 TDI (17); Shift in USERCODE
instruction

0x03 0x20 Ox0E OxFF OxFF OxFF SDR 32 TDI (FFFFFFFF) Verify the USERCODE against

O0xFF 0x19 0x14 0xO0F DTDO (DATA) ; the USERCODE in the data
buffer

0x02 0x08 O0x0E O0xF4 O0xOF SIR 8 TDI (2F); Shift in PROGRAM DONE
instruction

0x01 0x01 0x04 0x03 0x05 0x0D | RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x01 0x01

0x01 0x01 STATE IDLE;

0x02 0x08 Ox0E 0x78 O0xOF SIR 8 TDI (1E); Shift in DISABLE
instruction

0x01 0x01 O0x04 0x03 0x05 Ox0D | RUNTEST IDLE 3 TCK 1.30E-002 SEC; Execute RUNTEST instruction

0x01 0x01

Lattice Diamond 3.14 Programming Tools User Guide

108

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Table 3: VME Algorithm Example (Continued)
0x17 N/A End VME Algorithm

Customizing for the Target Platform

The source code files are written in ANSI C. The VME source codes are
located in the <install_path>\embedded_source\vmembedded directory. The
JTAG Slim VME Embedded source codes can be found in the
<install_path>\embedded_source\slimembedded directory.

The main routines that will require customization are in the hardware.c file. It
includes the routines for reading from and writing to the JTAG pins and a
delay routine. These routines are well commented in hardware.c and are at
the top of the file. In readPort(), a byte of data is read from the input port. In
writePort(), a byte of data is written to the output port. In ispVMDelay(), the
system delays for the specified number of milliseconds or microseconds. The
port mapping is set at the top of the hardware.c file.

See Also »VME Required User Changes

Slave SPI Embedded

Slave Serial Peripheral Interface (SPl) Embedded is a high-level
programming solution that enables programming the LatticeXP2 and future
FPGA families with built-in SPI port through embedded system. This allows
users to perform real-time reconfiguration to Lattice Semiconductor's FPGA
families. The Slave SPI Embedded system is designed to be embedded-
system independent, so it is easy to port into different embedded systems
with little modifications. The Slave SPI Embedded source code is written in C
code, so the user may compile the code and load it to the target embedded
system.

The purpose of this usage note is to provide the user with information about
how to port the Slave SPI Embedded source code to different embedded
systems. The following sections describe the embedded system requirements
and the modifications required to use Slave SPI Embedded source code.

This usage guide is updated for Slave SPI Embedded version 2.0. Major
changes includes new format of data file, and Lattice parallel port and USB
cable support. In the Slave SPI Embedded source code, there are updates in
intrface.c and core.c, but no update in hardware.c. Version 2.0 updates will be
marked with [New in version 2.0] tag.

Requirements

This section lists device requirements, embedded system requirements, and
other requirements.

Lattice Diamond 3.14 Programming Tools User Guide 109

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Device Requirements
Only Lattice Semiconductor's FPGA families with SPI port are supported.

Single device support. Multiple device support is not available.

The Slave SPI port must be enabled on the device in order to use the
Slave SPI interface. This is done by setting the SLAVE_SPI_PORT to
Enable using the Global Preferences spreadsheet in Diamond
Spreadsheet view.

Slave SPI Configuration mode supports default setting only for CPOL,
CPHA.

CPOL - SPI Clock Polarity. Selects an inverted or non-inverted SPI clock.
To transmit data between SPI modules, the SPI modules must have

identical SPICR2[CPOL] values. In master mode, a change of this bit will
abort a transmission in progress and force the SPI system into idle state.

0: Active-high clocks selected. In idle state SCK is low.
1: Active-low clocks selected. In idle state SCK is high.

CPHA - SPI Clock Phase. Selects the SPI clock format. In master mode, a
change of this bit will abort a transmission in progress and force the SPI
system into idle state.

0: Data is captured on a leading (first) clock edge, and propagated on the
opposite clock edge.

1: Data is captured on a trailing (second) clock edge, and propagated on
the opposite clock edge.

Note

When CPHA=1, the user must explicitly place a pull-up or pull-down on SCK pad
corresponding to the value of CPOL (for example, when CPHA=1 and CPOL=0
place a pull-down on SCK). When CPHA=0, the pull direction may be set
arbitrarily.

For more information on CPOL/CPHA for MachXO2 devices, refer to
Technical Note TN1246 - Using User Flash Memory and Hardened
Control Functions in MachXO2 Devices Reference Guide.

Embedded System Requirements

A compiler supporting C code for the target embedded system is required.

A dedicated SPI interface that can be configured to Master SPI mode is
preferred. However, if the embedded system does not have a built in SPI
interface, the user may consider using a general peripheral 1/O ports to
implement SPI functionality. In this case, minimum of four peripheral 1/O's are
required, with at least one of them that can be tri-stated if needed.

Read and Save operations and display operations are not supported.

Lattice Diamond 3.14 Programming Tools User Guide 110

http://www.latticesemi.com/view_document?document_id=46300

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Other Requirements

The Slave SPI Embedded system requires memory space to store
programming data file. The storage may be internal or external memory
(RAM, Flash, etc.). The user may also consider storing the programming data
in an external system such as PC. In this case, the user needs to establish
communication between the external system and the embedded system.

Slave SPI Embedded Algorithm Format

The Slave SPI algorithm file contains byte codes that represent the
programming algorithm of the device or chain.

Table 4: Slave SPI Algorithm Format

SSPI Symbol Hex Value
STARTTRAN 0x10
CSTOGGLE 0x11
TRANSOUT 0x12
TRANSIN 0x13
RUNCLOCK 0x14
ENDTRAN Ox1F
MASK 0x21
ALGODATA 0x22
PROGDATA 0x25
RESETDATA 0x26
PRODATAEH 0x27
REPEAT 0x41
ENDREPEAT 0x42
LOOP 0x43
ENDLOOP 0x44
STARTOFALGO 0x60
ENDOFALGO 0x61
HCOMMENT 0xA0
HENDCOMMENT 0xA1
ALGOID 0xA2
VERSION 0xA3
BUFFERREQ 0xA4

Lattice Diamond 3.14 Programming Tools User Guide 111

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

Table 4: Slave SPI Algorithm Format (Continued)

SSPI Symbol Hex Value
STACKREQ 0xA5
MASKBUFREQ 0xA6
HCHANNEL OxA7
HEADERCRC 0xA8
COMPRESSION 0xA9
HDATASET_NUM O0xAA
HTOC O0xAB

Slave SPI Embedded Data Format

While the SSPI algorithm file contains the programming algorithm of the
device, the SSPI data file contains the fuse and USERCODE patterns. The
first byte in the file indicates whether the data file has been compressed. A
byte of 0x00 indicates that no compression was selected, and 0x01 indicates
that compression was selected.

When compression has been selected, each frame is preceded by a frame
compression byte to indicate whether the frame is compressible. This is
necessary because even though you might elect to compress the SSPI data
file, it is possible that a compressed frame will actually be larger than an
uncompressed frame. When that happens, the frame is not compressed at all
and the frame compression byte of 0x00 is added to notify the processor that
no compression was performed on the frame.

Uncompressed Slave SPI Data Format Compressed Slave SPI Data Format
0x00 0x01

<Frame 1>0x10 <Compress Byte><Frame 1>0x10
<Frame 2>0x10 <Compress Byte><Frame 2>0x10
<Frame N>0x10 <Compress Byte><Frame N>0x10

Generating Slave SPI Embedded Files

The Slave SPI Embedded files can be generated through Diamond
Deployment Tool by selecting the VME button on the toolbar menu. The Slave
SPI Embedded generation dialog allows the user to generate the file in hex (C
compatible) array or binary. The binary Slave SPI file can be used by the PC
version of Slave SPI Embedded and utilizes the extension *.sea for algorithm
files, and *.sed for data files. Also, the binary file can be uploaded to internal
or external memory of the embedded system if the user plans to implement
the system in that manner.

Lattice Diamond 3.14 Programming Tools User Guide 112

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

The hex file is a C programming language file that must be compiled with the
EPROM-based version of Slave SPI Embedded processor and utilizes the
extension *.c. The binary file is generated by default. Other options are
available through the dialog, such as data file compression, adding comments
to the algorithm file, or disable generating the algorithm or data file.

Modifications

The Slave SPI Embedded source code is installed in the
<install_path>\embedded_source\sspiembedded\sourcecode directory where
you installed the Diamond Programmer. There are two directories in the src
directory, SSPIEm and SSPIEm_eprom. The first directory, SSPIEm, contains
the file-based Slave SPI Embedded source code, and can support sending
and receiving multiple bytes over the channel. The second directory,
SSPIEm_eprom, contains the EPROM-based Slave SPI Embedded source
code, which supports the algorithm and data being compiled with the process
system.

In the files that require user modification, comments surrounded by asterisks
(*) will require the users' attention. These comments indicate that the following
section may require user modification. For example:

//***

//* Example comment
//***

Before using the Slave SPI Embedded system, there are three sets of files (.c
/ .h) that need to be modified. The first set, hardware.c and hardware.h, must
be modified. This file contains the SPI initialization, wait function, and SPI
controlling functions. If the user would like to enable debugging functionalities,
debugging utilities need to be modified in this file as well. [New in version 2.0]
hardware.c source code supports transmitting and receiving multiple bytes at
once. This approach may be faster in some SPI architecture, but it requires a
buffer to store the entire frame data.

The second set, intrface.c and intrface.h, contains functions that utilize the
data and algorithm files. There are two sections in this file that requires
attention. The first one is data section. When the processor in Slave SPI
Embedded system needs to process a byte of data, it calls function
dataGetByte (). Slave SPI Embedded version 2.0 requires data file no
matter what operation it is going to process. Users are responsible to modify
the function to fit their configuration. The second section is algorithm section.
In Programmer, there is the option to generate both the algorithm file and the
data file in hex array format (C compatible). If the user wishes to compile the
algorithm and data along with Slave SPI Embedded system, use the source
code in the
<install_path>\embedded_source\sspiembedded\sourcecode\sspiem_eprom
directory. Users only need to put the generated .c file in the same folder as
Slave SPI Embedded system code and then compile the whole thing. If the
embedded system has internal memory that can be reached by address,
using EPROM version of intrface.c is also ideal. For users who plan to put the

Lattice Diamond 3.14 Programming Tools User Guide 113

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

algorithm and data in external storage, intrface.c and intrface.h may need
modification.

[New in version 2.0] The third file setis SSPIEm.c and SSPIEm.h. Function
SSPIEm preset () provides the user to set which algorithm and data will be
processed. This function needs to be modified according to users'
configuration.

Below is information about functions the user is responsible to modify.

hardware.c

There is update in version 2.0 hardware.c source code. In previous version,
users are responsible to modify function TRANS tranceive stream().
Version 2.0 source code, which support transmitting multiple bytes at once,
includes two functions, TRANS transmitBytes () and

TRANS receiveBytes (), that function TRANS tranceive stream()
would call. Therefore, TRANS tranceive stream() no longer require user
attention in this configuration, but the user is responsible to modify

TRANS transmitBytes () and TRANS receiveBytes (). If the user wish
to implement Slave SPI Embedded so it transmit one byte at a time, then
TRANS tranceive stream() need to be modified.

int SPL_init();
This function will be called at the beginning of the Slave SPI Embedded
system. Duties may include, but not limited to:

Turning on SPI port;

Enabling counter for wait function;

Configuring SPI peripheral 10 ports (P10);

Resetting SPI;

Initializing SPI mode (Master mode, channel used, etc);

Enabling SPI.

The function returns a 1 to indicate initialization successful, or a 0 to indicate
fail.

int SPL_final();

This function will be called at the very end of the Slave SPI Embedded
system. The function returns a 1 to indicate success, or a 0 to indicate fail.

void wait(int ms);

This function takes a delay time (in milliseconds), and waits for the amount of
delay time. This function does not need a return value.

int TRANS_starttranx(unsigned char channel);

Lattice Diamond 3.14 Programming Tools User Guide 114

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

This function will start an SPI transmission. Duties may include, but not limited
to:

Pulling Chip Select (CS) low;
Starting Clock;
Flushing read buffer.

If the dedicated SPI interface in the embedded system automatically starts the
clock and pulls CS low, then this function only returns a 1. This function
returns a 1 to indicate success, or a 0 to indicate fail.

int TRANS_endtranx();

This function will finalize an SPI transmission. Duties may include, but not
limited to:

Pulling CS high;

Terminating Clock.

If the dedicated SPI interface in the embedded system automatically
terminates the clock and pulls CS high, then this function only returns a 1.
This function returns a 1 to indicate success, or a 0 to indicate fail.

int TRANS_cstoggle(unsigned char channel);

This function will toggle the CS of current channel. It will be called between
TRANS starttranx() and TRANS endtranx (). It first pulls CS low,
waits for a short period of time, and pulls CS high. A simple way to accomplish
this is to transmit some dummy data to the device. One bit is enough to
accomplish this. All one (1) for dummy is recommended, because usually the
channel is held high during rest, and Lattice devices ignore opcode OxFF (no
operation). The function returns a 1 to indicate success, or a 0 to indicate fail.

int TRANS_starttranx(unsigned char channel);

This function can be used for toggling CRESET signal. The CRESET signal
must pull LOW if channel is 0 and pull HIGH if channel is 1. This function
does not require a return value.

int TRANS_runCIk();

This function will run a minimum of three clocks on SPI channel. It will be
called after TRANS endtranx () if extra clock are required. If the dedicated
SPl interface does not allow free control of clock, a workaround is to enable
the CS of another channel that is not being used. This way the device will still
see the clock but the CS of current channel will stay high. The function returns
a 1 to indicate success, or a 0 to indicate fail.

[New in version 2.0] int TRANS_transmitBytes (unsigned char *trBuffer,
int trCount);

This function is available if the user wishes to implement transmitting multiple
bits one byte at a time. It is responsible to transmit the number of bits,

Lattice Diamond 3.14 Programming Tools User Guide 115

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

indicated by trCount, over the SPI port. The data to be transmitted is stored
in trBuffer. Integer trCount indicates the number of bits being
transmitted, which should be divisible by eight (8) to make it byte-bounded. If
trCount is not divisible by eight, pad the least significant bits of the
transmitted data with ones (1).

[New in version 2.0] int TRANS_receiveBytes (unsigned char *rcBuffer,
int rcCount);

This function is available if the user wishes to implement receiving multiple
bits one byte at a time. It is responsible to receive the number of bits,
indicated by rcCount, over the SPI port. The data received may be stored in
rcBuffer. Integer rcCount indicates the number of bits being received, which
should be divisible by eight (8) to make it byte-bounded. If rcCount is not
divisible by eight, pad the most significant bits of the received data with ones

(1).

int TRANS_transceive_stream(int trCount, unsigned char *trBuffer,
trCount2, int flag, unsigned char *trBuffer2);

This function is available for modification if the user wishes to implement
transmission with one byte at a time. The function also appears in
implementation of transmission with multiple bytes at once, but the user does
not need to modify it.

For single byte transmission, this is the most complex function that needs to
be modified. First, it will transmit the amount of bits specified in trCount with
data stored in trBuffer. Next, it will have the following operations
depending on the flag:

NO_DATA: End of transmission. trCount2 and trBuffer2 are
discarded.

BUFFER _TX: Transmit data from trBuffer2.

BUFFER_RX: Receive data and compare it with trBuffer2.

DATA_TX: Transmit data from external data.

DATA_RX: Receive data from trbuffer2.
If the data is not byte-bounded and your SPI port only transmits and receives
byte-bounded data, padding bits are required to make it byte-bounded. When
transmitting non-byte-bounded data, add the padding bits at the beginning of
the data. When receiving data, do not compare the padding, which are at the

end of the transfer. The function returns a 1 to indicate success, or a 0 to
indicate fail.

(optional) int dbgu_init();

This function initializes the debugging functionality. It is up to the user to
implement it, and implementations may vary.

(optional) void dbgu_putint(int debugCode, int debugCode2);

Lattice Diamond 3.14 Programming Tools User Guide 116

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

This function will put a string and an integer to the debugging channel. It is up
to the user to take advantage of these inputs.

SSPIEm.c

int SSPIEm_preset();

This function calls dataPreset() and algoPreset() functions to pre-set the data
and algorithm. The input to this function depends on the configuration of the
embedded system. This function returns 1 to indicate success, or 0 to indicate
fail.

intrcface.c - Data Section

Global Variables
Global variables may vary due to different implementation.
[New in version 2.0] int dataPreset();

This function allows user to set which data will be used for processing. It
returns 1 to indicate success, or 0 to indicate fail.

int datalnit (unsigned char *comp);

This function initializes the data. The first byte of the data indicates if the fuse
data is compressed. It retrieves the first byte and stores it in the location
pointed to by *comp. The fuse data starts at the second byte. The
implementation may vary due to different configuration. The function returns a
1 to indicate success, or a 0 to indicate fail. For implementation that uses
internal memory, which can be accessed by addressing, the following is an
example implementation:

Points variable data to the beginning of the fuse data.

Resets count to 0.
int dataGetByte(int *byteOut);

This function gets one byte from data array and stores it in the location
pointed to by byteOut. The implementation may vary due to different
configuration. The function returns 1 to indicate success, or 0 to indicate fail.
For implementation that uses internal memory, which can be accessed by
addressing, here is a sample implementation:

Gets byte that variable data points to.
Points data to the next byte.

Count++.

int dataReset();

Lattice Diamond 3.14 Programming Tools User Guide 117

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

This function resets the data pointer to the beginning of the fuse data. Note
that the first byte of the data is not part of the fuse data. It indicates if the data
is compressed. The implementation may vary due to different configuration.
The function returns a 1 to indicate success, or a 0 to indicate fail. For
implementation that uses internal memory, which can be accessed by
addressing, the following is an example implementation:

Points variable data to the beginning of the data array.

Resets count to 0.
Note: This section is data utilize functions. Modification of this section is
optional if the user wishes to compile the algorithm along with Slave SPI
Embedded system.
[New in version 2.0] int dataFinal();
This function is responsible to finish up the data. The implementation may

vary due to different configuration. The function returns a 1 to indicate
success, or a 0 to indicate fail.

intrface.c - Algorithm Section

Global variables
Global variables may vary due to different implementation.
[New in version 2.0] int algoPreset();

This function allows user to set which algorithm will be used for processing. It
returns 1 to indicate success, or 0 to indicate fail.

int algolnit();

This function initializes the data. The implementation may vary due to different
configuration. The function returns a 1 to indicate success, or a 0 to indicate
fail.

In our implementation, it only sets algoIndex to 0.

int algoGetByte(unsigned char *byteOut);

This function gets one byte from the algorithm bitstream, and stores it in the
location pointed to by byteOut. The implementation may vary due to different
configuration. The function returns a 1 to indicate success, or a 0 to indicate
fail.

[New in version 2.0] int algoFinal();

This function is responsible to finish up the algorithm. The implementation

may vary due to different configuration. The function returns a 1 to indicate
success, or a 0 to indicate fail.

Lattice Diamond 3.14 Programming Tools User Guide 118

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

intrface.c - Sample Configurations

There may be many different options to configure Slave SPI Embedded data
file and algorithm file. The following are two possible configurations.

1. EPROM Approach

With this version, both algorithm and data are generated into C-compatible
Hex array and compiled along with Slave SPI Embedded source code. Here
is how the functions are modified to fit this configuration:

Include both Hex arrays in the global scale.

Pass the pointer to the arrays to SSPTIEm preset (). In this function,
pass the pointer to algoPreset () and dataPreset () functions,
respectively. Both functions store the pointer in global variables defined in
intrface.c.

InalgoInit () and dataInit () functions, set the counters to zero (0).

In algoGetByte () and dataGetByte () functions, read a byte from
the respective array, and increment the counter.

In dataReset () function, reset the counter to zero (0).

In algoFinal () and dataFinal () functions, set the pointer to both
array to NULL. This is optional.

Although optional, it may be a good idea to keep track of the size of both data
and algorithm arrays. The size of array may be passed to Slave SPI
Embedded through the preset functions.

If the embedded system uses internal memory that can be reached the same
way as using array, this configuration may also fit into the embedded system.

If the user plans to use EPROM approach, intrface.c will be available, and the
user may not need to modify it. The files intrface.c, intrface.h, SSPIEm.c, and
SSPIEm.h are in the
<install_path>/SSPIEmbedded/SourceCode/src/SSPIEm_eprom directory.

2. File System Approach

This approach is used when implementing Slave SPI Embedded command-
line executable on PC. If the embedded system has similar file system, it may
access the algorithm and data through the file system. Here is how the
functions are modified to fit this configuration:

Pass the name of the algorithm and data file to SSPIEm preset (). In
this function, pass them to algoPreset () and dataPreset ()
functions, respectively. Both functions store the name of the file in global
variables defined in intrface.c.

InalgoInit () and dataInit () functions, open the file and check if
they are readable. If the file is not opened as a stream, set the counter to
zero (0).

In algoGetByte () and dataGetByte () functions, read a byte from the
respective file, and increment the counter if needed.

Lattice Diamond 3.14 Programming Tools User Guide 119

EMBEDDED FLOW OVERVIEW : Slave SPI Embedded

In dataReset () function, reset the counter to zero (0), if needed. If the
file is read as a stream, rewind the stream.

In algoFinal() and dataFinal () functions, close both files.

Usage

In order to use the Slave SPI Embedded system, include the Slave SPI
Embedded system in the target embedded system by including SSPlem.h to
the header list. To start the processor, simply make this function call:

SSPIEm (unsigned int algolID);

Currently, the converter does not have algoID capability. This capability is
reserved for future use. Use OXFFFFFFFF for algoID.

Return Codes from Slave SPI
Embedded

The utility returns a 2 when the process succeeds, and returns number less
than or equal 0 when it fails. Table 5 lists return codes from Slave SPI
Embedded.

Table 5: Return codes from Slave SPI Embedded

Results Return Code
Succeed 2
Process Failed 0
Initialize Algorithm Failed -1
Initialize Data Failed -2
Version Not Supported -3

Header Checksum Mismatch -4

Initialize SPI Port Failed -5
Initialization Failed -6
Algorithm Error -1
Data Error -12
Hardware Error -13
Verification Error -20

Lattice Diamond 3.14 Programming Tools User Guide 120

EmMBEDDED FLOW OVERVIEW : 12C Embedded

Programming Considerations for
SSPIEM modification with Aardvark SPI
APls

Aardvark is an SPI adapter which can be used for programming of Lattice
FPGA devices with Slave SPI. Lattice Diamond provides SSPIEM example
source codes which are modified with Aardvark SSPI APIs respectively.
However we do not guarantee that these APIs will be supported for all the
programming modes incorporated in the .sea files generated by the Lattice
Deployment Tool, which are used by our SSPIEM source codes. This is due to
the limitation of the Aardvark adapter and with its associated read/write APIs
meant for the data transfer between the Lattice’s algo interpretation logic and
the actual programming hardware driver logic. The Aardvark adapter has a
buffer limitation of 4 KB and any algo file data above 4 KB will overflow the
buffer and will result in a programming failure.

The Deployment tool modes which are effected due to this are the ‘Fast
Programming’ modes for any device, for example the LIFMD-6000
(CrossLink) device support fast programming mode but will not program with
Aardvark APls. As the Fast Programming mode results in an algo file in which
the whole data is passed at once as a whole for Fast Programming and
overflows in the Aardvark buffer resulting in a programming failure. The
supported programming modes are “Erase Program Verify, ” “Background
Erase Program Verify,” “Flash Program,” and “SSPI Program.”

The example source code using FTDI can be used to program devices in Fast
Programming mode as we guarantee that our drivers work with this mode and
the buffer in the FTDI device is large enough to hold large Fast Programing
mode data.

I°C Embedded

The physical 12C buss consists of two wires: SCL and SDA.

820L is the clock line. It is used to synchronize all data transfers over the
[“C bus.

SDA is the data line.

The SCL & SDA lines are connected to all devices on the I2C bus. There must
be a third wire connected to ground or 0 volts. There may also be a 5V wire
for power distribution t he devices. Both SCL and SDA lines are “open drain”
drivers, meaning that the device can drive its output low, but it cannot drive it
high. For the line to be able to go high, you must provide pull-up resistors to
the 5V supply. There should be a resistor from the SCL line to the 5V line and

Lattice Diamond 3.14 Programming Tools User Guide 121

EmMBEDDED FLOW OVERVIEW : 12C Embedded

another from the SDA line to the 5V line. You only need one set of pull-up
resistors for the entire 12C bus, as illustrated below.

+n

Rpf| | |R=P . ; ;
Device 1 Device 2 Device 3

sCL |
SDA

Masters and Slaves

The devices on the I1°C bus are either masters or slaves. The master is
always the device that drives the SCL clock line. The slaves are the devices
that respond to the master. Only a master can initiate a transfer over the 1°C
bus. A slave cannot initiate a transfer over the 1°C bus. There can be, and
usually are, multiple slaves on the I1°C bus. However, there is normally only
one master. It is possible to have multiple masters, but it is typical and not
covered in this document. For the purposes of this document, the LFMNX,
MachX02, MachXO3D, MachXO3L, or MachXO3LFP device is always the
slave.

LFMNX, MachX02, MachXO3D,
MachXO3L, MachXO3LF, or

MachXO3LFP Slave I°C Programming

When the master communicates to a slave (LFMNX, MachX02, MachXO3D,
MachXO3L, MachXO3LF, or MachXO3LFP for example) it begins by issuing a
start sequence on the 12C bus. A start sequence is one of two special
sequences defined for the 12C bus, the other being the stop sequence. The
start sequence and stop sequence are the only time when the SDA (data line)
is allowed to change while the SCL (clock line) is high. When data is being
transferred, SDA must remain stable and not change while the SCL is high.
The start and stop sequences mark the beginning and end of a transaction
with the slave device.

Start sequence SO SEquence

Lattice Diamond 3.14 Programming Tools User Guide 122

EmMBEDDED FLOW OVERVIEW : 12C Embedded

The primary 12C port of the Mach XO2 device can be used as a user 12C port
function or as a device programming port. When used for device
programming, the primary 12C port is a slave 12C with a default slave address
of 7’b1000000 for 7-bit addressing or 10’b1111000000 for 10-bit addressing.
The primary 12C port must be enabled in order to support the device
programming using the 1°C protocol. This is done by setting the 12C_Port
preference to ENABLE in the software. The 12C programming supports single
device programming.

The sequence for device programming using the I2C follows the standard
Lattice device programming algorithm. The 1°C bus hardware requirements,
the timing requirements, and the receive/transmit protocols must follow the
standard 12C specification. The definition of the SDA data time is the delay
form the SCL falling edge 30% VDD to SDA falling edge 70% VDD. The SDA
data setup time is the time requirement from the SDA falling edge 30% VDD
to the SCL rising edge 30% VDD.

All the 12C slave commands consist of one byte op-code followed by three
one-byte operand, except the ISC DISABLE command. The ISC DISABLE
command for 12C programming consists of one byte op-code followed by two
operands. 12C programming can also be done in the background. In this case,
the ISC ENABLE command (0XC6) should be replaced by the
LSC_ENABLE_X command (0X74).

Using the PC-based I°C Embedded

Programming

The 12C Embedded system for LFMNX, MachX02, MachXO3D, MachXO3L,
MachXO3LF, or MachXO3LFP is a quick and easy way to validate 12C files
and the I2C Embedded programming engine by successfully processing the
target XO2 device using the FTDI USB2 Cable of the PC.

The programming algorithm of the device is separated into 1°C algorithm file
and 12C data file. This separation of the algorithm and data allows the
optimization of the 12C embedded programming engine. It also allows you to
mix 12C data files with 12C algorithm files.

To access the PC-based 12C Embedded System, use the Diamond
Deployment Tool Version 1.4 or higher to add the LFMNX, MachX02,
MachXO3D, MachXO3L, MachXO3LF, or MachXO3LFP device. Then, select
the I2C embedded programming options from the Generate 1’c dialog box.
For more information, refer to the Deployment Tool online help.

The only source code file that must be modified is the hardware.c file. The
source files can be found in
<install_path>\embedded_source\i2cembedded\src\i2zcem diamond directory.

Lattice Diamond 3.14 Programming Tools User Guide 123

EmMBEDDED FLOW OVERVIEW : 12C Embedded

hardware.c

The only file that you should modify is hardware.c. This file contains the
functions to read and write to the port and the timing delay function. You must
update these functions to target the desired hardware.

opcode.h

The opcode.h file contains the definitions of the byte codes used in the 1°C
algorithm format and programming engine.

i2c_core.c

The i2¢c_core.c file provides the programming engine for the I°C embedded
system. The engine operates on the commands in the 1°C algorithm, and
obtains data from the I°C data, if necessary. The engine is responsible for
functions such as sending data, verifying data, observing timing delay,
decompression, and so on.

i2c_main.c

The i2c_main.c file is the only file that differs between the PC-based and the
8051-based embedded solutions. This difference is due to the way each of
these interfaces to the 12C algorithm and data files through the entry point.
This file contains the main and entry point functions.

Using the 8051-based I1°C Programming

To program embedded systems using the 8051-based 12C programming, you
must generate the I1°C files as HEX to create the I°C algorithm and data files
as C programming files. Each file contains a C programming style byte buffer
that holds the 1°C algorithm or data.

The HEX files must be compiled along with the 8051-based 1°C System
source code. The source code contains handles that allow the compiler to link
the buffers of the hexadecimal files to the main source code. The only source
code file that you need to modify is the hardware.c file. The source files can
be found in the
<install_path>\embedded_source\i2zcembedded\src\i2zcem_eprom directory.

hardware.c

The only file that you should modify is hardware.c. This file contains the
functions to read and write to the port and the timing delay function. You must
update these functions to target the desired hardware.

Lattice Diamond 3.14 Programming Tools User Guide 124

mailto:techsupport@latticesemi.com

EmMBEDDED FLOW OVERVIEW : 12C Embedded

opcode.h

The opcode.h file contains the definitions of the byte codes used in the 12C
algorithm format and programming engine.

i2c_core_eprom.c

The i2¢c_core.c file provides the programming engine for the I°C embedded
system. The engine operates on the commands in the 1°C algorithm, and
fetches data from the I°C data, if necessary. The engine is responsible for
functions such as sending data, verifying data, observing timing delay,
decompression, and so on.

i2c_eprom.c
The i2c_main.c contains the main and entry point functions for 8051-based
1°C Programming.

1’C Algorithm Format

The I%C algorithm file contains byte codes that represent the programming
algorithm of the device or chain.

Table 6: 12C Algorithm Byte Codes

12C Symbol Hex Value
12C_STARTTRAN 0x10
12C_RESTARTTRAN 0x11
12C_ENDTRAN 0x12
12C_TRANSOUT 0x13
12C_TRANSIN 0x14
12C_RUNCLOCK 0x15
12C_WAIT 0x16
12C_LOOP 0x17
12C_ENDLOOP 0x18
12C_TDI 0x19
12C_CONTINUE 0x1A
12C_TDO 0x1B
12C_MASK 0x1C
12C_BEGIN_REPEAT 0x1D
I2C_END_REPEAT 0x1E

Lattice Diamond 3.14 Programming Tools User Guide 125

EmMBEDDED FLOW OVERVIEW : 12C Embedded

Table 6: 12C Algorithm Byte Codes (Continued)

12C Symbol Hex Value
12C_END_FRAME Ox1F
12C_DATA 0x20
12C_PROGRAM 0x21
I2C_VERIFY 0x22
12C_DTDI 0x23
12C_DTDO 0x24
12C_COMMENT 0x25
12C_ENDVME Ox7F

I2C Data Format

While the I2C algorithm file contains the programming algorithm of the device,
the I2C data file contains the fuse and USERCODE patterns.

The first byte in the file indicates whether the data file has been compressed.
A byte of 0x00 indicates that no compression was selected, and 0x01
indicates that compression was selected. When compression has been
selected, each frame is preceded by a frame compression byte to indicate
whether the frame is compressible. This is necessary because even though
you might elect to compress the 12C data file, it is possible that a compressed
frame will actually be larger than an uncompressed frame. When that
happens, the frame is not compressed at all and the frame compression byte
of 0x00 notifies the processor that no compression was performed on the
frame.

When compression has not been selected, the 12C data file becomes a direct
translation from the data sections of the SVF file. The END_FRAME byte,
0x1F, is appended to the end of every frame as a means for the processor to
verify that the frame has indeed reached the end.

Uncompressed 12C Data Format Compressed 12C Data Format
0x00 0x01

<Frame 1>0x10 <Compress Byte><Frame 1>0x10
<Frame 2>0x10 <Compress Byte><Frame 2>0x10
<Frame N>0x10 <Compress Byte><Frame N>0x10

The compression scheme used is based on the consecutive appearance of
the OxFF byte in a frame. This byte is ubiquitous because an all 0xFF data file
is a blank pattern. When a consecutive number of n OxFF bytes are
encountered, the 12C data file will have the byte OxFF followed by the number
n converted to hexadecimal, where n cannot exceed 255. For example, if the
following were a partial data frame.

Lattice Diamond 3.14 Programming Tools User Guide 126

EmMBEDDED FLOW OVERVIEW : 12C Embedded

FFFFFFFFFFFFFFFFFFFF12FFFFFF the resulting compressed data would
be:

OxFF 0x0A 0x12 OxFF 0x03

When the processor encounters the first byte 0xFF, it gets the next byte to
determine how many times 0xFF is compressed. The next byte is 0x0A,
which is ten in hexadecimal. This instructs the processor that OxFF is
compressed ten times. The following byte is 0x12, which is processed as it is.
The next byte is again 0xFF followed by 0x03, which instructs the processor
that OxFF is compressed three times.

12C Embedded Programming Required
User Changes

To make the 1°C Embedded Programming software work on your target
system, you need to modify the following C functions in the hardware.c source
code.

Timer(Setl2Cdelay())

The engine requires the ability to delay for fixed time periods. The minimum
granularity of the delay is 1 microsecond. You can determine the type of delay.
This can be a simple software timing loop, a hardware timer, or an operating
system call, for example, sleep().

Port Initialization
The firmware needs to place the port I/O into a known state.

Setl2CStartCondition()

This function is used to issue a start sequence on the 12C Bus.

Setl2CreStartCondition()

This function is used to issue a start sequence on the 12C Bus.

Setl2CStopCondition()

This function is used to issue a stop sequence on the 12C Bus.

ReadBytesAndSendNACK()

This function is used to read the SDA pin from the port.

Lattice Diamond 3.14 Programming Tools User Guide 127

EmMBEDDED FLOW OVERVIEW : 12C Embedded

SendBytesAndCheckACK()
To apply the specified value to the SDA pin indicated.

Generating I2C Files

This section describes how to generate I°C files. An .xcf file is required for the
LFMNX, MachX02, MachXO3D, MachXO3L, MachXO3LF,or MachXO3LFP
FPGA.

To generate an .xcf file for the LFMNX, MachXO3D, or MachXO3LFP, if
the .xcf file does not exist or has not yet been created:

1. Start the Diamond Programmer software and create a new Blank Project.
2. Select LFMNX, MachXO3D, or MachXO3LFP as Device Family.

3. Select the Device Type according to your device.
4

Choose Edit > Device Properties, or right click on the device, and in the
dropdown menu, choose Device Properties.

5. In the Device Properties dialog box:

In the Access Mode dropdown menu, choose desired programming
mode

In the Port Interface dropdown menu, choose I2C Interface
Programming.

In the Operation dropdown menu, choose the desired operation.

In the Programming File box, browse to your design’s .jed
programming file.

In the 12C Slave Address box, enter the correct I2C slave address. The
default address is 0x40.

Select Use 12C interface of the Lattice HW-USBN-2B download
cable, if used.

6. Chose File > Save or File > Save (filename).xcf As... and give the file a
name. Ensure that the extension of the file is xcf.

To generate an .xcf file for the MachX02, or MachXO3L, or the
MachXO3LF, if the .xcf file does not exist or has not yet been created:

1. Start the Diamond Programmer software and create a new Blank Project.

2. Select MachX02, MachXO3D, MachXO3L, or MachXO3LF as Device
Family.

Select the Device Type according to your device.

4. Choose Edit > Device Properties, or right click on the device, and in the
dropdown menu, choose Device Properties.

5. In the Device Properties dialog box:

Lattice Diamond 3.14 Programming Tools User Guide 128

EmMBEDDED FLOW OVERVIEW : 12C Embedded

In the Access Mode dropdown menu, choose desired programming
mode

In the Port Interface dropdown menu, choose I2C Interface
Programming.

In the Operation dropdown menu, choose the desired operation.

In the Programming File box, browse to your design’s .jed
programming file.

In the 12C Slave Address box, enter the correct I2C slave address. The
default address is 0x40.

Select Use 12C interface of the Lattice HW-USBN-2B download
cable, if used.

6. Chose File > Save or File > Save (filename).xcf As... and give the file a
name. Ensure that the extension of the file is xcf.

To generate I2C Files:

Start the Deployment Tool.

In the Getting Started dialog box, select Create New Deployment.

In the Function Type dropdown menu, choose Embedded System.
In the Output File Type dropdown menu, choose as I2C Embedded.
Click OK.

In the Step 1 of 4 dialog box, browse to the .xcf file you created with the
Programmer software, and select Input XCF file(s).

Click Next.

8. In the Step 2 of 4 dialog box, select Compress Embedded Files
depending upon the requirement, select Generate Hex(.c) Files for 8051
micro-processor usages, and click Next.

2 o

N

9. Inthe Step 3 of 4 dialog box, select the Algorithm File and Data File to
rename and change the location of the file name. Make sure the file name
has the extension .iea and .ied, respectively, and click Next.

10. In the Step 4 of 4 dialog box, click Generate to generate the files.
11. The files will be generated as shown as below.

12. The Deployment Tool project can now be saved by selecting File > Save
As. The saved file will generate the same data file and algorithm file when
loaded again.

13. Modify the Source Code File (hardware.c). The 8051-based source code
files are written in ANSI C. The file hardware.c is the only file that is
required to be modified by the user. The user must modify the following
functions according to the target platform:

SetI2Cdelay ()
SetI2CStartCondition ()
SetI2CreStartCondition ()
SetI2CStopCondition ()

Lattice Diamond 3.14 Programming Tools User Guide 129

EmMBEDDED FLOW OVERVIEW : 12C Embedded

ReadBytesAndSendNACK(int length, unsigned char *a ByteRead
, 1int NAck)

Where
int length = Number of bits to read
*a_ByteRead = Buffer to store byte
int NAck - Option to send

0=No

1-Yes

int SendBytesAndCheckACK (int length, unsigned char
*a bByteSend

Where
int length = Number of bits to send
*a_bByteSend = Buffer storing data to send

The following are optional functions that the user may wish to modify in
order to enable and disable the hardware conditions before and after
processing:

EnableHardware ()
DisableHardware ()

14. Compile Source Code and 12C HEX Files. Combine the source code and
12C HEX files generated by Deployment Tool into a project to be compiled.
This may be done using a microcontroller development tool to create the
project.

Modify the Delay Function

When porting Embedded I2C to a native CPU environment, the speed of the
CPU or the system clock that drives the CPU is usually known. The speed or
the time it takes for the native CPU to execute one loop then can be
calculated.
The for loop usually is compiled into the ASSEMBLY code as shown below:
LOOP: EDC RA;
JNZ LOOP;

If each line of assembly code needs four (4) machine cycles to execute, the
total number of machine cycles to execute the loop is 2 x 4 = 8.

Usually: system clock = machine clock (the internal CPU clock).

Note

Some CPUs have a clock multiplier to double the system clock for the machine clock.

Let the machine clock frequency of the CPU be F (in MHz), then one machine
cycle = 1/F.

Lattice Diamond 3.14 Programming Tools User Guide 130

EmMBEDDED FLOW OVERVIEW : 12C Embedded

The time it takes to execute one loop = (1/F) x 8.
It is obvious that the formula can be transposed into one microsecond = F/8.

Example: The CPU internal clock is set to 48 MHz, then one microsecond =
48/8 = 6.

The C code shown below can be used to create the millisecond accuracy. Al
that needs to be changed is the CPU speed.

void SetI2CDelay(unsigned int a msTimeDelay)

{

unsigned short loop index = 0;
unsigned short ms index = 0;
unsigned short us_ index = 0;

/*Users can replace the following section of code by their own*/
for(ms_index = 0; ms_index < a msTimeDelay; ms_index++)
{
/*Loop 1000 times to produce the milliseconds delay*/
for (us_index = 0; us_index < 1000; us_index++)
{ /*each loop should delay for 1 microsecond or more.*/
loop index = 0;
do {
/*The NOP fakes the optimizer out so that it
doesn't toss out the loop code entirely*/

__asm NOP
lwhile (loop index++ < ((g_usCpu Frequency/8)+ (+
((g_usCpu_Frequency % 8) ? 1 : 0))));/*use do loop to force at least

one loop*/
}
}

Choosing the File-Based or EPROM-Based Version

To generate a PROM-based 1°C Embedded, select the “Generate HEX (.c)
File” option in the Deployment Tool Step 2 of 4 dialog box.The programming
engines of the file-based and PROM-based processors are identical in the
way they handle the VME commands. Their difference lies in the way they
interface with 1°C Embedded data. For a convenient demo, the file-based
version assigns a file pointer to the binary I2C Embedded file directly. The
pointer is assigned based on a command line argument. With some minor
modification, this version is useful for embedded high-level 32-bit
microprocessors that can dynamically allocate RAM and have large amounts
of data and code memory. For more modest embedded systems or smaller
processors, the PROM-based version is useful because the memory
resources are completely defined when compiling the executable.The 12C
Embedded file is converted to one or more C files and a header file that are
compiled with the core routines.

Lattice Diamond 3.14 Programming Tools User Guide 131

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

Programming Considerations for
SSPIEM and I2CEM modification with
Aardvark 12C APIs

Aardvark is a SPI/12C adapter which can be used for programming of Lattice
FPGA devices with Slave SPI or Slave 12C. Lattice Diamond provides I2CEM
example source codes which are modified with Aardvark 12C APls
respectively. However we do not guarantee that these APIs will be supported
for all the programming modes incorporated in the .iea files generated by the
Lattice Deployment Tool, which are used by our I2CEM source codes. This is
due to the limitation of the Aardvark adapter and with its associated read/write
APIls meant for the data transfer between the Lattice’s algo interpretation logic
and the actual programming hardware driver logic. The Aardvark adapter has
a buffer limitation of 4 KB and any algo file data above 4 KB will overflow the
buffer and will result in a programming failure.

The Deployment tool modes which are effected due to this are the Fast
Programming modes for any device, for example the LIFMD-6000 (CrossLink)
device support Fast Programming mode but will not program with Aardvark
APIs. As the Fast Programming mode results in an algo file in which the
whole data is passed at once as a whole for Fast Programming and overflows
in the Aardvark buffer resulting in a programming failure. The supported
programming modes are “Erase Program Verify,” “Background Erase
Program Verify,” “Flash Program,” and “SSPI Program.”

The example source code using FTDI can be used to program devices in Fast
Programming mode as we guarantee that our drivers work with this mode and
the buffer in the FTDI device is large enough to hold large Fast Programming
mode data.

sysCONFIG Embedded

The sysCONFIG Embedded software brings sysCONFIG port programming
capability to Lattice Semiconductor's suite of FPGA devices on embedded
systems. The software offers a unique virtual programming engine that can
support the different programming algorithms of each device family. The
software is developed in ANSI C and is available in source code form to allow
users to target specific hardware.

The Diamond software may be used to generate a bitstream file. The file then
must be converted to an embedded bitstream using Deployment Tool. The
significance of the embedded bitstream is that it contains control pin
instructions, which the sysCONFIG Embedded programming engine will
decode. Once the embedded bitstream is obtained, it will be provided to the
sysCONFIG Embedded software to configure the device.

While excellent support is offered for programming devices on PC and
workstation platforms, many alternate platforms are in use. The best example

Lattice Diamond 3.14 Programming Tools User Guide 132

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

Bitstream

Single
Device
Only

is the use of embedded controllers and processors for programming. Many
embedded configurations are in use, but these configurations vary greatly
from project to project. Topics in this Help describe the sysCONFIG
Embedded software in detail to simplify modification for user-specific
applications.

sysCONFIG Embedded Flow

The following figure illustrates sysCONFIG Embedded flow.

For CPU File
Emulation

Driarmoand

AT <> AT
e sysCONFIG
» | Deployment)] ——p» Embedded Simulate
Tool {PC) Output

#;

sysCONFIG Embedded Bitstream Generation

You can use Deployment Tool to generate sysCONFIG Embedded bitstreams
for the current Lattice FPGA device chain.

The chain must consist of a single Lattice FPGA device.
The device must have an input data file.

The device must be supported by the sysCONFIG Embedded software.
See the “sysCONFIG Embedded Device Support” topic in the Diamond
Programmer online help.

Parallel Mode and Serial Mode CPU Bitstream

For LatticeECP/EC and LatticeECP2 devices, the Deployment Tool software
can generate either a parallel configuration mode (PCM) CPU or a serial
configuration mode (SCM) CPU file depending on the operation type you
have specified for the device in the Device Properties Dialog Box in Diamond
Programmer. For example, if you have selected JTAG 1532 Mode under
Device Access Options and Fast Program under Operation, the CPU
bitstream generator will output a parallel mode CPU file. If you selected Serial
Mode and Serial Program in the Device Information dialog box, a serial
mode CPU file will be generated.

sysCONFIG Embedded Bitstream Options

There are several options to consider before generating the sysCONFIG
Embedded bitstream. You can set these options in the Deployment Tool Refer
to Deployment Tool online help for more information.

Lattice Diamond 3.14 Programming Tools User Guide 133

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

Output Format

This option, the most important, allows you to specify one of three
sysCONFIG Embedded bitstream formats for generating the embedded
bitstream: binary, C-code, and Intel hexadecimal. You can also generate a
CPU file in text format so that you can see all the commands, data, and the
size of data shifting for debugging purpose.

Include Comments

Comments are decoded by the sysCONFIG Embedded engine and displayed
to the terminal to inform you of the engine's actions. This can be very helpful
for debugging, but it increases the file size.

Compress Embedded Bitstream Files

This enables you to generate a compressed CPU bitstream file with smaller
size and faster performance.

For Erase, Program, and Verify Operations, Skip the Verify Operation

You can skip the Verify operation while programming a device to reduce
processing time.

Specify Values for the CFG Pins

The software allows you to specify the values of the CFG pins by using
configuration mode. By default, selection of these values is disabled.

See Also
Generating a sysCONFIG Embedded Bitstream
sysCONFIG Embedded Basic Operation

sysCONFIG Embedded Bitstream

Format

The sysCONFIG Embedded software supports three embedded bitstream
formats.

Binary. The binary format is used for the file-based sysCONFIG
Embedded. This allows you to call the sysCONFIG Embedded via
command line and pass in the binary embedded bitstream as an
argument. The file extension for this format is .cpu.

C-code. The C-code format is used for the compile-based sysCONFIG
Embedded. This format is an actual C programming language file that has
the embedded bitstream expressed as an array. The file can be compiled
with the compile-based sysCONFIG Embedded source code to generate
an executable that has the embedded bitstream self-contained. The file
extension for this format is .c.

Lattice Diamond 3.14 Programming Tools User Guide 134

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

Intel Hex. The Intel hexadecimal format is used for the function-based
sysCONFIG Embedded. This format is a standard Intel hexadecimal that
can be downloaded to the flash of the embedded system. A wrapper
application may be developed to call the function-based sysCONFIG
Embedded and pass to it the embedded bitstream from the flash. This
format contains an option to flip each byte of data prior to generating the
file. By default, each byte is flipped. Depending on the user's
implementation, it may not be necessary to flip the bytes. The file
extension for this format is .hex.

Besides the above formats, you can also generate a CPU file in text format so
that you can see all the commands, data, and the size of data shifting for
debugging purpose.
See Also

sysCONFIG Embedded Bitstream Structure

Generating a sysCONFIG Embedded Bitstream

sysCONFIG Embedded Bitstream

Structure

The embedded bitstream is the driver behind the sysCONFIG Embedded
software. It contains both instructions for the control pins and data for the data
pins of the FPGA device. This method encapsulates the programming
algorithm within the embedded bitstream, and generalizes the sysCONFIG
Embedded engine to increase versatility.

The following figure illustrates the algorithm and data contained in
sysCONFIG Embedded bitstream.

TN
A

[Algorithm]

[Original Bitstream]

Algorithm

—

The algorithm section drives and verifies the control pins. A verification failure
return code is issued if a pin fails to verify.

The original bitstream section contains the bitstream broken down by frames.
If the comment option was selected when generating the embedded

Lattice Diamond 3.14 Programming Tools User Guide 135

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

bitstream, comments are inserted before frames and displayed by the CPU
engine to notify users the current frame being processed.

The entire embedded bitstream is protected by a CRC. Before the
sysCONFIG Embedded software sends any data to the device, it calculates
the CRC and verifies it against the CRC of the bitstream. If the verification
fails, the software aborts with a CRC error code.

This CRC is referred to as the “soft” CRC, not to be confused with the CRC

calculation that is performed internally by the FPGA device. See the figure
below.

o
Embedded
Bitstream

sysCONFIG | (o !
Embedded

} Protected by soft CRC

Protected by device CRC

Example

The following embedded bitstream example shall perform the following:
1. Verify CRC.

2. Drive the PROGRAM pin high.

3. Send in pre-amble data 0x83 0xA7.

4

Issue the end byte command.

Embedded bitstream example:

0X08 OXFF OXFF // 16-BIT CRC COMMAND

0X05 0X50 0xX01 // DRIVE PROG_PIN HIGH

0X02 0X02 0X83 O0XA7 // SEND PRE-AMBLE DATA
0X04 // END BYTE

sysCONFIG Embedded Basic Operation

The sysCONFIG Embedded is the software that will decode the sysCONFIG
Embedded bitstream and configure the FPGA device. It is available in three
interfaces and two configuration modes.

Lattice Diamond 3.14 Programming Tools User Guide 136

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

sysCONFIG Embedded Interfaces

The sysCONFIG Embedded software is available in source code form and
allows three possible interfaces.

File-Based Interface

The file-based interface expects the embedded bitstream in the binary format,
with .cpu extension. This interface is ideal for simulating on PC. It allows you
to call the software through command line and pass the binary embedded
bitstream as the argument. Note that this assumes you have modified the
source code to allow the program to interface to the device through a driver.

Compile-Based Interface

The compile-based interface expects the embedded bitstream in C-code
format. This file shall be compiled along with the sysCONFIG Embedded
source code to create an executable that has the data self-contained. This
interface is ideal for programming on embedded systems.

Function-Based Interface

The function-based interface expects the embedded bitstream in Intel
hexadecimal format. This file shall be stored in the flash or PROM of the
embedded system for later use. Unlike the file-based and compile-based
approach, the interface to the sysCONFIG Embedded engine in this interface
is through a function. The arguments to the function shall be a pointer to the
embedded bitstream residing in the flash and the size of the embedded
bitstream.

sysCONFIG Embedded Configuration Modes

For LatticeECP/EC and LatticeECP2 devices, the software can generate
either a parallel configuration mode (PCM) CPU or a serial configuration
mode (SCM) CPU file depending on the operation type you have specified for
the device in the Device Properties dialog box. For example, if you have
selected JTAG 1532 Mode under Device Access Options and Fast Program
under Operation, the CPU bitstream generator will output a parallel mode
CPU file. If you selected Serial Mode and Serial Program in the Device
Information dialog box, a serial configuration mode CPU file will be generated.

Parallel Configuration Mode (PCM)

The parallel programming engine reads the CPU format files generated by
Deployment Tool and manipulates the I/O port. The engine requires the 1/0
system to be connected to the parallel programming port of the device. For
Lattice devices this is the sysCONFIG parallel port.

Serial Configuration Mode (SCM)
The serial programming engine manipulates the 1/O port. It requires the I/O

system to be connected to the serial programming port of the device. For
Lattice devices this is the sysCONFIG DI/DO port.

Lattice Diamond 3.14 Programming Tools User Guide 137

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

See Also
sysCONFIG Embedded Flow

sysCONFIG Embedded Source Code

sysCONFIG Embedded source code is developed using ANSI C to ease
portability among the many different platforms. The source code files can be
found in the

<install_path>\<version _number>\embedded_source\cpuembedded
directory. The following lists the available source code files.

main_f.c
main_e.c
main_tag.c
cpu_core.c
cpu_hard.c
cpu_sim.c
cpu_code.h

There are five components to the sysCONFIG Embedded source code: main,
engine, hardware, simulator, and definition.

Main

There are three different main files depending on whether you want to use the
file-based, compile-based, or function-based interface. Each interface is
available in main_f.c, main_e.c, and main_tag.c, respectively. When using
the compile-based interface, the embedded bitstream must be generated as
C-code and compiled with the rest of the source code.

Engine

The sysCONFIG Embedded Engine can be found in the cpu_core.c file. This
file is responsible for decoding and executing the embedded bitstream. You
should not modify this file.

Hardware

The hardware related functions can be found in the cpu_hard.c file. This file
is responsible for writing to and reading from the ports that connect to the
device. You may modify sections of this file to target specific hardware. These
sections are preceded by the comment “Note: user must re-
implement to target specific hardware” to alert you that it
requires modification. If you include this file, you will have to remove the
cpu_sim.c file from your project. These two files are not compatible.

Simulator

The simulation function could be found in the cpu_sim.c file. This file is used
for generating an output file with the resultant code. This could be done if you

Lattice Diamond 3.14 Programming Tools User Guide 138

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

want to simply compare outputs without having a device plugged in. The
simulator will take the following argument: “.cpu file <output file>".
If you use this file, remove the cpu_hard.c file from your project.

Definitions

The definitions for the embedded bitstream, sysCONFIG Embedded engine,
and return codes can be found in the cpu_code.h file. You should not modify
this file.

sysCONFIG Embedded Engine

The sysCONFIG Embedded software brings sysCONFIG port programming
capability to Lattice Semiconductor's suite of FPGA devices on embedded
systems. The software offers a unique virtual programming engine that can
support the different programming algorithms of each device family.

The sysCONFIG Embedded engine is based on the sysCONFIG Embedded
bitstream. It processes the bitstream until the END_BYTE_COMMAND or an
error is encountered and returns with an appropriate return code.

The sysCONFIG Embedded engine supports the following different run
operations generated from Deployment Tool:

Erase, Program, Verify

Erase, Program, Verify, and Secure

Erase Only

Verify Only

Verify ID

SRAM Program, Verify

SRAM Verify Only

XSRAM Verify Only

The sysCONFIG Embedded engine has three layers as follows:
User interface layer (cpu_main.c) — Directs inputs and outputs.

Processor layer (cpu_core.c) — Decodes commands, checks CRC prior to
processing, and does optional decompression.

Physical layer (cpu_hard.c) — Shifts data to target device. This is the only
file that you need to edit.

The following figures illustrate sysCONFIG Embedded sysCONFIG port
programming engine in parallel and serial configuration modes.

Lattice Diamond 3.14 Programming Tools User Guide 139

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

Parallel Configuration Mode.

CPU Fila Main differences between JTAG and sysCONFIG.

_-—;_ﬂ/./;,_hd_
File | > Monitor ...
— e Mumerical Operand —._ - - p—
CFU F_Ie Gize Dt Type Register | —. sysCOMFIG Control Pins Setting | § 7* WRITEN/READ
Register |l Flom Cortol Fegitor b ! Current Byte Count | £ [t CsN
Currert Data o Output Butfer g ;t ga;’:(
- Byts Gourter ™, K —] MASK Buller % || p. PROGRAMN
i TOKEN CPU Token % Read Back Euff 2 = CCLK
ok, J Function & (4| Fead Bock Bl 2 (&1 Done
[Library g [| Stetus Register [o [— INITN
o =] |8 Do
Passhai A @ @ PROGRAM o
Register El A ; : . ” Engine ,Lc: .
r v Data | HEAP | [Iat D7
¢ Biuffer Buffer —
Ul Layer Processor Layer Physical Layer
cpu_main.c Cpu_core.c cpu_hard.c
Serial Configuration Mode.
(g |
File 4
Monitor ...
P —| Mutnerical Operand —._ - n —
TFU R Sioe ot Tyae Regiter | sysCOMFIG Control Pins Setting | E
Register _._I Flow Gortol Fegister _: e Current Byte Count | g
Curert Data] Cutput Buffer 3
thai B Gourter [—w] hlask Bufler S ™ PROGRAMN
ain] TOKEN CPL Token & o CCLK
HE H Function 2 - e BaCk_er 2 [DONE
M Librany O [—] Status Register &l | ® [— INITN
2 = | 1
PassfFall A PROGRAM L
Register 180 @v nmﬁ ;:EHEAP \‘ = (it DIDOUT
1 Buffer Buffer L=
Ul Layer Processor Layer Physical Layer
Cpu_main.c cpu_core.c cpu_hard.c

Lattice Diamond 3.14 Programming Tools User Guide 140

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

Sample Program Size

This page provides sample program size for JTAG Full VME Embedded,
JTAG Slim VME Embedded, and sysCONFIG Embedded.

JTAG Port non-JTAG Port Total
Embedded Tool

JTAG Full VME JTAG Slim sysCONFIG

Bitst L Hi Embedded VME Embedded
Istream Locartion Embedded
32-Bit 16-Bit 8-Bit 32-Bit 16-Bit

File Based 52KB 21KB 4.2KB 48KB 19KB |As Shown
(Bitstream File External)
PROM Based 52KB 21KB 4.2KB 48KB 19KB |As Shown +
(Bitstream File Integrated) VME File Size

By 8051 Compiler:

B C:ISFYMPROJECT\ISPYMSY'

+ @ sim_pro.c [C51] code=2960 const=0 xdata=106 pdata=0 data=7 1 idata=0 bit=0
B opcodeh [C51] code=0 const=0 xdata=0 pdata=0 data=0 idata=0 bit=0

@ hardware.c [C51] code=34 const=0 xdata=0 pdata=0 data=1 idata=0 bit=0

B dim_vme.c [C51] code=254 const=0 xdata=0 pdata=0 data=29 idata=0 bit=0

STEM\DEBUGYSPSLIMVMEMBEDDED\SOURCECODE\SRCISLIM_VME _BOS1\SLIMPR] {8051} ¢ \.nde

Slim VME Size = 4200 Bytes

By Microsoft 32-Bit Compiler:

Name / “sze,

Hepyme.exe [s2ke O\

™ hardware.obj [3ke | JTAG Full VME Program Size - 52 K Bytes
D spvm_ui.ob) \ ke)
Divm_core.oby 20 Ks//’

Name / _\\

gw IJ ‘43 K: 'wl sysCONFIG Program Size - 48 K Bytes

: K

D cpu_sim.obj \ Bk

™ man_fobj N TKE /

By Microseft 16-Bit Compiler:

Name
CISPVIME.EXE
D hardware.cbj
D spvm_ui.obr
D vm_core.cbj

Mame
EIcPUSIMEXE
D epu core obj

VACIN
" ae) - JTAG Full VME Program Size - 21 K Bytes
L /‘

N11kB

!/ Size \\
l.-‘ 198 "«l - sysCONFIG Program Size - 19 K Bytes
| ekE |

\
\ 2k /
\\\h__//

Lattice Diamond 3.14 Programmi

ng Tools User Guide 141

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

Generating a sysCONFIG Embedded

Bitstream

You can generate sysCONFIG Embedded bitstream using the Deployment
Tool for programming sysCONFIG Embedded supported devices.

For LatticeECP/EC and LatticeECP2 devices, the Deployment Tool can
generate either a parallel programming mode CPU or a serial programming
mode CPU file depending on the operation type you have specified for the
device in the Device Properties Dialog Box in Diamond Programmer. For
example, if you have selected JTAG 1532 Mode under Device Access
Options and Fast Program under Operation, the CPU generator will output a
parallel programming mode CPU file. If you selected Serial Mode and Serial
Program in the Device Properties dialog box in Programmer, a serial
programming mode CPU file will be generated.

There are two important options to consider when generating the embedded
bitstream. The first option is whether or not to generate the file with built-in
comments. These comments are decoded by the sysCONFIG Embedded
engine and displayed to the terminal to inform the engine's actions. This is
helpful for debugging purposes, but the file size will increase slightly.

The second, and more important, option to consider is which of the three
formats should the embedded bitstream be generated with. See sysCONFIG
Embedded Bitstream Format for details.

See Also 1 sysCONFIG Embedded Flow

sysCONFIG SPI Port AC Parameters

The board layout and waveform diagrams are shown here to illustrate when
the configuration AC parameters can be characterized for the following
configuration modes:

SPI (Serial Peripheral Interface)
PCM (Parallel Configuration Mode)
SCM (Serial Configuration Mode)

Lattice Diamond 3.14 Programming Tools User Guide 142

EMBEDDED FLOW OVERVIEW

sysCONFIG Embedded

SPI (Serial Peripheral Interface)

Board Layout.

—l_" PROGRAMN CFGOD J—b PROGRAHMN CFGO
CFG1 CFG1
Characterization Is Done CFG2 i CFG2
By Setting The CCLK As EC/ECP
Input Through /S 4———— LS8R EC/ECP
Manufacturing Mode. D i4—— SIsPl
Q———» SPID0 Dot ————» DI Dout e >
=C i CCLE CCLK
INTH DOME INITH DONE
& 4 I
- » ¥ +
L e
Waveform
, Wake Up Clocks
torox >
vee 7 :
CCLK .
PROGEAMN "1_, i
tCSCCLK_:"' -
INITN '1 ! r
DONE | {
tooon— -+ et
CSSPI tosh tovse —af belt THSR —
| A
SISPI S0E , : |
T
- T Db—‘-'.mm} —
|
Dout |
POROr Dexi Device Send Device Send lgnore First Write Start Device
Toggle R::e 2Bit Read-Opcode M Bit Address > 95.Bit Data Configuration In User
PROGRAMN ¥ To SP FLASH To 5P FLASH rom SPIFLAS Data Wake lp Hode
Lattice Diamond 3.14 Programming Tools User Guide 143

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

PCM (Parallel Configuration Mode)

Board Layout

DATA[7:01 -t & & -
CCLK -
READ/WETTEN -
EUSY "™ -
Lattice FPGA Lattice FPGA
PCh PCh
L g COLK g CCLE
Lt [[7:0] lg— D[7:0]
L RDAIRN 50 » RDAURM (o1 M
la——— BUSY a— BUSY
— » GEM CFa0 I CFE0
. CSIM CF&E1 — % 5N CFGE1
— = PROGRAOMM — CFE2 — % FPROGRAMM CFG2
4w [MITH DOKE 4 b [MITH DONE
DROGEAMH -
CsoN -
CSIN -
INITH —aa -~
DONE -
Waveform

' t
i SUCEDI
——

_hi HEEDI
ootk Iy
CSON '
oSN | 5
RDARN— i
Ao —) . SEes
| A :
BUSY _Il ﬂ B oce IF _"' tooon :._
cso B
Wit - coa - — e —
CRoEn"‘I::'Egd > mR:;dnE Rf:\“gnceTLJn nC:_n:‘roln > E‘LEAR?\LJL FL(:‘WTHRBOEGH '3::3;:

Lattice Diamond 3.14 Programming Tools User Guide 144

EMBEDDED FLOw OVERVIEW : sysCONFIG Embedded

SCM (Serial Configuration Mode)

Board Layout

i
PROGRAKHN CFGO —é}‘] PROGRAHN CFGD —§
CFG1 —— CFG1
CFG2 4\7'— EFEE%
EC/ECP ECIECP
—_— [" I]ﬂll't e [" »
—— ¢ CCLK CCLK
IHITH DONE IHITH [I.']HE
+ F 3
v
¥
Waveform
Wake Up Clocks
s L —» =ty T2 T3
|"' " —’| — oo,
vee Wl oo | I I
CCLK e T) S AR AR W A J\U
PROGRAMN M |t
In_. -‘— t
—» ¢ DPRINIT
INITN
> tisco (Binacor)
DONE ™ ﬂtSUSCDI (tsco -+ [+ teom f COE Rel
oo | L] e e, - elease
- S S s G €10 gt 0
pout 7 0 .
|OENSS "[_::
10 t
—* W Loois
POROr I]e\rice> Wite > Wite Wite n.ivenouei De\rice:
Toggle Ready Configuration Bypass Bypass High To In User
PROGRAMN . For Data, Data Command Data Send Start l.'.lalwl.lg(Hode
Bypass

Data to Dout

sysCONFIG Interface

This page provides interface diagrams and description on the following CPU
sysCONFIG solutions.

CPU programming solution

The SRAM fuses in LatticeXP and LatticeECP/EC and the FLASH fuses
in LatticeXP can be programmed by using the sysCONFIG port connected
to a CPU. This page will describe SRAM fuse programming and present a
66MHz programming solution for LatticeECP/EC devices.

145

Lattice Diamond 3.14 Programming Tools User Guide

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

If both the DONE pin and the INIT pin are high after programming, or
refresh, the device then must be programmed successfully.

Note

Only if the FLASH DONE fuse is programmed can the FLASH pattern be
downloaded into the SRAM fuses of the device. If the FLASH DONE fuse is not
programmed, the download is blocked. FLASH DONE fuse is the last fuse to be
downloaded from FLASH to SRAM. The FLASH is downloaded to SRAM in a
protected and shielded environment and therefore it is not subject to the effect of
external noise or ground bounce which is the common problem when downloading
from external FLASH memory devices. The DONE pin is a very reliable indicator
on the programming status. This renders the readback un-necessary.

CPU read back solution

The SRAM fuses in LatticeXP and LatticeECP/EC and the FLASH fuses
in LatticeXP can be read back by using the sysCONFIG port connected to
a CPU. This page will describe SRAM fuse read back and present CPU
read back solution for LatticeECP/EC devices.

Read back of SRAM fuses is presented here for completeness. There is
very little to gain on actually performing read back.

Read back of SRAM fuses can only be done when the following
conditions are met:

The device has already been programmed successfully;
The device has already waken-up and is in user mode;
All EBR data must be ignored;

All distributed RAM data must be ignored.

Note

Only the JTAG port of the device supports readback in both user mode and
programming mode. If the device has not yet been programmed successfully, it
will not respond to the READ_INC command sent to it on the sysCONFIG port.

Subjects included in this page:
CPU Interface Basic
The Bitstream Format
CPU Parallel Programming Interface
CPU Serial Programming Interface
CPU Read back Interface
CPU Byte-Wide Programming Flow
CPU Byte-Wide Read back Flow
CPU Bit-Wide Programming Flow

CPU Interface Basic Lattice's CPU interface supports the command,
operand, and data bitstream format.

Lattice Diamond 3.14 Programming Tools User Guide 146

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

Bitstream Type

Preamble Code

Command

Data IDCODE
Control Register
Config.

CRC

Usercode

rl Read 24 Bits Operand |

Read In Data

Write {Program)

16 Bits
Preamble Code
Received?

Read 8 Bits Data In

- <>
Increment 2
¥
Yes l =
8 Bits Command Increment Address
Received? Counter.
Address
No « Increment ?
Drive INITN
To Low l‘r’es
Increment Address ||
Counter.
AN 7
v
In User Mode, The Device lgnores All Write Commands.
The Bitstream Format
Bitstream Orientation Data (Binary) Data (Hex)
D0..D7,D0..D7...
Bit[15..0] 1011110110110011 BDB3
Bit[31..0] Bit[31..24] = Opcode;
Bit[23..0] = Command
Information
Bit[0..31] Bit[0..31] = IDCODE ECP-20-IDCODE=C20A2480
Bit[0..31] Bit[0..31] = Control Register
Bit[N-1..0] Configuration Data
Bit[0..16] Bit[0..16] = CRC
Bit[0..31] Bit[0..31] = Usercode

Lattice Diamond 3.14 Programming Tools User Guide 147

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

Command

RESET_ADDRESS
CLEARALL
WRITE_INC

READ_INC

WRITE_USERCODE
READ_USERCODE
WRITE CTRL 0

READ CTRL O

PROGRAM_SECURIT
Y

PROGRAM_DONE /
END_READ
READ_IDCODE
VERIFY_IDCODE
BYPASS

FLOW_THROUGH

NOOP

32-bit Command

Bit 31...24 Bit 23...0

Opcode Operand

hE2
hFO
hC1

h81

hC3
h83
hC4

h84
hF3

hFA

h87

hC7

hFC

hFD

hFF

Don't Care
Don't Care

Of Frames

Of Frames

Don't Care
Don't Care

Don't Care

Don't Care

Don't Care

Don't Care

Don't Care

Don't Care

Don't Care

Don't Care

None

Write

Read

Description

Set address to row O (first row).
Clear all SRAM fuses.

Program a frame then increment the row
address.

Read a frame then increment the row
address.

Program 32 bits usercode
Read out 32 bits usercode.

Program the 32 bits program flow control
register 0.

Read out from the 32 bits control register 0.

Program the security fuses to disable
readback.

Terminate the programming or readback
flow.

Read out the 32 bits JTAG IDCODE of the
device.

Compare the 32 bits data against the 32 bits
JTAG IDCODE.

Send data to Dout for the next device in
chain.

Drive CSO low to select the next device in
chain.

Put a device in a wait state for extra delay.

Bit 31 of the opcode determines if the command and data is included in CRC.
The opcode shown does not select CRC inclusion. The bitstream generated
by the Diamond software makes that decision automatically. The read
command is not recommended to include CRC.

Lattice Diamond 3.14 Programming Tools User Guide

148

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

CPU Parallel Programming Interface

CFGx Pin Setting

Data Clock @ 66/MHZ Max.
For Byte Wide Programming.

Byte Wide BIDI Data Bus

For Serial Interface Onfy noemmun=s For Daisy Chaining

Device Initialization

Dual Chip Select
e Device In User Mode

Data Bus Direction Control
Data Bus Status

~ff—

Programming Cycle Initiation

Only four pins, PROGRAMN, INITN, DONE, and CCLK, are dedicated. The
other pins are dual purpose pins. The DI pin has no function on parallel
programming.

CPU Serial Programming Interface

CFGx Pin Setting

Data Clock @ 66/MHZ Max.
For BitWide Programming.

Byte Wide BIDI Data Bus

For Serial Interface Only For Daisy Chaining

Device Initialization

Dual Chip Select
e Device In User Mode

Data Bus Direction Control ..uus
Data Bus Statys Aw=meeeees

Programming Cycle Initiation

Only four pins, PROGRAMN, INITN, DONE, and CCLK, are dedicated. The
other pins are dual purpose pins. Only the DI pin and DOUT/CSO pin are
used on serial programming.

Lattice Diamond 3.14 Programming Tools User Guide 149

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

CPU Read back Interface

Data Clock @ 66MHZ Max. CFGx Pin Setting Is Don’t Care.

(*XP Devices Have No CFG2 Pin.)

Byte Wide BIDI Data Bus

For Serial Interface Onfy nennnunnn For Daisy Chaining

Device Initialization
Device In User Mode

Dual Chip Select
Data Bus Direction Control
Data Bus Status

~ff—

Programming Cycle Initiation

Only four pins, PROGRAMN, INITN, DONE, and CCLK, are dedicated. The
other pins are dual purpose pins. The read back is turned on by selecting the
Persistent On option when generating the bitstream.

The DI pin has no function on read back. Same as other dual purpose pins, it
cannot be recovered as user 10 if read back is selected.

The PROGRAMN pin must be left alone during read back. Pulsing it will
terminate the read back immediately and start re-configuration.

The device responds to read back command only if it has already been
configured successfully.

CPU Byte-Wide Programming Flow Below is the CPU byte-wide
programming flow:
1. Toggle PROGRAMN pin to set the devices into programming mode.

2. Wait 1 microsecond then check if the DONE pin is low. If it is low then
continue. If it is high then report failure.

Pulse several clocks on CCLK to make sure the devices are ready.
Wait 20ms then check INIT pin. If it is high, then continue.

Drive CSN, CS1N and WRITEN to low to activate the byte-wide D[0..7]
interface to receive data.

6. Send the first byte bit[7..0] from the bitstream file to D[0..7] then pulse the
clock to clock it in.

7. Repeat step 6 till the whole bitstream file is sent to the device.
Programming is then complete.

8. Check if INIT pin is high. If it is high then continue. If it is low, then report
failure.

9. Pulse 100 clocks on CCLK to ensure the devices are waking up.

10. Check if the DONE pin is high. If it is high, then programming is
successful. If it is low, then report failure.

Lattice Diamond 3.14 Programming Tools User Guide 150

EMBEDDED FLOW OVERVIEW

sysCONFIG Embedded

DATA[?:0]
CCLE

READ WRITEN
EUSYT

PROGERAMH
Caom
CE1m

INITH
DONE

11. Drive CSN, CS1N, WRITEN back to high to terminate.

Note

1. The device captures data on the rising edge of CCLK.

2. The maximum rate sending data to the device is 66 MHz.

3. The bitstream file could be for one device or merged for two or more devices.

Board Layout

| -
Lattice FPGA Lattice FPGA
L GCOLK " COLK
4= D[0:7] == D[0:7] Dotted Lines Connections
+ [l Dot + Dl Dout Are Required For Readback Only.
————— w IRITEN L ———-* [IRITEM
- ————— BLISY e —————— BLISY
————— w GE GRG0 ro--—-——-w G CFED
B » 05T CFG1 [* G5 CFG1
! PROGRSMM — CFG2 ! — PROGRIMM CFG2
|V —pw INITR DICHE 4+ kv t—iw [NITH DORE 4
Waveform
Wake Up Clocks
ticre toc —'IA’ ttSSCH LESEE
VCC t
[, PRoM wean cean
CCLK o !‘__ t"“"“ﬂ’__mm U
PROGRAMN l-‘—i Eonr
- | t
> OPPINIT
INITN
> tisco (thnscor)
DONE ™ Esuscor (Esummcor) ! [toop
™ |‘_t|:||Nm:| i I GOE Release
DI O LD S A S W
Dout / _X_)f (:\I t
0 t
— — Yopiss
POROr Device White Drive DONE Device
Toggle Ready Ennﬁgummn Bypaoa Bypass High To In User
PROGRAWN #For Data Command Data Send /Seart Wake Up #* Hode
Bypass
Data to Dout
CPU Byte-Wide Read back Flow

Below is the CPU byte-wide read back flow. Before performing CPU byte-wide
read back, the persistent fuse must be programmed already to enable

reading.

1. Check if both DONE and INITN pins are high. If they are high then
continue. If not then report failure.

Lattice Diamond 3.14 Programming Tools User Guide

151

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

2. Drive WRITEN, CSN, and CS1N to low to enable the D[0..7] interface to
receive command.

3. Write several bytes of OxFF to D[0..7] and clock them into the device to
clear the bus.

4. Write the pre-amble code 0xBD, 0xB3 and clock them into the device to
enable the command decoder.

5. Write the READ_IDCODE command 0x87 to D[0..7] and clock them into
the device then follow with 3 bytes of 0x00 as operand. Reading IDCODE
is necessary to ensure communication is established with the device.

6. Drive CSN from low to high (or CS1N, not both) then drive WRITEN from
low to high. Pulse one clock on CCLK to change D[0..7] from input port to
output port.

7. Drive CSN back from high to low (or CS1N if it was driven high at step 6).
Pulse one clock on CCLK to present one byte of data on D[0..7].

8. The BUSY pin tracks the CSN (or CS1N) pin. The data on D[0..7] is not
valid when it is high.

9. Read the first byte of the IDCODE from the DJ[0..7] of the first byte bit[0..7]
of the JTAG IDCODE.

10. Pulse CCLK then read the next byte bit[8..15] of the JTAG IDCODE.
11. Repeat step 10 till bit[16..23] then bit[24..31] is read from DJ[0..7].

12. Compare the 32 bits IDCODE read from the device against the expected
IDCODE of the device. If they match, then continue. If not, then report
error.

13. Repeat Step 5 to 11 to read the USERCODE. The READ_USERCODE
opcode is 0x83. It is a good practice to put the fuse checksum on
usercode to indicate that the device has been programmed correctly to
the pattern when reading back.

14. Drive CSN from low to high then drive WRITEN from high to low. Pulse
one clock on CCLK to change D[0..7] back to an input port.

15. Drive the first byte of the RESET_ADDRESS command, 0xE2, to D[0..7].
Pulse one clock on CCLK for the device to read it in.

16. Drive D[0..7] and clock CCLK to send 3 bytes of 0x00 as dummy
operands to the device. The address of the device is now set to the first
frame.

17. Drive the first byte of the READ_INC command, 0x81, to D[0..7]. Pulse
one clock on CCLK for the device to read it in.

18. Drive to D[0..7] and clock CCLK the number of frames to be read from the
device expressed in 24 bits hex number, or 3 bytes.

Example: If read 3 frames, then 3 bytes of operand is 0x00, 0x00, 0x03. If
read 256 frames, then 3 bytes of operand is 0x00, 0x01, 0x00.

Note

The number must not be larger than the maximum number of frames in the
device.

Lattice Diamond 3.14 Programming Tools User Guide 152

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

19. Drive CSN from low to high then drive WRITEN from low to high, then
pulse CCLK to set D[0..7] up as an output port.

20. Drive CSN from high to low then pulse CCLK for the device to drive the
first byte from the first frame to D[0..7].

21. Pulse CCLK then read the next byte till all the bytes in the first frame are
read. The device will increment the address automatically when all bytes
in the current frame are read.

22. Continue to pulse CCLK till all the frames or up to what is specific on the
operand sent to the device at step 18.
Note

Do not read beyond that number, otherwise the device will drive INIT low to
indicate over-read.

23. Drive CSN from low to high then drive WRITEN from high to low. Pulse
one clock on CCLK to change D[0..7] back to an input port.

24. Drive the opcode, 0xFA, of the END_READ command to D[0..7]. Pulse
CCLK for the device to read it in.

25. Drive 0x00 to DJ[0..7] then pulse CCLK 3 times as the dummy operand to
complete the command. Read back is then terminated.

26. Drive CSN, CS1N, and WRITEN back to high to disconnect the
sysCONFIG port of the device.

Note

1. If the command is under shift, then the device will enter error state.

2. If the command is over shift, then the device will also enter error state.
3. If the data is under shift, there is no error state.
4

. If the data is over shift, dummy data is presented to D[0..7]. The device will not
enter error state.

Driving both CSN and CS1N to high will reset the device.

6. The read back clock frequency is much slower than 66MHZ due to the time
required to switch the polarity of D[0..7] from input to output.

o

7. The data is shift out from the device on the rising edge of CCLK.

8. If the security fuse is programmed, the usercode and JTAG IDCODE still can be
readback.

9. The opcode sent to the device for reading purpose are not recommended to
include CRC. Hence bit7 of the opcode is 1.

10. The number of frames put on the operand must be less than or equal to the
number of frames the device actually has.

11. If the number exceeds the actual number of frames, the device will enter error
state.

CPU Bit-Wide Programming Flow Below is the CPU bit-wide
programming flow:

1. Toggle PROGRAMN pin to set the devices into programming mode.

Lattice Diamond 3.14 Programming Tools User Guide 153

EMBEDDED FLOW OVERVIEW : sysCONFIG Embedded

2. Wait 1 microsecond then check if the DONE pin is low. If it is low then
continue. If it is high then report failure.

Pulse several clocks on CCLK to make sure the devices are ready.
4. Wait 20ms then check INITN pin. If it is high, then continue.

Drive bit7 of the first byte from the bitstream to DI then pulse the clock to
clock it in.

6. Repeat step 5 till bit6..0 of the first byte is sent.

Repeat step 6 till the whole bitstream file is sent to the device.
Programming is then complete.

8. Check if INIT pin is high. If it is high then continue. If it is low, then report
failure.

9. Pulse 100 clocks on CCLK to ensure the devices are waking up.

10. Check if the DONE pin is high. If it is high, then programming is
successful. If it is low, then report failure.

Note
1. The device captures data on the rising edge of CCLK.

2. The maximum rate sending data to the device is 66MHz.

3. The bitstream file could be for one device or merged for two or more devices.

Board Layout

DATA[7:0] |gff -
CCLE -
READ [WRITEN -
BUSY [~= -
Lattice FPGA Lattice FPGA
L COLK e COLK
-+ D[0:7] -+~ D[0:7] Dotted Lines Connections
e + [l Dot + Dl Dout Are Required For Readback Only.
————— w IRITEN L ———-* [IRITEM
- ————— BLISY e —————— BLISY

----- » CSN CFG0 Fm———————p GEN CFG0
I S = CFG1 V- * G5 CFG1

! PROGRIMM — CFG2 : —® PROGRIMN CFG2

|V —pw INITR DICHE 4+ kv t—iw [NITH DORE 4
PROGRAMN +

Caom
CE1m
INITH =it
DONE |-~

Tyiy!

Lattice Diamond 3.14 Programming Tools User Guide 154

EMBEDDED FLOW OVERVIEW

sysCONFIG Embedded

Waveform
Wake Up Clocks
tics | . —» | T2 T3
"I L
VCo ¥ t
4 1 Lerom
! | S
COLK j‘_ *ﬂmmwt AU Y
T 1
PROGRAMN = AT
- toermir
INITN
> tisco o)
DONE ™ tovecn (tSUMCDI) -+t
™ %—tmmm + GOF Release
oI Q‘— O OO
Drout / (_X_)E t N
10ENSS ‘(_::
10 t
i — Looiss
POROr Device White Write White Drive DONE Device
Toggle Ready Configuration Bypass Bypass High Te In User
PROGRAMN or Data Data Command Data Bse“d Start WakeUp, Hode
Ypass
Data to Dowt

Lattice Diamond 3.14 Programming Tools User Guide

155

= LATTICE

Index

Numerics
8051
generating slim VME files 92
using the 8051-based slim ispVME 84

A
Aardvark 12C APIs 132
Aardvark SPI APIs 121

B
bitstream
generating CPU embedded bitstream 142

C
CPU Embedded
bitstream format 134
engine 139
flow 133
source code 138
CPU generating 142

D
Deployment Tool 7,18
device programming

see programming devices
Diamond Programmer 7,10
Download Debugger 8

E
Embedded System
RAM size requirement for ispVME 44
ROM size requirement for ispVME 46
Embedded, 12C 26

Embedded, JTAG, Full VME 26, 37
Embedded, JTAG, Slim VME 26, 81
Embedded, Slave SPI 26, 109
Embedded, sysCONFIG 26, 132

F
file generation
CPU embedded bitstream 142
file processing
VME 60
file size
program size 49
FPGA

generating a CPU embedded bitstream 142

Full VME Embedded, JTAG 26, 37

G

generating
CPU embedded bitstream 142
slim VME 92

I
I12C Embedded 26
ispVM Embedded
RAM size requirement for ispVME 44
ROM size requirement for ispVME 46
ispVME
engine 43
flow 40
source code 43
ispVME system memory 41

J
JTAG Full VME Embedded 26, 37
JTAG Slim VME Embedded 26, 81

Lattice Diamond 3.14 Programming Tools User Guide

156

memory allocation 48
Model 300 8

P
processing

VME 60
program memory allocation 48
program memory requirement 48
Programmer

using 13
Programmer, Diamond 7,10
programming devices

using Programmer 13
programming engine

CPU Embedded 139

ispVME 43
Programming File Utility 8

R
RAM size requirement for ispVME 44
resource requirements
program memory 48
program memory allocation 48
sample program size 49
ROM size requirement for ispVME 46

S
Slave SPI Embedded 26, 109
slim ispVME
generating slim VME 92
slim ispVME source code 82
using the 8051-based slim ispVME 84
using the PC-based slim ispVME 83
VME algorithm format 85
slim ispVMEVME data format 88
Slim VME Embedded, JTAG 26, 81
source code
CPU Embedded 138
ispVME 43
Slim ispVME 82
SPI, Slave, Embedded 26, 109
sysCONFIG Embedded 26, 132
system memory, ispVME 41

U

user changes, ispVME 46

using
8051-based slim ispVME 84
PC-based slim ispVME 83
slim ispVM Embedded System 83

\'

VME
algorithm format - slim ispVME 85
data format - slim ispVME 88
format 37
processing 60

RAM size requirement 44
ROM size requirement 46

Lattice Diamond 3.14 Programming Tools User Guide

157

REVISION HISTORY

Revision History

The following table gives the revision history for this document.

Date Version Description

10/15/2024 3.14 Updated to reflect changes in Diamond 3.14.
8/24/2023 3.13 Updated to reflect changes in Diamond 3.13.
10/20/2021 3.12SP1 Added support for MachXO3LFP.

Lattice Diamond 3.14 Programming Tools User Guide 158

	Programming Tools Description
	Programmer
	Deployment Tool
	Programming File Utility
	Download Debugger
	Model 300
	Embedded Flow
	Driver Installation

	Programmer Overview
	Usage and flow
	Programmer Design Flow
	Programming Basics
	In-System Programming
	Programming Algorithm Basics
	Programming Times
	USERCODE
	Programming Hardware
	Programming Software
	Embedded Programming
	FPGA Configuration
	Serial Peripheral Interface Flash

	Deployment Tool Overview
	Deployment Tool Function Types
	Output File Types
	File Conversion Output File Types
	Tester Output File Types
	Embedded System Output File Types
	External Memory Output File Types

	Embedded Flow Overview
	JTAG Full VME Embedded
	VME File Format
	JTAG Full VME Embedded Flow
	JTAG Full VME Embedded System Memory
	JTAG Full VME Embedded Basic Operation
	VME Source Code
	JTAG Full VME Embedded Programming Engine
	RAM Size Requirement for VME
	ROM Size Requirement for JTAG Full VME Embedded
	JTAG Full VME Embedded Required User Changes
	Program Memory Requirement
	Program Memory Allocation
	Sample Program Size
	VME File Size
	Using JTAG Full VME Embedded
	Generating VME Files
	Testing VME Files
	Converting an SVF File to VME File
	Choosing the File-Based or EPROM- Based Version
	Customizing for the Target Platform
	Advanced Issues
	EPROM-based JTAG Full VME Embedded User Flow
	Programming Engine Flow
	VME Byte Codes
	Unsupported SVF Syntax

	JTAG Slim VME Embedded
	JTAG Slim VME Embedded Source Code
	Using the PC-based JTAG Slim VME Embedded
	Using the 8051-based JTAG Slim VME Embedded
	VME Algorithm Format
	VME Data Format
	VME Required User Changes
	Program Memory Requirement
	Program Memory Allocation
	Sample Program Size
	VME File Size
	Generating JTAG Slim VME Embedded Files
	JTAG Slim VME Embedded Source Code
	8051 JTAG Slim VME Embedded User Flow
	Programming Engine Flow
	VME Algorithm and Format

	Slave SPI Embedded
	Requirements
	Slave SPI Embedded Algorithm Format
	Slave SPI Embedded Data Format
	Generating Slave SPI Embedded Files
	Modifications
	Usage
	Return Codes from Slave SPI Embedded
	Programming Considerations for SSPIEM modification with Aardvark SPI APIs

	I2C Embedded
	Masters and Slaves
	LFMNX, MachXO2, MachXO3D, MachXO3L, MachXO3LF, or MachXO3LFP Slave I2C Programming
	Using the PC-based I2C Embedded Programming
	Using the 8051-based I2C Programming
	I2C Algorithm Format
	I2C Data Format
	I2C Embedded Programming Required User Changes
	Generating I2C Files
	Programming Considerations for SSPIEM and I2CEM modification with Aardvark I2C APIs

	sysCONFIG Embedded
	sysCONFIG Embedded Flow
	sysCONFIG Embedded Bitstream Format
	sysCONFIG Embedded Bitstream Structure
	sysCONFIG Embedded Basic Operation
	sysCONFIG Embedded Source Code
	sysCONFIG Embedded Engine
	Sample Program Size
	Generating a sysCONFIG Embedded Bitstream
	sysCONFIG SPI Port AC Parameters
	sysCONFIG Interface

	Revision History

