

SSPI Embedded Programming Demo Using
Raspberry Pi User Guide

Reference Design

FPGA-RD-02295-1.1

February 2025

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 2

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

Inclusive Language
This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and
other items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases
such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 3

Contents
Contents ... 3
Abbreviations in This Document... 5
1. Introduction .. 6

1.1. Embedded Programming Source Code Architecture .. 7
1.2. Source Code Directory .. 9

2. Modifying the Source Code and Writing the Driver ... 11
2.1. Updating main.c for File-Based Source Code .. 11

2.1.1. Adding an Instruction Function .. 11
2.1.2. Updating main() Function... 12

2.2. Updating main.c for EPROM-Based Source Code ... 13
2.2.1. Updating main() Function... 13

2.3. Updating hardware.c ... 14
2.3.1. wait() Implementation ... 15
2.3.2. TRANS_transmitBytes() and TRANS_receiveBytes() Implementation .. 16
2.3.3. TRANS_starttranx() and TRANS_endtranx() Implementation .. 17
2.3.4. TRANS_cstoggle() and TRANS_runClk() Implementation ... 18
2.3.5. TRANS_transceive_stream() Implementation .. 19

2.4. Creating rbpi-spi.c ... 20
2.4.1. rbpi_init() Implementation ... 21
2.4.2. rbpi_ioctl() Implementation ... 22
2.4.3. rbpi_tx() and rbpi_rx() Implementation ... 23
2.4.4. rbpi_assert_cs() Implementation ... 24
2.4.5. rbpi_exit() implementation .. 25

3. Compiling and Running the Demo .. 26
4. Debugging Tips ... 29
5. Hardware Validation Summary .. 31
Appendix A. Generation of .sed and .sea Files ... 32

A.1. Generating .sed and .sea Files Using Radiant Programmer ... 32
A.2. Generating .sed and .sea Files Using Diamond Programmer and Deployment Tool ... 34

References .. 37
Technical Support Assistance ... 38
Revision History ... 39

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 4

Figures
Figure 1.1. Raspberry Pi SSPI Interface with Lattice Device ... 6
Figure 1.2. Embedded Programming Source Code Architecture .. 7
Figure 1.3. Embedded Programming Source Code Directories .. 9
Figure 1.4. Embedded Programming Source Code Lists for File-Based Source Code ... 9
Figure 1.5. Embedded Programming Source Code Lists for EPROM-Based Source Code .. 10
Figure 2.1. Raspberry Pi Chip Select Assignment in Hardware ... 24
Figure 3.1. Sample Compilation .. 26
Figure 3.2. Example of Running the Executable File in File-Based Demo ... 26
Figure 3.3. Sample Run without Debug Printing ... 27
Figure 3.4. Sample Run with Debug Printing .. 27
Figure 3.5. Example of Running the Executable File in EPROM-Based Demo .. 28
Figure 4.1. Illustration of Manual Chip Select Control .. 29
Figure 4.2. Verified Failure (CS High Signal is Too Short) .. 30
Figure 4.3. HW USBN 2B Implementation of CS High Signal .. 30
Figure A.1. Radiant Programmer .xcf File Generation .. 32
Figure A.2. Embedded Options Window .. 32
Figure A.3. Generate Embedded Code Button ... 33
Figure A.4. Generation of .sed and .sea Files ... 33
Figure A.5. Generated .sed and .sea Files in .xcf File Directory .. 33
Figure A.6. Generated .c Files in .xcf Directory ... 33
Figure A.7. Diamond Programmer .xcf File Generation .. 34
Figure A.8. Accessing the Deployment Tool ... 34
Figure A.9. Slave SPI Embedded Generation in Deployment Tool .. 35
Figure A.10. Selecting .xcf File .. 35
Figure A.11. Embedded File Generation Options ... 35
Figure A.12. Location of .sed and .sea Files .. 35
Figure A.13. Generation of SSPI Embedded Files ... 36
Figure A.14. Generated SSPI Embedded Files ... 36

Tables
Table 1.1. Existing Files Needed for Embedded Programming ... 7
Table 1.2. Files to be Created for Embedded Programming ... 7
Table 2.1. Functions to be Modified in hardware.c .. 14
Table 2.2. Functions to be Created in rbpi-spi.c ... 20
Table 5.1. Hardware Validation Results .. 31

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 5

Abbreviations in This Document
A list of abbreviations used in this document.

Abbreviation Definition

CS Chip Select

EPROM Erasable Programmable Read-Only Memory

FTDI Future Technology Devices International

GPIO General Purpose Input Output

IOCTL Input Output Control

MISO Controller In Target Out

MOSI Controller Out Target In

RBPI Raspberry Pi

Rx Receiver

SPI Serial Peripheral Interface

SSPI Target Serial Peripheral Interface

Tx Transmitter

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 6

1. Introduction
This demo interfaces the Raspberry Pi SPI driver to the SSPI embedded programming source code in the Lattice
Radiant™ and Diamond™ software directories. Refer to Source Code Directory for the location of the embedded
programming source code. This demo is applicable to Lattice devices including MachXO2™, MachXO3™, CrossLink™,
CrossLinkPlus™, and Nexus™-based FPGA devices.

HOST Lattice Devices

SPI

MachXO2

MachX03

CrossLink

CrossLinkPlus

Nexus-based
FPGA

Figure 1.1. Raspberry Pi SSPI Interface with Lattice Device

The .sed and .sea files are used as the data file and algorithm file for the programming procedure, respectively.
Generation of the .sed and .sea files are covered in Appendix A.

Download the reference design files from the Lattice SSPI Embedded Programming Demo Using Raspberry Pi Reference
Design web page.

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 7

1.1. Embedded Programming Source Code Architecture
Table 1.1 and Table 1.2 list the existing files needed and files to be created for embedded programming, respectively.
The files to be created are the compiler and driver files.

Table 1.1. Existing Files Needed for Embedded Programming

Table 1.2. Files to be Created for Embedded Programming

Figure 1.2 shows the embedded programming source code architecture. For this demo, the executable file will be run
using the command terminal. SSPIEm.c handles the parsing of both the .sed and .sea files. With the help of intrface.c
and util.c, the .sed and .sea files are converted to FPGA programming commands for core.c and hardware.c. hardware.c
is the interface of the hardware driver to the FPGA programming commands in core.c. driver.c contains the Raspberry
Pi driver functions to be interfaced with hardware.c.

main.c

core.c

SSPIEm.c intrface.c

util.c

hardware.c

driver.c

RPi Terminal

.sea

.sed

Lattice FPGA

Figure 1.2. Embedded Programming Source Code Architecture

Only two existing source files (main.c and hardware.c) will be modified as indicated in Table 1.1. Additionally, one
source file (driver.c or rbpi­spi.c) will be created. Refer to Modifying the Source Code and Writing the Driver for more
information. Refer to Compiling and Running the Demo for the Makefile.

File Needs Customization Description

main.c Yes Contains the main() function

hardware.h, hardware.c Yes SPI hardware abstraction layer; interfaced with host driver

intrface.h, intrface.c No
File abstraction layer; works together with util.h to integrate .sed and
.sea files to core.c

SSPIEm.h, SSPIEm.c No Entry calls to the programming algorithm

core.h, core.c No Main FPGA programming algorithm

opcode.h No Definitions of codes in the bit files

debug.h No Definitions of codes printed when debug is enabled

util.h, util.c No Checksum utility function

File Description

Makefile Makefile that builds the executable sspiem-rbpi with the standard make utility

rbpi-spi.c, rbpi-spi.h SPI hardware driver using Raspberry Pi on-chip SPI port

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 8

There are two types of embedded source codes:

• File-based source code uses file-based data storage, such as on Linux systems. This means that data and
algorithms are stored in .sed and .sea files, which can be read and written during runtime. This approach makes
modifying the source code easier since you do not need to recompile the code; you only need to update the .sed
and .sea files during runtime.

• EPROM-based source code uses erasable programmable read-only memory (EPROM) for storing data and
algorithms, which are compiled into the system. In this case, .sed and .sea files are converted into .c arrays and
added to the program during compilation. This method is particularly useful for microcontroller devices but it also
means you must recompile the code every time you update the .c arrays containing the .sed and .sea data.

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 9

1.2. Source Code Directory
Figure 1.3 shows the location of the embedded programming installation directory for the Radiant Programmer and
Diamond Programmer. This demo focuses on the sspiembedded source code. Figure 1.4 shows the list of files in the
embedded programming source code directory for the Radiant Programmer and Diamond Programmer.

Location of embedded
programming source code in
Radiant

Location of embedded
programming source code in
Diamond

sspiembedded source
code in Radiant for

this demo

sspiembedded source
code in Diamond for

this demo

Figure 1.3. Embedded Programming Source Code Directories

File-based source code folder
needed for this demo in Radiant

File-based source code folder
needed for this demo in Diamond

Figure 1.4. Embedded Programming Source Code Lists for File-Based Source Code

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 10

EPROM-based source code folder
needed for this demo in Radiant

EPROM-based source code folder
needed for this demo in Diamond

Figure 1.5. Embedded Programming Source Code Lists for EPROM-Based Source Code

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 11

2. Modifying the Source Code and Writing the Driver
This section discusses the modification of the source code files main.c and hardware.c. This section also discusses the
creation of the driver file and how it is interfaced with hardware.c.

2.1. Updating main.c for File-Based Source Code
The main.c file contains code for initializing the driver and calling FPGA programming commands. This section discusses
the modifications required in main.c for file-based source code. Before modifying main.c, ensure that the appropriate
header files and libraries are included. The following header files and libraries are required in main.c:

#include <unistd.h>

#include <stdint.h>

#include <stdlib.h>

#include <string.h>

#include <signal.h>

#include "rbpi-spi.h"

#include "debug.h"

#include "hardware.h"

#include <stdio.h>

#include "SSPIEm.h"

2.1.1. Adding an Instruction Function

An instruction function prints instructions to the user on using the demo. These instructions appear when the
arguments of the executable file are incorrect or incomplete. The following shows the print_usage() function added
into main.c:

void print_usage()

{

 fprintf(stderr, "sspiem-rbpi usage:\n");

 fprintf(stderr, " form 1: sspiem-rbpi -help\n");

 fprintf(stderr, " - This help.\n");

 fprintf(stderr, " form 2: sspiem-rbpi <spi clock speed> <sea_file>

<sed_file> <-debug_command>\n");

 fprintf(stderr, " - Program FPGA:\n");

 fprintf(stderr, " <spi clock speed> expressed in KHz, range 1 to

20000> Consult the guide for details.\n");

 fprintf(stderr, " <sea_file> is the algorithm file produced by

Lattice Radiant or Diamond tool.\n");

 fprintf(stderr, " <sed_file> is the data file produced by Lattice

Radiant or Diamond tool.\n");

 fprintf(stderr, " <-debug_commands> -debug_on:turn on debug

printing, -debug_off:turn off debug printing\n");

 fprintf(stderr, " \n");

 fprintf(stderr, "Example: sspiem-rbpi 5000 algo.sea data.sed -debug_on\n");

}

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 12

2.1.2. Updating main() Function

The following shows the modifications in the main() function:

int main(int argc, char *argv[])

{

 int siRetCode = 0;

 int speed;

 printf("Lattice Semiconductor Corp.\n");

 printf("SSPI Embedded(tm) V%s 2023\n", VME_VERSION_NUMBER);

 if (argc == 5) {

 speed = atoi(argv[1]);

 if (!strcmp(argv[4],"-debug_on")){

 a_uiDebug=1;

 }

 else if(!strcmp(argv[4],"-debug_off")){

 a_uiDebug=0;

 }

 else{

 print_usage();

 exit(0);

 }

 if (rbpi_init(speed * 1024)) {

 rbpi_assert_cs(1);

 rbpi_assert_cs(0);

 siRetCode = SSPIEm_preset(argv[2], argv[3]);

 siRetCode = SSPIEm(0xFFFFFFFF);

 printf("\n\n");

 if (siRetCode != 2) {

 printf("+=======+\n");

 printf("| FAIL! |\n");

 printf("+=======+\n");

 printError(siRetCode);

 }

 else {

 printf("+=======+\n");

 printf("| PASS! |\n");

 printf("+=======+\n");

 }

 }

 usleep(100*1000);

 rbpi_exit();

 } else

 print_usage();

 return siRetCode;

}

Enable debug printing.

Initialize SSPI driver.

Pass along .sed and
.sea files and start
of programming
algorithm.

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 13

The variable a_uiDebug is used to enable and disable debug printing. See TRANS_transceive_stream() Implementation
for other modifications needed for debug printing. The functions rbpi_init and rbpi_exit initializes and closes the
Raspberry Pi SPI drivers, respectively. Refer to Creating rbpi-spi.c for more details on the driver file (rbpi-spi.c).
Regardless of platform, it is advisable to initialize the driver in the main() function of main.c for easier access and
control.

2.2. Updating main.c for EPROM-Based Source Code
The main.c file contains code for initializing the driver and calling FPGA programming commands. This section discusses
the modifications required in main.c for EPROM-based source code. Before modifying main.c, ensure that the
appropriate header files and libraries are included. The following header files and libraries are required in main.c:

#include <unistd.h>

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <string.h>

#include <signal.h>

#include "SSPIEm.h"

#include "rbpi-spi.h"

#include "debug.h"

#include "hardware.h"

#include "test_impl_1_data.h"

#include "test_impl_1_algo.h"

2.2.1. Updating main() Function

The following shows the modifications done in the main() function:

int main()

{

 int siRetCode = 0;

 char Message[512];

 unsigned char *setAlgoPtr;

 unsigned int setAlgoSize = g_iAlgoSize;

 unsigned char *setDataPtr;

 unsigned int setDataSize = g_iDataSize ;

 setAlgoPtr = g_pucAlgoArray;

 setDataPtr = g_pucDataArray;

 print_out_string(" Lattice Semiconductor Corp.\n");

 sprintf(Message,"\n SSPI Embedded(tm) V%s

2012\n",VME_VERSION_NUMBER);

 print_out_string(" Ported by Rhodz\n");

 //print_out_string(Message);

 rbpi_init(3000* 1024) ;

 a_uiDebug=1;

 rbpi_assert_cs(1);

Add the .h files for the converted .c arrays
for .sed and .sea files.

This part sets the values of set Algosize
and set DataSize and sends the pointer
array of the algorithm and data to
setAlgoPtr and setDataPtr respectively.

The goal is to not have any external
settings after compilation so set the
frequency and printing debug manually
before compilation.

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 14

 rbpi_assert_cs(0);

 siRetCode = SSPIEm_preset(setAlgoPtr, setAlgoSize, setDataPtr, setDataSize);

 siRetCode = SSPIEm(0xFFFFFFFF);

 if (siRetCode != 2) {

 printf ("\n\n");

 printf("+=======+\n");

 printf("| FAIL! |\n");

 printf("+=======+\n\n");

 printError(siRetCode);

 }

 else {

 printf("+=======+\n");

 printf("| PASS! |\n");

 printf("+=======+\n\n");

 }

 return siRetCode;

}

2.3. Updating hardware.c
The only areas requiring modification in hardware.c are some functions needed for interfacing with the Raspberry Pi
drivers. Table 1.1 lists the functions to be modified in hardware.c. Modification involves adding code into the functions
(pre-existing functions provide only usage guidelines and contain no code). hardware.c is the same for file-based and
EPROM­based systems so both source codes must have the same modifications.

Table 2.1. Functions to be Modified in hardware.c

These functions will be interfaced to the Raspberry Pi SPI drivers. This means that when these functions are called by
the FPGA programming algorithm, the driver functions should correspondingly be called to implement the SPI
communication in the Raspberry Pi SPI port. The following header files and libraries are required in hardware.c:

#include <unistd.h>

#include <stdint.h>

#include <stdio.h>

#include <assert.h>

#include "rbpi-spi.h"

#include "intrface.h"

#include "opcode.h"

#include "debug.h"

#include "hardware.h"

Function Description

wait() Delay function in between FPGA programming commands

TRANS_transmitBytes() Write data in buffer to FPGA

TRANS_receiveBytes() Read data from FPGA to buffer

TRANS_startranx() Assert chip-select signal (CS)

TRANS_endtranx() De-assert chip-select signal (CS)

TRANS_cstoggle() Toggle chip-select signal (CS/TMS)

TRANS_runClk() Pulse SPI clock signal eight times or more; used to send dummy bytes

SSPIEm_preset() sends the algorithm and
data array and their respective sizes.
SSPIEm() starts the programming
operation.

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 15

2.3.1. wait() Implementation

The wait() function is used by the FPGA programming algorithm to implement delay after programming commands.
The following are two recommended methods of implementing the wait() function:

• Using the usleep() function.

• Using a counter.
Both methods may be used for the successful implementation of embedded programming.

The first method uses the usleep() function. The usleep() function is an internal Linux command for delay
implementation. Experimentation with Raspberry Pi shows that usleep(0) translates to a delay of at least 65 µs which is
unnecessarily long. For better control of this delay, the second method can serve as an alternative. The following code
snippet is a sample implementation with the first method:

int wait(int a_msTimeDelay)

{

 __useconds_t t = a_msTimeDelay * 1000;

 usleep(t);

 return 1;

}

The second method uses a counter in the form of a for loop to control the delay. A multiplier to a_msTimeDelay is
added to control the length of the delay. A delay time that is too small may cause failure in programming, especially
when verification is required. Finding the optimal delay time is necessary for correct implementation of embedded
programming. It is the user’s responsibility to find the optimal delay time. The following code snippet is a sample
implementation with the second method:

int wait(int a_msTimeDelay)

{

 int count_ms=0;

 for(count_ms;count_ms<a_msTimeDelay*100000;count_ms++){

 }

 return 1;

}

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 16

2.3.2. TRANS_transmitBytes() and TRANS_receiveBytes() Implementation

TRANS_transmitBytes() is responsible for transmitting data. The arguments are the pointer buffer containing the data
to be sent and the expected number of bits to be sent. This function is called by the FPGA programming algorithm
when transmitting data through the SPI bus. In this demo, the function rbpi_tx() is called every time
TRANS_transmitBytes() is called. The function rbpi_tx() is the driver function that handles control of the SPI bus for
data transmission. This function is discussed in rbpi_tx() and rbpi_rx() Implementation. The following code snippet
shows the TRANS_transmitBytes() function:

int TRANS_transmitBytes(unsigned char *trBuffer, int trCount)

{

 return rbpi_tx((uint8_t*)trBuffer, (int) trCount);

}

TRANS_receiveBytes() is responsible for receiving data. The arguments are the empty pointer buffer which is to be
filled by the data to be received and the expected number of bits to be received. This function is called by the FPGA
programming algorithm when receiving data from the SPI bus. In this demo, the function rbpi_rx() is called every time
TRANS_receiveBytes() is called. The function rbpi_rx() is the driver function that handles control of the SPI bus for data
reception. This function is discussed in rbpi_tx() and rbpi_rx() Implementation. The following code snippet shows the
TRANS_receiveByes() function:

int TRANS_receiveBytes(unsigned char *rcBuffer, int rcCount)

{

 return rbpi_rx((uint8_t*)rcBuffer, (int) rcCount);

}

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 17

2.3.3. TRANS_starttranx() and TRANS_endtranx() Implementation

TRANS_starttranx() initiates the start of SPI bus communication. For SPI transaction, the communication starts by
pulling chip select (CS) low. The function rbpi_assert_cs() is the driver function used for CS control. The following code
snippet shows the TRANS_starttranx() function:

int TRANS_starttranx(unsigned char channel)

{

 assert(channel == 0);

 if(channel != 0){

 //wait(10);

 return 0;}

 else{

 rbpi_assert_cs(1);

 //wait(10);

 }

 if (a_uiDebug)

 printf("Start of transmission.\n");

 return 1;

}

TRANS_endtranx() terminates the communication in the SPI bus. For SPI transaction, the communication ends by
pulling CS high. The function rbpi_assert_cs () is again used for CS control. The following code snippet shows the
TRANS_endtranx() function:

int TRANS_endtranx()

{

 //wait(10);

 if (a_uiDebug)

 printf("End of transmission.\n");

 return rbpi_assert_cs(0);

}

Note: The dedicated SPI CS signal is not used as the Lattice embedded programming source code requires manual

control of the CS pin. Refer to rbpi_assert_cs() Implementation for more information.

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 18

2.3.4. TRANS_cstoggle() and TRANS_runClk() Implementation

TRANS_cstoggle() toggles the CS pin. It uses rbpi_assert_cs() to control the CS signal, which is also the function used by
TRANS_starttranx() and TRANS_endtranx(). The following code snippet shows the TRANS_cstoggle() function:

int TRANS_cstoggle(unsigned char channel)

{

 assert(channel == 0);

 if(channel != 0)

 return 0;

 else {

 rbpi_assert_cs(0);

 rbpi_assert_cs(1);

 rbpi_assert_cs(0);

 }

 if (a_uiDebug)

 printf("Toggle Chip Select./n");

 return 1;

}

TRANS_runClk() drives extra clocks. It uses the rbpi_tx command but only sends the 0xFF command. The following code
snippet shows the TRANS_runClk() function:

int TRANS_runClk(int clk)

{

 uint8_t dummy = 0xff;

 return rbpi_tx(&dummy, 8);

}

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 19

2.3.5. TRANS_transceive_stream() Implementation

TRANS_transceive_stream() connects hardware.c to core.c. The default source code does not contain the code for
debug printing. For this demo, this function is updated to enable debug printing. Note that when using other
embedded systems, the printf command might not work. Therefore, debug printing only works for this demo. For
embedded systems other than Raspberry Pi, further development on debug printing is needed. All functions that print
the send and receive bytes are commented with “Debug printing”.

int TRANS_transceive_stream(int trCount, unsigned char *trBuffer,

int trCount2, int flag, unsigned char *trBuffer2, int mask_flag, unsigned char

*maskBuffer)

{

 int i = 0;

 unsigned short int tranxByte = 0;

 unsigned char trByte = 0;

 unsigned char dataByte = 0;

 int mismatch = 0;

 unsigned char dataID = 0;

 if(trCount > 0)

 {

 /* calculate # of bytes being transmitted */

 tranxByte = (unsigned short) (trCount / 8);

 if(trCount % 8 != 0){

 tranxByte ++;

 trCount += (8 - (trCount % 8));

 }

 if (a_uiDebug){ //Debug Printing

 for(i=0;i<tranxByte;i++){

 printf("transmit 1 byte of data 0x%02x.\n",trBuffer[i]);

 }}

 if(!TRANS_transmitBytes(trBuffer, trCount))

 return ERROR_PROC_HARDWARE;

 }

For the complete code with debug printing added, contact Lattice. The variable a_uiDebug is set during runtime from
main.c.

Sample debug printing code

“Debug printing” comment

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 20

2.4. Creating rbpi-spi.c
rbpi-spi.c contains the functions interfaced with hardware.c. It connects the source code to the hardware drivers. It
also contains the functions to initialize and close the SPI bus. Table 2.2 lists the functions contained in rbpi-spi.c.

Table 2.2. Functions to be Created in rbpi-spi.c

ioctl is the main driver function used for this demo. ioctl (input and output control) is used to communicate with device
drivers. This demo uses the ioctl capability to control drivers driving SPI dedicated pins. The following header files and
libraries are required in rbpi-spi.c:

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <string.h>

#include <assert.h>

#include <fcntl.h>

#include <errno.h>

#include <linux/spi/spidev.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/mman.h>

#include <sys/ioctl.h>

#include "rbpi-spi.h"

#include "hardware.h"

Function Description

rbpi_init() Initializes the SPI bus

rbpi_ioctl() Main driver controller used by rbpi_tx() and rbpi_rx() for sending and receiving data

rbpi_tx() Function used for sending data

rbpi_rx() Function used for receiving data

rbpi_assert_cs() Asserts and de-asserts CS pin

rbpi_exit() Closes the SPI bus

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 21

2.4.1. rbpi_init() Implementation

The function rbpi_init() initializes the settings of the SPI bus. The following code snippet shows a sample initialization of
the SPI bus:

int rbpi_init(uint32_t spi_speed)

{

 int ret = 0;

 uint8_t mode = SPI_MODE_0;

 uint8_t bits = 8;

 uint32_t reg;

 uint32_t shift;

 // setup spi via ioctl

 speed = spi_speed;

 spi_fd = open("/dev/spidev0.0", O_RDWR);

 if (spi_fd < 0) {

 fprintf(stderr, "Failed to open /dev/spidev0.0: %s\n",

strerror(errno));

 return 0;

 }

 ret |= ioctl(spi_fd, SPI_IOC_WR_MODE, &mode);

 ret |= ioctl(spi_fd, SPI_IOC_RD_MODE, &mode);

 ret |= ioctl(spi_fd, SPI_IOC_WR_BITS_PER_WORD, &bits);

 ret |= ioctl(spi_fd, SPI_IOC_RD_BITS_PER_WORD, &bits);

 ret |= ioctl(spi_fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);

 ret |= ioctl(spi_fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed);

• SPI_IOC_WR_MODE and SPI_IOC_RD_MODE set the mode of the SPI transaction. This demo uses SPI Mode 0.

• SPI_IOC_WR_BITS_PER_WORD and SPI_IOC_RD_BITS_PER_WORD set the number of bits in each SPI transfer word.
This demo uses 8 bits per word.

• SPI_IOC_WR_MAX_SPEED_HZ and SPI_IOC_RD_MAX_SPEED_HZ assign the maximum transfer speed in Hz.

These ioctl requests are used to initialize the SPI bus. For more information regarding these requests, see
https://www.kernel.org/doc/Documentation/spi/spidev.

SPI Mode and bit size per word

SPI Speed assignment

Initialization of
the SPI bus

http://www.latticesemi.com/legal
https://www.kernel.org/doc/Documentation/spi/spidev

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 22

2.4.2. rbpi_ioctl() Implementation

The function rbpi_ioctl() is the main function that controls the ioctl driver and implements the communication on the
SPI bus.

static int rbpi_ioctl(unsigned char *tx_buf, unsigned char *rx_buf, int len)

{

 struct spi_ioc_transfer req;

 memset(&req, 0, sizeof(req));

 req.tx_buf = (uintptr_t) tx_buf;

 req.rx_buf = (uintptr_t) rx_buf;

 req.len = len;

 return ioctl(spi_fd, SPI_IOC_MESSAGE(1), &req) == -1;

}

• struct spi_ioc_transfer is the struct used by the ioctl() function call for describing the SPI transaction.

• tx_buf, rx_buf, and len are members of struct spi_ioc_transfer() that are needed to run SPI transactions. The
tx_buf and rx_buf members contain the buffer pointer for the data to be sent and the data to be received,
respectively. The len member contains the number of bits to be sent or received.

• The source code has separate functions for transmission and reception namely TRANS_transmitBytes() and
TRANS_receiveBytes(). This means that each ioctl call uses only either tx_buf or rx_buf.

• SPI_IOC_MESSAGE(1) is a request for start of SPI transaction. For more information regarding this command, see
https://www.kernel.org/doc/Documentation/spi/spidev.

SPI Channel Start SPI transaction
request

Struct for SPI
transfer

http://www.latticesemi.com/legal
https://www.kernel.org/doc/Documentation/spi/spidev

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 23

2.4.3. rbpi_tx() and rbpi_rx() Implementation

The functions rbpi_tx() and rbpi_rx() use rbpi_ioctl() to initiate the SPI transaction.

int rbpi_tx(uint8_t *buf, uint32_t bits)

{

 uint32_t bytes = bits/8;

 assert(bits % 8 == 0 && bits >= 8);

#ifdef PRINT_STATUS

 static long n = 0;

 if (++n % 512 == 0) {

 printf(".");

 fflush(stdout);

 }

#endif

 if(rbpi_ioctl(buf, NULL, bytes)) {

 fprintf(stderr, "SPI ioctl write failed: %s\n", strerror(errno));

 return 0;

 } else

 return 1;

}

int rbpi_rx(unsigned char *buf, int bits)

{

 uint32_t bytes = bits/8;

 assert(bits % 8 == 0 && bits >= 8);

#ifdef PRINT_STATUS

 static long n = 0;

 if (++n % 512 == 0) {

 printf(".");

 fflush(stdout);

 }

#endif

 if(rbpi_ioctl(NULL, buf, bytes)) {

 fprintf(stderr, "SPI ioctl read failed\n");

 return 0;

 } else

 return 1;

}

• The argument len of rbpi_tx() and rbpi_rx() is converted to bytes as rbpi_ioctl() uses bytes for length of data to be
sent or received.

• For rbpi_tx(), the pointer buffer buf is passed along to the tx_buf argument of rbpi_ioctl() while the rx_buf
argument is set to NULL. For rbpi_rx(), the pointer buffer buf is passed along to the rx_buf argument of rbpi_ioctl()
while the tx_buf argument is set to NULL.

Bits to bytes conversion

Bits to bytes conversion

rbpi_ioctl function call

rbpi_ioctl function call

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 24

2.4.4. rbpi_assert_cs() Implementation

The function rbpi_assert_cs() pulls the CS pins high and low. Note that these CS pins are not the dedicated CS pins of
Raspberry Pi. Dedicated CS pins are controlled automatically by the ioctl driver. However, the Lattice embedded
programming source code requires manual control of CS. Therefore, in this demo, GPIO pins are used.

MOSI,
MISO, CLK

Dedicated SPI CS pins
(do not use these)

Actual CS pins used with
the source code demo

Figure 2.1. Raspberry Pi Chip Select Assignment in Hardware

The following code snippets show sample implementations of CS toggling:

int rbpi_assert_cs(int asserted)

{

 wait(0.05);

 *(mem + (asserted ? GPCLR0 : GPSET0) + (gpio_cs >> 5)) = (1 << (gpio_cs &

0x1F));

 count=0;

 return 1;

}

int rbpi_assert_cs(int asserted)

{

 for(count=0;count<10;count++){

 *(mem + (asserted ? GPCLR0 : GPSET0) + (gpio_cs >> 5)) = (1 << (gpio_cs &

0x1F));}

 count=0;

 return 1;

}

A wait() function is used before assertion or de-assertion is done. This is important because delay is needed before the
assertion and de-assertion commands especially during a verify operation. Alternatively, a for loop can be used to
control the delay of assertion and de-assertion.

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 25

2.4.5. rbpi_exit() implementation

The function rbpi_exit() closes the SPI bus and the gpio control.

void rbpi_exit()

{

 if (spi_fd > -1)

 close(spi_fd);

 if (gpio_fd > -1)

 close(gpio_fd);

 spi_fd = -1;

 gpio_fd = -1;

}

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 26

3. Compiling and Running the Demo
After modifying the source code and writing the driver, your files should now be ready for compiling and running.

1. To compile the demo, a Makefile will be used containing the following:

OBJ = main.o core.o hardware.o intrface.o SSPIEm.o util.o rbpi-spi.o

CFLAGS = -Wall

sspiem-rbpi: $(OBJ)

 cc -o sspiem-rbpi $(OBJ)

clean:

 rm -f *.o libmpsse/*.o sspiem-rbpi

Ensure the Makefile and all source codes including the driver files are in the same folder.

2. Run make sspiem-rbpi as shown in Figure 3.1.

When compiling for the first time, the list of objects compiled appears in the terminal. After running this
command, the executable file to run the demo is generated. If there are no changes, running the command
generates a prompt stating that sspiem-rbpi is up to date.

Figure 3.1. Sample Compilation

3. Run the executable file.

Executable file

Frequency in kHz. For this
example, frequency is set to 5000

which is equivalent to 5 MHz.

.sea and .sed files. Order of the two files
cannot be interchanged.

Debugging mode:
-debug_off: no printing of debug logs

-debug_on: shows printing of debug logs

Figure 3.2. Example of Running the Executable File in File-Based Demo

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 27

• The executable file is generated after compiling the source code and the driver. It initiates and ends the SPI
programming.

• The first argument of the executable file is the frequency in kHz. In this example, frequency is set to 5000 kHz
or 5 MHz.

• The second and third arguments are the .sea and .sed files. These files contain the programming commands
and the configuration data.

• The fourth argument turns debug printing on and off. Turning on debug printing shows the data sent and
received.

• All arguments of the executable file are required to run the demo.

Figure 3.3 shows an example of running the executable file with -debug_off. With debug off, the sample run of the
demo only shows a PASS result in the terminal. There are no logs for sending and receiving commands.

Figure 3.3. Sample Run without Debug Printing

Figure 3.4 shows an example of running the executable file with -debug_on. With debug_on, the sample run of the
demo shows in the terminal the data transmitted and received. Debug mode should be enabled only when
debugging points of failure. Otherwise, enabling debug mode adds to programming time because of the printing of
logs.

Figure 3.4. Sample Run with Debug Printing

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 28

Figure 3.5 shows an example of running the executable file in the EPROM-based demo. For the EPROM-based
system, there are no arguments because the frequency, debug printing, .sea, and .sed files are set during
compilation.

Executable file

Figure 3.5. Example of Running the Executable File in EPROM-Based Demo

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 29

4. Debugging Tips
The following are tips to help with debugging:

• Ensure the function specifications for sending commands are followed. For example, with TRANS_transmitBytes
and TRANS_receiveBytes, the arguments needed are the pointer buffer containing bits to be sent and the size of
bits to be sent. These arguments are not optional and are used by the programming algorithm. Furthermore, the
ioctl() driver used also requires these arguments.

int TRANS_transmitBytes(unsigned char *trBuffer, int trCount)

{

 return rbpi_tx((uint8_t*)trBuffer, (uint32_t) trCount);

}

int TRANS_receiveBytes(unsigned char *rcBuffer, int rcCount)

{

 return rbpi_rx((uint8_t*)rcBuffer, (uint32_t) rcCount);

}

• Ensure the CS signal is manually controlled by a separate GPIO and not the dedicated SPI CS pin.

GPIO controlled
by hardware.c
for CS

After Last
Byte Sent
or Received

After Last
Byte Sent
or Received

Idle Next Byte

CS
Chip Select

POCI
Peripheral-Out
Controller-In

PICO
Peripheral-In

Controller-Out

SCK
Clock from
Controller

Do not use
dedicated CS

Use GPIO for manual CS
control

Text

SPI
Dedicated
Pins

Figure 4.1. Illustration of Manual Chip Select Control

• Ensure there is enough time for verification. This is done by adding wait time before asserting or de-asserting CS.
For this demo, approximately 3 µs is sufficient to finish verification. Verification time depends on the controller
used. It is the user’s responsibility to find the optimal delay time for the controller used. Refer to rbpi_assert_cs()
Implementation for information on adding delay before assertion and de-assertion of chip select (CS).

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 30

• Check waveform captures to ensure they match how programming is performed by the Radiant or Diamond
programmer.

When debugging an embedded programming implementation, compare how the Radiant or Diamond programmer
performs the programming. Figure 4.2 shows an implementation with a verified failure.

CS

MOSI

MISO

CLK

Commands sent are correct. 0x6A is the read
command for MachX05

CS high signal is too short for verification
(approximately 700 ns)

Figure 4.2. Verified Failure (CS High Signal is Too Short)

To obtain a successful implementation for comparison, testing was done with the HW USBN 2B programming cable
and the Radiant Programmer. The Radiant Programmer was found to require a longer CS high signal for the
verification operation as shown in Figure 4.3.

Using HW USBN 2B, there is
approximately 65 µs of delay in which CS
is high after each verify operation.

MISO

CLK

CS

MOSI

Figure 4.3. HW USBN 2B Implementation of CS High Signal

After adding delay according to rbpi_assert_cs() Implementation, embedded programming is successful.

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 31

5. Hardware Validation Summary
Table 5.1 shows the results from validation of the demo on different development boards. Failures at high frequencies
can be attributed to board layout deficiencies. Check the datasheet for the maximum operating frequency of the
device. Then, follow the hardware checklist of the device and use the proper layout techniques to optimize the
operating frequency.

Table 5.1. Hardware Validation Results

Note: When using Lattice development boards for testing, ensure that the FTDI chip of the board is disabled. Check the
development board schematic or user guide for guidance on disabling the FTDI chip.

Frequency
MachXO5™-NX Development
Board

MachXO3LF Starter Kit
CrossLinkPlus LIF-MDF6000
Master Link Board (Revision
B)

5 MHz Pass Pass Pass

20 MHz Pass Pass Fail (Pass at 19 MHz)

25 MHz Fail Pass Fail

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 32

Appendix A. Generation of .sed and .sea Files
This section describes the steps for generating the .sed and .sea files needed for embedded programming. The Radiant
Programmer can directly generate the .sed and .sea files. For the Diamond Programmer, the Deployment Tool is
needed to generate the .sed and .sea files.

A.1. Generating .sed and .sea Files Using Radiant Programmer
1. Open the Radiant Programmer and set up your operation. For example, fast configuration of the MachXO5-NX

configuration SRAM using the slave SPI port.

Figure A.1. Radiant Programmer .xcf File Generation

2. For the EPROM-based system, click the Generate Embedded Code button to open the Embedded Options window.
Check the Convert VME files to HEX (.c) for Prom-Based Embedded VME checkbox and then click OK.

Figure A.2. Embedded Options Window

Note: You will need to write the header files for the generated .c arrays.

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 33

3. Click the Generate Embedded Code button.

Generate Embedded
Code Button

Figure A.3. Generate Embedded Code Button

The .sed and .sea files are generated as indicated in the Output window.

Figure A.4. Generation of .sed and .sea Files

The .sed and .sea files appear in the .xcf file directory.

.xcf File

.sea File

.sed File

Figure A.5. Generated .sed and .sea Files in .xcf File Directory

For the EPROM-based system, c array files also appear in the .xcf file directory.

.xcf File

.sea c Array

.sed c Array

Figure A.6. Generated .c Files in .xcf Directory

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 34

A.2. Generating .sed and .sea Files Using Diamond Programmer and Deployment
Tool
1. Open the Diamond Programmer and set up your operation. For example, Erase, Program, Verify for SSPI operation.

Figure A.7. Diamond Programmer .xcf File Generation

2. Save the .xcf file in a directory.

3. Open the Deployment Tool (Design>Utilities>Deployment Tool).

Figure A.8. Accessing the Deployment Tool

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 35

4. Select the options as shown to generate the .sed and .sea files.

Figure A.9. Slave SPI Embedded Generation in Deployment Tool

5. Check the Input XCF file checkbox, select the .xcf file previously saved in step 2, and click Next.

Mark the Input XCF file checkbox. Select the previously saved .xcf file.

Figure A.10. Selecting .xcf File

6. The settings as shown appear in the next page. Leave the settings as is for this demo. For the EPROM-based system,
check the Convert VME files to HEX (.c) for Prom-Based Embedded VME checkbox. Click Next.

Figure A.11. Embedded File Generation Options

Note: You will need to write the header files for the generated .c arrays.

7. Confirm the location of the .sed and .sea files and click Next.

Figure A.12. Location of .sed and .sea Files

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 36

8. Click Generate. The .sed and .sea files are generated as indicated in the window.

Figure A.13. Generation of SSPI Embedded Files

The .sed and .sea files appear in the .xcf file directory.

.xcf File

.sea File

.sed File

Figure A.14. Generated SSPI Embedded Files

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 37

References
• Programming Tools User Guide for Radiant Software 2024.1

• Lattice Diamond 3.13 Programming Tools User Guide

• Spidev documentation

• SSPI Embedded Programming using RPi Reference Design web page

• MachX05-NX Development Board web page

• MachX03LF Starter Kit web page

• CrossLinkPlus LIF-MDF6000 Master Link Board web page

• Lattice Solutions Reference Designs web page

• Lattice Diamond Software User Guide

• Lattice Radiant Software User Guide

• Lattice Insights for Lattice Semiconductor training courses and learning plans

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=54305
https://www.latticesemi.com/view_document?document_id=54305
https://www.latticesemi.com/view_document?document_id=53947
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/referencedesigns/referencedesigns05/sspi-embedded-programming-using-rpi-reference-design
https://www.latticesemi.com/products/developmentboardsandkits/machxo5-nx-development-board
https://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits/MachXO3LFStarterKit
https://www.latticesemi.com/products/developmentboardsandkits/crosslinkplusmasterlinkboard
https://www.latticesemi.com/solutionsearch?&qiptype=3614c818569f4eecb0602ba20a521a41&active=refdesign
https://www.latticesemi.com/view_document?document_id=53945
https://www.latticesemi.com/view_document?document_id=54300
https://www.latticesemi-insights.com/

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 38

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, please refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 39

Revision History

Revision 1.1, February 2025

Section Change Summary

Abbreviations in This Document Added EPROM.

Introduction • Added description of embedded source code types in the Embedded Programming
Source Code Architecture section.

• Updated figure title and labels in Figure 1.4. Embedded Programming Source Code Lists
for File-Based Source Code.

• Added Figure 1.5. Embedded Programming Source Code Lists for EPROM-Based Source
Code.

Modifying the Source Code and
Writing the Driver

• Updated section title and description in the Updating main.c for File-Based Source Code
section.

• Added the Updating main.c for EPROM-Based Source Code section.

• Added statement about hardware.c being the same for file-based and EPROM-based
source codes in the Updating hardware.c section.

Compiling and Running the
Demo

• Updated figure title in Figure 3.2. Example of Running the Executable File in File-Based
Demo.

• Added Figure 3.5. Example of Running the Executable File in EPROM-Based Demo and
description.

Appendix A. Generation of .sed
and .sea Files

• Added step 2 on EPROM-based system in the Generating .sed and .sea Files Using
Radiant Programmer section.

• Added Figure A.6. Generated .c Files in .xcf Directory and description.

• Updated step 6 to include EPROM-based system in the Generating .sed and .sea Files
Using Diamond Programmer and Deployment Tool section.

References Added link to reference design web page.

Revision 1.0, September 2024

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	SSPI Embedded Programming Demo Using Raspberry Pi User Guide
	Contents
	Abbreviations in This Document
	1. Introduction
	1.1. Embedded Programming Source Code Architecture
	1.2. Source Code Directory

	2. Modifying the Source Code and Writing the Driver
	2.1. Updating main.c for File-Based Source Code
	2.1.1. Adding an Instruction Function
	2.1.2. Updating main() Function

	2.2. Updating main.c for EPROM-Based Source Code
	2.2.1. Updating main() Function

	2.3. Updating hardware.c
	2.3.1. wait() Implementation
	2.3.2. TRANS_transmitBytes() and TRANS_receiveBytes() Implementation
	2.3.3. TRANS_starttranx() and TRANS_endtranx() Implementation
	2.3.4. TRANS_cstoggle() and TRANS_runClk() Implementation
	2.3.5. TRANS_transceive_stream() Implementation

	2.4. Creating rbpi-spi.c
	2.4.1. rbpi_init() Implementation
	2.4.2. rbpi_ioctl() Implementation
	2.4.3. rbpi_tx() and rbpi_rx() Implementation
	2.4.4. rbpi_assert_cs() Implementation
	2.4.5. rbpi_exit() implementation

	3. Compiling and Running the Demo
	4. Debugging Tips
	5. Hardware Validation Summary
	Appendix A. Generation of .sed and .sea Files
	A.1. Generating .sed and .sea Files Using Radiant Programmer
	A.2. Generating .sed and .sea Files Using Diamond Programmer and Deployment Tool

	References
	Technical Support Assistance
	Revision History
	Revision 1.1, February 2025
	Revision 1.0, September 2024

