s LATTICE

SSPI Embedded Programming Demo Using
Raspberry Pi User Guide

Reference Design

FPGA-RD-02295-1.1

February 2025

SSPI Embedded Programming Demo Using Raspberry Pi User Guide :..LATTICE
Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and
other items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases
such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02295-1.1 2

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

= LATTICE

Contents
(61o] 01 1T o | £SO TP PP PUPPPPTPRRRPIRt 3
AbDbreviations iN ThisS DOCUMENT......c.uti ittt ettt ettt e e sttt e st e e s sbee e e sateeessabteeesabaeeessbeeesaasteeesasaaeesnabeeesnseeesssenens 5
S [0 d o o [0 1 4 T o OO PP ROPP 6
1.1. Embedded Programming Source Code ArChit@CTUIEcccviiiieiiiee ettt et e e e are e e eaaeeas 7
1.2. Yo U ol oo [l BT Yot o] oA SRS 9
2. Modifying the Source Code and Writing the DIIVErcoociiiiiciee et e e e e e e s are e e enneeas 11
2.1. Updating main.c for File-Based SOUICE COUEcccvuiiiiiiiieeiiiiie et cetee ettt eee e st e e et e e esate e e snaeeeennreeeennnns 11
2.1.1. Adding an INStrUCLION FUNCHIONeiiiiiiiiieieeee ettt st ettt st st be e s e s b e sabeesneenane 11
2.1.2. Updating Main() FUNCEION......couiiiiieeeie ettt ettt sb ettt st sa e bt et e be et e satesbeesbeenbeeeesanene 12
2.2. Updating main.c for EPROM-Based SOUICE COEcccuuiiiiiiiieeeiiieeceiieeeesteeeeeireeeeetteeeesateeeeesaeeeensaeeesareeesennns 13
2.2.1. Updating Main() FUNCHION. ..ottt ettt et e e e st e e e ee bt e e e eateeeesabaeeeensbeseeasssaasantaeeeansreeesssneas 13
2.3. (UFoTo T a g Yedl =T o 1VY T O ol PSSOt 14
b 70 R VY 11 N T 4T o U= 0 g V=T o =1 o T o S 15
2.3.2. TRANS_transmitBytes() and TRANS_receiveBytes() Implementation.........cccceecvereceeeireeeieesiee e sree e 16
2.3.3. TRANS_starttranx() and TRANS_endtranx() Implementationccccueeviieiieciiee e 17
2.3.4. TRANS_cstoggle() and TRANS_runClk() IMplementationccceereerieiiiniinienieeieeie et 18
2.3.5. TRANS_transceive_stream() Implementation.........cccoociiiiiiiiee ettt eate e e e ve e e e eare e e eanaeas 19
2.4, (0T T Ao T o] o R o TN o3RRS SRR 20
00 S o oY o TN o V1§ B [0T o1 1= 0 0 V=T a1 =1 o o TS 21
0% S o oY oY o Youd [N T g o U= g V=T o = Uo T o S 22
2.4.3. rbpi_tx() and rbpi_rx() IMpPlemMeENtationcccvi et a e s ba e e aaeeane 23
2.4.4. rbpi_assert_cs() IMPlemMeENnTationccccciiiiieeiie e ettt ra e et e e e re e e be e e baeebaeeraeeans 24
2.4.5. rbpi_eXit() IMPIEMENTATION ..ooiiiieitieieee ettt ettt st a et e b e e be et e sabesheesbeenbeeeesaneae 25
3. Compiling and RUNNING The DEMOc.uiiiuiiiiiieiiie ettt ettt ettt b e sttt s bt e sabe e s beesabeeesbeesabeeesreesanees 26
B 0 1= Y 0T 4 =1 oY= T oL RS SPUR 29
5. Hardware Validation SUMMAIYc..eeiiiiiii ettt ete e e st e e e e tt e e e seaaaeeesabaeaeesteeeeanssaeessasasessaeeeansraeessseens 31
Appendix A. Generation of .S8d aNd .SEA FIlESueii it e st e et e e et e e e br e e e e ara e e enaaeas 32
A.1. Generating .sed and .sea Files Using Radiant Programmer...........cccueeieiiiieieiieeecctieeesieeeesseeee e sneeeeesnseeessnseeesneeeas 32
A.2. Generating .sed and .sea Files Using Diamond Programmer and Deployment ToOl.......ccccccevivcieeeeiciieececiee e, 34
L2 0=Y = =T o ol TS SUP PR 37
TeChNICal SUPPOIT ASSISTANCE . .eeiiuiiiiiieeiee ettt ettt ettt e st e st e sttt s bt e s bt e s bt e st e e saseesabeesstesabeesaneesabeesneenane 38
REVISION HISTO Y i eaeaeaeaaaaaens 39

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 1.1. Raspberry Pi SSPI Interface wWith LattiCe DEVICEeeviiuiiieeiiie ettt e e s e e e areeeeaens 6
Figure 1.2. Embedded Programming Source Code Archit@CtUrecoouiiiiiiiiiieiiieeeereeeee ettt s 7
Figure 1.3. Embedded Programming Source Code Dir€CLOIIESccuuuiiiiiiieeieciiieee ettt e e e e e e e e e sare e e e e e e e e snraaeeeee s 9
Figure 1.4. Embedded Programming Source Code Lists for File-Based Source Code........ccccceriiirniiniienieeniieenieenieeeieenane 9
Figure 1.5. Embedded Programming Source Code Lists for EPROM-Based Source Codecoovurreviieeeeciieeecieeeeciieeenns 10
Figure 2.1. Raspberry Pi Chip Select Assignment in HAardWare...........oeeiiuiiieeiiie et eetee e eetee e e stae e e e ire e e eataee e svaeeens 24
[Fd U N T YT o o [@ 4o o 11 = e o PN 26
Figure 3.2. Example of Running the Executable File in File-Based DEMO..........ccevcuieeiiiiieeeiee et eeee e sare e 26
Figure 3.3. Sample RUN WithoUt DEBUZ PriNtiNgG........cueiiiiiiie ettt e e st e e e eaee e e st e e e s ate e e snaeeeesnsaeaens 27
Figure 3.4. Sample RUN With DEDUE PriNtiNgcccuviiiiiiee ettt se e et e e st e e st e e e satae e e sateeesnaneeesnsaeaeans 27
Figure 3.5. Example of Running the Executable File in EPROM-Based DEMOccccueiriiiniieniiinieenieesee e 28
Figure 4.1. lllustration of Manual Chip SEleCt CONTIOl..........ooieiiiiieeeee ettt e et e e e et e e e eaaae e e sbaeaens 29
Figure 4.2. Verified Failure (CS High Signal is TOO SROIT)......ccociiiiiiiiee ettt eetee e et e e e et e e e eeataee e svaeaens 30
Figure 4.3. HW USBN 2B Implementation of CS High Signalcccuiiiiiiiii ittt et e 30
Figure A.1. Radiant Programmer .XCf File GENEIatioNceiiiiiiiicieee ettt ee e e e e e e eatee e e sta e e e e at e e e snnaeeesanaeeens 32
Figure A.2. Embedded Options WINGOWccccciiiiiiiieiiiiieeeetes e seee e esete e e e s ate e e saaeeeesataeessssseeesnsseeeesnsaeesassesesnnsnesssnseeasans 32
Figure A.3. Generate Embedded Code BULTONcccuiiiiiiiiieieier e eree et ee e e st e e st e e e saaee e e sata e e e snteeesnnaeeesnseeeenns 33
Figure A.4. Generation Of .Sed aNd .SEA FIlESuiiuiiiiiiiii ettt et sare e e 33
Figure A.5. Generated .sed and .sea Files in .XCf File DIFr€CLOIYcoiuiiiiiiiiiiiiecieete ettt e 33
Figure A.6. Generated .C Files iN .XCF DIF@CTONYuiii e e eciiee ettt et e st eeertte e e eetee e e stbe e e e tbeeeeeataeeestaeeeansseeesassaeeesseeaans 33
Figure A.7. Diamond Programmer .XCf Fil@ GENEIatioN........ccocciiiiiiiieeciiiee ettt e e et e e ete e e e stae e e eare e e easaeeesabaeaens 34
Figure A.8. Accessing the DeploymMENT TOOIuuii i et e e e re e e et e e e seata e e e sataeeeensteeesnsaeeesaraeaaans 34
Figure A.9. Slave SPI Embedded Generation in Deployment TOOI........cccciiiieiieiicciiee e saee e e e 35
FIgure A.10. SEIECTING XCT FIl 1eeeieeeii et e st e e e st e e s aae e e e s taeeeessteeeeaaseeeesnsaeeeasseeesnnsneesanseeaaans 35
Figure A.11. Embedded File GENEration OPLIONScocuiiiuiiiiiiiie ettt ettt st e sire et e e sabeesane e sareenneeens 35
Figure A.12. Location Of .5ed and .S8@ FIlSccuiiiiiiiiieeii ettt ettt e s e sare e e 35
Figure A.13. Generation of SSPI EMBEAAEA FIlESueiiiiiiieeeiie ettt e e et e e tee e e s te e e e eare e e earaeeesabaeaanns 36
Figure A.14. Generated SSPI EMBEAAEA FIlES........oii i uiiieeiieeceee ettt et e et e e e et e e e e atae e e staeeeeareeeensaeaesaraeaanns 36
Tables

Table 1.1. Existing Files Needed for Embedded Programming...........ccccuiiiieiiieiiiiie e ettt e et e et e e e etae e e eabe e e enneeas 7
Table 1.2. Files to be Created for Embedded Programming..........c.ceccciiiieeiiiie e ettt e et e ettt e e e etae e eeabee e enneeas 7
Table 2.1. Functions to be Modified iN NardWarE.C. .. i st sbe e sbeesbeesnaesane 14
Table 2.2. Functions to be Created in rhPi=-SPi.C .. it cee e e e e e e s re e e e st e e esanee e e ssaeeeesnteeesnnnns 20
Table 5.1. Hardware Validation RESUILS........cuiiiiiiiieeiee ittt sttt st sttt et e st e st e sabe e sseesabeessseesabeesneenane 31

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide

Reference Design

= LATTICE

Abbreviations in This Document

A list of abbreviations used in this document.

Abbreviation Definition

cS Chip Select

EPROM Erasable Programmable Read-Only Memory
FTDI Future Technology Devices International
GPIO General Purpose Input Output

IOCTL Input Output Control

MISO Controller In Target Out

MOSI Controller Out Target In

RBPI Raspberry Pi

Rx Receiver

SPI Serial Peripheral Interface

SSPI Target Serial Peripheral Interface

Tx Transmitter

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide :l.l.LATT’CE

Reference Design HEN sEMICONDUCTOR

1. Introduction

This demo interfaces the Raspberry Pi SPI driver to the SSPI embedded programming source code in the Lattice
Radiant™ and Diamond™ software directories. Refer to Source Code Directory for the location of the embedded
programming source code. This demo is applicable to Lattice devices including MachX02™, MachX03™, CrossLink™,
CrossLinkPlus™, and Nexus™-based FPGA devices.

4 N\
Lattice Devices

—

MachX02

F

MachX03

F

CrossLink

F

CrossLinkPlus

—

Nexus-based
SPI FPGA

Figure 1.1. Raspberry Pi SSPI Interface with Lattice Device

The .sed and .sea files are used as the data file and algorithm file for the programming procedure, respectively.
Generation of the .sed and .sea files are covered in Appendix A.

Download the reference design files from the Lattice SSPI Embedded Programming Demo Using Raspberry Pi Reference
Design web page.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 6

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide :..LATTICE
Reference Design

1.1. Embedded Programming Source Code Architecture

Table 1.1 and Table 1.2 list the existing files needed and files to be created for embedded programming, respectively.
The files to be created are the compiler and driver files.

Table 1.1. Existing Files Needed for Embedded Programming

File Needs Customization Description

main.c Yes Contains the main() function

hardware.h, hardware.c Yes SPI hardware abstraction layer; interfaced with host driver

intrface.h, intrface.c No File apstraction layer; works together with util.h to integrate .sed and
.sea files to core.c

SSPIEm.h, SSPIEm.c No Entry calls to the programming algorithm

core.h, core.c No Main FPGA programming algorithm

opcode.h No Definitions of codes in the bit files

debug.h No Definitions of codes printed when debug is enabled

util.h, util.c No Checksum utility function

Table 1.2. Files to be Created for Embedded Programming

File Description
Makefile Makefile that builds the executable sspiem-rbpi with the standard make utility
rbpi-spi.c, rbpi-spi.h SPI hardware driver using Raspberry Pi on-chip SPI port

Figure 1.2 shows the embedded programming source code architecture. For this demo, the executable file will be run
using the command terminal. SSPIEm.c handles the parsing of both the .sed and .sea files. With the help of intrface.c
and util.c, the .sed and .sea files are converted to FPGA programming commands for core.c and hardware.c. hardware.c
is the interface of the hardware driver to the FPGA programming commands in core.c. driver.c contains the Raspberry
Pi driver functions to be interfaced with hardware.c.

main.c

core.c

hardware.c

RPi Terminal SSPIEmM.C intrface.c

- .-
£

util.c

Figure 1.2. Embedded Programming Source Code Architecture

Only two existing source files (main.c and hardware.c) will be modified as indicated in Table 1.1. Additionally, one
source file (driver.c or rbpi-spi.c) will be created. Refer to Modifying the Source Code and Writing the Driver for more
information. Refer to Compiling and Running the Demo for the Makefile.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02295-1.1 7

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide :..LATTICE
Reference Design

There are two types of embedded source codes:

o File-based source code uses file-based data storage, such as on Linux systems. This means that data and
algorithms are stored in .sed and .sea files, which can be read and written during runtime. This approach makes
modifying the source code easier since you do not need to recompile the code; you only need to update the .sed
and .sea files during runtime.

e EPROM-based source code uses erasable programmable read-only memory (EPROM) for storing data and
algorithms, which are compiled into the system. In this case, .sed and .sea files are converted into .c arrays and
added to the program during compilation. This method is particularly useful for microcontroller devices but it also
means you must recompile the code every time you update the .c arrays containing the .sed and .sea data.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 8

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide

Reference Design

= LATTICE

1.2.

Source Code Directory

Figure 1.3 shows the location of the embedded programming installation directory for the Radiant Programmer and
Diamond Programmer. This demo focuses on the sspiembedded source code. Figure 1.4 shows the list of files in the
embedded programming source code directory for the Radiant Programmer and Diamond Programmer.

|4

ckaccess
ssktop
swnloads

cuments

sspiembedded source

code in Radiant for
this demo

ctures
ROJECT

s

4

ccess

loads

Tnents

sspiembedded source

code in Diamond for
this demo

Es

T

T+ » ThisPC > Windows (C) »

ded_Programming_presentation

P

deo

& - Lattice Semiconductor Corp

ments

gs

oft Teams Chat Files

ch Support Design Example Repository
inqs

1> ThisPC >

ded_Programming_presentation
Pl

deo

& - Lattice Semiconductor Corp
ments

gs

Isce

Windows (C) »

» ThisPC » Windows (C:) » Iscc » programmer » radiant > 20232 > embedded_source

Name
cpuembedded
* i2cembedded
* slimembedded
sspiembedded
- wrmembedded
-

» ThisPC » Windows (C:) » Iscc » programmer » diamond » 3.13 » embedded_source

#

Narne

%

cpuembedded
i2cembedded

slimembedded
sspiembedded

vmembedded

Date modified

4
4
4
4
4

Date modified

Type

File folder
File folder
File folder
File folder

File folder

Type

File folder
File folder
File folder
File folder

File folder

Size

Location of embedded
programming source code in
Radiant

Location of embedded
programming source code in
Diamond

Figure 1.3. Embedded Programming Source Code Directories

lsce > programmer

» programmer >

radiant »

T

» diamond »

Name

corec
coreh
debug.h

2023.2 »

_source »

hardware.c

hardware.h

intrface.c
intrface.h
main.c
opcodeh
SSPIEm.c
SSPIEm.h
util.c
utilh

core.c

core.h

313 »

embedded source > sspiembedded

» | sourcecode »

Date modified

debug.h

hardware.c

o hardware.h

* intrface.
intrface.
main.c

opcode,

SSPIEm.
utile
utilh

C
Lh

h
SSPIEM.

3
h

> sspiem

H File

H File

File-based source code folder
needed for this demo in Radiant

v

File-based source code folder
needed for this demo in Diamond

Figure 1.4. Embedded Programming Source Code Lists for File-Based Source Code

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1

http://www.latticesemi.com/legal

SSPl Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

= LATTICE

T > This PC > Windows (C) > Iscc > programmer > radiant > 2023.2 > embedded source > sspiembedded 3| sourcecode > sspiem_eprom EPROM-based source code folder
Mame . ~ Date modified Type size needed for this demo in Radiant
cess
corec 2/27/2024 418 AM CFile 40 KB
] *
coreh HFile 4KB
rents *
debugh H File SKB
e05 * hardware.c CFile 208
§ o hardwareh H File 4KB
T * intrface.c 2/27/2024 419 AM CFile 23KB
ientation * intrface.h 2/27/2024 423 AM H File 4KB
main.c 2/27/2024 419 AM I 7KB
18-120924 opcodeh 2/27/2024 423 AM 5KB
10-121824 SSPIEM.C 2/27/2024 419 AM 4KB
2 2024 423 AM 3K
2024 SSPIEM.h 2/27/2024 423 3KB
utile 2/27/2024 419 AM 3KB
e - Lattice Semiconductor Corp utilh 2/27/2024 423 AM 3KB
Share View
* 1 > ThisPC > Windows (C) > Iscc > programmer > diamond > 3.13 > source >) > sspiem_eprom EPROM-based source code folder
Name : Date modified Type size needed for this demo in Diamond
ess
o corec CFile 38KB
coreh HFile 2KB
nts »*
debugh Hfile 3K8
~
s hardware.c CFile 18K8
* hardwareh H file 3K8
r * intrface.c CFile
ntation > A intrfaceh 10/6/2008 4:06 PM H File
mainc 5/18/2012 837 AM CFile
1-120924 opcodeh H File
1121924 SSPIEM.C CFile
' HF
2 SSPIEM e
utilc CFile
- Lattice Semiconductor Corp utith 10/6/2008 4:06 PM H File

Figure 1.5. Embedded Programming Source Code Lists for EPROM-Based Source Code

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 10

http://www.latticesemi.com/legal

= LATTICE

2. Modifying the Source Code and Writing the Driver

This section discusses the modification of the source code files main.c and hardware.c. This section also discusses the
creation of the driver file and how it is interfaced with hardware.c.

2.1. Updating main.c for File-Based Source Code

The main.c file contains code for initializing the driver and calling FPGA programming commands. This section discusses
the modifications required in main.c for file-based source code. Before modifying main.c, ensure that the appropriate
header files and libraries are included. The following header files and libraries are required in main.c:

#include <unistd.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include "rbpi-spi.h"
#include "debug.h"
#include "hardware.h"
#include <stdio.h>
#include "SSPIEm.h"

2.1.1. Adding an Instruction Function

An instruction function prints instructions to the user on using the demo. These instructions appear when the
arguments of the executable file are incorrect or incomplete. The following shows the print_usage() function added
into main.c:

void print usage ()

{

fprintf (stderr, "sspiem-rbpi usage:\n");

fprintf (stderr, " form 1: sspiem-rbpi -help\n");

fprintf (stderr, " - This help.\n");

fprintf (stderr, " form 2: sspiem-rbpi <spi clock speed> <sea file>
<sed file> <-debug command>\n"); B

fprintf (stderr, " - Program FPGA:\n");

fprintf (stderr, " <spi clock speed> expressed in KHz, range 1 to
20000> Consult the guide for details.\n");

fprintf (stderr, " <sea file> is the algorithm file produced by
Lattice Radiant or Diamond tool.\n");_

fprintf (stderr, " <sed file> is the data file produced by Lattice
Radiant or Diamond tool.\n"); -

fprintf (stderr, " <-debug commands> -debug on:turn on debug
printing, -debug off:turn off debug prinEing\n"); -

fprintf (stderr, " \n") ;

fprintf (stderr, "Example: sspiem-rbpi 5000 algo.sea data.sed -debug on\n");

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.1.2. Updating main() Function

The following shows the modifications in the main() function:

int main (int argc, char *argvl[])
{

int siRetCode = 0;

int speed;

printf ("Lattice Semiconductor Corp.\n");
printf ("SSPI Embedded (tm) %$s 2023\n", VME_VERSION_NUMBER);

if (argc == 5) {
speed = atoi (argv[1l]);
if (!strcmp(argv(4],"-debug on")) {

) el IULDEISUEEp Enable debug printing.
else if (!strcmp(argv([4],"-debug off")) {
a_uiDebug=0;

}

else(
print usage();
exit (0) ;
}
if (rbpl_lnlt (Speed e 1024)) { Initialize SSPI driver.

rbpi _assert cs(1);
rbpi assert cs(0);

siRetCode = SSPIEm preset (argv[2], argv[3]):; Pass along .sed and
siRetCode = SSPIEm (0XFFFFFFFF) ; .sea files and start
of programming

printf ("\n\n"); -
if (siRetCode != 2) {

printf("+:::::::+\nu) ;

printf("| FAIL! |\n");

printf ("4+=======+\n");

printError (siRetCode) ;

}

else {
printf ("4+=======+\n");
printf("| PASS! |\n");
printf ("4+=======+\n");
}

}
usleep (100*1000) ;
rbpi exit () ;
} else
print usage() ;

return siRetCode;

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The variable a_uiDebug is used to enable and disable debug printing. See TRANS_transceive_stream() Implementation
for other modifications needed for debug printing. The functions rbpi_init and rbpi_exit initializes and closes the
Raspberry Pi SPI drivers, respectively. Refer to Creating rbpi-spi.c for more details on the driver file (rbpi-spi.c).
Regardless of platform, it is advisable to initialize the driver in the main() function of main.c for easier access and
control.

2.2. Updating main.c for EPROM-Based Source Code

The main.c file contains code for initializing the driver and calling FPGA programming commands. This section discusses
the modifications required in main.c for EPROM-based source code. Before modifying main.c, ensure that the
appropriate header files and libraries are included. The following header files and libraries are required in main.c:

#include <unistd.h>
#include <stdio.h>

#include
#include
#include

<stdint.
<stdlib.
<string.

h>
h>
h>

#include <signal.h>

#include "SSPIEm.h"

#include "rbpi-spi.h"
#include "debug.h"

#include "hardware.h"
#include "test impl 1 data.h"
#include "test impl 1 algo.h"

Add the .h files for the converted .c arrays
for .sed and .sea files.

2.2.1. Updating main() Function

The following shows the modifications done in the main() function:

int main()

{
int siRetCode = 0;
char Message([512];
unsigned char *setAlgoPtr;

unsigned int setAlgoSize = g iAlgoSize;
unsigned char *setDataPtr; This part sets the values of set Algosize
unsigned int setDataSize = g iDataSize ; and set DataSize and sends the pointer

array of the algorithm and data to
setAlgoPtr = g pucAlgoArray; setAlgoPtr and setDataPtr respectively.

setDataPtr

g pucDataArray;

print out string("

sprintf (Message, "\n
2012\n",VME_VERSION_NUMBER);

print out string("

//print out string(Message);

Lattice Semiconductor Corp.\n");
SSPI Embedded (tm) VS$s

Ported by Rhodz\n");

The goal is to not have any external
settings after compilation so set the
frequency and printing debug manually
before compilation.

rbpi init (3000* 1024) ;
a_uiDebug=1;
rbpi assert cs(1);

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

rbpi assert cs(0);

siRetCode = SSPIEm preset (setAlgoPtr, setAlgoSize, setDataPtr, setDataSize);
siRetCode = SSPIEm (0xXFFFFFFFF) ;
if (siRetCode != 2) {
printf ("\n\n"); SSPIEm_preset() sends the algorithm and
printf ("+=======+\n"); data array and their respective sizes.
printf ("| FAIL! |\n"); SSPIEm() starts the programming
printf ("+=======+\n\n"); operation.

printError (siRetCode) ;

}

else {
printf ("+=======+\n");
printf("| PASS! |\n");
printf ("+=======+\n\n");

}

return siRetCode;

2.3. Updating hardware.c

The only areas requiring modification in hardware.c are some functions needed for interfacing with the Raspberry Pi
drivers. Table 1.1 lists the functions to be modified in hardware.c. Modification involves adding code into the functions
(pre-existing functions provide only usage guidelines and contain no code). hardware.c is the same for file-based and
EPROM-based systems so both source codes must have the same modifications.

Table 2.1. Functions to be Modified in hardware.c

Function Description

wait() Delay function in between FPGA programming commands
TRANS_transmitBytes() Write data in buffer to FPGA

TRANS_receiveBytes() Read data from FPGA to buffer

TRANS_startranx() Assert chip-select signal (CS)

TRANS_endtranx() De-assert chip-select signal (CS)

TRANS_cstoggle() Toggle chip-select signal (CS/TMS)

TRANS_runClk() Pulse SPI clock signal eight times or more; used to send dummy bytes

These functions will be interfaced to the Raspberry Pi SPI drivers. This means that when these functions are called by
the FPGA programming algorithm, the driver functions should correspondingly be called to implement the SPI
communication in the Raspberry Pi SPI port. The following header files and libraries are required in hardware.c:

#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include "rbpi-spi.h"
#include "intrface.h"
#include "opcode.h"
#include "debug.h"
#include "hardware.h"

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.3.1. wait() Implementation

The wait() function is used by the FPGA programming algorithm to implement delay after programming commands.
The following are two recommended methods of implementing the wait() function:

e Using the usleep() function.

e Using a counter.

Both methods may be used for the successful implementation of embedded programming.

The first method uses the usleep() function. The usleep() function is an internal Linux command for delay
implementation. Experimentation with Raspberry Pi shows that usleep(0) translates to a delay of at least 65 pus which is
unnecessarily long. For better control of this delay, the second method can serve as an alternative. The following code
snippet is a sample implementation with the first method:

int wait (int a msTimeDelay)

{
__useconds t t = a msTimeDelay * 1000;
usleep (t) ;
return 1;

}

The second method uses a counter in the form of a for loop to control the delay. A multiplier to a_msTimeDelay is
added to control the length of the delay. A delay time that is too small may cause failure in programming, especially
when verification is required. Finding the optimal delay time is necessary for correct implementation of embedded
programming. It is the user’s responsibility to find the optimal delay time. The following code snippet is a sample
implementation with the second method:

int wait (int a msTimeDelay)

{ int count ms=0;
for (count ms;count ms<a msTimeDelay*100000;count ms++) {
}
return 1;

}

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.3.2. TRANS_transmitBytes() and TRANS_receiveBytes() Implementation

TRANS_transmitBytes() is responsible for transmitting data. The arguments are the pointer buffer containing the data
to be sent and the expected number of bits to be sent. This function is called by the FPGA programming algorithm
when transmitting data through the SPI bus. In this demo, the function rbpi_tx() is called every time
TRANS_transmitBytes() is called. The function rbpi_tx() is the driver function that handles control of the SPI bus for
data transmission. This function is discussed in rbpi_tx() and rbpi_rx() Implementation. The following code snippet
shows the TRANS_transmitBytes() function:

int TRANS transmitBytes (unsigned char *trBuffer, int trCount)
{
return rbpi tx((uint8 t*)trBuffer, (int) trCount);

TRANS_receiveBytes() is responsible for receiving data. The arguments are the empty pointer buffer which is to be
filled by the data to be received and the expected number of bits to be received. This function is called by the FPGA
programming algorithm when receiving data from the SPI bus. In this demo, the function rbpi_rx() is called every time
TRANS_receiveBytes() is called. The function rbpi_rx() is the driver function that handles control of the SPI bus for data
reception. This function is discussed in rbpi_tx() and rbpi_rx() Implementation. The following code snippet shows the
TRANS_receiveByes() function:

int TRANS receiveBytes (unsigned char *rcBuffer, int rcCount)
{

return rbpi rx((uint8 t*)rcBuffer, (int) rcCount):;

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.3.3. TRANS_starttranx() and TRANS_endtranx() Implementation

TRANS_starttranx() initiates the start of SPI bus communication. For SPI transaction, the communication starts by
pulling chip select (CS) low. The function rbpi_assert_cs() is the driver function used for CS control. The following code
snippet shows the TRANS_starttranx() function:

int TRANS starttranx(unsigned char channel)

{

assert (channel == 0);

if (channel != 0) {
//wait (10) ;
return 0;}
else{
rbpi assert cs(1);
//wait (10) ;
}
if (a_uiDebug)
printf ("Start of transmission.\n");
return 1;

TRANS_endtranx() terminates the communication in the SPI bus. For SPI transaction, the communication ends by
pulling CS high. The function rbpi_assert_cs () is again used for CS control. The following code snippet shows the

TRANS_endtranx() function:

int TRANS endtranx()

{
//wait (10) ;
if (a_uiDebug)
printf ("End of transmission.\n");
return rbpi assert cs(0);

Note: The dedicated SPI CS signal is not used as the Lattice embedded programming source code requires manual
control of the CS pin. Refer to rbpi_assert_cs() Implementation for more information.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.3.4. TRANS_cstoggle() and TRANS_runClk() Implementation

TRANS_cstoggle() toggles the CS pin. It uses rbpi_assert_cs() to control the CS signal, which is also the function used by
TRANS_starttranx() and TRANS_endtranx(). The following code snippet shows the TRANS_cstoggle() function

int TRANS cstoggle (unsigned char channel)
{

assert (channel == 0);

if (channel !'= 0)
return 0;
else {

rbpi assert cs(0);
rbpi assert cs(1);

rbpi assert cs(0);
}
if (a_uiDebug)

printf ("Toggle Chip Select./n");
return 1;

TRANS_runClk() drives extra clocks. It uses the rbpi_tx command but only sends the OxFF command. The following code
snippet shows the TRANS_runClk() function:

int TRANS runClk(int clk)
{
uint8 t dummy = Oxff;

return rbpi tx(&dummy, 8);

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.3.5. TRANS_transceive_stream() Implementation

TRANS_transceive_stream() connects hardware.c to core.c. The default source code does not contain the code for
debug printing. For this demo, this function is updated to enable debug printing. Note that when using other
embedded systems, the printf command might not work. Therefore, debug printing only works for this demo. For
embedded systems other than Raspberry Pi, further development on debug printing is needed. All functions that print
the send and receive bytes are commented with “Debug printing”.

int TRANS transceive stream(int trCount, unsigned char *trBuffer,

int trCount2, int flag, unsigned char *trBuffer2, int mask flag, unsigned char

*maskBuffer) -

{
int i =
unsigned short int tranxByte =
unsigned char trByte =
unsigned char dataByte =
int mismatch =
unsigned char datalID =

~.

o e

~.

~e

O O O O o o
~

~e

if (trCount > 0)
{
/* calculate # of bytes being transmitted */
tranxByte = (unsigned short) (trCount / 8);
if (trCount % 8 != 0) {
tranxByte ++;
trCount += (8 - (trCount % 8)); L
} “Debug printing” comment
if (a uiDebug) { //Debug Printing
for (i=0;i<tranxByte;i++) {
printf ("transmit 1 byte of data 0x%02x.\n",trBuffer[i]);
b
if (!TRANS transmitBytes (trBuffer, trCount))
return ERROR PROC HARDWARE; Sample debug printing code

For the complete code with debug printing added, contact Lattice. The variable a_uiDebug is set during runtime from
main.c.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.4. Creating rbpi-spi.c

rbpi-spi.c contains the functions interfaced with hardware.c. It connects the source code to the hardware drivers. It
also contains the functions to initialize and close the SPI bus. Table 2.2 lists the functions contained in rbpi-spi.c.

Table 2.2. Functions to be Created in rbpi-spi.c

Function Description

rbpi_init() Initializes the SPI bus

rbpi_ioctl() Main driver controller used by rbpi_tx() and rbpi_rx() for sending and receiving data
rbpi_tx() Function used for sending data

rbpi_rx() Function used for receiving data

rbpi_assert_cs() Asserts and de-asserts CS pin

rbpi_exit() Closes the SPI bus

ioctl is the main driver function used for this demo. ioctl (input and output control) is used to communicate with device
drivers. This demo uses the ioctl capability to control drivers driving SPI dedicated pins. The following header files and
libraries are required in rbpi-spi.c:

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<unistd.h>
<stdio.h>
<stdlib.h>
<stdint.h>
<string.h>
<assert.h>
<fcntl.h>
<errno.h>
<linux/spi/spidev.h>
<sys/types.h>
<sys/stat.h>
<sys/mman.h>
<sys/ioctl.h>
"rbpi-spi.h"
"hardware.h"

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.4.1. rbpi_init() Implementation

The function rbpi_init() initializes the settings of the SPI bus. The following code snippet shows a sample initialization of
the SPI bus:

int rbpi init(uint32 t spi speed)
{
int ret = 0;
uint8 t mode = SPI MODE 0;
uint8 t bits 8;
uint32 t reg;
uint32 t shift;

SPI Mode and bit size per word

// setup spi via ioctl
speed = spi speed; SPI Speed assignment

spi fd = open("/dev/spidev0.0", O RDWR) ;
if (spi_fd < 0) {
fprintf (stderr, "Failed to open /dev/spidev0.0: %s\n",
strerror (errno)) ;
return O;

ret |= ioctl(spi fd, SPI IOC WR MODE, &mode);

ret |= ioctl(spi fd, SPI IOC RD MODE, &mode) ;

ret |= ioctl(spi fd, SPI IOC WR BITS PER WORD, &bits); Initialization of
ret |= ioctl(spi fd, SPI IOC RD BITS PER WORD, &bits); the SPI bus
ret |= ioctl(spi fd, SPI IOC WR MAX SPEED HZ, é&speed);

ret |= ioctl(spi fd, SPI IOC RD MAX SPEED HZ, é&speed);

e SPI_IOC_WR_MODE and SPI_IOC_RD_MODE set the mode of the SPI transaction. This demo uses SPI Mode 0.

e SPI_IOC_WR_BITS_PER_WORD and SPI_IOC_RD_BITS_PER_WORD set the number of bits in each SPI transfer word.
This demo uses 8 bits per word.

e SPI_IOC_WR_MAX_SPEED_HZ and SPI_IOC_RD_MAX_SPEED_HZ assign the maximum transfer speed in Hz.

These ioctl requests are used to initialize the SPI bus. For more information regarding these requests, see
https://www.kernel.org/doc/Documentation/spi/spidev.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.kernel.org/doc/Documentation/spi/spidev

= LATTICE

2.4.2. rbpi_ioctl() Implementation

The function rbpi_ioctl() is the main function that controls the ioctl driver and implements the communication on the
SPI bus.

static int rbpi ioctl (unsigned char *tx buf, unsigned char *rx buf, int len)
{

struct spi ioc transfer req;
memset (&req, 0, sizeof (req)):;

req.tx buf = (uintptr t) tx buf;
req.rx buf = (uintptr t) rx buf;
req.len = len;

return ioctl (spi fd, SPI IOC MESSAGE (1), &req) == -1;

SPI Channel Start SPI transaction Struct for SPI
request transfer

e struct spi_ioc_transfer is the struct used by the ioctl() function call for describing the SPI transaction.

e tx_buf, rx_buf, and len are members of struct spi_ioc_transfer() that are needed to run SPI transactions. The
tx_buf and rx_buf members contain the buffer pointer for the data to be sent and the data to be received,
respectively. The len member contains the number of bits to be sent or received.

e The source code has separate functions for transmission and reception namely TRANS_transmitBytes() and
TRANS_receiveBytes(). This means that each ioctl call uses only either tx_buf or rx_buf.

e SPI_IOC_MESSAGE(1) is a request for start of SPI transaction. For more information regarding this command, see
https://www.kernel.org/doc/Documentation/spi/spidev.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.kernel.org/doc/Documentation/spi/spidev

= LATTICE

2.4.3. rbpi_tx() and rbpi_rx() Implementation

The functions rbpi_tx() and rbpi_rx() use rbpi_ioctl() to initiate the SPI transaction.

int rbpi tx(uint8 t *buf, uint32 t bits)
{
uint32 t bytes = bits/8;
assert (bits % 8 == 0 && bits >= 8); Bits to bytes conversion

#ifdef PRINT STATUS
static long n = 0;

if (++n % 512 == 0) {
printf(".");
fflush (stdout) ;

}
#endif

if (rbpi_ioctl (buf, NULL, bytes)) { rbpi_ioctl function call
fprintf (stderr, "SPI ioctl write failed: %$s\n", strerror (errno)):;
return 0;

} else
return 1;

int rbpi rx(unsigned char *buf, int bits)
{
uint32 t bytes = bits/8;
assert (bits % 8 == 0 && bits >= 8); Bits to bytes conversion

#ifdef PRINT STATUS

static long n = 0;
if (+4n % 512 == 0) {

printf(".");
fflush (stdout) ;

}
#endif

if (rbpi_ioctl (NULL, buf, bytes)) { rlapor_Joeid e el
tprintt (stderr, "SPL 1octl read failed\n");
return 0;

} else
return 1;

e The argument len of rbpi_tx() and rbpi_rx() is converted to bytes as rbpi_ioctl() uses bytes for length of data to be
sent or received.

e For rbpi_tx(), the pointer buffer buf is passed along to the tx_buf argument of rbpi_ioctl() while the rx_buf
argument is set to NULL. For rbpi_rx(), the pointer buffer buf is passed along to the rx_buf argument of rbpi_ioctl()
while the tx_buf argument is set to NULL.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide :..LATT’CE
Reference Design

2.4.4. rbpi_assert_cs() Implementation

The function rbpi_assert_cs() pulls the CS pins high and low. Note that these CS pins are not the dedicated CS pins of
Raspberry Pi. Dedicated CS pins are controlled automatically by the ioctl driver. However, the Lattice embedded
programming source code requires manual control of CS. Therefore, in this demo, GPIO pins are used.

3v3 © IEEN
2cspA crioz | © © HEEE
csct crios O O EED
crioa @ © GPIO14 UARTTX
T © © criois UARTRX
MOSI, criorz B ® GpIO1B PCMCLK PWMO
MISO, CLK GPIO27 @ @ GND
criozz B O crio23
3v3 @ crio24
spiMosi | epioto ‘B D T
sPiMISO | GPIos | B €D GPIO2s
SPISCLK = GPIO11 B & GPIO8 SPICEO Dedicated SPI CS pins
ST D T crio7 SPICE! (do not use these)
2cIDEEPROM GPIOO @ @ GPIO1 12CIDEEPROM
crios 0 @ R
GPIos €D & GPI012 PWMO
pwmi crios & @ IR
PWM1 PCMFS GPIO1® & €D GPIO16
GPIO26 €J) € GPIO20 | PCMDIN Actual CS pins used with
@ @ GPIO021 PCMDOUT the source code demo

Figure 2.1. Raspberry Pi Chip Select Assignment in Hardware

The following code snippets show sample implementations of CS toggling:

int rbpi assert cs(int asserted)

{

wait (0.05) ;

* (mem + (asserted ? GPCLRO : GPSET0) + (gpio_cs >> 5)) = (1 << (gpio _cs &
0x1F)) ;

count=0;

return 1;
}

int rbpi_assert cs(int asserted)

{
for (count=0; count<10; count++) {
* (mem + (asserted ? GPCLRO : GPSET0) + (gpio_cs >> 5)) = (1 << (gpio _cs &
0x1F));}
count=0;
return 1;
}

A wait() function is used before assertion or de-assertion is done. This is important because delay is needed before the
assertion and de-assertion commands especially during a verify operation. Alternatively, a for loop can be used to
control the delay of assertion and de-assertion.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 24

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide

Reference Design

= LATTICE

2.4.5. rbpi_exit() implementation
The function rbpi_exit() closes the SPI bus and the gpio control.

void rbpi exit ()

{

if (spi_fd > -1)
close (spi_ fd);

if (gpio fd > -1)
close (gpio_fd) ;

spi fd = -1;
gpio fd = -1;

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1

25

http://www.latticesemi.com/legal

= LATTICE

3. Compiling and Running the Demo

After modifying the source code and writing the driver, your files should now be ready for compiling and running.

1. To compile the demo, a Makefile will be used containing the following:

OBJ = main.o core.o hardware.o intrface.o SSPIEm.o util.o rbpi-spi.o
CFLAGS = -Wall

sspiem-rbpi: $(0OBJ)
cc -o sspiem-rbpi $ (OBJ)

clean:
rm -f *.o0 libmpsse/*.o sspiem-rbpi

Ensure the Makefile and all source codes including the driver files are in the same folder.

2. Run make sspiem-rbpi as shown in Figure 3.1.

When compiling for the first time, the list of objects compiled appears in the terminal. After running this
command, the executable file to run the demo is generated. If there are no changes, running the command
generates a prompt stating that sspiem-rbpi is up to date.

lattice@raspberrypi

lattice@raspberrypi

Figure 3.1. Sample Compilation

3. Run the executable file.

.sea and .sed files. Order of the two files
Executable file cannot be interchanged.

Frequency in kHz. For this Debugging mode:
example, frequency is set to 5000 -debug_off: no printing of debug logs
which is equivalent to 5 MHz. -debug_on: shows printing of debug logs

Figure 3.2. Example of Running the Executable File in File-Based Demo

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e The executable file is generated after compiling the source code and the driver. It initiates and ends the SPI
programming.

e The first argument of the executable file is the frequency in kHz. In this example, frequency is set to 5000 kHz
or 5 MHz.

e The second and third arguments are the .sea and .sed files. These files contain the programming commands
and the configuration data.

e The fourth argument turns debug printing on and off. Turning on debug printing shows the data sent and
received.

e All arguments of the executable file are required to run the demo.

Figure 3.3 shows an example of running the executable file with -debug_off. With debug off, the sample run of the
demo only shows a PASS result in the terminal. There are no logs for sending and receiving commands.

pb pi:
pberrypi:

Figure 3.3. Sample Run without Debug Printing

Figure 3.4 shows an example of running the executable file with -debug_on. With debug_on, the sample run of the
demo shows in the terminal the data transmitted and received. Debug mode should be enabled only when
debugging points of failure. Otherwise, enabling debug mode adds to programming time because of the printing of
logs.

efraspberrypi

Figure 3.4. Sample Run with Debug Printing

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figure 3.5 shows an example of running the executable file in the EPROM-based demo. For the EPROM-based
system, there are no arguments because the frequency, debug printing, .sea, and .sed files are set during

compilation.

Executable file

lattice@raspberrypi

P

Figure 3.5. Example of Running the Executable File in EPROM-Based Demo

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide :..LATTICE
Reference Design

4. Debugging Tips

The following are tips to help with debugging:

e Ensure the function specifications for sending commands are followed. For example, with TRANS_transmitBytes
and TRANS_receiveBytes, the arguments needed are the pointer buffer containing bits to be sent and the size of

bits to be sent. These arguments are not optional and are used by the programming algorithm. Furthermore, the
ioctl() driver used also requires these arguments.

int TRANS transmitBytes (unsigned char *trBuffer, int trCount)

{

return rbpi tx((uint8 t*)trBuffer, (uint32 t) trCount);
}
int TRANS receiveBytes (unsigned char *rcBuffer, int rcCount)
{

return rbpi rx((uint8 t*)rcBuffer, (uint32 t) rcCount);
}

e Ensure the CS signal is manually controlled by a separate GPIO and not the dedicated SPI CS pin.

Idle Next Byte
- SCK
Clock from
Controller ; i ' J ol
01234567 01234567
PICO -k
sp| Peripheral-In : .
4 Controller-out ‘11001010
Dedicated 0x53 = ASCII 'S’
Pins
POCI
Peripheral-Out
Controller-In
. cs —I After Last Do not use
Chip Select Byte Sent dedicated CS
or Received
GPIO controlled | "After Last
by hardware.c I Byte Sent Use GPIO for manual CS
for CS —— or Received control

Figure 4.1. lllustration of Manual Chip Select Control

e Ensure there is enough time for verification. This is done by adding wait time before asserting or de-asserting CS.
For this demo, approximately 3 ps is sufficient to finish verification. Verification time depends on the controller
used. It is the user’s responsibility to find the optimal delay time for the controller used. Refer to rbpi_assert_cs()
Implementation for information on adding delay before assertion and de-assertion of chip select (CS).

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02295-1.1 29

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

= LATTICE

e Check waveform captures to ensure they match how programming is performed by the Radiant or Diamond

programmer.

When debugging an embedded programming implementation, compare how the Radiant or Diamond programmer
performs the programming. Figure 4.2 shows an implementation with a verified failure.

89.21 us | 8187 us | /382 us 7|
‘ 3143 [282.8° |31.49° |
Commands sent are correct. Ox6A is the read
command for MachX05
|
MISO
[]
[oo X oo T
MOSI
cs CS high signal is too short for verification
(approximately 700 ns)

103.7

137 -_—‘_l_.’* 1437 1527 163.7 173.7 1827

Figure 4.2. Verified Failure (CS High Signal is Too Short)

To obtain a successful implementation for comparison, testing was done with the HW USBN 2B programming cable
and the Radiant Programmer. The Radiant Programmer was found to require a longer CS high signal for the
verification operation as shown in Figure 4.3.

32,55 ms 3261 ms 65.52 us o~ Using HW USBN 2B, there is
approximately 65 ps of delay in which CS
is high after each verify operation.

| R~
'iEEEE) i_/ [T [T

e bbb

Figure 4.3. HW USBN 2B Implementation of CS High Signal

After adding delay according to rbpi_assert_cs() Implementation, embedded programming is successful.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1

30

http://www.latticesemi.com/legal

5. Hardware Validation Summary

Table 5.1 shows the results from validation of the demo on different development boards. Failures at high frequencies
can be attributed to board layout deficiencies. Check the datasheet for the maximum operating frequency of the
device. Then, follow the hardware checklist of the device and use the proper layout techniques to optimize the

operating frequency.

Table 5.1. Hardware Validation Results

= LATTICE

- CrossLinkPlus LIF-MDF6000
Frequency B N e et MachXO3LF Starter Kit Master Link Board (Revision
Board
B)
5 MHz Pass Pass Pass
20 MHz Pass Pass Fail (Pass at 19 MHz)
25 MHz Fail Pass Fail

Note: When using Lattice development boards for testing, ensure that the FTDI chip of the board is disabled. Check the
development board schematic or user guide for guidance on disabling the FTDI chip.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide

Reference Design

= LATTICE

Appendix A. Generation of .sed and .sea Files

This section describes the steps for generating the .sed and .sea files needed for embedded programming. The Radiant
Programmer can directly generate the .sed and .sea files. For the Diamond Programmer, the Deployment Tool is

needed to generate the .sed and .sea files.

A.1. Generating .sed and .sea Files Using Radiant Programmer

1. Open the Radiant Programmer and set up your operation. For example, fast configuration of the MachX0O5-NX
configuration SRAM using the slave SPI port.

Status Device Vendor

1 Lattice

Device Family

LFMXO5 LFMXO5-25

0 LIMXOS - LEMKDS-25 - Device Properties

Device

Static Random Access Memor y (SUAM)

Slave SPL

< el <]l

Drect Propramming

Fest Configuration

Fast Configuration

Opesation

Cable Setup a

C:fUser| Cabke Settngs

Detect Cable

Cable: WSS FTD) v
Port: FTUSE 0 -
Custom part:
Programming Soeed Settings

() Use default Ciock Divider
® Lem custom Cock Divider

ToK Divider Seteng (0-30: [0 2
TI0 Settings.

® use defsult 0 setings

) s custom 110 setings

Programing file: 25 EWN_default (RO 25 EVN_defualtimal_test impi_Lbit...

u] ey enabled)

= == -

Output

Figure A.1. Radiant Programmer .xcf File Generation

2. For the EPROM-based system, click the Generate Embedded Code button to open the Embedded Options window.
Check the Convert VME files to HEX (.c) for Prom-Based Embedded VME checkbox and then click OK.

Embedded Options g x

Compress Embedded Files
Convert VME files to HEX (.c) for Prom-Based Embedded VME
[] Mot Indude Header

Algorithm File: |3|der (54)/S5PI_FastConfig_algo.sea V|

Data File: |=w folder (34)/55F1_FastConfig_data.sed V|

Figure A.2. Embedded Options Window

Note: You will need to write the header files for the generated .c arrays.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 32

http://www.latticesemi.com/legal

SSPI Embeddet.:l Programming Demo Using Raspberry Pi User Guide :..LATT’CE
Reference Design

3. Click the Generate Embedded Code button.

£3 Radiant Programmer - SSPI_FastConfig.xcf Generate Embedded
File Edit View Run Tools Help Code Button
e BRQ & S B
Status
1

Figure A.3. Generate Embedded Code Button

The .sed and .sea files are generated as indicated in the Output window.

Qutput

Algorithm Output File: C: JUsersfrquizon/Documents Rhodz_files /Embedded programming/Slave SPI/Embedded_Programming_Documentation/Sample_flow/S5P1_FastConfig_slgo.sea
Data Qutput File: C:/Users rquizon/Documents/Rhodz_files/Embedded programming/Slave SPI/Embedded_Programming_Documentation/Sample_flow/SSPI_FastConfig_algo.sea
Device1 LFMX05-25:Fast Configuration

The following file(s) generated:

C:\Users\rquizon\Documents'\Rhodz_files\Embedded programming\slave SPI\Embedded_Programming_DocumentationSample_flow\S5PI_FastConfig_algo.sea
C:\Users'rquizon\DocumentsRhodz_files\Embedded programming\Slave SPT\Embedded_Programming_Documentation\Sample_flow\55P1_FastConfig_data.sed
Build Slave SPI Embedded File Operation: Successful.

Lattice Radiant Deployment Toal has exited successfully.

Figure A.4. Generation of .sed and .sea Files

The .sed and .sea files appear in the .xcf file directory.

MName Date modified Type Size
xcf File . [7] SSPI_FastConfigact 6/4/2024 12:02 PM XCF File 2KB
.sea File |J SSPI_FastConfig_algo.sea 6/4/2024 12:06 PM SEA File KB
sed File -~ |j 55PI_FastConfig_data.sed 6/4/2024 12:06 PM SED File 571 KB
-

Figure A.5. Generated .sed and .sea Files in .xcf File Directory

For the EPROM-based system, c array files also appear in the .xcf file directory.

xcf File *| SSPI_FastConfig.xcf 1/8/2025 10:20 AM XCF File 2KB
.sea c Array SSPI_FastConfig_algo.c 1/8/2025 10:25 AM C File 19 KB
SSPI_FastConfig_algo.sea 1/8/2025 10:25 AM SEA File 3KB

.sed c Array SSPI_FastConfig_data.c 1/8/2025 10:25 AM C File 3497 KB
SSPI_FastConfig_data.sed 1/8/2025 10:25 AM SED File 571 KB

Figure A.6. Generated .c Files in .xcf Directory

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 33

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

= LATTICE

A.2. Generating .sed and .sea Files Using Diamond Programmer and Deployment

Tool

1. Open the Diamond Programmer and set up your operation. For example, Erase, Program, Verify for SSPI operation.

=45 BEPLORE
Enable Status Device Famiy Device Operation &
14 MachXO3LF LCMXO3LF-6900C Slave SP1 Erase, Program, Vesify G Ao oS
Cable: HW-USBN-28 (FTDD)
Port: FTuse-0
Custom port:
Programming Speed Settings
O Use defauit Clock Dnider
® Use custom Codk Dvider
TOK Divider Setting (0-30x): |5
- 1/O Settngs.
& MachXO3LF - LCMXO3LF-6900C - Device Properties ? x ?) e dak 0 s
Genersl Device Information §) Use custom 10 settngs
Device Operation H
Access mode: Siave SP1 Interface Programming 2 -
Operaton: Save 51 Erase Program, Verify Ad =
Programmng Optans
Programmng fie: Dads/New folder (23)MachXOXF_Starter_Kit/bitstream Blirk_impi Lyed ...
T
[outout Info’ 8 x
Figure A.7. Diamond Programmer .xcf File Generation
2. Save the .xcf file in a directory.
3. Open the Deployment Tool (Design>Utilities>Deployment Tool).
. Diamend Programmer - Test_SSP|xcf
File Edit View Design Help
il . JTAG Scan |
Enable & Check XCF Project Device Family
1 . ¥ Program LCMXO3LF-69(
Log
2 Clear Log File
Utilities * B Deployment Tool
BSCAN Configuration... Bouinaadibetai ey
&2 Model 300 Programmer
~* Programming File Utility
Figure A.8. Accessing the Deployment Tool
© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-RD-02295-1.1 34

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide

Reference Design :..LATT’CE

4. Select the options as shown to generate the .sed and .sea files.

Diamond Deployment Tool - Getting Started

(® Create New Deployment

Function Type: Embedded System

Output File Type: | slaye SPI Embedded

(C) Open an Existing Deployment

Recent Files:

Close

Figure A.9. Slave SPI Embedded Generation in Deployment Tool

5. Check the Input XCF file checkbox, select the .xcf file previously saved in step 2, and click Next.

Embedded System: JTAG Full Ve Embedded

Step 1 of 4: Select Input File(s)

& iput 5 fle: [

| Programming D _fom_Piamondest_S5P1,xcl
Fie Name: Deviee Family

Gperston
1| Ciserssiquizon/Downlosds/New fokder (Z2/Machi... MachXOILF

Slave SP1 Erase Prograny

Mark the Input XCF file checkbox.

Select the previously saved .xcf file.

Figure A.10. Selecting .xcf File

6. The settings as shown appear in the next page. Leave the settings as is for this demo. For the EPROM-based system,
check the Convert VME files to HEX (.c) for Prom-Based Embedded VME checkbox. Click Next.

Diamaond Deployment Teol- projectd.ddt™
Eile Edit Help

AR H DL ROl £ E

f.
Embedded System: Slave SPI Embedded

Step 2 of 4: Slave SPTI Embedded Options

Compress Embedded Files

[] convert VME files ta HEX (.c) for Prom-Based Embedded YME
[Mot Indude Header

Figure A.11. Embedded File Generation Options

Note: You will need to write the header files for the generated .c arrays.

7. Confirm the location of the .sed and .sea files and click Next.

TEH BERELDN 2B

[Embedded System: Slave SP1 Embedded

S —

Algorithm File: A SP1/Embedded_Pragramming_DocumentationySample_flow_Diamond, Test_SSPI_akgo.sea ~
Dt Fie: C:Aserse SP1fEmbedded_Programming_Docmentation/Sample_flow _Dismond/Test_SSP1_data,sed

Figure A.12. Location of .sed and .sea Files

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
FPGA-RD-02295-1.1

35

http://www.latticesemi.com/legal

SSPl Embedded Programming Demo Using Raspberry Pi User Guide :..LATT’CE

Reference Design

8. Click Generate. The .sed and .sea files are generated as indicated in the window.

Diamand Deployment Tool- project0 it

- g x
File Edit Help
A EERDEDE 4B
Embedded System: Slove SPLEmbedded
Step 4 af & Generate Deplryment
‘Copy Sourca Code With Generated i
Deployment Tool Summary
Tnput File: € _Files/Rrbedded SPL/ Enbeddnd xz :_ELow_Diamond/Test_SIFL.act
oprsons.
: om
- oee
Gurpur File 1: C:/Users/: £ x X _Flou_| _SSPT_alge.sen
urpur File 2: C:/Users/squizon/Documents/Rhcds_iles/Enbedded - Do Lo_flou_! S55T_daza.sed
Command Line
T L oft 2506 4 T oaumentshodz | | programiing flow _DxamondiTest SSPLwct” fa T X | Programinng. :_flow _DxamondiTest S5°1_so sea’ 0k
ke SPIjEmbedded_Programing Documentation/Semple _Sow Diamond Test_S5P1_dots, sed”

Deployment Generation Status
Lattice Diamand Depioyment Tool 3.12 Command Line
Lading Programmer Device Ditabase.

Generating Slave 5°1.....
Feading Tnput Fle: C:1 X i _Pragramming_D _fiom,_Plamond|Test_SSPLxc

: Ci . f lave Programming [X f 1_skgo.ses
Data Output Fe: C: SPI{Embedded_Programming_Documentation/Samgse._flow_Dismond Test_SSP1_sigo sea

Device LCHIOILF 900C-Slave 591 Erase,Program Verify

The fullaming fe{s) generated:
iy g | Programmng 0 _fiow_Diamondiest 5591_slgo.sea
cil X 2 Programming D om_DlamondiTest_SSP1_data.sed

Buid Save SP1 Embeedded Fiks Cperation; Succasehul,
Latiice Ciamand Depioyment Tool has exited successhly.

Figure A.13. Generation of SSPI Embedded Files
The .sed and .sea files appear in the .xcf file directory.
MNarme Date modified Type Size
xcf File [] Test_SSPLxcf 6/4/2024 12:18 PM XCF File 2KB
.sea File | 7] Test_SsPI_algo.sea B/4/2024 12:28 PM SEA File 80 KB
.sed File | | Test_S5PI_data.sed /472024 12:28 PM SED File 222 KR

Figure A.14. Generated SSPI Embedded Files

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1

36

http://www.latticesemi.com/legal

SSPI Embedded Programming Demo Using Raspberry Pi User Guide
Reference Design

= LATTICE

References

e Programming Tools User Guide for Radiant Software 2024.1

e Lattice Diamond 3.13 Programming Tools User Guide

e Spidev documentation

e SSPI Embedded Programming using RPi Reference Design web page
e MachX05-NX Development Board web page

e MachX03LF Starter Kit web page

e CrossLinkPlus LIF-MDF6000 Master Link Board web page

e Lattice Solutions Reference Designs web page

e Lattice Diamond Software User Guide

e Lattice Radiant Software User Guide

e Llattice Insights for Lattice Semiconductor training courses and learning plans

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1

37

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=54305
https://www.latticesemi.com/view_document?document_id=54305
https://www.latticesemi.com/view_document?document_id=53947
https://www.kernel.org/doc/Documentation/spi/spidev
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/referencedesigns/referencedesigns05/sspi-embedded-programming-using-rpi-reference-design
https://www.latticesemi.com/products/developmentboardsandkits/machxo5-nx-development-board
https://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits/MachXO3LFStarterKit
https://www.latticesemi.com/products/developmentboardsandkits/crosslinkplusmasterlinkboard
https://www.latticesemi.com/solutionsearch?&qiptype=3614c818569f4eecb0602ba20a521a41&active=refdesign
https://www.latticesemi.com/view_document?document_id=53945
https://www.latticesemi.com/view_document?document_id=54300
https://www.latticesemi-insights.com/

SSPI Embeddet.:l Programming Demo Using Raspberry Pi User Guide :..LATT’CE
Reference Design

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, please refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1 38

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

SSPI Embedded Programming Demo Using Raspberry Pi User Guide

Reference Design

= LATTICE

Revision History

Revision 1.1, February 2025

Section

Change Summary

Abbreviations in This Document

Added EPROM.

Introduction

Added description of embedded source code types in the Embedded Programming
Source Code Architecture section.

Updated figure title and labels in Figure 1.4. Embedded Programming Source Code Lists
for File-Based Source Code.

Added Figure 1.5. Embedded Programming Source Code Lists for EPROM-Based Source
Code.

Modifying the Source Code and
Writing the Driver

Updated section title and description in the Updating main.c for File-Based Source Code
section.

Added the Updating main.c for EPROM-Based Source Code section.

Added statement about hardware.c being the same for file-based and EPROM-based
source codes in the Updating hardware.c section.

Compiling and Running the
Demo

Updated figure title in Figure 3.2. Example of Running the Executable File in File-Based
Demo.

Added Figure 3.5. Example of Running the Executable File in EPROM-Based Demo and
description.

Appendix A. Generation of .sed
and .sea Files

Added step 2 on EPROM-based system in the Generating .sed and .sea Files Using
Radiant Programmer section.

Added Figure A.6. Generated .c Files in .xcf Directory and description.

Updated step 6 to include EPROM-based system in the Generating .sed and .sea Files
Using Diamond Programmer and Deployment Tool section.

References

Added link to reference design web page.

Revision 1.0, September 2024

Section

Change Summary

All

Initial release.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02295-1.1

39

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	SSPI Embedded Programming Demo Using Raspberry Pi User Guide
	Contents
	Abbreviations in This Document
	1. Introduction
	1.1. Embedded Programming Source Code Architecture
	1.2. Source Code Directory

	2. Modifying the Source Code and Writing the Driver
	2.1. Updating main.c for File-Based Source Code
	2.1.1. Adding an Instruction Function
	2.1.2. Updating main() Function

	2.2. Updating main.c for EPROM-Based Source Code
	2.2.1. Updating main() Function

	2.3. Updating hardware.c
	2.3.1. wait() Implementation
	2.3.2. TRANS_transmitBytes() and TRANS_receiveBytes() Implementation
	2.3.3. TRANS_starttranx() and TRANS_endtranx() Implementation
	2.3.4. TRANS_cstoggle() and TRANS_runClk() Implementation
	2.3.5. TRANS_transceive_stream() Implementation

	2.4. Creating rbpi-spi.c
	2.4.1. rbpi_init() Implementation
	2.4.2. rbpi_ioctl() Implementation
	2.4.3. rbpi_tx() and rbpi_rx() Implementation
	2.4.4. rbpi_assert_cs() Implementation
	2.4.5. rbpi_exit() implementation

	3. Compiling and Running the Demo
	4. Debugging Tips
	5. Hardware Validation Summary
	Appendix A. Generation of .sed and .sea Files
	A.1. Generating .sed and .sea Files Using Radiant Programmer
	A.2. Generating .sed and .sea Files Using Diamond Programmer and Deployment Tool

	References
	Technical Support Assistance
	Revision History
	Revision 1.1, February 2025
	Revision 1.0, September 2024

