= LATTICE

Interactive Timing Analysis Using TCL in Lattice
Radiant Design Software

Application Note

FPGA-AN-02091-1.0

July 2024

r;z[iaczili\;enTI:Ir;lizg Analysis Using TCL in Lattice Radiant Design Software .I:LATTICE

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The
information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered
inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have
been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE
PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK
USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE
REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF
FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-AN-02091-1.0 2

http://www.latticesemi.com/legal

= LATTICE

Contents
(6] 41T o £SO TP PP PPPPOPPPPPP 3
AbDreviations iN ThiS DOCUMENT.......ciiiiiii ittt ettt e et e e s st e e e s bt e e e s baeessabaeessabeeeesabteessasbaeesabbeeassteessssaeesnsseeenn 5
IR [Y oo [F T e o USSR PRUROPRI 6
1.1. Y0 Lo [T o ol TSR PRRTSPTRURRPRIN 6
2. Launching the Radiant SOftWare in TCL IMOGE.......uuiiiiiiieeceiieeeceee ettt e et e s ee e e e tre e e e e e e e sarteeesstseeeeneaeesnneeaeensreeennnes 7
3. TCL Commands for TiMING ANIYSIS ...cccuuteiueriiieiieetee ettt sttt ettt e bt sb e st esbee st e esabeesateesaeeesaee e beeeseesabeeeseenane 9
3.1. STa_Set_OPtioN COMMANGciiiiiiiiieie ettt sttt e sa et be e e bt e st e e s b e e sabeesaee e bt e esseesabeesneesanees 10
3.1.1. Use Cases for the sta_set_option COMMANGccccuiiriiiiieeiie ettt sae e e e seaeesbe e e saeeeaeesbaesaree e 10
3.2. Sta_get _ClOCKS COMMEANG. .. .iiiiiiii ittt et e e ettt e st e e sttt e e s s abeeesaabaeessabeeessabaeesaasaeessabeeenn 10
3.2.1. Use Case: Retrieve Clocks with Specific Names or Patterns.........ccceeeecieeieiiie e ettt 11
3.3. Sta_get COVErage COMMANG.....c.iiiiiiieeeiiee e ettt e et e e e ettt eeeetaeeesbaeeeeabaeeeesaesesssaeeassseseassasesssaaeasreseasseeesnssnens 11
3.3.1. Use Case: sta_get_coverage COMMEANGccocuiieiiiiieiiiieeeiieeeesieeeseeeeessareeeestaeessnsaeessnsaeeesnsseessnsseeessseeean 12
3.4, L= I =L A L o J 0] 011 = o SR 12
3.4.1. Use Cases for the sta_get_info CoOMMAaNGdcoc.uiiiiiiiiiiiiiee ettt s s 13
3.4.2. Use Case: TO Create CoONSTIaiNtS.....ccuuiiiiiiiieiiiittee ettt e s sttt e e e e s s et e e e e s s sebbeteeeesessnbateeeessennsrneaeessasnns 13
3.5. sta_get _PAths COMMEANGoiiiiiiee ettt e et e s st e e e s bt e e s s ate e e sbaeeesbteeessbeeessnaens 14
3.5.1. Use Cases for the sta_get_paths COMMANG.........ccccuiiiiiiiii it tre e e stae e e e tre e e eaaae e saaeeean 14
3.6. sta_get SIACK COMMANGooiieie ettt et e e et e e e et e e e e stbeeeesataeesasaaeeessbeseeastaeesansaeesanrenann 15
3.6.1. Use Cases for the sta_get_slack COMMaNd.........cocoiiiiiciii it e et e e e e enee e e snaeeean 15
3.7. L= I A (= 4 00 1o - o ST 16
3.7.1. Use Cases for the sta_get_terms COMMAaNGcoouiiiiiiiiiiiie ettt s sreesanee e 16
3.8. Sta_Path_iNfO COMMANGiiiiiiie ettt st e st e sabe e s st e e bt e e sbeesabeesneesaneas 16
3.8.1. Use Cases for the sta_path_info COMMAaNdccccueiiiiiiiiiiie e s s sae e 17
3.9. sta_report_clocks COMMANGooiiiiiiie ettt e e st e e s bte e e sabe e e sbtaeesbbeeesnbaeessnaeas 18
3.9.1. Use Cases for the sta_report_clocks COMMAaNd..........ccccuiiiiiiiiiieiiie e e e etre e e e e e e e eaae e e sareeean 19
3.10. sta_report_constraints COMMANGeiiiciieiiiieeeeeee e e st e e e eere e e seee e s taeeeasteeessaeeesnseeeeassesesssneesnssesennes 20
3.10.1. Use Cases for the sta_report_constraints Command........cccccueeieiiiieriiiee e e eseeeseereeeseree e e see e e seereeesaeeeeas 20
3.11. sta_report_timing COMMANGioiiiiiiiiiie ettt ettt ettt s bt e st e st e e s it e e s st e e sbe e e bt e eabeesabeesaneesareennneens 21
3.11.1. Use Cases for the sta_report_timing COMMANGccccuieiiiiiiiiiiieiie ettt sbeesnee e 21
3.12. sta_report_unconstrain@d COMMAaNdccuiiiiiiiiiiiiiteriee ettt et e ste e s bte e s site e s sbteeesbeeesssteeesbeaeesnseeeesnnns 22
3.12.1. Use Cases for the sta_report_unconstrained COmMmMAaNdccceeriierireiieeiee e eireesiee e eseeeseessreessaeesane 23
0] LT =T g Lol =TSPTSRO 24
TECHNICAl SUPPOIT ASSISTANCE ...eeiiiiiieeeiiii et ettt e ettt e eete e e e st e e e e tbaeeeebaeeesbaeeeastseeeessaeesasaaaaasstaseassaeessssaesasbesesansasenansens 25
AV] oY i T 1] o) Y PSPPI 26
Figures
Figure 2.1. Integrated TCL Console in the Radiant SOftWAIEeiiiiii ittt e st e e ara e e s tre e e e ateeesnens 7
Tables
Table 2.1. Project vs NON-project floW diffEerEnCeS........cooiiii i ettt e e et e e e ate e e s bt e e e ebbe e e eaaaeeesreeean 8
Table 3.1. sta_get ComMmMaANd DESCIIPTIONiii et e et ectee e e e e et ee e e te e e s eateeeesateeeeessaee e nseeeesssaeeeansaeesssseseeansseesansneeesnsnnannn 9
LI o] (S B0 = Y =Y o To T s fl @ g T o F=Ya Vo N BT T o)1 [o 1S 9
Table 3.3. sta_* COMMANT DESCIIPTION ..cc.vieiieeieetieieete ettt sttt et st e st et e et e saeeste e teeatees e e bt enbesntesaeesbeensesnsesaeesaeensesnsesaes 9

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Inter.actl've Timing Analysis Using TCL in Lattice Radiant Design Software .I:LATTICE
Application Note

Table 3.4. sta_set_option USage DESCIIPLION ..eccciiii e ciie ettt e eree et e e et e s te e e st e e e e et e e e easaeeesasteeeansteeessaaeesnsseeeasseeesnenes
Table 3.5. sta_get_clocks Usage Description...........

Table 3.6. sta_get_coverage Usage Description
Table 3.7. sta_get_iNfo USAZE DESCIIPTION ...eccueiiiieeieeitieste ettt este et e et e st e s beestteesateesateesbeeeseeesbeeeseesaseessseessseessseenseeensaesnsenan
Table 3.8. sta_get_paths Usage Description .
Table 3.9. sta_get SIack USage DESCIIPIONciiiiiieceiiee e cieee ettt cette e st e e e e tte e e e tb e e e sbaeeeebteseeasaaeesabbeeeessaeeessaseesbeeeasseeesssens
Table 3.10. sta_get_terms USage DESCIIPLION ...c..vii ittt e e e et e e e et e e e e ate e e etaaeeeatteeesastaeesssaeeesteeeenssseesnsens

Table 3.11. sta_path_info USage DeSCriPLiON ...c.cuuii i ieeeciiie ettt eete e st e e ste e e et e e e s ta e e e s ste e e sssaeeesasaeeeansseeesseneesnsseeeasseeesnenes

Table 3.12. sta_report_clocks USage DeSCIiPLiONcccuuiiiiciieeecieeeeiee e st e e ettt e e see e e st e e e e sate e e enaaeesssteeeessaeesansaeeansseseensseeesnnsnes 18
Table 3.13. sta_report_constraints USage DeSCIiPLiON.ccc.uiiiiieiieiiieeieeitt ettt ettt sttt ettt et et e s b e e et e sabeesaneesaneas 20
Table 3.14. sta_report_timing USage DESCIIPLIONciiitiiiiieitieeieeritt ettt et st e st e st e st e st e sateessee s bt e e bt e sabeesseesateesaneenneeas 21
Table 3.15. sta_report_unconstrained Usage DeSCIIPLIONccciuiiiiiiiiiiiiie ettt sitee ettt ste e e st e e st e e ssateeessaseeessabeeesnanns 22

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-AN-02091-1.0 4

http://www.latticesemi.com/legal

Interactive Timing Analysis Using TCL in Lattice Radiant Design Software

Application Note

= LATTICE

Abbreviations in This Document

A list of abbreviations used in this document.

Abbreviation Definition

TCL Tool Command Language
SDC Synopsys Design Constraints
STA Static Timing Analysis

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02091-1.0

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

The Lattice Radiant™ software is the complete design environment for Lattice Semiconductor FPGAs. The software includes
a comprehensive set of tools for all design tasks, including project management, design entry, simulation, synthesis, place
and route, in-system logic analysis, and more.

The Radiant software is equipped with the Tool Command Language (TCL) for scripting. TCL is a key component of the
Synopsys® Design Constraints (SDC) format, which provides a versatile language in communicating timing constraints to
FPGA synthesis tools from various vendors, including Synopsys Synplify. This widespread use of TCL for FPGA designs has
established it as a “Best Practice” in the scripting language domain.

The standout feature in TCL is its ability to conduct interactive queries with design tools and execute automated scripts. This
dual functionality makes it a comprehensive platform for managing design databases, including tool settings and design
states. For instance, Radiant TCL allows real-time querying of certain timing analysis report commands, applying
incremental constraints, and conducting immediate post-application queries. This ensures that the expected behavior is
verified without the need to re-run any tool steps. This interactive capability makes TCL an invaluable tool in managing and
navigating design databases.

This document covers the interactive static timing analysis (STA) using the TCL commands in the Lattice Radiant software.

1.1. Audience

The intended audience for this document includes FPGA design engineers who are using the Lattice Radiant design
software. The technical guidelines assumes that the readers have some basic knowledge of TCL and the SDC constraints
usage.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Interactive Timing Analysis Using TCL in Lattice Radiant Design Software .I:LATTICE

Application Note

2. Launching the Radiant Software in TCL Mode

The Radiant software includes TCL as its integrated scripting language, which enables you to launch the Radiant software in

TCL mode without opening the Radiant software graphical user interface (GUI). This feature is useful for scripting the

compilation flow.

You can launch the Radiant software in TCL mode using one of the following methods:

e Using the radiantc application (also known as pnmainc.exe), which is located in the Radiant software installation
directory <radiant>/bin/nt64/radiant.

e Using the integrated Radiant TCL console, which can be accessed via the Windows start menu > Radiant > TCL Console

R TCL Console

Figure 2.1. Integrated TCL Console in the Radiant Software

e Using the Windows command line to call the pnmainc.exe application.

For instance, using a batch file to call the radiantc application to run the TCL scripts. This approach allows you to
automate and run the tasks without opening the Radiant software GUI. Make sure to edit the directories in the batch
file to match the directories on the workstation.

For example, C:/Iscc/radiant/<version>/bin/nt64/radiantc -source C/projects/script.tcl
If you intend to open the GUI during the non-project flow, use the -gui option along with radiantc.

For example, C:/Iscc/radiant/<version>/bin/nt64/radiantc -gui -source C/projects/script.tcl

The TCL console in the Radiant software offers two distinct design flows:
e Project flow
The project flow allows you to perform the following functions:
e Create a new project or load a previously saved project from an existing project file.
e Add, delete, or list project files, which include RTL, constraint, and strategy setting files.
e Save the ongoing project into a project (.rdf) file at any point during the flow.

e Non-project flow
The non-project flow can be initiated from an existing project flow design commands. The flow begins by reading a
Radiant software database (.udb) file as input, after which the design implementation process can continue by running
MAP, or place & route depending on the loaded .udb file.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-AN-02091-1.0 7

http://www.latticesemi.com/legal

= LATTICE

The following table shows the key differences between project flow and non-project flow.

Table 2.1. Project vs Non-project flow differences

Feature

Project Flow

Non-Project Flow

Design Storage

Stores design in disk files. Allows different
strategies to implement the same project.

Keeps design in memory. Enabling interactive access
and changes using command. For example, using
timing analysis commands to report timing results at
different paths.

File Management

Requires adding project files and checks
timestamps for changes. Prompts for rerunning
specific stages based on the changes.

Starts with a Radiant software database (.udb) file as
input. The timestamp of this file is not checked during
the design flow.

Design Stages

prj_run commands (prj_run_bitstream,
prj_run_map, prj_run_par, prj_run_synthesis) can
be used to automatically run the design flow from
the current stage to the target stage.

Requires running all stages sequentially. For example,
placement (plc_run) must run before routing (rte_run).

Implementation
Strategies and Options

Uses implementation strategies, which are a
subset of all the available options.

Utilizes the full range of implementation options.

Note:

The TCL console inside the Radiant software GUI cannot be used to execute non-project mode commands. This document describes how
to use various commands of interactive STA in the non-project mode.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. TCL Commands for Timing Analysis

The non-project mode TCL in the Radiant software provides a set of sta commands to perform timing analysis in an
interactive manner. These commands are primarily divided into the following categories:

sta_get command: The sta_get command is designed to return a value based on the specified parameters. This
returned value can be utilized in other sta commands to perform further operations or analysis. Additionally, it can also
be printed out to the standard output for immediate viewing or logging purposes.

The following table lists the sta_get commands that are supported in the Radiant software.

Table 3.1. sta_get Command Description

Command Description

sta_get_clocks To get a list of clocks that matches the specified name.
sta_get_coverage To get the timing constraints coverage.

sta_get_info To get information about a clock, port, or a pin.

sta_get_paths To get the details of the paths.

sta_get_slack To get the total negative slack, or terminal worst slack information.
sta_get_terms To get a list of ports and pins that matches the specified names.

sta_report command: The sta_report command is used to send the information directly to the standard output. This
allows you to instantly view the results of your timing analysis, making it a valuable tool for real-time monitoring and
adjustments.

The following table lists the sta_report commands that are supported in the Radiant software.

Table 3.2. sta_report Command Description

Command Description

sta_report_clocks To report the clocks.

sta_report_constraints To report timing constraints.
sta_report_timing To report detailed timing or timing summary.
sta_report_unconstrained To report unconstrained ports. Pins or nets.

sta_* command: Use the help {sta_*} command to access a list of all the sta commands that are available in the Radiant
software along with the descriptions and usage instructions. This feature ensures that you can easily find and
understand the commands you need for your specific timing analysis tasks.

The following table lists the other sta commands that are supported in the Radiant software.

Table 3.3. sta_* Command Description

Command Description
sta_path_info To extract data from a given path.
sta_set_option To change the style of the timing report.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3.1. sta_set_option Command

The sta_set_option command is used to change the style of the timing report. This allows you to customize the
presentation of the timing report based on your preferences.

Syntax:
sta_set_option [-help] [-name <logical/physical>] [-worst_delays]

The following table lists the flags that you can use with the sta_set_option command.

Table 3.4. sta_set_option Usage Description

Flag Description
-help Provides help information related to the sta_set_option command.
-name A string parameter that represents the type of names to use in reports. It can be logical or physical. When

specified, the command uses logical or physical names in reports.

-worst_delays A boolean flag. When specified, the command enables worst case delay if true.

3.1.1. Use Cases for the sta_set_option Command

The following lists the use case examples for this command:

e Changing Name Style: To change the name style in the timing report, use the -name flag.
For example, the following command will use logical names in the report:
sta_set_option -name logical
Or, the following command will use physical names in the report:
sta_set_option -name physical

e Enabling Worst Case Delay To enable worst case delay in the timing report, use the -worst_delays flag.
For example, this command enables worst case delay:
sta_set_option -worst_delays

3.2. sta_get_clocks Command

The sta_get_clocks command is used to retrieve a list of clocks that matches a specified name.

Syntax:

The syntax information for the sta_get_clocks command is as follows:
sta_get clocks [-help] [name]

The following table lists the flags that you can use with the sta_get_clocks command.

Table 3.5. sta_get_clocks Usage Description

Flag Description

-help Provides help information related to the sta_get_clocks command.

name This is a string parameter that represents the name of the clocks. When specified, the command returns a
list of clocks that matches this name.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

== LATTICE

3.2.1. Use Case: Retrieve Clocks with Specific Names or Patterns

Suppose there are multiple clocks in the design and you want to retrieve all clocks that have a specific name or pattern in
their name. You can use the sta_get_clocks command to do this.

The following lists the use case examples for this command:

e Example 1: In a design with multiple clocks, use the sta_get_clocks command to retrieve all clocks containing a specific
name. For example, this command example gets all clocks with ‘clk’ in their name:
sta_get_clocks clk

This command returns a list of all clocks in the design that have ‘clk’ in their name. This can be particularly useful when
you perform operations or analysis on a specific set of clocks in your design.

e Example 2: To retrieve all the clocks that start with a specific suffix clk_in, use the following command:
sta_get clocks clk_in*

e Example 3: To use the sta_get_clocks in a Tcl script, refer to the following example:
set clocks [sta_get_clocks <clock name pattern>]

foreach clock $clocks

{

puts "Clock name: $clock"

In this script example, the sta_get_clocks command is used to retrieve a list of clocks that match the specified name
pattern. The foreach loop then iterates over each clock in the list and prints out its name.

You can replace <clock name pattern> with the specific name or pattern of the clocks you want to retrieve. For example, to
retrieve all clocks that start with ‘clk’, you can use clk* as the name pattern.

3.3. sta_get_coverage Command

The sta_get_coverage command is used to retrieve the timing constraints coverage for connections in your design.

Syntax:

The syntax information for the sta_get_coverage command is as follows:
sta_get_coverage [-help]

The following table lists the flag that you can use with the sta_get_coverage command.

Table 3.6. sta_get_coverage Usage Description

Flag Description

-help Provides help information related to the sta_get_coverage command.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3.3.1. Use Case: sta_get_coverage Command

Suppose you have a complex design with numerous timing constraints and connections. You want to ensure that all
connections in your design are covered by your timing constraints. The sta_get_coverage command can be used to retrieve
the timing constraints coverage for all connections in your design. This can help you identify any connections that are not
covered by your timing constraints, allowing you to adjust your constraints accordingly.

For example, you can use the following command to get the timing constraints coverage for your design:
sta_get_coverage

This command returns the timing constraints coverage for all connections in your design. This can be particularly useful
when you want to verify the completeness of your timing constraints and ensure that all connections in your design are
properly constrained.

3.4. sta_get_info Command

The sta_get_info command is used to retrieve information about a clock or a terminal (port/pin).

Syntax: The syntax information for the sta_get_info command is as follows:
sta_get_info [-help] [-clock <clock_name>] [-waveform] [-period] [-duty_cycle] [-terminal
<terminal name>] [-isclockpin] [-isinput] [-isoutput] [-net] [-cell]

The following table lists the flags that you can use with the sta_get_info command.

Table 3.7. sta_get_info Usage Description

Flag Description

-help Provides help information related to the sta_get_info command.

-clock This is a string parameter that represents the name of the clock. When specified, the command returns
information about this clock.

-waveform This command returns the waveform of the specified clock.

-period This command returns the period of the specified clock.

-duty_cycle This command returns the duty cycle of the specified clock.

-terminal This is a string parameter that represents the name of the terminal. When specified, this command returns
information about this terminal.

-isclockpin This command returns 1 if the specified terminal is a clock pin else returns 0.

-isinput This command returns 1 if the specified terminal is an input pin else returns 0.

-isoutput This command returns 1 if the specified terminal is an output pin else returns 0.

-net This is a string parameter that represents the name of the net. When specified, this command returns

information about this terminal.

-cell This is a string parameter that represents the name of the cell. When specified, this command returns
information about this terminal.

Note:
Currently only one option is supported at any given time.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

== LATTICE

3.4.1. Use Cases for the sta_get_info Command

Suppose there are multiple clocks and terminals in the design and you want to retrieve specific information about them.
You can use the sta_get_info command to do this.

The following lists the use case examples for this command:

e Example 1: To get the waveform and period of a clock named ‘clk’, use the following command:
sta_get_info -clock clk -waveform
This command will return the waveform the clock named ‘clk’. This can be particularly useful when you want to analyze
the behavior of a specific clock in your design.

e Example 2: To check if a terminal named ‘term1’ is an input pin, use the following command:
sta_get_info -terminal terml -isinput

This command returns 1 if the terminal named ‘term1’ is an input pin. This can help you understand the role of specific
terminals in your design.

3.4.2. Use Case: To Create Constraints

You can use Radiant TCL commands to create timing constraints using the sta_get_info command. Here’s a sample script to
generate the create_clock constraint for clocks, set_input_delay constraint for input ports, and set_output_delay for output
ports.

Open the .sdc file for writing
set sdc_file [open "my_design.sdc" w]

Create a dummy virtual clock
puts $sdc_file "create clock -period 10 -name virt_clk"

Get all ports

set all ports [all inputs]

set all outputs [all outputs]

foreach portl $all outputs {
lappend all ports $portl

}

foreach port $all ports {
Query the port for clock pin
set isclockpin [sta_get_info -terminal $port -isclockpin]
Query the port for input
set isinput [sta_get_info -terminal $port -isinput]
Query the port for output
set isoutput [sta_get_info -terminal $port -isoutput]

Check if it's a clock pin
if {$isclockpin} {

Write out a create_clock command

puts $sdc_file "create_clock -period 10 \[get_ports $port\]"
}

puts $isclockpin
if {$isinput} {
Add a set_input_delay constraint

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

puts $sdc_file "set_input_delay -clock virt_clk 1 \[get_ports $port\]"

}
if {$isoutput} {
Add a set_output_delay constraint
puts $sdc_file "set_output_delay -clock virt_clk 1 \[get_ports $port\]"

Close the .sdc file
close $sdc_file

3.5. sta_get_paths Command
The sta_get_paths command is used to collect detailed paths for a query.

Syntax:
sta_get _info sta_get paths [-help] [-n <number_of paths>] [-from <from_name>] [-from_clock
<from_clock _name>] [-to <to_name>] [-to_clock <to_clock_name>] [-hold]

The following table lists the flags that you can use with the sta_get_path command.

Table 3.8. sta_get_paths Usage Description

Flag Description

-help Provides help information related to the sta_get_paths command.

-n This is an integer parameter that represents the number of paths to report.

-from This is a string parameter that represents the name/s of ports and/or pins. When specified, the command
returns paths from these ports/pins.

-from_clock This is a string parameter that represents the name/s of clocks. When specified, the command returns paths
from these clocks.

-to This is a string parameter that represents the name/s of ports and/or pins. When specified, the command
returns paths to these ports/pins.

-to_clock This is a string parameter that represents the name/s of clocks. When specified, the command returns paths to
these clocks.

-hold To report hold paths. If not specified, the command defaults to reporting setup paths.

3.5.1. Use Cases for the sta_get_paths Command

The following lists the use cases for the sta_get_paths command:

e Reporting Specific Paths: To report a specific number of paths in your design, use the -n flag.
For example, to report the top 5 paths:
sta_get_paths -n 5

e Analyzing Paths from Specific Ports/Pins: To analyze paths originating from specific ports or pins, use the -from flag.
For example, this command reports paths from the start_pin:
sta_get_paths -from start_pin

e Analyzing Paths to Specific Ports/Pins: To analyze the paths leading to specific ports or pins, use the -to flag.
For example, this command reports paths to the end_pin:
sta_get paths -to end_pin

www.latticesemi.com/legal

http://www.latticesemi.com/legal

== LATTICE

e Analyzing Paths from/to Specific Clocks: To analyze paths from or to specific clocks, use -from clock and -to clock flags.
For example, these commands report paths from the clk1 and clk2 clocks:
sta_get_paths -from_clock clkl
sta_get_paths -to_clock clk2

e Hold Time Analysis: In hold time analysis, use the -hold flag to report hold paths.
For example, this command reports the hold paths in your design:
sta_get_paths -hold.

e Analyzing Paths from Specific Clocks to Specific Pins: To analyze paths from a specific clock to a specific pin, use -
from_clock and -to flags.
For example, this command reports paths from the clkl clock to the end_pin:
sta_get paths -from_clock clkl -to end_pin

3.6. sta_get_slack Command

The sta_get_slack command is used to retrieve the total negative, worst, or terminal slack for the design. Slack is a critical
parameter in digital design, representing the amount of time that you can delay a signal without causing a design to fail.

Syntax:

sta_get slack [-help] [-tns] [-worst] [-hold] [-terminal <terminal_name>]

The following table lists the flags that you can use with the sta_get_slack command.

Table 3.9. sta_get_slack Usage Description

Flag Description
-help To provide help information related to the sta_get_slack command.
-tns To get the total negative setup or hold slack.
-worst To get the worst setup or hold slack of the design.
-hold To get hold slack.
This is a string parameter that represents the name of the pin or port. When specified, the command gets the
-terminal worst slack for the given pin or port. The name must represent exactly one port or pin.

3.6.1. Use Cases for the sta_get_slack Command

The following lists the use cases for the sta_get_slack command:

e Total Negative Slack (TNS) Analysis: To analyze the total negative slack in your design, use the -tns flag.
For example, this command returns the total negative setup or hold slack:
sta_get slack -tns

e Worst Slack Analysis: To analyze paths originating from specific ports or pins, use the -from flag.
For example, this command reports paths from the start_pin:
sta_get_slack -worst

e Hold Slack Analysis: To analyze the hold slack in your design, use the -hold flag.
For example, this command returns the hold slack:
sta_get_slack -hold

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e Terminal Slack Analysis: To analyze the slack for a specific pin or port, use the -terminal flag.
For example, this command returns the worst slack for the pin1:
sta_get_slack -terminal pinl

3.7. sta_get_terms Command

The sta_get_terms command is used to retrieve a list of ports and pins that matches a specified name. This is a critical
feature in the FPGA design, which allows you to quickly locate and work with specific elements of your design.

Syntax:
sta_get_terms [-help] [-ports] [-pins] [-name <terminal_name>]

The following table lists the flags that you can use with the sta_get_term command.

Table 3.10. sta_get_terms Usage Description

Flag Description

-help To provide help information related to the sta_get_terms command.

-ports To return ports only.

-pins To return pins only.

-name This is a string parameter that represents the name of the terminals. When specified, the command gets the
terminals that matches the given name.

3.7.1. Use Cases for the sta_get_terms Command

The following lists the use cases for the sta_get_terms command:
e Filtering Ports: To get only the ports in your design, use the -ports flag:
sta_get_terms -ports

e Filtering Pins: To get only the pins in your design, use the -pins flag:
sta_get_terms -pins

e Searching for Specific Terminals: To get terminals with a specific name, use the -name flag.
For example, the following command returns terminals with the name CLK:
sta_get_terms -name CLK

3.8. sta_path_info Command

The sta_path_info command is used to extract data from a given path. This is useful for analyzing specific paths in a design
for timing, constraints, and other parameters.

Syntax:
sta_path_info [-help] [-path <path_name>] [-slack] [-constraint] [-skew] [-launch_clock] [-
latch_clock] [-levels]

www.latticesemi.com/legal

http://www.latticesemi.com/legal

The following table lists flags that you can use with the sta_path_info command.

Table 3.11. sta_path_info Usage Description

= LATTICE

Flag Description
-help Provides help information related to the sta_path_info command.
-path This is a string parameter that represents the path in question.
-slack To get the slack of the path.
-constraint To get the constraint of the path.
-skew To get the clock skew — common skew not removed.
-launch_clock To get the launch clock.
-latch_clock To get the latch clock.
-levels To get the number of logic levels.

Note:

sta_get_paths must be used before using the sta_path_info command.

3.8.1. Use Cases for the sta_path_info Command

The following lists the use cases for the sta_path_info command:

e Slack Analysis: To analyze the slack of a specific path, use the -slack flag.
For example, this command returns the slack of path1:
sta_path_info -path pathl -slack

e Constraint Analysis: To find the constraint of a specific path, use the -constraint flag.

For example, this command returns the constraint of path1:
sta_path_info -path pathl -constraint

e Clock Skew Analysis: To analyze the clock skew of a specific path, use the -skew flag.

For example, this command returns the clock skew of path1:
sta_path_info -path pathl -skew

e Launch Clock Analysis: To analyze the launch clock of a specific path, use the -launch_clock flag.
For example, this command returns the launch clock of path1:
sta_path_info -path pathl -launch_clock

e Latch Clock Analysis: To analyze the latch clock of a specific path, use the -latch_clock flag. For example, this command
returns the latch clock of path1:
sta_path_info -path pathl -latch_clock

e Logic Levels Analysis: To analyze the number of logic levels of a specific path, use the -levels flag. For example, this
command returns the number of logic levels of pathl:
sta_path_info -path pathl -levels

www.latticesemi.com/legal

http://www.latticesemi.com/legal

== LATTICE

Example 1: Get paths from pinl to pin2 and print their launch clock, latch clock, and
skew

set paths [sta_get paths -n 10 -from_clock CLK -to_clock clock_in]

foreach path $paths {
puts "Launch clock: [sta_path_info -path $path -launch _clock]"
puts "Latch clock: [sta_path _info -path $path -latch clock]"
puts "Slack: [sta path_info -path $path -slack]"

Example 2: Get paths from a list of pins to another list of pins and print their launch
clock, latch clock, and skew

set from_pins {pinl pin2 pin3}
set to_pins {pin4 pin5 pin6}
set paths [sta_get paths -n 10 -from $from pins -to $to pins]

foreach path $paths {
puts "Launch clock: [sta_path_info -path $path -launch_clock]"
puts "Latch clock: [sta_path_info -path $path -latch_clock]"
puts "Slack: [sta_path_info -path $path -slack]"

3.9. sta_report_clocks Command

The sta_report_clocks command is used to generate a report on a specific clock or multiple clocks. This is useful for
analyzing the characteristics of your clocks, such as their frequency, source, and edges.

Syntax:
sta_report_clocks [-help] [-clocks <clock_name>]

The following table lists the flags that you can use with the sta_report_clocks command.

Table 3.12. sta_report_clocks Usage Description

Flag Description

-help Provides help information related to the sta_report_clocks command.

-clocks This is a string parameter that represents the name of the clock or clocks. When specified, the command
generates a report for the given clock or clocks.

-app Used to append the clocks to a list or file.

-file This is a string parameter that represents the name of the file for output. When specified, the command writes

the output to the given file.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

== LATTICE

3.9.1. Use Cases for the sta_report_clocks Command

The following lists the use cases for the sta_report_clocks command:

Clock Analysis: To analyze a specific clock in your design, use the -clocks flag. For example, this command returns a
report for the clk clock:
sta_report_clocks -clocks clk

Multiple Clock Analysis: To analyze multiple clocks in your design, specify multiple clock names separated by spaces.
For example, this command returns a report for the clk1 and c/k2 clocks:
sta_report_clocks -clocks "CLK clock _in"

This will provide a report like:
% sta_report_clocks -clocks {CLK clock_in}

create_generated_clock -name {CLK} -source [get_pins
{pll_inst/1lscc_pll inst/gen_no_refclk mon.u_PLL.PLL_inst/REFCK}] -multiply by 5 [get_pins
{pll_inst/1scc_pll inst/gen_no_refclk mon.u_PLL.PLL_inst/CLKOP }]

Single Clock Domain

Clock CLK | | Period | Frequency
From CLK | Target | 10.000 ns | 100.000 MHz
| Actual (all paths) | 4.805 ns | 208.117 MHz
grant_0io[7].PIC_inst/CLK (MPW) | (50% duty cycle) | 4.000 ns | 250.000 MHz

create_clock -name {clock_in} -period 50 -waveform {0.000 25.000} [get_ports clock_in]

Single Clock Domain

Clock clock_in | | Period | Frequency
From clock_in | Target | 50.000 ns | 20.000 MHz
| Actual (all paths) | 5.000 ns | 200.000 MHz
clock_in_pad.bb_inst/B (MPW) | (50% duty cycle) | 5.000 ns | 200.000 MHz

www.latticesemi.com/legal

http://www.latticesemi.com/legal

== LATTICE

All Clocks Analysis: To analyze all clocks in your design, use the sta_report_clocks command without the -clocks flag.
This command generates a report for all clocks in your design:
sta_report_clocks

3.10. sta_report_constraints Command

The sta_report_constraints command is used to list all the timing constraints, which allows you to quickly locate and work
with specific elements of your design.

Syntax:

sta_report_constraints [-help] [-file <filename>] [-app]

The following table lists the flags that you can use with the sta_report_clocks command.

Table 3.13. sta_report_constraints Usage Description

Flag Description

-help Provides help information related to the sta_report_constraints command.

-file This is a string parameter that represents the name of the file for output. When specified, the command writes
the output to the given file.

-app This is a boolean flag. When specified, the command appends the output to a list or file.

3.10.1. Use Cases for the sta_report_constraints Command

The following lists the use cases for the sta_report_constraints command:
Constraint Verification: This command lists all the constraints and verifies their correctness.

For example, the following command sta_report_constraints command will list all the constraints:
sta_report_constraints

Writing Output to a File: To write the output to a file, use the -file flag.
For example, this command writes the output to output.txt:
sta_report_constraints -file output.txt

Appending Output to a File: To append the output to an existing file, use the -file and -app flags.
For example, this command appends the output to output.txt:
sta_report_constraints -file output.txt -app

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3.11. sta_report_timing Command

The sta_report_timing command is used to report the detailed or summary of timing, which allows you to quickly
understand the timing performance of your design.

Syntax:
sta_report_timing [-help] [-n <number_of paths>] [-endpoints] [-from <from_ports/pins>] [-
from_clock <from_clocks>] [-to <to_ports/pins>] [-to_clock <to_clocks>] [-hold] [-summary] [-
file <filename>] [-app]

The following table lists the flags that you can use with the sta_report_clocks command.

Table 3.14. sta_report_timing Usage Description

Flag Description

-help Provides help information related to the sta_report_timing command.

-n This is an integer parameter that represents the number of paths to report. The default value is -2.

-endpoints This is a boolean flag. When specified, the command reports the endpoints only.

-from This is a string parameter that represents the names of ports and/or pins for the starting point of the paths.

-from_clock This is a string parameter that represents the names of clocks for the starting point of the paths.

-to This is a string parameter that represents the names of ports and/or pins for the ending point of the paths.

-to_clock This is a string parameter that represents the names of clocks for the ending point of the paths.

-hold This is a boolean flag. When specified, the command reports hold paths.

-summary This is a boolean flag. When specified, the command reports the timing summary.

-file This is a string parameter that represents the name of the file for output. When specified, the command writes
the output to the given file.

-app This is a boolean flag. When specified, the command appends the output to the existing content of the file. If the

file does not exist, it will be created.

3.11.1. Use Cases for the sta_report_timing Command

The following lists the use cases for the sta_report_timing command:

Detailed Timing Analysis: To perform a detailed timing analysis of your design, use the sta_report_timing command.
For example, this command will report the detailed timing:

sta_report_timing

Reporting Specific Number of Paths: To report a specific number of paths, use the -n flag.
For example, this command will report the top 10 paths:
sta_report_timing -n 10

Reporting Endpoints Only: To report only the endpoints, use the -endpoints flag.
For example, this command will report only the endpoints:
sta_report_timing -endpoints

Reporting From Specific Ports/Pins or Clocks: To report from specific ports/pins or clocks, use the -from or -from_clock

flags.

For example, this command will report from the port portl and the clock clk1:
sta_report_timing -from portl -from_clock clkl

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e Reporting To Specific Ports/Pins or Clocks: To report to specific ports/pins or clocks, use the -to or -to_clock flags.
For example, this command will report to the port2 port and the clk2 clock:
sta_report_timing -to port2 -to_clock clk2

e Reporting Hold Paths: To report hold paths, use the -hold flag.
For example, this command will report hold paths:
sta_report_timing -hold

e Reporting Timing Summary: To report the timing summary, use the -summary flag.
For example, this command will report the timing summary:
sta_report_timing -summary

e Writing Output to a File: To write the output to a file, use the -file flag.
For example, this command will write the output to timing.txt:
sta_report_timing -file timing.twr

e Appending Output to a File: To append the output to an existing file, use the -file and -app flags.
For example, this command will append the output to timing.txt:
sta_report_timing -file timing.twr -app

3.12. sta_report_unconstrained Command

The sta_report_unconstrained command is used to list unconstrained ports, pins, or nets. The command writes out
unconstrained endpoints indicated by the various flags. If no flags are provided, all types of unconstrained objects are

dumped.

Syntax:

sta_report_unconstrained [-help] [-n <number>] [-start] [-end] [-io] [-clock nets] [-file
<filename>] [-app]

The following table lists the flags that you can use with the sta_report_clocks command.

Table 3.15. sta_report_unconstrained Usage Description

Flag Description

-help Provides help information related to the sta_report_unconstrained command.

-n This is an integer parameter that represents the number of unconstrained objects to report. The default value is
10.

-start This is a boolean flag. When specified, the command reports unconstrained internal start points.

-end This is a boolean flag. When specified, the command reports unconstrained internal endpoints.

-io This is a boolean flag. When specified, the command reports unconstrained 1/0 start and end points.

-clock_nets This is a boolean flag. When specified, the command reports clock nets without clock definition. The -start flag
has no effect on -clock_nets.

-file This is a string parameter that represents the name of the file for output. When specified, the command writes
the output to the given file.

-app This is a boolean flag. When specified, the command appends the output to the existing content of the file. If the
file does not exist, it will be created.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

== LATTICE

3.12.1. Use Cases for the sta_report_unconstrained Command

The following lists the use cases for the sta_report_unconstrained command:

e Reporting Unconstrained Objects: To report all types of unconstrained objects, use the sta_report_unconstrained
command.
For example, this command will report all types of unconstrained objects:
sta_report_unconstrained

e Reporting Specific Number of Unconstrained Objects: To report a specific number of unconstrained objects, use the -n
flag.
For example, this command will report the top 10 unconstrained objects:
sta_report_unconstrained -n 10

e Reporting Unconstrained Internal Start Points: To report unconstrained internal start points, use the -start flag.
For example, this command will report unconstrained internal start points:
sta_report_unconstrained -start

e Reporting Unconstrained Internal Endpoints: To report unconstrained internal endpoints, use the -end flag.
For example, this command will report unconstrained internal endpoints:
sta_report_unconstrained -end

e Reporting Unconstrained 10 Start and End Points: To report unconstrained 10 start and end points, use the -io flag.
For example, this command will report unconstrained 10 start and end points:
sta_report_unconstrained -io

e Reporting Clock Nets Without Clock Definition: To report clock nets without clock definition, you can use the -
clock_nets flag.
For example, this command will report clock nets without clock definition:
sta_report_unconstrained -clock_nets

e Writing Output to a File: To write the output to a file, use the -file flag.
For example, this command will write the output to unconstrained.txt:
sta_report_unconstrained -file unconstrained.txt

e Appending Output to a File: To append the output to an existing file, use the -file and -app flags.
For example, this command will append the output to unconstrained.txt:
sta_report_unconstrained -file unconstrained.txt -app

You can use the above commands to create your own script and your own timing report formats.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

R - -
r;z:;ii‘;en:\l::::g Analysis Using TCL in Lattice Radiant Design Software H- LATTICE

References
e Llattice Radiant Timing Constraints Methodology (FPGA-AN-02059)

e Lattice Radiant Software web page.
e Lattice Insights web page for Lattice Semiconductor training courses and learning plans

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02091-1.0 24

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53772
https://www.latticesemi.com/products/designsoftwareandip/fpgaandlds/radiant
https://www.latticesemi-insights.com/

R - -
IAn;(re):'iac(;ttli\;enTl\llr:':zg Analysis Using TCL in Lattice Radiant Design Software H- LATTICE

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.
For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02091-1.0 25

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

Interactive Timing Analysis Using TCL in Lattice Radiant Design Software

Application Note

= LATTICE

Revision History

Revision 1.0, July 2024

Section

Change Summary

All

Initial release.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02091-1.0

26

http://www.latticesemi.com/legal

s=LATTICE

www.latticesemi.com

http://www.latticesemi.com/

	Interactive Timing Analysis Using TCL in Lattice Radiant Design Software
	Contents
	Abbreviations in This Document
	1. Introduction
	1.1. Audience

	2. Launching the Radiant Software in TCL Mode
	3. TCL Commands for Timing Analysis
	3.1. sta_set_option Command
	3.1.1. Use Cases for the sta_set_option Command

	3.2. sta_get_clocks Command
	3.2.1. Use Case: Retrieve Clocks with Specific Names or Patterns

	3.3. sta_get_coverage Command
	3.3.1. Use Case: sta_get_coverage Command

	3.4. sta_get_info Command
	3.4.1. Use Cases for the sta_get_info Command
	3.4.2. Use Case: To Create Constraints

	3.5. sta_get_paths Command
	3.5.1. Use Cases for the sta_get_paths Command

	3.6. sta_get_slack Command
	3.6.1. Use Cases for the sta_get_slack Command

	3.7. sta_get_terms Command
	3.7.1. Use Cases for the sta_get_terms Command

	3.8. sta_path_info Command
	3.8.1. Use Cases for the sta_path_info Command

	3.9. sta_report_clocks Command
	3.9.1. Use Cases for the sta_report_clocks Command

	3.10. sta_report_constraints Command
	3.10.1. Use Cases for the sta_report_constraints Command

	3.11. sta_report_timing Command
	3.11.1. Use Cases for the sta_report_timing Command

	3.12. sta_report_unconstrained Command
	3.12.1. Use Cases for the sta_report_unconstrained Command

	References
	Technical Support Assistance
	Revision History
	Revision 1.0, July 2024

