= LATTICE

Lattice Sentry 2.2 Platform Firmware
Resiliency (PFR) Platform Root of Trust
(PRoT)

User Guide

FPGA-RD-02286-1.0

March 2024



. . - -
:.J:i'c(::cgusizr;try 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) H- LATTICE

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and
other items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases
such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0 2


http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

= LATTICE

Contents
(6o 41 4= o | F 3P PR PPPPPRRPPOPPR 3
Wi ¥el oY a1y s T oI I o T o Yol [y =T o | SRS 5
O 1 4 o T [¥ ot o T PRSPPI 6
1.1. PUIPOSE i e e e e e e e e s s a e e s e e s a s e s e e e aas 6
1.2. PN UL 1T ol I USSR 6
1.3. DOCUMENT SEIUCTUIE .. ettt e e e s e e e e e s e s e e e e e e s s nen e e e ee s e s annereeeeeeeseannneneeeeesenans 6
2. Platform Firmware Resiliency System (PFR) Root of Trust (ROT) INtroduction ..........ccccccvveeeeiieeesiiiee e 7
2.1 o] TP PT PP STPTOPP 7
2.2, 20 X O TR P PP STPTOPPRP 7
2.3. (Y ad (ol Yo ) IV =T o F=T o1 1Yo o NPT 7
2.4. SYSTEM AFCNIEECTUIE ...ttt st e st st e s it e st e e sab e e sabeesaeeesabeesnneesabeesaneess 8
2.5. FUNCLIONATTEY OVEIVIEW ..ottt ettt e st et e sa e e e bt e s ab e e s bt e e sabe e be e e sabe e bt e e ssbeebeeennneennees 8
2.5.1.  Mach-NX SOC FUNCEION BIOCK ... ..etiiiiiiiiiiie ittt ettt ettt e e st e s et e e e ssatee e s sbteeessnbaeessssaaeesnsaeenns 8
2.5.2. MACh-NX SFB INTEITACE c..viiuiieiiiiiii sttt ettt ettt e e s e e bt e e sate e bbe e sbteesateesabeesateesateensseesaseenses 9
3. PFR System Architecture and RUNTIME FIOW .....cccuuiiiiiiiie ettt ettt e et e ette e e s aae e e e ata e e e eataeeennaeas 11
3.1. FIFMWAIE AFCNTEECTUIE 1. .viiiiii ittt ettt et et b e bt e sa e e saae e sabe e bteesabeesasaessbeesaeeessbeenaseesasaenaseenn 11
3.2. 2 ToTo ) [oF: [o [=] TSP PPPRN 11
3.3. RUNTIME FIOW <.ttt ettt e e e ettt e e e e e s ettt e e e e e e e se s tabaeseeeeeeaassaaaeeeeeessssaaaeaeeeeaantsaneeeesennen 12
3.4. CONFIGUIATION .ttt ettt ettt e e bt e s bt e e bt e st e e e bt e sab e e eabeesabeeembeesabeesabeesabeeeaseesabaesaneenn 13
3.4.1.  Mach-NX PFR Manifest Man@gEI ......c.ueevuuiiiuieiiiieiieeiit ettt ettt ettt ettt sate st e s st e sabeesseesbeeesaeenane 15
3.4.2.  FIash AdAress TOOI .ccuuiiiieiiiiiiieeiit sttt ettt stte et e et e s sba e e s baesbe e s sbeesbeesbaesabeessaeeabeeebeesnbeesnsaesabaesnseennss 16
3.5. (270 To YAl U J o I i o] £ Tol o] o HEUNN RSOOSR 16
3.6. 0= Tolo 1YL =T o SRS
3.7. Detection
3.8. LOES @N0 REPOITING.c..teiiutieeieeiite ettt ettt ettt ettt ettt et e et e sttt e bt e e s at e e bt e e s ae e e sbe e e sab e e bt e e sabeeenseesmbeesaeeesubeennneesabeesaneens 20
O N L o I Y=Y (T T Lol ISP URPPN 21
4.1. Lattice SENTIY QSPI IMONITON ... .uiiiiiiiiiie ettt s e s r e e e e sne e e e s sar e e e s esne e e sanneeessareeesannne 21
4.2. Lattice SENTIY QSPI STrEAMIBT .. .eeiiieiiiie ettt ettt ettt e ettt e e ettt e st e e e sttt e s e bbeeesbbteeesabeeeesnbeeesnsteessnbeeesnnnne 22
4.3. Lattice SENTIY SIMBUS FIlEEI ..eeiiiieeeieeee e e e et e e e e e s et e e e e e e sesasbaaeeeeeeeesantbaneeaseennes 27
4.4, Lattice SENtry SECUIE ENCIAVE .......eeiiieieei ettt et e e e e e e et e e e e e e sesaaetaaeeeeeeesantaaneeeeeennes 28
A.4.1.  Crypto256 INTEITACE ..ciutiieeeiee ettt ettt ece e et e e e et e e e e tbe e e eebaee e stbeeeeastaeeeaasaeaeesbeaaaastseesansaseessseaaeastaneeanses 28
N O V] o o Yo T 7 N [ =Y o =T < R URPSPRN 31
4.5. LattiCe SENTIY PLD INTEITACE .oiitieeeeiie e ccies ettt e e et e et e e e st e e e e ate e e snteeeesntaeeesnteeesansaeeesnsseeeannns 39
4.6. UFIM ACCESS BIOCK (UAB) ...ttt ettt etee e ettt e eette e e et e e e eaae e e eeaaeeeeeateeeeeaseeeeesseeeesnseeeeensseeesnsnneeensreeeenes 40
5. PFR COMPONENT API REFEIENCE ..ttt e e e e et e e e et e e e s bt e e e e eabaeeeeateeeeaabeaeeensbeeeesraeeennnaeas 50
5.1. MaNIfEST IMANAZEMENT.......uiiiiiiiee ettt e e et e e ettt e e e e be e e e eeabeeeeebeeaesabasseessseesassasaeastaseeastasesnssaaesassseeeases 50
5.2. YO I o o Yol =13 o T N 53
5.3. NL=Tol U1V Y - Lo T 1= PPNt 55
5.4. LOE IMIANAZEMENT ...ttt s sttt n e n b e s e s s s e nnnnnnbnnnnnnn 56
6.  PFR System Design (from LattiCe PrOPEI) ...ccueeiiieiiie ettt ettt et e et e e ste e et e e saeeetaeesaessaeesaseesnseesnneeneas 58
6.1. [ o Yo (W oY o T =T g - SRSt 58
6.2. PFR System Design CUSTOMIZATION .....eiiiiuiieiiiiiie ittt e et s et s e e e sar e e e senne e e snneeessnneeesennne 59
6.2.1.  Customer PLD CUSTOMIZATION .....uuueiiiiiieiieiit et ee ettt ettt e e e sttt et e e e s e aeb e et e e e e sesnnraeeeeeesesansnnneeeens 59
7. PFR SYSEEM DEMO GUIE ....cuiiiiiiiei ittt ettt e e e et te et e e e e e ettt e e e e e e e es s baaaeeeeeesassbaaeaaaeesanssasaeaaeassanssstseesaessennssrens 60
7.1. Lattice Sentry DEMO GUI TOO ........uuiiiiiiiiecciiiiiee ettt e ettt e e e e e e et a e e e e e e e e abtaeeeeeesesaastaaseaaeeeasnntaaneeaesennns 60
7.2. Key Feature Validation MEthod ..........ooouiiriiieece et s e e e s e e e s nte e e esnnae e e snnreeeennns 64
7.2.1. FUNCHION SIMUIGLION 1.ttt ettt ettt sttt et s bt s sb e e s be e e bt e sabeesbtesabeesbeesabeesnseesabeesnneenane 64
7.2.2. AULRENTICAION .ottt ettt et s b et s sb e s bt e e sbe e s bt e s bt e s be e e be e e be e e baesabeeenaee et 65
N T o o] =Tt o ] o T PP PUPPPI 66
7.2, RECOVEIY evteieiuieiuiereteteteresssnsesesesesesesesesesesssesssesesesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnne 70
RETEIEINCES ... ettt ettt ettt e e ettt e s et e e e e s bt e e e e bt e e e s eabbe e e s bt ee e e a bt e e e e atee e eh bt e e eaabeeeeeabeeesaateeeeaabbeeennee 73
B=Tel VoY o | VT oY o Yo o A AN [ - o Lol TS SUSURR P 74

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

AV [o] T = 1] o] VT TSP TSR 75
Figures

Figure 2.1. Lattice PFR SYStem ArChIitECIUIE ...cc.uii ittt ettt ettt e sbt e st e sae e e sareenneas 8
Figure 3.1. Software Architecture of Lattice PFR SOIUTION ......oiiiiiiiiiiiiiiiiee ettt s 11
Figure 3.2. Customer PFR Firmware BOOT UP FIOW....c...ciiiiiiiiiiiieiiieeiee ettt ettt sttt s neesbeesnee e 12
Figure 3.3. Lattice PFR RUNTIME FIOW ..ueiiiiiiiiicciiis ettt e sttt e e ettt e e s tte e e s aa e e e e ataeeseasaaeesasseeeeansseeesnsaessanseeeesnsseeennnns 13
Figure 3.4. Lattice PFR 3.0 CoONTiGUIration FIOW .......ccuuiiiiiiiiie sttt e et e s e te e e st e e e et e e e s antae e snneeaesnsaeeennnns 14
Figure 3.5. Launch Manifest Manager in Lattice Propel SDK.........uuiieiiiiii ettt ettt e st e e et e e snte e e e sanee e e s nreeeennes 15
Figure 3.6. Manifest Manager with Blank Manifest in Lattice Propel SDK ........cccuiiieiiiiiieiiie et svee e e 15
Figure 3.7. Manifest Manager WINTGOW .......cc.eoiiiiiiieriie ettt ettt ettt et e st e s bt e st e s bt e s b e e ebeesbeeenneesabaesaneenane 16
Figure 3.8. PFR BOOt-UP Protection HandIer.........couiiiiiiiiiiiiiee ettt ettt et et et nee e 17
Figure 3.9. PFR RECOVEIY HaNGIBr ....ccuuiiiiiieie ittt ettt et et b e st e st e s b e e e bt e sabeesneesabeeeneenane 18
Figure 3.10. PFR DeteCtiON HaNAIEN......ccooeiiie ettt e ettt e et e e et e e e e tt e e e eeataeesabeeeeaataeeesasseeessseeaessrseanannes 19
Figure 6.1. Lattice Propel TEMPIAte FIOW .....ccccuiiiiiiiiee ettt e sttt e st e e e et a e e e ette e e sabeeeesataeesensaeesassesaesnsseaeannes 58
Figure 6.2. CUSEOMET PLD WOTKFIOW ... .ciiiiiiiieeeiiee ettt sttt e ettt e e s tte e e st e e e tba e e e eaate e e sabeaesastaeeesnssaeessseeaesssseenannns 59
Figure 7.1. Launch Lattice Sentry DEMO GUI TOO! . ..uiiiiuiiie ettt ettt e e et e e eerate e e sabe e e e s aba e e e eaasaeesnseeeeensbeeeannns 60
Figure 7.2 COM Port Scan of the Lattice Sentry DEmO GUI TOO! .......cooiuiiriiiiiiiniiieiee ettt s 61
Figure 7.3 Enable Lattice Sentry DEMO GUI TOO......coiiiiiiiiiiiieiie ettt ettt st st e st s be e st e s bt e sbeeenneesane 62
Figure 7.4. Send Command of Lattice Sentry DEmMO GUI TOOI ......ciiiiiiiiiiiiiiiiiieniie ettt ettt s 63
Figure 7.5 Logging of Lattice Sentry DEMO GUI TOO! .....ccocuiiiiiiiiiiiiiieeiee ettt ettt sttt e st esaeesbeeennee e 63
Figure 7.6 Read Address Space of Lattice Sentry DEmMO GUI TOOI ....ccccciiiiieiiiieiiiiee ettt stee et e e ate e e ssvee e e e rreeeenens 64
Figure 7.7. BMC Image Authentication fOr FIQsh O ........cc.uiiiiiiiii ettt rtre e e et e e e s ate e e saae e e e ebbeeeennns 65
Figure 7.8. Get Logs for IMage AUTNENTICATIONS ........ueiieiiiie ettt e e et e e e e ate e e s rabe e e e abeeeesabeeesnsaeeesnsseeeannes 66
Figure 7.9. Initial Value of 0X00300000~0X0030000F..........cccceuteeiireeeerieeeeniereresareeeesteeessssreesssseeesssseeessssessssssessssssseessnnes 67
Figure 7.10. Value of 0x00300000~0X0030000F after WIIte.....ccueerteeerieerieieieerite ettt sttt sttt e sbe e e sneesbeeesaee e 68
Figure 7.11. Value of 0x00310000~0X0031000F after WIIte....cccueertieeiiieiieeeite sttt ettt sttt sttt e b et e s b e e snee e 69
Figure 7.12. Logs Of 11€8al OPEIatioN ........eiiiiiiiiieiee ettt ettt et s e et e st e st e s b e e e sbeesbee e st e sbeeenneenane 70
Figure 7.13. Authentication Failed with Corrupted IMage ......ccooeiiiiiiiie e e e e s e sbarree e s 71
Figure 7.14. Authenticate Primary Image after RECOVEIY DONE .......cocccuiiiiiiiiee e cciee ettt e et e ettt e e e te e e e eate e e eearaeeeebbeeeennes 72
Tables

Table 3.1. AUthority LeVEl DEfiNItION .....cci ittt e eee e e s be e e e ette e e eabeaeesabbeeeenssaeeesssaeeeensreseannes 19
Table 3.2. Lattice PFR LOg FOrmat Definition.........cocuiiiiiiiii ettt e et e e e et e e e eate e e e satb e e eeaateeeeasaeeeentbeeeennns 20

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

AMBA Advanced Microcontroller Bus Architecture used by the RISC-V to communicate with peripherals.

BMC Baseboard Management Controller

BSP Board Support Package, the layer of software containing hardware-specific drivers and libraries to function in a
particular hardware environment.

CoT Chain of Trust

CPU Central Processing Unit

DICE Device Identifier Composition Engine

ECDSA Elliptic Curve Digital Signature Algorithm

FAM Flash Address Map

FW Firmware

GPIO General Purpose Input Output

GUI Graphic User Interface

HAL Hardware Abstraction Layer, a software interface to hide the detail of the hardware design and provide general
services to the upper layer.

12C Inter Integrated Circuit

JTAG Joint Test Action Group

MCTP Management Component Transport Protocol

PFR Platform Firmware Resiliency

QSPI Quad Serial Peripheral Interface

00B Out of Band

PCH Platform Controller Hub

PFR Platform Firmware Resiliency

PIC Programmable Interrupt Controller

PLD Programmable Logic Device

ProT Platform Root of Trust

QSPI Quad Serial Peripheral Interface

RISC.V Reduced Instruction Set Computer — Five, a free and open instruction set architecture (ISA) enabling a new era
of processor innovation through open standard collaboration.

RoT Root of Trust

RTL Register Transfer Level

RTRec Root of Trust for Recovery

Rx Receiver

SDK System Design and Develop Kit. A set of software development tools that allows the creation of applications for
software package on the Lattice embedded platform.

SFB SoC Function Block

SHA Secure Hash Algorithm

SMBus System Management Bus

SoC System on Chip

SPI Serial Peripheral Interface

Tx Transmitter

UART Universal Asynchronous Receiver-Transmitter

uDS Unique Device Secret

UFM User Flash Memory

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

1. Introduction

1.1. Purpose

Lattice Mach-NX device is a low-density FPGA with enhanced security features and on-chip dual boot flash. The
enhanced bitstream security and user-mode security functions enable the Mach-NX device to be used as a
Root-of-Trust hardware solution in a complex system. With Lattice Mach-NX device, you can implement a Platform
Firmware Resiliency (PFR) solution in your system, as described in NIST Special Publication 800-193.

The purpose of this document is to introduce the design methodology of the Lattice Sentry PFR solution on the
Mach-NX device using the Lattice Propel toolsets, which can largely reduce the design complexity.

1.2. Audience

The intended audience for this document includes embedded system designers and embedded software developers.
The technical guidelines assume readers have expertise in embedded system design and FPGA technologies. In
addition, readers are recommended to read NIST 800-193 Platform Firmware Resiliency Guidelines before reading this
document.

Contents in this document are the Mach-NX PFR solution design guide of recommended flows using Lattice Propel
tools. It introduces a recommended design guide but not a constraint to experienced users.

1.3. Document Structure

The remainder of this document is with the following major sections:

e  Platform Firmware Resiliency System (PFR) Root of Trust (RoT) Introduction section — Introduces the Lattice
Mach-NX PFR Root of Trust (RoT) solution, including system architecture, functionality overview, and principles
supporting firmware resiliency.

e PFR System Architecture and Runtime Flow section — Describes the Lattice Mach-NX PFR RoT firmware
architecture, runtime flow, particularly the system configuration, protection, detection and recovery mechanism.

e PFRIP API Reference and PFR Component APl Reference sections — List the API reference for the PFR IP and PFR
component.

e  PFR System Design (from Lattice Propel) section — Shows the design flow through Lattice Propel toolsets, including
template design, customization, and simulation.

e PFR System Demo Guide section — A system validation guide by applying Lattice PFR utilities.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

2. Platform Firmware Resiliency System (PFR) Root of Trust
(RoT) Introduction

2.1. PFR

NIST 800-193 Platform Firmware Resiliency (PFR) Guidelines describe the principles of supporting platform resiliency.
As stated in NIST 800-193, the security guidelines are based on the following three principles:

Protection: Mechanisms for ensuring that Platform Firmware code and critical data remain in a state of integrity and
are protected from corruption, such as the process for ensuring the authenticity and integrity of firmware updates.

Detection: Mechanisms for detecting when Platform Firmware code and critical data have been corrupted, or
otherwise changed from an authorized state.

Recovery: Mechanisms for restoring Platform Firmware code and critical data to a state of integrity in the event that
any such firmware code or critical data are detected to have been corrupted, or when forced to recover through an
authorized mechanism. Recovery is limited to the ability to recover firmware code and critical data.

2.2. RoT

The security mechanisms are founded in Roots of Trust (RoT). A RoT is an element that forms the basis of providing one
or more security-specific functions, such as measurement, storage, reporting, recovery, verification, and update. A RoT
device must be designed to always behave in the expected manner. Proper function of the device is essential to
providing security-specific functions. If this device is unchecked, faulty behavior cannot be detected. A RoT is typically
the first element in a Chain of Trust (CoT) and can serve as an anchor for the chain to deliver more complex
functionality.

The foundational guidelines on the Roots of Trust (RoT) support the subsequent guidelines for Protection, Detection,

and Recovery. These guidelines are organized based on the logical component responsible for each of the security

properties.

e The Root of Trust for Update (RTU) is responsible for authenticating firmware updates and critical data changes to
support platform protection.

e The Root of Trust for Detection (RTD) is responsible for firmware and critical data corruption detection.

e The Root of Trust for Recovery (RTRec) is responsible for recovery of firmware and critical data when corruption is
detected.

2.3. Lattice RoT Mechanism

Lattice Mach-NX FPGA can serve as the Root of Trust and can provide the following services:

e Image Authentication: On system power-up or reset, Mach-NX device holds the protected devices in reset while it
authenticates their boot images in SPI flash. After each signature authentication passes, Mach-NX device releases
each reset, and those devices can boot from their authenticated SPI flash image. Image authentication can also be
requested at any time through the Out of Band (OOB) communication path.

o Image Recovery: If a flash image becomes corrupted for any reason, it fails to be authenticated. The Mach-NX
device can restore it to a known good state by copying from an authenticated backup image.

e  SPI Flash Monitoring and Protection: The Mach-NX device can monitor multiple SPI/QSPI buses for unauthorized
activity and block unauthorized accesses using external quick switches. The monitors can be configured to check
for specific SPI flash commands and address ranges defined by the system designer and designate them as allowed
or non-allowed transactions.

e Event Logging: Mach-NX device logs security events, such as unauthorized flash accesses and notifies the
Baseboard Management Controller (BMC).

e SMBus Filtering: The Mach-NX device can monitor a SMBus for unauthorized activity and filter the unauthorized
transactions. The monitor can be configured with multiple allow or disallow filters to watch for specific commands
defined by the system designer and designate them as allowed or non-allowed SMBus transactions.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

2.4. System Architecture

Figure 2.1 shows the architecture of a Lattice Mach-NX FPGA working as a RoT device. The system design consists of
the SoC Function Block (SFB) module, which integrates a RISC-V processor connected to a set of peripherals through
the AMBA bus. Software running on the processor controls the general and PFR solution peripherals and handles all the
events at runtime to perform the system functionalities.

General Peripherals in SFB module include the Mach-NX hard GPIO, UART, JTAG, and SMBus Mailbox, as shown in
Figure 2.1. These modules perform the basic board-level controls and communications. PFR solution Peripherals
include Secure Enclave, QSPI Streamer/Monitor, SMBus Filter and Customer PLD interface, which perform the main PFR
functionalities. You can add or remove the peripherals using the Lattice Propel tools upon your design requirement. For
details of customization, refer to the PFR System Design (from Lattice Propel) section.

SFB
RISC-V[ pic
Timer
SHB Interface
A i; 0 ) N
System Bus (AMBA)
*lﬁ L it 1L 1
SMBus B
GPIO UART QSPI Monitor Customer
SMBus o pooommoo AHB PLD
A A A Filter Streamer Monitor0 | ®®®, 7l\ﬂoini7niril?‘ Interface PLD Fabric
A FIFO I I o r' y
- st T L * UAB
o <= A4 LRC N
3 \m‘a—n’t"“"“ Mux 0 Mux N
E ECC256 A A
UART [ ECC384
L:J SHA256
@ SHA384 [QJsPI [QIsPI
s Boot Loader )
Switch Ctrl Switch Ctrl
GPIO eee
v oos 12c AA 4 \A 4
[Qlsp! [ 1 [QIsPI
‘ SPI FIasth— I }—b’w
— 1 SPIswitch0 | _} SPIswitchN 1 |—————— ‘
| SPI Flash i I jp! 5P| Flash |
L I [QIspI L, [Qspll - __ |
A A
(sl QP!
\ 4 v \ 4
BMC
[T Function Module PCH
[ customer Logic

Figure 2.1. Lattice PFR System Architecture

2.5. Functionality Overview

2.5.1. Mach-NX SoC Function Block

SoC Function Block is a hard module in Mach-NX device mainly designed for Lattice Sentry PFR solution. It contains
RISC-V processor, PFR solution-specific function modules, and other general modules for communication with BMC and
Platform Controller Hub (PCH)/CPU.

2.5.1.1. RISC-V Processor

The RISC-V Processor provides the main control function in Mach-NX SFB block. The processor integrates JTAG
debugger, Programmable Interrupt Controller (PIC), and Timer. The RISC-V core supports RV32l instruction set and
5-stage pipelines to fulfill the performance requirement for PFR system. JTAG debugger, PIC, and Timer can be enabled
or disabled based on the system requirement.

www.latticesemi.com/legal



http://www.latticesemi.com/legal

= LATTICE

2.5.1.2. Lattice Sentry Secure Enclave

The Secure Enclave is a security block that provides a set of security services for Mach-NX device, including ECC256,
ECC384, SHA256, and SHA384 crypto functions. The module has two interfaces for sending and receiving data: a
register interface, and a High Speed Data Port (HSP) which is a FIFO-style interface.

Besides the security services, the Secure Enclave also has a boot loader function which performs the secure boot for
the whole system.

The Secure Enclave can also securely access the Unique Device Secret (UDS) of the Mach-NX device to generate the LO
Device Identifier Composition Engine (DICE) Certificate for DICE Attestation. DICE is an optional functionality that can
be made available for the solution. The base template for Sentry 2.2 does not include DICE Attestation. For more
details about DICE Attestation, refer to Device Identifier Composition Engine for Mach-NX (FPGA-TN-02355).

For the system software developer, refer to the PFR IP APl Reference section for more details on the API reference.

2.5.1.3. Lattice Sentry QSPI Streamer

Lattice Sentry QSPI Streamer is a configurable SPI controller that supports single, dual, and quad modes. It contains
FIFOs for Tx and Rx data, which supports long SPI transactions, more than 32 bits. It also provides an external
8-bit Rx FIFO interface that can be connected to the Secure Enclave for image authentication.

QSPI Streamer incorporates a SPI FIFO Controller that provides significant performance improvement by supporting
data read and write transactions of programmable length, allowing an entire SPI flash device to be read in one SPI
transaction. The external Rx FIFO interface enables direct transmission of input data from the SPI target to another
block, such as the Secure Enclave which frees up the CPU or system bus.

For the system software developer, refer to the PFR IP APl Reference section for more details on the API reference.

2.5.1.4. Lattice Sentry QSPI Monitor

The QSPI Monitor is a configurable security module which can monitor one or more SPI or QSPI buses for unauthorized
activity and block transactions by controlling the chip select signal and external quick switch devices. In addition to
monitoring, it can connect external SPI/QSPI buses to the QSPI Streamer through a programmable mux/demux block.

The QSPI Monitor checks the external buses for allowed flash commands and flash addresses. This block provides fine
grain control over the set of allowed commands, and supports up to four configurable address spaces which can be
independently monitored for erase, program, and read commands. Address spaces can set read, program, and erase
permissions independently. Both 24-bit and 32-bit flash addressing are supported.

For system software developer, refer to the PFR IP API Reference section for more details on the API reference.

2.5.1.5. Lattice Sentry System Management Bus (SMBus) Filter

The SMBus filter is a configurable security module which can monitor traffic on the SMBus to identify unauthorized
activity, based on set of up to 256 programmabile filters. If unauthorized activity is detected, the SMBus is disabled and
PFR firmware is notified so that an event can be logged.

For system software developer, refer to the PFR IP API Reference section for more details on the API reference.

2.5.1.6. General Peripherals

Besides the PFR solution peripherals, SFB also integrates some general peripherals for board-level control or
communication, including GP1O, UART, SMBus Mailbox. You can use one or more of these modules based on the
system requirement.

2.5.2. Mach-NX SFB Interface

2.5.2.1. Customer PLD Interface

The Customer PLD Interface is a register-based interface which is used to send and receive messages between the PFR
firmware and the customer control PLD logic. It can be used to request system control actions, to check status, or to
send customized messages. The PLD logic can be connected to the defined interface and designed to implement the
actions associated with messages sent by firmware. The design of the actual Customer PLD logic is system-dependent
and is implemented by the customer for the particular system.

For the system software developer, refer to the PFR IP APl Reference section for more details on the API reference.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

. . - -
IL.J;aS:c:cGeL;‘aizr;try 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) H- LATTICE

2.5.2.2. UFM Access Module (UAB)

The UFM Access Module (UAB) is a functional block inside the SFB interface for accessing the internal flash memory of
Mach-NX device. Through the UAB block, PFR solution firmware can access the manifest of the system and runtime log
event data.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02286-1.0 10


http://www.latticesemi.com/legal

= LATTICE

3. PFR System Architecture and Runtime Flow

3.1. Firmware Architecture

The Lattice PFR solution of Mach-NX device has firmware running on the processor to handle the system dependent

information and runtime events.

Figure 3.1 shows the architecture of the firmware of the PFR 3.0 RISC-V solution. The Lattice PFR solution firmware is

composed of four layers.

e  Sitting on the top is the APP layer, which is the demo application to demonstrate all the features on Protection,
Detection, and Recovery that PFR spec defined.

e The Component layer is a functional module based for dedicated solutions. For PFR solution, this layer contains
00B Communication module, Log/Manifest Management module, and Security Management module to
implement the corresponding features.

e Board Support Package (BSP)/Driver and Hardware Abstraction Layer (HAL) layers are automatically generated
during the system design. All the system-dependent information is applied statically into the source code. The
BSP/Driver layer is for all the general IPs, while the HAL layer is for the RISC-V processor IP that capsulates all the
platform dependent information.

PFR App System Initialization/Command Handling/...
OOB/MCTP Log/Manifest Security
PFR Component Communication Management Management

it

SMBus Mailbox QSPI Streamer/ UAB UART
Monitor
BSP/Driver
Layer
. Customer PLD
SMBus Filter Secure Enclave Interface GPIO
HAL Layer Timer/Interrupt/Register

Figure 3.1. Software Architecture of Lattice PFR Solution

3.2. Bootloader

The Bootloader performs the secure boot function after the system is powered on and is responsible for loading
customer firmware from the external flash. The boot up flow is shown in Figure 3.2.

During the boot up flow, Bootloader parses the flash configuration data in the Flash Address Map (FAM) image of the
Mach-NX device, located in the UFM3 flash sector. For more detail of the flash configuration in UFM3, refer to the Flash
Address Tool section.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

If DICE Attestation is being used, the actual UDS DICE certificate or the Lattice dummy DICE certificate is checked during
the Bootloader operation.

Start Authenticate decrypted Fail Confiaure PFR IPs
packet C1 8
Read UFM3, FW Decrvot packet C1 Hand over driving of Enter service mode
authentication key yPtp Flash_CSN
<Fa>n—){ Read AES key from OTP ‘
7\/% Log Failure Message to UFM2 }( y Fail to authenticate >{ Requis;SZ:E;{g:sriace to ‘

Figure 3.2. Customer PFR Firmware Boot Up Flow

Load & Authenticate PFR FW
from external flash

‘ Release PFR controller reset

3.3. Runtime Flow
The firmware runtime flow comprises the following major steps, as shown in Figure 3.3:

1. Configuration Handler: read and parse the system Manifest, and configure the system accordingly. Refer to the
Configuration section for more details.

2. Boot-up Protection Handler: authenticate the firmware on the SPI flash before BMC or PCH/CPU boot up. Refer to
the Boot Up Protection section for more details.

3. Recovery Handler: recover the firmware on the SPI flash if the image is corrupted. Refer to the Recovery section for
more details.

4. Invalid SPI/SMBus Event Detection and Protection: Monitor and detect the system SPI/SMBus events to avoid
invalid behaviors. Refer to the Detection section for more details.

5. Logging and Reporting Handler: log events that occur and report to the BMC or PCH/CPU when requested. Refer to
the Logs and Reporting section for more details.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)

User Guide

= LATTICE

System Power On

System initialization

Hold the BMC/PCH Reset Pin
g J

A

~

J

-
Configuration Handler
N\
A 4
Boot-up

Protection(Authentication))

Handler for BMC/PCH

\

Authentication OK?

Yes

v

Release the Reset Pin for
BMC/PCH

Detect the SPI/I12C Events)1

>
«

N Recover Handler

Any Invalid Events?

ommunication From
BMC/PCH

Yes Log/Report Handler

4

Figure 3.3. Lattice PFR Runtime Flow

3.4. Configuration

System dependent information is configured as a manifest, which is stored in the User Flash Memory (UFM) of Lattice
Mach-NX FPGA device. The system manifest is a data structure which provides information about each firmware such
as flash layout, signature, and keys for the system platform BMC/PCH/CPU FW images. This information is used by the
RoT to store, authenticate and monitor each SPI flash in the system.

Use of the manifest in the RoT device makes it easier to maintain a common code functionality for authentication and

recovery across different platform designs.

During the runtime, the system software reads the manifest in the UFM and parses the critical data for firmware
authentication, recovery, and detection. Figure 3.4 shows configuration flow of Lattice PFR 3.0 Configuration Handler.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0

13


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)
User Guide

= LATTICE

System Power On

Read the header of
Manifest

Reading the Manifest

Manifest Reading and
Parsing

\ Get the public Key, SPI
\ flash layout,

Configuration Handler

\ \ | Get the information SPI
monitor and SMBus
\\ Filter

\ Configure the white/
_w black spaces for SPI
Monitor

Configure the

Detection Handler

Configure the
monitored activities
for SMBus Filter

Configuration Done

Figure 3.4. Lattice PFR 3.0 Configuration Flow

Manifest Read Error

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0

14


http://www.latticesemi.com/legal

. . - -
:.Ji'c(;c:c(t;:izr;try 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) H- LATTICE

3.4.1. Mach-NX PFR Manifest Manager

Lattice Propel provides a Manifest Manager tool to manage the manifest for your own system. The Manifest is stored
in UFMO of the Mach-NX device.

To create a new manifest:

1. Open Lattice Propel SDK. Click Lattice Tools -> Lattice Sentry Tools for Mach-NX -> Lattice Sentry Manifest
Manager (Figure 3.5).

workspace - Lattice Propel — O >
File Edit Source Refactor Navigate Search Project Run LatticeTools Window Help
[milhg |® v & ~iBiSi0IR$Rig~ &~ [§ Open Design in Propel Builder ¥ ¥ yox M Q im|[@
&5 Project Explorer = Generate and Open Diamond Proejct = 0 ||Egus ==
. . Generate and Open Radiant Proejct @8
There are no projects in your workspace. )
To add a project: Lattice Sentry Tools for MachXO3D > There is no active
) ) Lattice Sentry Tools for Mach-NX > Lattice Sentry Demo GUI
[ Create a new Lattice C project
) . . I Lattice Sentry Manifest Manager I
% Create a new Lattice SoC Design Project

Lattice Sentry FlashAddr GUI
4 Create a project...

i mport projects...

122 Problems # . & Tasks| B Console | [ Properties | & Terminal ¥ § -0

Figure 3.5. Launch Manifest Manager in Lattice Propel SDK

2. Modify the blank manifest as needed for your system. Increase Image Count, Flash Count, or 12C Filter Count using
drop-down menus. Increased values in these fields are reflected in more editable rows at the bottom of the

window (Figure 3.6).
S Lattice Sentry Manifest Manager for Mach-MNX = O x
Configuration Image count setto 1

Flash count set to 1

Pl okl Filter count setto 0

Image Count |1 ~
Flash Count | 1 ~
12C Filter Count |0 ~

Manifest Name

manifest

[] Append time to file name

Open Generate

Image Data Flash Data 12C Filter Data Ownership Data

Ecc384 UBoot FlashID  Version Threshold  Primary Image Location  Primary Image Length ~ Primary Signature Location  Backup In

1 O O

Figure 3.6. Manifest Manager with Blank Manifest in Lattice Propel SDK

3. Rename the manifest if desired and click the Generate button.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0 15


http://www.latticesemi.com/legal

= LATTICE

4. Two files are generated and stored in the workspace directory of the current project:
manifest.mem: this file can be opened by Manifest Manager to modify the manifest.
manifest.jed: this file is programmed into the UFMO sector of Mach-NX.

To modify an existing manifest:

1. Launch Lattice Sentry Manifest Manager as described above.

2. Click the Open button and navigate to an existing .mem file. Refer to the above section for how to generate a .mem
file.

3. Manifest Manager loads the .mem file and parses its manifest information, as shown in Figure 3.7.

Rename the manifest if desired, and click the Generate button to create the .mem file and .jed file. The .mem file
can be reopened by Manifest Manager, and the .jed file is programmed into UFMO of Mach-NX.

{7 Lattice Sentry Manifest Manager for Mach-NX - O X

Configuration Image count set to 1
Device Info  Image Count Flash count set to 1
Filter count set to 0

Load mem file \\lshnas02\Engineering\SW_Solutions\Project\RISCV\DVT\TestReport\2021_3_24 Raptor_post-Beta_1GB

2 v Flash Count

2 v 12C Filter Count | \manifest.mem.
Image count set to 2
2 e Flash count set to 2

Filter count set to 2

Load mem file successfully!

Manifest Name

manifest

[ ] Append time to file name

Open Generate

Image Data Flash Data 12C Filter Data

Ecc384 UBoot Flash ID Version Threshold Primary Image Location Primary Image Length Primary Signature Location Backup Image Location Backup Image Le

1 U 0 0000 00000000 00200000 00200000 00000000 00200000
2 0 O 1 0000 00000000 001F0000 001F0000 00000000 001F0000
< >

Figure 3.7. Manifest Manager Window

3.4.2. Flash Address Tool

Lattice Propel provides a Flash Address tool to configure the system flash storage related information which can be
used during the system secure boot. The flash configuration data is stored in UFM3 of the Mach-NX device.

For more information about the Flash Address Tool, refer to Lattice Sentry Flash Address Map Generation for Mach-NX
(FPGA-TN-02352).

3.5. Boot Up Protection

Before the system boots up, the Mach-NX RoT ensures that the BMC and PCH/CPU firmware is valid. If not, the RoT
performs recovery.

Figure 3.8 shows the boot-up protection flow for authenticating the firmware on the SPI flash. The authentication
consists of two steps. First, perform Elliptic Curve Digital Signature Algorithm (ECDSA) verification using the firmware
data and signature stored on the SPI flash with the BMC and PCH/CPU public keys in the Manifest. The second step is to
perform a version check to avoid firmware roll back.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)
User Guide

= LATTICE

Start Authentication

Read the FW Image
b from SPI Flash

N
N
N
N
AN
~

4 Feed data into
/ Secure Enclave and
/ generate the Digest

~
~
~
~
~
~

/ Read the public key
4 from Manifest

~
~
~
~
~
~

/ Read the signature
/ from SPI Flash

H

Boot-up Protection

Handler
Feed digest, public

key, and signature
into Secure Enclave
\ for verification

\ yes

Read version from
SPI Flash

FW Version >
threshold

Pass Authentication

Figure 3.8. PFR Boot-up Protection Handler

3.6. Recovery

Logging the event

ERROR

Recovery mechanism aims to keep the firmware and critical data in a valid and authorized state in case the firmware
and the critical data are detected to have been corrupted. Generally, two circumstances can trigger the recovery
mechanism: one is when RoT has detected the firmware has been corrupted; the other is the BMC or PCH/CPU initiates
the recovery progress. After recovery, authentication is recommended to ensure the integrity of the firmware and data

in the recovered flash.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0

17


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)

User Guide

= LATTICE

Figure 3.9 shows the recovery process flow.

Recovery Handler

Start Recovering

Get the SPI Flash
Storage Information

A 4
)

Erase Firmware
Image

—

d

A
)

Erase Signature

—

A 4
SR

Copy the Firmware
Image

—

A 4
SR

Read the Signature
from the SPI Flash

—

A 4
SR

Copy to the
Destination SPI Flash

—

Log the Recovery
Event

Re-authenticate the

Recovered Flash

Complete
Recovering

Figure 3.9. PFR Recovery Handler

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0

18


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) ...ILATTICE

User Guide

3.7. Detection

The detection mechanism can detect unauthorized changes to device firmware and critical data before the firmware is

executed or the data is consumed by the device. In Lattice Mach-NX PFR Sentry solution (Figure 3.10), two kinds of
events can be monitored, SPI flash access and SMBus access.

Firmware and critical data can be stored on the SPI flashes of the system. Different locations of the flash can have
different authority levels. The three authority levels defined in the Lattice Mach-NX PFR Sentry solution are called
White, Grey and Black lists (Table 3.1). For each monitored spaces of the flash, one authority level is defined and
configured in the manifest accordingly.

Table 3.1. Authority Level Definition

Authority Level Definition

White Read, Erase, and Write are all allowed.

Grey Only Read is allowed. Neither Erase nor Write operation is permitted.

Black Read, Erase or Write operations are not permitted. The transaction is blocked when any of the
Read, Erase, or Write operation is detected on the SPI bus.

The SMBus may be used for communications between on-board devices. Some critical data can be exchanged. The
Lattice Mach-NX PFR Sentry solution can be configured to define a set of transactions which are monitored on the
SMBus interface at runtime. If any illegal transactions are detected, an interrupt or a flag is issued to notify the
processor. This information is logged and reported to the BMC or PCH/CPU.

Configure the
monitored events
from Manifest

/ 4

Enable the
Detection

SMBus Event
Detected?

SPI Events
Detected?

Detection Handler
Yes Yes

Check the detected
SMBus events and

Checking the events,

read the information
of the illegal event

read the information

A 4

N
~N
Log and Report

Figure 3.10. PFR Detection Handler

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0

19


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)

User Guide

= LATTICE

3.8. Logs and Reporting

Logged events are written to the UFM2 of the Lattice Mach-NX device, starting from page 65. Each page of UFM2 holds
a single log entry. Byte 0 is the log index and indicates the page where the log is stored. Byte 15 is used to indicate if a

log has been read (RD).

The BMC can read the log from RoT device via the SMBus OOB channel. Table 3.2 shows the detailed definition of the

log format.

Table 3.2. Lattice PFR Log Format Definition

Data Byte
Log Entry Type
0 1 2 3 4 5 6 7 [ 89101 |12[13]14a]15
o Log . Pass Timestamp in
Authenticat 0x00 | ID Pri/S 0x00 0x00 | 0x00 - - - RD
uthentication Index X me ri/Sec /Fail X X X seconds (32-bit)
SPI Exception L8 | 6501 | FlashiD SPICMD SPI Address Timestamp in - | -|-1rD
Index seconds (32-bit)
>MBus Log | gypp | SMBus Filter ID 0x00 | 0x00 | 0x00 | oxoo | TMmestampin - | -1]-1ro
Exception Index ID seconds (32-bit)
Log 0: Pri=>BU Timestamp in
Recovery Index 0x04 Img ID 1: BU=>Pri 0x00 | 0x00 0x00 | 0x00 seconds (32-bit) RD
Recovery Log . Timestamp in
0x05 Img ID 1: Pri, 2: BU 0x00 | Ox00 0x00 | Ox00 . - - - RD
UBoot Index X me m X X X X seconds (32-bit)
© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice
FPGA-RD-02286-1.0 20


http://www.latticesemi.com/legal

= LATTICE

4. PFRIP API Reference

The PFR IPs are critical parts of the Lattice PFR solution. You can use the APIs to initialize, configure, and control the IPs
to perform the functions.

The following sections provide reference to the APIs for each PFR IP, which is released in the corresponding IP package
by Lattice.

4.1. Lattice Sentry QSPI Monitor

unsigned char gspi_mon_init(struct spi_mon_instance *this_spi_monitor,
unsigned int base_address)

Parameter | Description

this_spi_monitor | The pointer to the current QSPI monitor instance.

Base address of the QSPI monitor module. Propel SDK automatically parses the address map

base_address . . .
- of the SoC system and passes the information to software via the sys_platform.h.

Returns | Description

0: Succeeded in initializing the QSPI monitor module.

unsigned char
g 1: Failed to initialize the QSPI monitor module.

Description

This function is used to Initialize QSPI monitor instance. This function is supposed to be called when the platform is initializing.
This function should be called before calling any QSPI monitor related functions.

gspi_mon_select_flash

unsigned char gspi_mon_flash_update(struct spi_mon_instance
*this_spi_monitor, unsigned int flash_id,
unsigned int flash_select, unsigned int master_select)

Parameter | Description

this_spi_monitor | The pointer to the current QSPI monitor instance.
flash_id | The value of the flash id number.

The value of flash to select:

flash_select | ©x10: Select Flash A.

0x20: Select Flash B.

The value of controller to select:

master_select | ©: SPI Monitor

1: Internal Controller

Returns | Description

0: Succeeded in selecting the new flash.

unsigned char
g 1: Failed to select the new flash.

Description

This function is used to select flash that QSPI Streamer accesses to.

gqspi_mon_ws_update

unsigned char qgspi_mon_ws_update(struct spi_mon_instance *this_spi_monitor,
unsigned int flash_id, unsigned int mon_cntl,
unsigned int dummy_num,
struct spi_flash_manifest *flash_mon_sp)

Parameter | Description

this_spi_monitor | The pointer to the current QSPI monitor instance.
flash_id | The value of the flash ID number.
mon_cntl | The monitor control value that is configured for the QSPI monitor.

dummy_num | The value of dummy byte number that is configured in the QSPI monitor.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

gspi_mon_ws_update

flash_mon_sp

The pointer to the flash monitoring spaces that is configured for the QSPI monitor.

Returns

Description

unsigned char

0: Succeeded in updating the QSPI monitor space.

1: Failed to update the QSPI monitor space.

Description

This function is used to update white space and control setting for the QSPI monitor.

qspi_mon_exception_get

unsigned char gspi_mon_exception_get(struct spi_mon_instance

*this_spi_monitor, unsigned int flash_id,
unsigned int *command, unsigned int *address)

Parameter

Description

this_spi_monitor

The pointer to the current QSPI monitor instance.

flash_id | The value of the flash ID number.
command | The pointer to the buffer to store the exception SPI command.
address | The pointer to the buffer to store the exception SPI address.
Returns | Description

unsigned char

0: Succeeded in getting the exception.
1: Failed to get the exception.

Description

This function is used to get the command and SPI access address of the exception from the QSPI monitor.

4.2. Lattice Sentry QSPI Streamer

spi_flash_init

FUNCTION_ERROR spi_streamer_init(struct spi_streamer_instance *this_spi,

unsigned int base_addr,
unsigned int spi_mode,
unsigned int sck_div)

Parameter | Description
this_spi | The pointer to the instance of the current QSPI streamer device.
Base address of the QSPI streamer module. Propel SDK parses the address map of the SoC
base_addr . . .
- system and passes the information to software via the sys_platform.h.
The value of QSPI mode to select.
spi_mode | ©x00: QSPI mode 0
0x03: QSPI mode 3
sck_div | The value of the clock division.
Returns | Description
0: Succeeded in initializing the QSPI streamer.
Non-zero: Failed to initialize the QSPI streamer.
FUNCTION_ERROR 1: FUNCTION_BAD_INPUT
2: FUNCTION_QE_FATIL (Failed to enter Quad Enable mode.)
3: FUNCTION_TIMEOUT (Wait loop timed out and function returned failure.)

Description

This function is used to Initialize QSPI streamer module. This function is supposed to be called when the platform is initializing.
This function should be called before calling any QSPI streamer related functions.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

spi_flash_set_commands

FUNCTION_ERROR spi_flash_set_commands(struct spi_streamer_instance * const this_spi,
const st_spi_memory * const flash)

Parameter | Description

this_spi | The pointer to the instance of the current QSPI streamer device.

flash | The pointer to the SPI memory software ID and commands interface.

Returns | Description

0: Succeeded in updating the SPI instance with the software ID and commands interface.
Non-zero: Failed to update the SPI instance.

FUNCTION_ERROR 1: FUNCTION_BAD_INPUT

2: FUNCTION_QE_FAIL (Failed to enter Quad Enable mode.)

3: FUNCTION_TIMEOUT (Wait loop timed out and function returned failure.)

Description

This function is used to update the SPI instance with the software ID and commands specific to that SPI device.

FUNCTION_ERROR spi_write(struct spi_streamer_instance * const this_spi,

const unsigned int addr, const unsigned int length,
const unsigned char * const buff, const unsigned char addr4B)

Parameter | Description

this_spi | The pointer to the instance of the current QSPI streamer device.
addr | The start address of the SPI flash to write to.
length | The number of data in bytes that is written to the SPI device.
buff | The pointer to the data buffer that is written to the SPI device.

addr4B | The value of the addressing mode to select.
0: 3-byte address mode
1: 4-byte address mode

Returns | Description

0: Succeeded in writing the specified data to the SPI device.

Non-zero: Failed to write the specified data to the SPI device.

FUNCTION_ERROR 1: FUNCTION_BAD_ INPUT

2: FUNCTION_QE_FAIL (Failed to enter Quad Enable mode.)

3: FUNCTION_TIMEOUT (Wait loop timed out and function returned failure.)

Description

This function is used to write the specified length of data in the buffer to the SPI device from the specified address. Refer to
spi_read() for the data reading details.

FUNCTION_ERROR spi_read(struct spi_streamer_instance * const this_spi,

const unsigned int addr, const unsigned int length,
const unsigned char * const buff, const unsigned char addr4B)

Parameter | Description

this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of the SPI flash to read from.
length | The length of data in byte that is read from the SPI device.
buff | The pointer to the data buff that stores the data read from the SPI device.

The value of mode to select.
addr4B | 0: 3-byte address mode
1: 4-byte address mode

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

spi_read
Returns | Description

0: Succeeded in reading the specified data from the SPI device.

Non-zero: Failed to read the specified data from the SPI device.

FUNCTION_ERROR 1: FUNCTION_BAD_INPUT

2: FUNCTION_QE_FAIL (Failed to enter Quad Enable mode.)

3: FUNCTION_TIMEOUT (Wait loop timed out and function returned failure.)

Description
This function is used to read the specified length of data from the SPI device. Refer to spi_write() for the data writing details.

spi_write_txfifo
FUNCTION_ERROR spi_write_txfifo(struct spi_streamer_instance * const this_spi,
const unsigned int addr, const unsigned int length)

Parameter | Description

this_spi | The pointer to the instance of current QSPI streamer device.
Addr | The start address of the SPI device to write to.
Length | The number of data in byte that is written to the SPI device.

Returns | Description

0: Succeeded in writing the specified data to the SPI device.

Non-zero: Failed to write the specified data to the SPI device.

FUNCTION_ERROR 1: FUNCTION_BAD_INPUT

2: FUNCTION_QE_FATIL (Failed to enter Quad Enable mode.)

3: FUNCTION_TIMEOUT (Wait loop timed out and function returned failure.)

Description
This function is used to write the specified length of data in the TX FIFO to the SPI device from the specified address.

spi_read_txfifo
FUNCTION_ERROR spi_read_txfifo(struct spi_streamer_instance * const this_spi,
const unsigned int addr, const unsigned int length)

Parameter | Description
this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of SPI device to read from.
length | The length of data in byte that is read from the SPI device.
Returns | Description
0: Succeeded in reading the specified data from the SPI device.
Non-zero: Failed to read the specified data from the SPI device.
FUNCTION_ERROR 1: FUNCTION_BAD_INPUT

2: FUNCTION_QE_FAIL (Failed to enter Quad Enable mode.)
3: FUNCTION_TIMEOUT (Wait loop timed out and function returned failure.)

Description
This function is used to read the specified length of data from the SPI device and store the data into the TX FIFO of the QSPI
streamer module.

FUNCTION_ERROR spi_read_esb(void * const this_spi_streamer, unsigned int addr,
unsigned int length, unsigned char addr4B)

Parameter | Description

this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of SPI flash to read from.
length | The length of data in byte that is read from the SPI device.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

The value of mode to select.
addr4B | 0: 3-byte address mode
1: 4-byte address mode

Returns | Description

0: Succeeded in reading the specified data from the SPI device.

Non-zero: Failed to read the specified data from the SPI device.

FUNCTION_ERROR 1: FUNCTION_BAD_INPUT

2: FUNCTION_QE_FAIL (Failed to enter Quad Enable mode.)

3: FUNCTION_TIMEOUT (Wait loop timed out and function returned failure.)

Description

This function is used to read the specified length of data from the SPI device and feed to the ESB module for processing. For
details on general data read, refer to spi_read().

FUNCTION_ERROR spi_erase_4k(struct spi_streamer_instance * const this_spi,
const unsigned int addr, const unsigned char addr4B)
Parameter | Description

this_spi | The pointer to the instance of current QSPI streamer device.
Addr | The start address of the SPI flash to erase.

The value of mode to select.

Addr4B | 0: 3-byte address mode

1: 4-byte address mode

Returns | Description

0: Succeeded in erasing the 4K data.

Non-zero: Failed to erase the 4K data.

FUNCTION_ERROR 1: FUNCTION_BAD_INPUT

2: FUNCTION_QE_FAIL (Failed to enter Quad Enable mode.)

3: FUNCTION_TIMEOUT (Wait loop timed out and function returned failure.)

Description

This function is used to erase a 4K memory of the SPI device from the specified address.

unsigned char qgspi_quad_read(void *this_spi_streamer,
unsigned int addr, unsigned int length,
unsigned char addr4B)

Parameter | Description

this_spi_streamer | The pointer to the instance of current QSPI streamer device.
addr | The start address of the SPI flash to read from.
length | The length of data for the current read.

The value of mode to select.
addr4B | 0: 3-byte address mode
1: 4-byte address mode

Returns | Description

0: Succeeded in reading the data from flash.

unsigned char
g 1: Failed to read the data.

Description

This function is used read the specified length of data from the flash in quad mode.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

FUNCTION_ERROR spi_quad_write(struct spi_streamer_instance * const this_spi,
const unsigned int addr, const unsigned int length,
const unsigned char *const buff, const unsigned char addr4B)

Parameter | Description

this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of the SPI flash to write to.
length | The length of data for the current write.
buff | The pointer to the data buff that stores the data read from the SPI device.

The value of mode to select.
addr4B | 0: 3-byte address mode
1: 4-byte address mode

Returns | Description

0: Succeeded in writing the data to flash.

Non-zero: Failed to write the data to flash.

FUNCTION_ERROR 1: FUNCTION_BAD_INPUT

2: FUNCTION_QE_FAIL (Failed to enter Quad Enable mode.)

3: FUNCTION_TIMEOUT (Wait loop timed out and function returned failure.)

Description

This function is used to write the specified length of data to the flash in quad mode.

gspi_quad_read_crypto
unsigned char gspi_quad_read_crypto(void *this_spi_streamer, unsigned int addr,

unsigned int length, unsigned char addr4B);
Parameter | Description

this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of the SPI flash to read from.
length | The length of data for the current write.

The value of mode to select.
addr4B | 0: 3-byte address mode
1: 4-byte address mode

Returns | Description

0: Succeeded in reading the data from flash.

unsigned char 1: Failed to read the data from flash.

Description

This function is used to read the data from flash and feed into the secure enclave.

gspi_read_rxfifo

void gspi_read_rxfifo(const unsigned int addr, const unsigned int length,
const unsigned char addr4B, unsigned char * const buff)

Parameter | Description
addr | The start address of the SPI flash to read from.
length | The length of data for the current read.

The value of mode to select.
addr4B | 0: 3-byte address mode
1: 4-byte address mode

buff | The pointer to the buffer.
Returns | Description

void | —

Description

This function is used to read the specified length of data from the SPI device in QSPI mode and store the data into the RX FIFO of
the QSPI streamer module.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

gspi_quad_read_rxfifo

void gspi_quad_read_rxfifo(struct spi_streamer_instance * const this_spi,
const unsigned int addr, const unsigned int length,
unsigned char * const buff, const unsigned char addr4B)
Parameter | Description
this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of the SPI flash to read from.
length | The length of data for the current read.
The value of mode to select.
addr4B | 0: 3-byte address mode
1: 4-byte address mode
buff | The pointer to the buffer.
Returns | Description
void | —
Description
This function is used to read the specified length of data from the SPI device in quad QSPI mode and store the data into the RX
FIFO of the QSPI streamer module.

4.3. Lattice Sentry SMBus Filter

smbus_filter_init

unsigned char smbus_filter_init(struct smbus_filter_instance *this_smbus_filter,

unsigned int base_addr);

Parameter

Description

this_smbus_filter

The pointer to the instance of the current SMBus filter.

base_addr

Base address of the SMBus Filter module. Propel SDK automatically parses the address map
of the SoC system and pass the information to software.

Returns

Description

unsigned char

0: Succeeded in initializing the SMBus filter.
1: Failed to initialize the SMBus filter.

Description

This function is used to initialize the SMBus filter module. This function is supposed to be called when the platform is being
initialized. This function should be called before calling any SMBus filter related functions.

smbus_filter_set_whitelist

void smbus_filter_set_whitelist(struct smbus_filter_manifest *sm_filter_manifest,

struct smbus_filter_instance *this_smbus_filter,
unsigned char list_id)

Parameter

Description

sm_filter_manifest

The pointer to the smbus configuration data in the manifest.

this_smbus_filter

The pointer to the instance of the current SMBus filter.

list_id | Thelist ID to be configured for the SMBus filter.
Returns | Description
void | —

Description

This function is used to configure the SMBus filter device by setting the number of entry and the entry data.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

smbus_filter_event_get

unsigned char smbus_filter_event_get(struct smbus_filter_instance *this_filter,
unsigned char *addr_status, unsigned int *cmd_status);

Parameter | Description

this_filter | The pointer to the instance of the current SMBus filter.

addr_status | The pointer to the buffer to store the detected target address.

cmd_status | The pointer to the buffer to store the detected command.

Returns | Description
0: Succeeded in getting the detected SMBus filter events.
1: Failed to get the detected SMBus filter events.

unsigned char

Description
This function is used to get the target address and SMBus command of the detected event.

SMBUS_FILTER_ISR

void SMBUS_FILTER_ISR (void *ctx)
Parameter | Description

ctx | The pointer to the context of the SMBus filter device.

Returns | Description

void | —

Description
This function is used to process SMBus filter interrupt. The function can be registered via calling pic_isr_register ().

4.4. Lattice Sentry Secure Enclave

4.4.1. Crypto256 Interface

esb_init

unsigned char esb_init(struct esb_instance *this_esb,
unsigned int base_addr);

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

Base address of the ESB module. Propel SDK automatically parses the address map of the SoC
system and passes the information to the software.

base_addr

Returns | Description

0: Succeeded in initializing the ESB module.

unsigned char
g 1: Failed to initialize the ESB module.

Description
This function is supposed to be called when the platform is initialized. This function should be called before calling any ESB
related functions.

esb_mux_port_sel

unsigned char esb_mux_port_sel(struct esb_instance *this_esb,
unsigned int sel_port)

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.
sel port | Select the ESB mux to high speed port (HSP) or WISHBONE bus port.
Returns | Description

0: Succeeded in selecting the specified port for ESB module.

unsigned char
g 1: Failed to select the specified port for ESB module.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

esb_mux_port_sel
Description

This function is used to select the ESB mux to the specified data port. There are two data ports for the ESB module: one is the HSP
high-speed port, the other is the WISHBONE bus port.

esb_switch_idle
unsigned char esb_switch_idle(struct esb_instance *this_esb)

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

Returns | Description

0: Succeeded in switching the ESB module to idle state.

unsigned char
g 1: Failed to switch the ESB module to idle state.

Description

This function is used to switch the ESB module into idle state. The ESB module only can start new operation in idle state.

esb_trng32bits_get
unsigned char esb_trng32bits_get(struct esb_instance *this_esb,
unsigned int *trn_value)

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

The pointer to the data buffer to store the 32-bit long random number generated by the ESB
module.

trn_value

Returns | Description
0: Succeeded in getting the random number.
1: Failed to get the random number.

unsigned char

Description

This function is used to generate a 32-bit long random number by the ESB module.

esb_trng256bits_get
unsigned char esb_trng256bits_get(struct esb_instance *this_esb,
unsigned char p_trn[32])

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

p_trn | The data array to store the 256-bit random number generated by the ESB module.

Returns | Description
0: Succeeded in getting the random number.
1: Failed to get the random number.

unsigned char

Description

This function is used to generate a 256-bit long random number.

esb_pubkey_derive
unsigned char esb_pubkey_derive(struct esb_instance *this_esb,
EccPoint * p_publicKey,
unsigned char p_privateKey[NUM_ECC_DIGITS])

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

p_publicKey | The pointer to data buffer to store the generated public key.

p_privateKey | The private key input to the ESB module.

Returns | Description

0: Succeeded in deriving the public key.

unsigned char
g 1: Failed to derive the public key.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

esb_pubkey_derive

Description

This function is used to derive the public key.

esb_ecdh_get

unsigned char esb_ecdh_get(struct esb_instance *this_esb,
unsigned char p_secret[NUM_ECC_DIGITS],
EccPoint * p_publicKey,
unsigned char p_privateKey[NUM_ECC_DIGITS])

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

p_secret | The data array to store the shared secret generated by ECDH.

p_publicKey | The public key to for ECDH.

p_privateKey | The private key for ECDH.

Returns | Description

0: Succeeded in getting the ECDH shared secret.

unsigned char
g 1: Failed to get the ECDH shared secret.

Description

This function is used to generate the shared secret with ECDH.

esb_aes

unsigned char esb_aes(struct esb_instance *this_esb, unsigned char *key,
unsigned char *bufferIn, unsigned char *bufferoOut,
unsigned int decrypt)

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

key | The 128-bit long public key to do the AES encryption or decryption.

bufferIn | 16-byte long data to do the AES encryption or decryption.

bufferOut | The 16-byte long result of the AES encryption or decryption for the input data.

The flag to indicate to do encryption or decryption.
decrypt | @: To do encryption.
1: To do decryption.

Returns | Description
0: Succeeded in doing the AES for the input data.
1: Failed to do the AES for the input data.

unsigned char

Description

This function is used to do the AES encryption or decryption for the input data with the specified public key.

esb_sha256

unsigned char esb_sha256(struct esb_instance *this_esb,
struct sha256_ctx *ctx)

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.
ctx | The pointer to the context to do the SHA256.
Returns | Description

0: Succeeded in generating the digest via SHA-256 hash function.

unsigned char
g 1: Failed to generate the digest via SHA-256 hash function.

Description

This function is used to generate a 256-bit long digest for the data specified in the context via the SHA-256 hash function.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

esb_ecdsa_verify

unsigned char esb_ecdsa_verify(struct esb_instance *this_esb,

unsigned int digest[],
unsigned int pub_key[],
unsigned int signature[],
unsigned char *auth_pass)
Parameter | Description
this_esb | The pointer to the instance of the current ESB device.
digest | The digest that feeds to the ESB module to do the ECDSA authentication.
pub_key | The public key that feeds to the ESB module to do the ECDSA authentication.
signature | The signature that feeds to the ESB module to do the ECDSA authentication.
The pointer to the data buffer to hold the authentication result:
auth_pass | 1: Authentication passed.
0: Authentication failed.
Returns | Description
unsigned char o: Su'cceeded in doing the ECP?A \{erification.
1: Failed to do the ECDSA verification.

Description
This function is used to do the ECDSA authentication.

get_nonce

unsigned char get_nonce(struct esb_instance *this_esb,
unsigned char p_trn[16])

Parameter | Description
this_esb | The pointer to the instance of the current ESB device.
trn The data buffer to store the 128-bit random number generated by the ESB block and one
P byte checksum.
Returns | Description
R 0: Succeeded in getting the random number.
unsigned char .
1: Failed to get the random number.

Description

This function is used to get the random number generated by the ESB module.

4.4.2. Crypto384 Interface

crypto_init

unsigned int crypto_init(struct crypto_instance *this_crypto)

Parameter | Description

this_crypto | The pointer to the instance of the current crypto384 device.

Returns | Description

0: Succeeded in initializing the Crypto384 module.

unsigned char
g 1: Failed to initialize the Crypto384 module

Description

This function is supposed to be called when the platform is initialized. This function should be called before calling any Crypto384
related functions.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

crypto_sha384

unsigned int crypto_sha384(struct crypto_instance *this_crypto,
struct sha384 ctx* ctx,
unsigned char mode)

Parameter | Description
this_ crypto | The pointer to the instance of the current Crypto384 device.
ctx | The pointer to the context to do the SHA384.
mode | The SHA384 mode to do the general SHA384 or CDI HAMC SHA384.
Returns | Description

0: Succeeded in generating the digest via SHA-384 hash function.
1: Failed to generate the digest via SHA-384 hash function.

unsigned char

Description
This function is used to generate a 384-bit long digest for the data specified in the context via the SHA-384 hash function.

crypto_firmware_sha384

unsigned int crypto_sha384(struct crypto_instance *this_crypto,
struct sha384_ctx* ctx, unsigned int rbp_ver)

Parameter | Description
this_ crypto | The pointer to the instance of the current Crypto384 device.
ctx | The pointer to the context to do the SHA384.
rbp_ver | The rollback protection version.

Returns | Description
0: Succeeded in generating the CDI HMAC SHA-384 digest for firmware image.
1: Failed to generate the CDI HMAC SHA-384 digest for firmware image.

unsigned char

Description
This function is used to generate a 384-bit long digest for the firmware image specified in the context via the CDI HMAC SHA-384
hash function.

crypto_hmac_sha384
unsigned int crypto_hmac_sha384(struct crypto_instance *this_crypto,
unsigned char *hmac_key,
struct sha384_ctx* ctx)
Parameter | Description
this_ crypto | The pointer to the instance of the current Crypto384 device.
hmac_key | The pointer to buffer holding the HMAC key.
ctx | The pointer to the context to do the SHA384.

Returns | Description
0: Succeeded in generating the MAC code via SHA-384 hash function.
1: Failed to generate the MAC code via SHA-384 hash function.

unsigned char

Description
This function is used to generate a 384-bit MAC code for the data specified in the context via the SHA-384 hash function and the
HMAC key provided.

crypto_keypair_derive
unsigned char crypto_keypair_derive(struct crypto_instance *this_crypto,
struct ecc384_point * p_publicKey,
unsigned char p_privateKey[NUM_ECC_DIGITS_384])
Parameter | Description
this_ crypto | The pointer to the instance of the current Crypto384 device.
p_publicKey | The pointer to the structure to store the public key generated.
p_privateKey | The pointer to the array to store the private key generated.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

crypto_keypair_derive
Returns

= LATTICE

Description

unsigned char

0: Succeeded in generating the ECC384 key pair.
1: Failed to generate the ECC384 key pair.

Description

This function is used to generate a key pair of ECC384.

crypto_pubkey_derive

unsigned char crypto_pubkey derive(struct crypto_instance *this_crypto,

struct ecc384_point * p_publicKey,
unsigned char p_privateKey[NUM_ECC_DIGITS_384]);

Parameter

Description

this_crypto

The pointer to the instance of the current Crypto384 device.

p_publicKey

The pointer to the structure to store the public key generated.

p_privateKey

The pointer to the array storing the private key.

Returns

Description

unsigned char

0: Succeeded in generating the ECC384 public key.
1: Failed to generate the ECC384 public key.

Description

This function is used to generate an ECC384 public key from the provided private key.

crypto_ecdh_get

unsigned char crypto_ecdh_get(struct crypto_instance *this_crypto,

unsigned char p_secret[NUM_ECC_DIGITS_384],
struct ecc384_point * p_publicKey,
unsigned char p_privateKey[NUM_ECC_DIGITS_384]);

Parameter

Description

this_crypto

The pointer to the instance of the current Crypto384 device.

p_secret

The pointer to the array to store the shared secret key generated.

p_publicKey

The pointer to the structure of the public key caller provides.

p_privateKey

The pointer to the array of the private key caller provides.

Returns

Description

unsigned char

0: Succeeded in getting the shared secret key via ECDH.
1: Failed to get the shared secret key via ECDH.

Description

This function is used to generate a shared secret key via ECDH based on provided ECC384 public key and private key.

crypto384_ecdsa_sign

unsigned char crypto_ecdsa_sign(struct crypto_instance *this_crypto,

unsigned int digest[],
unsigned int private_key[],
unsigned int nonce[],
unsigned int signature[]);

Parameter | Description
this_crypto | The pointer to the instance of the current Crypto384 device.
digest | The pointer to the array storing the digest.

private_key

The pointer to the array storing the private key.

nonce

The pointer to the array storing the random number.

signature

The pointer to the array used to store the signature generated.

www.latticesemi.com/legal



http://www.latticesemi.com/legal

= LATTICE

 crypto3s4_ecdsasign .

Returns

Description

unsigned char

0: Succeeded in generating the signature via ECDSA.
1: Failed to generate the signature via ECDSA.

Description

This function is used to generate the ECDSA signature for the input digest and private key.

crypto_ecdsa_verify

unsigned char crypto_ecdsa_verify(struct crypto_instance *this_crypto,

unsigned int digest[],
unsigned int pub_key[],
unsigned int signature[],
unsigned char *auth_pass)

Parameter

Description

this_crypto

The pointer to the instance of the current Crypto384 device.

digest | The pointer to the array storing the digest.
pub_key | The pointer to the array storing the public key.
signature | The pointer to the array storing the signature.
auth_pass | The pointer to the buffer to store the ECDSA verification result.
Returns | Description

unsigned char

0: Succeeded in doing the ECDSA verification.
1: Failed to do the ECDSA verification.

Description

This function is used to do the ECDSA verification for the input digest, signature and public key.

crypto_ecies_encrypt

unsigned char crypto_ecies_encrypt(struct crypto_instance *this_crypto,

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int rcpt_pub_key[],
char *plain_text,
char length,

int sender_pub_key[],
char *auth_tag,

char *cipher_text)

Parameter

Description

this_crypto

The pointer to the instance of the current Crypto384 device.

rcpt_pub_key

The pointer to the array storing the recipient public key.

plain_text | The pointer to the buffer storing the plain text that needs to be encrypted.
length | The length of the plain text in byte.
Sender_pub_key | The pointer to the array storing the sender public key.
Auth_tag | The pointer to the buffer to store the authentication tag.

Cipher_text

The pointer to the buffer to store the encrypted text.

Returns

Description

unsigned char

0: Succeeded in doing the ECIES encryption.
1: Failed to do the ECIES encryption.

Description

This function is used to do the ECIES encryption for the plain text using XOR encryption.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

| crypto_ecies encryptex .

unsigned char crypto_ecies_encryptex(struct crypto_instance *this_crypto,
unsigned char p_secret[NUM_ECC_DIGITS_384],
unsigned char *plain_text,
unsigned char length,
unsigned char *auth_tag,
unsigned char *cipher_text)

Parameter | Description

this_crypto | The pointer to the instance of the current Crypto384 device.

p_secret | The pointer to the array storing the shared secret key.

plain_text | The pointer to the buffer storing the plain text that needs to be encrypted.
length | The length of the plan text in byte.

auth_tag | The pointer to the buffer to store the authentication tag.

cipher_text | The pointer to the buffer to store the encrypted text.

Returns | Description

0: Succeeded in doing the ECIES encryption.

unsigned char
g 1: Failed to do the ECIES encryption.

Description

This function is used to do the ECIES encryption for the plain text using AES encryption.

unsigned char crypto_ecies_decrypt(struct crypto_instance *this_crypto,
unsigned int rcpt_priv_key[],
unsigned int sender_pub_key[],
unsigned char *auth_tag,
unsigned char *cipher_text,
unsigned char length,
unsigned char cipher_status,
unsigned char *plain_data)

Parameter | Description

this_crypto | The pointer to the instance of the current Crypto384 device.

rcpt_priv_key | The pointer to the array storing the recipient private key.

sender_pub_key | The pointer to the array storing the sender public key.

auth_tag | The pointer to the buffer storing the authentication tag.

cipher_text | The pointer to buffer storing the cipher text that needs to be decrypted.
length | The length of the plan text in byte.

cipher_status | The pointer to the buffer to store the cipher status.

plain_data | The pointer to the buffer to store the plain text decrypted.

Returns | Description

0: Succeeded in doing the ECIES decryption.

unsigned char
g 1: Failed to do the ECIES decryption.

Description

This function is used to do the ECIES decryption for the input cipher text and authentication tag using XOR decryption.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

 crypto_ecies decryptex .

unsigned char crypto_jtag_cntl(struct crypto_instance *this_crypto,

unsigned int ctrl);

Parameter

Description

this_crypto

The pointer to the instance of the current Crypto384 device.

p_secret

The pointer to the array storing the shared secret key.

auth_tag

The pointer to the buffer storing the authentication tag.

cipher_text

The pointer to buffer storing the cipher text that needs to be decrypted.

length

The length of the plain text in byte.

cipher_status

The pointer to the buffer to store the cipher status.

plain_data

The pointer to the buffer to store the plain text decrypted.

Returns

Description

0: Succeeded in doing the ECIES decryption.

unsigned char
g 1: Failed to do the ECIES decryption.

Description
This function is used to do the ECIES decryption for the input cipher text and authentication tag using AES decryption.

crypto_jtag_cntl

unsigned char crypto_jtag_cntl(struct crypto_instance *this_crypto, unsigned int ctrl)
Description

The pointer to the instance of the current Crypto384 device.

0x03 = enable JTAG; (0x03 << 2) = disable JTAG

Description

0: Succeeded in setting JTAG debug mode.

1: Failed to set JTAG debug mode.

Parameter

this_crypto
ctrl

Returns

unsigned char

Description
This function is used to enter JTAG debug mode via firmware.

crypto_watermark_get

unsigned char crypto_watermark_get(struct crypto_instance *this_crypto,
unsigned char *wm_exceed)

Parameter | Description

The pointer to the instance of the current Crypto384 device.

this_crypto

wm_exceed | The pointer to the watermark value.

Returns | Description

0: Succeeded in reading the log to determine if it is full.

unsigned char
g 1: Failed to read the log and determine if it is full.

Description
This function is used to read the log area. If the log is full, wm_exceed is set to 1. If the log is not full, wm_exceed is set to 0.

crypto_bootinfo_get

unsigned char crypto_watermark_get(struct crypto_instance *this_crypto,
unsigned int *boot_info)

Description
The pointer to the instance of the current Crypto384 device.

Parameter
this_crypto

boot_info | The pointer to the boot source.

Returns | Description

0: Succeeded in getting the boot info.

unsigned char
g 1: Failed to get the boot info.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

crypto_bootinfo_get

Description

This function is used to get the Version IP information, including the boot source.

Optional DICE-related APlIs are listed below.
crypto_cdi_keypair_derive

unsigned char crypto_cdi_keypair_derive(struct crypto_instance *this_crypto,

struct ecc384 point * p_publickey,
uint8_t p_privateKey[NUM ECC_DIGITS_384])

Parameter

Description

this_crypto

The pointer to the instance of the current Crypto384 device.

p_publickey

The pointer to the public key (output).

p_privateKey

The pointer to the private key (output).

Returns

Description

unsigned char

0: Succeeded in deriving the public/private key pair.
1: Failed to derive the public/private key pair.

Description

This function is used to derive the public/private key pair from the current CDI (Compound Device Identifier).

crypto_cdi_ecdsa_sign

unsigned char crypto_cdi_ecdsa_sign(struct crypto_instance *this_crypto, uint32_t digest[],

uint32_t pub_key 11[], uint32_t signature[])

Parameter

Description

this_crypto

The pointer to the instance of the current Crypto384 device.

digest | The pointer to the digest.
pub_key_11 | The pointer to the L1 public key.
signature | The pointer to the signature (output).
Returns | Description

unsigned char

0: Succeeded in signing the digest with the LO public key using ECDSA.
1: Failed to sign the digest with the LO public key using ECDSA.

Description

This function is used to sign the digest with the LO public key using ECDSA.

crypto_dice_cert_get

unsigned char crypto_dice_cert_get(struct crypto_instance *this_crypto, uint8_t *p_cert,

uint32_t *cert_length)

Parameter

Description

this_crypto

The pointer to the instance of the current Crypto384 device.

p_cert | The pointer to the certificate (output).
Cert_length | The pointer to the length of the certificate (output).
Returns | Description

unsigned char

0: Succeeded in getting the DICE certificate.
1: Failed to get the DICE certificate.

Description

This function is used to get the DICE certificate.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

crypto_dev_trn_get

unsigned char crypto_dev_trn_get(struct crypto_instance *this_crypto, unsigned char *p_trn)

Parameter | Description

this_crypto | The pointer to the instance of the current Crypto384 device.

p_trn | The pointer to the true random number that is generated (output).

Returns | Description

0: Succeeded in generating a true random number.

unsigned char .
1: Failed to generate a true random number.

Description
This function is used to generate a true random number using the True Random Number Generator from the Secure Enclave.

crypto_10_cert_get

unsigned char crypto_10 cert_get(struct crypto_instance *this_crypto,
uint8_t *p_le_cert, uint32_t *cert_length)
Parameter | Description
this_crypto | The pointer to the instance of the current Crypto384 device.

p_cert | The pointer to the certificate (output).

cert_length | The pointer to the length of the certificate (output).

Returns | Description

0: Succeeded in getting the LO certificate.

unsigned char
g 1: Failed to get the LO certificate.

Description
This function is used to get the LO DICE certificate.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

4.5. Lattice Sentry PLD Interface

cstm_pld_init

unsigned char cstm_pld_init(struct cstm_pld_instance *this_cstm_pld,

unsigned int base_addr)

Parameter

Description

this_cstm_pld

The pointer to the current customer PLD instance.

base_addr

The base address of the customer PLD module. Propel SDK automatically parses the address
map of the SoC system and passes the information to software.

Returns

Description

unsigned char

0: Succeeded in initializing the customer PLD module.
1: Failed to initialize the customer PLD module.

Description

This function is used to initialize the customer PLD module.

cstm_pld_int_set

unsigned char cstm_pld_int_set(struct cstm_pld_instance *this_cstm_pld,

unsigned int ints)

Parameter | Description
this_cstm_pld | The pointer to the current customer PLD instance.
ints | The interrupts bit set to notify the PLD logic.
Returns | Description

unsigned char

0: Succeeded in setting the interrupt bits.
1: Failed to set the interrupt bits.

Description

This function is used to set the specified interrupts bit to notify the customer PLD logic.

cstm_pld_int_status_get

unsigned char cstm_pld_int_status_get(struct cstm_pld_instance

*this_cstm_pld, unsigned int *ints)

Parameter | Description
this_cstm_pld | The pointer to the current customer PLD instance.
ints | The pointer to data buffer to hold the interrupt status.
Returns | Description

unsigned char

0: Succeeded in getting the interrupt status.
1: Failed to get the interrupt status.

Description

This function is used to get the interrupt status of customer PLD module.

cstm_pld_msg_receive

unsigned char cstm_pld_msg_receive(struct cstm_pld_instance *this_cstm_pld,

unsigned char *msg)

Parameter | Description
this_cstm_pld | The pointer to the current customer PLD instance.
msg | The pointer to buffer to hold the message that is received from the customer PLD logic.
Returns | Description

unsigned char

0: Succeeded in receiving the message.
1: Failed to receive the message.

Description

This function is used to receive the message from the customer PLD logic.

www.latticesemi.com/legal



http://www.latticesemi.com/legal

= LATTICE

cstm_pld_msg_send
unsigned char cstm_pld_msg_send(struct cstm_pld_instance *this_cstm_pld,
unsigned char *msg)

Parameter | Description

this_cstm_pld | The pointer to the current customer PLD instance.

msg | The pointer to the message that is to be sent to the customer PLD logic.

Returns | Description

0: Succeeded in sending the message to the customer PLD logic.

unsigned char
g 1: Failed to send the message to the customer PLD logic.

Description

This function is used to send the message to the customer PLD logic.

cstm_pld_isr
void cstm_pld_isr(void *ctx)

Parameter | Description

ctx | The pointer to context that is passed to the interrupt service routine.

Returns | Description

void | —

Description
This function is called when there is interrupts from the customer PLD module. The function can be registered via calling
pic_isr_register ().

4.6. UFM Access Block (UAB)

uab_init

unsigned char uab_init(struct uab_instance *this_uab,
unsigned int base_addr)

Parameter | Description

this_uab | The pointer to the current UAB instance.

The base address of the UAB module. Propel SDK automatically parses the address map of
the SoC system and passes the information to software.

base_addr

Returns | Description

0: Succeeded in initializing the UAB module.

unsigned char
g 1: Failed to initialize the UAB module.

Description

This function is used to initialize the UAB module.

uab_done_set

unsigned char uab_done_set(struct uab_instance *this_uab,
uint32_t cfg, uint32_t auth)

Parameter | Description

this_uab | The pointer to the current UAB instance.

Specify the configuration sector.

cfg | 0:CFGO

1: CFG1

Specify the DONE bit or AUTH DONE bit to be set.
auth | @: DONE

1: AUTH Done

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

uab_done_set

Returns | Description
0: Succeeded in setting the DONE bit.
1: Failed to set the DONE bit.

unsigned char

Description

This function is used to set the DONE or AUTH DONE bit for the specified configuration sector. After in-system-program the
configuration sector, the DONE bit or AUTH Done bit needs to be set. Otherwise, Config Engine cannot boot up the bit-stream
successfully.

uab_auth_enable_write
unsigned char uab_auth_enable_write(struct uab_instance *this_uab,
uint32_t enable)

Parameter | Description

this_uab | The pointer to the current UAB instance.

The value to set the authentication enable bit
enable | : HMAC_SHA

1: ECDSA

Returns | Description

0: Succeeded in setting the authentication enable bit.
1: Failed to set the authentication enable bit.

unsigned char

Description
This function is used to set the authentication enable bit. Once updating the public key, the authentication enable bit is also
erased and needs to be set by using this function.

uab_usercode_read

unsigned char uab_usercode_read(struct uab_instance *this_uab,
unsigned char usercode[4])

Parameter | Description
this_uab | The pointer to the current UAB instance.

usercode | The data buffer to store the user code read back.

Returns | Description
0: Succeeded in reading back the user code.
1: Failed to read back the user code.

unsigned char

Description
This function is used to read back the user code from the UAB module.

uab_pubkey_read

unsigned char uab_pubkey_read(struct uab_instance *this_uab,
unsigned char pubkey[64])

Parameter | Description

this_uab | The pointer to the current UAB instance.
pubkey[] | The data buffer to store the public key read back from UAB module.

Returns | Description
0: Succeeded in reading back the public key.
1: Failed to read back the public key.

unsigned char

Description
This function is used to read the public key from the UAB module.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

uab_pubkey_write

unsigned char uab_pubkey write(struct uab_instance *this_uab,
unsigned char pubkey[64])

Parameter | Description

this_uab | The pointer to the current UAB instance.

pubkey[] | Data buffer storing the public key to be written to UAB module.

Returns | Description

0: Succeeded in writing the public key.

unsigned char
g 1: Failed to write the public key.

Description

This function is used to write the public key into the UAB module.

uab_usec_read
unsigned char uab_usec_read(struct uab_instance *this_uab,
unsigned short *usec)

Parameter | Description

this_uab | The pointer to the current UAB instance.
usec | Pointer to the buffer to store the USEC data read back.

Returns | Description

0: Succeeded in reading back the USEC data.
1: Failed to read back the USEC data.

unsigned char

Description
This function is used to read back the USEC data from the UAB module.

uab_usec_write
unsigned char uab_usec_write(struct uab_instance *this_uab,
unsigned short usec)

Parameter | Description

this_uab | The pointer to the current UAB instance.

usec | Data buffer storing the USEC to be written to UAB module.

Returns | Description

0: Succeeded in writing the USEC.
1: Failed to write the USEC.

unsigned char

Description
This function is used to write the USEC data into the UAB module.

uab_csec_read

unsigned char uab_csec_read(struct uab_instance *this_uab,
unsigned int *csec)

Parameter | Description

this_uab | The pointer to the current UAB instance.

csec | Data buffer storing the CSEC data read back from UAB module.

Returns | Description

0: Succeeded in reading back the CSEC data.
1: Failed to read back the CSEC data.

unsigned char

Description
This function is used to read back the CSEC data from the UAB module.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

uab_csec_write

unsigned char uab_csec_write(struct uab_instance *this_uab,
unsigned int csec)

Parameter | Description

this_uab | The pointer to the current UAB instance.

csec | Data buffer storing the CSEC to be written to UAB module.

Returns | Description

0: Succeeded in writing the CSEC data.
1: Failed to write the CSEC data.

unsigned char

Description
This function is used to write the CSEC data into the UAB module.

uab_feabit_read
unsigned char uab_feabit_read(struct uab_instance *this_uab,
unsigned int *feabit)

Parameter | Description

this_uab | The pointer to the current UAB instance.

feabit | Data buffer storing the feature bits read back from UAB module.

Returns | Description

0: Succeeded in reading back the feature bits.

unsigned char
g 1: Failed to read back the feature bits.

Description

This function is used to read back the feature bits from the UAB module.

uab_feabit_write
unsigned char uab_feabit_write(struct uab_instance *this_uab,
unsigned int feabit)

Parameter | Description

this_uab | The pointer to the current UAB instance.

feabit | Feature bits value to be written to UAB module.

Returns | Description

0: Succeeded in writing the feature bits.

unsigned char
g 1: Failed to write the feature bits.

Description

This function is used to write the feature bits into the UAB module.

uab_cro_read
unsigned char uab_cre_read(struct uab_instance *this_uab,
unsigned int *cro_value)

Parameter | Description

this_uab | The pointer to the current UAB instance.

cr@_value | Data buffer storing the control register 0 read back from UAB module.

Returns | Description

0: Succeeded in reading back the control register 0.

unsigned char
g 1: Failed to read back the control register 0.

Description

This function is used to read back the control register 0 from the UAB module.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

uab_cre_write
unsigned char uab_cre_write(struct uab_instance *this_uab,
unsigned int cr@_value)

Parameter | Description

this_uab | The pointer to the current UAB instance.

cr@_value | The value to be written to the Control Register O.

Returns | Description

0: Succeeded in writing the Control Register 0.

unsigned char . . .
1: Failed to write the Control Register 0.

Description

This function is used to write the Control Register 0 into the UAB module.

uab_udss_write

unsigned char uab_udss_write(struct uab_instance *this_uab,
unsigned int ufm, unsigned char udss_val)

Parameter | Description

this_uab | The pointer to the current UAB instance.

ufm | Specify the user flash sector.

udss_val | The value to be written to the UDSS section for each sector.

Returns | Description

0: Succeeded in writing the UDSS value.

unsigned char . .
1: Failed to write the UDSS value.

Description

This function is used to write the UDSS value for the specified user flash sector.

uab_cre_shadow_write
unsigned char uab_cre_shadow _write(struct uab_instance *this_uab, unsigned int creo)

Parameter | Description

this_uab | The pointer to the current UAB instance.

cr@ | The value to be written to the Control Shadow Register 0.

Returns | Description

0: Succeeded in writing the Control Shadow Register 0.

unsigned char
g 1: Failed to write the Control Shadow Register 0.

Description

This function is used to write the Control Shadow Register 0 into the UAB module.

uab_cril_read
unsigned char uab_crl_read(struct uab_instance *this_uab, unsigned int *crl)

Parameter | Description

this_uab | The pointer to the current UAB instance.

crl | Data buffer storing the Control Register 1 read back from UAB module.

Returns | Description

0: Succeeded in reading back the Control Register 1.

unsigned char
g 1: Failed to read back the Control Register 1.

Description

This function is used to read back the Control Register 1 from the UAB module.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

uab_cri_write
unsigned char uab_crl_write(struct uab_instance *this_uab, unsigned int crl)

Parameter | Description

this_uab | The pointer to the current UAB instance.

crl | The value to be written to Control Register 1.

Returns | Description

0: Succeeded in writing the Control Register 1.

unsigned char . . .
1: Failed to write the Control Register 1.

Description

This function is used to write the Control Register 1 into the UAB module.

uab_cril_shadow_write
unsigned char uab_crl_shadow_write(struct uab_instance *this_uab, unsigned int cri)

Parameter | Description

this_uab | The pointer to the current UAB instance.

crl | The value to be written to Control Shadow Register 1.

Returns | Description

0: Succeeded in writing the Control Shadow Register 1.

unsigned char
g 1: Failed to write the Control Shadow Register 1.

Description
This function is used to write the Control Shadow Register 1 into the UAB module.

uab_read_sr
unsigned char uab_read_sr(struct uab_instance *this_uab, uint32_t reg, uint32_t *sr_val)

Parameter | Description

this_uab | The pointer to the current UAB instance.
reg | The status register to be read (SRO or SR1).

sr_val | The value to be written to the status register.

Returns | Description

0: Succeeded in reading back the Status Register.

unsigned char
g 1: Failed to read back the Status Register.

Description

This function is used to read back Status Register O or Status Register 1.

uab_rbp_threshold_read
unsigned char uab_rbp_threshold_read(struct uab_instance *this_uab, unsigned char *rbp_ver)

Parameter | Description

this_uab | The pointer to the current UAB instance.

rbp_ver | Data buffer to store the RBP version.

Returns | Description

0: Succeeded in reading the RBP version.

unsigned char
g 1: Failed to read back the RBP Register.

Description

This function is used to read back the RollBack Protection version number.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

uab_rbp_threshold_update

unsigned char uab_rbp_threshold_update(struct uab_instance *this_uab)

Parameter | Description

this_uab | The pointer to the current UAB instance.

Returns | Description

0: Succeeded in reading the RBP version.

unsigned char
g 1: Failed to read back the RBP Register.

Description

This function is used to update the RollBack Protection version number to the next valid version. The RBP version can only be
incremented. It cannot go back to a lower RBP version number.

uab_ufm_page_read

unsigned char uab_ufm_page read(struct uab_instance *this_uab,
unsigned int pageno, unsigned int ufm,
unsigned char *buff,
unsigned char *checksum)

Parameter | Description

this_uab | The pointer to the current UAB instance.

pageno | The UFM page number to be read.
ufm | The UFM to be read.
buff | Data buffer to store the page read back from the UFM.
checksum | Sum of all bytes read back from the UFM page.

Returns | Description

0: Succeeded in reading a page from the UFM.

unsigned char
g 1: Failed to read a page from the UFM.

Description

This function is used to read one page from the UFM.

uab_ufm_page_write

unsigned char uab_ufm_page_write(struct uab_instance *this_uab,
unsigned int pageno, unsigned int ufm,
unsigned char *data, unsigned char *checksum)

Parameter | Description

this_uab | The pointer to the current UAB instance.

pageno | The UFM page number to be written.
ufm | The UFM to be written.
data | The data to write to the UFM page.

checksum | Sum of all bytes written to the UFM page.

Returns | Description

0: Succeeded in writing a page to the UFM.

unsigned char . .
1: Failed to write a page to the UFM.

Description

This function is used to write one page to the UFM.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

uab_ufm_erase

unsigned char uab_ufm_erase(struct uab_instance *this_uab, unsigned int ufm)

Parameter | Description
this_uab | The pointer to the current UAB instance.
ufm | The UFM to be erased.
Returns | Description

unsigned char

0: Succeeded in erasing the UFM.
1: Failed to erase the UFM.

Description

This function is used to erase an entire UFM.

uab_ufm_byte_write

unsigned char uab_ufm_byte_write(struct uab_instance *this_uab,

unsigned int pageno, unsigned char byteno,
unsigned int ufm, unsigned char data)

Parameter | Description
this_uab | The pointer to the current UAB instance.
pageno | The UFM page number to be written.
byteno | The byte to be written on the UFM page.
ufm | The UFM to be written.
data | The data to write to the UFM byte.
Returns | Description

unsigned char

0: Succeeded in writing a byte to the UFM.
1: Failed to write a byte to the UFM.

Description

This function is used to write one byte to the UFM. It writes one page but only updates a single byte.

uab_ufm_byte_read

unsigned char uab_ufm_byte_read(struct uab_instance *this_uab,

unsigned int pageno, unsigned char byteno,
unsigned int ufm, unsigned char *data)

Parameter | Description
this_uab | The pointer to the current UAB instance.
pageno | The UFM page number to be read back.
byteno | The byte to be read back from the UFM page.
ufm | The UFM to be read back.
data | The data buffer to store the byte read back from the UFM.
Returns | Description

unsigned char

0: Succeeded in reading back a byte from the UFM.
1: Failed to read back a byte from the UFM.

Description

This function is used to read back one byte from the UFM. It reads one page but only stores a single byte in the data buffer.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

uab_refresh

unsigned char uab_refresh(struct uab_instance *this_uab)

Parameter | Description
this_uab | The pointer to the current UAB instance.
Returns | Description

0: Succeeded in refreshing the UFM.

unsigned char
g 1: Failed to refresh the UFM.

Description

This function is used to refresh the UFM by force rebooting the device.

uab_pubkey_read_int
unsigned char uab_pubkey read_int(struct uab_instance *this_uab, unsigned int pubkey[16])

Parameter | Description

this_uab | The pointer to the current UAB instance.
pubkey | The integer array to store the public key.
Returns | Description

0: Succeeded in reading the public key.

unsigned char
g 1: Failed to read the public key.

Description

This function is used to read back the public key and return it as an integer array.

uab_pubkey_protect_en
unsigned char uab_pubkey_protect_en(struct uab_instance *this_uab)

Parameter | Description
this_uab | The pointer to the current UAB instance.
Returns | Description

0: Succeeded in enabling public key protection.

unsigned char
g 1: Failed to enable public key protection.

Description

This function is used to enable the public key protection scheme.

uab_usec_shadow_write
unsigned char uab_usec_shadow_write(struct uab_instance *this_uab, unsigned short usec)

Parameter | Description
this_uab | The pointer to the current UAB instance.
usec | The USEC to be written to UAB USEC shadow register.
Returns | Description

0: Succeeded in writing to the USEC shadow register.

unsigned char
g 1: Failed to write to the USEC shadow register.

Description
This function is used to write the USEC data into the UAB module’s USEC shadow register.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

uab_csec_shadow_write
unsigned char uab_csec_shadow_write(struct uab_instance *this_uab, unsigned short csec)

Parameter | Description

this_uab | The pointer to the current UAB instance.
csec | The CSEC to be written to UAB CSEC shadow register.

Returns | Description
0: Succeeded in writing to the CSEC shadow register.
1: Failed to write to the CSEC shadow register.

unsigned char

Description
This function is used to write the CSEC data into the UAB module’s CSEC shadow register.

uab_ext_sec_plcy write
unsigned char uab_ext_sec_write(struct uab_instance *this_uab, unsigned int sec_plcy)

Parameter | Description
this_uab | The pointer to the current UAB instance.

sec_plcy | The security policy to be written to the UAB.

Returns | Description

0: Succeeded in writing the security policy to the UAB.

unsigned char . . . .
1: Failed to write the security policy to the UAB.

Description
This function is used to write the security policy to the UAB.

uab_feabit_shadow_write
unsigned char uab_feabit_shadow_write(struct uab_instance *this_uab, unsigned short feabit)
Parameter | Description
this_uab | The pointer to the current UAB instance.
feabit | The feature bits to be written to UAB feature bit shadow register.

Returns | Description

0: Succeeded in writing to the feature bit shadow register.

unsigned char
g 1: Failed to write to the feature bit shadow register.

Description
This function is used to write the feature bits into the UAB module’s feature bit shadow register.

uab_auth_enable_write
unsigned char uab_auth_enable_write(struct uab_instance *this_uab, uint32_t enable)

Parameter | Description

this_uab | The pointer to the current UAB instance.
enable | @ =ECDSA, 1 =HMAC SHA
Returns | Description
0: Succeeded in enabling ECDSA or HMAC SHA.
1: Failed to enable ECDSA or HMAC SHA.

unsigned char

Description
This function is used to enable either ECDSA or HMAC SHA authorization.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

5.

= LATTICE

PFR Component APl Reference

The component layer of the Lattice PFR solution provides basic function for protection, detection, and recovery.

The following section provides the API reference on how to manage the manifest, MCTP protocol, high-level security
and log. Based on the provided component layer APIs, you can develop your own PFR software easily.

5.1. Manifest Management

load_manifest_flash

unsigned char load_manifest_flash(struct st_manifest_t *manifest,

struct uab_instance *this_uab)

Parameter | Description
manifest | The pointer to the manifest of the system.
this_uab | The pointer to the UAB instance.

Returns | Description

unsigned char

Returns O if no error.

Description

This function is used to load the manifest into internal flash.

mfst_oob_read

unsigned char mfst_oob_read(struct

st_manifest_t *manifest, struct uab_instance *this_uab,

struct smbus_slave_instance *i2c_ctx,
struct esb_instance *this_esb,
struct crypto_instance *this_crypto)
Parameter | Description
manifest | The pointer to the manifest of the system.
this_uab | The pointer to the UAB instance.
i2c_ctx | The pointer to the SMBus Target instance.
this_esb | The pointer to the instance of the current ESB device.

this_crypto

The pointer to the crypto instance.

Returns

Description

unsigned char

Returns O if no error.

Description

This function is used to read manifest from UFM and send the data to BMC over the OOB channel.

mfst_ufm_read

unsigned char mfst_ufm_read(struct st_manifest_t *manifest, struct uab_instance *this_uab

struct spi_mon_instance *SPImonitor)

Parameter | Description
manifest | The pointer to the manifest of the system.
this_uab | Pointer to the UAB instance.
SPImonitor | The pointer to the instance of the current SPI monitor device.
Returns | Description

unsigned char

Returns O if no error.

Description

This function is used to read manifest from UFM and then parse the information into internal data structure.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

mfst_ufm_write
unsigned char mfst_ufm_write(struct st_manifest_t *manifest,
volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter | Description

manifest | The pointer to the manifest of the system.

this_i2c_efb | The pointer to the instance of the current I2C device used for the OOB channel.

Returns | Description

unsigned char | Returns 0 if no error.

Description

This function is used to update manifest in UFM.

mfst_image_update
unsigned char mfst_image_update(struct st_manifest_t *manifest,
struct oob_instance *oob, unsigned char secure_mode, unsigned char *buff );

Parameter | Description

manifest | The pointer to the manifest of the system.

oob | The pointer to the OOB module instance.

secure_mode | 1 =secure mode, @ = not secure mode.

buff | Data buffer which stores the new image information to be updated.

Returns | Description

unsigned char | Returns 0 if no error.

Description

This function is used to update the image information in manifest.

mfst_sign_update
unsigned char mfst_sign_update(struct st_manifest_t *manifest,

struct oob_instance *oob, unsigned char secure_mode,
unsigned char *buff)

Parameter | Description

manifest | The pointer to the manifest of the system.

oob | The pointer to the OOB module instance.

secure_mode | 1 =secure mode, © = not secure mode.

buff | Data buffer which stores the new signature information to be updated.

Returns | Description

unsigned char | Returns 0 if no error.

Description

This function is used to update the signature information in manifest.

mfst_ver_update
unsigned char mfst_ver_update(struct st_manifest_t *manifest,

struct oob_instance *oob, unsigned char secure_mode,
unsigned char *buff)

Parameter | Description

manifest | The pointer to the manifest of the system.

oob | The pointer to the OOB module instance.

secure_mode | 1 =secure mode, @ = not secure mode.

buff | Data buffer which stores version information to be updated.

Returns | Description

unsigned char | Returns 0 if no error.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

mfst_ver_update
Description

This function is used to update the version information in manifest.

mfst_ver_thrhd_update

unsigned char mfst_ver_thrhd_update(struct st_manifest_t *manifest,
struct oob_instance *oob, unsigned char secure_mode,
unsigned char *buff)

Parameter | Description

manifest | The pointer to the manifest of the system.

oob | The pointer to the OOB module instance.

secure_mode | 1 =secure mode, © = not secure mode.

buff | Data buffer which stores version threshold update information.

Returns | Description

unsigned char | Returns 0 if no error.

Description

This function is used to update version threshold in manifest.

mfst_pkey_update
unsigned char mfst_pkey update(struct st_manifest_t *manifest,

struct oob_instance *oob, unsigned char secure_mode,
unsigned char *buff)

Parameter | Description

manifest | The pointer to the manifest of the system.

oob | The pointer to the OOB module instance.

secure_mode | 1 =secure mode, @ = not secure mode.

buff | Data buffer which stores the new public key to be updated.

Returns | Description

unsigned char | Returns 0 if no error.

Description

This function is used to update the public key in manifest.

mfst_wsa_update

unsigned char mfst_wsa_update(struct st_manifest_t *manifest, struct oob_instance *oob,
struct spi_mon_instance *SPImonitor, unsigned char secure_mode,
unsigned char *buff)

Parameter | Description

manifest | The pointer to the manifest of the system.

oob | The pointer to the instance of the current |12C device used for the OOB channel.

SPImonitor | The pointer to the instance of the current SPI monitor device.

secure_mode | 1 =secure mode, @ = not secure mode.

buff | Data buffer containing the addresses to be updated.

Returns | Description

unsigned char | Returns 0 if no error.

Description

This function is used to update the white space address in manifest.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

mfst_384pkey_update

unsigned char mfst_384pkey update(struct st_manifest_t *manifest,

struct oob_instance *oob, unsigned char secure_mode,
unsigned char *buff)

Parameter | Description
manifest | The pointer to the manifest of the system.
oob | The pointer to the instance of the current I2C device used for the OOB channel.

secure_mode

1 = secure mode, @ = not secure mode.

buff

Data buffer which stores the new public key to be updated.

Returns

Description

unsigned char

Returns O if no error.

Description

This function is used to update the 384 public key in manifest.

5.2. MCTP Processing

mctp_init

void mctp_init(struct mctp *mctp, mctp_rx_fn fn, void *data)

Parameter | Description
mctp | The pointer to the current mctp component.
fn | The function pointer to the callback function which handles the vendor specific commands.
data | The pointer to the argument of the callback function.
Returns | Description
void | —

Description
This function is used to Initialize MCTP structure. This function is supposed to be called when the platform is being initialized.

mctp_register_bus
void mctp_register_bus(struct mctp *mctp, struct mctp_binding *binding, unsigned char eid)

Parameter | Description
mctp | The pointer to the current mctp component.
binding | The pointer to the bus instance that the MCTP protocol is running on.
eid | The Endpoint ID values for the MCTP local bus.
Returns | Description
void | —

Description
This function is used to register a binding bus that the MCTP protocol is running on. This function is supposed to be called when
the platform is being initialized.

mctp_message_rx

int mctp_message_rx(struct mctp_binding *binding, struct mctp_pktbuf *pkt)

Parameter | Description
binding | The pointer to the instance of the binding bus.
pkt | The pointer to the MCTP packet.
Returns | Description
int 1: Succeeded in parsing the MCTP packet.
0: Failed to parse the MCTP packet.

Description

This function is used to parse the received MCTP packets.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

mctp_message_tx
int mctp_message_tx(struct mctp *mctp, unsigned char_t eid, void *msg, unsigned int msg_len)
Parameter | Description
mctp | The pointer to the current MCTP component.
eid | The Endpoint ID values for the target MCTP bus.
msg | The pointer to the message that is to be sent to the binding bus.

msg_len | The number of message in bytes that is to be sent to the binding bus.

Returns | Description

int | Returns O if no error.

Description
This function is used to send the specified length of message in the buffer to a peer device.

mctp_pktbuf_init
void mctp_pktbuf_init(struct mctp_binding *binding, struct mctp_pktbuf *buf, unsigned int len)
Parameter | Description
binding | The pointer to the instance of the binding bus.
buf | The pointer to the MCTP packet.
len | The length of the data in the packet buffer.

Returns | Description

void | —

Description
This function is used to Initialize the mctp packet with the specified length.

mctp_pktbuf_hdr
struct mctp_hdr *mctp_pktbuf_hdr(struct mctp_pktbuf *pkt)
Parameter | Description
pkt | The pointer to the MCTP packet.
Returns | Description
struct mctp_hdr * | Return the address of the packet header.

Description
This function is used to get the address of the packet header.

mctp_pktbuf_size
unsigned char mctp_pktbuf_size(struct mctp_pktbuf *pkt)
Parameter | Description

pkt | The pointer to the mctp packet.

Returns | Description

unsigned char | Returns the value of the size of packet buff.

Description
This function is used to get the size of packet buff.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

5.3. Security Manager

authenticate_image

int authenticate_image(struct st_manifest_t *manifest, struct uab_instance *this_uab,
struct spi_mon_instance *SPImonitor,
struct spi_streamer_instance
*qspi_master_streamer_inst,
struct esb_instance *esb_inst,
unsigned int image_id, unsigned int flash_sel);

Parameter | Description

manifest | The pointer to the current manifest.
this_uab | Pointer to the UAB instance.

SPImonitor | The pointer to the QSPI monitor device.

gspi_master_streamer_inst | The pointer to the QSPI streamer device.

esb_inst | The pointer to the ESB device.

image_id | The image ID that used to get the image related information from the manifest.

flash_sel | The primary or the secondary SPI flash where you wants to do the authentication.

Returns | Description

1: Succeeded in authenticating the specified image.

int
-1: Failed to authenticate the specified image.

Description

This function is used to authenticate the specified image stored on the SPI flash.

recover_image

int recover_image(struct st_manifest_t *manifest, struct uab_instance *this_uab,
struct spi_mon_instance *SPImonitor,
struct spi_streamer_instance *qspi_master_streamer_inst,
unsigned int image_id, unsigned int buflash2priflash);

Parameter Description

manifest The pointer to the current manifest.

this_uab Pointer to the UAB instance.

SPImonitor The pointer to the QSPI monitor device.

gspi_master_streamer_inst The pointer to the QSPI streamer device.

image_id The image ID that used to get the image related information from the manifest.

buflash2priflash The flash to indicate the direction of the recovery. 0 means recovery from primary to
secondary.

Returns Description

int 1: Succeeded in recovering the specified image.
-1: Failed to recover the specified image.

Description

This function is used to recover the image from the specified source to the specified destination.

void cfg_isp(struct st_pfr_instance *pfr_inst,

unsigned int fromAddr,
unsigned char is_signed)

Parameter Description
pfr_inst The pointer to the current PFR instance.
fromAddr The flash address where firmware can load the Jedec file and download into the CFG.

1: The Jedec file is signed.

is_signed
—>18 0: The Jedec file is not signed.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

Returns Description
void —
Description

This function is used to load the Jedec file from the specified flash address and download the Jedec file into the CFG space and
set the done bit and authentication done bit accordingly.

fw_authdone_set
int fw_authdone_set(struct st_pfr_instance *pfr_inst,
unsigned int start_address)

Parameter Description

pfr_inst The pointer to the current PFR instance.

start_address The flash address where the new firmware image is located.

Returns Description

int 0: Succeeded in setting the done-bit for the specified firmware image.
-1: Failed to set the done-bit for the firmware image.

Description

This function is used to set the done-bit for the new firmware image. Otherwise, the system cannot boot up successfully with the
new firmware image.

ufm3_update
unsigned char ufm3_update(struct uab_instance *uab_inst,
unsigned int start_address)

Parameter Description

pfr_inst The pointer to the current PFR instance.
start_address The flash address where the new ufm3 data is located.
Returns Description

0: Succeeded in updating the data for ufm3.

unsigned int
g 1: Failed to update the ufm3 data.

Description

This function is used to update the ufm3 data into ufm2. And Mach-NX device authenticates the data and makes update into
UFM3 when booting up.

5.4. Log Management
log_write

int log_write(struct st_manifest_t *manifest, struct uab_instance *this_uab,
unsigned char *data)

Parameter | Description

manifest | The pointer to the current manifest of the system.

this_uab | The pointer to the UAB instance.

data | The pointer to the data buffer that stores the log.

Returns | Description

0: Succeeded in writing the log.

int . .
-1: Failed to write the log.

Description

This function is used to write one slot of log data into the UFM.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

log_read

unsigned int log_read(struct st_manifest_t *manifest, struct uab_instance *this_uab,
struct smbus_slave_instance *this_i2c_slave,
unsigned char *pException,
struct esb_instance *this_esb);

Parameter | Description
manifest | The pointer to the manifest of the current system.

this_uab | The pointer to the UAB instance.
this_i2c_slave | The pointer to the I2C target device that is used as the communication channel.

pException | The pointer to the flag for exception.

this_esb | The pointer to the ESB device.

Returns | Description
unsigned int | Return the available address for the next log.

Description
This function is used to read the log from the UFM and send it to BMC via the OOB channel.

log_ack
int log_ack(struct st_manifest_t *manifest, struct uab_instance *this_uab, unsigned int page);

Parameter | Description
manifest | The pointer to the current manifest of the system.
this_uab | The pointer to the UAB instance.

page | The value of log entry.

Returns | Description

0: Succeeded in writing the log.

int . .
-1: Failed to write the log.

Description
This function is used to acknowledge that the previous log has been received.

int log_clear(struct st_manifest_t *manifest, struct uab_instance *this_uab,);
Parameter | Description
manifest | The pointer to the current manifest of the system.

this_uab | The pointer to the UAB instance.

Returns | Description
int | @: Succeeded in clearing the log. No other return value.

Description
This function is used to write one slot of log data into the UFM.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)

User Guide

= LATTICE

6. PFR System Design (from Lattice Propel)

Lattice Propel is a platform for embedded system design, development, and validation. Lattice Propel provides a PFR
Solution Template to simplify customer PFR solution design.

For more information, refer to Lattice Sentry Demo Board for Mach-NX Walkthrough User Guide (FPGA-UG-02167).

6.1. PFR Solution Template

The PFR Solution Template provides a baseline PFR implementation with all required features enabled. You can follow

Lattice Propel tool flow to create or modify a standard PFR design.

The diagram below (Figure 6.1) shows the general SoC design flow based on Propel tool sets. Choose PFR Template
during the Select Solutions Templates step. After that, follow Lattice Propel SDK 1.1 User Guide (FPGA-UG-02115) to

create the entire design step by step.

@pen Lattice Prop@

v

Select Solution Templates

v

Select Processor and Device

v

SoC Project

v

A

Propel Builder

DGE (Formatter)

v

Prepared Files (RTL, LPF, and TCL)
for Lattice Diamond Project

v

Lattice Diamond

v

SoC Bistream

Figure 6.1. Lattice Propel Template Flow

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0

58


http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53767
https://www.latticesemi.com/view_document?document_id=53083

= LATTICE

6.2. PFR System Design Customization
You can customize your hardware and software designs on top of the PFR Solution Template to meet your specific
requirements.
When creating a new PFR system design, to build a customized design, you can:
e after creating the SoC project, customize the SoC design in Lattice Propel Builder.
e  after creating a project in Lattice Diamond:
e add/edit RTL source files to bring in customer logic;
e edit the LPF file for I/O mapping and constraint settings.
e after the software project is created, edit the source files in Propel SDK.
Further changes can be made to the existing PFR system design which is created through the Propel tool sets. Note

when an SoC design is changed in the System Builder, it is necessary to build the hardware project in Propel SDK to
regenerate the BSP. After that, the software project needs to be updated with the updated BSP.

6.2.1. Customer PLD Customization

As stated in the Customer PLD Interface section, a Customer PLD module is provided to allow you to integrate the
control logic into the PFR solution. In the Lattice PFR Solution Template, a simple customer PLD design is provided
(Figure 6.2) to demonstrate a typical usage as monitoring and controlling customized I/O pads.

Customer PLD PFR Firmware
4 I 4 N

Initial Customer PLD

Interface

User Toggle Switch Input Change Detected

y

A
> Re

P ceive Message

Send Message

A 4

Receive Message < Send Message

LED Toggled [— Toggle Output

= J = J

Figure 6.2. Customer PLD Workflow

You can edit the template project to customize the functionality of customer PLD as well as the firmware accordingly.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)

User Guide

= LATTICE

7. PFR System Demo Guide

7.1. Lattice Sentry Demo GUI Tool

The Lattice Sentry Demo GUI is a tool which can communicate between a PC with Windows platform and the Mach-NX
device through UART to I2C bridge on the Lattice Sentry Demo Board for Mach-NX part. This tool also provides SPI
access to verify the monitoring and protection of the SPI Flash. The Lattice Sentry Demo GUI is integrated in Lattice

Propel platform.

To use Lattice Sentry Demo GUI Tool:
1. Connect mini-USB cable from PC to the mini-USB connector J11 of the Lattice Sentry Demo Board for Mach-NX.

2. From your PC desktop, invoke Lattice Propel. Choose LatticeTools > Lattice Sentry Tools for Mach-NX > Lattice
Sentry Demo GUI to invoke Lattice Sentry Demo Tool. See Figure 7.1.

workspace - Lattice Propel

inihd |.:V

viRiILIGIK S
&5 Project Explorer 2

There are no projects in your workspace.
To add a project:

[ Create a new Lattice C project

File Edit Source Refactor Navigate Search Project Run LatticeTools Window Help
‘g v &8 v [

Open Design in Propel Builder
Generate and Open Diamond Proejct
Generate and Open Radiant Proejct
Lattice Sentry Tools for MachXO3D
Lattice Sentry Tools for Mach-NX

Lattice Sentry Demo GUI

O X
Q m|@
8= Qu ® = =

There is no active

% Create a new Lattice SoC Design Project
¥ Create a project...
1 |mport projects...

[ Problems =
0 items

Description

<

109M of 336M m:

Lattice Sentry Manifest Manager
Lattice Sentry FlashAddr GUI

¥l Tasks| & Console| [ Properties & Terminal v §°0

Resource Path Location Type

>

Figure 7.1. Launch Lattice Sentry Demo GUI Tool

3. The available COM ports are listed in Console Output. Clicking the Scan Ports button can update the available ports.

See Figure 7.2.

4. Two COM ports are associated with the Lattice Sentry Demo Board for Mach-NX. The COM port with smaller
number is for BMC, while the COM port with larger number is for PCH/CPU. Select the associated COM port for

both BMC and PCH/CPU channel. See Figure 7.2.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0

60


http://www.latticesemi.com/legal

. . - -
bizc:cGelizr;try 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) H- LATTICE

Lattice Sentry Demo GUI for Mach-NX — O X
UART Control
Authenticate Image v | | Image 1D 1=Pri 2=Sec
0x00 0x01
Command ID:1 < >
12C Address:
ress 02l HBMC comt v | [ opr [ 0x01 0x00 0x01 0xFD o o]
PCH CcOM1 v [JoFf | 0x01 0xQ0 0x01 OxFD Send Command
Scan Ports | | Read Log
Console Output Address Space Information
port list:
Serial port: COM1
Serial port: COM5
Serial port: COM6

Figure 7.2 COM Port Scan of the Lattice Sentry Demo GUI Tool

5. Clicking the OFF check box for BMC to open the port and establish the connection between GUI and BMC. If the
BMC port can be opened successfully, the OFF check box is changed to ON. See Figure 7.3. All logs are listed in the
Console Output area. For PCH/CPU, the operation is similar.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02286-1.0 61


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)

= LATTICE

User Guide
Lattice Sentry Demo GUI for Mach-NX — O
UART Control
Authenticate Image | | Image ID 1=Pri 2=5ec
0x00 0x01
Command ID:1 <
[2C Address: 0x42

Console Output

Scan Ports | Read Log

0x01 0x00 0x01 OxFD

BMC [coM5 v |7 on I Send Command

PCH \cOM6 v |[]oN |‘ 0x01 0x00 Ox01 OxFD Send Command

Address Space Information

Send version check emd 0xBC 0x03 0x00!
Response data: 31 02 00
version number is 2.0!

Checking 12C connnection!
12C communication established!
Open port COM5 successfully!

Send version check emd 0xBC 0x03 0x00!
Response data: 31 02 00
version number is 2.0!

Open port COM6 successfully!

Clear

Read Address Space

Figure 7.3 Enable Lattice Sentry Demo GUI Tool

Click the Clear button to clear the message log in the Console Output window.

In the UART Control section, you can select a command and change the parameters for the corresponding
command. The message for this command is generated automatically.

8. Click Send Command to send selected command and receive the response. All logs are shown in the Console

Output window. See Figure 7.4.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02286-1.0

62


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)
User Guide

= LATTICE

Lattice Sentry Demo GUI for Mach-NX

O X
UART Control
Authenticate Image Image 1D 1=Pri 2=Sec
0x00 0x01
Command ID:1 < >
12C Address:
0x42] 1 BMC |coms v ON | 0x01 0x00 0x01 OxFD Send Command
PCH cowme ~ ON | 0x01 0x00 0x01 OxFD Send Command
Scan Ports | | Read Log
Console Output

Address Space Information

Sending 12C write command: 0x01 0x00 0x01 0xFD
Response data: 30 01 00 FE

Command: 01 Status: 00 Done/Success

Figure 7.4. Send Command of Lattice Sentry Demo GUI Tool
9.

Click Read Log to read one log entry at a time. Logs are available for Authentication, Recovery, and SPI Exceptions.
When the Current and Last Index values are the same, there are no more log entries. See Figure 7.5.

Lattice Sentry Demo GUI for Mach-NX

UART Control

Authenticate Image | | Image ID

0x00

1=Pri 2=Sec
0x01

Command ID:1

12C Address:

‘ Scan Ports ‘

BMC i on
PeH 1on

0x01 0x00 0x01 OxFD

‘ 0x01 0x00 0x01 OXFD
Read Log

Console Output

Address Space Information
Open port COM6 successfully!

Reading log...

Log index:6

Imestamp.

ata: 31 06 00 00 01 01 01 00 00 Q0 00 00 00 09 ED
Event: Authenticate _In
0:0:0

ng ID: 0 PrifSec: 1 Auth Pass/ Vers Pass /
Last log index: 9

Reading log...
~nesnonse

ata: 31 07 00 00 02 01 01 00 00 00 00 00 00 09 EB

()
Log index:7 | Event: Authenticate

imestamp: 0:0:0 | Last log index: 9

In

ng ID: 0 Pri/fSec: 2 Auth Pass/ Vers Pass /

nd

Figure 7.5 Logging of Lattice Sentry Demo GUI Tool

2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice
FPGA-RD-02286-1.0

63


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)
User Guide

= LATTICE

10. Click Read Address Space to retrieve the information of the manifest from UFMO in Mach-NX device. In the
Address Space Information area, the FlashO tab is for the BMC port and the Flash1 tab is for the PCH/CPU port. See
Figure 7.6.

% Lattice Sentry Demo GUI for Mach-NX - m} had
UART Control
Authenticate Image | | ImageID 1=Pri 2=5ec
000 001

Command ID:1

12C Address: 0xd2
BMC coms ~ JoN |DxD‘I 0x00 0xD1 OxFD ‘ T —
Scan Ports Read Log PCH |coms  ~ ON | 0x01 000 001 O« FD ‘ Send Command
Console Output Address Space Information
FlashD  Flash1 = 12C Filter
port list: P
Serial part: COM1 Flash Information:
Serial port: COM3
Serial bort, COME Address Space 0; Enable 0x00300000 - 0x003000FF White
Serial port: COM3 Address Space 1t Enable Cx003001FF - 0x003002FF White
Serial pnrt: coma Address Space 22 Enable 0x0D0307000 - 0x00301FFF Black
) Address Space 3t Enable 000310000 - 0x00317FFF Black
Send version check cmd OxBC 0x03 000! i::'ess zpﬂcegj EHEE:E gggiigggg - ggggigggg g:ﬂct
Response data: 3102 00 ress apace 3 bnable N ac

Address Space & Enable 0x00350000 - 0x0035TFFF White
Address Space 70 Enable (x00360000 - 0x00360700 Black

wversion number is 2.0 |

Checking 12C connnection!

12C communication established!

Image 0:
0 rt COMS fully! g
pen po successiuly Image Location: 0x00000D00
. Image Length: 000200000
1
;:';s;:;:g;t;h;ﬁrgod DBC 003 00! Signature Location: DxDD200000
version numhe‘r 2.0 Backup Image Location: 000000000
o Backup Image Length: 0x00200000
Backup Signature Location:  Ox00200000
o} rt COME fully!
penpe successiuly Version Offset: Dx000D000D
Version Threshold: 00000
Clear Read Address Space

Image Infarmation:

Figure 7.6 Read Address Space of Lattice Sentry Demo GUI Tool

For the detail definition of the commands, refer to the Write Commands and Read Commands sections of the Mach-NX
Platform Firmware Resiliency Out-of-Band I2C Command Protocol User Guide (FPGA-UG-02136).

7.2. Key Feature Validation Method

Lattice Propel provides several methods which can be used to validate the PFR functionalities at different levels. When
you design a PFR solution using Lattice Propel, functions from basic register access to system-level can all be validated
in the simulation environment. At board-level validation, key features for PFR system, including authentication,
protection, and recovery are necessary. Lattice Propel provides tool set to validate the basic features on demo board.

7.2.1. Function Simulation
Follow steps below, you can form Functional Simulation at multiple levels:

1. Register access testing for all available registers. Special registers, such as write-only registers, are not covered at
this stage, in order to make sure the correctness of SOC connection, address map, and basic quality of RTLs of SOC
and IP.

2. Functional simulation for all available IP BSP to ensure each standalone IP works as expected.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0 64


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) ...ILATTICE

User Guide

3. Build up the system-level simulation environment, which is aligned with maximum real application hardware
environment, and then use firmware directly as stimulus to do the system-level simulation.

For Step 1 above, write and readback scenario are used as the starting point.

For Step 2 above, the functionality of each IP plus BSP is the key focus.

Meanwhile, for Step 1 and Step 2, each transaction on the system bus (AHBLITE and APB buses) is traced from end to
end with address map checking. The content of each transaction is also checked.

Step 3 mainly verifies the functionality of the system-level usage defined in firmware.

An internal UVM-based simulation platform has been developed to support verification of all levels. Each level of
verification can be enabled/customized using a unified configuration interface.

An external user can have a customized simulation environment which can be run using Active-HDL.

Lattice Propel provides a utility, Lattice Sentry Demo GUI Tool, which allows you to operate all PFR I2C commands to
implement and validate the PFR Key functionality.

7.2.2. Authentication

As stated in the Boot Up Protection section, the PFR system authenticates BMC and PCH/CPU image at boot-up stage.
For function validation, you can use a command to perform image authentication manually.

The command should be selected with correct arguments in the Lattice PFR Demo Tool.

To force authentication for the Primary image in FlashO, select the command ‘Authenticate Image’ and modify the

value in the right command parameter table (Figure 7.7), then it generates the whole command 0x01 0x00 0x01 OxFD.

Click the Send Command. You can see a Console Output message (Figure 7.7), if it was executed successfully.

7% Lattice Sentry Demo GUI for Mach-MNX - ] X
UART Contrel
Authenticate Image Image ID 1=Pri 2=Sec
0x00 0x01
Command ID:1 !

12C Address: D2
BMC [coMs  v| FAON [ 0x01 0x00 0x01 0cFD | [send Command

Scan Ports Read Log PCH | coms ~| 10N | 007 000 001 OxFD | Send Command

Console Output Address Space Infermation

[ Flashl  Flash1 = 12C Filter
Sending 12C write command: Cx01 0x00 0x07 0xFD Flash Inf —
Response data: 30 01 00 FE ash Information:

c d: 01 Status: 00 Done/S
omman atusi U Lone/success Address Space0:  Enable 0x00300000 - Dx0D3000FF White

Address Space 1: Enable (x003001FF - 0x003002FF White
Address Space 2@ Enable (00301000 - 0x00301FFF Black
Address Space 3:  Enable 0x00310000 - 0x00317FFF Black
Address Space 4 Enable (x00320000 - 0x00330000 Black
Address Space 5 Enable  (x00340000 - 0x00340600 Black
Address Space 6 Enable  (x00350000 - 0x00357FFF White
Address Space 7t Enable (00360000 - 0x 00380700 Black
Image Information:
Image &
Image Location: 000000000
Image Length: 000200000
Signature Location: 000200000
Backup Image Location: 000000000
Backup Image Length: Ox 00200000
Backup Signature Location:  0x00200000
Version Offset: 000000000
Version Threshold: 0x0000

Clear Read Address Space

Figure 7.7. BMC Image Authentication for Flash 0

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0

65


http://www.latticesemi.com/legal

. . - -
Il.JaSt(::cguSizr;try 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) H- LATTICE

Authenticate Image (0x01 0x00 0x01 OxFD) — to authenticate Primary image in FlashO
Authenticate Image (0x01 0x00 0x02 OxFC) — to authenticate Secondary image in FlashO
Authenticate Image (0x01 0x01 OxFC) — to authenticate Primary image in Flash1
Authenticate Image (0x01 0x01 0x02 OxFB) — to authenticate Secondary image in Flash1

Next, check all of the security logs by clicking Read Log, and the latest log should be “Event: Authenticate ImgID: 0
Pri/Sec: 1 Auth Pass/ Vers Pass /”, which corresponds to the previous command 0x01 0x00 0x01 OxFD, as shown in
Figure 7.8.

G Lattice Sentry Demo GUI for Mach-MNX — [} X
UART Control
Authenticate Image | | ImagelD 1=Pri 2=5¢ec
0x00 0x01

Command ID:1

12C Address: Dxd2
BMC coms ~| Hon | 0x01 000 CxD1 GxFD | Tevs Comnre
Scan Ports Read Log PCH coms  v| [Aon | 0x01 0x00 0x01 OxFD | Send Command
Console Output Address Space Information

FlashQ  Flash1 = 12C Filter

Sending |2C write command: 001 0x00 0x01 0xFD Flash Inf P
Response data: 30 01 00 FE ash Information:
Command: 01 Status: 00 Done/Success Address Space 0 Enable (x00300000 - Cx003000FF White
Reading log... Address Space 1@ Enable Ox003001FF - 0x003002FF White
Response data: 3108 0001010101 000000 00 0000 0A E9 Address Space 2t Enable 000301000 - OxDO30TFFF Black
Logindexs Event: Authenticate ImgID: 1 PrifSec:1 Auth Pass/ VersPass/ Timestamp: Address Space3: - Enable  0x00310000 - kD03 17FFF Black
0:00 Last log index: 10 Address Space 4 Enable 0x00320000 - 0x00330000 Black
Address Space 3 Enable 000340000 - 000340600 Black
Reading log... Address Space & Enable 0x00330000 - 0x00357FFF White
Response data: 3109 000102 0101000000 00 00 00 0A E7 Address Space 7: Enable 000360000 - k00360700 Black
Logindex:d Event: Authenticate ImglD:1 PrifSec: 2 Auth Pass/ VersPass/ Timestamp: .
0:0:0  Lastlog index: 10 Image Information:
Image 0
Reading log... Image Location: 000000000
Response data: 31 04 00 00 01 01 01 00 00 00 00 OC 1E 04 BE Image Length: 0x00200000
Log index:10  Event: Authenticate |mgID:0 PrifSec:1 Auth Pass/ Vers Pass/ Timestamp: Signature Location: 0x00200000
0:51:42 Last log index: 10 Backup Image Location: O 00000000
Backup Image Length: 000200000
Backup Signature Location:  Cx00200000
Version Offset: 000000000
Version Threshold: Ox 0000
Clear Read Address Space

Figure 7.8. Get Logs for Image Authentications

7.2.3. Protection
Click Read Address Space to get the Address Space information for FlashO and Flash1. All White Spaces are also listed,
as shown in Figure 7.8, which was configured in Manifest file as default.

7.2.3.1. Legal Operation (Operate on White Space)
Read 16 bytes starting from 0x00300000 in FlashO (White Space), program a value (0x5A) to 0x00300003, and read
back the bytes again.

Flash Page Read (0xF3 0x00 0x30 0x00 0x00) — to read 16 bytes started from 0x00300000 in FlashO. The read back data
is all Oxff, as Figure 7.9 shows.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0 66


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)

User Guide

= LATTICE

Censole Output

BMC [coms  ~| Mon |(»<F30x000x300xw0x00

S Lattice Sentry Demo GUI for Mach-NX - O
UART Control
Flash Page Read | | Flash Address
(00300000
Command 1D:243
12C Address: 42

| Send Command

Scan Ports Read Log PCH 'coms ~ [Hon |0)<F30x000x300x000x00

| Send Command

Sending 5P| read command: 0xF3 Cx00 030 0x00 (00

Response data: 31 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFOF
16 bytes data:

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Clear

Address Space Information

FlashD  Flash1  12C Filter

Flash Information:

Address Space 0t Enable
Address Space 1t Enable
Address Space i Enable
Address Space 3 Enable
Address Space 4 Enable
Address Space 3t Enable
Address Space & Enable
Address Space 7: Enable

Image Information:

Image 0

Image Location:

Image Length:

Signature Location:
Backup Image Location:
Backup Image Length:
Backup Signature Location:
Version Offset:

Version Threshold:

000300000 - CxD03000FF White
x003001FF - (x003002FF White
000307000 - 0x0D030TFFF Black
000310000 - 0xD0317FFF Black
(00320000 - (x00330000 Black
000340000 - 000340600 Black
000350000 - OxD0357FFF White
(00360000 - (x00360700 Black

(000000000
000200000
0% 00200000
0x 00000000
(00200000
0% 00200000
0x 00000000
00000

Read Address Space

Figure 7.9. Initial Value of 0x00300000~0x0030000F

Disable SPI Filter (0x16 0x00 0x00 OxE9) — to disable all commands for filtering on BMC SPI port.

Flash Sector Erase (0xFO 0x00 0x30 0x00 0x00 0x01) — to erase the sector started from 0x00300000 in FlashO.

Enable SPI Filter (0x16 0x00 0x01 OxE8) — to enable all commands for filtering on BMC SPI port.
Flash Byte Write (OxF4 0x00 0x30 0x00 0x03 0x5A) — to write a value (0x5A) to 0x00300003 in FlashO.

Flash Page Read (0xF3 0x00 0x30 0x00 0x00) — to read 16 Bytes started from 0x00300000 in FlashO with above steps.

As Figure 7.10 shows, the address 0x00300003 was programmed with Ox5A successfully, for 0x00300003 is in White

Address List space 0.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0

67


http://www.latticesemi.com/legal

. . - -
Il.JaSt(::cguSizztry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) H- LATTICE

.1 Lattice Sentry Demo GUI for Mach-NX - O x
UART Control
Flash Page Read | | Flash Address
0x 00300000

Command 10:243

12C Address: Owd2

BMC [cOM5  ~| [Z1ON [ 0xF3 0x00 0x30 000 000 | [send Command
Scan Ports Read Log PCH [come  ~ MON | 0xF3 000 0x 30 000 000 | Send Command
Console Qutput Address Space Information
Flash0 Flash1 |2 Filter
Sending 5Pl read command: 0xF3 (00 O30 Dw00 000 Flash Inf —
Response data: 31 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFFFOF ash Infermation:
16 bytes data Address Space 0:  Enable 000300000 - 0xDO3000FF Wit
ress space naple - e
FFFF FF FFFF FF P FF PR FF FF P PR FRFFFF Address Space 1@ Enable Ox003007FF - 0x003002FF White
Sending 5Pl write command: GxF4 0x00 Bx30 0x00 0x03 Ox5A Address Space 21 Enable 0x00301000 - (x00301FFF Black
Response data: 30 F400 0B Address Space 3: Enable 0x00310000 - 0x00317FFF Black
Cornmand: F4 Status: 00 Done/Success Address Space 4 Enable 0x00320000 - (00330000 White
' ' Address Space 5t Enable 0x00340000 - (00340600 Black
Sending SPI read command: OxF3 0x00 Dx30 0x00 0x00 i::’e“ gpa‘e & E”EE:E gggiggggg - gggig;z;g g:a‘:
Response data: 31 FF FF FF 34 FF FF FF FF FF FF FF FF FF FF FF FF B4 fessopace it knable - / ac
16 bytes data: -
FF FF FF 5A FF FF FF FF FF FF FF FF FF FF FF FF mage jnformatio:
mage 1:
Image Location: 000000000
Image Length: 0x001FO000
Signature Location: 0x001FO000
Backup Image Location: 0x00000000
Backup Image Length: Ox00TFO000
Backup Signature Lecation:  0x001F0000
Version Offset: 000000000
Version Threshold: 00000
Clear Read Address Space

Figure 7.10. Value of 0x00300000~0x0030000F after Write

7.2.3.2. lllegal Operation (operate on Black Space)

Reading 16 bytes started from 0x00310000 in Flash0, program a value (OxAA) to 0x00310003, and read back the bytes
again. Follow steps below:

Flash Page Read (0xF3 0x00 0x31 0x00 0x00) — to read 16 Bytes started from 0x00310000 in FlashO

Flash Byte Write (OxF4 0x00 0x31 0x00 0x03 OxAA) — to write a value (OxAA) to 0x00310003 in FlashO

Flash Page Read (0xF3 0x00 0x31 0x00 0x00) — to read 16 Bytes started from 0x00310000 in FlashO

After running above steps, Figure 7.11 shows that the read address 0x00310000 is blocked and the return values are all
0x00. 0x00310003 is Black Address Space 3 (0x00310000~0x00317FFF) and it cannot be programmed.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0 68


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)
User Guide

= LATTICE

FlashD  Flash1 12C Filter

8 Lattice Sentry Demo GUI for Mach-MNxX — [m|
UART Centrol
Flash Byte Write ~ Flash Address Byte
0x00310003 OxAA
Command I0:244
12C Address: Oxed2
BMC com3 ~ [on |0xF~40x000x31 000 0x03 DxAA | Send Command
Scan Ports Read Log PCH |coms  ~ ON | OxF4 0x00 0x31 0x00 0x03 OxAA | Send Command
Console Qutput Address Space Information

Sending 5Pl read command: 0xF3 0x00 0x37 0x00 0x00

4

Version Offset:

Response data: 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FF
Version Threshold:

16 bytes data:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Reading log...

Response data: 3103070003 003100000000 00 A5031F

Log index:3 Event: 5P| Exception Flash ID: 00 SPICMD 03 5P| Address: 00310000 Timestamp:
0:2:45  Last log index: 3

Response data: 31 00 00 00 00 00 00 00 00 DO 0 00 00 00 00 00 00 FF Flash Information:
16 bytes data:
000000 00 00 00 00 00 00 00 00 00 00 00 00 00 Address Space:  Enable
Address Space 11 Enable
- Address Space2:  Enable
Reading log... X Address Space 3 Enable
. . . - . . . Address Space 4 Enable
Log index:1 Event: SPIIExceptlon Flash ID: 00 SPI CMD 03 5PI Address: 00310000 | Timestamp: Addrecs Space 5 Enable
- ' Address Space 6 Enable
Sending SPI write command: 0xF4 0x00 Dx31 000 0x03 xAA Address Space 7: - Enable
Response data: 30 F4 00 OB -
Command: F4 Status: 00 Dene/Success Image Information:
Image 0:
. Image Location:
Reading log...
eading log PR Image Length:
Log index:2 Event: SPI Exception Flash ID:00 SPI CMD 02 SPI Address: 00310000 || Timestamp: Signature Location:
Backup Image Location:

Backup Image Length:
Sending 5Pl read command: OxF3 000 (37 0xc00 0D Backup Signature Location:

000300000 - Ox003000FF White
0x003001FF - 0x003002FF White
(00301000 - 0x00301FFF Black
0x00310000 - 0x00317FFF Black
0x00320000 - 0x00330000 Black
000340000 - 0x00340600 Black
0x00350000 - 0x00337FFF White
000360000 - O0x00360700 Black

(00000000
(00200000
000200000
(00000000
(00200000
000200000
(00000000
00000

Clear Read Address Space

Figure 7.11. Value of 0x00310000~0x0031000F after Write

Using the Read log operation, SPI Exception Events are printed in detail by Lattice Sentry Demo GUI Tool, as shown in

Figure 7.12. The illegal command is captured as the Flash Byte Write to BMC FlashO.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02286-1.0

69


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)

User Guide

= LATTICE

Q Lattice Sentry Demo GUI for Mach-MNX - m}
UART Control
Flash Byte Write — Flash Address Byte
0x00310003 DAl
Command 1D:244
12C Address: w42

BMC com3  ~| [AoN |mm0xoom31 0x00 0x03 OxAA | e e

Scan Ports Read Log PCH lcoma  ~ ON | OxF4 0xD0 0x 31 0x00 0x03 DxAA | Send Command

Console Output

Sending 5P read command: OxF3 000 031 GO0 00D

Response data: 31 00 00 00 00 00 00 00 O 00 00 00 00 00 00 00 00 FF
16 bytes data:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Reading log...

Sending 5P| write command: DicF4 000 31 0200 Cre03 D AA
Response data: 30 F4 00 0B
Command: F4 Status: 00 Done/Success

Reading leg...

0778

Sending 5P read command: 0xF3 0x00 0x31 Cx00 0x00

Response data: 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FF
16 bytes data:

00 00 00 00 00 00 G0 00 00 00 00 00 00 00 00 00

Reading leg...

Logindex:1 Event: SPl Exception Flash ID: 00 SPICMD 03 5P| Address: 00310000 || Timestamp:
i ol

Logindex:2 Event: SPlException Flash [D: 00 SPICMD 02 5P| Address: 00310000 I'ﬁmestamp:

Logindex:3 Event: 5P| Exception Flash ID: 00 SPICMD 03 5PI Address: 00310000 | Timestamp:

Clear

Address Space Information

FlashD  Flash1  12C Filter

Flash Information:

Address Space 0t Enable (x00300000 - (003000FF White
Address S5pace 1: Enable CxD03001FF - (D03002FF White
Address Space 2: Enable 0x00301000 - (00301FFF Black
Address 5pace 3t Enable x00310000 - (x00317FFF Black
Address Spaced: Enable (x00320000 - (00330000 Black
Address Space 5t Enable Cx00340000 - (00340600 Black
Address Space & Enable (x00350000 - (x00357FFF White
Address Space ;' Enable Cx00360000 - (00360700 Black

Image Information:

Image 0:

Image Location: 000000000
Image Length: 000200000
Signature Location: (00200000
Backup Image Location: 000000000
Backup Image Length: 000200000

Backup Signature Location: (00200000

Version Offset: 00000000
Version Threshaold: 00000
Read Address Space

Figure 7.12. Logs of lllegal Operation

7.2.4. Recovery

Image recovery is demonstrated by manually corrupting the image and recovering it from a known good image.

7.2.4.1. Manual Image Corruption
Disable all commands filtering for BMC. Then erase the sector starting from 0x00100000 in FlashO to corrupt Primary

image in Flash0. Authenticate Primary image after corrupting the Primary image. Authentication should fail, as
Figure 7.13 shows. Follow steps below:
Authenticate Image (0x01 0x00 0x01 OxFD) — to authenticate Primary image in FlashO
Disable SPI Filter (0x16 0x00 0x00 0xE9) — to disable all commands for filtering on BMC SPI port

Flash Sector Erase (0xFO 0x00 0x10 0x00 0x00 0x01) — to erase the sector started from 0x00100000 in FlashO
Authenticate Image (0x01 0x00 0x01 OxFD) — to authenticate Primary image in FlashO

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02286-1.0

70


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) :..LATTICE

User Guide
e
i} Lattice Sentry Demo GUI for Mach-NX — [m| X
UART Control
Authenticate Image | | ImagelD 1=Pri 2=5ec
L] 01
Command [D:1
12C Address: 042
BMC coms  v| [oN [ 0x010x00 0:01 0xFD | | Send Command |
ScnPorts || Resdlog | | | POH [coms | Flon [ 0:010:00 001 0FD | | Send Command |
Console Output Address Space Information

FlashD  Flash1 12C Filter

Sending 12C write command: (07 000 007 OnFD
Response data: 3001 00 FE
Command: 01 Status: 00 Done/Success

Flash Information:

Address Space 0:  Enable (x00300000 - 0xD03000FF White
Address Space 1: Enable Ox003001FF - 0xD03002FF White
- A1 00 D E4 01 OF Address Space 22 Enable (x00301000 - 0xD0301FFF Black
: AddressSpace 3 Enabe. OKOI310000- OOUSTFF Blck
:D:IHdE};1 oEgvle:e;:uthentlcate Img ID: 0 PrifSec: 1 Auth Pass/ Vers Pass/ [Timestamp: Address Space 4 Enable 0x00320000 - 0x00330000 Black
Address Space 5:  Enable (00340000 - 0500340600 Black

Address Space & Enable (x00350000 - 0xD0357FFF White
Address Space 7:  Enable 0x00360000 - 000360700 Black

Reading leg...

Sending 12C write command: 016 Cx00 000 0xE9
Response data: 30 16 00 E9

Command: 16 Status: 00 Done/Success .
Image Information:

Sending SPI write command: 0xFO0 0x00 010 0x00 000 0x01 Image 0:

Response data: 30 FO 00 OF :mage tocaii:n: xggooooo
C d: FO Status: 00 D S mage Length: 00000
emman e one/Success Signature Location: Ox 00200000
Sending I12C write command: 0x01 0x00 001 0xFD Backup Image Location: 0x00000000
Response data: 30 01 FF FF Backup Image Length: 000200000
: : i Backup Signature Location: 0w 00200000
Command: 01 Status: FF Error/Fail -

Version Offset: 000000000

Version Threshold: 0x0000

Reading leg...

Logindex:2  Event: Authenticate ImgID: 0 Pri/Sec: 1 Auth Fail / Vers Fail / || Timestarmp:

Uit BET 100 INQEX: £

Read Address Space

Figure 7.13. Authentication Failed with Corrupted Image

7.2.4.2. Manual Image Recovery

Select the command Recovery Image and modify the value in the right command parameter table (Figure 7.14). It
generates the whole command, 0x02 0x00 0x01 OxFC. Click Send Command. If successful, the console output appears
with messages, as shown in Figure 7.14.

2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02286-1.0

71


http://www.latticesemi.com/legal

. . - -
bi'ce'c:cGelizr;try 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) H- LATTICE

% Lattice Sentry Dema GUI for Mach-MNX - O X
UART Control
I Recover Image ~ I Image ID 0=Pri->5ec 1=5ec-...
000 0x01
Command ID:2 |
12 Address: (xd?
BMC |coms | [AON | 0x02 0x00 0x01 OxFC | | send Command
Scan Ports Read Log PCH |coms  ~ ON | 002 (00 001 DxFC | Send Command
Console Output Address Space Information
Response data: 30 FO 00 OF ~ FlashD  Flash1 = 12C Filter

Command: FO Status: 00 Done/Success -
Flash Information:

;Z:s;”fﬁ;ﬂ::';;ﬁ;";;d' Bx01 0x00 0x01 OxFD Address Space 0: Enable 000300000 - OxD03000FF White
Command: 01 Status: FF Error/Fail Address Space 1: Enable (x003001FF - 0x003002FF White
Address Space 22 Enable (00301000 - 0xD0301FFF Black
Address Space 31 Enable (x00310000 - 0xD0317FFF Black
Address Space 4t Enable (%00320000 - 000330000 Black
Address Space 5:  Enable (00340000 - 0x00340600 Black
Address Space 6:  Enable (00350000 - 0x00357FFF White
Address Space 7: Enable (00360000 - 0x00360700 Black

Reading log...

Response data: 3102 00 00 07 00 00 00 00 00 00 00 7A 02 80

Log index:2  Event: Authenticate ImgID: 0 PrifSec: 1 Auth Fail / Vers Fail / Timestamp:
n:2:2  Lastlogindex: 2

Sending [2C write command: 0x02 000 001 O FC .
Image Information:

Irnage 0:

Response data: 30 02 00 FD

Command: 02 Status: 00 Done/Success :2:3: t:ﬁ;ﬂﬁn: ﬁ%ﬁ@mﬁ
. - Signature Location: 000200000

Sending 12C writ: d: 001 000 Onc01 O FD

RZ:p:)nngse dagr';;ﬁ%”;; Backup Image Location: 000000000

Command: 01 ‘Status: 00 Done/Success Backup Image Length: CxD0200000

Backup Signature Location:  0x00200000

. Version Offset: (00000000

Reading log...

eacing log , 2 Version Threshold: 00000

Logindex:3  Event: Recover ImglID: 00 Sec -» Pri| Timestamp: 0:3:4  Last log index: 4

Reading log...

Response data: 3104 00 0001 07 01 00 00 00 00 01 60 04 93

Log indecd  Event: Authenticate ImgID: 0 PrifSec: 1 Auth Pass/ VersPass/ Timestamp:
0:5:52  Last log index: 4

Clear Read Address Space

Figure 7.14. Authenticate Primary Image after Recovery Done

Recover Image (0x02 0x00 0x01 OxFC) — to recover BMC image to Primary with Secondary (good image) in FlashO.
Authenticate Image (0x01 0x00 0x01 OxFD) — to authenticate Primary image in FlashO.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02286-1.0 72


http://www.latticesemi.com/legal

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) ...ILATTICE

User Guide

References

e  Lattice Sentry Solution Stack web page

e Mach-NX Devices web page

e Lattice Propel Design Environment web page

e Lattice Sentry PLD Interface IP Core (FPGA-IPUG-02106)

e SFBInterface IP Core (FPGA-IPUG-02151)

e Lattice Sentry SMBus Mailbox IP Core - Lattice Propel Builder (FPGA-IPUG-02165)

e Lattice Sentry I2C Filter IP Core - Lattice Propel Builder (FPGA-IPUG-02166)

e Lattice Sentry Demo Board for Mach-NX Evaluation Board User Guide (FPGA-EB-02045)
e Lattice Propel SDK 1.1 User Guide (FPGA-UG-02115)

e Lattice Sentry Demo Board for Mach-NX Walkthrough User Guide (FPGA-UG-02167)
e Lattice Sentry Flash Address Map Generation for Mach-NX (FPGA-TN-02352)

e Device Identifier Composition Engine for Mach-NX (FPGA-TN-02355)

e Lattice Insights for Lattice Semiconductor training courses and learning plans

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0

73


http://www.latticesemi.com/legal
https://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/LatticeSentry
https://www.latticesemi.com/en/Products/FPGAandCPLD/Mach-NX
https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/LatticePropel
http://www.latticesemi.com/view_document?document_id=52882
http://www.latticesemi.com/view_document?document_id=53137
https://www.latticesemi.com/view_document?document_id=53430
http://www.latticesemi.com/view_document?document_id=53429
https://www.latticesemi.com/view_document?document_id=53340
https://www.latticesemi.com/view_document?document_id=53083
https://www.latticesemi.com/view_document?document_id=53767
https://www.latticesemi-insights.com/

. . - -
ba;c::c;izr;try 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT) H- LATTICE

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02286-1.0 74


http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)

User Guide

= LATTICE

Revision History

Revision 1.0, March 2024

Section

Change Summary

All

Production release.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02286-1.0

75


http://www.latticesemi.com/legal

s LATTICE


http://www.latticesemi.com/

	Lattice Sentry 2.2 Platform Firmware Resiliency (PFR) Platform Root of Trust (PRoT)
	Contents
	Acronyms in This Document
	1. Introduction
	1.1. Purpose
	1.2. Audience
	1.3. Document Structure

	2. Platform Firmware Resiliency System (PFR) Root of Trust (RoT) Introduction
	2.1. PFR
	2.2. RoT
	2.3. Lattice RoT Mechanism
	2.4. System Architecture
	2.5. Functionality Overview
	2.5.1. Mach-NX SoC Function Block
	2.5.1.1. RISC-V Processor
	2.5.1.2. Lattice Sentry Secure Enclave
	2.5.1.3. Lattice Sentry QSPI Streamer
	2.5.1.4. Lattice Sentry QSPI Monitor
	2.5.1.5. Lattice Sentry System Management Bus (SMBus) Filter
	2.5.1.6. General Peripherals

	2.5.2. Mach-NX SFB Interface
	2.5.2.1. Customer PLD Interface
	2.5.2.2. UFM Access Module (UAB)



	3. PFR System Architecture and Runtime Flow
	3.1. Firmware Architecture
	3.2. Bootloader
	3.3. Runtime Flow
	3.4. Configuration
	3.4.1. Mach-NX PFR Manifest Manager
	3.4.2. Flash Address Tool

	3.5. Boot Up Protection
	3.6. Recovery
	3.7. Detection
	3.8. Logs and Reporting

	4. PFR IP API Reference
	4.1. Lattice Sentry QSPI Monitor
	4.2. Lattice Sentry QSPI Streamer
	4.3. Lattice Sentry SMBus Filter
	4.4. Lattice Sentry Secure Enclave
	4.4.1. Crypto256 Interface
	4.4.2. Crypto384 Interface

	4.5. Lattice Sentry PLD Interface
	4.6. UFM Access Block (UAB)

	5. PFR Component API Reference
	5.1. Manifest Management
	5.2. MCTP Processing
	5.3. Security Manager
	5.4. Log Management

	6. PFR System Design (from Lattice Propel)
	6.1. PFR Solution Template
	6.2. PFR System Design Customization
	6.2.1. Customer PLD Customization


	7. PFR System Demo Guide
	7.1. Lattice Sentry Demo GUI Tool
	7.2. Key Feature Validation Method
	7.2.1. Function Simulation
	7.2.2. Authentication
	7.2.3. Protection
	7.2.3.1. Legal Operation (Operate on White Space)
	7.2.3.2. Illegal Operation (operate on Black Space)

	7.2.4. Recovery
	7.2.4.1. Manual Image Corruption
	7.2.4.2.   Manual Image Recovery



	References
	Technical Support Assistance
	Revision History
	Revision 1.0, March 2024



