s LATTICE

Lattice Sentry 2.2 Mach-NX SoC Function
Block Hardware User Guide

Technical Note

FPGA-TN-02360-1.0

April 2024

;2?::“?;?’,1:3:'2 Mach-NX SoC Function Block Hardware User GuideLATTICE

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and
other items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases
such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02360-1.0 2

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

= LATTICE

Contents
(6o 41 4= o | F 3P PR PPPPPRRPPOPPR 3
AbDBreviations iN THiS DOCUMENT.....cciutiiiie ittt stee ettt et e st e st e e s bt e s abeesabeesabeesabeesabeesabeesateesabeesaseesabeesaseesabaesnseesabeesseess 8
1. System on Chip (SOC) FUNCLION BIOCK OVEIVIEWccviiiiiiiiieciiserite ettt etee s eeetee e saaeesaae e saaeeaaeessaeessaeessaeensneasssaenseas 9
1.1. Register ACCESS DEFINITIONS ...cc.eiiiiiiiieieeee ettt e sttt e st e et e e sabe e sat e e saneesnteesareennees 9
1.2. (2 0o Yo) o A I V1) PSR 9
1.3. Yo JO RV ot o oI =1 Lo Yo QD IT- V= =1 SRS 10
1.4. SOC FUNCLION BIOCK IMEMOIY IMAP ..viiiiiiiie ettt et st tee ettt e e et e e e st e e e etta e e staeaeesstaeeeensseeesnnseaeesnsreeeessaeesnnnnens 11
R O e U B U1 o 13V =T o RS 12
2.1. OVEBIVIBW ...eeeiei ettt ettt ettt e e e s et et e e e s s n e e et et e e e s s s e e et e e e e e se s nn s e e e teeesaannreeeteeeseannrnnneeeesesannnnnneeeens 12
2.2. MOAUIE DESCIIPLIONS ..eenttieitieeite ettt ettt ettt ettt et e bt e sbt e e bt e s bt e e bt e e s ab e e bt e e sab e e bt e e sabeeeneeesabeeenteesabeennseesaneennneenn 12
2.2.1. RISC-V PrOCESSOF COMEuuiitiiiieieiiitteee e e ettt e e e e e s eita bt e e e e e e s ubatteeeeeesasaasbeeeeeeesaaanbbeeeeeesesaanbabaeeeesesaansnnaeeaens 12
2.2.1.1. LT o U ¢ 1 PP UO PPN 12
2.2.1.2. ol =T o 1 o] o FO PP OO PP PPPROPPION 12
2.2.1.3. =] o0 - RSP 13
2.2.1.4. CoNtrol and StAtUS REGISTEIS ...c.uiiieeiiiee et et e e et e et e et e e e st eeeetta e e sabeeeesataeesensaaeesssasaeansseeennnes 13
2.2.2. SUDMOAUIE (PIC/TIMEI) curiietiieitieeetie ettt eette e te ettt e teeeteeestae e teeestaeebeeeeseeebeeessseeabeeeseeensseensseesssensasenseeenseennns 14
2.2.2.1. P PPPPR 14
2.2.2.2. LI .0 1= Nt 15
B Y (=T 0 A 11V =T 0 0 o YOO PP OPPPPPTRRPPI 17
3.1. OVEIVIBW ceeieeeieeeeeee e ee e e et e e et e e et et e e e e e e e e e e e e e e e e e e e s e se s e s e sasesasesasasasasasasasasasasasasasasasesasasasesasasssesesasasesesasesesesesesesesnsesnens 17
3.2. FRATUIES ettt ettt ettt e e e sttt et e e e s r e e e e e e e s e b e b e e et e e e sa R e reeeeeeeaeannraeeeeeeeeannrraeeeeeaeaans 17
3.3. (211 ol QDI 4 =1 o NP RS UUURSOt 17
Figure 3.1. System Memory BIOCK DI@Bram.......ccuuiiiiiiieiiiiieeeiiieeeeitee e sttee e et eeeetaee e stveeeestaeeseasaaeessseseesnsseaennns 17
3,301, AHB-LItE INTEITACE tiieiiiiie ettt ettt s et b e bt e b e s bt e e bee e be e e be e e be e ebae s baesnaaeeat 17
e T R S (O I 111 =T o =Tl TSP 17
3.3.3. System Memory Timing INFOrmMationcueoiiiiiiiiiii ettt sttt s e e saee e 17
N © 10 S T 1V o T 1 o) TSRS RURT PR 18
4.1. OVEBIVIBW ...eeeeiee ettt e ettt e e e sttt et e e e s e e et e e e e e s e s s e e et et e e e s e s s e b et et e e e saan e b e eeteeesannnbeeeeeeeseannbanneeeesesannnnnnneeens 18
4.2. FATUIES ettt ettt et e et e e s ettt e e e e e e s s bbb et e e e e e s e a b b e e e e e e e e e nnbaeeeeeeae e nnbeeeeeeeeeaannbreeeeeeaeaann 18
4.3. 21 Lo Yol | BT = = o' TSP URURN 18
4.4, YT ={ g T 1 LTy ol o) o o PR UPURTOE 19
4.5. QSPI COMMANG LISt ..uviiiiiiiiieeiee ettt sttt st s e st e et e st e e bt e sab e e sabeesabeeeaseesabeesaseesabeesnseesabaesaneenn 19
4.6. 0T R =] gl D I=TY ol] o £ o PP PPPPPPPRN 20
4.7. Initialization ComMMaNd FIlLEIINEcoiuiiiii ettt s e it e sabeesabeesbeesanee s 23
4.38. PN [o [T S 1L o1 V=P UPPRN 23
4.9. COMMANA DISADIE ..ttt e e et e e s et e e e st e e e s aabe e e s abbeeesabbeeeeabeeesaasbeeesnneeeens 24
4.9.1. 24/32-Bit AQAIESSING . .eecveeireeerieeiteeeitee et e eiteeseteeeiteesbeeebeesbeeebeesabeesaseesabesaaseesebaesasessebeaansessabeesaseesaseennsennn 25
4.10. Unrecognized CommMand FilLEIINEG......cccciiiiiei ettt e e e et e e e e s e s b e e e e e e s e s sasbaaseeeeeessssssseeeeassennnnsens 26
L S T o T1 g ¥ =AY =T o U T<T o ol PSPPSRI 26
0 0 O V1 1= - =1 oY Ve - T T 1= oY {1 =SSR URSPRRIN 26
4.11.2. lllegal Erase Command Breaking (3-Byte AUIrESS)ccevvereeriieiieiiniereenieeieeieseesieeseeeseeeeeensesneessaesseeseas 26
4.11.3. lllegal Program Command Breaking (3-Byte Address, lllegal Start Address)ccoccevvveveereeneecienieneeseennn 27
4.11.4. lllegal Read Command Breaking (3-Byte Address, lllegal Start Address)ccccocveeeeciiieeeeciee e 27
4.11.5. lllegal Read Command Breaking (3-Byte Address, Incremental Address Overflow)cccoceeeeiieeeiiieeennes 28
4.11.6. lllegal 4-Byte CoOmMMANd BrEakingceeeiiiiiiiiiiiieie e ettt e e s eeeittee e e e e s essabree e e e e sesesbseseeeeeesessssseeesassenssssnes 28
4.12. MUX/DEMUX FUNCEIONAIITY . ..veiiiieiiiieciee ettt e te et e st e et e e s aveestae e sabeesaseesateessseesasaesasessnseesnsessnsaeansennn 29
T O N o I 4 €= 14 1= PSPPI PURPOP 30
5.1. FRATUIES ettt e e e st e e e e e st e e e e e st et e e e se e ran et e e e s e s rnereeeeeaans 30
5.2. (21 Yol D= - =L o SRt 30
5.3. [I O o] o} 7= (VT | 4 o] TP USURN 31
5.4. =TI =Y gl D T=E ol o) o] o SN 31
5.5. NY=Yol N ¢l 1ol VN L @ I [0 =Y o - ol TSP 34

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.6. (0] o<1) o] o FU TP 34
5.6. 1. TraNSACLION PRASES...uiiiiiiiiitiieiiieeiit ettt ettt ettt et e ettt at e sttt e s aee e be e s bt e s be e s beesabeesbaesabeeebaeenbaesbaesabaesnaaenan 34
5.6.2. WIth CONVEISION ..coutiiiiiieiiieiie ettt ettt ettt ettt et s bt e s bt e e be e s bt e s be e s sbaesabeesbaesabeesbaesabaesbaesabaesnanenass 37
5.6.3. FIFO EMPLY/FUIl BERAVIOFciiiiciiiiciieetie ettt ettt ettt e st e et e e ebaeeebeeestaeebaeesaeenbaeessseebaeensasesaeenseeenes 37
5.6.4. Typical FIash REad/Program FIOWcccuieiieeiiieiieiiteeecee ettt eseeeeteeesteeesteeestaeeteeesaeenbaseseeesesesasenseeenseeenns 38
SIMBUS MailbOX = Target IMOTE ..ottt et s bt e sbe e s bt e s bt e s be e e bt e e beeebeesbeeenneenane 39

6.1. OVEIVIBW ...eeeeeie ettt ettt e e ettt e e e e e s e et e e e e e e e s e uaa et e e eeeesaaas b e aeeeeeseaasbbaeeaeesenanbeeaeeeesasanbanaeeeesesannnnaeaaens 39

6.2. [T L U1 =SOSR POROON 39

6.3. SIBNAI DESCIIPLION ...ttt ettt ettt ettt et e b e e bt e e s at e e bt e e shb e e bt e e sa b e e bt e e smbe e bt e e sabeebeeesnbeeneeesaneenees 39

6.4. =TT =Y gl D=2 ol o] o] o TSSO PR PRSP 39
(I R O 1= o VT PP PP PPPPPR 39
6.4.2. Write Data Register (WR_DATA _REG)ociiiiiiieeiiiee ettt ertee e e sttt e s ette e e saae e e e sataeesenstaeesasaeessntaeeesnnsaeesnnsneas 40
6.4.3. Read Data Register (RD_DATA_REG)....ccotiiiaiirieritenieeie et ettt sttt ettt st satesbe e be e beeabesatesaeesbeeseeenaeenteens 40
6.4.4. Target Address Registers (SLAVE_ADDRL_REG, SLAVE_ADDRH_REG)ccceriimiieriirierienie et sieesee e 40
6.4.5. Control Register (CONTROL_REG)cotiiieriiiiiiiteeiteteete ettt st st sttt ettt saeesbe e be e beeabesatesaeesbeesbeenaeenteens 41
6.4.6. Target Byte Count Register (TGT_BYTE_CNT_REG).....ccccteruirrieriierierieenieeieeteeeeesteesteetestestesaeesaeesaeenaeeneeens 42
6.4.7. Interrupt Status Registers (INT_STATUS1_REG, INT_STATUS2_REG)ccoviuireeiiiieeeiieeeciieeeeiree e eeiree e e 42
6.4.8. Interrupt Enable Registers (INT_ENABLE1_REG, INT_ENABLE2_REG)cccccveeeiiiieeeiiiieeiieeeeeiree et 44
6.4.9. Interrupt Set Registers (INT_SET1_REG, INT_SET2_REG)cccceeeiiuiiieeiiiieeirieeecieeeeesitee e eivree e etaeeeenrae e eeanaeas 45
6.4.10. FIFO Status Register (FIFO_STATUS_REG)ccccciiiieiriitiriieeiieteseesnieeesieessteessiaesbesssseessessnsessssessnsesssessnseesnns 47
6.4.11. Flush FIFO ReGISter (FLUSH _FIFO) ...ccuuiiiuiieiiieeeiitecite ettt e steeeiteestaeseteeesaaesstaeessaesseessaeensaeeseesnsesssasenssesnsnennes 48
B.4.12. REGISTEI Fill ittt ettt et e ae e s bt e bt e s bt e e bt e s b et s bt e e be e e bt e e be e e bee e beeenaeenane 48

6.5. OPEIAtIONS DETAIIS. .. teeeiiieitie ettt ettt ettt et e st e et e st e e bt e sa bt e et e e s a b e e e bt e sabeeeaneesbeeearee s 49
(T T D 1Y =Y T o 01 Y=T =4 T 1 NP 49
LR A €1 11 ol o I =T OO OO OO RROPRRUPRROt 49
Lo T8 T [Yo Q] 4 =1 ol o 1o V-SSP 50
6.5.4. ACK/NACK RESPONSE ...cvveeriieitreeeteeesteesteeesaeeeteeestaeessesessseeasesessseeasssessseeasssesssesasssaasssssesessssensesensessssesenseesnes 50

6.6. PrOSramMING FIOWcoouiiiiiiiiieeiee ettt ettt ettt et e bt e s he e e sbe e e sab e e bt e e sa b e e sat e e sabeesaeeesabeenaneesabaesaneess 50
Lo 7% S 1o V1« - | 2 4 e o PR 50
6.6.2. Data Transfer in response to 12C CONtroler REAAccccveueuiiiveeiiireticicteeeee ettt 50

6.6.2.1. Normal SMBus Target Device Read Data Transfer.........cocciieieiiii i et 50
6.6.2.2. SMBus Mailbox Register File Read Data TranSferccecuiiiiiiiie ettt e 51
6.6.3. Data Transfer in Response t0 12C CONrOllEr WIItE.....cviueeveeieieieietecte ettt ettt eae et e ebesae v s eneenes 51
6.6.3.1. Normal SMBus Target Device Write Data Transfer.......ccccvieieiiii it et 51
6.6.3.2. SMBus Mailbox Register File Write Data Transfercoociviicieiecree e e e 52

6.7. SIMBUS TarZet SUPPOIT .ttt e et et et et et et et et et et et et e te e et et eeeeaeasereeareseseresasererenanens 52
6.7.1. SMBUS CoNtrol and Status REGISTOIcccciuiiiiiciiiee et ettt e e e e et e e e st e e e e et e e e saaeeeesnbaeeesnntaeesnnneeas 52
L A B 0 1o 1T - 4 (oY T D 1= - 1 1S PR 52

6.7.2.1. Y27 1T g A0 o T=T =Y d o o ISR 52
SMBUS MailbOX = CONEIOIEr IMOTE....ccc ittt ettt ettt e st e e e st e e s s abe e e sabbeessabbeeesanbaeesaaneeas 53

7.1. Y T={ g T 1 =Ty ol o) o T o PR PURTRE 53

7.2. =L (Tl DT =T Y of o (o] o IO PSPPSR PP PPUPTPPRPRIRt 53

7.3. PrOSramMING FIOWcoouiiiiiiiiie ettt ettt ettt ettt ettt e s e bt e s at e e bt e e sab e e bt e e sa b e e sateesabeesaeeesabeesaseesabaesaneens 55
/25 2% B [0 11 4 =11 2 14 o o D OO T T OO OO P PO PORUPPOTPPPROPPRIOt 55
7.3.2. SMBUS Controller OPeration FIOW.......ccccuiiiiciiee e cecier ettt e st e et e st e e e st e e s e ate e e snaneeesnnaeeeennsaeesnnnneas 55
7.3.3. Write Data to the SIMBUS TArZETuuiiiii ittt e e e e ettt e e e e e e s e abt b e e e e e e s e sastaaeeeaeeeennsaaaeeaens 56
7.3.4. Read Data from the SIMBUS Target.....ccii ittt e ettt e e e e e e et e e e e e s e s antaaeeeaeeeennsaaaeeaeas 56
[2C/SIMIBUS FIIEEE .ttt ettt ettt et et e et e st e st e satesateeae et e easesseesae et e eseeasesasesasesatesatessseaseeaseersesssesssesseenseesesnesanesens 58

8.1. FATUIES ittt ettt et e e e e e ettt e e e e e s e a b b et e e e e e e e e ae b ettt e e e ea e nnbeeeeeeeae e nnbbeeeeeeeeaanbbeeeeeeeeaaan 58

8.2. (6070 1V7=T o1 o] F- 3PP PP PP PPN 58

8.3. [UTgToru oY T B B TSE o T o) o o ISR 58
S T8 S O 1V Y T TP P PSPPSRI 58
S T R U= o [I T o Y- T 4 T] o OO PO O ST USRS PRRPUPPROPI 59
8.3.3. Non-blocked Write TranS@CLiONc..ieiiiiiiiiiiiiiee ettt ettt ettt e e e st e e e sttt e e sabteessabbeeesanbaeesaasaeas 59

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

8.3.4. BlOCKked WIIte TranSACHiON ..ciiiuiieiiiiie ettt et e e ettt e ettt s et e e s st e e e s s abe e e sabbeessabbeeesanbaeesnanaeas 59
I TR T 14 = 1 1Yol o o Yo SR 60
T Y ST = T= {1 AT g D 1= T of g o 4 (o] s IE SO PO O PRPPRPRPOON 61

L T0 R oY 4 - o T o o 1Y RS 66
8.3.8. INIEIAlIZATION ettt et h e s bt e a e b e e s bt e e b et e bee e baesbaeeabaeenaaeean 66
8.3.9. INTEITUPET MO ittt ettt ettt ettt e at e s bt e bt e s b et e bt e sabeesbtesabeeebeesabeeenbeesbeeenneenane 66
8.3.10. POIING IMOUE ...ttt ettt ettt e at e s b et e bt e s b et e bee s bt e s bte s be e e bt e s beeebeesbeeenneenane 67

L R €1 o] [USSP 68
9.1. GPIO FRATUIES ..ttt ettt ettt et e ettt et e e e e e aa b bttt e e e sesan b et e eeee s e s aabaeeeaeeee s nbaateeeeeesaannrbaaeesesanannnnes 68
9.2. =TT =Y gl D=2 ol o] o] o TSSO PR PRSP 68
9.2.1. Read Data Register (RD_DATA _REG).....cccuiiiiiieeeeiiieeeeiieteesteeeestveeeettaeesaaaeeesntseesasseeesssaeessssseseanssssesansens 69
9.2.2. Write Data Register (WR_DATA _REG)uciiiiiiieeiiiie ettt et e e e sttt e seetae e s raaa e e e sataeeesnstaessnnsneessnssesesnseeesnnsnnas 69
9.2.3. Set Data Register (SET_DATA_REG) ...c.cortiiiiiiritenitenteete et ettt sttt e sttt st e satesbe e be e besabesatesaeesaeesseenseenteens 69
9.2.4. Clear Data Register (CLEAR_DATA_REG)c.cccuirtiruieteeieeieeie sttt e st este et st e satesbeesbe e besabesatesaeesbeeneeenseenneens 69
9.2.5. Direction Register (DIRECTION_REG)cceeiutiiuirieriienteeiteeteeie st site st este et satesaeesbtesbe e beeabesatesaeesaeesseenseensenns 69
9.2.6. Interrupt Type Register (INT_TYPE_REG)ccceroiiruieriieieeiesiestesite st esee et eatesaee st esbe e e sntesatesaeesaeesseensesnsenns 69
9.2.7. Interrupt Method Register (INT_IMETHOD _REG)ccciiuiiiiiiieeeiiieeceieeeeeteeeestteeeestte e s saaaeesstreeesnnraessennaeas 70
9.2.8. Interrupt Status Register (INT_STATUS _REG) ...cccccuiieeeiiiieciieee e sttt e eetee e eeite e e e siteeeeettae s eeaaaaessnsbesesnraeesnnnneas 70
9.2.9. Interrupt Enable Register (INT_ENABLE_REG)ccuviiiiiiiieciiiee ettt eettee e evee e stae e e e ate e s eaaaee e etveeeenraeeeeanaeas 70
9.2.10. Interrupt Set Register (INT_SET _REG) ...ccuiiiiiiieeeiiieeeeiiee e eritee e e sttt e e eeita e e ettaeeesataeesestaeesnssaaessntaeseassaessnnneeas 70

9.3. PrOSramMING FIOWcoouiiiiiiiiieeiee ettt ettt ettt et e bt e s he e e sbe e e sab e e bt e e sa b e e sat e e sabeesaeeesabeenaneesabaesaneess 70

L 70 S 1o V1 - 1 2 4 e o PSR 70
9.3.2. Data Transfer (Transmit/RECeiVE OPEIratioN)ccueceeieeiieeiieiieiee it eeteeiteereeteeeteeste e teesbeesesreesaeesseenseenseens 71

10, SECUIE ENCIAVE c.uutiiiiieitee ettt sttt et st e et e st e s be e s be e s abee s e beesabeesabeesabeesateesaseesabeesabeesabaesnbeesabaeenbeesabaeeseesnbaeenseesass 72
2] (=T =T ool T OO OO PPN 73
TEChNICAl SUPPOIT ASSISTANCEevieieciiieecciiee ettt e st e e e e tre e e e ette e e e sbeeeeestaeesaasaaeasstaeseanssasessseaeeastseeeanssaeesssseesansreseannns 74
AV E [o] T = 1] o] VT PP T U TSP 75

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 1.1. Mach-NX SOC FUNCLiON BIOCK DIQBIramccccuiiiiieiiie it e ecteeeeite e sttt e e et e e e e ete e e s asee e e staeessansaeesnnseeeesnssesennnns 10
Figure 2.1. RISC-V MC CPU DIagram cocceeeeeieieieieieieieieieieiesesesesesesssesesesesesesesesasesesesesssssssssssesssssesssssssssssssssssssssssssssssssssssssssnsess 12
Figure 3.1. System Memory BIOCK DI@gram.........ciiiciiieeiiiieceiiee e ctte e ettt e e setre e e s tae e e e ttaeeseeaeeesssaeeasssaeesssssaeessnseseesssesennnns 17
Figure 4.1. QSPI MONItOr BIOCK DIGBIam ...cccueeiiieiieeiiieeiiee sttt eitee st e steesteesbeesabeesseesabeesbeesabaessseesabaesseesnbaesnseesnsaesnseesnne 18
Figure 4.2. ONne I1egal COMMANGcoiiiiiiiieiie ittt et sttt ettt e sttt e bt e s bt e e bt e sabeeeabee st e e ebeesabeeeneesabeeeneenane 26
Figure 4.3. [llegal Erase COMMANGciiiiiiiieiiieeite ettt ettt e e st e et e st e e bt e s bt e e bt e sabeesabeesabeeeabeesabeesneesabeeeneenane 27
Figure 4.4. lllegal Program Command, 3-Byte Address, lllegal Start Addresscocceerieeeieeriieeieeniieeee e 27
Figure 4.5. lllegal Read Command, 3-Byte Address, lllegal Start Addresscoocueieieeriiieiieniieee e 28
Figure 4.6. lllegal Read Command, 3-Byte Address, Incremental Address OVerflowcccceevcveeeecciieecciee e 28
Figure 4.7. lllegal 4-Byte CoOmMMANd BreaKiNg........ccciueeeeiiiieieiiie e ittt e esiteeseitteeesetteeeesataeesessseeesasseeeesssaeesassesssssseseessssesennes 29
Figure 5.1. QSPI Streamer BIOCK DIiagramce i ueieieerieeeiiee sttt eiee st e steesteesteesabeesseesabeesbeesabaessseesabaessseesnsaesnseesnsesenseesnne 30
Figure 5.2. QSPI Streamer Programmable PRas@scooiiiiiiiiieiiieee ettt sttt et s st e s beeesnee e 35
Figure 5.3. Example for Page Program SEOQUENCEc.c.uiiuieiiiieiieiiee ettt ettt et e st e s bee st e s bt e s b e e e bt e sabeesneesbeeenneesane 36
Figure 5.4. EXample for FAST_READ SEOUENCE.cccutiittieieeitteeiee sttt etee sttt ette st e s bt e sabeesseesabeesseesabeeeseesabeesnneesabaeenneesane 36
Figure 5.5. EXample fOr RDID SEQUENCEcccuteiriieieerteeeittestteetee st e et e sateesbeesabeesseesabeesseesabeesabeesabeeeneesbaesnseesbaeenneenane 37
Figure 5.6. ExXample for QREADAB SEQUENCE........cciicuiieeeiiieeeeitteeeeitteeeesteeeeeisteeesesseeeasstasesaassasesassessasstssesssssssssasesesasssesennses 37
Figure 5.7. Typical Flash REAd/Program FIOWccuiiiuiieiieiiiiieiieeeieeeetee et e eteeeteeeeteeeeteeeteesabaesbeeebaeeseesatasenseeenbasenseeenns 38
Figure 6.1. START and STOP CONAItIONS ..vviiiiiiiiiiiiieie e ittt e e eertee e e e e e st e e e e e e e st aaaeeeeessesnstaeeeesesessansaaneeessessnssrreeeens 49
Figure 6.2. SMBUS MailbOX REAA BYLE IMESSAEE ...cccuuvieeeiiiieeeiieeeciteeeesteeeeetteeesetbeeeasttaeeeesteeesasseeaaastaeesassseesasseeeeasseseanes 51
Figure 6.3. SMBUS MailbOX WIit@ Byt IMESSAEE ..cuveerutiieiieiiteeiee ettt et s ettt sb e st e st e s bt e st esbee s bee e bt e sabeesneesbeeenneenane 52
Figure 6.4. SMBuUS 7-Bit Addressable DeVICE RESPONSEcccviiiiiiriiieiie sttt eite sttt et e s ee st e s bt e st eebeesabeesneesabeesneenane 52
Figure 7.1. SMBus Controller Program FIOW INterrupt MOE........cocueieiiiiiiiiiiieniieeee ettt ettt s 55
T U R T T Ol a1 = oo Yo =428
Figure 8.2. I12C Filter Read Transaction

Figure 8.3. 12C Filter Non-blocked WHIte TranS@CiONcvceveevervieieieeeteeeieeetesteetesaeereese et eeeseestestesteeseensensessestesasereeneensenes 59
Figure 8.4. 12C Filter BIOCKEd WIte TIraNSACION ..ccuccviieieeieeeeeeeeeceeete sttt ettt e st et esaeeteeseeseeseestesbesaesteesesneensessestesasereeneeneenes 59
Figure 8.5. SMBUS IP PrOZIam FIOWcciuiiiiieiiiieiee sttt ettt ettt ettt et sa e et e st e s st e st e e sabee s beeebeesabeesneesabeesneenane 66

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Tables

Table 1.1. SOC FUNCLION BIOCK IMEMOIY IMIADuiiieiiiie e ciieeeeitee et e sttt e e et e e e etaae e e s taeeeeastaeesnseaeesssseesansseessnsseeeeanssesennnns 11
Table 2.1. RISC-V Processor Core Control and Status REGISTENuieiiiiieieiiii e cceee ettt e e sre e e re e e s eaae e e sareeeeanes 13
LI oL A e O U= T =T SR SSPRSNE 14
LI o] (e TR T o Tl 2T =1 T S USPRSNE 15
Table 4.1. External QSPI Monitor Signal DESCIIPLIONcoiuiiiiiiiiiieeie ettt st aee s b e e snee e 19
Table 4.2. QSPI COMMANG LISt TADIE ...ueiiiiiiieieie ettt e rree e s e e e st e e e s ate e e e s bbeeesabeeessseeessnbreesnnnns 19
Table 4.3. QSPI Monitor Address Space Mapping for Each IMONItOrcoiiiiiiiiiiiie et e e 21
Table 4.4. QSPI MONITOr COrE REGISTEIS. .. .ui ittt ettt ettt ettt e e et e s bt e sb e s bt e bt e s b e e e bt e s bt e e ssee e beeeseesbeeenneenane 21
Table 4.5. QSPI Monitor Command Disable RegiSter FIEldSccceiiiiriiriiiiieeiicere ettt s 24
Table 5.1. QSPI Streamer FIFO CONIGUIAtION ..c..uiiiieiiieiiie ettt sttt sttt st te sttt e st e s sbeesbe e ssbaesabaessaeesbaesnaeeenns 31
Table 5.2. QSPI Streamer 1P Core REGISTEISuiiiuiiiiieiiiteriteette ettt sttt st e st ee st e s sae e s be e e bee s beessbeesbaeesbeesbeesnanesnns 31
Table 6.1. 12C Target IP Core Signal DESCIPLIONccvcueiiieuiiiiereiieeteee ettt ettt te et e et et e e b ese s ebese st bese s ebesessebesesesesenas 39
Table 6.2. 12C Target Registers AAArESS VPc.eviveueiiierieiiiereesieset e te st tese b te e sesessebets s s besessebesessesesessesesessesesesesasesnas 39
Table 6.3. WIite Data REGISTON .. .ccitiiiiieiiee ettt ettt s b ettt e s bt e b e e e bt e e bt e s be e e bt e s beeebeesabeeebeesabeeennnenane 40
Table 6.4. REAA Data REGISTONciiiiiiiieitee ettt ettt ettt b ettt e s b et e bt e e bt e e bt e s be e e bt e sabeeeneesabeeenseesbeeennnenane 40
Table 6.5. Target Address LOWET REGISLENccciiiiiiiiiee e ciieeeeittee e eette e e st e e e e tte e e s etaaeeesbaeeeesraeesaaseaaesstseeeassaessassaeesasreseannes 40
Table 6.6. Target Address HIZher REGISTENcc.uvii ettt e et e e et e e e e tb e e e ettaeesabeaeesstaeeeeasaesessaeesanssesennnes 41
TabIE 6.7, CONLIOI REGISTEN .. .eieeeiiii e ettt ettt et e st e e e ettt e e e e e tae e e e s baeeeettaeeeaasaaeasstaaeeanssaeesssaaeeassseeeanssaeesssaaesansreseannes 41
Table 6.8. Target BYte COUNT REGISTENcccuiiieeiieeeecieee ettt e eette e et e e e st e e e ette e e eeavaeeesabaeeeenssaeeseasseeesssseseassaessssaeesasreseannes 42
Table 6.9. INTerrupt STAtUS FIrSt REGISTEIcoiuii ittt ettt ettt sae e s bt e e bt e s b e e s saeesbeeesaee s beeenaeesnne 42
Table 6.10. Interrupt Status SECONT REGISTEIciiiuiiiiiiiiie ittt ettt e st e bt e st e s bt e sabeeesaeesbeeesaeenane 43
Table 6.11. Interrupt EN@ble First REZISTEIciuiiiiieiiii ettt et ettt e st e bt e s be e e bt e s beeesneeeane 44
Table 6.12. Interrupt ENable SECONA REGISTENccccuviiiiiiiee ettt ettt e see e e et e e e ette e e seabeeeesataeesestaeesssbaeeesnsbeeeannes 45
Table 6.13. INTErrUPL SEE FIrSt REGISTOI ...ciuiiiieeiiee e ettt eere e et e e st e e e e rtte e e e sabaee e s baeeeesraeesasaaeesstseeeassaesssssaeesansreeeannes 45
Table 6.14. INtErrupt SEt SECONT REZISTENcciciuiiieeciiee e ciee ettt et e st e e e et e e e e stvaeeesbeeeeettaeeseaseaeesstaeeeassaessassaeesasreseannes 46
Table 6.15. FIFO STAtUS REGISTEIiiiiciiie ettt eeiiee e ettt e sttt e e e rtte e e ettt e e e s teeeeettaeesassaaeaastaessanssaeessseaeaastseeeanssasesssseesansseseases 47
Table 6.16. FIUSH FIFO REGISTEI ...ceiutiiiiiieitii ettt ettt ettt ettt st b et et e s bt e bt e s bt e s bt e sabeeebeesabeeeseesabeesneesabeeenneenane 48
Table 6.17. SMBUS ReGIiSter AAArESS IMIAPeeiiiiiiieiiie et et eite sttt sttt et e st e s sbee s bt e s bt e sabee s bt e s beeenseesbeeesneesbeeenneenane 52
Table 6.18. SMB CoNtrol and STatUs REZISTETiiicuiiii e ettt e et ee e et e e e seee e e st e e e sate e e ssaaeaeessteeessnteeeesnsneeeasseesannee 52
Table 7.1. External Signals of SIMBUS CONTIOIIETuiiiiiiiiieiie ettt e s e et e e s saae e e e s ba e e e snreeessaneeesnnseesannes 53
Table 8.1. Interface SigNal DESCIIPTIONc.uvii ittt eee e e st e e e et e e e e ettaeeeebaeeeesraeeeaaseaeesstbeeeaasssessassaeaeasbesennes 60
Table 8.2. REGISLEr AGUrESS IMIAP c.iiiiiiiiiieeiee ettt et e e e e e st e e e e e e s e s bb e e e e eeeeseaasstaaeaeaeseasnstaasaeeseeanstaaeeeeesesnnstanreeeens 61
Table 9.1. External GPIO Signal DESCIIPLIONS........uuiiiiii ittt e st e e e e e s et e e e e e e sesabtaaeeeeseesnntaaaeeeesesnnsasreeeens 68
Table 9.2. PLD Interface Signal DESCIIPTIONSviiiiiiieeiiieeeeiiee e ettt e e sttt e e et e e s staae e e s baeeessteeesnaeeeesssaeesanseessssseeesssseenannee 68
Table 9.3, REGISTEr AUUIESS IMIAP ...uiiiciieeiiiiieeeiiee e ettt e e sttt e e ettt e e estaeee e s teeeeesteeesassaeeesssaeeeansseeessseeeesssaeesannseeesnssneessnsseesanne 68
Table 9.4. REAA Data ReGISTONuiiii i eiiiee e etee ettt e ettt e e et e e e sttt e e s ateeeseaaaeeessbeeeeanseeeessseeeesssaeesansseesssseaesasseenanne 69
Table 9.5. WL DAta REGISTONuviiiiiiee ittt ettt e et e e et e e e sttt e e s e te e e e eaaaeeessseeeeasseeeessseeeesssaeesansseessssnaesansseesanee 69
B d R A Y =l A DT 1= T A U=T =4] T SRR 69
B L1 R B A O Lo T D Fo Y - I 0= = 1 =T oSSR 69
BRI L1 R IR B D 1T Yot o o T ST ={ 1 =Y USSR 69
Table 9.9, INTEIrTUPL TYPE REZISTEI ..iiiuiiii it eeiiee e ectee et ee e et e e et e e e ste e e e s sateeessaaaeeessbeeeeasseeeessseaeesssseesansseeesssnaeeansseenanee 70
Table 9.10. INterrupt MEthOA REGISTENviiiieiiiecciee ettt e s e e st e e e saee e e st eesateeesnaeeeesstseeessnseeessssneessnsseesannes 70
Table 9. 11, INTErrUPt STAtUS REEISTEI ...uuiiiiiiieeeiiieecctee e rtee e e ee e eree e e st e e e et e e e s saaae e e s beeeeassteeessseeeesssseeeasseesenssneesssseesannee 70
Table 9.12. INterrupt ENABIE REGISTONcci ettt e e e e e st e e e s e e e eat e e e s nteeeesnsseeeenseeesnsneessnsseeennnes 70
I o] R T e TR Y A=Y AU T o ATy 2 (T =4 I €Y SRR 70

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Abbreviations in This Document

A list of abbreviations used in this document.

= LATTICE

Abbreviation Definition

AES Advanced Encryption Standard

AHB Advanced High-Performance Bus
APB Advanced Peripheral Bus

BMC Baseboard Management Controller
CPU Central Processing Unit

CSR Control and Status Registers

DSPI Dual Serial Peripheral Interface

EAR Extended Address Register

ECDSA Elliptic Curve Digital Signature Algorithm
ECIES Elliptic Curve Integrated Encryption Scheme
FIFO First In, First Out

GPIO General Purpose Input/Output
HMAC Hash Message Authentication Code
HSP High-Speed Data Port

12C Inter-Integrated Circuit

IRQ Interrupt Request

(0]0]:] Out-of-Band

PCH Platform Controller Hub

PFR Platform Firmware Resiliency

PKC Public Key Cryptography

PLD Programmable Logic Device

QSPI Quad Serial Peripheral Interface
RISC-V Reduced Instruction Set Computer-V (five)
RoT Root of Trust

Rx Receiver

Scl System Configuration Interface

SFB SoC Function Block

SFDP Serial Flash Discoverable Parameter
SHA Secure Hash Algorithm

SMBus System Management Bus

SoC System on Chip

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory
TRNG True Random Number Generator
Tx Transmitter

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1. System on Chip (SoC) Function Block Overview

The Mach™-NX device family is the next generation of Lattice Semiconductor Low Density PLDs including enhanced
security features and a Platform Firmware Resiliency SoC Function Block (SFB). The enhanced security features include
Advanced Encryption Standard (AES) AES-128/256, Secure Hash Algorithm (SHA) SHA-256/384, Elliptic Curve Digital
Signature Algorithm (ECDSA), Elliptic Curve Integrated Encryption Scheme (ECIES), Hash Message Authentication Code
(HMAC) HMAC-SHA256/384, Public Key Cryptography, True Random Number Generator (TRNG), and Unique Secure ID.

The Mach-NX family is a Root-of-Trust hardware solution that can easily scale to protect the whole system with its
enhanced bitstream security and user mode functions. With Lattice Mach-NX device, you can implement a Platform
Firmware Resiliency (PFR) solution in your system, as described in NIST Special Publication 800-193. The purpose of this
document is to describe the individual IPs in the Mach-NX SoC Function Block.

1.1. Register Access Definitions

Access Type Behavior on Read Access Behavior on Write Access

RO — Read-Only Register Returns register value. Ignores write access.

WO — Write-Only Register Returns 0. Updates register value.

RW — Read Write Register Returns register value. Updates register value.

RW1C — Read Write 1 to Clear . Writing 1’b1 on register bit clears the bit to 1'b0.
Register Returns register value. Writing 1’b0 on register bit is ignored.

RC — Read Clear Register Clears register value to 0. Ignores write access.

RSVD — Reserved Register Returns 0. Ignores write access.

1.2. Root of Trust

The Lattice Mach-NX FPGA can serve as the Root of Trust and provide the following services:

Image Authentication — On system power-up or reset, the Mach-NX device holds the protected devices in reset
while it authenticates their boot images in SPI flash. After each signature authentication passes, the Mach-NX
device releases each reset, and those devices can boot from their authenticated SPI flash image. Image
authentication can also be requested at any time through the 12C Out of Band (OOB) communication path.

Image Recovery — If a flash image becomes corrupted for any reason, it fails to be authenticated. The Mach-NX
device can restore it to a known good state by copying from an authenticated backup image.

SPI Flash Monitoring and Protection — The Mach-NX device can monitor multiple SPI/QSPI buses for unauthorized
activity and block unauthorized accesses using external SPI quick switches. The monitors can be configured to
watch for specific SPI flash commands and address ranges defined by the system designer and designate them as
authorized or unauthorized.

Event Logging — The Mach-NX device logs security events, such as unauthorized flash accesses and notifies the
BMC.

I2C/SMBus Filter — The Mach-NX device can monitor an 12C bus for unauthorized activity and block unauthorized
write transactions by disabling the 12C bus. It acts as pass-through relay from the point of view of both SMBus
Controller and SMBus Target devices on the bus. It directly attaches to the controller port and protects all target
devices against malicious traffic generated from the controller port based on the list of allowable and
non-allowable write commands. All read transactions are allowed.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1.3. SoC Function Block Diagram

Mach-NX
PFR SoC Function Block PFR PLD to SoC PLD Fabric
Function Block
Secure Enclave Interface
Control PLD Function, Programmer Interrupt
PFR CPU Subsystem Power Sequencing, Controller
NMI pic [*+— PLD_IRQ Glue Logic, and others.
. PIC
Risc-V GPIO
CPU
Timer
HSP S virtual ¢ | GPIO[0-23]
M | DM 1/0
f ‘ UART
AHB-Lite
QSPI Streamer | Manager x
FIFO Interface ~‘ AHB-Lite Interconnect | S M
PFR External Interfaces S Flash Memory
{ APB Bus
r‘ s
CFG/ ¥
QsPI Qspl SMBus smBus || Mem Virtual || SMBus/ UFM SMBUS/I2C | | SMBUS/I2C SMBus SMBus APB
Monitor [| Streamer] |Mailbox 0| [Mailbox 1| |mapped || =/ c [* — Filter 0 Filter 1 Mailbox 2| |Mailbox3 | Dual
GPIO Filter Timer
m s —M| s M/% M

Figure 1.1. Mach-NX SoC Function Block Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

1.4. SoC Function Block Memory Map

Table 1.1. SoC Function Block Memory Map

= LATTICE

Block Start Address (HEX) End Address (HEX) Size (KB)
CPU Instruction and Data RAM 0 00000000 OOO1FFFF 128
CPU Instruction and Data RAM 1 00020000 0002BFFF 48
Reserved 00030000 OOO7FFFF 320
CPU PIC Timer 00080000 000807FF 2
Reserved 00080800 OOOBFFFF 254
GPIO 000C0000 000CO3FF 1
Reserved 000C0800 0O0O0C3FFF 14
QSPI Streamer 000C8000 000C83FF 1
Reserved 000C8400 OOOCFFFF 31
SMBus Mailbox 0 000D0000 OOOD7FFF 32
Reserved 000D8000 OOODFFFF 32
SMBus Mailbox 1 000EO000 OOOE7FFF 32
General Purpose Timer 000E8000 OOOE83FF

SMBus Filter 000E9000 0OOESFFF 4
Reserved 000EA000 O0OFFFFF 95
UAB 00100000 0012FFFF 192
Customer PLD Logic 00130000 0017FFFF 320
QSPI Monitor 000C4000 OOOCAFFF 4
Reserved 00200000 002BFFFF 768
Crypto256 00380000 003BFFFF 256
Crypto384 (registers_intf) 002C0000 002FFFFF 256
Reserved 00300000 003FFFFF 1024

www.latticesemi.com/legal

http://www.latticesemi.com/legal

II.:;tctri‘cneiciTrx;\:ez.Z Mach-NX SoC Function Block Hardware User GuideLATTICE

2. CPU Subsystem

2.1. Overview

The RISC-V MC processes data and instructions by considering the timer interrupt and external interrupt. As shown in
Figure 2.1, the CPU core module has a 32-bit processor core and optional submodules. It uses two interfaces, one
read-only AHB-L interface for instruction and one AHB-L interface with read/write access for data memory. RISC-V core,
PIC, Timer, and AHB-L multiplex are run in the system clock domain. The RISC-V core debug runs in two clock domains:
the system clock domain and the JTAG clock domain.

ITAG RISC-V MC |
CPU Core |
|
|

RISC-V MC CPU Core Debug

|

|

|

|

| i LT DR

| RISC_V MC SubAoEi_nLate |

| CPU IP Core |

| Timer |
Interrupt Timer |

| L AHB-L

| Instruction Subordinate |

| Port Data Port |

4 v
L. — — e ;|

Figure 2.1. RISC-V MC CPU Diagram

2.2. Module Descriptions

2.2.1. RISC-V Processor Core

The processor core follows the RV32l instruction set.

2.2.1.1. Interrupt

Whenever an interrupt occurs, it has to remain in its active level until it is cleared by the processor core interrupt
service routine.

If an interrupt occurs before jumping to the interrupt service routine, the processor core stops the prefetch stage and
waits for all instructions in the later pipeline stages to complete their execution.

2.2.1.2. Exception

If an exception occurs, the processor core stops the corresponding instruction, flushes all previous instructions, and
waits until the terminated instruction reaches the writeback stage before jumping to the exception service routine.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02360-1.0 12

http://www.latticesemi.com/legal

2.2.1.3. Debug
The processor core supports the IEEE-1149.1 JTAG debug logic with two hardware breakpoints.

2.2.1.4. Control and Status Registers

= LATTICE

The processor core supports the Control and Status Registers (CSR) listed in Table 2.1.

Table 2.1. RISC-V Processor Core Control and Status Register

CSR No. CSR Name Access Fields
bit[12:11]: mpp, privilege mode before entering a trap, should
mstatus always be 2’b11 in machine mode in this CPU core.
0x300 (machine status read/write bit[7]: mpie, mie before entering a trap, updates to mie value
register) when entering a trap.
bit[3]: mie, global interrupt enable.
mie bit[11]: meie, machine mode external interrupt enable.
0x304 (machine interrupt read/write bit[7]: mtie, machine mode timer interrupt enable.
enable register) bit[3]: msie, machine mode software interrupt enable.
bit[31:2]: trap vector base address, 4-byte aligned.
read/write bit[0]: trap vector mode, all traps set the program counter to
0x305 mtvec (initialized to 0x20) the base address in RISC-V MC CPU core. Bit[1] is not
supported. Only 1’0 - direct mode and 1’b1 - vectored mode are
available.
bit[31:0]: in machine mode, it is used to hold a pointer to a
0x340 mscratch read/write machine-mode hart-local context space and swapped with a
user register upon entry to a machine mode trap handler.
mepc bit[31:0]: when a trap is taken into machine mode, mepc is
0x341 (machine exception read/write used to store the address of the instruction that encounters the
program counter) exception.
bit[31]: 1’b1 —interrupt, 1'b0 — exception
bit[3:0]: exception code
For interrupt:
3 —machine software interrupt
7 —machine timer interrupt
mcaus.e 11 — machine external interrupt
0x342 (machine cause read-only .
register) For.exceptu.)n: o
0 —instruction address misaligned
1 —instruction access fault
2 —illegal instruction
4 —load address misaligned
5 —load access fault
bit[31:0]: When a hardware breakpoint is triggered, or an
mtval instruction fetch, load, or store address is misaligned, or an
0x343 (machine trap value read-only access exception occurs, mtval is written with the fault address.
register) It may also be written with illegal instruction when an illegal
instruction occurs.
bit[11]: meip, machine mode external interrupt pending,
mip read-only.
0x344 (machine interrupt read/write bit[7]: mtip, machine mode timer interrupt pending, read-only.
pending register) bit[3]: msip, machine mode software interrupt pending,
readable and writable.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

2.2.2. Submodule (PIC/Timer)

= LATTICE

The CPU contains submodules, PIC and Timer. The PIC and Timer share the same start address in memory map and a
fixed 2 KB address range is allocated if any of them are enabled.

2.2.2.1.PIC

The PIC aggregates up to eight external interrupt inputs (IRQs) into one interrupt output to processor core. The
interrupt status register can be used to read the values of IRQs. Individual IRQs can be configured by programming the
corresponding enable and polarity registers. Table 2.2 provides the descriptions of PIC registers.

Table 2.2. PIC Registers

Offset

Name

Description

0x000

PIC_STATUS

Interrupt Status Register

Access: read-write

Parameterizable width: min=2, max=8

Indicates the pending interrupt at corresponding interrupt request port(irq[i] at
top level).

Field Name Access Width Reset
[N-1] PIC_STATUS [N-1] RW 1 0x0

[1] PIC_STATUS [1] RW 1 0x0
[0] PIC_STATUS [0] RW 1 0x0

PIC_STATUS]i]:

Read

e 0-nointerrupt at irqg[i]

e 1-interrupt pending at irq[i]
Write

e 0-—no effect

e 1-—clear interrupt status for irq[i]

0x004

PIC_ENABLE

Interrupt Enable Register

Access: read-write

Parameterizable width: min=2, max=8

Indicates whether the processor responds to the interrupt from corresponding
interrupt request port (irq[i]) or not.

Field Name Access Width Reset
[N-1] PIC_ENABLE[N-1] RW 1 0x0

[1] PIC_ENABLE[1] RW 1 0x0
[0] PIC_ENABLE[0] RW 1 0x0

PIC_ENABLE[i]:
Read

e 0-irq[i] disabled
. 1-irq[i] enabled
Write

e (O-—disableirqli]
. 1 —enable irqg[i]

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Name Description
Interrupt Set Register
Access: write-only
Parameterizable width: min=2, max=8
Sets the interrupt status for corresponding interrupt request port(irq[i]).
Field Name Access Width Reset
[N-1] PIC_SET [N-1] W 1 0x0
0x008 PIC_SET [1] PIC_SET [1] w 1 0x0
[0] PIC_SET [0] W 1 0x0
PIC_SETI[i]:
Read
e Invalid operation gets 0.
Write
e 0-no effect
e 1-setinterrupt status for irq[i] (set PIC_STATUSJi])
Interrupt Polarity Register
Access: read-write
Parameterizable width: min=2, max=8
Indicates the polarity of corresponding interrupt request (irq[i]) port.
Field Name Access Width Reset
[N] PIC_POL [N] RW 1 0x0
OX00C PIC_POL [1] PIC_POL I[1] RW 1 0x0
[0] PIC_POL [0] RW 1 0x0
PIC_POL][i]:
Read

e 0-—irqli] is active high
e 1-—irq[i] is active low
Write

e 0-Setirq[i] active high
e 1-Setirq[i] active low

2.2.2.2. Timer
The Timer module provides a 64-bit real-time counter register (mtime) and time compare register (mtimecmp). An
output interrupt signal notices the RISC-V processor core when the value of mtime is greater than or equal to the value
of mtimecmp. Table 2.3 provides the descriptions of Timer registers.

Table 2.3. Timer Registers

Offset Name | Access | Reset Value Description

mtime

A 64-bit real-time counter register. You must set the register to a non-zero value to start the counting process.
0x400 | TIMER_CNT_L RW 0x0 Lower 32 bits of mtime register

0x404 | TIMER_CNT_H RW 0x0 Higher 32 bits of mtime register

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide ...ILATTICE

Technical Note

Offset Name

| Access |

Reset Value

| Description

mtimecmp

This register is used to generate or clear the timer interrupt (mtip). When the value of mtime register is greater than or equal to
the value of mtimecmp register, the cpu_mtip_o is asserted and remains asserted until it is cleared by writing to mtimecmp
register. Lower 32 bits for Timer time compare register.

0x410 | TIMER_CMP_L

RW

0x0

Lower 32 bit for mtimecmp register

0x414 | TIMER_CMP_H

RW

0x0

Higher 32 bit for mtimecmp register

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02360-1.0

16

http://www.latticesemi.com/legal

= LATTICE

3. System Memory

3.1. Overview

The System Memory is used for code execution and temporary data storage.

3.2. Features

The key features of the System Memory are:

e 176 KB SRAM

e Dual AHB-Lite subordinate interface

e FIFO interface connected to QSPI Streamer

3.3. Block Diagram

System Memory

Dual Port SRAM

£ U

AHB-L AHB-L

FIFO
I/F Subordinate 1 Subordinate 0}

FIFO Stream
Inst Manager

AHB-Lite Interconnect

Figure 3.1. System Memory Block Diagram

3.3.1. AHB-Lite Interface

The System Memory has two AHB-Lite subordinate interfaces. Subordinate 0 interface is read-only and is connected
directly to the Instruction Manager of the CPU. Subordinate 1 interface is connected to the SoC Function Block
AHB-Lite Interconnect.

3.3.2. FIFO Interface
The dedicated FIFO interface is shared with the AHB-Lite port S1. This interface is used by the QSPI Streamer to upload
firmware values to the core memory.

3.3.3. System Memory Timing Information

When a port reads and the other port writes on the same address, the read transaction completes first and the old
data is propagated into the output before the new data is written on the selected address. After that, the new data is
made available on both ports and can be read on the next read transaction.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4. QSPI Monitor

4.1. Overview

The QSPI Monitor is an SPI access and command monitoring module that can monitor up to two SPI, DSPI, or QSPI
buses for unauthorized activity and prevent transactions from completing by controlling internal or external switches.
In addition to monitoring, the QSPI Monitor connects the external SPI/DSPI/QSPI buses to internal QSPI Streamer
through a programmable mux/demux block.

4.2. Features

The key features of the QSPI monitor are:

e Supports two external SPI, DSPI, or QSPI buses to monitor illegal activity, each bus has two channels with two chip
select pins

e Enable/disable dynamically the flash initialization commands per monitor

e Supports non-volatile configure commands recording

e Supports SPI, DSPI, or QSPI bus transfer mode initialization

e Supports Extended Address Register (EAR) address initialization

e Flash commands, including program, read, and erase, are monitored based on address ranges
e Supports up to eight dynamically configurable address ranges for filtering per monitor

e Supports both 24-bit and 32-bit flash addressing modes/commands

e Supports single and dual flash configurations

e Supports internal chip select switching

4.3. Block Diagram

CPU
(RISC-V)

|

< System Bus (APB) >

|

QSPI Streamer

[1
I Monitor0 ®®® | MonitorN |
L |

[QjspI A
[.
Internal v
Controller Port
QPO R
Mux0 oo \ MuxN 1/

SPI1 Monitor

| [Q/D]sPI | SPI
Switch cml ® o0y itch cml
T T T T I
I Internal Switch 0 } Internal Switch
} Disabled | N Enabled
I
|- | e &
i T
Switch Ctrl [Q/D]SPI
+ SPI SPI SPI
SPI SPI
}4—[Q/D]SPI- |_>ﬁ
| ﬂ%sprllA— Quick Switch0 | eee ‘ —FI%SP%A—
o - |
| FlashB_ H‘[Q/D]SPI > e |
[Q/DIsPI
1
BMC PCH

Figure 4.1. QSPI Monitor Block Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.4. Signal Description

Table 4.1. External QSPI Monitor Signal Description

Signal | Direction I Description
QSPI Monitor External Signal

SPI/QSPI Clock

High Impedance during monitoring
Chip Select

High Impedance during monitoring
Quick Switch Disable Flash A
QSPI_MONXx_DIS_A Output e (0O=enabled

e l=disabled

Quick Switch Disable Flash B
QSPI_MONx_DIS_B Output e O=enabled

e l=disabled

SPI: MOSI

QSPI_MONx_DQO Bidir QSPI: serial data input and output
High Impedance during monitoring
SPI: MISO

QSPI_MONx_DQ1 Bidir QSPI: serial data input and output
High Impedance during monitoring

QSPI_MONx_CLK Bidir

QSPI_MONx_CSN Output

SPI: unused
QSPI_MONx_DQ2 Bidir QSPI: serial data input and output
High Impedance during monitoring

SPI: unused

QSPI_MONx_DQ3 Bidir QSPI: serial data input and output

High Impedance during monitoring
QSPI_MONx_PRE_CSN Input QSPI/SPI Chip select before quick switch
QSPI_MONx_RST_O Output Reset

Quick Switch Output Enable

e O=disabled

QSPI_MONx_SWI_EN Output . 1=enabled

This signal is enabled when the QSPI Monitor is protecting the SPI Flash and when the
QSPI Monitor is switched to the internal controller.

Quick Switch Isolation
e O=disabled
QSPI_MONx_SWI_ISO Output | ® 1zenabled
This optional signal is used when a flash has switching logic to select between multiple
SPI controllers, for example, BMC and PCH. This signal is enabled when the QSPI Monitor
is switched to the internal controller.

4.5. QSPI Command List

The allowed QSPI commands are shown in Table 4.2. All other commands are blocked.

Table 4.2. QSPI Command List Table

Command Default Description

Initialization Command O 01 (WRSR) Write Status Register

Initialization Command 1 04 (WRDI) Write Disable

Initialization Command 2 05 (RDSR) Read Status Register

Initialization Command 3 06 (WREN) Write Enable

Initialization Command 4 50 (WRSR_EN) Volatile Status Register Write Enable

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Command Default Description

Initialization Command 5 9F (RDID) Read Identification

Initialization Command 6 5A Read Serial Flash Discoverable Parameter (SFDP) Mode
Initialization Command 7 70 Read Flag Status Register, refer to related SPI flash data sheet.
Initialization Command 8 36 Individual Block Lock, refer to related SPI flash data sheet.
Initialization Command 9 FFFF Not supported/defined

Page Program Command 02 Page Program

EZ%: z::ﬁ::;r;;luad Address Quad FFFF Not supported/defined

Erase 4 KB Command 20 Sector Erase (4 KB)

Erase 32 KB Command FFFF Not supported/defined

Erase 64 KB Command D8 Block Erase (64 KB)

Read Command 03 Read

Fast Read Command 0B Fast Read

Read Dual Data 3B Dual Output Read

Ezircmjrr?au:cli Address Dual Data FFFF Not supported/defined

Read Quad Data Command 6B Quad Read

EZ:jm%li‘add Address Quad Data EB Quad Address Quad Read

Quad SPI Mode Enter Command 35 Enable QSPI

Quad SPI Mode Exit Command F5 Disable QSPI

4-byte Mode Enter Command B7 Enable 4-byte address mode

4-byte Mode Exit Command E9 Disable 4-byte address mode

Zé;’br\r/]:::;d Extended Address FFFF Not supported/defined

Zé;’brztr:;l:gte Extended Address FFFF Not supported/defined

4-byte Page Program Command 12 Page Program 4-byte address
g:;/ctieDF;igeCz:i:Z:dQuad Address 3E Page Program 4-byte Quad address Quad data
4-byte Erase 4 KB Command 21 Sector Erase (4 KB) 4-byte address

4-byte Erase 32 KB Command FFFF Not supported/defined

4-byte Erase 64 KB Command DC Block Erase (64 KB) 4-byte address

4-byte Read Command 13 Read 4-byte address

4-byte Fast Read Command ocC Fast Read 4-byte address

4-byte Read Dual Data Command 3C Dual Output Read 4-byte address

?Z;)br\r/\tr:aR:c?d Dual Address Quad Data FFFF Not supported/defined

4-byte Read Quad Data Command 6C Fast Read Quad Data 4-byte address

4-byte Read Quad Address Quad EC Fast Read Quad Address Quad Data 4-byte address

Data Command

Note: Default value of FFFF means command is disabled/not defined. Usage of this command is blocked by the QSPI Monitor.

4.6. Register Description

A summary of the QSPI Monitor Core Registers is shown in Table 4.4. Global registers are mapped to offsets 0x000—
O0xOFC and per-monitor registers are mapped to 0OXNOO—OxNFF, where N corresponds to the monitor number, in the
range of 1 to 3. For example, registers of the first monitor are at offsets 0x100—-0x1FC and registers of the second
monitor are at 0x200—0x2FC. The registers for Address Space 7 are mapped from 0xM00—0xMFF, where M is equal to

(5 + N), see Table 4.3.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Table 4.3. QSPI Monitor Address Space Mapping for Each Monitor

Monitor

Register Offsets for Address Spaces 0 to 6

Register Offsets for Address Space 7

Monitor0

0x100-Ox1FF

0x600-0x6FF

Monitorl

0x200-0x2FF

0x700-0x7FF

Monitor2

0x300-0Ox3FF

WIN|+- |2
o vl |

0x800-0x8FF

Table 4.4.

QSPI Monitor Core Registers

Offset

Register Name Access | Reset Value

Description

0x000

MONITOR_CFG RO 0x03

num_bus_monitors[1:0] — Number of bus monitors
reserved[31:42]

0x004

MONITOR_CTRL RW 0x00

monitor0_en[0] — Enable/disable Monitor0
monitorl_en[1] — Enable/disable Monitorl
monitor2_en[2] — Enable/disable Monitor2
reserved[31:3]

0x008

MONITOR_SPI_MODE RW 0x00

monitor0_spi_mode[1:0] — Monitor0 SPI Mode (0 or 3)
reserved[3:2]

monitorl_spi_mode[5:4] — Monitorl SPI Mode (0 or 3)
reserved[7:6]

monitor2_spi_mode[9:8] — Monitor2 SPI Mode (0 or 3)
reserved[31:10]

0x010

INT_STATUS RW 0x00

Interrupt Status

illegal_opO_int[0] — Bus 0O lllegal Operation Interrupt
illegal_opO_overflow_int[1] — Bus O lllegal Operation Overflow
Interrupt

reserved[3:2]

illegal_op1_int[4] — Bus 1 lllegal Operation Interrupt
illegal_opl_overflow_int[5] — Bus 1 lllegal Operation Overflow
Interrupt

reserved[7:6]

illegal_op2_int[8] — Bus 2 lllegal Operation Interrupt
illegal_op2_overflow_int[9] — Bus 2 lllegal Operation Overflow
Interrupt

reserved[31:10]

Writing 1 to a bit clears that interrupt.

0x014

INT_ENABLE RW 0x00

Interrupt Enable

illegal_opO_en[0] — Enable Bus O lllegal Operation Interrupt

illegal_ op0_overflow_en[1] — Enable Bus 0 lllegal Operation
Overflow Interrupt

reserved[3:2]

illegal_opl_en[4] — Enable Bus 1 lllegal Operation Interrupt

illegal_opl_overflow_en[5] — Enable Bus 1 Illegal Operation
Overflow Interrupt

reserved[7:6]

illegal_op2_en[8] — Enable Bus 2 lllegal Operation Interrupt

illegal_op2_overflow_en[9] — Enable Bus 2 Illegal Operation
Overflow Interrupt
reserved[31:10]

0x018

INT_SET RW 0x00

Interrupt Set

illegal_op0_set[0] — Set Bus 0 lllegal Operation Interrupt

illegal_op0_overflow_set[1] — Set Bus 0O lllegal Operation
Overflow Interrupt

reserved[3:2]

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset | Register Name Access | Reset Value | Description
e llegal_opl_set[4] — Set Bus 1 lllegal Operation Interrupt
o llegal_opl_overflow_set[5] — Set Bus 1 lllegal Operation
Overflow Interrupt
e reserved[7:6]
o llegal_op2_set[8] — Set Bus 2 lllegal Operation Interrupt
e illegal_op2_overflow_set[9] — Set Bus 2 lllegal Operation
Overflow Interrupt
e reserved[31:10]
Writing 1 to a bit sets that interrupt.
e mux_sel[3:0] — Select which internal client is connected to the
external SPI/QSPI pins.
e 0:SPI/QSPI Monitor
e 1:Internal controller interface O
e 2-7:reserved
OxNOO | CONTROL RW 0x00 e flash_a_en[4] —Flash A is disabled (0) or enabled (1)
o flash_b_en[5] — Flash B is disabled (0) or enabled (1)
e reserved[7:6]
e init_cmd_filter[8] — Block initialization commands
e allow_4byte_addr[9] — Allow 4-byte addressing commands
e reserved[31:10]
Space Monitoring Enable Bits
e space0_en[0] — Disable (0) or enable (1) monitoring of space 0
e spacel_en[1] — Disable (0) or enable (1) monitoring of space 1
e space2_en[2] — Disable (0) or enable (1) monitoring of space 2
e space3_en[3] — Disable (0) or enable (1) monitoring of space 3
0xNO4 | SPACE_EN RW 0x00 i o
e spaced_en[4] — Disable (0) or enable (1) monitoring of space 4
e space5_en[5] — Disable (0) or enable (1) monitoring of space 5
e space6_en[6] — Disable (0) or enable (1) monitoring of space 6
e space7_en[7] — Disable (0) or enable (1) monitoring of space 7
e reserved[31:8]
Number of Dummy Cycles in an SPI flash Read
The minimum allowed value is 1. See the flash device data sheet for
0xNO8 | READ_DUMMY_NUM RW 0x08 details.
e num_dummy_cycles[4:0]
e reserved[31:5]
max_addr[31:0] — SPI transaction starting addresses and incremental
0xN10 | MAXIMUM_ADDRESS RW OXFFFFFFFF | addresses are masked with this value before comparison with address
space ranges.
command_disable[31:0] — When set to 1, this field disables individual
0xN14 | COMMAND_DISABLEO RW 0x00000000 | command checking. Each bit corresponds to a specific parameter
command. See Table 4.5 for details on each bit field.
e command_disable[8:0] — When set to 1, this field disables
oxN18 | COMMAND DISABLEL RW Ox00000000 individual command checking. Each bit corrgsponds toa _spgcific
- parameter command. See Table 4.5 for details on each bit field.
e reserved[31:9]
e prg_cmd_allow[0] — Allow program commands in space 0
e erase_cmd_allow[1] — Allow erase commands in space 0
OxN20 | SPACEO_FILTER_CTRL RW 0x03 .
- - e read_cmd_block[2] — Block read commands in space 0
e reserved[31:3]
e page_start_addr[31:8] — Start address for space 0, aligned to
0xN24 | SPACEO_START_ADDR RW 0x00000000 256-byte page boundary.

e reserved[7:0] — Writes are ignored; reads return 0.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset | Register Name Access | Reset Value | Description

e page_end_addr[31:8] — End address for space 0, aligned to
0xN28 | SPACEO_END_ADDR RW | OxOOOOOOFF 256-byte page boundary.
o reserved_ff[7:0] — Writes are ignored; reads return OxFF.

e prg_cmd_allow[0] — Allow program commands in space 1
e erase_cmd_allow[1] — Allow erase commands in space 1
e read_cmd_block[2] — Block read commands in space 1

e reserved[31:3]

O0xN40 | SPACE1_FILTER_CTRL RW 0x03

e page_start_addr[31:8] — Start address for space 1, aligned to
OxN44 | SPACE1_START_ADDR RW 0x00000000 256-byte page boundary.
e reserved[7:0] — Writes are ignored; reads return 0.

e page_end_addr[31:8] — End address for space 1, aligned to
0xN48 | SPACE1_END_ADDR RW | OxOOOOOOFF 256-byte page boundary.
o reserved_ff[7:0] — Writes are ignored; reads return OxFF.

e prg_cmd_allow[0] — Allow program commands in space 2
e erase_cmd_allow[1] — Allow (erase commands in space 2
e read_cmd_block[2] — Block read commands in space 2

e reserved[31:3]

OxN60 | SPACE2_FILTER_CTRL RW 0x03

e page_start_addr[31:8] — Start address for space 2, aligned to
OxN64 | SPACE2_START_ADDR RW | 0x00000000 256-byte page boundary.
e reserved[7:0] — Writes are ignored; reads return 0.

e page_end_addr[31:8] — End address for space 2, aligned to
OxN68 | SPACE2_END_ADDR RW | 0x000000FF 256-byte page boundary.
o reserved_ff[7:0] — Writes are ignored; reads return OxFF.

e prg_cmd_allow[0] — Allow program commands in space 3
e erase_cmd_allow[1] — Allow erase commands in space 3
e read_cmd_block[2] — Block read commands in space 3

e reserved[31:3]

OxN80 | SPACE3_FILTER_CTRL RW 0x03

e page_start_addr[31:8] — Start address for space 3, aligned to
OxN84 | SPACE3_START_ADDR RW 0x00000000 256-byte page boundary.
e reserved[7:0] — Writes are ignored; reads return 0.

e page_end_addr[31:8] — End address for space 3, aligned to
0xN88 | SPACE3_END_ADDR RW 0x000000FF 256-byte page boundary.
o reserved_ff[7:0] — Writes are ignored; reads return OxFF.

o llegal_cmd([7:0]: lllegal operation command
OXNFO | ILLEGAL_CMD RO 0x00
- e reserved[31:8]
OxNF4 | ILLEGAL_ADDR RO 0x00000000 | lllegal Operation Address

4.7. Initialization Command Filtering

When initialization command filtering is enabled, the QSPI Monitor watches for all of the Initialization commands
(Table 4.2). If one of these commands is detected, the transaction is terminated immediately, the command is recorded
in the illegal_cmd register. illegal_addr is set to 0, and an illegal operation interrupt is sent.

By default, filtering for initialization commands is disabled. In a typical use case, initialization commands are allowed
for a certain period of time (such as during boot up) and then filtering can be enabled through the register interface.

4.8. Address Filtering

The QSPI Monitor can filter program, erase, and read commands based on address ranges. Up to four address ranges
can be monitored. Address ranges are also called spaces and filtering can be enabled independently for program, erase,
and read commands for each space. Each space consists of a start address, end address, and allowlist/blocklist
indicators for each type of command. Address spaces are aligned on 256-byte page boundaries. The default setting for
all spaces is to allow program, erase, and read operations in that space. The settings for each space can be modified to

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

block program, erase, or read operations. Each type of operation (program, erase, or read) has a separate

allowlist/blocklist setting.

Program/erase operations are considered illegal for all addresses except spaces that have been allowed.

e If a program operation starts from a page address that is not inside an allowed address space, it is considered
illegal.

e If an erase operation starts from an address that is not inside an allowed address space, or starts from an address
inside an allowed address space but the address range goes outside the allowed address space, it is considered
illegal.

Read operations are allowed for all addresses except spaces that have been blocked.

e If aread operation starts from an address that is inside a blocked address space, or starts from an address outside
a blocked address space and the incremental address crosses into a blocked address space, it is considered illegal.

When an illegal operation is detected, the transaction is terminated immediately, the command and address are saved

in the illegal_cmd and illegal_addr registers, and an illegal operation interrupt is generated.

Because program/erase operations are blocked by default and read operations are allowed by default, the

recommended usage model is to only define allowed areas for program/erase operations and blocked areas for read

operations as address spaces.

Overlapping program/erase allowed and read blocked address spaces should be avoided because it can lead to

unintended consequences, such as an address range being writable but not readable. This prevents common use cases

such as the host verifying data written to flash by reading it back.

4.9, Command Disable

Filtering for individual commands can be disabled by writing to the COMMAND_DISABLEO and COMMAND_DISABLE1
register (see Table 4.5). By default, all commands are enabled.

Table 4.5. QSPI Monitor Command Disable Register Fields

Command Register Field Index | Command

COMMAND_DISABLEO 0 Initialization Command 0
1 Initialization Command 1
2 Initialization Command 2
3 Initialization Command 3
4 Initialization Command 4
5 Initialization Command 5
6 Initialization Command 6
7 Initialization Command 7
8 Initialization Command 8
9 Initialization Command 9
10 Page Program Command
11 Page Program Quad Address Quad Data Command
12 Erase 4KB Command
13 Erase 32KB Command
14 Erase 64KB Command
15 Read Command
16 Fast Read Command
17 Read Dual Data
18 Read Dual Address Dual Data Command
19 Read Quad Data Command
20 Read Quad Address Quad Data Command
21 Quad SPI Mode Enter Command
22 Quad SPI Mode Exit Command
23 4-byte Mode Enter Command

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Command Register Field Index | Command
24 4-byte Mode Exit Command
25 4-byte Read Extended Address Command
26 4-byte Write Extended Address Command
27 4-byte Page Program Command
28 4-byte Page Program Quad Address Quad Data Command
29 4-byte Erase 4KB Command
30 4-byte Erase 32KB Command
31 4-byte Erase 64KB Command

COMMAND_DISABLE1 4-byte Read Command

0

1 4-byte Fast Read Command

2 4-byte Read Dual Data Command
3

4

4-byte Read Dual Address Dual Data Command
4-byte Read Quad Data Command

5 4-byte Read Quad Address Quad Data Command
Others Reserved

4.9.1. 24/32-Bit Addressing

Flash devices larger than 128 Mbit provide three separate mechanisms for addressing beyond the traditional 24-bit

address space:

e Commands to enter/exit 4-byte mode, EN4B/EX4B
When the flash is in 4-byte mode, commands which normally take a 3-Byte address, for example, read, erase,
program, and so on, expect 4-byte addresses instead of 3-byte addresses. The default is 3-byte mode.

e Extended Address Register (EAR)
The EAR is an 8-bit register in the flash, which can be read and written using special commands, RDEAR or WREAR.
When the flash is in 3-byte mode, the EAR is used to select which 128 Mbit segment is addressed by the 3-byte
address. In other words, the value in EAR is used as the upper 8 bits of the 32-bit flash address (flash_addr[31:0] =
{EAR, addr[23:16], addr[15:8], addr[7:0]}). The EAR default value is 0.

e 4-byte Address Commands
The 4-byte commands, such as READ4B, FAST_READA4B, are separate commands from the standard 3-byte
commands, such as READ and FAST_READ. The 4-byte commands always take 4-byte addresses, regardless of
whether the flash is in 4-byte or 3-byte mode, and do not use the EAR.

When the monitor is configured to allow 32-bit addressing, the monitor internally tracks the addressing status of the
flash (3-byte/4-byte mode, EAR) based on commands observed on the SPI/QSPI bus and uses this information to filter
addresses observed on the bus. When the flash is in 4-byte mode or a 4-byte command is detected, the monitor
compares the 32-bit address on the bus with the configured address spaces to determine if the operation is illegal or
allowed. When the flash is in 3-byte mode, the monitor compares the 32-bit value comprised of EAR and the 24-bit
address on the bus with the configured address spaces to determine if the operation is illegal or allowed.

All address comparisons are performed with the full 32-bits to prevent aliasing between 24-bit and 32-bit addresses
which could result in security holes or false illegal operation detection.

When the monitor is configured to not allow 32-bit addressing, that is, allow_4byte_addr = 0, the monitor is set to
3-byte mode, EAR is set to 0, and all of the 4-byte commands defined in the QSPI Command List Table are considered
illegal operations. If one of these commands is detected, the transaction is terminated immediately, the command and
address are recorded in the illegal_cmd and illegal_addr registers, and an illegal operation interrupt is sent.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.10. Unrecognized Command Filtering

If a command detected does not match any of the commands defined in the QSPI Command List Table (Table 4.2), the
transaction is terminated immediately. The command is recorded in the illegal_cmd register, illegal_addr is set to O,
and an illegal operation interrupt is sent.

4.11. Timing Sequence

4.11.1. lllegal Command Blocking

If one of the illegal commands is detected (Figure 4.2), the transaction is terminated immediately by extending chip
select and adding a clock pulse which is interpreted by the SPI Flash as illegal command and transaction is aborted.

Figure 4.2. One lllegal Command

4.11.2. lllegal Erase Command Breaking (3-Byte Address)

If an illegal erase command is detected (Figure 4.3), the transaction is terminated immediately by driving chip select
high.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figure 4.3. lllegal Erase Command

4.11.3. lllegal Program Command Breaking (3-Byte Address, lllegal Start Address)

If an illegal program command is detected (Figure 4.4), the transaction is terminated immediately by driving chip select

high.

LML uuuuuuuuu LA uuuu

Figure 4.4. lllegal Program Command, 3-Byte Address, lllegal Start Address

4.11.4. lllegal Read Command Breaking (3-Byte Address, lllegal Start Address)

If an illegal read command is detected (Figure 4.5), the transaction is terminated immediately by driving chip select

high.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

o= LATTICE

L L L e L L L L _LI_LI_LI_LI

Figure 4.5. lllegal Read Command, 3-Byte Address, lllegal Start Address

4.11.5. lllegal Read Command Breaking (3-Byte Address, Incremental Address Overflow)

If a read command incremental address overflow is detected (Figure 4.6), the transaction is terminated immediately by
driving chip select high.

Figure 4.6. lllegal Read Command, 3-Byte Address, Incremental Address Overflow

4.11.6. lllegal 4-Byte Command Breaking

If a 4-byte command is disabled and a 4-byte command is detected (Figure 4.7), the transaction is terminated
immediately by driving chip select high.

LU L L L L L L L L L L L UL L UL L L UL L AL L L ﬁ

RN RN RN ----.
T
| | \ \ \

IR LRTLE - M UL UL
r l_‘ 1 |
| | | | \
| | | | | \

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figure 4.7. lllegal 4-Byte Command Breaking

4.12. Mux/Demux Functionality

Each external SPI/QSPI bus can be connected either to its corresponding monitor, or to the QSPI Streamer through a
mux/demux block. This allows the QSPI Streamer to disable the monitor and access the external flash. Each
bus/monitor/mux combination is independent of others. It is the responsibility of the firmware to manage the muxes
appropriately to prevent the internal SPI/QSPI controller from being connected to more than one external bus at a
time.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5. QSPI Streamer

The QSPI Streamer is a configurable SPI controller, which can support SPI, DSPI, and QSPI targets. It contains FIFOs for
Tx and Rx data, which support page read and page program of 256 bytes. It also provides an 8-bit external Rx FIFO
output interface which is connected to the Secure Enclave and System Memory.

The QSPI Streamer provides significant performance improvement by supporting data read and write transactions of
programmable length, allowing an entire SPI flash device to be read in one SPI transaction. The 8-bit Secure Enclave
FIFO output interface also enables direct transmission of input data from the SPI target to the High Speed Port of the
Secure Enclave, without tying up the CPU or system bus.

5.1. Features

The key features of the QSPI Streamer include:

e Generation of SPI, DSPI, and QSPI transactions

e Support for long SPI transactions up to 256-byte write and 4 Gb read with no CPU interactions
e Programmable transaction type and length

e Provision of external 8-bit FIFO interface for connecting to other blocks

5.2. Block Diagram

QSPI Streamer Block Diagram is shown in Figure 5.1. There are Tx and Rx FIFOs with each having a 32-bit access port for
the APB system bus and an 8-bit access port for the SPI controller state machine. 8-bit data is packed or unpacked into
32-bit chunks as it enters or leaves the FIFOs.

A
APB Completer

QSPI
Streamer "
APB
A A
Control |) 4
Registers | /
A
\ 4
Rx FIFO Tx FIFO
Secure Enclave
FIFO Interface
< A
A
A 4
> SPI Transaction State Machine

SPI/QSPI Controller Interface
v

Figure 5.1. QSPI Streamer Block Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.3. FIFO Configuration
The QSPI Streamer FIFO configuration is shown in Table 5.1.

Table 5.1. QSPI Streamer FIFO Configuration

Attribute Configuration Notes

Tx FIFO Size 512 —

Tx FIFO Almost Full Flag 256 —

Tx FIFO Almost Empty Flag 4 —

Tx FIFO Endianness Big APB Tx FIFO Data 31:24 | 23:16 | 15:8 | 7:0
Big endian 0 1 2

Rx FIFO Size 256 —

Rx FIFO Almost Full Flag 252 —

Rx FIFO Almost Empty Flag 4 —

Received bytes from SPI are packed in this order (from 0-3):

Rx FIFO Endianness Big APB Rx FIFO Data 31:24 | 23:16 | 15:8 | 7:0

Big endian 0 1 2 3

5.4. Register Description

The QSPI Streamer IP core register map is shown in the Table 5.2.

Table 5.2. QSPI Streamer IP Core Registers
Offset | Name Access Reset Value Description

e spi_mode[1:0]
e 00:SPImodeO
e 01:reserved
e 10:reserved
e 11:SPImode3
° reserved[29:2]
o pll_reset[30]
0x00 | QSPI_CTRL RW 0x0 e Write 1 to assert the PLL reset.
e Write 1 again to release the PLL reset.
e ReadsreturnO.
e soft_reset[31]
e Writing 1 to this bit resets all of the internal logic, flushes
the FIFOs (resets the read/write pointers), and restores all
registers to their default settings.

e Reads return 0. Intended for error recovery.

Command data to transmit in transaction phase 1

0x04 CMD_DATA RW 0x0 . .
- Always big endian
Data to transmit in transaction phase 2
0x08 TX_FIFO_DATA WO 0x0 When the Tx FIFO is full, register writes to this address is blocked

until the FIFO is no longer full. Tx FIFO status is available in the
fifo_ctrl and int_status registers.

Data received in transaction phase 4

If the Rx FIFO contains less than four bytes when a 32-bit read is
0x0C RX_FIFO_DATA RO 0x0 received on the system bus and there is an SPI transaction currently
in progress. The read is blocked until four bytes are received or the
SPI transaction completes.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset | Name Access Reset Value Description
e phl_num_bytes[2:0] — Number of bytes from cmd_data to
transmit in transaction phase 1, legal values: 0-4.
e ph2_num_bytes[11:3] — Number of bytes from Tx FIFO to
transmit in transaction phase 2, legal values: 0-Tx FIFO Size.
e ph3_dummy_cycles[16:12] — Number of dummy cycles to
transmit in transaction phase 3
e phl _mode[18:17] — Transmit phase 1 data in:
e 0:SPI mode
e 1:DSPI mode
e 2:QSPI mode
e 3:reserved
e ph2_mode[20:19] — Transmit phase 2 data in:
e 0:SPImode
e 1:DSPI mode
e 2:QSPI mode
0x10 TRANSACTION_CTRL1 RW 0x0
- e 3:reserved
e ph3_mode[22:21] — Transmit phase 3 dummy cycles in:
e 0:SPI mode
e 1:DSPI mode
e 2:QSPI mode
e 3:reserved
e phd_mode[24:23] — Receive phase 4 data in:
e 0:SPI mode
e 1:DSPI mode
e 2:QSPI mode
e 3:reserved
e rxfifo_last_en[25] — Enable(1)/Disable(0) assertion of
rxfifo_last_o for the last received byte of the SPI transaction
e reserved[30:26]
e start[31] — Write 1 to start an SPI transaction. Reads return 0.
Ox14 TRANSACTION CTRL2 RW 0x0 ph4_num_bytes[31:0] — Number of bytes to receive in transaction
- phase 4
o tx_fifo_empty[0] — Tx FIFO is empty.
o tx_fifo_almost_empty[1] —asserted Tx FIFO is empty or has
less than Tx FIFO Almost Empty Flag bytes.
o tx_fifo_almost_full[2] — asserted Tx FIFO is full or has more
than Tx FIFO Almost Full Flag bytes.
o tx_fifo_full[3] — Tx FIFO is full.
o rx_fifo_empty[4] — Rx FIFO is empty.
e rx_fifo_almost_empty[5] — asserted Rx FIFO is empty or has
less than Rx FIFO Almost Empty Flag bytes.
o rx_fifo_almost_full[6] — asserted Rx FIFO is full or has more
0x18 STATUS RO 0x33

than Rx FIFO Almost Full Flag bytes.
rx_fifo_full[7] — Rx FIFQ is full.
reserved[10:8]

[11] —if external rx_fifo is enabled, it is ext_rxfifo_full_i,
otherwise 0.

[12] —if external rx_fifo is enabled, ext_rxfifo_almost_empty_i,
otherwise 0.

reserved[29:13]

[30] — PLL lock state, 1 for lock, O for unlock.

busy[31] — SPI transaction is in progress.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset | Name Access Reset Value Description
e reserved[6:0]
o tx_fifo_flush[7] — Flush contents of Tx FIFO, reset read and
write pointers.
o rx_fifo_dest[9:8]
e 0O:internal Rx FIFO
e 1:external Rx FIFO interface
0x1C FIFO_CTRL RW 0x0
- e 2:reserved
e 3:internal Tx FIFO
e reserved[14:10]
o rx_fifo_flush[15] — flush contents of Rx FIFO, reset read and
write pointers.
e reserved[31:16]
Interrupt Status
e done_int[0] — Done Interrupt, SPI transaction completed.
e tx_fifo_empty_int[1] — Tx FIFO Empty Interrupt
e tx_fifo_almost_empty_int[2] — Tx FIFO Almost Empty Interrupt
e tx_fifo_almost_full_int[3] — Tx FIFO Almost Full Interrupt
e tx_fifo_full_int[4] — Tx FIFO Full Interrupt
e rx_fifo_empty_int[5] — Rx FIFO Empty Interrupt
e rx_fifo_almost_empty_int[6] — Rx FIFO Almost Empty Interrupt
0x20 | INT_STATUS RW 0x0 e rx_fifo_almost_full_int[7] — Rx FIFO Almost Full Interrupt
e rx_fifo_full_int[8] — Rx FIFO Full Interrupt
e reserved[31:9]
Writing 1 to a bit clears that Interrupt.
FIFO Interrupts are triggered on the rising edge of the
corresponding FIFO condition, such as empty, full, and so on and
stay asserted until cleared by writing a 1 to this register to clear the
interrupt. Current status of the FIFO conditions is always available in
the status register.
Interrupt Enable
e done_en[0] — Enable Done Interrupt, SPI transaction
completed.
e tx_fifo_empty_en[1] — Enable Tx FIFO Empty Interrupt
o tx_fifo_almost_empty_en[2] — Enable Tx FIFO Almost Empty
Interrupt
o tx_fifo_almost_full_en[3] — Enable Tx FIFO Almost Full
Interrupt
Ox24 | INT_ENABLE RW 0x0 o tx_fifo_full_en[4] — Enable Tx FIFO Full Interrupt
e rx_fifo_empty_en[5] — Enable Rx FIFO Empty Interrupt
e rx_fifo_almost_empty_en[6] — Enable Rx FIFO Almost Empty
Interrupt
o rx_fifo_almost_full_en[7] — Enable Rx FIFO Almost Full
Interrupt
o rx_fifo_full_en[8] — Enable Rx FIFO Full Interrupt
® reserved[31:9]
Interrupt Set
e done_set[0] — Set Done Interrupt, SPI transaction completed.
e tx_fifo_empty_set[1] — Set Tx FIFO Empty Interrupt
0x28 INT_SET RW 0x0 o tx_fifo_almost_empty_set[2] — Set Tx FIFO Almost Empty

Interrupt

tx_fifo_almost_full_set[3] — Set Tx FIFO Almost Full Interrupt
tx_fifo_full_set[4] — Set Tx FIFO Full Interrupt
rx_fifo_empty_set[5] — Set Rx FIFO Empty Interrupt

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset | Name Access Reset Value Description

o rx_fifo_almost_empty_set[6] — Set Rx FIFO Almost Empty
Interrupt

o rx_fifo_almost_full_set[7] — Set Rx FIFO Almost Full Interrupt

o rx_fifo_full_set[8] — Set Rx FIFO Full Interrupt

e reserved[31:9]

e Phasedir[0] — Dynamic Phase adjustment direction. O stands for
delayed, 1 for advanced.

e Phasesel[3:1] — Dynamic Phase select signal. Only 001: CLKOS2
is supported.

0x30 PLL_PHASE_SHIFT RW 6'b0 e Phaseloadreg[4] — Dynamic Phase load signal. Each pulse of the
PHASELOADREG signal generates a phase shift.

e Phasestep[5] — Dynamic Phase step signal. The VCO phase
changes on the negative edge of the PHASESTEP input after
four VCO cycles.

e reserved[31:6]*

0x100 | PLL access RW — Bypass to PLL interface*

*Note: Refer to sysCLOCK-PLL-Design-and-Usage-Guide-for-Nexus-Platform (FPGA-TN-02095) for more details.

5.5. Secure Enclave FIFO Interface

The Secure Enclave FIFO interface supports the transfer of large streams of data from SPI flash to the Secure Enclave
and System Memory. This allows firmware images to be loaded in the High Speed Port of the Security Enclave for faster
authentication and the CPU firmware image being loaded into System Memory.

5.6. Operation

5.6.1. Transaction Phases

The QSPI Streamer generates an SPI or a QSPI transaction in multiple phases, as shown in Figure 5.2. Each phase is
controlled by separate register settings. In the typical usage model, the CPU programs all of the transaction phase
registers with the settings for the desired transaction, then write 1 to bit[31] of the TRANSACTION_CTRL1 register to
initiate SPI transactions. For transactions which use data, the CPU should write data to the FIFO before starting the

transaction. See example sequence below for details.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52789

LATTICE

Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide HH
Technical Note

A 4

Assert chip select

A
phl_counter = ph2_counter = ph3_counter = ph4_counter =
ph1_num_bytes ph2_num_bytes ph3_num_dummy_bits ph4_num_bytes
False False
False
ph1_counter >0 ph2_counter >0 ph3_counter >0 ph4_counter >0 FalseP»| Dea:zleerztchlp
True True
True True
True True
Read next byte
from cmd_data Send one SPI clock Rx FIFO full
(Internalor
External)
A 4 A 4
Transmit byte False Decrement False
(SPI or QSPI1) + ph3_counter +
Read byte from Transmit byte (0)
Tx FIFO and Receive byte
(SPI or QSPI)
A 4
Decrement
ph1_counter L 3
Transmit byte Write byte to
(SPI or QSPI) Internal Rx FIFO or
External Rx FIFO
interface
A 4
Decrement 3
ph2_counter
Decrement

L 1 ph4_counter

L]

Figure 5.2. QSPI Streamer Programmable Phases

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02360-1.0

http://www.latticesemi.com/legal

= LATTICE

Phase 1: Transmit phl_num_bytes (0-4) bytes from cmd_data register

For SPI flash devices, this normally includes 1 command byte and O or 3 address bytes.

Data is transmitted in SPI mode, DSPI mode, or QSPI mode depending on the ph1l_mode setting in transaction_ctrl1.
Serial data input is ignored.

Phase 2: Transmit ph2_num_bytes (0-1028) bytes from Tx FIFO

For SPI flash devices, this is normally used for page program data and/or 4 byte addressing.

Data is transmitted in SPI mode, DSPI mode, or QSPI mode depending on the ph2_mode setting in transaction_ctrl1.
Serial data input is ignored.

Phase 3: Transmit ph3_num_dummy_bits (0-15) bits

For SPI flash devices, this is normally used to generate dummy cycles for read data commands.

Dummy data (0) is transmitted in SPI mode, DSPI mode, or QSPI mode depending on the ph3_mode setting.
Serial data input is ignored.

Phase 4: Receive ph4_num_bytes (0-4GB) bytes and send to Rx FIFO
For SPI flash devices, this is normally used for read commands.
Data is received in SPI mode, DSPI mode, or QSPI mode depending on the ph4_mode setting.
Received data is stored in Rx FIFO or sent out the External Rx FIFO interface depending on the rx_fifo_dest.
Serial data output is O for SPI or high impedance for QSPI.
SPI target ignores the data.
e SPI Flash Page Program example (Figure 5.3):
cmd_data = 0x02xxxxxx (where xxxxxx = 24-bit Flash address)
Tx FIFO contains DataBytel...DataBytel6 values
phl_num_bytes =4, phl_mode =0
ph2_num_bytes = N, ph2_mode =0 (N=16 in this example)
ph3_num_dummy_bits =0, ph3_mode =0
ph4_num_bytes = 0, ph4_mode =0

A | S IS 8 T S 0 6 W

Figure 5.3. Example for Page Program Sequence

e SPIFlash FAST_READ example (Figure 5.4):
cmd_data = 0xOBxxxxxx (Where xxxxxx = 24-bit address)
phl_num_bytes =4, phl_mode=0
ph2_num_bytes =0, ph2_mode =0
ph3_num_dummy_bits =N, ph3_mode =0 (N=8 in this example)
ph4_num_bytes =M, ph4_mode=0 (M=16 in this example)

e T e ey
P [S S & S

Figure 5.4. Example for FAST_READ Sequence

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e SPIRDID example (Figure 5.5):
cmd_data = 0x9F000000
phl_num_bytes =1, phl_mode =0
ph2_num_bytes =0, ph2_mode =0
ph3_num_dummy_bits = 0, ph3_mode =0
ph4_num_bytes =3, ph4_mode =0

I e S
7+ e s

Figure 5.5. Example for RDID Sequence

e SPI Flash QREAD4B example (Figure 5.6):
cmd_data = 0x6C000000
Tx FIFO contains 4-byte Read Address
phl_num_bytes =1, phl_mode =0
ph2_num_bytes =4, ph2_mode =0
ph3_num_dummy_bits =N, ph3_mode =0 (N=8 in this example)
ph4_num_bytes = M, ph4_mode =2 (M=64 in this example)

i 1] LIl
L S ey) 1 0
11 v I NV | | Y

Figure 5.6. Example for QREAD4B Sequence

5.6.2. Width Conversion

Each Tx and Rx FIFO has a 32-bit access port for the system bus and an 8-bit access port for the SPI controller state
machine. The 8-bit data is packed or unpacked into 32-bit chunks as it enters or leaves the FIFOs. The endianness of the
32-bit data is big endian, see Table 5.1.

Wherever possible, the implementation should avoid stalling the system bus while doing width conversions. For
example, on the Tx FIFO, the 32-bit write value should be stored in a local register and the system bus write cycle
should be terminated before doing the four 8-bit writes to the Tx FIFO. On the Rx FIFO, the logic should read bytes from
the Rx FIFO into a local 32-bit register whenever the Rx FIFO is not empty, so that the 32-bit value can be returned
immediately whenever a system bus read is received. This avoids tying up the system bus and stalling the CPU while
the width conversions are being performed.

5.6.3. FIFO Empty/Full Behavior

The recommended usage model is for the CPU to write all the data for a transaction to the Tx FIFO, for example, a full
256-byte page, before starting the transaction so that the Tx FIFO does not become empty in the middle of a
transaction.

If the Rx FIFO indicates that it is full before the transaction is completed, then the SPI/QSPI state machine stalls until
the Rx FIFO is no longer full. When this stall occurs, gpi_csn_o is held asserted but the SPI/QSPI clock is gated off, that
is, held in the inactive state. When the Rx FIFO is not full, the clock is gated back on, and data is received over SPI/QSPI.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.6.4. Typical Flash Read/Program Flow
The typical flash (MX25L12845G, MACRONIX, CO, Ltd) read/program flow is shown in Figure 5.7.

Figure 5.7. Typical Flash Read/Program Flow

www.latticesemi.com/legal

http://www.latticesemi.com/legal

6. SMBus Mailbox — Target Mode

6.1.

The 12C Target provides device addressing, read/write operation and an acknowledgement mechanism. It supports two

operations:

Overview

Normal SMBus transfer as a target device
Register file transfer as SMBus Mailbox

6.2.

The key features of I1°C Target include:
Supports 7-bit and 10-bit Addressing Mode

Supports the following bus speeds:

Features

Standard-mode (Sm) — up to 100 kbit/s
Fast-mode (Fm) — up to 400 kbit/s
Fast-mode Plus (Fm+) — up to 1 Mbit/s
Supports Clock stretching
Configurable ACK/NACK response on address and data phases
Integrated Pull-up
Integrated Glitch filter
Polling and Out-of-band Interrupt Modes
8-byte Tx FIFO
16-byte Rx FIFO
SMBus Target Support

6.3.

Table 6.1. I2C Target IP Core Signal Description

Signal Description

= LATTICE

Signal ‘ Direction ‘ Description

12C/SMBus Target

SMBUSX_INT Output SMBus Alert signal/I2C Interrupt
SMBUSx_SCL Input SMBus/I2C Serial Clock
SMBUSx_SDA Bidir SMBus/I2C Data

6.4. Register Description

6.4.1. Overview

The I2C Target Core configuration registers are located at the addresses shown in Table 6.2.

Table 6.2. IC Target Registers Address Map

Offset Register Name Access Type Description

0x00 RD_DATA_REG RO Read Data Register

0x00 WR_DATA_REG WO Write Data Register

0x04 SLVADR_L_REG R/W Target Address Lower Register
0x08 SLVADR_H_REG R/W Target Address Higher Register
0x0C CONTROL_REG R/W Control Register

0x10 TGT_BYTE_CNT_REG R/W Target Byte Count Register
0x14 INT_STATUS1_REG RW1C Interrupt Status First Register

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access Type Description
0x18 INT_ENABLE1_REG R/W Interrupt Enable First Register
0x1C INT_SET1_REG WO Interrupt Set First Register
0x20 INT_STATUS2_REG RW1C Interrupt Status Second Register
0x24 INT_ENABLE2_REG R/W Interrupt Enable Second Register
0x28 INT_SET2_REG WO Interrupt Set Second Register
0x2C FIFO_STATUS_REG RO FIFO Status Register
0x2C FLUSH_FIFO WO Flush FIFO Register
0x30 SMB_CONTROL_REG RW SMBus Control and Status Register
— Reserved
gizg Reserved RSVD Write access is ignored and 0 is returned on read access.
gz;ggg' Registers File RW Registers File 256x32 bits for SMBus Mailbox Storage

The RD_DATA_REG and WR_DATA_REG share the same offset. Write access to this offset goes to WR_DATA_REG while
read access goes to RD_DATA_REG.

6.4.2. Write Data Register (WR_DATA_REG)

Table 6.3 shows the Write Data Register. This is the interface to Transmit FIFO. Writing to WR_DATA_REG pushes a
word to Transmit FIFO. When writing to WR_DATA_REG, the host should ensure that Transmit FIFO is not full. This can
be done by reading FIFO_STATUS_REG. Data is popped WR_DATA_REG during I°C read transaction. When reset is
performed, the contents of Transmit FIFO are not reset but the FIFO control logic is reset. Thus, content is not
guaranteed after reset.

Table 6.3. Write Data Register

Field Name Access Width Reset
[7:0] tx_fifo wo 8 not guaranteed

6.4.3. Read Data Register (RD_DATA_REG)

Table 6.4 shows the Read Data register. This is the interface to Receive FIFO. After a data is received from I12C bus
during |12C write transaction, the received data is pushed to Receive FIFO. Reading from RD_DATA_REG pops a word
from Receive FIFO. The host should ensure that Receive FIFO has data before reading RD_DATA_REG. Data is not
guaranteed when this register is read during Receive FIFO empty condition. On the other hand, if Receive FIFO is full
but I2C Target continues to receive data, new data is lost. Read FIFO_STATUS_REG to determine the status of Receive
FIFO. Similar to Transmit FIFO, the reset value of Receive FIFO is also not guaranteed after reset.

Table 6.4. Read Data Register

Field Name Access Width Reset
[7:0] rx_fifo RO 8 not guaranteed

6.4.4. Target Address Registers (SLAVE_ADDRL_REG, SLAVE_ADDRH_REG)

The Target Address Lower Register (SLAVE_ADDRL_REG) shown in Table 6.5 is a 7-bit Target address. This is used for
7-bit and 10-bit addressing mode as follows:

for 7-bit Addressing Mode, it is the Target address;

for 10-bit Addressing Mode, it is the lower 7 bits of the Target address.

Table 6.5. Target Address Lower Register

Field Name Access Width Reset
[7] Reserved RSVD 1 —
[6:0] slave_addr_|_reg RW 7 0x51

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The Target Address Higher Register (SLAVE_ADDRH_REG) shown in Table 6.6 is the upper three bits of 10-bit Target
address. This is not used in 7-bit addressing mode.

Table 6.6. Target Address Higher Register

Field Name Access Width Reset
[7:3] Reserved RSVD 5 —
[2:0] slave_addr_h_reg RW 3 0x0

6.4.5. Control Register (CONTROL_REG)

Table 6.7 shows the summary of Control Register. Each bit of this register controls the behavior of I2C Target Core.

Table 6.7. Control Register

Field Name Access Width Reset
[7:6] Reserved RSVD 3 —

[5] dat_src_sw RW 1 1'b0
[4] nack_data RW 1 1’'b0
[3] nack_addr RW 1 1’'b0
[2] Reset wo 1 1’b0
[1] clk_stretch_en RW 1 1’b0
[0] addr_10bit_en RW 1 1’'b0

e dat_src_sw
Data source switch. Select data source when external controller read routine.
e 1'b0 - selects register file for mailbox.
e 1’b1 -selects tx_fifo for normal external read.
e nack_data
NACK on Data Phase. Specifies ACK/NACK response on I°C data phase.
e 1’b0-Sends ACK to received data.
e 1’b1 —Sends NACK to received data.
e nack_addr
NACK on Address Phase. Specifies ACK/NACK response on 1°C address phase.
e 1’b0-—Sends ACK to received address if it matches the programmed target address.
e 1’bl —Sends NACK to received data.
e reset
Reset. Resets |12C Target Core for one clock cycle. The registers and APB interface are not affected by this reset. This
is write-only bit because it has auto clear feature; it is cleared to 1'b0 after one clock cycle.
e 1’b0 - No action.
e 1'b1-—Resets I°C Target Core.
o clk_stretch_en
Clock Stretch Enable. Enables clock stretching on ACK bit of data.
e 1’b0—I2C Target Core releases SCL signal.
e 1’b1-I2C Target Core pulls down SCL signal on the next ACK bit of data phase and keeps pulling down until
the host writes 1’b0 on this bit.
e addr_10bit_en
10-bit Address Mode Enable. Enables the reception of 10-bit I1°C address.
e 1’b0 - I2C Target Core rejects the 10-bit I>C address. It sends NACK.

e 1’bl-I2C Target Core responds to 10-bit IC address. If SLAVE_ADDRH_REG.slave_addr_h_regis 3’h0, it also
responds to 7-bit address.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6.4.6. Target Byte Count Register (TGT_BYTE_CNT_REG)

Table 6.8 shows the summary of Target Byte Count Register. The desired number of bytes to transfer (read/write) in 12C
bus should be written to this register. This is used for Transfer Complete interrupt generation — asserts when the target
byte count is achieved.

Table 6.8. Target Byte Count Register
Field Name Access Width Reset
[7:0] byte_cnt RSVD 8 8’h00

6.4.7. Interrupt Status Registers (INT_STATUS1_REG, INT_STATUS2_REG)

Table 6.9 and Table 6.10 show the Interrupt Status Register (INT_STATUS1_REG and INT_STATUS2_REG) which contains
all the interrupts currently pending in the 12C Target Core. When an interrupt bit asserts, it remains asserted until it is
cleared by the host by writing 1’b1 to the corresponding bit.

The interrupt status bits are independent of the interrupt enable bits. In other words, status bits may indicate pending
interrupts, even though those interrupts are disabled in the Interrupt Enable Register. See the Interrupt Enable
Registers (INT_ENABLE1_REG, INT_ENABLE2_REG) section for details. The logic which handles interrupts should mask
(bitwise and logic) the contents of INT_STATUS1_REG and INT_ENABLE1_REG registers as well as INT_STATUS2_REG
and INT_ENABLE2_REG to determine the interrupts to service. The int_o interrupt signal is asserted whenever both an
interrupt status bit and the corresponding interrupt enable bits are set.

Table 6.9. Interrupt Status First Register

Field Name Access Width Reset
[7] tr_cmp_int RW1C 1 1’b0
[6] stop_det_int RW1C 1 1’b0
[5] tx_fifo_full_int RW1C 1 1'b0
[4] tx_fifo_aempty_int RW1C 1 1’b0
[3] tx_fifo_empty_int RW1C 1 1’b0
[2] rx_fifo_full_int RW1C 1 1'b0
[1] rx_fifo_afull_int RW1C 1 1'b0
[0] rx_fifo_ready_int RW1C 1 1'b0

e tr_cmp_int
Transfer Complete Interrupt Status. This interrupt status bit asserts when the number of bytes transferred in 12C
interface is equal to TGT_BYTE_CNT.byte_cnt.
e 1’b0- Nointerrupt
e 1’bl —Interrupt pending
e stop_det_int
STOP Condition Detected Interrupt Status. This interrupt status bit asserts when STOP condition is detected after
an ACK/NACK bit.
e 1’b0- Nointerrupt
e 1’bl —Interrupt pending
o tx_fifo_full_int
Transmit FIFO Full Interrupt Status. This interrupt status bit asserts when Transmit FIFO changes from not full state
to full state.
e 1’b0- Nointerrupt
e 1’b1 - Interrupt pending

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

tx_fifo_aempty_int

Transmit FIFO Almost Empty Interrupt Status. This interrupt status bit asserts when the amount of data words in
Transmit FIFO changes from 3 to 2.

e 1’b0—Nointerrupt

e 1’bl —Interrupt pending

tx_fifo_empty_int

Transmit FIFO Empty Interrupt Status. This interrupt status bit asserts when the last data in Transmit FIFO is
popped-out, causing the FIFO to become empty.

e 1’b0—Nointerrupt

e 1’b1 —Interrupt pending

rx_fifo_full_int

Receive FIFO Full Interrupt Status. This interrupt status bit asserts when RX FIFO full status changes from not full to
full state.

e 1’b0- Nointerrupt

e 1’b1 —Interrupt pending

rx_fifo_afull_int

Receive FIFO Almost Full Interrupt Status. This interrupt status bit asserts when the amount of data words in
Receive FIFO changes from 13 to 14.

e 1’b0- Nointerrupt

e 1’b1 —Interrupt pending

rx_fifo_ready_int

Receive FIFO Ready Interrupt Status. This interrupt status bit asserts when Receive FIFO is empty and receives a
data word from I2C interface.

e 1’b0- No interrupt

e 1’b1 - Interrupt pending

Table 6.10. Interrupt Status Second Register

Field Name Access Width Reset
[7:2] reserved RSVD 6 —

[1] stop_err_int RW1C 1 1'b0
[0] start_err_int RW1C 1 1'b0

stop_err_int

STOP Condition Error Interrupt Status. This interrupt status bit asserts after detecting a STOP condition when it is
not expected. STOP condition is expected to occur only after the ACK/NACK bit. The stop_err_int and stop_det_int
do not assert at the same time.

e 1’b0- No interrupt

e 1’b1 - Interrupt pending

start_err_int

START Condition Error Interrupt Status. This interrupt status bit asserts after detecting a START condition when it is

not expected. START condition is expected to occur only when 12C bus is idle and after receiving an ACK or a NACK
(repeated START condition).

e 1'b0 - Nointerrupt
e 1'b1 - Interrupt pending

www.latticesemi.com/legal

http://www.latticesemi.com/legal

6.4

= LATTICE

.8. Interrupt Enable Registers (INT_ENABLE1_REG, INT_ENABLE2_REG)

Table 6.11 and Table 6.12 show the summary of Interrupt Enable Registers that correspond to interrupts status bits in
INT_STATUS1_REG and INT_STATUS2_REG. They do not affect the contents of the INT_STATUS1_REG and
INT_STATUS2_REG. If one of the INT_STATUS1_REG/INT_STATUS2_REG bits asserts, and the corresponding bit of
INT_ENABLE1_REG/INT_ENABLE2_REG is 1’b1, the interrupt signal int_o asserts.

Table 6.11. Interrupt Enable First Register

Field Name Access Width Reset
[7] tr_cmp_en RW 1 1'b0
[6] stop_det_en RW 1 1'b0
[5] tx_fifo_full_en RW 1 1'b0
[4] tx_fifo_aempty_en RW 1 1’b0
[3] tx_fifo_empty_en RW 1 1’b0
[2] rx_fifo_full_en RW 1 1'b0
[1] rx_fifo_afull_en RW 1 1'b0
[0] rx_fifo_ready_en RW 1 1'b0
e tr_cmp_en

Transfer Complete Interrupt Enable. Interrupt enable bit corresponds to Transfer Complete Interrupt Status.

e 1’b0 - Interrupt disabled

e 1’bl —Interrupt enabled

stop_det_en

STOP Condition Detected Interrupt Enable. Interrupt enable bit corresponds to STOP Condition Detected Interrupt
Status.

e 1’b0 - Interrupt disabled

e 1’bl —Interrupt enabled

tx_fifo_full_en

Transmit FIFO Full Interrupt Enable. Interrupt enable bit corresponds to Transmit FIFO Full Interrupt Status.

e 1’b0 - Interrupt disabled

e 1’bl —Interrupt enabled

tx_fifo_aempty_en

Transmit FIFO Almost Empty Interrupt Enable. Interrupt enable bit corresponds to Transmit FIFO Almost Empty
Interrupt Status.

e 1’b0 - Interrupt disabled

e 1’bl —Interrupt enabled

tx_fifo_empty_en

Transmit FIFO Empty Interrupt Enable. Interrupt enable bit corresponds to Transmit FIFO Empty Interrupt Status.
e 1’b0 - Interrupt disabled

e 1’b1 - Interrupt enabled

rx_fifo_full_en

Receive FIFO Full Interrupt Enable. Interrupt enable bit corresponds to Receive FIFO Full Interrupt Status.

e 1'b0 - Interrupt disabled

e 1'b1-Interrupt enabled

rx_fifo_afull_en

Receive FIFO Almost Full Interrupt Enable. Interrupt enable bit corresponds to Receive FIFO Almost Full Interrupt
Status.

e 1’b0 - Interrupt disabled

e 1’b1 - Interrupt enabled

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

rx_fifo_ready_en

Receive FIFO Ready Interrupt Enable. Interrupt enable bit corresponds to Receive FIFO Ready Interrupt Status.
e 1'b0 - Interrupt disabled

e 1'b1-Interrupt enabled

Table 6.12. Interrupt Enable Second Register

Field Name Access Width Reset

[7:2] reserved RSVD 6 —

[1] stop_err_en RW 1 1’b0

[0] start_err_en RW 1 1’b0
e stop_err_en

6.4

STOP Condition Error Interrupt Enable. Interrupt enable bit corresponds to STOP Condition Error Interrupt Status.
e 1'b0 - Interrupt disabled

e 1’bl—Interrupt enabled

start_err_en

START Condition Error Interrupt Enable. Interrupt enable bit corresponds to START Condition Error Interrupt
Status.

e 1’b0 - Interrupt disabled

e 1’bl—Interrupt enabled

.9. Interrupt Set Registers (INT_SET1_REG, INT_SET2_REG)

Table 6.13 and Table 6.14 show the summary of Interrupt Set Registers. Writing 1'b1 to a register bit in INT_SET1_REG
or INT_SET2_REG asserts the corresponding interrupts status bit in INT_STATUS1_REG or INT_STATUS2_REG while
writing 1'b0 is ignored. This is intended for testing purposes only.

Table 6.13. Interrupt Set First Register

Field Name Access Width Reset
[7] tr_cmp_set WO 1 1'b0
[6] stop_det_set wo 1 1’b0
[5] tx_fifo_full_set WO 1 1'b0
[4] tx_fifo_aempty_set wo 1 1’b0
[3] tx_fifo_empty_set wo 1 1’b0
[2] rx_fifo_full_set WO 1 1'b0
[1] rx_fifo_afull_set WO 1 1'b0
[0] rx_fifo_ready_set wo 1 1’b0
e tr_cmp_set

Transfer Complete Interrupt Set. Interrupt set bit corresponds to Transfer Complete Interrupt Status.
e 1’b0-No action

e 1’bl—Asserts INT_STATUS1_REG.tr_cmp_int

stop_det_set

STOP Condition Detected Interrupt Set. Interrupt set bit corresponds to STOP Condition Detected Interrupt Status.
e 1’b0— No action

e 1'b1—Asserts INT_STATUS1 REG.stop_det_int

tx_fifo_full_set

Transmit FIFO Full Interrupt Set. Interrupt set bit corresponds to Transmit FIFO Full Interrupt Status.
e 1’b0-No action

e 1’bl - Asserts INT_STATUS1_REG.tx_fifo_full_int

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

o tx_fifo_aempty_set
Transmit FIFO Almost Empty Interrupt Set. Interrupt set bit corresponds to Transmit FIFO Almost Empty Interrupt
Status.
e 1’b0-No action
e 1’bl - Asserts INT_STATUS1_REG.tx_fifo_aempty_int
o tx_fifo_empty_set
Transmit FIFO Empty Interrupt Set. Interrupt set bit corresponds to Transmit FIFO Empty Interrupt Status.
e 1’b0-No action
e 1’bl—Asserts INT_STATUS1_REG.tx_fifo_empty_int
o rx_fifo_full_set
Receive FIFO Full Interrupt Set. Interrupt set bit corresponds to Receive FIFO Full Interrupt Status.
e 1’b0-No action
e 1’bl —Asserts INT_STATUS1_REG.rx_fifo_full_int
o rx_fifo_afull_set
Receive FIFO Almost Full Interrupt Set. Interrupt set bit corresponds to Receive FIFO Almost Full Interrupt Status.
e 1’b0-No action
e 1'bl—Asserts INT_STATUS1_REG.rx_fifo_afull_int
o rx_fifo_ready_set
Receive FIFO Ready Interrupt Set. Interrupt set bit corresponded to Receive FIFO Ready Interrupt Status.
e 1’b0-No action
e 1’b1 - Asserts INT_STATUS1_REG.rx_fifo_ready_int

Table 6.14. Interrupt Set Second Register

Field Name Access Width Reset
[7:2] reserved RSVD 6 —

[1] stop_err_set wo 1 1’b0
[0] start_err_set wo 1 1’b0

stop_err_set

STOP Condition Error Interrupt Set. Interrupt set bit corresponds to STOP Condition Error Interrupt Status.

e 0-Noaction

e 1-—Asserts INT_STATUS2_REG.stop_err_set

start_err_set

START Condition Error Interrupt Set. Interrupt set bit corresponds to START Condition Error Interrupt Status.
e 0-No action

e 1-—Asserts INT_STATUS2_REG.start_err_set

www.latticesemi.com/legal

http://www.latticesemi.com/legal

6.4

= LATTICE

.10. FIFO Status Register (FIFO_STATUS_REG)

FIFO Status Register reflects the status of Transmit FIFO and Receive FIFO as shown in Table 6.15.

Table 6.15. FIFO Status Register

Field Name Access Width Reset
[7:6] reserved RSVD 2 —

[5] tx_fifo_full RO 1 1'b0
[4] tx_fifo_aempty RO 1 1'bl
[3] tx_fifo_empty RO 1 1'bl
2] rx_fifo_full RO 1 1’b0
[1] rx_fifo_afull RO 1 1'b0
[0] rx_fifo_empty RO 1 1'bl

o tx_fifo_full

Transmit FIFO Full. This bit reflects the full condition of Transmit FIFO.

e 1’b0 - Transmit FIFO is not full.

e 1’bl —Transmit FIFO is full.

tx_fifo_aempty

Transmit FIFO Almost Empty. This bit reflects the almost empty condition of Transmit FIFO.
e 1’b0 - Data words in Transmit FIFO is greater than TX FIFO Almost Empty Flag attribute.
e 1’b1 - Data words in Transmit FIFO is less than or equal to TX FIFO Almost Empty Flag attribute.
tx_fifo_empty

Transmit FIFO Empty. This bit reflects the empty condition of Transmit FIFO.

e 1’b0 - Transmit FIFO is not empty — has at least one data word.

e 1’bl - Transmit FIFO is empty.

rx_fifo_full

Receive FIFO Full. This bit reflects the full condition of Receive FIFO.

e 1’b0 - Receive FIFO is not full

e 1’b1 —Receive FIFO is full

rx_fifo_afull

Receive FIFO Full. This bit reflects the almost full condition of Receive FIFO.

e 1’b0 - Data words in Receive FIFO is less than RX FIFO Almost Full Flag attribute.

e 1’b1 - Data words in Receive FIFO is greater than or equal to RX FIFO Almost Full Flag attribute.
rx_fifo_empty

Receive FIFO Full. This bit reflects the empty condition of Receive FIFO.

e 1’b0 - Receive FIFO is not empty — has at least one data word.

e 1’b1 —Receive FIFO is empty.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

-I;Ztct}i,(;ﬁci?rx;zez'z Mach-NX SoC Function Block Hardware User GuideLATTICE

6.4.11. Flush FIFO Register (FLUSH_FIFO)
Table 6.16. Flush FIFO Register

Field Name Access Width Reset
[7:2] reserved RSVD 6 —

[1] Rxfifo_flush wo 1 1’b0
[0] txfifo_flush wo 1 1’b0

o rxfifo_flush

e 0:Noaction

e 1: Flush RX FIFO data to empty
o txfifo_flush

e 0:Noaction

e 1: Flush TX FIFO data to empty

6.4.12. Register File

The external SMBus controller initiates an SMBus Mailbox read transaction. The read byte data message is routed to
the Register File. The external SMBus controller cannot write message to the Register File. The external SMBus
controller writes message to the RX_FIFO. The host reads that message data from the RX_FIFO and writes to the
Register File through offset address 0x2000.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02360-1.0 48

http://www.latticesemi.com/legal

= LATTICE

6.5. Operations Details

6.5.1. General I12C Operation

In the IC bus, the transaction is always initiated by the controller. A target may not transmit data unless it has been
addressed by the controller. Each device on the I2C bus has a specific device address to differentiate between other
devices that are on the same 12C bus. Data transfer is initiated only when the bus is idle. A bus is considered idle if both
SDA and SCL lines are high after a STOP condition.

The general procedure for an 12C transaction is as follows.
1. Controller wants to send data to a target.
a. Controller-transmitter sends a START condition and addresses the target-receiver.
b. Controller-transmitter sends data to target-receiver.
c. Controller-transmitter terminates the transfer with a STOP condition.
2. Controller wants to receive/read data from a target.
a. Controller-receiver sends a START condition and addresses the target-transmitter.
b. Controller-receiver sends the requested register to read to target-transmitter.
c. Controller-receiver receives data from the target-transmitter.
d. Controller-receiver terminates the transfer with a STOP condition.

I2C communication is initiated by the controller sending a START condition and terminated by the controller sending a
STOP condition. Normal data on the SDA line must be stable during the high level of the SCL line. The High or Low state
of the data line can only change when SCL is Low. The Start condition is a unique case and is defined by a High-to-Low
transition on the SDA line while SCL is High. The Stop condition is a unique case and is defined by a Low-to-High
transition on the SDA line while SCL is High. These are shown in Figure 6.1.

scl_io ! i \ / \ / l \ [T
sda_io L —\-'I /) ” \ L 4

START Condition STOP Condition

Figure 6.1. START and STOP Conditions

Each data packet on the I2C bus consists of eight bits of data followed by an acknowledge bit (ACK) so one complete
data byte transfer requires nine clock pulses. Data is transferred with the most significant bit (MSB) first. The
transmitter releases the SDA line during the ACK bit and the receiver of the data transfer must drive the SDA line low
during the ACK bit to acknowledge the data receipt. If a target-receiver does not drive the SDA line low during the ACK
bit, this indicates that the target-receiver was unable to accept the data and the controller can then generate a Stop
condition to abort the transfer. If the controller-receiver does not generate an ACK, this indicates to the
target-transmitter that this byte is the last byte of the transfer.

For more information on I2C bus, refer to I12C Bus Specification and User Manual.

6.5.2. Glitch Filter

I2C Target IP Core has integrated glitch filter to remove 50 ns noise/spike as recommended by the 12C Bus Spec for
Standard Mode, Fast Mode, and Fast Mode Plus. The glitch filter is applied to both the SCL and SDA signals before they
are fed to internal logic. Thus, the 12C signals seen by the IP Core is delayed by a number of clock cycles, ~50 ns +1 clock
cycle. The filter depth is automatically adjusted based on the System Clock Frequency attribute.

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

= LATTICE

6.5.3. Clock Stretching

Clock Stretching allows the I2C target to pause a transaction by holding the SCL line Low. The transaction cannot
continue until the line is released high again. On the byte level, a target device may be able to receive bytes of data at a
fast rate, but needs more time to store a received byte or prepare another byte to be transmitted. Targets can then
hold the SCL line Low after reception and acknowledgment (ACK bit) of a byte to force the controller into a wait state
until the target is ready for the next byte transfer.

I2C Target Core performs clock stretching on the byte level, during ACK/NACK bit, if CONTROL_REG.clk_stretch_en is set
to 1. Clock stretching is only performed during data phase. Clock stretching is normally performed when the host needs
more time before it can address the request of 12C controller.

6.5.4. ACK/NACK Response

I2C target core can be configured to send an ACK or a NACK based on settings of CONTROL_REG.nack_data and
CONTROL_REG.nack_addr, refer to the Control Register (CONTROL_REG) section for details. If the host would like to
temporarily disable the access to 12C Target Core, it should set CONTROL_REG.nack_addr = 1’b1. In this case, 12C target
core sends NACK when it is addressed by the external I2C controller.

If the host would like to terminate an on-going I2C write transaction to the I2C Target Core, it should set
CONTROL_REG.nack_data = 1’b1. In this case, |2C target core sends NACK on the next ACK bit for a data byte. Note that
the ACK bit is always sent by the receiver, and the CONTROL_REG.nack_data has no effect on 12C read transaction.

6.6. Programming Flow

6.6.1. Initialization

To perform initialization, load the appropriate registers of the 12C Target Controller, namely:

e SLAVE_ADDRL_REG, SLAVE_ADDRH_REG - This step is optional. In most cases, initial value set in 12C Target
Addresses attribute of the user interface does not need to be changed. Read access to the address by external
controller is routed to Register File, while write access to the address is routed to internal RX_FIFO.

e CONTROL_REG

e TGT_BYTE_CNT_REG — It is recommended to set this if the size of the data is known. Set this to 8'h00 if the number
of bytes to transfer is not known, which is receiving unknown amount of data.

e INT_ENABLE1_REG — It is recommended to enable only the following interrupts when receiving commands from
controller.

e Transfer Complete Interrupt — If the size of data is known.
e Receive FIFO Data Interrupt — If the size of data is unknown.
e INT_ENABLE2_REG — It is recommended to enable both error interrupts.

6.6.2. Data Transfer in response to 12C Controller Read

As mentioned, the two target addresses for the IP are the normal SMBus target device data transfer and the SMBus
mailbox Register File access. According to the accessed address, there are two ways to respond to the external
controller read.

6.6.2.1. Normal SMBus Target Device Read Data Transfer

The following are the recommended steps to perform data transfer in response to read request of 1°C controller. This
assumes that the amount of data to send is known.

To perform data transfer in response to read request of 12C controller:
1. Write data to WR_DATA_REG, amounting to <= FIFO Depth.

2. Enable only Transfer Complete Interrupt. If transmit data is > FIFO Depth. Also enable TX FIFO Almost Empty
interrupt if there are no more data to transfer. Otherwise, proceed to step 7.

3. Wait for TX FIFO Almost Empty Interrupt.
If polling mode is desired, read INT_STATUS1_REG until tx_fifo_aempty_int asserts.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

-I;Ztct}i,(;ﬁci?rx;zez'z Mach-NX SoC Function Block Hardware User Guide .':LATT’CE

If interrupt mode is desired, simply wait for interrupt signal to assert. Then, read INT_STATUS1_REG and check that
tx_fifo_aempt_int is asserted.
Also read INT_STATUS2_REG to check that no error occurred.

Clear TX FIFO Almost Empty Interrupt. It is also okay to clear all interrupts.
Write data byte to WR_DATA_REG, amounting to less than or equal to, FIFO Depth — TX FIFO Almost Empty Setting.
If there are remaining data to transfer, go back to Step 3. Otherwise, disable TX FIFO Almost Empty Interrupt.

N o wu .k

Wait for Transfer Complete Interrupt.

If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts.

If interrupt mode is desired, simply wait for interrupt signal to assert. Then, read INT_STATUS1_REG and check that
tr_cmp_int is asserted.

Also read INT_STATUS2_REG to check that no error occurred.

8. Clearall interrupts.

6.6.2.2. SMBus Mailbox Register File Read Data Transfer

If the accessed address is Register File, the SMBus Mailbox IP outputs the addressed data in Register File automatically.
The data format is shown in Figure 6.2.

7hit + 1 bit Wr i & bil St 7 bit + 1 bit Rd e & bit from Slave Master
Resp Resp Resp Resp

it
ST s T n | wasses | 4[5 rormcs [l A| oo n

Figure 6.2. SMBus Mailbox Read Byte Message

6.6.3. Data Transfer in Response to I2C Controller Write

Similarly, the external SMBus controller can initiate controller write transaction to two target addresses. One is routed
to internal RX_FIFO logic and the other is to Register File through the RISC-V host.

6.6.3.1. Normal SMBus Target Device Write Data Transfer

The following are the recommended steps to perform data transfer in response to write request of 12C controller. This
assumes that the amount of data to receive is known.

To perform data transfer in response to write request of I2C controller:

1. Enable only Transfer Complete Interrupt. If data to receive is > FIFO Depth. Also enable RX FIFO Almost Full
interrupt. If data to receive is <= FIFO Depth, proceed to Step 7.
2. Wait for RX FIFO Almost Full Interrupt.
If polling mode is desired, read INT_STATUS2_REG until rx_fifo_afull_int asserts.
If interrupt mode is desired, simply wait for interrupt signal to assert. Then, read INT_STATUS2_REG and check that
rx_fifo_afull_int is asserted.
Also read INT_STATUS2_REG to check that no error occurs.
3. Clear RX FIFO Almost Full Interrupt. It is okay to clear all interrupts.
Read data byte from RD_DATA_REG, amounting to less than or equal to, FIFO Depth — TX FIFO Almost Empty
Setting.
If there are remaining data to receive, go back to Step 2. Otherwise, disable RX FIFO Almost Full Interrupt.
Wait for Transfer Complete Interrupt.
If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts.
If interrupt mode is desired, simply wait for interrupt signal to assert. Then, read INT_STATUS1_REG and check that
tr_cmp_int is asserted.
Also read INT_STATUS2_REG to check that no error occurs.
Clear all interrupts.

Read all data from RD_DATA_REG.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02360-1.0 51

http://www.latticesemi.com/legal

Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide
Technical Note

= LATTICE

6.6.3.2. SMBus Mailbox Register File Write Data Transfer

If the accessed address is Register File, the external controller write data firstly inputs to RX_FIFO. The host reads out
the data and writes it to the Register File according to the Register File address. The data format is shown in Figure 6.3.

Slave Slave Slave
Resp Resp Resp

orrsaes W 5| oo x| oo]
ST o [I

Figure 6.3. SMBus Mailbox Write Byte Message

7 bit + 1 bit Wr 8 bit 8 bit from Master

6.7. SMBus Target Support

The I12C Target Core provides SMBus support by including the smb_alert signal.

6.7.1. SMBus Control and Status Register

Table 6.17. SMBus Register Address Map
Offset
0x30

Register Name Access Type

SMB_CONTROL_REG RW

Description

SMBus control and status register

Table 6.18. SMB Control and Status Register

Field Name Access Width Reset
[7:1] Reserved RSVD 7 -
[0] smb_alert RW 1 1’'b0

e smb_alert
Transmits the alert interrupt to SMBus controller
e 1’b0 - No interrupt to controller
e 1’bl —SMBus target sent alert interrupt to controller

6.7.2. Operation Details

6.7.2.1. SMBAlert Operation

A target device can signal the controller through SMBUSx_INT interrupt line that it wants to talk. The controller
processes the interrupt and simultaneously accesses all the SMBAlert devices through the Alert Response Address.
Only the target device which pulls SMBUSx_INT low acknowledges the Alert Response Address, 0001 100b. The host
performs a modified Receive Byte operation. The 7-bit device address provided by the target transmit device is placed
in the seven most significant bits of the byte. The eighth bit can be zero or one.

If more than one device pulls SMBUSx_INT low, the highest priority device, which has the lowest address, wins the
communication rights.

After receiving an acknowledge (ACK) from the controller in response to its address, the device stops pulling down the
SMBUSx_INT signal. If the controller still sees the SMBUSx_INT low when the message transfer is complete, the same
process repeats again. The SMBus target controller monitors the data bus to see if any other target is responding to the
Alert Response Address. This can be achieved by checking the input and output of SMBUSx_SDA. When there is match,
the smb_alert register bit is cleared and the controller generates an interrupt signal to the RISC-V processor.

7 1 1 7 1 1

Address X| N| P

S Alert Response Address Rd| A

Figure 6.4. SMBus 7-Bit Addressable Device Response

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02360-1.0 52

http://www.latticesemi.com/legal

= LATTICE

7. SMBus Mailbox — Controller Mode

SMBus controller core is used to initiate SMBus transfer to access other SMBus targets. It supports multi-controller on

one bus.

7.1. Signal Description

Table 7.1. External Signals of SMBus Controller

Signal ‘ Direction ‘ Description
12C/SMBus Target

scl_io Bidir SMBus/I2C Serial Clock
sda_io Bidir SMBus/I2C Data

7.2. Register Description

Offset | Register Name Access | Reset Description
31:8] RSVD Clock prescale register low-byte
0x400 | PRERIo R/W {7:0]]S’hff 5><SCLF1)°requencyg= clk_i/ (PR\éRhi<<8 + PRERIo)
. 31:8] RSVD Clock prescale register high-byte
0x404 | PRERh R/W {7:0] 13'hff 5xSCL¢requencyg= clk_i /g(PREthi«s + PRERI0)
Control Register
Field | Description
[31:8] RSVD [7] EN — Controller enable bit
0x408 CTR R/W [7:6] 2’h00 1 =_Coreis enabled.
[5:0] RSVD 0 = Core is disabled.
[6] IEN — Interrupt enable bit
1 = Interrupt is enabled.
0 = Interrupt is disabled.
Transmit Register
Field | Description
[7:1] | Next byte to be transmitted via SMBus
[31:8] RSVD Controller
0x40c | TXR WO 1 7:01 8'hoo (0] | a) The byte’s LSB.
b) RW bit during target address transfer
1 = Reading from target
0 = Writing to target
[31:8] RSVD Receive Register
Ox40c RXR RO [7:0] 8’h00 Last byte received through the SMBus Controller
Command Register
Field | Name
[7] STA — Generate (repeated) start condition
[6] STO — Generate stop condition
[5] RD — Read from target
oxa10 | CR WO [31:8] RSVD (4] WR — Write to target
(7:0] 8’h00 [3] ACK, when a receiver, sent ACK (ACK = 0)
or NACK (ACK = 1)
[2] When set, clears the timeout status
[1] Reserved
[0] IACK — Interrupt acknowledge
When set, clears a pending interrupt.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset

Register Name

Access

Reset

Description

0x410

SR

RO

[31:8] RSVD
[7:0] 8’h00

Status Register
Field | Name
[7] RXACK — Receives acknowledge from

addressed target.

1 = No acknowledge received.

0 = Acknowledge received.

[6] Busy — Indicates that the SMBus bus is

busy.

1 =bus is busy.

0 =bus is idle.

[5] AL — Arbitration lost. This bit is set when

the core loses arbitration. Arbitration is

lost when:

e ASTOP signal is detected but not
requested.

e A START signal is detected but not
requested.

e The controller drives SDA high, but
SDA is low.

e Controller drives SCL high, but SCL is
low. Not clock stretch.

[4] Reserved

[3] Timeout

1 =SCL and SDA line have been high for 50

us.

[2] Timeout

1 =SCL line has been low for 200 ms.

[1] TIP — Transfer in Progress

1 = Transferring data

0 = Transfer is complete

[0] IF — Interrupt Flag. This bit is set when an

interrupt is pending. The int_o signal is

asserted if the IEN bit is set. The Interrupt

Flag is set when:

e One byte transfer has been
completed.

e Target NACK.

e Arbitration is lost.

e Controller changes from busy to idle.

e smbalert_n_i signal falling edge is
detected.

SMBus register offset address starts at 0x400.

The prescale register, offset = 0x400 and 0x404, is used to prescale the SCL clock line based on the controller clock. This
design uses an internal clock enable signal, clk_en, to generate the SCL clock frequency. The frequency of clk_en is
calculated by the equation [system_clock frequency / (Prescale Register + 1)] and this frequency is five times SCL
frequency. The contents of the prescale register can only be modified when the core is not enabled.

The control register, offset = 0x408, has only two bits used for this design. The MSB of this register is the most critical
one because it enables or disables the entire SMBus core. The core does not respond to any command unless this bit is

set.

The transmit register and the receive register share the same address, offset = 0x40C, depending on the direction of
data transfer. The data to be transmitted through the SMBus is stored in the transmit register, while the byte received
through the SMBus is available in the receive register.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The status register and the command register share the same address, offset = 0x410. The status register allows the
monitoring of the SMBus operations, while the command register stores the next command for the next SMBus
operation. Unlike the rest of the registers, the bits in the command register are cleared automatically after each
operation. Therefore, this register must be written for each start, write, read, or stop of the SMBus operation.

7.3. Programming Flow

7.3.1. Initialization

Write the appropriate data to the prescale register based on the frequency of SCL through the AHB-Lite bus S02. The
SCL frequency meets the equation: 5xSCL frequency = clk_i/(PRERhi<<8 + PRERIo).

7.3.2. SMBus Controller Operation Flow

Figure 7.1 shows the SMBus controller program flow in interrupt mode. The controller can also be used in polling
mode. The polling mode is the same as interrupt mode except that the polling mode needs to poll the SR bit 0 instead
of being interrupted by int_o to check status. In the polling mode, set the CTR to 0x80.

e D

Initialization

Set CTR with 0xCO

e

Transfer fail with
errors

No, int_o interrupt when
SR=0

Yes and Read Yes and Write

Set TXR with Set TXR with
slave_addr|0x01 slave_addr&0xfe

Set CR with 0x90

int_o interrupt

Set CR with 0x05

Yes

Set CR with 0x01

Ifread If write

v
Set TXR with sent
data

Last data?

Set CR with 0x68 ‘

Set CR with 0x20

int_o interrupt

Set CR with 0x01

int_o interrupt

Set CR with 0x05 ‘

Set CR with 0x05 ‘

Set CR with 0x01

Set CR with 0x01

No

Set CR with 0x10

Set CR with 0x50

int_o interrupt

int_o interrupt

Set CR with 0x01

Set CR with 0x05 ‘

Set CR with 0x05 ‘

Figure 7.1. SMBus Controller Program Flow Interrupt Mode

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

7.3.3. Write Data to the SMBus Target

1.

vk W

10.

Write 0x80 to the control register (CTR) to enable the SMBus Controller through the AHB-Lite bus. If enable
interrupt, the write data is 0xCO.

Read the status register (SR) through the AHB-Lite bus until all bits of the status register is 0.

Write the SMBus target address and write bit to the transmit register (TXR) through the AHB-Lite bus.

Write 0x90 to the command register (CR) through the AHB-Lite bus to start the SMBus write operation.

When using polling mode, read the status register (SR) until bit O of the status register is set and check if other bits
except bit 6 are Os. When using interrupt mode, if the host is interrupted by int_o signal, read the status register
(SR) and check if other bits except bit 0 and bit 6 are 0s. Both modes need to write 0x1 to CR to clear bit 0 of SR. If
other bits except bit 0 and bit 6 are not Os, there is an error, write 0x5 to CR to clear SR and go back to step 2.
Write the byte which is sent to the SMBus target to the transmit register (TXR) through the AHB-Lite bus.

Write 0x10 to the CR through the AHB-Lite bus to set SMBus write operation.

When using polling mode, read the status register (SR) until bit O of the status register is set and check if other bits
except bit 6 are Os. When using interrupt mode, if the host is interrupted by int_o signal, read the status register
(SR) and check if other bits except bit 0 and bit 6 are Os. Both modes need to write 0x1 to CR to clear bit 0 of SR. If
other bits except bit 0 and bit 6 are not Os, there is an error, write 0x5 to CR to clear SR and go back to step 2. If
there is no error and there are other data to write, go back to step 6.

When sending the last byte, write 0x50 to the command register (CR) through the AHB-Lite bus to write the last
byte and stop the SMBus write operation.

When using polling mode, read the status register (SR) until bit 0 of the status register is set and check if other bits
except bit 6 are Os. Bit 6 is set when other controllers use the bus at this time. Otherwise, it also should be 0. When
using interrupt mode, if the host is interrupted by the int_o signal, read the status register (SR) and check if other
bits except bit 0 and bit 6 are 0s. Both modes need to write 0x1 to CR to clear bit 0 of SR. If other bits except bit 0
and bit 6 are not Os, there is an error. Write Ox5 to CR to clear SR and go back to step 9.

7.3.4. Read Data from the SMBus Target

1.

vk W

10.

Write 0x80 to the control register (CTR) to enable the SMBus Controller through the AHB-Lite bus. If enable
interrupt, the write data is 0xCO.

Read the status register (SR) through the AHB-Lite bus until all bits of the status register is Os.
Write the SMBus target address and the read bit to the transmit register (TXR) through the AHB-Lite bus.
Write 0x90 to the command register (CR) through the AHB-Lite bus to start the SMBus read operation.

When using polling mode, read the status register (SR) until bit O of the status register is set and check if other bits
except bit 6 are 0s. When using interrupt mode, if the host is interrupted by the int_o signal, read the status
register (SR) and check if other bits except bit 0 and bit 6 are Os. Both modes need to write 0x1 to CR to clear bit 0
of SR. If other bits except bit 0 and bit 6 are not Os, there is an error. Write 0x5 to CR to clear SR and go back to
step 2.

Write 0x20 to command register (CR) through the AHB-Lite bus to read data from the target. If it is the last byte to
read, write 0x28 to command register (CR) to NACK last byte.

When using polling mode, read the status register (SR) until bit O of the status register is set and check if other bits
except bit 6 are 0s. When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR)
and check if other bits except bit 0 and bit 6 are 0s. Both modes need to write Ox1 to CR to clear bit 0 of SR. If other
bits except bit 0 and bit 6 are not Os, there is an error, write 0x5 to CR to clear SR and go back to step 2.

Read data from the receive register (RXR) through the AHB-Lite bus. If there is no error and there are other data to
read, go back to step 6.

When reading the last byte, write 0x68 to the command register (CR) through the AHB-Lite bus to read the last
byte and stop the SMBus read operation.

When using polling mode, read the status register (SR) until bit O of the status register is set and check if other bits
except bit 6 are Os. Bit 6 is set when other controllers use the bus at the same time. Otherwise, it also should be 0.
When using interrupt mode, if the host is interrupted by the int_o signal, read the status register (SR) and check if

www.latticesemi.com/legal

http://www.latticesemi.com/legal

_I;_z'::tr::\?citlerlm\lt;\t/ez.z Mach-NX SoC Function Block Hardware User Guide ::LATTICE

other bits except bit 0 and bit 6 are 0s. Both modes need to write 0x1 to CR to clear bit 0 of SR. If other bits except
bit 0 and bit 6 are not Os, there is an error. Write 0x5 to CR to clear SR and go back to step 9.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02360-1.0 57

http://www.latticesemi.com/legal

= LATTICE

8. I1’C/SMBus Filter

SMBus Relay with filter, named as I2C filter in this document, is designed to function as an invisible relay from the point
of view of both Controller and Target devices on the bus. It is meant to be directly attached to the controller port and
protect all target devices against malicious traffic generated from the controller port based on an allowlist of allowable
commands set by the host, such as CPU, FPGA RoT design, and others. The filter IP is the subset of the SMBus protocol.
SMBSUS# and SMBALERT# are not supported.

The design is implemented in Verilog HDL. It can be configured and generated using the Lattice Propel™ Builder
software. It can be implemented using the Lattice Radiant™ software and the Lattice Diamond® Place and Route tool.
The module registers are accessed by the host using a 32-bit AHB-Lite interface. The host can be a CPU, FPGA RoT
design, and others.

8.1. Features
The 12C filter soft IP has the following features:

e Provides four interfaces, namely, AHB-Lite, SMBus controller, SMBus Target, and Interrupt.

e Connected between a single controller and multiple target devices.

e Protects the secondary devices from malicious traffic generated from the controller.

e Does not violate SMBus protocol and is transparent between the Primary and Secondary devices.

e Allows all the Read access.

e Verifies all the write access against an allowlist of allowable opcodes (SMBus command) set inside the memory.

e The opcodes in the memory can be initialized and/or written by the host, such as CPU, FPGA RoT design, and
others, through the AHB-Lite bus.

e Samples the commands from controller with a high frequency system clock before passing it to the secondary
devices.

e Supports clock stretching from both primary and secondary devices.

e Supports glitch filter from both primary and secondary devices.

e Each bit in the memory represents one opcode (SMBus command) equivalent to the address. Write is allowed if
the bit value is 1 and not-allowed if the bit value is 0. 256 bits are required to be supported for each target device.

e Supports up to 128 target-devices on the bus, with 7-bit addressing supported only.

e When a block event occurs, the write transaction is halted, an interrupt is sent to the host, and the status register
is updated with the blocked command for the corresponding target address.

8.2. Conventions

The nomenclature used in this document is based on Verilog HDL.

8.3. Functional Description

8.3.1. Overview

The Relay logic is required to pass the communication between controller and target devices that does not violate
SMBus protocol and is transparent from both controller and target devices attached on the bus. This is achieved
through a mix of oversampling the bus as well as comprehension of direction changes during transmitting of SMBus
frames. The Filter logic allows all read accesses. Any write access is required to be verified against an allowlist of
allowable opcodes. Based on SMBus protocol, the first byte after start bit is the desired 7-bit target address along with
the operation bit: 0 = write, 1 = read. The second byte is the SMBus command. The following bytes are data. The write
access is verified by checking the command byte according to the target’s allowlist.

As shown in Figure 8.1, I12C filter uses one AHB-Lite interface for filter allowlist configuration and register access. The
SMBus controller port is used to connect SMBus controller while SMBus target port is used to connect SMBus target.
There is only one SMBus controller and up to 128 targets on one bus.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide

: =LATTICE
Technical Note

A A
y A A 4 Allowlist v
SMBus SMBus SMBus SMBus SMBus SMBus
Target 0 Target 2 Target 127 Target Port 12c Controller Port | Controller
Filter
AHB-Lite
Subordinate
Port
A
A 4
Host

Figure 8.1. I>C Filter Topology

8.3.2. Read Transaction

Figure 8.2 shows an example of a read transaction relayed through the component. The skew visible between
SMBus controller device to 12C filter controller port and I2C filter target port to SMBus target device lines is the result of

passing through the Relay and is within margins not violating SMBus signaling. Read transaction is always allowed by
the I2C filter, ignoring the allowlist.

Controller > Filter SCL ==\ 1 1 M MM U U U U LU U\ U U U LU UL

Controller -> Filter SDA S| Secondary Dev Addr . A Command/Sec Address A St Secondary Dev Addr . A Secondary Response N P

Filter -> Target SCL \ M M M M Mn M | LT LT LI | | | | | /

Filter -> Target SDA S Secondary Dev Addr . A Command/Sec Address A 'St Secondary Dev Addr . A Secondary Response N P

Figure 8.2. I’C Filter Read Transaction

8.3.3. Non-blocked Write Transaction

Figure 8.3 shows an example of a valid write transaction relayed through the component. The write transaction is not
blocked because the command transferred is in the allowlist.

Controller >Fiter SCL =\ M MU U uuUuLy

Controller -> Filter SDA
S Secondary Dev Addr . A Command/Sec Address A

Data to Secondary A P

Filter SDA-> Target SDA

Data to Secondary

Figure 8.3. I12C Filter Non-blocked Write Transaction

8.3.4. Blocked Write Transaction

Figure 8.4. below shows an example of invalid write transaction filtered out through the component, in this case the 12C
filter asserts SMBus Stop condition (P) leading to an abort on the target device, while also responding with a NACK to
the controller device signaling an error in the write transaction. Stop target device occurs at command phase while

NACK to controller device occurs at first byte data phase. The write transaction is blocked due to the command
transferred is not in the allowlist.

Controller > Filter SCL — M M MU U U U U U U U Ui UuUUy

Controller -> Filter SDA

S Secondary Dev Addr . A Command/Sec Address A

Data to Secondary

Fiter > Target SCL ——\ ["M U U U UL UL LU/

Filter -> Target SDA S Secondary Dev Addr . A Command/Sec Address A P /

Figure 8.4. I’C Filter Blocked Write Transaction

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02360-1.0 59

http://www.latticesemi.com/legal

Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide

Technical Note

= LATTICE

8.3.5. Signals Description

Table 8.1. Interface Signal Description

Signal Name ‘ Width ‘ Direction Description
Clock and Reset
clk_i 1 Input System clock
System reset. The reset assertion can be asynchronous but reset
rstn_i 1 Input negation should be synchronous. This signal is active low. When
asserted, output ports and registers are forced to their reset values.
SCL Clock Speed
Indicates the SCL clock speed to be sent to the target devices.
2’b00: Reserved
scl_speed_i 2 Input 2’b01: 100 kHz
2’b10: 400 kHz
2’b11: 1000 kHz
AHB-Lite Bus
AHB-L Select Signal
ahbl_hsel_slv_i 1 Input Indicates that the target device is selected and a data transfer is
required.
ahbl_haddr_slv_i 32 Input The system address bus.
3'b000: SINGLE Single burst
3'pb001: INCR Incrementing burst of undefined length (NOT supported)
3'b010: WRAP4 4-bit wrapping burst
. 3'pb011: INCR4 4-bit incrementing burst
ahbl_hburst_slv_i 3 Input 4'b100: WRAPS8 8-bit wrapping bgurst
3'b101: INCRS8 8-bit incrementing burst
8'b110: WRAP16 16-bit wrapping burst
3'b111: INCR16 16-bit incrementing burst
ahbl_hprot_slv_i [0]: 1'b0 — opcode fetch; 1'b1 — data access
. ahbl_hprot_slv_i [1]: 1'b0 — user access; 1'b1 — privileged access
ahbl_hprot_slv_i 4 Input ath:hErot:slv:i {2}: 1'b0 — non-bufferable, 1'bF1) - bu?ferable
ahbl_hprot_slv_i [3]: 1'b0 — non-cacheable; 1'b1 — cacheable
3'b000: one byte
ahbl_hsize_slv_i 3 Input 3'b001: two bytes
3'b010: four bytes
Indicates the transfer type of the current transfer. This can be:
2’b00: IDLE
ahbl_htrans_slv_i 2 Input 2’b01: BUSY
2’b10: NONSEQUENTIAL
2’b11: SEQUENTIAL
ahbl_hwdata_slv_i 32 Input The write data bus
. . When HIGH, this signal indicates a write transfer and when LOW, it
ahbl_hwrite_slv_i 1 Input -
indicates a read transfer.
. This signal should come from AHB-L Interconnect. When set to 1, this
ahbl_hready_slv_i 1 Input - . .
indicates the previous transfer is complete.
ahbl_hrdata_slv_o 32 Output The read data bus
ahbl_hreadyout_siv o | 1 Output le\en. HIGH, this sigr_]al indicates that a transfer has finished on the bus.
- - - This signal can be driven LOW to extend a transfer.
ahbl_hresp_sv_o 1 Output When .L(?Wf this signal indicates that the t.ransfer status is OKAY. When
- - - HIGH, it indicates that the transfer status is ERROR.
Interrupt Signal
irq ‘ 1 ‘ Output Interrupt to host (CPU), reset value is 1’b0.
© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02360-1.0

60

http://www.latticesemi.com/legal

= LATTICE

Signal Name ‘ Width ‘ Direction Description

SMBus Signal (Remove Tri-State Buffer = 0)

scl_m 1 Input/Output SMbus clock connect to controller

sda_m 1 Input/Output SMbus data connect to controller

scl_s 1 Input/Output SMbus clock connect to target

sda_s 1 Input/Output SMbus data connect to target

SMBus Signal (Remove Tri-State Buffer = 1)

scl_m_in 1 Input SMbus clock input from controller
SMbus clock output enable to controller

scl_m_outen 1 Output 0: Buffer should work as output (tri-state should get scl_m_out)
1: Buffer should work as input

scl_m_out Output SMbus clock output to controller

sda_m_in Input SMbus data input from controller
SMbus data output enable to controller

sda_m_outen 1 Output 0: Buffer should work as output (tri-state should get sda_m_out)
1: Buffer should work as input

sda_m_out Output SMbus data output to controller

scl_s_in Input SMbus clock input from target
SMbus clock output enable to target

scl_s_outen 1 Output 0: Buffer should work as output (tri-state should get scl_s_out)
1: Buffer should work as input

scl_s_out Output SMbus clock output to target

sda_s_in Input SMbus data input from target
SMbus data output enable to target

sda_s_outen 1 Output 0: Buffer should work as output (tri-state should get sda_s_out)
1: Buffer should work as input

sda_s_out 1 Output SMbus data output to target

8.3.6. Register Description

The register address map, shown in Table 8.2, specifies the available IP core registers. The offset of each register

increments by four to allow easy interfacing with the processor and system buses. In this case, each register is 32-bit

wide.

Table 8.2. Register Address Map

Offset ‘ Register Name ‘ Access Reset Description

Allowlist (EBR)

0x00 Allowlist number wo 32’h0 Target address 7'd3, 7°d2, 7°d1, 7°d0 allowlist number.
(range 0~ 59). bit31:24 -> address 7’d3 allowlist number
Specify allowlist bit23:16 -> address 7’d2 allowlist number
number bit15:8 ->address 7°d1 allowlist number
corresponding to bit7:0 ->address 7°dO allowlist number

———— target address. -

0x04 Target addresses Target address 7'd7, 7°d6, 7°d5, 7'd4 allowlist number.
vary from 7°d0 to bit31:24 -> address 7’d7 allowlist number
7'd7f for 7 bits bit23:16 -> address 7°d6 allowlist number
address. Allowlist bit15:8 ->address 7'd5 allowlist number
numbers may be bit7:0 ->address 7'd4 allowlist number

0x08 0~59 for this design. Target address 7°d11, 7°d10, 7°d9, 7’d8 allowlist number.
But the maximum bit31:24 -> address 7°d11 allowlist number
number could bit23:16 -> address 7’d10 allowlist number
extend to 255 in the bit15:8 ->address 7°d9 allowlist number
future. One target bit7:0 ->address 7°d8 allowlist number

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide

Technical Note

= LATTICE

Offset

Register Name

Access

Reset

Description

0x0C

0x28

0x10

0x14

0x18

Ox1c

0x20

0x24

0x2c
0x30
0x34
0x38
0x3c
0x40
oxad |
0x48
Ox4c
0x50

0x54

0x58

only has one
allowlist number.
But one allowlist
number can be

applied to all targets.

Target address 7°d15, 7°d14, 7°d13, 7'd12 allowlist number.

bit31:24 -> address 7’d15 allowlist number
bit23:16 -> address 7’d14 allowlist number
bit15:8 ->address 7°d13 allowlist number
bit7:0 ->address 7’d12 allowlist number

Target address 7'd19, 7°d18, 7°d17, 7'd16 allowlist number.

bit31:24 -> address 7’d19 allowlist number
bit23:16 -> address 7’d18 allowlist number
bit15:8 ->address 7°d17 allowlist number
bit7:0 ->address 7’d16 allowlist number

Target address 7'd23, 7°d22, 7°d21, 7'd20 allowlist number.

bit31:24 -> address 7’d23 allowlist number
bit23:16 -> address 7’d22 allowlist number
bit15:8 ->address 7°d21 allowlist number
bit7:0 ->address 7’d20 allowlist number

Target address 7'd27, 7'd26, 7'd25, 7'd24 allowlist number.

bit31:24 -> address 7'd27 allowlist number
bit23:16 -> address 7°d26 allowlist number
bit15:8 ->address 7°d25 allowlist number
bit7:0 ->address 7'd24 allowlist number

Target address 7°d31, 7°d30, 7°d29, 7'd28 allowlist number.

bit31:24 -> address 7'd31 allowlist number
bit23:16 -> address 7°d30 allowlist number
bit15:8 ->address 7°d29 allowlist number
bit7:0 ->address 7'd28 allowlist number

Target address 7’d35~7’d32 allowlist number. Bitmap refer
to above.

Target address 7'd39~7’d36 allowlist number.

Target address 7'd43~7’d40 allowlist number. Bitmap refer
to above.

Target address 7'd47~7’d44 allowlist number. Bitmap refer
to above.

Target address 7’d51~7’d48 allowlist number. Bitmap refer
to above.

Target address 7’d55~7’d52 allowlist number. Bitmap refer
to above.

Target address 7’d59~7’d56 allowlist number. Bitmap refer
to above.

Target address 7’d63~7’d60 allowlist number. Bitmap refer
to above.

Target address 7'd67~7’'d64 allowlist number. Bitmap refer
to above.

Target address 7’d71~7’d68 allowlist number. Bitmap refer
to above.

Target address 7'd75~7’'d72 allowlist number. Bitmap refer
to above.

Target address 7’d79~7’d76 allowlist number. Bitmap refer
to above.

Target address 7'd83~7’d80 allowlist number. Bitmap refer
to above.

Target address 7'd87~7’d84 allowlist number. Bitmap refer
to above.

Target address 7'd91~7’d88 allowlist number. Bitmap refer

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02360-1.0

62

http://www.latticesemi.com/legal

II.:;tctri‘cneiciTrx;\:ez.Z Mach-NX SoC Function Block Hardware User Guide .':LATT’CE

Offset | Register Name Access Reset Description
to above.

0x5¢ Target address 7°d95~7'd92 allowlist number. Bitmap refer
to above.

0x60 Target address 7°d99~7d96 allowlist number. Bitmap refer
to above.

0x64 Target address 7°d103~7’d100 allowlist number. Bitmap
refer to above.

0x68 Target address 7'd107~7’d104 allowlist number. Bitmap
refer to above.

Ox6¢ Target address 7°d111~7’d108 allowlist number. Bitmap
refer to above.

0x70 Target address 7'd115~7’d112 allowlist number. Bitmap
refer to above.

0x74 Target address 7°d119~7'd116 allowlist number. Bitmap
refer to above.

0x78 Target address 7°d123~7°d120 allowlist number. Bitmap
refer to above.

0x7c Target address 7°d127~7'd124 allowlist number. Bitmap
refer to above.

0x80 allowlist number 0 wo 256'h0 There are 256 bits in this range. Every bit represents a

0xAO allowlist number 1 command allowlist. For example, bit 9 is the SMBus

command 0x9 allowlist. If the bit is 1, command 0x9 is
passed in write transaction. If the bit is 0, command 0x9 is
blocked in write transaction.

0xCOo allowlist number 2

OxEO allowlist number 3

0x100 allowlist number 4

0x120 | allowlist number 5 Offset |Byte3 Byte2 Bytel ByteO
0x140 | allowlist number 6 0x00 |Bit31:24 |Bit23:16 |Bitl5:8 |Bit7:0
0x160 | allowlist number 7 0x04 |Bit63:56 |Bit55:48 |Bit47:40 | Bit39:32
0x180 | allowlist number 8 0x08 |Bit95:88 |Bit87:80 | Bit79:72 | Bit71:64
0x1A0 | allowlist number 9 OxOc |Bit127:120 |Bit119:112 |Bit111:104 |Bit103:96
0x1C0 | allowlist number 10 Ox10 |Bit159:152 |Bit151:144 |Bit143:136 |Bit135:128
O0x1E0 | allowlist number 11 Ox14 |Bit191:184 |Bit183:176 |Bit175:168 |Bit167:160
0x200 | allowlist number 12 0x18 |Bit223:216 |Bit215:208 |Bit207:200 |Bit199:192
0x220 | allowlist number 13 Oxlc |Bit255:248 |Bit247:240 |Bit239:232 |Bit231:224

0x240 allowlist number 14
0x260 allowlist number 15
0x280 allowlist number 16
0x2A0 allowlist number 17
0x2C0 allowlist number 18
0x2EO allowlist number 19
0x300 allowlist number 20
0x320 allowlist number 21
0x340 allowlist number 22
0x360 allowlist number 23
0x380 allowlist number 24
0x3A0 | allowlist number 25
0x3C0 allowlist number 26
0x3EO0 allowlist number 27
0x400 allowlist number 28
0x420 allowlist number 29
0x440 allowlist number 30

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02360-1.0 63

http://www.latticesemi.com/legal

Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide

Technical Note

= LATTICE

Offset | Register Name Access Reset Description

0x460 allowlist number 31

0x480 allowlist number 32

0x4A0 | allowlist number 33

0x4C0 allowlist number 34

O0x4EO0 allowlist number 35

0x500 allowlist number 36

0x520 allowlist number 37

0x540 allowlist number 38

0x560 allowlist number 39

0x580 allowlist number 40

0x5A0 | allowlist number 41

0x5C0 allowlist number 42

Ox5E0 allowlist number 43

0x600 allowlist number 44

0x620 allowlist number 45

0x640 allowlist number 46

0x660 allowlist number 47

0x680 allowlist number 48

0x6A0 | allowlist number 49

0x6C0 | allowlist number 50

Ox6E0 allowlist number 51

0x700 allowlist number 52

0x720 allowlist number 53

0x740 allowlist number 54

0x760 allowlist number 55

0x780 allowlist number 56

0x7A0 | allowlist number 57

0x7C0 allowlist number 58

0x7EO allowlist number 59

0x800 Interrupt Enable R/W 8’bxx0x0000 Bit 0: enable “slave no-acked address” interrupt.
e 1:enable
e 0:disable
Bit 1: enable “slave no-acked command” interrupt.
e 1:enable
e 0:disable
Bit 2: enable “slave no-acked data” interrupt.
e 1:enable
e 0:disable
Bit 3: enable “master no-acked data” interrupt.
e 1:enable
e 0:disable
Bit 5: enable “command is blocked” interrupt.
e 1:enable
e (:disable
Others: not used, ignore.

0x804 Interrupt Status R/W1C* 8’bxx0x0000 Bit O: slave no-acked address

e 1:active

e O:inactive

Bit 1: slave no-acked command
e 1:active

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

FPGA-TN-02360-1.0

64

http://www.latticesemi.com/legal

Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide
Technical Note

= LATTICE

Offset | Register Name Access Reset Description

. 0: inactive

Bit 2: slave no-acked data
. 1: active

. 0: inactive

Bit 3: master no-acked data
. 1: active

. 0: inactive

Bit 5: command is blocked.
e 1:active

e O:inactive

Others: not used, ignore.

0x808 Interrupt Set wo 8’bxx0x0000 Bit 0: set “slave no-acked address” interrupt bit. Set 1 to

trigger the interrupt.
trigger the interrupt.
the interrupt.
trigger interrupt.

interrupt.
Others: not use, ignore.

Bit 1: Set “slave no-acked command” interrupt bit. Set 1 to
Bit 2: set “slave no-acked data” interrupt bit. Set 1 to trigger
Bit 3: set “master no-acked data” interrupt bit. Set 1 to

Bit 5: set “command is blocked” interrupt bit. Set 1 to trigger

0x808 Blocked Address RO 32'b0 Bit 31:

e 1: address is valid;
e 0:address is invalid.
bit7:0: blocked address

0x80C Blocked Command RO 32'b0 bit31:

e 1:command is valid;
e 0: command is invalid.
bit7:0: blocked command

*Note: R/W1C, readable and write 1 to clear relevant bit.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02360-1.0

65

http://www.latticesemi.com/legal

= LATTICE

8.3.7. Program Flow

e e

Initialization

{

Set CTR with 0xCO

e

Transfer fail with
errors

No, int_o interrupt when
SR=0

Yes and Read Yes and Write

Set TXR with Set TXR with
slave_addr|0x01 slave_addr&0xfe

Set CR with 0x90

int_o interrupt

Set CR with 0x05

Yes

Set CR with 0x01

Ifread If write

Y
Set TXR with sent
data

Last data?

Set CR with 0x10

‘ Set CR with 0x50

Set CR with 0x01 Set CR with 0x01

Set CR with 0x01

Set CR with 0x01

Set CR with 0x05 ‘ ‘ Set CR with 0x05 ‘

‘ Set CR with 0x05 ‘ ‘ Set CR with 0x05 ‘

Figure 8.5. SMBus IP Program Flow

8.3.8. Initialization

When utilizing the IP, the register should be configured first. The targets’ allowlist number and the allowlist contents
should be configured through ABH-Lite port. There are two ways of using the IP: by Interrupt mode or Polling mode. If
using interrupt mode, the interrupt enable register bit should be set accordingly.

8.3.9. Interrupt Mode

If using interrupt mode, when an interrupt condition is triggered, an interrupt signal (irq) asserts. The host responses to
the interrupt, reads the Interrupt Status register and writes 1s to clear it. If this is a blocked command event interrupt,
the host reads the Blocked Address and Blocked Command registers to check the blocked address and command. The
two registers are valid when bit 31 is set to 1. Note that new status overrides the current status. So the host needs to
handle the interrupt in a timely manner.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

_I;Ztctri]crscitirlr\lt;\t/ez.z Mach-NX SoC Function Block Hardware User Guide ::LATT’CE

8.3.10. Polling Mode

The SMBus IP can also be used in polling mode. In this mode, after initialization, the host needs to poll the Interrupt
Status register timely. If a status bit is set, the host also needs to write 1s to clear the relevant bit. Similarly, when a
“command is blocked” status is set, the host can read the Blocked Address and Blocked Command registers to check
the blocked address and command. The two registers are valid when the bit 31 is set to 1. Note that the new status
overrides the current status. So the host needs to read out the status in a timely manner.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02360-1.0 67

http://www.latticesemi.com/legal

= LATTICE

9. GPIO

The GPIO provides a dedicated interface to configure each GPIO as either an input or an output. When configured as an
input, it can detect the state of a GPIO by reading the state of the associated register. When configured as an output, it
takes the value written into the associated register and controls the state of the controlled GPIO. The SoC Function
Block provides two types of GPIO, as shown in Table 9.1. The Memory Mapped GPIO are register based and controlled
by the CPU. The Virtual GPIO are controlled by the PLD logic, as shown in Table 9.2.

The GPIO core consists of registers for reading and writing the GPIO channel. It also includes the necessary logic to
identify an interrupt event when the port input changes.

Table 9.1. External GPIO Signal Descriptions

Signal ‘ Direction ‘ Description

Memory Mapped GPIO

GPIO_MMxx ‘ Bidir ‘ 16 General Purpose Memory Mapped I/0
Virtual GPIO

GPIO_xx ‘ Bidir ‘ 24 General Purpose I/0O controlled from the PLD

Table 9.2. PLD Interface Signal Descriptions

Signal Direction | Description

gpio_input[23:0] Output Read data from GPIO

gpio_output[23:0] Input Write data to GPIO

gpio_direction[23:0] Input Set direction of the Virtual GPIO as input (0) or output (1)

When high, the Virtual I/0 is ready to read gpio_direction and gpio_output inputs. When a
ready_gpio Output change occurs on the gpio_direction and gpio_output inputs, the ready_gpio signal goes
low until the change has been updated and returns to high when the change is complete.

Active low reset
reset_n_gpio Input When asserted, the reset_n_gpio signal places the Virtual GPIO in reset condition
(tri-stated inputs) and deasserts ready_gpio.

9.1. GPIO Features

The GPIO IP features are:

e Setting or clearing an output through a single register to allow parallel control of the outputs.
e Setting or clearing an output by writing Set Data and Clear Data registers.

e Output register reflects the output driven status.

e Input register reflects the input status.

e Allinputs may be configured as an interrupt source with configurable edge or level detection.

9.2. Register Description

Table 9.3 shows the summary of GPIO registers.

Table 9.3. Register Address Map

Offset Register Name Access Type Description

0x00 RD_DATA_REG R Read Data Register

0x04 WR_DATA_REG R/W Write Data Register

0x08 SET_DATA_REG \W Set Data Register

0x0C CLEAR_DATA_REG \W Clear Data Register

0x10 DIRECTION_REG R/W Direction Control Register

0x14 INT_TYPE_REG R/W Interrupt Type Configure Register
0x18 INT_METHOD_REG R/W Interrupt Method Configure Register

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access Type Description

0x1C INT_STATUS_REG R/W Interrupt Status Register
0x20 IN_ENABLE_REG R/W Interrupt Enable Register
0x24 INT_SET_REG % Interrupt Set Register

9.2.1. Read Data Register (RD_DATA_REG)

Reading the Read Data Register returns the data from the input pins (Table 9.4). Reset value is not observable because
the value is updated immediately after reset.

Table 9.4. Read Data Register
Name Access Width Reset
rd_data R 16 NA

9.2.2. Write Data Register (WR_DATA_REG)
Writing in the Write Data Register changes the data of the output pins (Table 9.5).
Table 9.5. Write Data Register

Name Access Width Reset
wr_data R/W 16 0

9.2.3. Set Data Register (SET_DATA_REG)
If any bit of the Set Data Register is set to 1, the corresponding bit of wr_data is set to 1 (Table 9.6).

Table 9.6. Set Data Register

Name Access Width Reset
set_data w 16 0

9.2.4. Clear Data Register (CLEAR_DATA_REG)
If any bit of the Clear Data Register is set to 1, the corresponding bit of wr_data is cleared set to 0 (Table 9.7).

Table 9.7. Clear Data Register

Name Access Width Reset
clear_data w 16 0

9.2.5. Direction Register (DIRECTION_REG)

The Direction Register determines the direction of pins. If any bit of this register is set to 0, the corresponding pin is
configured as an input. Otherwise, it is configured as an output (Table 9.8).

Table 9.8. Direction Register

Name Access Width Reset
direction_reg R/W 16 0

9.2.6. Interrupt Type Register (INT_TYPE_REG)
The Interrupt Type Registers sets the type as edge (0) or level (1), as shown in Table 9.9.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 9.9. Interrupt Type Register

= LATTICE

Name

Access

Width

Reset

int_type

R/W

16

9.2.7. Interrupt Method Register (INT_METHOD_REG)

The Interrupt Method Registers set the mode as rising (1) or falling (0) in for edge type interrupt or high (1) or low (0)

for level type interrupt, as shown in Table 9.10.

Table 9.10. Interrupt Method Register

Name

Access

Width

Reset

int_method

R/W

16

9.2.8. Interrupt Status Register (INT_STATUS_REG)

The Interrupt Status Register (Table 9.11) shows the interrupt status for each input, regardless of whether it is enabled
or not. If any bit of this register is set to 1 and the corresponding bit of INT_ENABLE_REG is set as well. Interrupt
happens on the corresponding input. In order to clear interrupt, you must write 1 to the corresponding bit.

Table 9.11. Interrupt Status Register

Name

Access

Width

Reset

int_status

R/W

16

0

9.2.9. Interrupt Enable Register (INT_ENABLE_REG)

In the Interrupt Enable Register (Table 9.12), each bit that is set to 1 enables interrupt for the corresponding port when
it is configured as an input.

Table 9.12. Interrupt Enable Register
Name Access Width Reset
int_enable R/W 16 0

9.2.10. Interrupt Set Register (INT_SET_REG)

In the Interrupt Set Register (Table 9.13), you can generate interrupt by writing 1 to the corresponding bit of this
register. This also sets the corresponding bit of the int_status register to 1.

Table 9.13. Interrupt Set Register

Name

Access

Width

Reset

int_set

W

16

9.3. Programming Flow

9.3.1. Initialization

Initial values for all registers come from the user interface. To change default configuration, the following GPIO
registers should be set properly before performing Read or Write operation:

e Direction Register

e Interrupt Type Register

e Interrupt Method Register

e Interrupt Enable Register

www.latticesemi.com/legal

http://www.latticesemi.com/legal

_I;Ztctri]crscitirlr\lt;\t/ez.z Mach-NX SoC Function Block Hardware User Guide ::LATT’CE

In case any of the interrupts are enabled, these must first be cleared by writing 1s to the corresponding bits of the
Interrupt Status Register.

9.3.2. Data Transfer (Transmit/Receive Operation)

Assuming that the module is not currently performing any operation, below are recommended steps for performing a
GPIO transaction.

1. To read from inputs, read the Read Data Register.
2. To write to outputs, write to the Write Data Register.

3. Ifaninterrupt occurs and you want to clear that interrupt, write 1s to corresponding bits of the Interrupt Status
Register.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02360-1.0 71

http://www.latticesemi.com/legal

= LATTICE

10. Secure Enclave

The Secure Enclave provides a set of security services for the Mach-NX device. The Secure Enclave has two interfaces
for sending and receiving data: a register interface and a FIFO-based High Speed Data Port (HSP). The Secure Enclave
provides the following major functions:

e Secure Hash Algorithm (SHA) — 256/384 bits

e Elliptic Curve Digital Signature Algorithm (ECDSA) — generation and verification

e Message Authentication Codes (MACs) — Hash-based MAC (HMAC)

e Elliptic Curve Diffie-Hellman (ECDH) Scheme

e Elliptic Curve Cryptography (ECC) Key Pair Generation — public Key/private Key

e Elliptic Curve Integrated Encryption Scheme (ECIES) encryption/decryption

e True Random Number Generator (TRNG)

e Advanced Encryption Standard (AES) — 128/256 bits

e Authentication controller for configuration engine

e AHB-Lite interface to user logic

e High Speed Port (HSP) for FIFO-based streaming data transfer

e Unique Secure ID

All these security services are provided through Crypto-256/384 API. For detailed information, refer to Lattice Sentry
3.0 PFR IP API Reference (FPGA-TN-02336).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide

Technical Note

= LATTICE

References

For more information, refer to:

Lattice Propel 1.1 SDK User Guide (FPGA-UG-02115)

Lattice Propel 1.1 Builder User Guide (FPGA-UG-02116)

Lattice Diamond 3.12 User Guide

Lattice Sentry Solution Stack web page

Mach-NX Devices web page

Boards, Demos, IP Cores, and Reference Designs for Mach-NX Devices
Lattice Insights for Lattice Semiconductor training courses and learning plans

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02360-1.0

73

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53083
https://www.latticesemi.com/view_document?document_id=53084
https://www.latticesemi.com/view_document?document_id=53077
https://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/LatticeSentry
https://www.latticesemi.com/en/Products/FPGAandCPLD/Mach-NX
https://www.latticesemi.com/solutionsearch?&qiptype=982db688d64345bbb3af29e62fee1dc3,bb168d29ad6b40769878f160546890de,6da9534f318a4969a6b5e7dc9081bdba,3614c818569f4eecb0602ba20a521a41&qprod=082f0175d69e4e12be17c2e4b2a46019&active=ipcore
https://www.latticesemi-insights.com/
https://www.latticesemi.com/view_document?document_id=53077

Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide .I.ILATTICE

Technical Note

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-TN-02360-1.0

74

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

_I;_z'::tr::\?citlerlm\lt;\t/ez.z Mach-NX SoC Function Block Hardware User Guide ::LATTICE

Revision History

Revision 1.0, April 2024
Section Change Summary

All Production release.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02360-1.0 75

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Lattice Sentry 2.2 Mach-NX SoC Function Block Hardware User Guide
	Contents
	Abbreviations in This Document
	1. System on Chip (SoC) Function Block Overview
	1.1. Register Access Definitions
	1.2. Root of Trust
	1.3. SoC Function Block Diagram
	1.4. SoC Function Block Memory Map

	2. CPU Subsystem
	2.1. Overview
	2.2. Module Descriptions
	2.2.1. RISC-V Processor Core
	2.2.1.1. Interrupt
	2.2.1.2. Exception
	2.2.1.3. Debug
	2.2.1.4. Control and Status Registers

	2.2.2. Submodule (PIC/Timer)
	2.2.2.1. PIC
	2.2.2.2. Timer

	3. System Memory
	3.1. Overview
	3.2. Features
	3.3. Block Diagram
	Figure 3.1. System Memory Block Diagram
	3.3.1. AHB-Lite Interface
	3.3.2. FIFO Interface
	3.3.3. System Memory Timing Information

	4. QSPI Monitor
	4.1. Overview
	4.2. Features
	4.3. Block Diagram
	4.4. Signal Description
	4.5. QSPI Command List
	4.6. Register Description
	4.7. Initialization Command Filtering
	4.8. Address Filtering
	4.9. Command Disable
	4.9.1. 24/32-Bit Addressing

	4.10. Unrecognized Command Filtering
	4.11. Timing Sequence
	4.11.1. Illegal Command Blocking
	4.11.2. Illegal Erase Command Breaking (3-Byte Address)
	4.11.3. Illegal Program Command Breaking (3-Byte Address, Illegal Start Address)
	4.11.4. Illegal Read Command Breaking (3-Byte Address, Illegal Start Address)
	4.11.5. Illegal Read Command Breaking (3-Byte Address, Incremental Address Overflow)
	4.11.6. Illegal 4-Byte Command Breaking

	4.12. Mux/Demux Functionality

	5. QSPI Streamer
	5.1. Features
	5.2. Block Diagram
	5.3. FIFO Configuration
	5.4. Register Description
	5.5. Secure Enclave FIFO Interface
	5.6. Operation
	5.6.1. Transaction Phases
	5.6.2. Width Conversion
	5.6.3. FIFO Empty/Full Behavior
	5.6.4. Typical Flash Read/Program Flow

	6. SMBus Mailbox – Target Mode
	6.1. Overview
	6.2. Features
	6.3. Signal Description
	6.4. Register Description
	6.4.1. Overview
	6.4.2. Write Data Register (WR_DATA_REG)
	6.4.3. Read Data Register (RD_DATA_REG)
	6.4.4. Target Address Registers (SLAVE_ADDRL_REG, SLAVE_ADDRH_REG)
	6.4.5. Control Register (CONTROL_REG)
	6.4.6. Target Byte Count Register (TGT_BYTE_CNT_REG)
	6.4.7. Interrupt Status Registers (INT_STATUS1_REG, INT_STATUS2_REG)
	6.4.8. Interrupt Enable Registers (INT_ENABLE1_REG, INT_ENABLE2_REG)
	6.4.9. Interrupt Set Registers (INT_SET1_REG, INT_SET2_REG)
	6.4.10. FIFO Status Register (FIFO_STATUS_REG)
	6.4.11. Flush FIFO Register (FLUSH_FIFO)
	6.4.12. Register File

	6.5. Operations Details
	6.5.1. General I2C Operation
	6.5.2. Glitch Filter
	6.5.3. Clock Stretching
	6.5.4. ACK/NACK Response

	6.6. Programming Flow
	6.6.1. Initialization
	6.6.2. Data Transfer in response to I2C Controller Read
	6.6.2.1. Normal SMBus Target Device Read Data Transfer
	6.6.2.2. SMBus Mailbox Register File Read Data Transfer

	6.6.3. Data Transfer in Response to I2C Controller Write
	6.6.3.1. Normal SMBus Target Device Write Data Transfer
	6.6.3.2. SMBus Mailbox Register File Write Data Transfer

	6.7. SMBus Target Support
	6.7.1. SMBus Control and Status Register
	6.7.2. Operation Details
	6.7.2.1. SMBAlert Operation

	7. SMBus Mailbox – Controller Mode
	7.1. Signal Description
	7.2. Register Description
	7.3. Programming Flow
	7.3.1. Initialization
	7.3.2. SMBus Controller Operation Flow
	7.3.3. Write Data to the SMBus Target
	7.3.4. Read Data from the SMBus Target

	8. I2C/SMBus Filter
	8.1. Features
	8.2. Conventions
	8.3. Functional Description
	8.3.1. Overview
	8.3.2. Read Transaction
	8.3.3. Non-blocked Write Transaction
	8.3.4. Blocked Write Transaction
	8.3.5. Signals Description
	8.3.6. Register Description
	8.3.7. Program Flow
	8.3.8. Initialization
	8.3.9. Interrupt Mode
	8.3.10. Polling Mode

	9. GPIO
	9.1. GPIO Features
	9.2. Register Description
	9.2.1. Read Data Register (RD_DATA_REG)
	9.2.2. Write Data Register (WR_DATA_REG)
	9.2.3. Set Data Register (SET_DATA_REG)
	9.2.4. Clear Data Register (CLEAR_DATA_REG)
	9.2.5. Direction Register (DIRECTION_REG)
	9.2.6. Interrupt Type Register (INT_TYPE_REG)
	9.2.7. Interrupt Method Register (INT_METHOD_REG)
	9.2.8. Interrupt Status Register (INT_STATUS_REG)
	9.2.9. Interrupt Enable Register (INT_ENABLE_REG)
	9.2.10. Interrupt Set Register (INT_SET_REG)

	9.3. Programming Flow
	9.3.1. Initialization
	9.3.2. Data Transfer (Transmit/Receive Operation)

	10. Secure Enclave
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, April 2024

