
Automate Stack 3.1

Reference Design

FPGA-RD-02284-1.0

April 2024

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 2

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The
information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered
inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have
been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE
PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK
USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE
REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF
FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language
This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and other
items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as
register names and state names it has been necessary to continue to utilize older terminology for compatibility.

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 3

Contents
Contents .. 3
Acronyms in This Document ... 10
1. Introduction .. 11

1.1. Components .. 12
2. Design Overview ... 13

2.1. Theory of Operation .. 13
2.2. FPGA Design .. 14

2.2.1. Main System ... 14
2.2.2. Lattice Main System 3.1 Architecture .. 17
2.2.3. Node System ... 20

2.3. EtherConnect IP Design Details ... 22
2.3.1. Overview ... 22
2.3.2. Architecture .. 24
2.3.3. Register Map .. 24

2.4. FIFO DMA .. 25
2.5. UDP Stack .. 26
2.6. LPDDR4 Controller ... 28
2.7. QSPI Flash controller ... 29
2.8. Multi-Port Memory Controller IP Design Details... 30
2.9. Scatter Gather DMA IP Design Details ... 33
2.10. CNN Coprocessor Unit (CCU) ... 34
2.11. Motor Control and PDM Data Collector .. 37
2.12. SPI Manager IP Design Details ... 44

2.12.1. Overview ... 45
2.12.2. SPI Manager Register Map ... 45
2.12.3. Programming Flow ... 46

2.13. I2C Manager IP Design Details ... 47
2.13.1. Overview ... 47
2.13.2. I2C Manager Register Map .. 48
2.13.3. Programming Flow ... 48

2.14. UART IP Design .. 50
2.14.1. Overview ... 50
2.14.2. Programming Flow ... 51

2.15. TSE MAC .. 53
2.16. SGMII IP Design ... 54
2.17. FPGA Config Module Design .. 54
2.18. SFP Config Design Details .. 56

3. Resource Utilization .. 57
4. Software APIs .. 58

4.1. Main System APIs .. 58
4.1.1. Tasks of the Main System ... 58
4.1.2. OPCUA PubSub : ... 60
4.1.3. Create_UADP_NetworkMessage .. 60
4.1.4. GroupHeader .. 61
4.1.5. Extended NetworkMessage Header ... 62

4.2. Node System APIs .. 64
4.2.1. Tasks of the Node System .. 64
4.2.2. API Calls .. 64

5. Communications ... 67
5.1. Communication between Host and Main System ... 67

5.1.1. Messages from Host to Main System ... 67
5.1.2. Messages from Main System to Host ... 67

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 4

5.2. Communication between Main System and Node System(s) ... 67
5.2.1. Messages from Main System to Node System ... 67
5.2.2. Messages from Node System to Main System ... 67

Appendix A. Predictive Maintenance with TensorFlow Lite ... 68
A.1. Setting Up the Linux Environment for Neural Network Training .. 68

A.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU 68
A.1.2. Setting Up the Environment for Training and Model Freezing Scripts ... 70
A.1.3. Installing the TensorFlow Version 1.15 .. 71
A.1.4. Installing the Python Package ... 72

A.2. Creating the TensorFlow Lite Conversion Environment .. 73
A.3. Preparing the Dataset ... 73

A.3.1. Dataset Information ... 74
A.4. Preparing the Training Code .. 74

A.4.1. Training Code Structure .. 74
A.4.2. Generating tfrecords from Augmented Dataset .. 75
A.4.3 Neural Network Architecture ... 75
A.4.4. Training Code Overview ... 77
A.4.5. Training from Scratch and/or Transfer Learning .. 84

A.5. Creating Frozen File ... 87
A.5.1. Generating .pbtxt File for Inference ... 87
A.5.2. Generating the Frozen (.pb) File ... 87

A.6. TensorFlow Lite Conversion and Evaluation ... 88
A.6.1. Converting Frozen Model to TensorFlow Lite .. 88
A.6.2. Evaluating TensorFlow Lite Model ... 88
A.6.3. Converting TensorFlow Lite To C-Array .. 89

Appendix B. Setting Up the Wireshark Tool ... 90
Appendix C. Generating Automate Stack 3.1 Propel Patch and Bitstream ... 92

C.1. Installing the Propel SDK 2023.2 .. 92
C.2. Generating the Binary .. 97

C.3.1. Primary Main System .. 97
C.3.2. Golden Main System ... 106
C.3.3. Node System ... 112

C.4. Generating the Bit File ... 117
C.4.1. Primary Main System .. 117
C.4.2. Golden Main System ... 122
C.4.3. Node System ... 128

Appendix D. Creating the MCS File ... 134
References .. 137
Technical Support Assistance ... 138
Revision History .. 139

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 5

Figures
Figure 1.1. Top Level Block Diagram of Automate Stack 3.1 ... 12
Figure 2.1. Lattice Automate Stack 3.1 Top Level Block Diagram .. 13
Figure 2.2. GSRD Architecture ... 15
Figure 2.3. Deployment Tool Multi-Boot Tab .. 16
Figure 2.4. Main System Architecture ... 18
Figure 2.5. Client to Server Data Flow ... 19
Figure 2.6. Node System Architecture ... 21
Figure 2.7. Packet Structure ... 23
Figure 2.8. UDP Stack Top Level Architecture .. 27
Figure 2.9. UDP Stack IPV4 address configuration ... 28
Figure 2.10. Memory Controller IP Core Functional Diagram .. 29
Figure 2.11. QSPI Flash Controller Block Diagram ... 30
Figure 2.12. MPMC Top-level Block Diagram... 31
Figure 2.13. SGDMA IP Functional Diagram ... 33
Figure 2.14. Motor Controller Interface with Motor ... 37
Figure 2.15. SPI Manager IP Core Block Diagram ... 45
Figure 2.16. I2C Manager Controller IP Core Functional Diagram .. 47
Figure 2.17. UART IP Core Functional Block Diagram .. 50
Figure 2.18. UART Data Format ... 53
Figure 2.19. Classic TSEMAC IP Top-Level Block Diagram .. 53
Figure 2.20. SGMII IP Settings .. 54
Figure 2.21. CONFIG_LMMIA Primitive and OSC Primitive Connection .. 55
Figure 2.22. LMMI LSC_REFRESH Command Execution ... 55
Figure 2.23. SFP Config User Interface ... 56
Figure 4.1. UADP Version ... 61
Figure 4.2. UADP Message Packet Header .. 61
Figure 4.3. Create_UADP_NetworkMessage ... 62
Figure 4.4. UADP Network Message Format ... 63
Figure A.1. Download CUDA Repo ... 68
Figure A.2. Install CUDA Repo .. 68
Figure A.3. Fetch Keys .. 68
Figure A.4. Update Ubuntu Packages Repositories ... 69
Figure A.5. CUDA Installation ... 69
Figure A.6. cuDNN Library Installation ... 69
Figure A.7. Anaconda Installation .. 70
Figure A.8. Accept License Terms .. 70
Figure A.9. Confirm/Edit Installation Location ... 70
Figure A.10. Launch/Initialize Anaconda Environment on Installation Completion .. 70
Figure A.11. Anaconda Environment Activation .. 71
Figure A.12. TensorFlow Installation ... 71
Figure A.13. TensorFlow Installation Confirmation ... 71
Figure A.14. TensorFlow Installation Completion .. 71
Figure A.15. Easydict Installation ... 72
Figure A.16. Joblib Installation ... 72
Figure A.17. Keras Installation ... 72
Figure A.18. OpenCV Installation ... 72
Figure A.19. Pillow Installation .. 73
Figure A.20. Predictive Maintenance Dataset ... 74
Figure A.21. Training Code Directory Structure ... 74
Figure A.22. Training Code Flow Diagram .. 77
Figure A.23. Code Snippet: Hyper Parameters .. 78
Figure A.24. Code Snippet: Build Input .. 78

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 6

Figure A.25. Code Snippet: Parse tfrecords ... 79
Figure A.26. Code Snippet: Convert Image to Grayscale ... 79
Figure A.27. Code Snippet: Convert Image to BGR and Scale the Image ... 79
Figure A.28. Code Snippet: Create Queue ... 79
Figure A.29. Code Snippet: Add Queue Runners ... 80
Figure A.30. Code Snippet: Create Model .. 80
Figure A.31. Code Snippet: Fire Layer .. 80
Figure A.32. Code Snippet: Convolution Block .. 81
Figure A.33. Code Snippet: Feature Depth Array for Fire Layers ... 81
Figure A.34. Code Snippet: Forward Graph Fire Layers ... 82
Figure A.35. Code Snippet: Loss Function .. 82
Figure A.36. Code Snippet: Optimizers .. 82
Figure A.37. Code Snippet: Restore Checkpoints .. 83
Figure A.38. Code Snippet: Save .pbtxt .. 83
Figure A.39. Code Snippet: Training Loop .. 83
Figure A.40. Code Snippet: _ LearningRateSetterHook ... 83
Figure A.41. Code Snippet: Save Summary for Tensorboard ... 84
Figure A.42. Code Snippet: logging hook ... 84
Figure A.43. Predictive Maintenance – Run Script .. 84
Figure A.44. Predictive Maintenance – Trigger Training .. 85
Figure A.45. Predictive Maintenance – Trigger Training with Transfer Learning .. 85
Figure A.46. Predictive Maintenance – Training Logs .. 85
Figure A.47. Predictive Maintenance – Confusion Matrix ... 85
Figure A.48. Tensorboard – Launch ... 86
Figure A.49. Tensorboard – Link Default Output in Browser ... 86
Figure A.50. Checkpoint Storage Directory Structure .. 86
Figure A.51. Generated ‘.pbtxt’ for Inference ... 87
Figure A.0.52. Run genpb.py to Generate Inference .pb ... 87
Figure A.53. Frozen Inference .pb Output ... 88
Figure B.1. Wireshark Downloadable Link ... 90
Figure B.2. Wireshark Tool – Ethernet selection ... 90
Figure B.3. Wireshark Tool – Write udp.port == 1486 ... 90
Figure B.4. Source and Destination UDP Packet .. 91
Figure B.5. Wireshark Tool – First UDP Packet .. 91
Figure C.1. Propel Application ... 92
Figure C.2. Allow Permission .. 92
Figure C.3. Lattice Propel 2023. 2 Installation Wizard ... 93
Figure C.4. Select Installation Folder ... 93
Figure C.5. Install Components .. 94
Figure C.6. Accept the License ... 94
Figure C.7. Start Menu Shortcut .. 95
Figure C.8. Install the Propel SDK Application ... 95
Figure C.9. Installation Process .. 96
Figure C.10. Installation Complete ... 96
Figure C.11. License Path ... 97
Figure C.12. Automate 3.1 Propel Patch .. 97
Figure C.13. Propel 2023.2 Application .. 97
Figure C.14. Select Directory .. 97
Figure C.15. Import Project .. 98
Figure C.16. Existing Project into Workspace .. 98
Figure C.17. Import Project .. 99
Figure C.18. Properties .. 100
Figure C.19. C/C++ build settings ... 101
Figure C.20. Manage Configuration – Release: Set Active ... 101

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 7

Figure C.21. Manage Configuration: Apply and Close ... 102
Figure C.22. Clean project Configurations ... 103
Figure C.23. Console .. 103
Figure C.24. Build Project ... 104
Figure C.25. Completing Process ... 104
Figure C.26. Clean All Configurations ... 105
Figure C.27. Console .. 105
Figure C.28. Build All Configurations ... 106
Figure C.29. Completing Process ... 106
Figure C.30. Propel 2023.2 Application .. 106
Figure C.31. Select Directory .. 107
Figure C.32. Import Project .. 107
Figure C.33. Existing Project into Workspace .. 107
Figure C.34. Import Project .. 108
Figure C.35. Clean Project Configurations ... 109
Figure C.36. Console .. 109
Figure C.37. Build Project ... 110
Figure C.38. Completing Process ... 110
Figure C.39. Clean All Configurations ... 111
Figure C.40. Console .. 111
Figure C.41. Build All Configurations ... 112
Figure C.42. Completing Process ... 112
Figure C.43. Propel Application ... 112
Figure C.44. Select Directory .. 113
Figure C.45. Import Project .. 113
Figure C.46. Existing Project into Workspace .. 113
Figure C.47. Select Project ... 114
Figure C.48. Clean All ... 115
Figure C.49. Console .. 115
Figure C.50. Build All .. 116
Figure C.51. Completing Process ... 116
Figure C.52. soc_main_system.sbx .. 117
Figure C.53. System Initialization File .. 117
Figure C.54. Validate Button .. 118
Figure C.55. Generate SGE Button ... 118
Figure C.56. Radiant Tool Button ... 118
Figure C.57. soc_main_system.rdf file ... 118
Figure C.58. LFCPNX-100-9LFG672I ... 118
Figure C.59. Lattice Radiant Device Selector for Main System .. 119
Figure C.60. Strategy for Build Generation for Main System ... 119
Figure C.61. MAP Analysis Setting for Main System Bit File Generation ... 120
Figure C.62. PAR Setting for Main System Bit File Generation .. 120
Figure C.63. PAR Timing Analysis Setting for Main System Bitfile Generation .. 121
Figure C.64. IP Evaluation .. 121
Figure C.65. Run All Button .. 122
Figure C.66. Bitstream File ... 122
Figure C.67. soc_main_system.sbx .. 122
Figure C.68. System Initialization File .. 123
Figure C.69. Validate Button .. 123
Figure C.70. Generate SGE Button ... 123
Figure C.71. Radiant Tool Button ... 124
Figure C.72. soc_main_sysyem.rdf File .. 124
Figure C.73. LFCPNX-100-9LFG672I ... 124
Figure C.74. Lattice Radiant Device Selector for Main System .. 125

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 8

Figure C.75. Strategy for Build Generation for Main System ... 125
Figure C.76. MAP Analysis Setting for Main System Bit File Generation ... 126
Figure C.77. PAR Setting for Main System Bit File Generation .. 126
Figure C.78. PAR Timing Analysis Setting for Main System Bitfile Generation .. 127
Figure C.79. IP Evaluation .. 127
Figure C.80. Run All .. 128
Figure C.81. Bitstream File ... 128
Figure C.82. soc_node.sbx ... 128
Figure C.83. System0 Initialization ... 129
Figure C.84. Validate Button .. 129
Figure C.85. Generate SGE Button ... 129
Figure C.86. Radiant Tool Button ... 129
Figure C.87. soc_node.rdf file .. 130
Figure C.88. LFD2NX-40-8BG256C ... 130
Figure C.89. Lattice Radiant Device Selector for Node System .. 130
Figure C.90. Strategy for Build Generation for Node System .. 131
Figure C.91. MAP Analysis Setting for Node System Bit File Generation ... 131
Figure C.92. PAR Setting for Node system Bit File Generation .. 132
Figure C.93. PAR Timing Analysis Setting for Node System Bit File Generation .. 132
Figure C.94. IP Evaluation .. 133
Figure C.95. Run All Button .. 133
Figure C.96. Bitstream File ... 133
Figure D.1. Deployment tool .. 134
Figure D.2. Creating New Deployment for Multi-Boot .. 134
Figure D.3. Select Input File Window ... 134
Figure D.4. Advanced SPI Flash Options - Multi-Boot Tab Window ... 135
Figure D.5. Select Output File Window .. 135
Figure D.6. Generate Deployment Window ... 136

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 9

Tables
Table 2.1. GSRD Memory Map ... 17
Table 2.2. Main System Memory Map ... 20
Table 2.3. Memory Map of Node System .. 21
Table 2.4. EtherConnect IP Global Registers .. 24
Table 2.5. EtherConnect IP Chain 1 Registers .. 24
Table 2.6. FIFO DMA Register Map .. 25
Table 2.7. FIFO DMA Control Registers .. 25
Table 2.8. DEST_BASE_ADDR Register ... 25
Table 2.9. DEST_END_ADDR Register .. 26
Table 2.10. Write Status Register .. 26
Table 2.11. Read Status Register ... 26
Table 2.12. MPMC Register Map ... 31
Table 2.13. Register Map of SGDMA IP .. 34
Table 2.14. CNN Coprocessor Unit Registers ... 34
Table 2.15. CNN Coprocessor unit control register ... 35
Table 2.16. CNN Coprocessor Unit Register ... 35
Table 2.17. Sign Select Configuration Register .. 35
Table 2.18. Input Offset Configuration Register .. 35
Table 2.19. Filter Offset Configuration Register .. 35
Table 2.20. Filter Offset Configuration Register .. 36
Table 2.21. Input Depth Configuration Register .. 36
Table 2.22. Input Data Address Configuration Register ... 36
Table 2.23. Filter Data Address Configuration Register ... 36
Table 2.24. CNN Coprocessor Unit Output Register .. 36
Table 2.25. Predictive Maintenance and Motor Control Registers .. 37
Table 2.26. Motor Control 0 – Minimum RPM .. 38
Table 2.27. Motor Control 1 – Maximum RPM .. 38
Table 2.28. Motor Control 2 – RPM PI Control Loop Integrator Gain (kI) .. 38
Table 2.29. Motor Control 3 – RPM PI Control Loop Proportional Gain (kP) ... 38
Table 2.30. Motor Control 4 – Torque PI Control Loop Integrator Gain (kI) .. 39
Table 2.31. Motor Control 5 – Torque PI Control Loop Proportional Gain (kP) ... 39
Table 2.32. Motor Control 6 – Synchronization Delay and Control ... 39
Table 2.33. Motor Control Register 7 – Target RPM .. 40
Table 2.34. Motor Control Register 8 – Target Location .. 40
Table 2.35. Motor Control Register 9 – Current Location .. 40
Table 2.36. Motor Status Register 0 – RPM ... 40
Table 2.37. Motor Status Register 1 .. 41
Table 2.38. Predictive Maintenance Control Register 0 .. 41
Table 2.39. Predictive Maintenance Control Register 1 .. 42
Table 2.40. Predictive Maintenance Status Register ... 42
Table 2.41. Predictive Maintenance Current/Voltage Data Register ... 43
Table 2.42. Predictive Maintenance Current/Voltage Data Register ... 43
Table 2.43. Versa Board Switch Status Register .. 43
Table 2.44. Versa Board LED and PMOD Control Register ... 44
Table 2.45. SPI Manager Register Map .. 45
Table 2.46. I2C Manager IP Core Registers Summary .. 48
Table 2.47. UART Register Map ... 51
Table 3.1. Main System Resource Utilization .. 57
Table 3.2. Node System Resource Utilization .. 57
Table A.1. Predictive Maintenance Training Network Topology ... 75

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 10

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

AHBL Advanced High-performance Bus-Lite

AI Artificial Intelligence

API Application Programming Interface

BLDC Brushless DC

CCU CNN Coprocessor Unit

CNN Convolutional Neural Network

CPU Central Processing Unit

DDR Double Data Rate

DMA Direct Memory Access

FIFO First-In-First-Out

ISR Interrupt Service Routines

LPDDR4 Low Power Double Data Rate Generation 4

ML Machine Learning

QSPI Quad Serial Peripheral Interface

RISC-V Reduced Instruction Set Computer-V

RTL Register-Transfer Level

UART Universal Asynchronous Receiver-Transmitter

UDP User Data gram Protocol

TSEMAC Tri-Speed Ethernet Media Access Controller

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 11

1. Introduction
Lattice Automate™ Stack provides a solution for industrial automation that includes predictive maintenance using ML/AI,
communication over Ethernet cable and a BLDC motor control IP implemented in RTL. The solution enables user to control
multiple motors connected to node systems that are chained using Ethernet cable. The main system that synchronizes
operations of node system also runs neural network trained using RISC-V and CNN Coprocessor for predictive maintenance.
The entire solution can work with or without external host. The reference design is provided with a user interface that runs
on host and controls motor operations. The user interface also displays the status of motor and alerts user when motor
requires maintenance. User can use all APIs provided with this reference design and can implement entire system without
host system. In this case, the C/C++ code running on RISC-V sends required commands to control motors. The entire system
with all sub-components is shown in further sections.

Lattice Automate Stack 1.0 supports web-based user interface which is running on host (system PC) and single chain of
nodes for controlling the motors.

Lattice Automate Stack 1.1 supports two chains of nodes which can be connected to one main system board. All nodes are
synchronized physically. Main system supports dynamic pulse-based system synchronization scheme, in which it checks
nodes disconnection during runtime and compensate clock ppm to calculate synchronization delay. It supports OPC UA
server/client-based user interface, which is running on host PC and client are running on Raspberry Pi board.

Lattice Automate Stack 2.0 supports all features of Lattice Automate Stack 1.1. It supports MQTT broker/client-based host
application, Python Interface as host control, and supports PCIe® interface as host for high-speed applications. In the node
side, it has motor IP for motor-based features and standard SPI Manager and I2C Manager interfaces to connect various
peripherals (sensors) into system.

Lattice Automate Stack 3.0 supports free RTOS (RISC-V) CPU IP and OPC-UA client-based host PC which is connected to
CertusPro™-NX (Main system) using Ethernet cable. Host PC and Main system can also be connected to a common ethernet
switch. OPC-UA server is running on free RTOS (RISC-V) in main board and OPC-UA client is running on host PC.
Communication between Host PC(Client) and free RTOS (server) is established over 1G ethernet network. SGMII, TSE MAC,
UDP Stack and LPDDR4 and Multiport Extension IPs are used to enable data exchange between RISC-V and Host PC. AHBL
bus interface is replaced by AXI4 bus interface. IPs with AXI4 Manager communicates using common AXI4 Interconnect with
other AXI4 subordinate based IPs connected interconnect. AXI4 bus interface has more throughput than AHBL and allows
the CPU to run on higher frequency as well (up to 100 MHz). It also allows parallel data transfer between subordinate and
manager. This main system SOC supports only 1G port for node system chain connection due to 1G port and resources
limitations on the target board. Figure 1.1 shows the Automate Stack solution and its subcomponents.

In Lattice Automate Stack 3.1, the Golden System reference design is used. The Golden System reference design can detect
the integrity of binaries and execute appropriate program. The system has two FPGA images: Primary Image and Golden
Image. If Primary Image integrity check fails, the system switches to Golden Image. Automate Stack 3.0 functionalities are
ported on GSRD based SOC. Automate Stack 3.1 supports OPC-UA based packet exchange b/w Main and Node system for
various data transfers.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 12

Figure 1.1. Top Level Block Diagram of Automate Stack 3.1

1.1. Components
The Automate Stack 3.1 release includes the following components:

• System on Chip (SOC)

• Main System IPs

• EtherConnect IP (With SGMII/RGMII (PHY or SFP), FIFO DMA, CNN Coprocessor Unit (CCU), SPI Flash
Controller, Multiport extension, UDP Stack, SGMII TSE MAC, and Reset Synchronizer.

• Node System IPs

• EtherConnect IP (With SGMII/RGMII (PHY or SFP), FIFO DMA, BLDC motor control IP, and Data collector for
predictive maintenance

• Modbus, I2C Manager, and SPI Manager

• Software

• Firmware (APIs)

• APIs to send instructions to motor control IP, collect status of motors and collect data for predictive
maintenance Compiled TensorFlow-Lite C++ library for RISC-V (Required for neural network inference).

• User Interface

• Controls motor, collects status and data for predictive maintenance, displays warning when maintenance
required.

• Machine Learning

• Trained Neural Network for predictive maintenance.

• Script to train network with user collected data.

Note: The generic RISC-V subsystem components are excluded from the list of components.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 13

2. Design Overview

2.1. Theory of Operation
There are two different SoCs to be released:

• GSRD – System Hardware (SoC) supports RISC-V RX, MPMC, DM, and QSPI controller over AXI interface and comprises
of Boot loader, Primary image, and Golden image.

• Lattice Automate Stack 3.1 – Automate Stack 3.0 Functionality ported on GSRD-based SoC.

Figure 2.1 shows the overall architecture of the Automate demo system. The Automate Stack 3.1 consists of one Main
System (MS) and multiple Node Systems (NS), maximum of eight in a chain. The host is connected to the MS through
ethernet cable. The application software, with the user interface running on host, can send commands to the MS and
receive motor maintenance data from the system for AI training. The MS can propagate the commands to NS using OP-CUA
packets for motor control and gather maintenance data from NS.

Hosts can also send/receive data from different peripherals connected to node other than motor.

For main system, LFCPNX-100-9LFG672C/I device is used for the demo design. For node system, the Certus™-NX Versa
Board is used for the demo design.

Automate

Main System

Automate

Node System

Automate

Node System

Automate

Node System

Automate

Node System

Ethernet Cable

Ethernet Cable

Debug Port

(UART)

Host PC

(OPC UA Client)

Ethernet Cable

Ethernet Cable

E
th

e
rn

e
t

C
a
b

le

1
G

 I
n

te
rf

a
c
e

Figure 2.1. Lattice Automate Stack 3.1 Top Level Block Diagram

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 14

2.2. FPGA Design

2.2.1. Main System

2.2.1.1. GSRD Architecture

Figure 2.2 shows the GSRD Architecture which has two AXI4 Interconnects. Interconnect-1 has three managers and five
subordinates:

• Three Managers:

• RISC-V RX CPU Instruction Port

• RISC-V RX CPU Data Port

• SGDMA connected through Interconnect-2

• Five Subordinates

• System Memory

• AXI2APB Bridge

• MPMC

• SGDMA

• SPI Flash Controller

The RISC-V RX CPU and AXI Interconnect-2 (SGDMA) can access data to the shared memory Data RAM, MPMC, SPI Flash
Controller, and AXI2APB bridge directly and UART, TSE MAC, Memory Controller, SGDMA, FPGA Config module, and GPIO
through AXI2APB bridge. UART and GPIO can generate interrupts to RISC-V CPU.

The Interconnect 2 has one manager and two subordinates:

• One Manager – SGDMA

• Two Subordinates – MPMC and Interconnect-1

The SGDMA can access data to the MPMC and AXI Interconnect-1.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 15

RISC-V RX

M M

I$ D$

System Memory

S

QSPI

Flash Controller

S S

AXI Interconnect-1

AXI2APB Bridge

M

S

S

AXI Interconnect-2

M

S

MPMC

S S

SGDMA

SM
APB Interconnect

S

FPGA Config

STSE_MAC

S
Memory Controller

SFP Config SGMII

SPI Flash

UART Interface

AXI Stream

AXI4

LPDDR4
Ethernet PHY

IRQ 2

IRQ 1

UART

Figure 2.2. GSRD Architecture

2.2.1.2. GSRD Data Flow

Multiboot Flow

The Certus Pro-NX device multi-boot supports booting from up to six patterns that reside in an external SPI Flash device.
The patterns include a primary pattern, a golden pattern, and up to four alternate patterns, designated as alternate pattern
1 to alternate pattern 4. The CertusPro-NX device boots by loading the primary pattern from the internal or external Flash.
If loading of the primary pattern fails, the CertusPro-NX device attempts to load the Golden pattern. When reprogramming
of the bitstream is triggered through the toggling of the PROGRAMN pin or receiving a REFRESH command, the alternate
pattern 1 is loaded. Subsequent PROGRAMN/REFRESH event loads the next pattern defined in the multi-boot configuration.
The bitstream pattern sequence, target address of the Golden pattern, and target addresses of the alternate patterns are
defined during the multi-boot configuration process in the Lattice Radiant Deployment Tool as shown in Figure 2.3.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 16

Figure 2.3. Deployment Tool Multi-Boot Tab

2.2.1.3. GSRD Flow

The GSRD design has two firmware binaries and two FPGA bit files. One set of binary and bit file is golden and the other one
is primary. The golden image works as a baseline version of the system. The primary image is an updated version of the
system.

The boot loader firmware supports the CRC checking and switching between the primary Image and golden image. The
firmware has the option to manually boot the FPGA image-based on CRC check.
Upon performing a CRC check on the binary file, if the primary binary is corrupted, the booting occurs from the golden one
but the bit file must also switch to golden. There is a firmware code in flash to switch the bit file to golden and the same
happens when the primary bit file is corrupted.

The booting is done from one of the two sets of binary and bit file. First, from primary and then to golden if the CRC check
fails for the primary set.

The main firmware is stored in the external SPI flash. During booting, the boot loader copies the instruction code from the
external flash to DDR4. Further, it sets up the ISR function pointer to this DDR4 memory address through the memory
controller.

The MPMC IP works on top of LPDDR4 memory controller to write the instruction code to a specific DDR4 memory location.

SGDMA IP is used as data mover. It converts incoming AXI Stream from TSE MAC IP into AXI4 and sends to MPMC. Similarly,
it converts the AXI4 interface coming from MPMC into AXI Stream and sends it to TSE MAC IP.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 17

2.2.1.4. Memory Map

Table 2.1 shows the memory map of GSRD.

Table 2.1. GSRD Memory Map

Base Address End Address Range (Bytes)
Range
(Bytes in hex)

Size (Kbytes) Block

00300000 0037FFFF 512000 80000 512 SPI FLASH CONTROLLER

00000000 0003FFFF 256000 40000 256 CPU Data RAM

10000000 10000FFF 4096 1000 4 GPIO

10001000 10004FFF 16384 4000 16 TSE MAC

10090000 10090FFF 4096 1000 4 UART

10092000 10092FFF 4096 1000 4 LPDDR4 APB

10093000 10093FFF 4096 1000 4 SGDMA

1009B000 1009BFFF 4096 1000 4 FGPA CONFIG APB

10110000 5010FFFF 1073741824 40000000 1048576 LPDDR4 AXI

F2000000 F20FFFFF 1048576 100000 1024 CLINT (CPU)

FC000000 FC3FFFFF 4194304 400000 4096 PLIC (CPU)

F0000400 FFFFFFFF 262144000 FA00000 256000 RESERVED (CPU)

2.2.2. Lattice Main System 3.1 Architecture

The main system of Automate stack leverages GSRD as the basic building block and adds additional IP that are required to
enable communication to nodes and host PC. For details about the GSRD, refer to the GHRD/GSRD Reference Design
documents.

2.2.2.1. Lattice Main System 3.1 Architecture

The main system architecture is shown in Figure 2.4.The following are the components of the Main System:

• Processors

• RISC-V CPU running FreeRTOS: Real time embedded operating system.

• CNN Coprocessor Unit: AI/ML powered predictive maintenance system.

• Memory and Storage

• SGDMA

• FIFO DMA

• RAM (ISR/Data): Shared memory

• QSPI Memory Controller with pre-fetch buffer (SPI Flash Controller)

• Communication Interfaces

• AXI Interconnect: Communicates between modules in the main system.

• AXI2APB Bridge: Communicates to modules in the main system which are not AXI enabled.

• MPMC: High-speed, DDR subsystem to handle multiple data streams simultaneously.

• UDP IP: Handles OPC UA communications (in the form of UADP packets) to and from the host PC.

• UART: Sends debug prints and information to a terminal.

• EtherConnect: Handles connection to the node system Ethernet connection to the host PC.

The main system runs at a CPU frequency of 100 MHz. The ethernet MAC protocol runs at 125 MHz. The DDR Interface runs
at 133 MHz.

For the best performance and nearly deterministic latency, the EtherConnect port supports one physical interface and a
chain of up to eight nodes.

The Multiport Extension, GPIO, and EtherConnect modules can generate interrupts to the RISC-V CPU.

The Main System’s modules are connected to each other with an AXI4 bus interface. The RISC-V CPU, CNN Coprocessor
Unit, FIFO DMA, EtherConnect, SPI Flash Controller, Multiport Extension, and AXI2APB bridge all have an AXI4 interface and
can use this bus directly. The UDP IP, SGMII TSE MAC Wrapper, Multiport Extension, and GPIO use the AXI2APB bridge and
APB interconnect to access the AXI4 bus.

http://www.latticesemi.com/legal
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/referencedesigns/referencedesigns05/ghrd-gsrd-reference-design

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 18

To avoid memory contention, Port S0 of the Data RAM is used exclusively for RISC-V CPU access. The CNN Coprocessor Unit
and FIFO DMA access Port S1 of the Data RAM.

RISC-V RX

M M

I$ D$

System Memory

S

QSPI

Flash Controller

S

S

AXI Interconnect

AXI2APB Bridge

M

S S

MPMC

S S

SGDMA

SM

APB Interconnect

S

FPGA Config

STSE_MAC

S
Memory Controller

SFP Config SGMII

SPI Flash

UART Interface

AXI Stream

AXI4

Ethernet PHY

IRQ 2

IRQ 1

UART

M S

CNN

Coprocessor

GPIO

FIFO DMA

M S

Ethercontrol

S

UDP Stack
AXI Stream

Node System

Figure 2.4. Main System Architecture

2.2.2.2. Main System Data Flow

The data flow from OPCUA Publisher (Host PC) to OPCUA Subscriber (Main board) and vice versa is shown in Figure 2.5. The
host PC sends motor control commands using the Automate user interface to the main system over Ethernet cable. The
host PC sends the UADP packet, and it is received by the main system using the SGMII, TSE MAC and UDP IP. The UDP IP
parses this data and sends it to the SGDMA IP, which acts as a data mover. It converts incoming AXI Stream from UDP Stack
IP into AXI4 data and sends to MPMC. Similarly, it converts the AXI4 data coming from MPMC into the AXI Stream and sends
it to the UDP Stack IP. The MPMC IP sends this data to the LPDDR4 Memory controller which writes data into the LPDDR4
memory.

The Main System is an OPC UA publisher and an OPC UA subscriber. All OPC UA messages are sent as UADP packets. When
the main system receives a UADP packet through Ethernet, the EtherConnect main module receives and sends its payload
to the UDP IP. The UADP payload is written to the LPDDR4 and a CPU interrupt is triggered. The CPU then sends a read
request to the Multiport Extension (which contains the LPDDR4). The packets are stored in a FIFO.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 19

The CPU fetches data from the FIFO and passes it to the OPC UA software module. The OPC UA software module decodes
the UADP packet and extracts an RFL command. RFL packets are created and sent to the node system over EtherConnect
interface, which performs packetization and sends them downstream until they reach their destination node system. The
Node System executes the command contained in the RFL packet.

The process for reading or writing to a peripheral connected to a node system through SPI, I2C, or UART/Modbus is the
same as reading from or writing to the motor control IP of the node system.

The Main System CPU gathers predictive maintenance data from downstream Node Systems through EtherConnect and
sends to the host an OPC UA UDP packet through Ethernet. The Main System CPU also sends data to UART through an APB
bus interface.

Alternatively, EtherConnect can send downstream data to FIFO DMA through its FIFO port and FIFO DMA can write the
data-to-data RAM. At the end of every predictive maintenance cycle in SW running on main system, an update is sent to the
host through Ethernet.

RISC-V RX can also communicate with various peripherals connected to nodes through SPI/I2C/UART interfaces other than
motor through host commands.

TSE_MAC_IPSGMII IP

UDP_Stack_IP

SGDMA IP

MPMC IP

LPDDR4 Memory Controller

(DDR4)

RISC-V RX
Ethercontrol IP

(SGMII)

Ethernet

Port

UART

(Debug Port)

Ethernet Port

Host PC

OPCUA

EtherConnect (RJ 45)

to Host PC

EtherConnect (RJ 45)

to Node Board

CertusPro-NX Board

(Main System)

FPGA

Figure 2.5. Client to Server Data Flow

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 20

2.2.2.3. Memory Map

Table 2.2 shows the memory map of the main system 3.1.

Table 2.2. Main System Memory Map

Base Address End Address Range (Bytes)
Range
(Bytes in hex)

Size (Kbytes) Block

00300000 0037FFFF 512000 80000 512 SPI FLASH CONTROLLER

00000000 0003FFFF 256000 40000 256 CPU Data RAM

10000000 10000FFF 4096 1000 4 GPIO

10001000 10004FFF 16384 4000 16 TSE MAC

10090000 10090FFF 4096 1000 4 UART

10092000 10092FFF 4096 1000 4 LPDDR4 Mem Controller APB

10093000 10093FFF 4096 1000 4 SGDMA

1009B000 1009BFFF 4096 1000 4 FPGA CONFIG APB

10100000 10107FFF 32768 8000 32 FIFO DMA

10108000 1010FFFF 32768 8000 32 EtherConnect

100A0000 100A0FFF 4096 1000 4 CNN Coprocessor

10110000 5010FFFF 1073741824 40000000 1048576 LPDDR4 AXI

F2000000 F20FFFFF 1048576 100000 1024 CLINT (CPU)

FC000000 FC3FFFFF 4194304 400000 4096 PLIC (CPU)

F0000400 FFFFFFFF 262144000 FA00000 256000 RESERVED (CPU)

2.2.3. Node System

The Node System architecture, shown in Figure 2.6. The following are the components of the Node System:

• Processors/Controllers

• RISC-V CPU

• Motor Control and PDM Data Collector

• Memory and Storage

• FIFO DMA

• RAM (ISR and Data): System Memory

• QSPI Memory Controller with Prefetch buffer (SPI Flash Controller)

• Communication interfaces:

• EtherConnect: Two-way communication with host system and with next node system in the chain.

• AHBL2APB Bridge: Handles interface conversion between AHBL and APB.

• SPI Manager: Communicates with peripherals through SPI interface.

• I2C Manager: Communicates with peripherals through I2C interface.

• UART: Communicates with peripherals through UART/Modbus interface.

The node system runs at a CPU frequency of 75 MHz, while the Ethernet protocol runs at 125 MHz.

To avoid memory contention, Port S0 of the Data RAM is used exclusively for RISC-V CPU access. The CNN Coprocessor Unit
and FIFO DMA access port S1 of the Data RAM.

Note: Physically, there is only one piece of shared memory but with two independent ports. In the memory map, S0 is
assigned with a lower base address and S1 is assigned with a higher base address. In real terms, these refer to the same
physical address. The two different address spaces for S0 and S1 allow the AXI4 Interconnect to route the transaction to the
right port.

The Motor Control and PDM Data Collector has two AHBL ports, S0 and S1. Port S0 is used to access the Motor Control and
PDM registers, while port S1 is used to access the data collected by PDM Data Collector.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 21

AHBL Interconnect

RISC-V CPU

M M

I D

Data RAM

S0 S1

SPI Flash Controller

S

AHBL2APB

Bridge

SS

ISR RAM

Motor Control and

PDM Data Collector

S0 S1

FIFO DMA

M S S

EtherControl

(Slave)

APB Interconnect

UART I²C SPI

Ethernet

(Downstream)

Ethernet

(Upstream)

IR
Q

3

IR
Q

0

IR
Q

1

IR
Q

2

Figure 2.6. Node System Architecture

2.2.3.1. Data Flow

The main firmware is stored in the external SPI flash. The ISR RAM contains the initial boot code for RISC-V as well as
interrupt service routines (ISRs) and other performance-critical functions.

The RISC-V CPU can stream its firmware from SPI Flash Controller through its AHBL port into the Instruction RAM The CPU
can access data from the Data RAM, access the register file inside EtherConnect, and the control the registers of the FIFO
DMA and QSPI Memory Controller. Both the RISC-V CPU and the FIFO DMA can move the data stored at the register file
inside the EtherConnect to the Motor Control block. These can also move the data collected by the PDM Data Collector
back to the EtherConnect to be sent back to the main system through the Ethernet upstream port.

The EtherConnect’s protocol layer supports frame/packet type 10, which enables the system to enhance performance while
fetching bulk data. See the EtherConnect user guide for more details.

2.2.3.2. Memory Map

The Node System memory map is listed in Table 2.3.

Table 2.3. Memory Map of Node System

Base Address End Address Range (Bytes)
Range
(Bytes in
hex)

Size (Kbytes) Block

00190000 00197FFF 32768 8000 32 CPU instruction RAM

00080000 000807FF 2048 800 2 CPU PIC TIMER

00080800 000BFFFF 260096 3F800 254 RESERVED

000C0000 000FFFFF 262144 40000 256 CPU Data RAM
Port S0 base address: 0x000C0000
Port S1 base address: 0x000E0000

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 22

Base Address End Address Range (Bytes)
Range
(Bytes in
hex)

Size (Kbytes) Block

00100000 00107FFF 32768 8000 32 FIFO DMA

00108000 0010FFFF 32768 8000 32 EtherConnect

00110000 0017FFFF 458752 70000 448 RESERVED

00000000 0007FFFF 512000 7D000 512 SPI Flash Controller

001864000 001867FF 1024 400 1 UART

00184000 00185FFF 8192 2000 8 Motor Control and PDM Data Collector
Port S0 base address: 0x00184000
Port S1 base address: 0x00185000

00186000 00FFFFFF 15179776 E7A000 14824 RESERVED

01400000 01FFFFFF 16777216 1000000 16384 External SPI flash

001868000 00186BFF 1024 400 1 SPI Master

00186000 001863FF 1024 400 1 I2C Master

2.3. EtherConnect IP Design Details

2.3.1. Overview

The EtherConnect block is used by both the Main System and the Node System. The Verilog parameter, SYSTEM_TYPE, sets
this block as either Main System or Node System upon instantiation. The Main System has two Ethernet downstream ports
and no upstream port. The Node System has one Ethernet upstream port and one Ethernet downstream port. The Ethernet
downstream port can be disabled for the last Node System in the chain.

The SYSTEM_TYPE parameter also selects the Input or Output FIFO interface. In the main system, the EtherConnect IP has
an output FIFO interface to send bulk data to the DMA FIFO block. In the node system, the EtherConnect block has an input
FIFO interface to receive bulk data from the PDM Data Collector through the DMA FIFO module. The EtherConnect block
uses an AXI4 interface along with a FIFO interface for bulk data.

The Sync Pulse generator block is available in the EtherConnect Main System only. It is used to generate pulse for the
dynamic synchronization of nodes.

The EtherConnect IP block is designed for communication between two boards for information transfer and it is designed
based on the Ether Connect protocol. The physical interface can support speed up to 1 Gbps (125 MHz clock). It supports
both SGMII and RGMII interfaces in the physical layer as well as the SFP interface.

As a manager, it works in four layers:

• AHBL layer – used to have a connection with the RISC-V CPU and the register interface.

• Application layer – consists of data generation and sampling layers for the application.

• Protocol layer – used to transmit and receive Ether Connect packets.

• Physical layer - transfers data with protocol layer in GMII format and has RGMII and SGMII blocks to transmit or receive
data over physical channels in RGMII or SGMII format.

The frame structure on the protocol level is shown in Figure 2.7.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 23

Figure 2.7. Packet Structure

2.3.1.1. Normal Packet

The changes are made for normal packet only. The request and response packet structure of old version is described below.

The normal frame type (00) has three types of packets:

• Packet type 01 – Configuration

• Packet type 02 – Status

• Packet type 03 – PDM

For configuration type packet, the data written in FIFO present in the application layer is as follows:

• The first 4 bytes indicate the packet type.

• The next 4 bytes indicate the node address.

• After that the data is sent in the next 4 bytes.

• The subsequent content of the packet is dummy data (00) for 52 bytes or in a generalized case: (NODE_DATA_LENGTH -
12).

For the status type packet, the data written in FIFO present in application layer is as follows:

• The first 4 bytes indicate the packet type.

• The next 4 bytes indicate the node address.

• The subsequent content of the packet is dummy data (00) for 56 bytes or in a generalized case: (NODE_DATA_LENGTH -
8).

• The response of the status packet is 32-bit status value, which is fetched from a register (CH1_BASE_ADDR + 0x100).

For the PDM type packet, the data written in FIFO present in application layer is as follows:

• The first 4 bytes indicate the packet type.

• The next 4 bytes indicate the node address.

• After that, the data is sent in the next 4 bytes.

• Next 4 bytes in the packet indicate the data length. The subsequent content of the packet is dummy data (00) for 48
bytes or in a generalized case: (NODE_DATA_LENGTH - 16).

• The response of PDM packet is 4 kB PDM data, which can be stored in FIFO or can be send out through AXI Bus based
on the value of CONTROL register.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 24

2.3.2. Architecture

According to the new architecture, exchange of data between the main and node system changes. The request packet
coming from the RISC-V CPU to the main system passes to the node system, as done earlier, but the response coming from
the node system to the main system changes. Instead of reading the 32-bit status from the register, the complete response
of status packet is written in the FIFO, which can be read by RISC-V using the register BASE_ADDR + 0x2C.

2.3.2.1. Main System

The protocol layer and physical layer remain as it is in the new version. The changes are done in
axi_subordinate_0_bus_control for register addition and ether_connect_manager_data_capture module only for the
response received from node. One FIFO is introduced to store the response of status packet. Depth of FIFO = max node data
length × max number of nodes.

One local parameter, ETHER_EXTEN_EN, decides whether sampling of response in the application capture module is done
using the old architecture or the new architecture.

2.3.2.2. Node System

In the node side, two new FIFOs are added for storing complete sampled data of the configuration packet and status
packet. Each node samples its own data. For sampling configuration packet, interrupt is generated to indicate that the
configuration is applied to the motor.

For status packet, the status of the node motor is stored in the FIFO2 and the signal is generated that the complete packet
is received in the FIFO and is ready to send response.

2.3.3. Register Map

The register map of EtherConnect IP remains the same, except that one register is added to read the response of status the
packet, which is highlighted in Table 2.4 and one register, the Node Motor Status Register, is removed .The data is read
from the status FIFO when AXI read command is issued for address BASE + 0x2C.

Table 2.4. EtherConnect IP Global Registers

Ether Control Register
Name

Register Function
Base Address

(0x10108000)
Access

DMACTR_R DMA FIFO Enable/AXI Disable Register Base + 0x00 Read/Write

PHLNK_R Phy Link Status Register Base + 0x04 Read

NDACT_R Active Nodes Register Base + 0x08 Read

FSRPDM_R FIFO Status Register for PDM Data CDC Base + 0x0C Read

ETHINTR_R Interrupt Poll Register Base + 0x10 Read

CLRCVD_R Clear Interrupt Received Register Base + 0x14 Read/Write

TX_ALL_STRT_R Transaction start for all chains Base + 0x18 Read/Write

DTOUT_R Node Response PDM Data Register Base + 0x1C Read

IP_STATUS_R IP Busy Status Base + 0x20 Read/Write

AXI_TOUT_R AXI Bus Timeout Count Register Base + 0x28 Write

ND_STAT Node Status Response Base + 0x2C Read

Table 2.5. EtherConnect IP Chain 1 Registers

Ether Control

Register Name
Register Function

Base Address

(0x10108100)
Access

TXSTR_R_1 Start Transaction Register Base + 0x00 Read/Write

PKTHD_R_1 Packet Head Register Base + 0x04 Read/Write

FRNUM_R_1 Frame Number Register Base + 0x08 Read/Write

NDCNT_R_1 Number of Node Register Base + 0x0C Read/Write

NDLN_R_1 Node Data Length Register Base + 0x10 Read/Write

MTDT_R_1 Node Request Data Burst Register Base + 0x14 Read/Write

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 25

Ether Control

Register Name
Register Function

Base Address

(0x10108100)
Access

RQDT_R_1 Node Request Type Register Base + 0x18 Read/Write

RQAD_R_1 Node Address Register Base + 0x1C Read/Write

CRCNT_R_1 CRC Count Register Base + 0x20 Read

INTR_R_1 Interrupt Info Register Base + 0x24 Read

FSRREQD_R_1 FIFO Status Register Request Data Base + 0x28 Read

DLY_R_1 Node Delay Register Base + 0x200 to
0x2FC

Read

2.4. FIFO DMA
This block has two FIFO interfaces, one is active when it is used in the main system to collect the PDM data received by the
EtherConnnect manager Bus 0. The other interface is active for node and has the PDM data from the motor control data
collector block.

This block also has an AXI4 subordinate and manager interface. The register space for this block is shown in Table 2.6.

The AXI4 Subordinate interface is used to control DMA operations by external manager (which is CPU) and AXI4 manager
interface is used to perform for DMA operations. For more information on this IP, see the FIFO DMA user guide.

Table 2.6. FIFO DMA Register Map

Register Name Register Function Address Access

CNTR FIFO DMA Control Register Base + 0x00 Read/Write

DEST_BASE_ADDR Destination Base Address Register Base + 0x04 Read/Write

DEST_END_ADDR Destination End Address Register Base + 0x08 Read/Write

STATUS Write Status Register Base + 0x0C Read

STATUS_RD Read Status Register Base + 0x10 Read

Table 2.7. FIFO DMA Control Registers

CNTR Base +0x00

Byte 3 2 1 0

Name CNTR

Default Reserved Reserved Reserved 0

Access R/W

CNTR[0]: Used to control read operation.
CNTR[1]: Used to reset the destination register to destination base address.
CNTR[2-7]: Reserved

Table 2.8. DEST_BASE_ADDR Register

DEST_BASE_ADDR Base +0x04

Byte 3 2 1 0

Name DEST_BASE_ADDR

Default 0 0 0 0

Access R/W

DEST_BASE_ADDR[31:0]: Base Address Location

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 26

Table 2.9. DEST_END_ADDR Register

DEST_END_ADDR Base +0x08

Byte 3 2 1 0

Name DEST_END_ADDR

Default 0 0 0 0

Access R/W

DEST_END_ADDR[31:0]: END Address Location

Table 2.10. Write Status Register

STATUS Base +0x0C

Byte 3 2 1 0

Name STATUS

Default Reserved Reserved Reserved 0

Access R

STATUS[2:0]: Write Status
STATUS[3:31]: Reserved

Table 2.11. Read Status Register

STATUS_RD Base +0x1C

Byte 3 2 1 0

Name STATUS_RD

Default Reserved Reserved Reserved 0

Access R

STATUS_RD[2:0]: Read Status
STATUS_RD[3:31]: Reserved

2.5. UDP Stack
The UDP Stack IP is specialized toward data transmission and reception over the internet. The UDP Protocol helps to
establish a low-latency and loss-tolerating connections established over the network. Flexibility is ensured through
run-time programmability of all the required network parameters (local, destination and gateway IP addresses, UDP ports,
and MAC address).

The main block for the UDP protocol implementation is UDP Rx and UDP Tx. Also, the IP core supports the essential Address
Resolution Protocol (ARP) and NDP (Neighbor Discovery Protocol) for multiple access networks and ICMP (Internet Control
Message Protocol) and ICMP6 (for IPv6) Echo Request and Response messages ("ping") to test network connectivity. This IP
supports commonly used standard interfaces for configuration and data such as APB and AXI4 stream respectively.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 27

Figure 2.8. UDP Stack Top Level Architecture

To change the IPV4 address:

1. Open project on the Lattice Propel™ builder.

2. Double-click on the udp_stack0_inst.

3. To change the UDP destination IP address, update the CONFIG_TX_DST_IP_ADD macro. Here is an example IP address
and the valid range: c0a80102 to c0a801xx (xx could be 01 to FF values are in hex).

To change the main system IP address, update the CONFIG_IPV4_ADD macro. Here is an example IP address and the
valid range: c0a80104 to c0a801xx (xx could be 01 to FF values are in hex).

4. Click Generate.

Note: Make sure that the IPV4 and Destination IP address should be nearer/aligned to default gateway. These settings
must be changed in the laptop/desktop IP address configuration settings mentioned in Appendix D.2 of the Automate
Stack 3.1 Demo User Guide (FPGA-UG-02164). For more details, refer to C.4. Generating the Bit File to generate
bitstream.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=54131
https://www.latticesemi.com/view_document?document_id=54131

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 28

Figure 2.9. UDP Stack IPV4 address configuration

2.6. LPDDR4 Controller
The Lattice Semiconductor LPDDR4 Memory Controller for Nexus Devices provides a turnkey solution consisting of a
controller, DDR PHY, and associated clocking and training logic to interface with LPDDR4 SDRAM. The IP Core is
implemented in System Verilog HDL using the Lattice Radiant™ software integrated with the Lattice Synthesis Engine (LSE)
and Synplify Pro® synthesis tools. The LPDDR4 Memory Controller simplifies the interfacing of CertusPro-NX and
MachXO5T™-NX devices with external LPDDR4 memory for user applications.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 29

Figure 2.10. Memory Controller IP Core Functional Diagram

The data interface allows you to initiate LPDDR4 command/address/control and read/write operations to the external
LPDDR4 SDRAM. The configuration interface provides access to the Training Engine and the Configuration Set Registers
(CSRs), which configure the Memory Controller and perform the LPDDR4 training sequences. The LPDDR4 interface allows
the selected Lattice FPGA to communicate with the external LPDDR4 memory.

The register map is shown in section 5 of the LPDDR4 IP User Guide. For more details, refer to LPDDR4 Memory Controller
IP Core for Nexus Devices User Guide (FPGA-IPUG-02127).

2.7. QSPI Flash controller
A Quad Serial Peripheral Interface (QSPI) is a four-tri-state data line serial interface that is commonly used to program, erase,
and read SPI Flash memories. QSPI enhances the throughput of a standard SPI by four times since four bits are transferred
every clock cycle,

A Dual Serial Peripheral Interface (DSPI) uses two tri-state data lines and used to program, erase and read SPI Flash
memories. DSPI performance is a comprise between QSPI and SPI since two bits are transferred every clock cycle.

The Lattice QSPI Flash Controller IP core supports SPI, DSPI and QSPI protocol. The design is implemented in Verilog HDL. It
can be configured and generated using Lattice Propel™ Builder. It can be targeted to Nexus™ and Lattice Avant™ FPGA
devices.

The QSPI Flash Controller IP Core allows the host inside the FPGA to communicate with multiple external SPI flash devices
using either standard, extended dual/quad, dual or quad SPI protocols.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53092
https://www.latticesemi.com/view_document?document_id=53092

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 30

Figure 2.11. QSPI Flash Controller Block Diagram

The register map is shown in section 2.2 of the QSPI IP User Guide. For more details, refer to QSPI Flash Controller IP Core
User Guide (FPGA-IPUG-02248).

2.8. Multi-Port Memory Controller IP Design Details
The MPMC acts an additional gateway to a separated memory controller IP (LPDDR4 memory controller in Automate 3.1).

The DRAM has a bus width of 32-bit while the AXI bus width of MPMC is programmable from 8, 16, 32, 64, 128, 256, and
512.

The input ports to the MPMC can be variable bus width and clock rates. When each port requests access to the DRAM, the
MPMC must ensure the AXI interfaces on both side match throughput and no data drop. The MPMC must arbitrate which
input port can access the MC/DRAM per configurable arbitration scheme, either round robin, fixed priority, or back
pressure.

Each port has its own address range, per AXI4 memory mapped protocol. The address range is non-overlapping. The ports
also have independent AXI bus width and operate at different clocks.

The functional block diagram is shown below:

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=54084
https://www.latticesemi.com/view_document?document_id=54084

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 31

Figure 2.12. MPMC Top-level Block Diagram

The register map is shown in Table 2.12. The MPMC registers are configured one time through IP configuration user
interface.

Table 2.12. MPMC Register Map

Offset Register Name Access Type Description

0x00 DEVICE_FAMILY RW —

0x01 NUMBER_OF_PORTS RW —

0x02 PORT0_ADDRESS_START RW —

0x03 PORT0_ADDRESS_END RW —

0x04 PORT1_ADDRESS_START RW —

0x05 PORT1_ADDRESS_END RW —

0x06 PORT2_ADDRESS_START RW —

0x07 PORT2_ADDRESS_END RW —

0x08 PORT3_ADDRESS_START RW —

0x09 PORT3_ADDRESS_END RW —

0x0A PORT0_BUF_SIZE RW —

0x0B PORT0_BUF_ENABLE RW —

0x0C PORT1_BUF_SIZE RW —

0x0D PORT1_BUF_ENABLE RW
—

0x0E PORT2_BUF_SIZE RW —

0x0F PORT2_BUF_ENABLE RW —

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 32

Offset Register Name Access Type Description

0x10 PORT3_BUF_SIZE RW —

0x11 PORT3_BUF_ENABLE RW —

0x12 CACHE_WAY_SELECTION RW —

0x13 CACHE_LINE_BYTE RW
—

0x14 CACHE_LINE_OFFSET RW —

0x15 ARB_SCHEME RW —

0x16 DRAM_FULL_CLOCK RW —

0x17 DRAM_BUS_WIDTH RW —

0x18 MC_AXI_BUS_WIDTH RW
—

0x19 MC_AXI_CLOCK RW —

0x1A TEST_PATTERN RW —

0x1B TEST_START RW —

0x1C TEST_STATUS RW —

0x1D TEST_ERRORS RW —

0x1E TEST_DONE RW —

0x1F TEST_CONFIGURATION RW —

0x20 IRQ_STATUS RW —

0x21 MPMC_INIT_START RW —

0x22 MPMC_INIT_DONE RW —

0x23 MPMC_RESET RW —

0x24 MPMC_MC_RESET RO
—

0x25 PORT0_TIMEOUT RW —

0x26 PORT1_TIMEOUT RW —

0x27 PORT2_TIMEOUT RW —

0x28 PORT3_TIMEOUT RW —

0x29 RESERVED RW
—

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 33

2.9. Scatter Gather DMA IP Design Details
The Scatter Gather Direct Memory Access Controller (SGDMA) IP core provides access to the main memory independent of
the processor, which offloads the processor intervention. The processor initiates transfer to SGDMAC and receives interrupt
on completion of the transfer by DMA Engine.

The Lattice SGDMAC IP core implements a configurable, multi-channel, AHB Lite -compliant DMA controller with scatter-
gather capability.

Direct Memory Access (DMA) is a technique for transferring blocks of data between system memory and peripherals
without a processor (for example, system CPU) having to be involved in each transfer. DMA not only offloads a system
processing elements but can transfer data at much higher rates than processor reads and writes.

Scatter-Gather DMA provides data transfers from one non-contiguous block of memory to another by means of a series of
smaller contiguous-block transfers.

The Buffer Descriptors hold the necessary control information for data transfers:

• Source and destination buses and addresses.

• Amount of data to be transferred and maximum burst size.

• Addressing modes, bus sizes, transaction types, retry options, and others.

AXI4-L
Slave

C
han

nel A
rb

iter

AXI4-MM
Master A

DMA
ENGINE

AXI4-S
Master B

PBUFF
Interface

Buffer
Descriptor

RAM

Packet
Buffer

Modified Existing

sgdmac_core

PCIe / TSE

Memory

Channel 0

Channel 1

Control
and

Status

BD Interface

Channel N - 1

New

Figure 2.13. SGDMA IP Functional Diagram

The host can control the SGDMAC IP Core by writing to and reading from the configuration registers using the APB Interface.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 34

The register map is listed in Table 2.13.

Table 2.13. Register Map of SGDMA IP

Offset Register Name Access Type Description

0 IPID R IP identification register

4 IPVER R IP version register

8 GCONTROL RW Global control register

C GSTATUS RW Global status register

10 GEVENT RW Global channel event register and mask

14 GERROR RW Global channel error register and mask

18 GARBITER RW Global arbiter control register

1c GAUX RW Auxiliary inputs and outputs

N<<5 + 200 CONTROLN RW Control register

N<<5 + 204 STATUSN RW Status register

N<<5 + 208 CURSRCN R Current source register

N<<5 + 20c CURDSTN R Current destination register

N<<5 + 210 CURXFERCNT R Current transfer count

N<<5 + 214 PBOFFSETN RW Packet buffer start address

X<<4 + 400 CONFIG0X RW Control register

X<<4 + 404 CONFIG1X RW Status register

X<<4 + 408 SRC_ADDRX RW Source address

X<<4 + 40c DST_ADDRX RW Destination address

For more details, refer to SGDMA Controller IP Core User Guide (FPGA-IPUG-02131).

2.10. CNN Coprocessor Unit (CCU)
This block has an AXI4 Manager interface so that it can retrieve data directly from Data RAM or EtherConnect block. This
block can also fetch data from UART. For example, after the host PC has processed the training data and come up with a
new set of weights, the CCU can get the new weights through UART.

This block also has an AXI4 subordinate interface so that RISC-V CPU can control CNN Coprocessor Unit (CCU) through its
registers.

Table 2.14. CNN Coprocessor Unit Registers

CCU Register Name Register Function Address Access

PDMACR CCU Control Register Base + 0x00 Read/Write

PDMASR CCU Status Register Base + 0x04 Read

SIGSELR Sign Select Configuration Register Base + 0x08 Read/Write

INOFFSETCR Input Offset Configuration Register Base + 0x0C Read/Write

FILOFFSETCR Filter Offset Configuration Register Base + 0x10 Read/Write

INDEPTHCR Input Depth Configuration Register Base + 0x14 Read/Write

INADDRCR Input Data Address Configuration Register Base + 0x18 Read/Write

FILADDRCR Filter Data Address Configuration Register Base + 0x1C Read/Write

ACCOUTR CCU Output Register Base + 0x20 Read

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53094

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 35

Table 2.15. CNN Coprocessor unit control register

PDMACR Base + 0x00

Bits Others 0

Name Unused START

Default Unused 0

Access Unused R/W

START: Setting 1’b1 to this register triggers the start of CCU process

Table 2.16. CNN Coprocessor Unit Register

PDMASR Base + 0x04

Bits Others 0

Name Unused DONE

Default Unused 0

Access Unused R

DONE :
1’b0: CCU process is NOT completed
1’b1: CCU process is completed

Table 2.17. Sign Select Configuration Register

SIGSELR Base + 0x08

Bits Others 0

Name Unused SIGN_SEL

Default Unused 0

Access Unused R/W

SIGN_SEL: Sign selector of input and filter values
1’b0: Unsigned (TinyML HPD)
1’b1: Signed (ours)

Table 2.18. Input Offset Configuration Register

INOFFSETCR Base + 0x0C

Bits Others 8 : 0

Name Unused INPUT_OFFSET

Default Unused 0

Access Unused R/W

INPUT_OFFSET: Input offset (2s complement - signed number [–256 ~ 255])

Table 2.19. Filter Offset Configuration Register

FILOFFSETCR Base + 0x10

Bits Others 8 : 0

Name Unused FILTER_OFFSET

Default Unused 0

Access Unused R/W

FILTER_OFFSET: Filter offset (2s complement - signed number [–256 ~ 255])

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 36

Table 2.20. Filter Offset Configuration Register

FILOFFSETCR Base + 0x10

Bits Others 8: 0

Name Unused FILTER_OFFSET

Default Unused 0

Access Unused R/W

Table 2.21. Input Depth Configuration Register

INDEPTHCR Base + 0x14

Bits Others 9: 0

Name Unused INPUT_DEPTH_BY_2_M1

Default Unused 0

Access Unused R/W

INPUT_DEPTH_BY_2_M1: Input depth × 2 – 1 (0 ~ 1023); cover 512 depth.

Table 2.22. Input Data Address Configuration Register

INADDRCR Base + 0x18

Bits Others 16: 0

Name Unused INPUT_DATA_ADDR

Default Unused 0

Access Unused R/W

INPUT_DATA_ADDR: Address to INPUT_DATA – start point of blob.

Table 2.23. Filter Data Address Configuration Register

FILADDRCR Base + 0x1C

Bits Others 16: 0

Name Unused FILTER_DATA_ADDR

Default Unused 0

Access Unused R/W

FILTER_DATA_ADDR: Address to FILTER_DATA – start point of filter.

Table 2.24. CNN Coprocessor Unit Output Register

ACCOUTR Base + 0x20

Bits Others 31 : 0

Name Unused ACC_OUT

Default Unused 0

Access Unused R

ACC_OUT: Accelerator output data

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 37

2.11. Motor Control and PDM Data Collector
This block has two AHBL subordinate interfaces that reside in the Node System. It provides direct control to motors through
its logic and interface to power electronics. It also collects predictive maintenance data from the motors.

This block is used only in the Node Systems. The top level of the Node System has an AHBL wrapper which has two AHBL
subordinate ports. Mainly it consists of Motor Control and Predictive Maintenance (MC/PDM) Registers, Motor Control logic,
and PDM Data Collector as shown in Figure 2.14.

24 Volt @ 4.5 Amps
DC Power Supply

BLDC Motor

Trenz – TEP0002
Motor Diver

Drivers

ADCs
(SPI)

SVPWM
20 kHz

Quadrature
Generator

q

d

A

B

C

Vector
Generator

θ

Error
PI

Control

Target
RPM

Target
Power

PDM
Status and

Control

A
H

B
L_

S0
In

te
rf

ac
e

BLDC Motor Control and Predictive Maintenance IP

Signal
Processing

PDM
Memory

Motor
Status and

Control

A
H

B
L_

S1

In
te

rf
a

ce

Figure 2.14. Motor Controller Interface with Motor

The Motor Control and PDM Registers interface with the AHB-L bus to configure, control, and monitor the Motor Control IP.

Table 2.25. Predictive Maintenance and Motor Control Registers

PDM/Motor Register Name Register Function Address Access

MTRCR0 Motor Control Register 0 – Min RPM Base + 0x00 Read/Write

MTRCR1 Motor Control Register 1 – Max RPM Base + 0x04 Read/Write

MTRCR2 Motor Control Register 2 – RPM PI kI Base + 0x08 Read/Write

MTRCR3 Motor Control Register 3 – RPM PI kP Base + 0x0C Read/Write

MTRCR4 Motor Control Register 4 – Torque PI kI Base + 0x10 Read/Write

MTRCR5 Motor Control Register 5 – Torque PI kP Base + 0x14 Read/Write

MTRCR6 Motor Control Register 6 – Sync Delay & Control Base + 0x18 Read/Write

MTRCR7 Motor Control Register 7 – Target RPM Base + 0x1C Read/Write

MTRCR8 Motor Control Register 8 – Target Location Base + 0x20 Read/Write

MTRCR9 Motor Control Register 9 – Location Base + 0x24 Read/Write

MTRSR0 Motor Status Register 0 – RPM Base + 0x28 Read

MTRSR1 Motor Status Register 1 – Limit SW & System Status Base + 0x2C Read

PDMCR0 Predictive Maintenance Control Register 0 Base + 0x30 Read/Write

PDMCR1 Predictive Maintenance Control Register 1 Base + 0x34 Read/Write

PDMSR Predictive Maintenance Status Register Base + 0x38 Read

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 38

PDM/Motor Register Name Register Function Address Access

PDMDDR Predictive Maintenance ADC Data Register Base + 0x3C Read

PDMQDR Predictive Maintenance ADC Data Register Base + 0x40 Read

BRDSW DIP and Push Button Switches Base + 0x50 Read

BRDLEDS LEDs and 7-Segment Base + 0x54 Read/Write

Table 2.26. Motor Control 0 – Minimum RPM

MTRCR0 Base + 0x00

Byte 3 2 1 0

Name PI_DELAY MTRPOLES MINRPM

Default 0 0 0 0

Access R/W

MTRCR0[15:0]: MINRPM – Minimum RPM is the initial open loop motor starting RPM. Valid values are 10 to (216 -1).
MTRCR0[23:16]: MTRPOLES – Number of motor stator poles. Valid values are 1 to 255.
MTRCR0[31:24]: PI_DELAY – Is the RPM PI update rate. Valid values are 1 to 255.

Table 2.27. Motor Control 1 – Maximum RPM

MTRCR1 Base + 0x04

Byte 3 2 1 0

Name tbd MAXRPM

Default 0 0 0 0

Access R/W

MTRCR1[15:0]: MAXRPM – Maximum RPM is the upper limit RPM. Valid values are MINRPM to (216 -1).
MTRCR1[31:16]: TBD

Table 2.28. Motor Control 2 – RPM PI Control Loop Integrator Gain (kI)

MTRCR2 Base + 0x08

Byte 3 2 1 0

Name RPMINT_MIN RPMINTK

Default 0 0 0 0

Access R/W

MTRCR2[15:0]: RPMINTK – Is the gain of the Integrator part of the RPM PI control loop. Valid values are 1 to (216 -1).
MTRCR2[31:16]: RPMINT_MIN – Is the Integrator Anti-Windup Threshold. Valid values are 1 to (216 -1).

Table 2.29. Motor Control 3 – RPM PI Control Loop Proportional Gain (kP)

MTRCR3 Base + 0x0C

Byte 3 2 1 0

Name RPMINT_LIM RPMPRPK

Default 0 0 0 0

Access R/W

MTRCR3[15:0]: RPMPRPK – Is the gain of the Proportional part of the RPM PI control loop. Valid values are 1 to (216 -1).
MTRCR3[31:16]: RPMINT_LIM – Is the Integrator Anti-Windup Clamp. Valid values are 1 to (216 -1).

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 39

Table 2.30. Motor Control 4 – Torque PI Control Loop Integrator Gain (kI)

MTRCR4 Base + 0x10

Byte 3 2 1 0

Name TRQINT_MIN TRQINTK

Default 0 0 0 0

Access R/W

MTRCR4[15:0]: TRQINTK – Is the gain of the Integrator part of the Torque PI control loop. Valid values are 1 to (216 -1).
MTRCR4[31:16]: TRQINT_MIN – Is the Integrator Anti-Windup Threshold. Valid values are 1 to (216 -1).

Table 2.31. Motor Control 5 – Torque PI Control Loop Proportional Gain (kP)

MTRCR5 Base + 0x14

Byte 3 2 1 0

Name TRQINT_LIM TRQPRPK

Default 0 0 0 0

Access R/W

MTRCR5[15:0]: TRQPRPK – Motor Power or Torque PI Proportional Gain, depends on value of MTRCR6[2].
MTRCR6[2] = 0: Motor Power - valid values are 0 to 1023.
MTRCR6[2] = 1: Torque PI Proportional Gain - valid values are 1 to (216-1).1
MTRCR5[31:16]: TRQINT_LIM – Is the Integrator Anti-Windup Clamp. Valid values are 1 to (216 -1).

Table 2.32. Motor Control 6 – Synchronization Delay and Control

MTRCR6 Base + 0x18

Byte 3 2 1 0

Name MTRCTRL SYNCDLY

Default 0 0 0 0

Access R/W

MTRCR6[21:0]: SYNCDLY1 – Is the Motor control delay to compensate for Ethernet daisy-chain and processing delay. Used to
synchronize starting and stopping of multiple motors simultaneously. Valid values are 0 to (222 -1).
MTRCR6[23:22]: MTRCTRL_SYNDLYSF1 – Sync Delay Scale Factor
 00 = Disable Sync Delay (single motor control or sync not used).
 01 = Sync Delay Units is nano-seconds (10-9)
 10 = Reserved
 11 = Reserved
MTRCR6[24]: RESET_PI – Reset the RPM PI Control

 0 = Normal Operation
 1 = Force the output to match the input (zero input values force the output to default of
 120 rpm)

MTRCR6[25]: STOP – Hold the Motor in Position
 0 = Normal Operation
 1 = Stop the motor rotation

MTRCR6[26]: TRQPI_MODE – Torque Control Mode controls how MTRCR5[15:0] : TRQPRPK is used:
 0 = Open Loop Mode – TRQPRPK value specifies Motor Power.
 1 = Closed Loop Mode – TRQPRPK value specifies the gain of the Proportional part of the Torque
 PI control loop.1

MTRCR6[27]: ESTOP – Emergency Stop
 0 = Normal Operation.
 1 = Engage E-Brakes without sync delay or MTR_ENGAGE.1

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 40

MTRCR6[28]: ENABLE – Enable Motor Drivers
 0 = Disable Motor Drivers
 1 = Enable Motor Drivers

MTRCR6[29]: MTR_MODE
 0 = RPM Control – Slew to target RPM and continue to run until stop or change in RPM target
 1 = Location Control – Rotate specified number of degrees or turns then stop. Ramp up from zero
 to Max RPM, run as needed, then ramp back down to zero.1

MTRCR6[30]: DIRECTION
 0 = Clockwise Rotation
 1 = Counter-Clockwise Rotation

MTRCR6[31]: ENGAGE – Sync Signal to latch all Control Registers from AHBL clock domain (50–100 MHz) to Motor clock
domain (24–25 MHz). Write to all other control registers first (including this one with this bit off). Write to this register (read-
modify-write) to set this bit. It can also be used to synchronize multiple nodes.

 0 = No Updates to Motor or PDM Control registers.
 1 = Transfer all control register from AHBL holding registers to Motor PDM active registers.

Table 2.33. Motor Control Register 7 – Target RPM

MTRCR7 Base + 0x1C

Byte 3 2 1 0

Name TBD TRGRPM

Default 0 0 0 0

Access R/W

MTRCR7[15:0]: TRGRPM – Target RPM. Valid values are 0 to (216 -1).
MTRCR7 [31:16]: tbd

Table 2.34. Motor Control Register 8 – Target Location

MTRCR8 Base + 0x20

Byte 3 2 1 0

Name TRGLOC

Default 0 0 0 0

Access R/W

MTRCR8[31:0]: TRGLOC – Target Location. Valid values are -2,147,483,648 (-232) to 2,147,483,647 (232 -1).
Approximately 24.8 hours @ 4,000 RPM counting each degree.

Table 2.35. Motor Control Register 9 – Current Location

MTRCR9 Base + 0x24

Byte 3 2 1 0

Name MTRLOC

Default 0 0 0 0

Access R

MTRCR9[31:0]: MTRLOC – Motor Location. Valid values are -2,147,483,648 (-232) to 2,147,483,647 (232 -1).

Table 2.36. Motor Status Register 0 – RPM

MTRSR0 Base + 0x28

Byte 3 2 1 0

Name tbd MTRSTRPM

Default 0 0 0 0

Access R

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 41

MTRSR0[15:0]: MTRSTRPM – Current Motor RPM. Valid values are 0 to (216 -1).
MTRSR0[31:16]: tbd.

Table 2.37. Motor Status Register 1

MTRSR1 Base + 0x2C

Byte 3 2 1 0

Name MTRSR1

Default 0 0 0 0

Access R

MTRSR1[0] : MTRSTR_MOV – Motor Moving

 0 = Motor Stopped or coasting

1 = Motor Moving under control

MTRSR1[1]: ACCEL – Motor Accelerating

0 = Motor Not Accelerating

1 = Motor Accelerating

MTRSR1[2]: DECL - Motor Deaccelerating

0 = Motor Not Deaccelerating

1 = Motor Deaccelerating

MTRSR1[3]: RPM_LOCK - Motor At Target RPM

0 = Motor Not @ Target RPM

1 = Motor @ Target RPM

MTRSR1[4]: MTRSTR_STOP

0 = Motor not stopped

1 = Motor at zero RPM

MTRSR1[5]: MTRSTR_VLD_RPM

0 = RPM to Theta period calculation is still in process or invalid RPM request

1 = RPM to Theta period calculation is complete

MTRSR1[31:6]: tbd

Table 2.38. Predictive Maintenance Control Register 0

PDMCR0 Base + 0x30

Byte 3 2 1 0

Name PDMCR0

Default 0 0 0 0

Access R/W

PDMCR0[0]: START – Start PDM data collection.
0 = Collection not started
1 = Collection started

PDMCR0[1]: PKDTEN – PDM Normalization Peak Detect Enable
0 = PDM Peak Detect is Disabled
1 = PDM Peak Detect is Enabled

PDMCR0[2]: FOLDEN – Enable Single Folding of PDM data
0 = Single Fold disabled
1 = Single Fold enabled

PDMCR0[3]: 2FOLDEN – Enable Double Folding of PDM data. All PDM training data was captured using Double Folding.
0 = Double Folding disabled
1 = Double Folding enabled

PDMCR0[4]: CONTINUOUS – Collect data as long as START = 1.
0 = Fixed – Collect PDM data for set number of rotations
1 = Continuous – Collect PDM data continuously (counting rotations in status reg)

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 42

PDMCR0[5]: TBD
PDMCR0[6]: CALIB – ADC offset calibration

0 = Normal operation

1 = Calibrate ADC offsets (motor not running)

PDMCR0[7]: ADCH – ADC Channel Select for PDMDDR and PDMQDR registers

0 = ADC Channel = Amps

1 = ADC Channel = Volts

PDMCR0[15:8]: PREREVS – Pre Data Collection Revolutions

Number of Theta (Field Vector) revolutions to ignore before Data Collection. All PDM training data was captured using a value

of 15.

PDMCR0[31:16]: DCREVS – Data Collection Revolutions

Theta (Field Vector) revolutions to capture PDM data (armature revs scale based on number of motor stator poles.

The motor used for training has 4-poles – 16 Theta rotations equate to four motor shaft rotations). Valid values 1 to 65,536.

All PDM training data was captured using 200 rotations.

Table 2.39. Predictive Maintenance Control Register 1

PDMCR1 Base + 0x34

Byte 3 2 1 0

Name PDMCR1

Default 0 0 0 0

Access R/W

PDMCR1: TBD

Table 2.40. Predictive Maintenance Status Register

PDMSR Base + 0x38

Byte 3 2 1 0

Name PDMSR

Default 0 0 0 0

Access R

PDMSR[0]: DONE – PDM activity status
 0 = PDM is not done with collecting data
 1 = PDM is done with collecting data
PDMSR[1]: BUSY – PDM activity status
 0 = PDM is not active
 1 = PDM is busy collecting data
PDMSR[2]: CAL_DONE – ADC Offset Calibration status
 0 = Offset calibration is not done
 1 = Offset calibration is done
PDMSR[3]: READY – PDM Data Collector status
 0 = Not ready to collect data
 1 = Ready to collect data
PDMSR[15:4]: TBD
PDMSR[31:16]: PDMSR_ROT – Current count of Theta rotations PDM data has been collected for.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 43

Table 2.41. Predictive Maintenance Current/Voltage Data Register

PDMDDR Base + 0x3C

Byte 3 2 1 0

Name ADC1 ADC0

Default 0 0 0 0

Access R

PDMDDR[15:0]: ADC0 Voltage or Current reading Phase A
PDMDDR[31:16]: ADC1 Voltage or Current reading Phase B

Table 2.42. Predictive Maintenance Current/Voltage Data Register

PDMQDR Base + 0x40

Byte 3 2 1 0

Name ADC3 ADC2

Default 0 0 0 0

Access R

PDMQDR[15:0]: ADC2 Voltage or Current reading Phase C
PDMQDR[31:16]: ADC3 Voltage or Current reading of DC supply

Table 2.43. Versa Board Switch Status Register

BRDSW Base + 0x50

Byte 3 2 1 0

Name TBD PMOD2 DIPSW PBSW

Default 0 0 0 0

Access R

PBSW[0]: SW5 – Pushbutton 2
 0 = Switch active (pressed)
 1 = Switch inactive
PBSW[1]: SW3 – Pushbutton 1
 0 = Switch active (pressed)
 1 = Switch inactive
PBSW[2]: SW2 – Pushbutton 3
 0 = Switch active (pressed)
 1 = Switch inactive
PBSW[7:3]: n/c - undefined
DIPSW[3:0]: SW10 – DIP Switch
 0 = Switch closed
 1 = Switch open
DIPSW[7:4]: n/c – undefined
PMOD2[0]: J8 Pin 1 I/O
PMOD2[1]: J8 Pin 2 I/O
PMOD2[2]: J8 Pin 3 I/O
PMOD2[3]: J8 Pin 4 I/O
PMOD2[4]: J8 Pin 7 I/O
PMOD2[5]: J8 Pin 8 I/O
PMOD2[6]: J8 Pin 9 I/O
PMOD2[7]: J8 Pin 10 I/O

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 44

Table 2.44. Versa Board LED and PMOD Control Register

BRDLEDS Base + 0x54

Byte 3 2 1 0

Name PMOD2DIR PMOD2 7SEG LED

Default 0xF 0xF 0xF 0xF

Access R/W

LED[0]: LED D18 – 0 = On, 1 = Off
LED[1]: LED D19 – 0 = On, 1 = Off
LED[2]: LED D20 – 0 = On, 1 = Off
LED[3]: LED D21 – 0 = On, 1 = Off
LED[4]: LED D22 – 0 = On, 1 = Off
LED[5]: LED D23 – 0 = On, 1 = Off
LED[6]: LED D24 – 0 = On, 1 = Off
LED[7]: LED D25 – 0 = On, 1 = Off
7SEG[0]: D36 Segment a – 0 = On, 1 = Off
7SEG[1]: D36 Segment b – 0 = On, 1 = Off
7SEG[2]: D36 Segment c – 0 = On, 1 = Off
7SEG[3]: D36 Segment d – 0 = On, 1 = Off
7SEG[4]: D36 Segment e – 0 = On, 1 = Off
7SEG[5]: D36 Segment f – 0 = On, 1 = Off
7SEG[6]: D36 Segment g – 0 = On, 1 = Off
7SEG[7]: D36 Segment dp – 0 = On, 1 = Off
PMOD2[0]: J8 Pin 1 I/O
PMOD2[1]: J8 Pin 2 I/O
PMOD2[2]: J8 Pin 3 I/O
PMOD2[3]: J8 Pin 4 I/O
PMOD2[4]: J8 Pin 7 I/O
PMOD2[5]: J8 Pin 8 I/O
PMOD2[6]: J8 Pin 9 I/O
PMOD2[7]: J8 Pin 10 I/O
PMOD2DIR[0]: J8 Pin 1 Direction – 0 = Input, 1 = Output
PMOD2DIR[1]: J8 Pin 2 Direction – 0 = Input, 1 = Output
PMOD2DIR[2]: J8 Pin 3 Direction – 0 = Input, 1 = Output
PMOD2DIR[3]: J8 Pin 4 Direction – 0 = Input, 1 = Output
PMOD2DIR[4]: J8 Pin 7 Direction – 0 = Input, 1 = Output
PMOD2DIR[5]: J8 Pin 8 Direction – 0 = Input, 1 = Output
PMOD2DIR[6]: J8 Pin 9 Direction – 0 = Input, 1 = Output
PMOD2DIR[7]: J8 Pin 10 Direction – 0 = Input, 1 = Output

Note: Register function is not supported in the initial release.

2.12. SPI Manager IP Design Details
The Serial Peripheral Interface (SPI) is a high-speed synchronous, serial, full-duplex interface that allows a serial bitstream of
configured length (8, 16, 24, and 32 bits) to be shifted into and out of the device at a programmed bit transfer rate. The Lattice
SPI Manager IP Core is normally used to communicate with external SPI subordinate devices such as display drivers, SPI
EPROMS, and analog-to-digital converters.

The SPI Manager IP is used to be integrated in node system SOC design as defined in node system top level architectural
diagram. This IP can be controlled by C/C++ APIs of node system CPU to read/write data from/to certain SPI based
peripheral/sensor. These C/C++ based APIs can be controlled by main system as well.

This section only provides minimum details on the SPI Manager IP required for integration and controlling. For more details,
refer to SPI Controller IP Core –User Guide (FPGA-IPUG-02069).

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52473

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 45

2.12.1. Overview
The SPI Manager IP Core allows the CPU inside the FPGA to communicate with multiple external SPI subordinate devices. The
data size of the SPI transaction can be configured to be 8, 16, 24, or 32 bits. This IP is designed to use an internal FIFO of
configurable depth to minimize the host intervention during data transfer. SPI Manager IP Core supports all SPI clocking
modes – combinations of Clock Polarity (CPOL) and Clock Phase (CPHA) to match the settings of external devices.
The SPI Manager IP provides a bridge between LMMI/AHB-Lite/APB and standard external SPI bus interfaces (functional
diagram is shown in Figure 2.15. On the external, off-chip side the SPI Manager Controller IP has a standard SPI bus interface.
On the internal, on-chip side, the SPI Manager Controller IP has LMMI/AHB-Lite/APB subordinate interface depending on the
Interface attribute settings.

LMMI Device

SLV_SEL_REG

CFG_REG

CLK_PRESCL_REG

CLK_PRESCH_REG

INT_STATUS_REG

INT_ENABLE_REG

INT_SET_REG

BYTE_COUNT_REG

BYTE_RST_REG

WR_DATA_REG
RD_DATA_REG

Clock
Generator

Control
Logic

LMMI/LINTR

LMMI2AHB-Lite
Bridge

LMMI2APB BridgeAPB INTERFACE
(Optional)

AHB-Lite INTERFACE
(Optional)

Write
FIFO

Read
FIFO

SPI Master IP

SPI Top

SPI Master

SPI Slave

LINTR

Data Path

Shift Register

sclk_o

ss_o[n-1:0)

miso_o

mosi_i

Figure 2.15. SPI Manager IP Core Block Diagram

2.12.2. SPI Manager Register Map

Table 2.45. SPI Manager Register Map

Offset LMMI
Offset

APB/AHBL
Register Name Access Type Description

0x0 0x00 WR_DATA_REG WO Write Data Register

0x0 0x00 RD_DATA_REG RO Read Data Register

0x1 0x04 SLV_SEL_REG RW Subordinate Select Register

0x2 0x08 CFG_REG RW Configuration Register

0x3 0x0C CLK_PRESCL_REG RW Clock Pre-Scaler Low Register

0x4 0x10 CLK_PRESCH_REG RW Clock Pre-Scaler High Register

0x5 0x14 INT_STATUS_REG RW1C Interrupt Status Register

0x6 0x18 INT_ENABLE_REG RW Interrupt Enable Register

0x7 0x1C INT_SET_REG WO Interrupt Set Register

0x8 0x20 WORD_CNT_REG RO Word Count Register

0x9 0x24 WORD_CNT_RST_REG WO Word Count Reset Register

0xA 0x28 TGT_WORD_CNT_REG RW Target Word Count Register

0xB 0x2C FIFO_RST_REG WO FIFO Reset Register

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 46

Offset LMMI
Offset

APB/AHBL
Register Name Access Type Description

0xC 0x30 SLV_SEL_POL_REG RW Subordinate Select Polarity Register

0xD 0x34 FIFO_STATUS_REG RO FIFO Status Register

0xE

0xF
0x38-0x3C Reserved RSVD

Reserved. Write access is ignored and 0 is
returned on read access.

Table 2.45 lists the address map and specifies the registers available to the user. The offset of each register is dependent on
the Interface attribute setting as follows:

• Interface selected to be LMMI: the offset increments by one.

• Interface selected to be either AHBL or APB: the offset increments by four to allow easy interfacing with the Processor
and System Buses. In this mode, each register is 32-bit wide wherein the upper unused bits are reserved, and the lower
bits are described in each register description.

Notes:

1. For more details on the registers above, refer to the SPI Controller IP Core –User Guide (FPGA-IPUG-02069).

2. The RD_DATA_REG and WR_DATA_REG share the same offset. Write access to this offset goes to WR_DATA_REG while
read access goes to RD_DATA_REG.

2.12.3. Programming Flow

2.12.3.1. Initialization

The following SPI Manager registers should be set properly before performing SPI transaction:

• SLV_SEL_REG – Set 1’b1 to the bit for the target node. Set 1’b0 to other bits.

• SLV_SEL_POL_REG – may be configured once after reset since this setting is usually fixed.

• CLK_PRESCL_REG – Set based on target sclk_o frequency.

• CLK_PRESCH_REG – Set based on target sclk_o frequency.

The CPU needs to update the above registers only when SPI Manager aster is switching to different subordinate device. This
means there is no need to perform initialization again if the next transaction is for the currently selected subordinate
device.

2.12.3.2. Transmit/Receive Operation
The following are the recommended steps on performing the SPI transaction. This assumes that the module is not currently
performing any operation.

1. Set the following CFG_REG fields according to the target Subordinate settings: cpha, cpol, ssnp and lsb_first. Set the
only_write field based on the current transaction. If CFG_REG.only_write is 1’b0, SPI manager performs both transmit
and receive operations (full-duplex). On the other hand, if CFG_REG.only_write is 1’b1, SPI Manager IP Core performs
Transmit operation only.

2. Set TGT_WORD_CNT_REG according to the number of words to transfer.

3. Reset WORD_CNT_REG by writing 8’hFF to Word Count Reset Register

4. Write data words to WR_DATA_REG, amounting to ≤ FIFO Depth.

5. Optional: If interrupt mode is desired, enable target interrupts in INT_ENABLE_REG If number of words to transfer is
≤ FIFO Depth, set tr_cmp_en = 1’b1. If number of words to transfer is > FIFO Depth, set the following:
tx_fifo_aempty_en = 1’b1 and tr_cmp_en = 1’b1. Other interrupts not specified above are disabled.

6. If total number of words to transfer > FIFO Depth, wait for Transmit FIFO Almost Empty Interrupt.

a. If polling mode is desired, read INT_STATUS_REG until tx_fifo_aempty_int asserts.

b. If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT_STATUS_REG and check that
tx_fifo_aempt_int is asserted.

7. Clear Transmit FIFO Almost Empty Interrupt by writing 1’b1 to INT_STATUS_REG.tx_fifo_aempty_int. Clearing all
interrupts by writing 8’hFF to INT_STATUS_REG is also okay since the user is not interested in other interrupts for this
recommended sequence.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52473

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 47

8. Write data words to WR_DATA_REG, amounting to less than or equal to (FIFO Depth – TX FIFO Almost Empty Flag).

9. If CFG_REG.only_write = 1’b0, read all the data in RD_DATA_REG. It is expected that Receive FIFO has (FIFO Depth – TX
FIFO Almost Empty Flag - 1) amount of data words. Read INT_STATUS_REG.rx_fifo_ready_int to check if RD_DATA_REG
is already empty.

10. If there is remaining data to transfer, go back to Step 6. Note that you can read Word Count Register to determine the
number of words already transferred in SPI interface.

11. Wait for Transfer Complete Interrupt.

 If polling mode is desired, read INT_STATUS_REG until tr_cmp_int asserts.

 If interrupt mode is desired, set INT_ENABLE_REG = 8’h80 then wait for interrupt signal to assert. Then read
INT_STATUS_REG and check that tr_cmp_int is asserted.

12. Clear all interrupts by writing 8’hFF to INT_STATUS_REG.

13. If CFG_REG.ONLY_WRITE = 1’b0, read all the data in RD_DATA_REG. Read INT_STATUS_REG.rx_fifo_ready_int to check if
RD_DATA_REG is already empty

2.13. I2C Manager IP Design Details
The I2C (Inter-Integrated Circuit) bus is a simple, low-bandwidth, short-distance protocol. It is often seen in systems with
peripheral devices that are accessed intermittently. It is commonly used in short-distance systems, where the number of
traces on the board should be minimized. The device that initiates the transmission on the I2C bus is commonly known as
the Manager, while the device being addressed is called the Subordinates.

The I2C Manager IP is used to be integrated in node system SOC design as defined in node system top level architectural
diagram. This IP can be controlled by C/C++ APIs of node system CPU to read/write data from/to certain I2C based
peripheral/sensor. These C/C++ based APIs can be controlled by main system as well.

This section only provides minimum details of the I2C Manager IP required for the integration and controlling. Refer to the
I2C Manager IP user guide for more details.

2.13.1. Overview

The I2C Manager IP Core accepts commands from LMMI/APB interface through the register programming. These commands
are decoded into I2C read/write transactions to the external I2C subordinate device. The I2C bus transactions can be
configured to be 1 to 256 bytes in length.

The I2C Manager Controller can operate in interrupt or polling mode. This means that the CPU can choose to poll the I2C
Manager for a change in status at periodic intervals (Polling Mode) or wait to be interrupted by the I2C Manager Controller
when data needs to be read or written (Interrupt Mode).

Figure 2.16 shows the functional diagram of the I2C Manager Controller.

APB2LMMI
Bridge

I²C
Master IP

To Slaves

A
P

B
 IN

T
E

R
FA

C
E

(O
p

ti
o

n
a

l)

LM
M

I I
N

T
E

R
F

A
C

E

I²C
 IN

TE
R

FA
C

E

apb_paddr_i[15:0]

apb_psel_i

apb_penable_i

apb_pwrite_i

apb_pwdata_i[31:0]

apb_pready_o

apb_prdata_o[31:0]

apb_psleverr_o

dk_i

rst_n_i

lmmi_request_i

lmmi_wr_rdn_i

lmmi_offset_i[3:0]

lmmi_wdata_i[7:0]

lmmi_rdata_o[7:0]

lmmi_data_valid_o

lmmi_ready_o

int_o

scl_io

sda_io

Figure 2.16. I2C Manager Controller IP Core Functional Diagram

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 48

2.13.2. I2C Manager Register Map
The CPU can control the I2C Manager IP Core by writing to and reading from the configuration registers. The I2C Manager IP
Core configuration registers can be performed at the run-time.
Table 2.46 lists the address map and specifies the registers available to you. The offset of each register is dependent on
attribute APB Mode Enable setting as follows:

• APB Mode Enable is Unchecked – the offset increments by 1.

• APB Mode Enable is Checked – the offset increments by 4 to allow easy interfacing with the Processor and System
Buses. In this mode, each register is 32-bit wide wherein the upper bits [31:8] are reserved and the lower 8 bits [7:0]
are described in the Programming Flow section.

The RD_DATA_REG and WR_DATA_REG share the same offset. Write access to this offset goes to WR_DATA_REG while read
access goes to RD_DATA_REG.

Table 2.46. I2C Manager IP Core Registers Summary

Offset LMMI
Offset

APB/AHBL
Register Name Access Type Description

0x0 0x00 WR_DATA_REG WO Write Data Register

0x0 0x00 RD_DATA_REG RO Read Data Register

0x1 0x04 SLAVE_ADDRL_REG RW Subordinate Address Lower Register

0x2 0x08 SLAVE_ADDRH_REG RW Subordinate Address Higher Register

0x3 0x0C CONTROL_REG WO Control Register

0x4 0x10 TGT_BYTE_CNT_REG RW Byte Count Register

0x5 0x14 MODE_REG RW Mode Register

0x6 0x18 CLK_PRESCL_REG RW Clock Prescaler Low Register

0x7 0x1C INT_STATUS1_REG RW1C First Interrupt Status Register

0x8 0x20 INT_ENABLE1_REG RO First Interrupt Enable Register

0x9 0x24 INT_SET1_REG WO First Interrupt Set Register

0xA 0x28 INT_STATUS2_REG RW1C Second Interrupt Status Register

0xB 0x2C INT_ENABLE2_REG RO Second Interrupt Enable Register

0xC 0x30 INT_SET2_REG WO Second Interrupt Set Register

0xD 0x34 FIFO_STATUS_REG RO FIFO Status Register

0xE 0x38 SCL_TIMEOUT_REG RW SCL Timeout Register

0xF
0x3C Reserved RSVD

Reserved. Write access is ignored and 0 is
returned on read access.

Note: RW1C (Writing 1’b1 on register bit clears the bit to 1’b0. Writing 1’b0 on register bit is ignored). For more details on the registers
above, refer to I2C Manager IP Core – Lattice Radiant Software User Guide (FPGA-IPUG-02071).

2.13.3. Programming Flow

2.13.3.1. Initialization

The following I2C Manager registers can be set outside of the actual transaction sequence. These should be set properly
before starting an I2C transaction:

• SLAVE_ADDRL_REG, SLAVE_ADDRH_REG – Set the address of the target Subordinate Device

• CLK_PRESCL_REG – Set based on target scl_io frequency. The upper bits, MODE_REG and clk_presc_high, are set during
transaction because they are grouped with mode register.

• SCL_TIMEOUT_REG – Set to 8’h00 if the user does not want to check the SCL timeout or set to desired timeout value.

• INT_ENABLE2_REG – it is recommended to enable all interrupts in this register to check for error/unexpected event.

When accessing multiple devices, the SLAVE_ADDRL_REG or SLAVE_ADDRH_REG registers should be set prior to
transaction.

2.13.3.2. Writing to the Subordinate Device
The following are the recommended steps for performing I2C write transaction, this assumes that the module is not currently
performing any operation and initialization is completed.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52458

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 49

To perform I2C write transaction:

1. Set the following MODE_REG fields according to the desired transfer mode: bus_speed_mode, addr_mode, ack_mode,
clk_presc_high. Set the trx_mode field to 1’b0 for write transaction.

2. Set TGT_BYTE_CNT_REG according to the number of bytes to transfer.

3. Write data to WR_DATA_REG, amounting to ≤ FIFO Depth.

4. Set CONTROL_REG.start to 1’b1 to start the I2C transaction.

Optional: If interrupt mode is desired, Enable target interrupts in INT_ENABLE1_REG. If number of words to transfer is
≤ FIFO Depth, set tr_cmp_en = 1’b1 If number of words to transfer is > FIFO Depth, set the following:
tx_fifo_aempty_en = 1’b1 and tr_cmp_en = 1’b1. Other interrupts in this register are disabled.

5. If total number of bytes to transfer > FIFO Depth, wait for Transmit FIFO Almost Empty Interrupt. If polling mode is
desired, read INT_STATUS1_REG until tx_fifo_aempty_int asserts. If interrupt mode is desired, simply wait for interrupt
signal to assert, then read INT_STATUS1_REG and check that tx_fifo_aempt_int is asserted. In both cases, read also
INT_STATUS2_REG to ensure that the transfer is good. I2C Manager IP Core

6. Clear Transmit Buffer Almost Empty Interrupt by writing 1’b1 to INT_STATUS1_REG.tx_fifo_aempty_int. Clearing all
interrupts in this register by writing 8’hFF to INT_STATUS1_REG is also okay since the user is not interested in other
interrupts for this recommended sequence.

7. Write data to WR_DATA_REG, amounting to less than or equal to (FIFO Depth – TX FIFO Almost Empty Flag).

8. If there is remaining data to transfer, go back to Step 6.

9. Wait for Transfer Complete Interrupt.

10. If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts. If interrupt mode is desired, set
INT_ENABLE1_REG = 8’h80 then wait for interrupt signal to assert. Read INT_STATUS1_REG and if tr_cmp_int is
asserted.

11. Clear all interrupts by writing 8’hFF to INT_STATUS1_REG.

2.13.3.3. Reading from the Subordinate Device

The following are the recommended steps for performing I2C read transaction, assuming that the module is currently not
performing any operation and if initialization is completed.

To perform I2C read transaction:

1. Set the following MODE_REG fields according to the desired transfer mode: bus_speed_mode, addr_mode, ack_mode,
clk_presc_high. Set the trx_mode field to 1’b1 for read transaction.

2. Set TGT_BYTE_CNT_REG according to the number of bytes to transfer.

3. Set CONTROL_REG.start to 1’b1 to start the I2C transaction.

Optional: If interrupt mode is desired, enable target interrupts in INT_ENABLE1_REG If number of words to transfer is
≤ FIFO Depth, set tr_cmp_en = 1’b1.

4. If number of words to transfer is > FIFO Depth, set the following: rx_fifo_afull_en = 1’b1 and tr_cmp_en = 1’b1. Other
interrupts in this register are disabled.

5. If total number of bytes to receive > FIFO Depth, wait for Receive FIFO Almost Full Interrupt. If polling mode is desired,
read INT_STATUS1_REG until rx_fifo_afull_int asserts. If interrupt mode is desired, wait for the interrupt signal to assert,
and then read INT_STATUS1_REG and check if rx_fifo_afull_int is asserted. In both cases, read also INT_STATUS2_REG to
ensure that the transfer is good.

6. Clear Receive FIFO Almost Full Interrupt by writing 1’b1 to INT_STATUS1_REG.rx_fifo_afull_int. Clearing all interrupts in
this register by writing 8’hFF to INT_STATUS1_REG is also okay since the user is not interested in other interrupts for this
recommended sequence.

7. Read all data from RD_DATA_REG. It is expected the amount of received data is less than or equal to (FIFO Depth – TX
FIFO Almost Empty Flag). Read FIFO_STATUS_REG to confirm if Receive FIFO is emptied.

8. If there is remaining data to receive, go back to Step 5.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 50

9. Wait for Transfer Complete Interrupt. If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts If
interrupt mode is desired, set INT_ENABLE1_REG = 8’h80 and wait for the interrupt signal to assert. Read
INT_STATUS1_REG and check that tr_cmp_int is asserted.

10. Clear all interrupts by writing 8’hFF to INT_STATUS1_REG.

11. Read all the remaining data from RD_DATA_REG.

2.14. UART IP Design
The Lattice Semiconductor UART (Universal Asynchronous Receiver/Transmitter) IP Core is designed for use in serial
communication, supporting the RS-232.
The UART IP is used to be integrated in the node system SOC design as defined in node system top level architectural diagram.
This IP can be controlled by C/C++ APIs of node system CPU to read/write data from/to certain UART/modbus based
peripheral/sensor. These C/C++ based APIs can be controlled by main system as well.
This sections only provides minimum details of the UART IP required for the integration and controlling. Refer to the UART IP
user guide for more details.

2.14.1. Overview

The UART IP Core performs two main functions:

• Serial-to-parallel conversion on data characters received from an external UART device.

• Parallel-to-serial conversion on data characters received from the Host located in the FPGA.

The CPU can read the complete status of the UART at any time during the functional operation. Status information reported
includes the type and condition of the transfer operations being performed by the UART IP Core, as well as any error
conditions (parity, overrun, framing, or break interrupt).

The UART IP has implemented a processor-interrupt system similar to UART 16450. Interrupts can be programmed to your
requirements, minimizing the computing required to handle the communications link. The UART IP currently does not
implement the MODEM-control feature of UART 16450.

The registers of UART IP Core are accessed by the CPU (FPGA internal components) through an AMBA APB interface. The
functional block diagram of UART IP Core is shown in Figure 2.17. The dashed lines in the figure are optional
components/signals, which means they may not be available in the IP when disabled in the attribute.

UART 16450
Register Set

TXMTT

THR/
XMIT
FIFO

TX
FSM

RXCVER

RBR/
RCVR
FIFO

RX
FSM

UART IP Core

int_o

APB I/F

tx_ready_n_o

txd_o

rx_ready_n_o

rxd_o

Figure 2.17. UART IP Core Functional Block Diagram

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 51

2.14.1.1. UART Register Description

The register address map, shown in Table 2.47, specifies the available IP Core registers. This is based on register set of UART
16450, but the offset address is changed to simplify the access to each register. The offset of each register increments by
four to allow easy interfacing with the Processor and System Buses. In this case, each register is 32-bit wide wherein the
lower 8 bits are used, and the upper 24 bits are unused. The unused bits are treated as reserved – write access is ignored
and read access returns 0.

Table 2.47. UART Register Map

Offset Register Name Access Type Description

0x00 RBR RO Receive Buffer Register

0x00 THR WO Transmitter Holding Register

0x04 IER RW Interrupt Enable Register

0x08 IIR RO Interrupt Identification Register

0x0C LCR RW Line Control Register

0x10 Reserved RSVD Reserved

0x14 LSR RO Line Status Register

0x18-0x1C Reserved RSVD Reserved

0x20 DLR_LSB WO Divisor Latch Register LSB

0x24 DLR_MSB WO Divisor Latch Register MSB

0x28-0x3C Reserved RSVD Reserved

Note: Details of Registers is given in UART IP Core – Lattice Propel Builder User Guide (FPGA-IPUG-02105).

2.14.2. Programming Flow

2.14.2.1. Initialization

The following UART register fields should be set properly before performing UART transaction:

• Line Control Register – even_parity_sel, parity_en, stop_bit_ctrl, char_len_sel

• Divisor Latch Registers – divisor_msb, divisor_lsb

These should match the corresponding setting in the communicating UART for the serial transaction to be successful.

Note that reset values of these register fields are configurable during IP generation. Thus, in some applications, initialization
step is not necessary when attributes are properly set.

2.14.2.2. Transmit Operation

The following are the steps for transmitting character data through the UART IP Core. This is assuming that the IP is not
performing transmit operation or at least the XMIT FIFO is empty.

Transmit Operation – Interrupt Mode

To perform transmit operation in interrupt mode:

1. Write the data to THR. In FIFO mode, user can write up to 16-character data.

2. Set IER.thre_int_en=1’b1 to enable Transmit Holding Register Empty interrupt.

3. Wait for Transmit Holding Register Empty interrupt to assert.

4. Wait for interrupt assertion and check that IIR[3:0]= 4’b0010.

5. If the user needs to send more characters, repeat Steps 1-3 until all characters are sent.

6. When using interrupt, set IER.thre_int_en=1’b0 to disable the interrupt.

Transmit Operation – Polling Mode

To perform transmit operation in polling mode:

1. Write a data to THR. It is recommended not to enable FIFO for polling mode to save resource.

2. Read LSR until the thr_empty bit asserts.

3. If you need to send more characters, repeat steps 1 and 2 until all characters are sent.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52880

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 52

2.14.2.3. Receive Operation

The following are the steps for the receiving character data through the UART IP Core. This is assuming that the IP core is
not performing receive operation.

Receive Operation – Interrupt Mode

To perform receive operation in interrupt mode:

1. Enable the following interrupts:

 Received Data Available Interrupt (IER.rda_int_en=1’b1) – to notify the host that a data is received.

 Receiver Line Status interrupt (IER.rls_int_en=1’b1) – to notify the host of receive status such as error and break
condition.

2. Wait for interrupt assertion and check that IIR[2:0]= 3’b100 (Receive Data Available). If Receiver Line Status Interrupt
asserts (IIR[2:0]=3’b110), read the LSR to determine the cause.

3. If Receiver Line Status Interrupt does not occur, read the character data from RBR:

 If Receive Data Available Interrupt occurs, read a data from RBR.

 If Character Timeout Interrupt occurs, read LSR. If LSR.data_rdy=1’b1, read RBR.

4. Repeat steps 2-3 until all expected data are received.

Receive Operation – Polling Mode

To perform receive operation in polling mode:

1. Read LSR until the thr_empty bit asserts. Also, check that no error status bits are asserted.

2. Read RBR if there is no error.

3. If the user needs to receive more characters, repeat Steps 1 and 2 until all characters are received.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 53

2.14.2.4. Data Format
The character data written to THR and read from RBR is in little endian format as shown in Figure 2.18.

0 D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

7-Bit Data

8-Bit Data

Figure 2.18. UART Data Format

2.15. TSE MAC
Tri-Speed Ethernet Media Access Controller (TSEMAC) IP core is a complex core containing all necessary logic, interfacing,
and clocking infrastructure necessary to integrate an external industry-standard Ethernet PHY with an internal processor
efficiently and with minimal overhead.

The TSEMAC IP core supports the ability to transmit and receive data between the standard interfaces, such as APB or AHB-
Lite, and an Ethernet network. The main function of TSEMAC IP is to ensure that the Media Access rules specified in the
802.3 IEEE standard are met while transmitting a frame of data over Ethernet. On the receiving side, the TSEMAC extracts
different components of a frame and transfers them to higher applications through the FIFO interface.

Receive and

Transmit MAC

rxmac_clk_i

txmac_clk_i

cpu_if_gbit_en_o

reset_n_i

Interrupt

Interface int_o

G/MII

txd_pos_o

tx_en_o

tx_er_o

rx_dv_neg_i

rxd_neg_i

rx_er_pos_i

col_i

crs_i

txd_neg_o

rx_dv_pos_i

rxd_pos_i

rx_er_neg_i

MIIM

(optional)
mdo_o

mdio_en_o

mdc_i

mdi_i

tx_staten_o

tx_macread_o

tx_done_o

tx_discfrm_o

tx_statvec_o

tx_sndpaustim_i

RX FIFO

TX FIFO

rxdbout_o

rx_stat_vector_o

rx_eof_o

rx_error_o

rx_fifo_error_o

ignore_pkt_i

tx_sndpausreq_i

tx_fifoctrl_i

ahbl_hsel_i

ahbl_hready_i

ahbl_haddr_i[7:0]

ahbl_hburst_i[2:0]

ahbl_hsize_i[2:0]

ahbl_hmastlock_i

ahbl_hprot_i[3:0]

ahbl_htrans_i[1:0]

ahbl_hwrite_i

ahbl_hwdata_i[7:0]

ahbl_hrdata_o[7:0]

ahbl_hreadyout_o

ahbl_hresp_o

apb_paddr_i[7:0]

apb_psel_i

apb_penable_i

apb_pwrite_i

apb_pwdata_i[7:0]

apb_pready_o

apb_prdata_o[7:0]

apb_pslverr_o

A
P

B
 I

N
T

E
R

F
A

C
E

(O
p

ti
o

n
a

l)

A
H

B
-L

it
e

 I
N

T
E

R
F

A
C

E
 (

O
p

ti
o

n
a

l)

AXI4

Stream

Transmitter

Interface

tready_mstr_i

tlast_mstr_o

tdata_mstr_o

tvalid_mstr_o

AXI4

Stream

Receiver

Interface

tvalid_slv_i

tlast_slv_i

tready_slv_o

tdata_slv_i

FIFO

A
X

I
-
L

it
e

 I
N

T
E

R
F

A
C

E
 (

O
p

ti
o

n
a

l)
4

axi_awvalid_i

axi_awready_o

axi_awaddr_i[7:0]

axi_wdata_i[7:0]

axi_wready_o

axi_wvalid_i

axi_bresp_o[1:0]

axi_bvalid_o

axi_bready_i

axi_araddr_i[7:0]

axi_rdata_o[7:0]

axi_arvalid_i

axi_arready_o

axi_rresp_o[1:0]

axi_rvalid_o

axi_arready_i

rx_staten_o

rx_mii_clk_i**

tx_mii_clk_i**

** These inputs are only

present for the Classic

or RGMII option

Figure 2.19. Classic TSEMAC IP Top-Level Block Diagram

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 54

The register map is shown in section 2.4 of TSE MAC IPUG. For more details, refer to Tri-Speed Ethernet MAC IP Core User
Guide (FPGA-IPUG-02084).

2.16. SGMII IP Design
The Serial Gigabit Media Independent Interface (SGMII) connects Ethernet Media Access Controllers (MAC) and Physical
Layer Devices (PHY). This IP core may be used in bridging applications and/or PHY implementations. SGMII/Gb Ethernet PCS
IP core converts GMII frames into 8-bit code groups in both transmit and receive directions and performs auto-negotiation
with a link partner as described in the Cisco SGMII and IEEE 802.3 specifications. SGMII IP is a connection bus for MAC and
PHY and is often used in bridging applications and/or PHY implementations. It is particularly widely used as an interface for
a discrete Ethernet PHY chip.

The on board reset and the DDR Initialization signals are ANDed and given as the reset of the IP in the current design to
ensure that any data transfer happens only after the DDR is initialized.

The IP settings are shown in Figure 2.20.

Figure 2.20. SGMII IP Settings

For more details, refer to SGMII and Gb-Ethernet PCS IP Core User Guide (FPGA-IPUG-02077).

2.17. FPGA Config Module Design
Nexus configuration logic provides an LMMI interface to allow user logic residing inside the FPGA fabric to access the device
configuration (CFG) functionalities. To achieve this, the user has to instantiate the CONFIG_LMMIA primitive in the design.To
make sure the clock for the configuration engine is enabled, the user has to instantiate the OSC primitive in the design as well.
The FPGA config module will be designed to execute LSC_REFRESH command which is equivalent to toggling PROGRAMN pin
to automatically switch to alternate pattern (golden pattern).
The module will contain connections of the two primitives as shown below.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52476
https://www.latticesemi.com/view_document?document_id=52476
https://www.latticesemi.com/view_document?document_id=52472

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 55

Figure 2.21. CONFIG_LMMIA Primitive and OSC Primitive Connection

The module also has the LMMI driver logic, as shown in Figure 2.22, to execute the LSC_REFRESH command. The LMMI
interface runs on the sys_clk of 28.153 MHz.

Figure 2.22. LMMI LSC_REFRESH Command Execution

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 56

2.18. SFP Config Design Details
This module contains the logic for SFP configuration. It has LMMI module and the I2C master module. The I2C master derives
the LMMI to do the SFP configuration. It uses the link ok signal of the SGMII IP and SFP Absent signal, which generates the
SFP Disable signal.

The IP user interface is shown in Figure 2.23.

Figure 2.23. SFP Config User Interface

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 57

3. Resource Utilization
The resource utilization for the Main System is shown in Table 3.1.

Table 3.1. Main System Resource Utilization

Blocks LUTs EBRs LRAMs DSPs Comments

RISC-V CPU 5757 18 — 6 —

ISR RAM 116 32 — — —

Data RAM (System Memory) 884 — 2 — —

AXI4 Interconnect 17719 — — — —

APB Interconnect 78 — — — —

FIFO DMA 924 16 — — —

EtherConnect 4810 16 — — —

UART 271 — — — —

GPIO 108 — — — —

PLL 1 — — — —

SPI Flash Controller 508 1 — — —

AXI2APB 269 0 — — —

CNN Coprocessor Unit (CCU) 992 — — 4 —

Reset Sync 78 — — — —

Multiport Extension 16414 — — 65 —

UDP Stack 8870 — — 4 —

SGMII MAC Wrapper 4346 7 — — —

Top-level 2 — — — —

Total 62147 90 2 79 —

The resource utilization for the Node System is shown in Table 3.2.

Table 3.2. Node System Resource Utilization

Blocks LUTs EBRs LRAMs
DSP

MULT
Comments

RISC-V CPU 2537 2 — — —

ISR RAM 51 16 — — —

Data RAM (System Memory) 155 0 2 — —

AHBL Interconnect 1721 — — — —

APB Interconnect 14 — — — —

FIFO DMA 754 16 — — —

EtherConnect 4209 11 — — —

SPI Flash Controller 229 1 — — —

AHBL2APB 148 — — — —

Motor Control Data Collector 4152 17 — 15.5 —

UART 261 — — — —

I2C Manager 585 — — — —

SPI Manager 398 — — — —

Top-level 2 — — — —

Total 15216 63 2 15.5 —

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 58

4. Software APIs

4.1. Main System APIs

4.1.1. Tasks of the Main System

The Main System acts as an interface between the user interface and the node-system, which controls the motor IP. The
commands are then sent to the nodes for configuration through EtherConnect. The Main System also enables the user
interface to monitor various parameters of the motors. The system also receives commands from the GPIO switches
attached on the board and sends these commands to the nodes for configuration through EtherConnect as well.

The tasks to be carried out by the Main System can be categorized as follows:

• System Initialization
This API is used to configure the EtherConnect and establish communication between the Main system and nodes. This
takes place as soon as there is a power cycle or reset is pressed.

• Handle all the interrupts (GPIO, EtherConnect) and respond to the interrupts by taking appropriate actions.

• Communication with the host system, Node System, and mechanical switches occur through interrupts and the Main
System takes appropriate actions based on the interrupts caused. The priority order of all the interrupts is
GPIO > EtherConnect.

• Switch Configuration over GPIO
You can start, stop, accelerate, and decelerate the motors with the help of switches provided. The Main System
configures the node motor IP as per the switch configuration.

• Communicate with host system user interface over Ethernet
The host system user interface sends configuration data and status check commands to the Main System, and the Main
System responds based on the command.

• Communicate with Node System and motor IP over EtherConnect
As per the commands received by the Main System, it creates burst packets to send to the Node System, that the Node
System then receives and implements them. This communication between the main and Node System happens over
EtherConnect and at a given time, a maximum of 256 bytes can only be transmitted from either direction.

• ISR3_EtherConnect
static void etherConnect_isr (void *ctx)
The primary function of the EtherConnect ISR function is to set the interrupt flag, acknowledge the interrupt, and
return a value. The EtherConnect interrupt is used as an acknowledgement of the completion of a single transaction of
a command sent by the Main System to the Node System. The IRQ value for EtherConnect is IRQ3.

• System Initialization API
int system_initialisation (void)
This API is present in the main.c file. It does not take any parameter and returns an integer value. It returns 0 if
everything is successfully completed or a – 1 if there is an error.
This API is used to establish communication between the Main System and the Node System. It enables the DMA FIFO
module and sends 10 broadcast packets to detect the number of nodes available and active in the whole setup. By
reading the PHY Link Status register, it affirms whether the communication is established or not, and accordingly, turns
ON the Main System LEDs. This API then sends three training packets and one normal packet to the Node System
through the EtherConnect to affirm the connection establishment with the Node System.

• Motor Configuration API

int motor_config_api(uint32_t address, uint32_t data, uint32_t multi)

This API is present in the main.c file. It needs three parameters namely:

• address: signifies a register in the Motor Control IP

• data: what needs to be written in that register

• multi: data to be transmitted on multiple chains or selected chain only

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 59

It returns the following integer values:

• 0: if everything is correct

• –1: if there was any error

The API is called when there is a requirement to configure a register in the Motor Control IP of the Node System. This
occurs in two cases:

• when there is an ON switch on any GPIO
The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst packet
indicates that a particular packet is for Motor Configuration and for which nodes this packet is intended. Once the burst
packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start Transaction
Register. After the Node System completes the task successfully, the Main System receives an interrupt and validates
the value of the interrupt info register. Upon the confirmation of the value of the interrupt info register, this API
returns a 0 value or a –1 if there is an error.

• Motor Status API

int motor_status_api(uint32_t address, uint32_t multi)

This API is present in the main.c file. It needs one parameter:

• address: signifies a register in the Motor Control IP

• multi: EtherConnect packet to be transmitted on multiple chains or selected chains only

It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error
The API is called when there is a requirement to read a register in the Motor Control IP of the Node System.
The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst packet
indicates that a particular packet is for Motor Status Read and for which nodes this packet intended. Once the burst
packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start Transaction
Register. After the Node System has taken appropriate actions successfully, the Main System receives an interrupt, and
it validates the value of the interrupt info register. Upon the confirmation of the value of the interrupt info register, this
API returns a 0 value or a –1 if there is an error.

• PDM Data Fetch API

int pdm_data_fetch_api(uint32_t total_size, uint32_t node_addr)

The API is present in the main.c file. It needs two parameter:

• total_size: the size of the PDM data required from user interface

• node_addr: node select value sent in packet
It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error
The API is called when there is a requirement to read a bulk maintenance data from the Motor Control IP of the Node

System.

The maximum data that can be transferred in a single transaction from node to Main System is 256 bytes. Therefore, if

the total_size is larger than 256 bytes, chunks of 256 bytes are requested one by one until the total_size requirement is

met.

This API first configures the DMA register by writing the destination base and destination end address in specific registers.

The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst packet

indicates that a particular packet is for PDM Data Fetch and for which node this packet intended. Once the burst packet

is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start Transaction Register. After

the Node System completes the task successfully, the Main System receives an EtherConnect interrupt, and it validates

the value of the interrupt info register. The value of the DMA status register is to be validated as confirmation of the

same. A successful validation signifies that a single chunk of data is successfully written into the Main System memory.

This process is repeated until all the chunks are received by the Main System.

A final EtherConnect interrupt is then received from the Node System signifying the completion of the PDM data fetch

command for the total_size. Upon confirmation of the value of the interrupt info register, this API returns with 0 value.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 60

• PDM bulk Data Fetch API

int pdm_bulk_data_fetch_api (uint32_t total_size, uint32_t node_addr)

The API is present in the main.c file. It needs two parameters:

• total_size: the size of the PDM data required from user interface

• node_addr : node select value sent in packet
It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error
The API is called when there is a requirement to read a bulk maintenance data from the Motor Control IP of the Node

System.

This API is extended version of PDM Data Fetch API, as total size of data fetch depends on number of active nodes present

in that chain.

4.1.2. OPCUA PubSub :

In PubSub model, a Publisher component, which can define DataSets that contain Variables or EventNotifiers.The Publisher
publishes the DataSetMessages, which contain DataChanges or Events. The sender defines in Datasets what is sent, instead
of the receiver. Publishers are the source of data, and the Subscribers consume that data. Communication in PubSub is
message-based. Publishers send messages to a Message Oriented Middleware, Subscribers express interest in specific types
of data, and process messages that contain this data. OPCUA PubSub supports two different Message Oriented Middleware
variants, namely UDP based and Ethernet based protocol. Subscribers and Publishers use datagram protocols like UDP. The
core component of the Message Oriented Middleware is a message broker. Subscribers and Publishers use standard
messaging protocols like UDP or MQTT to communicate with the pub-sub.

• OPC UA defines two different Network types for PubSub.

• Local Network – can use UDP Broadcast (or Unicast in some cases) or Ethernet APL. The messages are optimized
binary UADP, which is defined in the OPC UA specifications. So, only OPC UA Subscribers can interpret the
messages.

• Message Queue Broker – can be an MQTT or AMQP broker, in practice. In this case, the messages are typically JSON
messages, although UADP can be used for improved performance. The OPC Foundation has defined a standard
content structure for the messages, but basically any JSON subscriber can interpret them.
The Main System module implements following functions:

• Generic variable Create_UADP_NetworkMessage ()

• Generic variables UADP NetworkMessage_parse ()

4.1.3. Create_UADP_NetworkMessage

4.1.3.1. NetworkMessage Header:

The NetworkMessage is a container for DataSetMessages and includes information shared between DataSetMessages.

The following are the parameters of the Network Message Header:

• UADPVersion – The UADPVersion for this specification version is 1.

• UADPFlags – This flag enabled group header, Payload header, PublisherId.

• ExtendedFlags1 – The ExtendedFlags1 is omitted if bit 7 of the UADPFlags is false. The PublisherId type is of DataType
Uint16.

• ExtendedFlags2 – The ExtendedFlags2 is omitted if bit 7 of the ExtendedFlags1 is false.

• PublisherId – The Id of the Publisher that sent the data. Valid DataType are Uintger and String.

• DataSetClassId – The DataSetClassId associated with the DataSets in the NetworkMessage.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 61

Network
Message
Header

Group
Header

Payload
Header

Extended
Network
Message
Header

Payload

Figure 4.1. UADP Version

Version/Flags
Extended

flags1
Extended

flags2
PublisherID DataSetClassId

1 Byte 1 Byte 1 Byte
1 .n
Byte 16 Byte

NetworkMessage Header

GroupFlags WriterGroupId GroupVersion
Network
Message
Number

Sequence
Number

1 Byte 2 Byte 4 Byte 2 Byte 2 Byte

Group Header

TimeStamp Pico Seconds
Promoted

Fields

8 Byte 2 Byte n Byte

Extended Network Message Header

Figure 4.2. UADP Message Packet Header

4.1.4. GroupHeader

The group header is omitted if bit 5 of the UADPFlags is false.

• GroupFlags – GroupFlags is used for writerGroupId,GroupVersion enabled, NetworkMessageNumber enabled,
SequenceNumber enabled.

• WriterGroupId – Unique id for the WriterGroup in the Publisher.

• GroupVersion – Version of the header and payload layout configuration of the NetworkMessages sent for the group.

• NetworkMessage Number – Unique number of a NetworkMessage combination of PublisherId and WriterGroupId
within one PublishingInterval.

• SequenceNumber – Sequence number for the NetworkMessage.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 62

4.1.5. Extended NetworkMessage Header
• Timestamp – The time the NetwrokMessage was created.

• PicoSeconds – Specifies the number of 10 picoseconds intervals which is added to the Timestamp.

• PromotedFields – PromotedFields are provided, the number of DataSetMessages in the Network Message is one.

4.1.5.1. Payload

Payload is defined with exact data of Node variables like nodeIds, requestType and these values. The UADP packet format
size is 64 bytes, header size is 20 bytes, and Payload size is 44 bytes.

Start

Initialize write group config

and enabled content mask

Group Header, Writer

Group ID, Publisher ID, and

Payload Header flags

Initialize data set message

structure according to the

UADP default configuration

flags

Send data set message into

send network message to

create new message

header part

Check writer Group

Pubsub encoding type
break

Initialize network message

structure using data set

message and writer group

config and prepare network

message header

Prepare the payload in

encode network message

depends on the user

interface response

End

No

Yes

Figure 4.3. Create_UADP_NetworkMessage

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 63

UADP_NetworkMessage_parse :

This module parses the data received from the publisher. The publisher sends the 64 bytes OPCUA pubsub message, which
holds the 20 bytes NetworkMessage header and, 44 Bytes payload. In payload data get the node ids and these node Ids are
identify the method call or node variables or method variables, After identification create an UDP data reponse header,csv
nodeid, request Type and value and writes the UDP data request on LPPDDR memory and get the UDP data response from
lpddr memory. The parse data get method nodeIds then called the method according to the method nodeid like startmotor,
stop motor, and power off.

void uadp_network_parse(unsigned int *Buffer);

The API is present in the UADP_NetworkMessage.c file. It gets the network message buffer from the user interface side.

Figure 4.4. UADP Network Message Format

udp_response_func

This module writes the UDP data request to the LPDDR4 memory and gets the UDP data response from LPDDR4 memory.

void udp_response_func()

This API is present in the UADP_NetworkMessage.c file. It does not require any parameter.

method_callbacks

This module checks the method id and calls the method like start motor, stop motor, power off, update config, and run
pdm.

void method_callbacks(unsigned char method)

This API is present in the rfl.c file. It gets the method nodeID parameter.

rfl_update_config

This module updates the motor variable configuration like rpm, breaker amps, number of Poles, max power.

void rfl_update_config()

This API is present in the rfl.c. file. It does not require any parameter.

start_motor

This function starts motor if motor is off or update target rpm of node.

void start_motor()

This API is present in the rfl.c file. It does not require any parameter.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 64

stop_motor

This function stops the motor of all nodes. This function works when one of the motors is running.

void stop_motor()

This API is present in the rfl.c file. It does not require any parameter.

poweroff_motor

This function stops the power supply of all nodes. This function also works when one of the motors is running and is
disabled if all motors are off.

void poweroff_motor()

This API is present in the rfl.c file. It does not require any parameter.

get_background

This function checks the Rpmlock, motor voltage, and motor status in background.

void get_background()

This API is present in the rfl.c file. It does not require any parameter.

run_pdm

This function collects the PDM data to generate the PDM image.

void run_pdm();

This API is present in the rfl.c file. It does not require any parameter.

4.2. Node System APIs

4.2.1. Tasks of the Node System

The Node System acts to control the Motor IP and get its status as commanded by the Main System. It communicates with
the Main System by receiving commands through EtherConnect. It performs the actions and responds to the Main System
with interrupts as acknowledgement for the tasks executed.

The tasks to be carried out by a master system can be categorized as follows:

• Communicate with the master system over EtherConnect

• As per the commands sent by the Main System, the Node System is supposed to either configure the motor, share the
motor status, or share the bulk PDM data.

• Perform key functions

4.2.2. API Calls
• Main () function

int main (void)

• Upon a power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts
(EtherConnect, UART).

• The main function then waits for the ether_interrupt_flag to get high. The EtherConnect ISR sets the flag,
ether_interrupt_flag when a command is received from the Main System. When the main function finds that the
flag is set, it reads the INTERRUPT STATUS register to decode which command is received. Based on the value of
this register, the main function calls the appropriate functions.

• Node Perpherials init

u08 general_init (void)

• Upon a power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts
for UART, EtherConnect. It also initializes Modbus, SPI, and I2C protocols.

• ISR1_EtherConnect

static void etherconnect_isr (void *ctx)

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 65

• The primary function of the EtherConnect ISR function is to set the interrupt flag, acknowledge/clear the interrupt
and return an integer value. The EtherConnect interrupts are used as indicators of the receipt of a command sent
by the Main System to the Node System. The IRQ value for EtherConnect is 0.

• Node Configuration API

int node_config_api(void)

• The API is present in the main.c file. It does not require any parameter.

• It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

• The API is called when the main function receives a Node Config command in its Interrupt Status Register. This API
reads the NODE ADDRESS register. This register contains an address of the peripheral (I2C, Modbus, SPI, and Motor
IP) which is supposed to be configured. Next, the NODE CONFIG DATA register is read. This register has the
configuration data. This data is then written into the address. If there is a read or write error, the API returns a –1
value. Once completed, the API returns a 0 value.

• Node Status API

int node_status_api(void)

• The API is present in the main.c file. It does not require any parameter. This returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

• The API is called whenever the main function receives a Node Status command in its Interrupt Status Register. This
API reads the NODE ADDRESS register. This register contains an address of the Node peripherial (Modbus, SPI, I2C,
Motor IP) whose configuration value is supposed to be read. This address is then read and stored in a local variable
data. This data is then written into the NODE STATUS register. If there is any read or write error, the API sends –1
value back. If everything goes okay, the API returns 0 value.

• PDM Data Fetch API

int pdm_data_fetch_api(void)

• The API is present in the main.c file. It does not require any parameter. This returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

• The API first reads the size of PDM data required from the PDM ADDRESS register. It then writes the base address
value and the end address (base address + size) value at the designated registers in the FIFO DMA Module. It then
enables the FIFO DMA module by sending writing 0x00000003 first and then 0x00000000 to the FIFO DMA
CONTROL register. Once done, it polls the DMA STATUS register for the indication of completion of the PDM data
fetch. Once it receives the done value, it sets the DMA DONE INDICATE register. If there is any read or write error,
the API sends –1 value back. If everything goes okay, the API returns 0 value.

• Node Peripheral APIs

• I2C Controller

The following are the I2C BSP functions used in the main.c file for writing and reading the I2C target data:

• uint8_t i2c_master_write(struct i2cm_instance × this_i2cm, uint16_t address,uint8_t data_size, uint8_t ×
data_buffer)

• uint8_t i2c_master_read(struct i2cm_instance × this_i2cm, uint16_t address,uint8_t read_length, uint8_t ×
data_buffer)

• SPI Controller

The following are the SPI BSP functions used in the main.c file for writing and reading SPI target data:

• uint8_t spi_master_write(struct spim_instance × this_spim,uint8_t data_size, uint8_t × data_buffer)

• uint8_t spi_master_read(struct spim_instance × this_spim,uint8_t read_length, uint8_t × data_buffer)

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 66

• Modbus RTU Master

The following are the Modbus module functions used in the main.c file for writing and reading Modbus RTU slave
data:

• eMBErrorCode eMBMasterInit(eMBMode eMode, void *dHUART, ULONG ulBaudRate, void *dHTIM)
This function initializes the ASCII or RTU module and calls the init functions of the porting layer to prepare the
hardware. Note that the receiver is still disabled and no Modbus frames are processed until
eMBMasterEnable() is called.

• eMBErrorCode eMBMasterPoll(void)
This function must be called periodically. The timer interval required is given by the application dependent
Modbus slave timeout. Internally thefunction calls xMBMasterPortEventGet() and waits for an event from the
receiver or transmitter state machines.

• unsigned int modbus_req (unsigned int mod_addr, unsigned int mod_data)

• This function parses the data received from Main system and fetch slave id command type and data from it. This
calls the functions below based on the command type.

• eMBMasterReqWriteHoldingRegister (slaveid, regnum, regdata, timeout)

• eMBMasterReqWriteCoil (slaveid, regnum, regdata, timeout)

• OPCUA INIT

• void opcua_init(void)

• This API is called to initialize the opuca header format. In this API, store the publisher ID and writer ID these
IDs are used into the pub-sub communication.

• OPCUA packet parse

• void opcua_etherconnect_parse(void)

• This API parse the OPCUA packet which gets from the ethernet to have the information about nodes. Nodes
information like node_Id, request_type and payload.

• OPCUA header response

• void opcua_header_response_loaded(unsigned int *response_packet)

• This API is loaded the default UADP network message header, which have the information about the writer ID,
publisher ID, and writer group ID and use of these IDs in the OPCUA pub-sub communication.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 67

5. Communications
This section describes the communications between the host to the Main System and the communication between the
Main System and the Node Systems. Detailed breakdown of message vocabulary and packet structure may be covered in a
separate document.

5.1. Communication between Host and Main System
Initially, this connection is implemented using the Ethernet interface. Most of the messages must be ASCII to facilitate
debugging using the terminal program on the Host.

5.1.1. Messages from Host to Main System
• Motor Configuration and Control

• PDM Configuration and Control

• Request Motor Status

• Request PDM Status

• Request PDM Data – Normal

• Request PDM Data – Extended

5.1.2. Messages from Main System to Host
• System Information (Link Status, Connected Nodes, Local Delay of Nodes, and others)

• Motor Status

• PDM Status

• PDM Data – Normal

• PDM Data – Extended

5.2. Communication between Main System and Node System(s)
The physical connection between the Main System and Node System is implemented using Ethernet Cat-5 cables. The physical
connection between the first Node System and subsequent Node System(s) also uses Ethernet Cat-5 cables, in a daisy-chain
fashion for both chains.

5.2.1. Messages from Main System to Node System
• Motor Configuration and Control

• PDM Configuration and Control

• Request Motor Status

• Request PDM Status

• Request PDM Data – Normal

• Request PDM Data – Extended

5.2.2. Messages from Node System to Main System
• Node Information (Link Status, Connected Nodes, and Local Delay)

• Motor Status

• PDM Status

• PDM Data – Normal

• PDM Data – Extended

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 68

Appendix A. Predictive Maintenance with TensorFlow Lite

A.1. Setting Up the Linux Environment for Neural Network Training
This section describes the steps for setting up NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS. The NVIDIA
library and TensorFlow version is dependent on the PC and Ubuntu/Windows version.

A.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU

A.1.1.1. Installing the CUDA Toolkit

To install the CUDA toolkit, run the following commands in the order specified below:
$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-

repo-ubuntu1604_10.1.105-1_amd64.deb

Figure A.1. Download CUDA Repo

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.debA

Figure A.2. Install CUDA Repo

$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.p

ub

Figure A.3. Fetch Keys

http://www.latticesemi.com/legal
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 69

$sudo apt-get update

Figure A.4. Update Ubuntu Packages Repositories

$ sudo apt-get install cuda-9-0

Figure A.5. CUDA Installation

A.1.1.2. Installing the cuDNN

To install the cuDNN:

1. Create NVIDIA developer account: https://developer.nvidia.com.

2. Download cuDNN lib: https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

3. Execute the commands below to install cuDNN

$ tar xvfcudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h/usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudochmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*

Figure A.6. cuDNN Library Installation

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 70

A.1.2. Setting Up the Environment for Training and Model Freezing Scripts

This section describes the environment setup information for training and model freezing scripts for 64-bit Ubuntu 16.04.
Anaconda provides one of the easiest ways to perform machine learning development and training on Linux.

A.1.2.1. Installing the Anaconda Python

To install the Anaconda and Python 3:

1. Go to the https://www.anaconda.com/products/individual#download website.

2. Download Python3 version of Anaconda for Linux.

3. Run the command below to install the Anaconda environment:
$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release.

Figure A.7. Anaconda Installation

4. Accept the license.

Figure A.8. Accept License Terms

5. Confirm the installation path. Follow the instruction onscreen if you want to change the default path.

Figure A.9. Confirm/Edit Installation Location

6. After installation, enter no as shown in Figure A.10.

Figure A.10. Launch/Initialize Anaconda Environment on Installation Completion

http://www.latticesemi.com/legal
https://www.anaconda.com/products/individual#download

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 71

A.1.3. Installing the TensorFlow Version 1.15

To install the TensorFlow version 1.15:

1. Activate the Anaconda environment by running the command below:
$ source <conda directory>/bin/activate

Figure A.11. Anaconda Environment Activation

2. Install the TensorFlow by running the command below:
$ conda install tensorflow-gpu==1.15.0

Figure A.12. TensorFlow Installation

3. After installation, enter Y as shown in Figure A.13.

Figure A.13. TensorFlow Installation Confirmation

Figure A.14 shows TensorFlow installation is complete.

Figure A.14. TensorFlow Installation Completion

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 72

A.1.4. Installing the Python Package

To install the Python package:

1. Install Easydict by running the command below:
$ conda install –c conda-forge easydict

Figure A.15. Easydict Installation

2. Install Joblib by running the command below:
$ conda install joblib

Figure A.16. Joblib Installation

3. Install Keras by running the command below:
$ conda install keras

Figure A.17. Keras Installation

4. Install OpenCV by running the command below:
$ conda install opencv

Figure A.18. OpenCV Installation

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 73

5. Install Pillow by running the command below:
$ conda install pillow

Figure A.19. Pillow Installation

A.2. Creating the TensorFlow Lite Conversion Environment
To create a new Anaconda environment and install tensorflow=2.2.0:

1. Create a new Anaconda environment.
$ conda create -n <New Environment Name> python=3.6

2. Activate new created environment.
$ conda activate <New Environment Name>

3. Install Tensorflow 2.2.0.
Note: We have noticed output difference in Tensorflow(2.2.0) and Tensorflow-gpu(2.2.0) in terms of tflite size.
It is recommended to use TensorFlow (2.2.0).
$ conda install tensorflow=2.2.0

4. Install opencv.
$conda install opencv

A.3. Preparing the Dataset
This section describes the steps and guidelines used to prepare the dataset for training the predictive maintenance.
Note: In the following sections, Lattice provides guidelines and/or examples that can be used as references for preparing
the dataset for the given use cases. Lattice is not recommending and/or endorsing any dataset(s). It is recommended that
customers gather and prepare their own datasets for their specific end applications.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 74

A.3.1. Dataset Information

In the predictive maintenance demonstration, there are three classes: bad, Normal, and unknown. The dataset must be
organized as shown in Figure A.20. The 0 folder contains bad motor data and the 1 folder contains normal motor data.

Figure A.20. Predictive Maintenance Dataset

A.4. Preparing the Training Code
Notes:

• Training and freezing code uses TensorFlow 1.15.0 since some of the APIs used in training code are not available in

Tensorflow 2.x.

• For the TensorFlow Lite conversion in the TensorFlow Lite Conversion and Evaluation section, TensorFlow 2.2.0 is used.

A.4.1. Training Code Structure

Download the Lattice predictive maintenance demo training code. Its directory structure is shown in Figure A.21.

Figure A.21. Training Code Directory Structure

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 75

A.4.2. Generating tfrecords from Augmented Dataset

This demo only takes tfrecords of a specific format for input. As such, generate the tfrecords first. Run the command below
to generate tfrecords from input dataset.

$ python tfrecord-gen.py -i <Input_augmented_dataset_root> -o <Output_tfrecord_path>

The input directory should follow the structure shown in Figure A.21.

A.4.3 Neural Network Architecture

This section provides information on the Convolution Neural Network Configuration of the Predictive Maintenance design.

Table A.1. Predictive Maintenance Training Network Topology

Input Gray Scale Image (64×64×1)

Fire1

Conv3x3 – 8 Conv3×3 - # where:

• Conv3×3 – 3 × 3 Convolution filter Kernel size

• # - The number of filters

For example, Conv3×3 - 8 = 8 3 × 3 convolution filter

Batchnorm: Batch Normalization

FC - # where:

• FC – Fully connected layer

• # - The number of outputs

Batchnorm

ReLU

Maxpool

Fire2

Conv3×3 – 8

Batchnorm

ReLU

Fire3

Conv3×3 – 16

Batchnorm

ReLU

Maxpool

Fire4

Conv3×3 – 16

Batchnorm

ReLU

Fire5

Conv3×3 – 16

Batchnorm

ReLU

Maxpool

Fire6

Conv3×3 – 22

Batchnorm

ReLU

Fire7

Conv3×3 – 24

Batchnorm

ReLU

Maxpool

Dropout Dropout - 0.80

logit FC – (3)

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 76

In Table A.1, Layer contains Convolution (conv), batch normalization (BN), ReLU, pooling, and dropout layers. Output of layer
logit is (Broken [0], Normal [1], Unknown [2]) 3 values.

• Layer information

• Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters (sometimes
referred as kernels) which convolves with input layer/image and generates activation map (such as feature map). This
filter is an array of numbers (the numbers are called weights or parameters). Each of these filters can be thought of
as feature identifiers, like straight edges, simple colors, and curves and other high-level features. For example, the
filters on the first layer convolve around the input image and “activate” (or compute high values) when the specific
feature (say curve) it is looking for is in the input volume.

• ReLU (Activation Layer)
After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward. The
purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear operations
during the conv layers (just element wise multiplications and summations).In the past, nonlinear functions like tanh
and sigmoid were used, but researchers found out that ReLU layers work far better because the network is able to
train a lot faster (because of the computational efficiency) without making a significant difference to the accuracy.
The ReLU layer applies the function f(x) = max (0, x) to all values in the input volume. In basic terms, this layer just
changes all the negative activations to 0. This layer increases the nonlinear properties of the model and the overall
network without affecting the receptive fields of the conv layer.

• Pooling Layer

After some ReLU layers, programmers may choose to apply a pooling layer. It is also referred to as a down sampling
layer. In this category, there are also several layer options, with Maxpooling being the most popular. This basically
takes a filter (normally of size 2×2) and a stride of the same length. It then applies it to the input volume and outputs
the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once the user knows that a specific feature is in the original input
volume (a high activation value results), its exact location is not as important as its relative location to the other
features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the width change
but not the depth) of the input volume. This serves two main purposes. The first is that the number of parameters
or weights is reduced by 75%, thus lessening the computation cost. The second is that it controls over fitting. This
term refers to when a model is so tuned to the training examples that it is not able to generalize well for the validation
and test sets. A symptom of over fitting is having a model that gets 100% or 99% on the training set, but only 50% on
the test data.

• Batchnorm Layer

Batch normalization layer reduces the internal covariance shift. To train a neural network, perform
pre-processing to the input data. For example, the user can normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). Reason being preventing the early saturation of non-
linear activation functions like the sigmoid function, assuring that all input data is in the same range of values.
But the problem appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt themselves
to a new distribution in every training step. This problem is known as internal covariate shift.
Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following below process during training time:

• Calculate the mean and variance of the layers input.

• Normalize the layer inputs using the previously calculated batch statistics.

• Scales and shifts to obtain the output of the layer.
This makes the learning of layers in the network more independent of each other and allows you to be carefree about
weight initialization, works as regularization in place of dropout and other regularization techniques.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 77

• Drop-out Layer

Dropout layers have a very specific function in neural networks. After training, the weights of the network are so
tuned to the training examples they are given that the network does not perform well when given new examples.
The idea of dropout is simplistic in nature. This layer drops out a random set of activations in that layer by setting
them to zero. It forces the network to be redundant. That means the network should be able to provide the right
classification or output for a specific example even if some of the activations are dropped out. It makes sure that the
network is not getting too “fitted” to the training data and thus helps alleviate the over fitting problem. An important
note is that this layer is only used during training, and not during test time.

• Fully-connected Layer

This layer basically takes an input volume (whatever the output is of the conv or ReLU or pool layer preceding it) and

outputs an N dimensional vector where N is the number of classes that the program must choose from.

• Quantization

Quantization is a method to bring the neural network to a reasonable size, while also achieving high performance
accuracy. This is especially important for on-device applications, where the memory size and number of
computations are necessarily limited. Quantization for deep learning is the process of approximating a neural
network that uses floating-point numbers by a neural network of low bit width numbers. This dramatically reduces
both the memory requirement and computational cost of using neural networks.

The above architecture provides nonlinearities and preservation of dimension that help to improve the robustness of the
network and control over fitting.

A.4.4. Training Code Overview

resnet_main.py

Mode is
Evaluation?

No Yes

Create training
data input pipeline

Build model

Restore
checkpoint if

available

Build evaluation
model

Restore
checkpoints

Run evaluation
on given batches
and print states

Mode is
Freeze?

Save inference
.pbtxt

Exit

Training loop

No

Yes

Train model

Save
checkpoints

Create input FIFO
queue

Create input pipe
with augmentation

operations

Read TFrecords

Create evaluation
data input pipeline

Create input FIFO
queue

Read TFrecords

Figure A.22. Training Code Flow Diagram

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 78

A.4.4.1. Configuring Hyper-Parameters

Figure A.23. Code Snippet: Hyper Parameters

• Set number of classes in num_classes (default = 3).

• Change batch size for specific mode if required.

• hps: it contains list of hyper parameters for custom resnet backbone and optimizer.

A.4.4.2. Creating Training Data Input Pipeline

Figure A.24. Code Snippet: Build Input

• build_input () from cifer_input.py reads Tfrecords and creates some augmentation operations before pushing the input

data to FIFO queue.

• FLAGS.dataset : dataset type (signlang)

• FLAGS.train_data_path: input path to tfrecords

• FLAGS.batch_size: training batch size

• FLAGS.mode: train or eval

• FLAGS.gray: True if model is of 1 channel otherwise False

• hps[1]: num_classes configured in model hyper parameters

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 79

Read tfrecords

Figure A.25. Code Snippet: Parse tfrecords

• Above snippet reads tfrecord files and parse its features that are height, width, label, and image.

Converting Image to Grayscale and Scaling the Image

Figure A.26. Code Snippet: Convert Image to Grayscale

• Convert RGB image to gray scale if gray flag is true.

Figure A.27. Code Snippet: Convert Image to BGR and Scale the Image

• Unstack channel layers and convert to BGR format if the image mode is not gray. The RGB is converted to BGR because

the iCE40 works on BGR image.

• Divide every element on image with 128 so that the values can be scaled to 0-2 range.

Creating Input Queue

Figure A.28. Code Snippet: Create Queue

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 80

• tf.RandomShuffleQueue is queue implementation that dequeues elements in random order.

Figure A.29. Code Snippet: Add Queue Runners

• Above snippet enqueues images and labels to the RandomShuffleQueue and add queue runners. This directly feeds
data to network.

A.4.4.3. Model Building

CNN Architecture

Figure A.30. Code Snippet: Create Model

• Build_graph () method creates training graph or training model using given configuration.

• Build_graph creates model with seven fire layers followed by dropout layer and fully connected layers. Where each fire
layer contains convolution, relu as activation, batch normalization, and max pooling (in Fire 1, 3, 5 & 7 only). Fully
connected layer provides the final output.

Figure A.31. Code Snippet: Fire Layer

• The following are the arguments of the _vgg_layer:

• First argument is name of the block.

• Second argument is input node to new fire block.

• oc: output channels are the number of filters of the convolution.

• freeze: setting weighs are trainable or not.

• w_bin: Quantization parameter for convolution

• a_bin: quantization parameter for activation binarization(relu).

• pool_en: flag to include Maxpool in firelayer.

• min_rng, max_rng: Setting maximum and minimum values of quantized activation. Default values for min_rng = 0.0

and max_rng = 2.0.

• bias_on: Sets bias add operation in graph if true.

• phase_train: Argument to generate graph for inference and training.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 81

Figure A.32. Code Snippet: Convolution Block

• In the resnet_model.py file, the basic network construction blocks are implemented in specific functions as below:

• Convolution – _conv_layer

• Batch normalization – _batch_norm_tensor2

• ReLU – binary_wrapper

• Maxpool – _pooling_layer

• _conv_layer

• Contains code to create convolution block. Which contains kernel variable, variable initializer, quantization code,
convolution operation and ReLU if argument relu is True.

• _batch_norm_tensor2

• Contains code to create batch-normalization operation for both training and inference phase.

• Binary_wrapper

• Used for quantized activation with ReLU.

• _pooling_layer

• Adds Max pooling with given kernel-size and stride size to training and inference graph.

Feature Depth of Fire Layer

Figure A.33. Code Snippet: Feature Depth Array for Fire Layers

• List depth contains feature depth for seven fire layers in network.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 82

Figure A.34. Code Snippet: Forward Graph Fire Layers

Loss Function and Optimizers

Figure A.35. Code Snippet: Loss Function

• Model uses softmax_cross_entropy_with_logitds because the labels are in form of class index.

Figure A.36. Code Snippet: Optimizers

• There are four options for selecting optimizers. In this model, use the mom optimizer as default.

A.4.4.4. Restore Checkpoints

Checkpoints are restored from log directory and then starts training from that checkpoint if checkpoints exist in log
directory.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 83

Figure A.37. Code Snippet: Restore Checkpoints

A.4.4.5. Saving .pbtxt

If mode is freeze it saves the inference graph (model) as .pbtxt file. The .pbtxt file is used later for freezing.

Figure A.38. Code Snippet: Save .pbtxt

A.4.4.6. Training Loop

Figure A.39. Code Snippet: Training Loop

• MonitoredTrainingSession utility sets proper session initializer/restorer. It also creates hooks related to checkpoint and
summary saving. For workers, this utility sets proper session creator which waits for the chief to initialize/restore. Refer
to tf.compat.v1.train.MonitoredSession for more information.

• _LearningRateSetterHook

Figure A.40. Code Snippet: _ LearningRateSetterHook

http://www.latticesemi.com/legal
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/MonitoredSession

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 84

• This hook sets learning rate based on training steps performed.

• Summary_hook

Figure A.41. Code Snippet: Save Summary for Tensorboard

• Saves tensorboard summary for every 100 steps.

• Logging_hook

Figure A.42. Code Snippet: logging hook

• Prints logs after every 100 iterations.

A.4.5. Training from Scratch and/or Transfer Learning

A.4.5.1. Training

Open the run script and edit parameters as required.

Figure A.43. Predictive Maintenance – Run Script

To start training run the run script as mentioned below.

$./run

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 85

Figure A.44. Predictive Maintenance – Trigger Training

A.4.5.2. Transfer Learning

Figure A.45. Predictive Maintenance – Trigger Training with Transfer Learning

• To restore checkpoints, no additional action is required. Run the same command again with the same log directory. if the

checkpoints are present in log path where it is be restored and continue training from that step.

A.4.5.3. Training Status

• Training status can be checked in logs by observing different terminologies like loss, precision and confusion matrix.

Figure A.46. Predictive Maintenance – Training Logs

Figure A.47. Predictive Maintenance – Confusion Matrix

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 86

• You can use Tensorboard utility for checking training status.

• Start Tensorboard by below command:
$ tensorboard –logdir=<log directory of training>

Figure A.48. Tensorboard – Launch

• This command provides the link, which needs to be copied and open in any browser such as Chrome, Firefox, and

others or right-click on the link and click Open Link.

Figure A.49. Tensorboard – Link Default Output in Browser

• Similarly, other graphs can be investigated from the available list.

• Check if the checkpoint, data, meta and index files are created at the log directory. These files are used for creating the

frozen file (*.pb).

Figure A.50. Checkpoint Storage Directory Structure

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 87

A.5. Creating Frozen File
This section describes the procedure for freezing the model, which is aligned with the Lattice sensAI tool. Perform the steps
below to generate the frozen protobuf file:

A.5.1. Generating .pbtxt File for Inference

Once the training is completed run below command to generate inference .pbtxt file.
Note: Do not modify config.sh after training.

$ python resnet_main.py --train_data_path=<TFRecord_root_path> --

log_root=<Logging_Checkpoint_Path> --train_dir=<tensorboard_summary_path> --

dataset='signlang' --image_size=64 --num_gpus=<num_GPUs> --mode=freeze

Figure A.51. Generated ‘.pbtxt’ for Inference

It generates the .pbtxt file for inference under the train log directory.

A.5.2. Generating the Frozen (.pb) File

$ python genpb.py --ckpt_dir <COMPLETE_PATH_TO_LOG_DIRECTORY>

Figure A.0.52. Run genpb.py to Generate Inference .pb

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 88

• genpb.py uses .pbtxt generated by procedure in the Generating .pbtxt File for Inference section and latest checkpoint in

train directory to generate frozen .pb file.

• Once the genpb.py is executed successfully, the <ckpt-prefix>_frozenforinference.pb becomes available in the log

directory as shown in below figure

Figure A.53. Frozen Inference .pb Output

A.6. TensorFlow Lite Conversion and Evaluation
This section contains information for converting frozen pb to TensorFlow Lite model, quantize the model and evaluate on test
dataset.
Note: It is recommended to use Tensorflow 2.2.0 (CPU Only) instead Tensorflow 1.15.0 In TensorFlow Lite conversion flow.
Use Environment created from the Creating the TensorFlow Lite Conversion Environment section.

A.6.1. Converting Frozen Model to TensorFlow Lite

You can find the gen_tflite_and_quant.py under training code, which converts the frozen model to TensorFlow Lite and also
quantize it with INT8 quantization.

$ python gen_tflite_and_quant.py --input_path <sample images path> --tflite_path

<output tflite path> --pb <frozen pb file>

The following are the argument information:

• --input_path: sample images that are used for quantization.

• --tflite_path: (default motor-model.tflite) output tflite path

• --pb: Frozen pb path

The command saves the TensorFlow Lite at given path.

A.6.2. Evaluating TensorFlow Lite Model

$ python evaluate_tflite.py --dataset_path <dataset_path> --tflite_path <tflite

path>

The following are the argument information:

• --dataset_path: Test set path. Note that the labels should be (0, 1) for predictive maintenance.

• --tflite_path: tflite model path
The command shows accuracy on both classes.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 89

A.6.3. Converting TensorFlow Lite To C-Array

$ xxd -i your-tflite-model-path.tflite > out_c_array.cc

The command generates the c array at the path you provided.

Refer to Automate Stack 3.1 Demo User Guide (FPGA-UG-02164) for detailed instructions on compiling the code, installing
the client-end application, automate stack 3.1 bit file and binary, programming the Automate Stack on SPI Flash memory,
troubleshooting the main system board, and debugging using Docklight, OPCUA Modeler, and CSV file.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=54131

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 90

Appendix B. Setting Up the Wireshark Tool
Note: To download the wireshark tool, go to https://www.wireshark.org/download.html.

Figure B.1. Wireshark Downloadable Link

To set up the Wireshark tool, perform the following steps:

1. Open the Wireshark tool and select the network (Ethernet).

2. Click on the Ethernet network.

Figure B.2. Wireshark Tool – Ethernet selection

3. Click on the Run () button.

4. Check the UDP message use port filter (udp.port == 1486) on the top bar.

Figure B.3. Wireshark Tool – Write udp.port == 1486

http://www.latticesemi.com/legal
https://www.wireshark.org/download.html

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 91

5. Check both the source and destination IP.

Figure B.4. Source and Destination UDP Packet

6. Click the UDP packet.

Figure B.5. Wireshark Tool – First UDP Packet

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 92

Appendix C. Generating Automate Stack 3.1 Propel Patch and
Bitstream
Lattice Automate solution stack project files can be downloaded by installing the Automate propel patch from the Lattice
Automate web page.

C.1. Installing the Propel SDK 2023.2
To install the Propel SDK, perform the following steps:

1. Double-click on the application to install and click Yes on the pop-out window.

Figure C.1. Propel Application

Figure C.2. Allow Permission

2. Click Next as shown in Figure C.3 to Figure C.5.

http://www.latticesemi.com/legal
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/Automate
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/Automate

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 93

Figure C.3. Lattice Propel 2023. 2 Installation Wizard

Figure C.4. Select Installation Folder

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 94

Figure C.5. Install Components

3. Select I accept the license and click Next as shown in Figure C.6 to Figure C.7.

Figure C.6. Accept the License

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 95

Figure C.7. Start Menu Shortcut

4. Click Install.

Figure C.8. Install the Propel SDK Application

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 96

5. Wait for the installation process to reach 100%.

Figure C.9. Installation Process

6. Click Finish once installation is complete.

Figure C.10. Installation Complete

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 97

7. Paste the downloaded license to the path: C:\lscc\propel\2023.2\license.

Figure C.11. License Path

8. Install the Lattice Automate 3.1 Propel patch. Follow steps as above to install Automate Propel patch.

Figure C.12. Automate 3.1 Propel Patch

C.2. Generating the Binary

C.3.1. Primary Main System

To generate the binary in the primary main system, perform the steps below:

1. Double-click Lattice Propel SDK 2023.2 to open the dialogue box as shown in Figure C.13.

Figure C.13. Propel 2023.2 Application

2. To select the workspace, browse to the template location or where your project is located:
\Main_System\Primary_MainSystem. Click the Launch button to launch the workspace.

Figure C.14. Select Directory

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 98

3. Click Import projects or go to the Import from file to import firmware project template.

Figure C.15. Import Project

4. Select Existing Project in Workspace from General list and click on next as shown in Figure C.16.

Figure C.16. Existing Project into Workspace

5. Select the root directory and browse template location.

6. Select the project as shown in Figure C.18: \Main_System\Primary_MainSystem.

7. Click Finish.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 99

Figure C.17. Import Project

8. Right-click on the firmware project folder c_main_system_3_1_cnn and select Properties.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 100

Figure C.18. Properties

9. Go to C/C++ build > Settings and click Manage Configurations.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 101

Figure C.19. C/C++ build settings

10. Select Release and apply Set Active. Click OK.

Figure C.20. Manage Configuration – Release: Set Active

11. Click Apply and close.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 102

Figure C.21. Manage Configuration: Apply and Close

12. Right-click on the firmware project folder c_main_system_3_1_cnn and select the option as shown in Figure C.22 to
clean the project before building.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 103

Figure C.22. Clean project Configurations

13. After selecting the option as shown in above fig. observe the console and wait for the process to complete to 100%.
After completion, the message shown in Figure C.23 appears on the console.

Figure C.23. Console

14. After cleaning, right click on the “c_main_system_3_1_cnn” and select the option as shown in Figure C.24 to build the
project.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 104

Figure C.24. Build Project

15. Wait for the process to complete to 100%. After completion, the message shown in Figure C.25 appears on the console.

Figure C.25. Completing Process

16. Locate the binary file: \Main_System\Primary_MainSystem\c_main_system_3_1_cnn\Release.

17. Right-click on the bootloader project folder “Primary_Bootloader_Cproj” and select the option as shown in Figure C.26
to clean the project before building.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 105

Figure C.26. Clean All Configurations

18. After selecting the option as shown in above fig. observe the console and wait for the process to complete to 100%.
After completion, the message shown in Figure C.27 appears on the console.

Figure C.27. Console

19. After cleaning, right-click on the Primary_Bootloader_Cproj and select the option as shown in Figure C.28 to build the
project.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 106

Figure C.28. Build All Configurations

20. Wait for the process to complete to 100%. After completion, the message shown in Figure C.29 appears on the console.

Figure C.29. Completing Process

21. To locate the binary file to below path: \MainSystem\Primary_MainSystem\Primary_Bootloader_CProj\Debug.

C.3.2. Golden Main System

To generate the binary in the golden main system, perform the steps below:

1. Double-click Lattice Propel SDK 2023.2 to open the dialogue box.

Figure C.30. Propel 2023.2 Application

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 107

2. To select the workspace, browse to the template location or where your project is located:
\MainSystem\Golden_MainSystem\. Click the Launch button to launch the workspace.

Figure C.31. Select Directory

3. Click Import projects or go to Import > File to import the firmware project template.

Figure C.32. Import Project

4. Select Existing Project in Workspace from the general list and click Next as shown in Figure C.33.

Figure C.33. Existing Project into Workspace

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 108

5. Select the root directory and browse template location.

6. Select the project as shown in Figure C.34: \MainSystem\Golden_MainSystem.

7. Click Finish.

Figure C.34. Import Project

8. Right-click on the firmware project folder Golden_App and select the option as shown in Figure C.35 to clean the
project before building.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 109

Figure C.35. Clean Project Configurations

9. After selecting the options, observe the console and wait for the process to complete to 100%. After completion, the
message shown in Figure C.36 on the console.

Figure C.36. Console

10. After cleaning, right-click on the Golden_App and select the option as shown in Figure C.37 to build the project.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 110

Figure C.37. Build Project

11. Wait for the process to complete to 100%. After completion, the message shown in Figure C.38 appears on the console.

Figure C.38. Completing Process

12. Locate the binary file to below path: \MainSystem\Golden_MainSystem\Golden_App\Debug.

13. Right-click on the bootloader project folder Golden_Bootloader_Cproj and select the option as shown in Figure C.39 to
clean the project before building.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 111

Figure C.39. Clean All Configurations

14. After selecting the option as shown in Figure C.39, observe the console and wait for the process to reach 100%. After
completion, the message shown Figure C.40 appears on the console.

Figure C.40. Console

15. After cleaning, right-click on Golden_Bootloader_Cproj and select the option as shown in Figure C.41 to build the
project.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 112

Figure C.41. Build All Configurations

16. Wait for the process to reach 100%. After completion, the message shown in Figure C.42 appears on the console.

Figure C.42. Completing Process

17. Locate the binary file: \MainSystem\Golden_App\Golden_Bootloader_CProj\Debug.

C.3.3. Node System

To generate the binary in the node system, perform the steps below:

1. Double-click Lattice Propel SDK 2023.2 to open the dialogue box as shown in Figure C.43.

Figure C.43. Propel Application

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 113

2. To select the workspace, browse to the template location: \NodeSystem. Click the Launch button to launch the
workspace.

Figure C.44. Select Directory

3. Click Import projects or go Import > File to import firmware project template.

Figure C.45. Import Project

4. Select Existing Project in Workspace from General list and click on next as shown in below fig.

Figure C.46. Existing Project into Workspace

5. Select root directory and browse template location.

6. Select project as shown in below: \NodeSystem

7. Click Finish.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 114

Figure C.47. Select Project

8. Right-click on the firmware project folder “c_node_system_3_1” and select the option as shown in below fig. to clean
the project before building.

Note: If you are doing the fresh patch installation, proceed to Build All configurations directly.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 115

Figure C.48. Clean All

9. After selecting the option as shown in Figure C.48, observe the console and wait for the process to reach 100%. After
completion, the message shown in Figure C.49 appears on the console.

Figure C.49. Console

10. After cleaning, right-click on c_node_system_3_1 and select the option as shown in Figure C.50 to build the project.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 116

Figure C.50. Build All

11. Wait for the process to reach 100%. After completion, the message shown in Figure C.51 appears on the console.

Figure C.51. Completing Process

12. Locate the binary file and .mem file in this path: \NodeSystem\node_system_3_1\c_node_system_3_1\Debug.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 117

C.4. Generating the Bit File

C.4.1. Primary Main System

To generate the bit file in the primary main system, perform the steps below:

1. Open the Propel builder 2023.2 tool.

2. Click on the open design symbol and go to this path:
Main_System\Primary_MainSystem\soc_main_system_3_1\soc_main_system_3_1. If you do not have the Propel
patch, open directly from where project is located. Make sure that there is no space in folder name.

3. Select the soc_main_system_3_0.sbx file and the design opens.

Figure C.52. soc_main_system.sbx

4. Double-click on the system0_inst.A pop-up appears on the screen as mentioned below.

Figure C.53. System Initialization File

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 118

5. Initialize Data memory with generated Primary_Bootloader_Cproj.mem file in
\Main_System\Primary_MainSystem\Primary_Bootloader_CProj\Debug folder of Primary_Bootloader_CProj.

6. Click the Validate button.

Figure C.54. Validate Button

7. Click the Generate button.

Figure C.55. Generate SGE Button

8. Open the Radiant tool from the Propel Builder interface or open directly.

Figure C.56. Radiant Tool Button

Note: To open the Radiant project directly, perform the following:

a. Go to the folder and open the *.rdf file: \Main_System\Primary_MainSystem\soc_main_system_3_1.

b. Select the soc_main_system_3_1.rdf file and the project opens.

Figure C.57. soc_main_system.rdf file

c. Double-click LFCPNX-100-9LFG672I.

Figure C.58. LFCPNX-100-9LFG672I

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 119

9. Apply the following settings:

• Family: LFCPNX

• Device: LFCPNX-100

• Operating Condition: Industrial

• Package: LFG672

• Performance Grade: 9_High-Performance_1.0V

• Part Number: LFCPNX-100-9LFG672I

Figure C.59. Lattice Radiant Device Selector for Main System

10. Change value of Frequency to 200 MHz as shown in Figure C.60.

Figure C.60. Strategy for Build Generation for Main System

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 120

11. Click the Strategy and go to Map Design > Map Timing Analysis. Select the highlighted settings as shown in Figure C.61.

Figure C.61. MAP Analysis Setting for Main System Bit File Generation

12. Select Place and Route Design and only apply the settings shown in Figure C.62.

Figure C.62. PAR Setting for Main System Bit File Generation

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 121

13. Select Place and Route Timing Analysis and only apply the settings shown in Figure C.63.

Figure C.63. PAR Timing Analysis Setting for Main System Bitfile Generation

14. Go to Bitstream and select the IP Evaluation checkbox if you want to generate a non-licensed bit file. Do not check the
box if you want to generate a licensed bit file.

Note: You must request for the license file from the Lattice Semiconductor website.

Figure C.64. IP Evaluation

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 122

15. Click Run All to generate the bit file. Wait for the bit generation and check the output logs.

Figure C.65. Run All Button

16. Locate the bitstream file: \Main_System\Primary_MainSystem\soc_main_system_3_1\impl_1.

Figure C.66. Bitstream File

C.4.2. Golden Main System

To generate the bit file in the golden main system, perform the steps below:

1. Open the Propel Builder 2023.2 tool.

2. Click the open design symbol and go to this path:
\Main_System\Golden_MainSystem\soc_main_system_3_1\soc_main_system_3_1. If do not have the Propel patch,
open directly from where the project is located. Make sure that there is no space in the folder name.

3. Select the soc_main_system_3_0.sbx file and the design window opens.

Figure C.67. soc_main_system.sbx

4. Double-click on the system0_inst. A pop-up appears on the screen as mentioned below.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 123

Figure C.68. System Initialization File

5. Initialize Data memory with generated Golden_Bootloader_Cproj.mem file in
\Main_System\Golden_MainSystem\Golden_Bootloader_CProj\Debug folder of Golden_Bootloader_CProj.

6. Click the Validate button.

Figure C.69. Validate Button

7. Click the Generate button.

Figure C.70. Generate SGE Button

8. Open the Radiant tool from the Propel Builder interface or open directly.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 124

Figure C.71. Radiant Tool Button

Note: To open the Radiant project directly, perform the following steps:

a. Go to the folder and open the *.rdf file: Main_System\Golden_MainSystem\soc_main_system_3_1.

b. Select the soc_main_system_3_1.rdf file and the project opens.

Figure C.72. soc_main_sysyem.rdf File

c. Double-click LFCPNX-100-9LFG672I.

Figure C.73. LFCPNX-100-9LFG672I

9. Apply the following settings:

• Family: LFCPNX

• Device: LFCPNX-100

• Operating Condition: Industrial

• Package: LFG672

• Performance Grade: 9_High-Performance_1.0V

• Part Number: LFCPNX-100-9LFG672I

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 125

Figure C.74. Lattice Radiant Device Selector for Main System

10. Change value of Frequency to 200 MHz as shown in Figure C.75.

Figure C.75. Strategy for Build Generation for Main System

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 126

11. Click the Strategy and go to Map Design > Map Timing Analysis. Select the highlighted settings as shown in Figure C.76.

Figure C.76. MAP Analysis Setting for Main System Bit File Generation

12. Select Place and Route Design and only apply the settings shown in Figure C.77.

Figure C.77. PAR Setting for Main System Bit File Generation

13. Select Place and Route Timing Analysis and only apply the settings shown in Figure C.78.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 127

Figure C.78. PAR Timing Analysis Setting for Main System Bitfile Generation

14. Go to Bitstream and select the IP Evaluation checkbox if you want to generate a non-licensed bit file. Do not check the
box if you want to generate a licensed bit file.
Note: You must request for the license file from the Lattice Semiconductor website.

Figure C.79. IP Evaluation

15. Click Run All to generate the bit file. Wait for the bit generation and check the output logs.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 128

Figure C.80. Run All

16. Locate the bit stream file follow the below path: \Main_System\Golden_MainSystem\soc_main_system_3_1\impl_1.

Figure C.81. Bitstream File

C.4.3. Node System

To generate the bit file in the node system, perform the steps below:

1. Open the Propel Builder 2023.2 tool.

2. Click the open design symbol and go to this path: NodeSystem\node_system_3_1\soc_node\soc_node.

Figure C.82. soc_node.sbx

3. Double-click on system0_inst. A pop-up appears on the screen as mentioned below.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 129

Figure C.83. System0 Initialization

4. Initialize data memory with the generated c_node_system_Data.mem file in the debug folder of the C project.

5. Click the Validate button.

Figure C.84. Validate Button

6. Click the Generate SGE button.

Figure C.85. Generate SGE Button

7. Open the Radiant tool from the Propel Builder interface or open directly.

Figure C.86. Radiant Tool Button

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 130

Note: To open the Radiant project directly, perform the following:

a. Open the generated Radiant project (NodeSystem\node_system_3_1\soc_node) in the Radiant tool.

b. Select the soc_node.rdf file and the project opens.

Figure C.87. soc_node.rdf file

c. Click on LFD2NX-40-8BG256C.

Figure C.88. LFD2NX-40-8BG256C

8. Apply the settings below:

a. Family: LFD2NX

b. Device: LFD2NX-40

c. Operating Condition: Commercial

d. Package: CABGA256

e. Performance Grade: 8_High-Performance_1.0V

f. Part Number: LFD2NX-40-8BG256C

Figure C.89. Lattice Radiant Device Selector for Node System

9. Change value of Frequency to 150 MHz as shown in Figure C.90.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 131

Figure C.90. Strategy for Build Generation for Node System

10. Click the Strategy and go to Map Design > Map Timing Analysis. Select the highlighted settings as shown in Figure C.91.

Figure C.91. MAP Analysis Setting for Node System Bit File Generation

11. Select Place and Route Design and only apply the settings shown in Figure C.92.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 132

Figure C.92. PAR Setting for Node system Bit File Generation

12. Select Place and Route Timing Analysis and only apply the settings shown in Figure C.93.

Figure C.93. PAR Timing Analysis Setting for Node System Bit File Generation

13. Go to Bitstream and select the IP Evaluation checkbox if you want to generate a non-licensed bit file. Do not check the
box if you want to generate a licensed bit file.

Note: You must request for the license file from the Lattice Semiconductor website.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 133

Figure C.94. IP Evaluation

14. Click Run All to generate the bit file. Wait for the bit generation and check the output logs.

Figure C.95. Run All Button

15. Locate the bit stream file in this path: \NodeSystem\node_system_3_1\soc_node\impl_1.

Figure C.96. Bitstream File

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 134

Appendix D. Creating the MCS File
The following provides the steps for generating a Multi-Boot PROM hex file using the Radiant Deployment tool. This
procedure is an example for three total bitstream, primary pattern, golden pattern, and alternate pattern 1.

1. Open the Lattice Radiant Programmer and go to Tools > Deployment Tool.

Figure D.1. Deployment tool

2. Select External Memory for Function Type and Advanced SPI Flash for Output File Type.

Figure D.2. Creating New Deployment for Multi-Boot

3. Click OK.

4. In the Select Input File(s) window, click the File Name field to browse and select the primary bitstream file to be used to
create the PROM hex file. The device family and device fields auto-populate based on the bitstream files selected. Click
Next.

Figure D.3. Select Input File Window

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 135

5. In the Advanced SPI Flash Options window, click the Multiple Boot tab and select the Multi-Boot option. Apply the
following settings.

a. Click the Golden Pattern browse button to select the primary pattern bitstream. The starting address of the
Golden pattern is automatically assigned. You can change it by clicking on the drop-down menu.

b. In the number of Alternate Patterns field, select the number of patterns to include through the drop-down menu.

c. In the Alternate Pattern 1 field, click on the browse button to select the golden pattern bitstream. The starting
address of the primary pattern is automatically assigned. You can change it by clicking on drop down menu. The
address of next alternate pattern to configure field is automatically populated. This is the pattern that is loaded
during the next PROGRAMN/REFRESH event. You can change the pattern by clicking on the drop-down menu.

d. Click Next.

Note: The starting address of golden pattern should be more than the size of primary pattern and the starting
address of alternate pattern 1 must be more than the starting address and size of golden pattern. Otherwise, it
shows an error.

Figure D.4. Advanced SPI Flash Options - Multi-Boot Tab Window

6. In the Select Output File window, specify the name of the output PROM hex file in the Output File 1 field. Click Next.

Figure D.5. Select Output File Window

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 136

7. Review the summary information in the Generate Deployment window. If everything is correct, click the Generate
button. The generate deployment pane indicates the PROM file is successfully generated.

8. Go to File > Save to save the deployment settings.

Figure D.6. Generate Deployment Window

9. Once the setting is saved, you can program the .mcs file in the external flash using the Radiant Programmer.

http://www.latticesemi.com/legal

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 137

References
• Lattice Automate

Other references:

• Lattice Insights for Lattice Semiconductor training courses and learning plans

• Lattice Radiant FPGA design software

http://www.latticesemi.com/legal
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/Automate
https://www.latticesemi-insights.com/
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 138

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

Automate Stack 3.1
Reference Design

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02284-1.0 139

Revision History

Revision 1.0, April 2024

Section Change Summary

All Production release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Automate Stack 3.1
	Contents
	Acronyms in This Document
	1. Introduction
	1.1. Components

	2. Design Overview
	2.1. Theory of Operation
	2.2. FPGA Design
	2.2.1. Main System
	2.2.1.1. GSRD Architecture
	2.2.1.2. GSRD Data Flow
	Multiboot Flow

	2.2.1.3. GSRD Flow
	2.2.1.4. Memory Map

	2.2.2. Lattice Main System 3.1 Architecture
	2.2.2.1. Lattice Main System 3.1 Architecture
	2.2.2.2. Main System Data Flow
	2.2.2.3. Memory Map

	2.2.3. Node System
	2.2.3.1. Data Flow
	2.2.3.2. Memory Map

	2.3. EtherConnect IP Design Details
	2.3.1. Overview
	2.3.1.1. Normal Packet

	2.3.2. Architecture
	2.3.2.1. Main System
	2.3.2.2. Node System

	2.3.3. Register Map

	2.4. FIFO DMA
	2.5. UDP Stack
	2.6. LPDDR4 Controller
	2.7. QSPI Flash controller
	2.8. Multi-Port Memory Controller IP Design Details
	2.9. Scatter Gather DMA IP Design Details
	2.10. CNN Coprocessor Unit (CCU)
	2.11. Motor Control and PDM Data Collector
	2.12. SPI Manager IP Design Details
	2.12.1. Overview
	2.12.2. SPI Manager Register Map
	2.12.3. Programming Flow
	2.12.3.1. Initialization
	2.12.3.2. Transmit/Receive Operation

	2.13. I2C Manager IP Design Details
	2.13.1. Overview
	2.13.2. I2C Manager Register Map
	2.13.3. Programming Flow
	2.13.3.1. Initialization
	2.13.3.2. Writing to the Subordinate Device
	2.13.3.3. Reading from the Subordinate Device

	2.14. UART IP Design
	2.14.1. Overview
	2.14.1.1. UART Register Description

	2.14.2. Programming Flow
	2.14.2.1. Initialization
	2.14.2.2. Transmit Operation
	Transmit Operation – Interrupt Mode
	Transmit Operation – Polling Mode

	2.14.2.3. Receive Operation
	Receive Operation – Interrupt Mode
	Receive Operation – Polling Mode

	2.14.2.4. Data Format

	2.15. TSE MAC
	2.16. SGMII IP Design
	2.17. FPGA Config Module Design
	2.18. SFP Config Design Details

	3. Resource Utilization
	4. Software APIs
	4.1. Main System APIs
	4.1.1. Tasks of the Main System
	4.1.2. OPCUA PubSub :
	4.1.3. Create_UADP_NetworkMessage
	4.1.3.1. NetworkMessage Header:

	4.1.4. GroupHeader
	4.1.5. Extended NetworkMessage Header
	4.1.5.1. Payload
	UADP_NetworkMessage_parse :
	udp_response_func
	method_callbacks
	rfl_update_config
	start_motor
	stop_motor
	poweroff_motor
	get_background
	run_pdm

	4.2. Node System APIs
	4.2.1. Tasks of the Node System
	4.2.2. API Calls

	5. Communications
	5.1. Communication between Host and Main System
	5.1.1. Messages from Host to Main System
	5.1.2. Messages from Main System to Host

	5.2. Communication between Main System and Node System(s)
	5.2.1. Messages from Main System to Node System
	5.2.2. Messages from Node System to Main System

	Appendix A. Predictive Maintenance with TensorFlow Lite
	A.1. Setting Up the Linux Environment for Neural Network Training
	A.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU
	A.1.1.1. Installing the CUDA Toolkit
	A.1.1.2. Installing the cuDNN

	A.1.2. Setting Up the Environment for Training and Model Freezing Scripts
	A.1.2.1. Installing the Anaconda Python

	A.1.3. Installing the TensorFlow Version 1.15
	A.1.4. Installing the Python Package

	A.2. Creating the TensorFlow Lite Conversion Environment
	A.3. Preparing the Dataset
	A.3.1. Dataset Information

	A.4. Preparing the Training Code
	A.4.1. Training Code Structure
	A.4.2. Generating tfrecords from Augmented Dataset
	A.4.3 Neural Network Architecture
	A.4.4. Training Code Overview
	A.4.4.1. Configuring Hyper-Parameters
	A.4.4.2. Creating Training Data Input Pipeline
	Read tfrecords
	Converting Image to Grayscale and Scaling the Image
	Creating Input Queue

	A.4.4.3. Model Building
	CNN Architecture
	Feature Depth of Fire Layer
	Loss Function and Optimizers

	A.4.4.4. Restore Checkpoints
	A.4.4.5. Saving .pbtxt
	A.4.4.6. Training Loop

	A.4.5. Training from Scratch and/or Transfer Learning
	A.4.5.1. Training
	A.4.5.2. Transfer Learning
	A.4.5.3. Training Status

	A.5. Creating Frozen File
	A.5.1. Generating .pbtxt File for Inference
	A.5.2. Generating the Frozen (.pb) File

	A.6. TensorFlow Lite Conversion and Evaluation
	A.6.1. Converting Frozen Model to TensorFlow Lite
	A.6.2. Evaluating TensorFlow Lite Model
	A.6.3. Converting TensorFlow Lite To C-Array

	Appendix B. Setting Up the Wireshark Tool
	Appendix C. Generating Automate Stack 3.1 Propel Patch and Bitstream
	C.1. Installing the Propel SDK 2023.2
	C.2. Generating the Binary
	C.3.1. Primary Main System
	C.3.2. Golden Main System
	C.3.3. Node System

	C.4. Generating the Bit File
	C.4.1. Primary Main System
	C.4.2. Golden Main System
	C.4.3. Node System

	Appendix D. Creating the MCS File
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, April 2024

