

APB Dual Timer IP

User Guide

FPGA-IPUG-02250-1.0

March 2024

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

Contents	3
Acronyms in This Document	5
1. Introduction	6
1.1. Overview of the IP	6
1.2. Quick Facts	6
1.3. Features	6
1.4. Licensing and Ordering Information	6
1.5. IP Validation Summary	7
1.6. Naming Conventions	7
1.6.1. Nomenclature	7
1.6.2. Signal Names	7
2. Functional Description	8
2.1. IP Architecture Overview	8
2.2. Clocking	8
2.3. Reset	8
3. IP Parameter Description	9
4. Signal Description	10
5. Register Description	11
6. Designing with the IP	
6.1. Generating and Instantiating the IP	
7. Software Driver	13
7.1. APIs	
7.1.1. apb_dt_init()	
7.1.2. apb_dt_send_all_good()	
7.1.3. apb_dt_send_jtag_on()	
7.1.4. apb_dt_clear_event()	
7.1.5. apb_dt_read_source()	14
8. Debugging	15
8.1. System Clock Input	
8.2. Reset Input	
8.3. Timer_event Output	
Appendix A. Resource Utilization	
References	
Technical Support Assistance	18
Revision History	19

Figures

Figure 2.1. APB Dual Timer IP Block Diagram	8
Figure 6.1. Module/IP Block Wizard	
Figure 6.2. IP Configuration	12
Tables	
Table 1.1. Summary of the APB Dual Timer IP	6

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
APB	Advanced Peripheral Bus
API	Application Programming Interface
SoC	System on Chip

1. Introduction

1.1. Overview of the IP

The APB Dual Timer IP provides two different timers that can each generate a timer event output to indicate if there is an error to the system. This allows the IP to perform a restart when necessary. The 3-minute timer starts immediately after reset is released. You can write to the control register to stop the 3-minute timer from expiring. The 2-hour timer is reset to zero at startup and held at zero. You can initiate the 2-hour timer by writing to the control register. When started, this timer cannot be reset. A system reset or power cycle is needed to disable this timer.

If either of the timers expires, the timer event output is activated. This signal is used by the system to take the appropriate action. A status register can be read to determine which timer caused the interrupt if the system allows this to happen after the event.

In the Lattice Sentry[™] solution, the two timers are used for the following purpose:

- The 3-minute timer starts automatically as soon as reset is released. If the firmware is authenticated and is able to run, the firmware sends an all good message through an API to the dual timer, thus switching off the timer. If the firmware is not able to run, the all good message is not sent and the 3-minute timer expires, indicating to the system that there is a problem with the firmware.
- The 2-hour timer is used to time the JTAG debugging mode. For security reasons, JTAG debugging is only enabled for a 2-hour window. When the firmware puts the device into JTAG debugging mode, the 2-hour timer is set. The 2-hour timer cannot be reset or canceled when it is started. After two hours, the timer_event output indicates to the system that the 2-hour JTAG debugging time has expired.

The APB Dual Timer IP has an APB bus interface that can be connected to the APB switch block in a Propel[™] Builder SoC design.

1.2. Quick Facts

Table 1.1. Summary of the APB Dual Timer IP

ID Poquiroments	Supported FPGA Family	Mach TM -NX		
IP Requirements	IP Version	1.0		
Resource Utilization	Targeted Devices	Refer to Table A.1		
Resource Offization	Supported User Interface	APB		
	Lattice Implementation	IP Core v $1.0.0$ – Lattice Propel software 1.1 , Lattice Diamond TM software 3.12		
Design Tool Support	Synthesis	Synopsys® Synplify Pro for Lattice		
	Simulation	No simulation support		

1.3. Features

Key features of the APB Dual Timer IP include:

- 3-minute timer
- 2-hour timer
- APB interface
- 1-wire output signal, timer event
- Readable register with timer event data

1.4. Licensing and Ordering Information

The APB Dual Timer IP is provided at no additional cost with the Diamond software.

1.5. IP Validation Summary

The IP is validated with the following synthesis tool:

Synplify Pro U-2023.03L-SP1, Build 153R, Aug 10 2023

Table 1.2 shows the validation status for the APB Dual Timer IP core. The ✓ mark indicates whether the IP has been validated for Simulation, Timing, or with Hardware.

Table 1.2. IP Validation Level

Device Family	IP Version	Validation Level		
		Simulation Timing Hardware		
Mach-NX	1.0	✓	✓	✓

1.6. Naming Conventions

1.6.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.6.2. Signal Names

- _n are active low (asserted when value is logic 0)
- _i are input signals
- _o are output signals

8

2. Functional Description

2.1. IP Architecture Overview

The APB Dual Timer IP performs the following functions:

- Triggers the *timer_event* output 3 minutes after reset has been released and boot sequence is started, if the 3-minute timer is not cleared before then.
- Triggers the timer_event output 2 hours after the 2-hour timer is set

The timers are set with the APB interface. The CPU can send commands to start the 2-hour timer, to clear the 3-minute timer, or to read the status register to determine which timer event has occurred.

Figure 2.1 shows the IP block diagram.

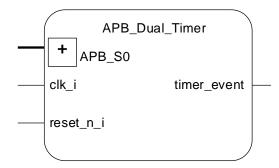


Figure 2.1. APB Dual Timer IP Block Diagram

2.2. Clocking

The APB Dual Timer is designed to work in a system with a 50 MHz clock. Different input clock speeds result in different lengths of time for the two timers.

The APB Dual Timer has one input clock source.

2.3. Reset

The APB Dual Timer has an active low reset input. Upon reset, the interrupt registers and the timers are cleared. The *timer_event* output is set to 0. After reset, the 3-minute timer starts automatically.

The 2-hour timer must be set by the RISC-V CPU.

3. IP Parameter Description

You do not need to set any IP parameters for this IP.

4. Signal Description

The APB bus interface signals are grouped as one connection on the Propel Builder block that is connected in the SoC design. Table 4.1 shows the list of signals.

Table 4.1. APB Dual Timer IP Signal Description

Port Name	1/0	Width	Description		
Clock and Reset					
clk_i	In	1	System clock (50 MHz)		
rstn_i	In	1	Asynchronous reset (Active Low)		
APB Interface					
apb_penable_i	In	1	APB enable		
apb_psel_i	In	1	APB select, high when in address range		
apb_paddr_i	In	32	APB address, only lower bits are used		
apb_pwdata_i	In	2	APB write data, only lower bits are used		
apb_pready_o	Out	1	APB ready, indicates read data is valid		
apb_prdata_o_i	Out	32	APB read data		
Miscellaneous					
timer_event	Out	1	Active high signal to indicate to the system that one of the timers has expired.		
			This signal is used for both the 3-minute and 2-hour timers.		
			The RISC-V CPU can make an API call to read the status register and determine which timer has expired.		

5. Register Description

Table 5.1 shows the list of registers that are accessible to the processor.

Table 5.1. List of Accessible Registers

Register	Offset from Base	Width	Access	Description
All Good Reg	0x00	-	W	Writing to this register halts the three-minute timer
JTAG Time On	0x04	-	W	Writing to this register starts the two-hour timer
Status Reg	0x0C	2 bits	RW	Bit 0 is set by the 3-minute timer Bit 1 is set by 2-hour timer

Notes:

- 1. Addresses 0x00 and 0x04 are write-only registers. The first two registers are one-time events. Additional writes have no effect.
- 2. Writes to address 0x0C will reset the timer_event output to 0. Bits 1 and 0 in the status register are also set to 0.
- 3. Reads from any register address not defined in this table will return all 1's.

12

Designing with the IP

6.1. Generating and Instantiating the IP

The APB Dual Timer IP appears in the IP local list as APB_DUAL_TIMER.

To generate the APB Dual Timer IP:

In the IP Catalog tab, double-click the APB DUAL TIMER IP. The Module/IP Block Wizard opens as shown in Figure 6.1. Enter a name for the IP block in the Component name text box and click Next.

Figure 6.1. Module/IP Block Wizard

- There are no configurable items for this IP. In the next Module/IP Block Wizard window, click Generate as shown in Figure 6.2.
- Click Finish on the next window.

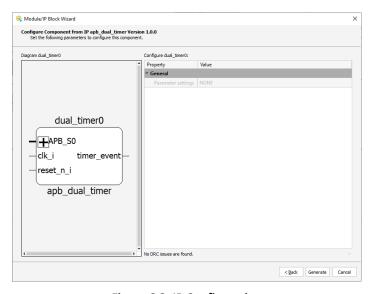


Figure 6.2. IP Configuration

- Accept or modify the instance name for the block and click **OK** to complete the addition of this block to an SoC design.
- Drag and drop a connection from the APB input of the IP block to a corresponding APB bus interface port. Optionally, connect the timer_event output to a corresponding interrupt input on an appropriate CPU or Interrupt controller block.

7. Software Driver

Two software driver files are provided:

- apb_dual_timer.h
- apb_dual_timer.c

You need to include the .h file in any software file that needs to control the timers.

7.1. APIs

The following subsections list the functions that allow the proper control of the two timers in the APB Dual Timer IP.

7.1.1. apb_dt_init()

This API initializes the dual timer.

unsigned char apb_dt_init (struct apb_dual_timer_instance *this_timer, unsigned int
base addr)

In/Out	Parameter	Description	Returns
In	this_timer	Handle of the apb_dual_timer_instance structure.	0: success
In	base_addr	Base address to be assigned to the timer.	1: failure

7.1.2. apb_dt_send_all_good()

This API sends the *all good* signal to the timer to indicate that the firmware has booted successfully and clears the 3-minute timer

void apb_dt_send_all_good (struct apb_dual_timer_instance *this_timer)

In/Out	Parameter	Description	Returns
In	this_timer	Handle of the apb_dual_timer_instance structure.	

7.1.3. apb_dt_send_jtag_on()

This API starts the 2-hour timer to allow a 2-hour window for JTAG debugging. void apb_dt_send_jtag_on (struct apb_dual_timer_instance *this_timer)

In/Out	Parameter	Description	Returns
In	this_timer	Handle of the apb_dual_timer_instance structure.	_

7.1.4. apb_dt_clear_event()

This API clears the timer event output and clears the dual timer interrupt flags.

void apb_dt_clear_event (struct apb_dual_timer_instance *this_timer, unsigned int value)

In/Out	Parameter	Description	Returns
In	this_timer	Handle of the apb_dual_timer_instance structure.	_
In	value	A 2-bit value to be written to the register:	
		0x1: clear 3-minute timer interrupt	
		0x2: clear 2-hour timer interrupt	
		0x3: clear both timer interrupts	

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

7.1.5. apb_dt_read_source()

This API polls the dual timer interrupt register to determine if a *timer_event* signal is generated by the 3-minute timer or the 2-hour timer.

unsigned char apb_dt_read_source (struct apb_dual_timer_instance *this_timer)

In/Out	Parameter	Description	Returns
In	this_timer	Handle of the apb_dual_timer_instance structure.	0: 3-minute timer expired
			1: 2-hour timer expired

8. Debugging

Methods for debugging each element of the APB Dual Timer IP are listed below.

8.1. System Clock Input

Ensure that the input clock is 50 MHz. Test and measure this clock signal with external equipment to verify.

8.2. Reset Input

Ensure that an active low system reset is the input signal to the APB Dual Timer IP.

8.3. Timer_event Output

- 3-minute timer:
 - In firmware, ensure that send_all_good API is commented out or not called. Boot the system and set a stopwatch for three minutes. After three minutes, the short timer should expire, and the system should try to boot from the backup configuration image.
 - If this behavior is not observed, test the *timer_event* output on an I/O pin or LED to narrow down whether the problem is with the *timer_event* output or with the system's response.
- 2-hour timer:
 - Enable JTAG debug mode in firmware. Ensure the JTAG enable API calls the dual timer send_jtag_on() API. Set an external timer for two hours. After two hours, JTAG debug mode should be disabled and the system should reboot.
 - If this behavior is not observed, test the *timer_event* output on an I/O pin or LED to narrow down whether the problem is with the *timer_event* output or with the system's response.

Appendix A. Resource Utilization

Table A.1 shows a sample resource utilization of the APB Dual Timer IP Core on a Mach-NX device.

Table A.1. Resource Utilization

Registers	LUTs
100	60

References

- Lattice Diamond FPGA design software
- Lattice Solutions IP Cores web page
- Lattice Propel Design Environment web page
- Lattice Diamond Software User Guide
- Lattice Insights for Lattice Semiconductor training courses and learning plans

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport. For frequently asked questions, please refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

19

Revision History

Revision 1.0, March 2024

Section	Change Summary
All	Initial release.

www.latticesemi.com