

Migrating Designs from AMD CPLD/FPGA
Devices to Lattice FPGA Devices

Application Note

FPGA-AN-02081-1.1

September 2024

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 2

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The
information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered
inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have
been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE
PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK
USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE
REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF
FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language
This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and other
items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as
register names and state names it has been necessary to continue to utilize older terminology for compatibility.

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 3

Contents
Contents.. 3
Abbreviations in This Document ... 7
1. Competitive Positioning .. 9

1.1. Lattice FPGA Devices ... 9
1.2. AMD CPLD/FPGA Devices .. 10
1.3. Device Competitive Positioning Summary .. 10

1.3.1. FPGA Architecture .. 10
1.3.2. CPLD Architecture... 16
1.3.3. Device Temperature Grades ... 17

1.4. Device Part Number and Speed Grade .. 17
1.4.1. AMD Part Number Description ... 17
1.4.2. Lattice Part Number Description .. 18
1.4.3. Lattice Ordering Part Numbers Example .. 19

2. Architecture Differences ... 20
2.1. Old AMD FPGA Terminology ... 20
2.2. LUT4 vs LUT6 ... 21

2.2.1. Architecture Description and Differences .. 21
2.2.2. Architecture LUT Size is a Strategic Decision .. 22
2.2.3. Design Conversion Recommendations ... 23

2.3. I/O, Voltage, and Bank .. 23
2.3.1. Architecture Description and Differences .. 23
2.3.2. Voltage Mix within the Same Bank ... 24
2.3.3. Design Conversion Recommendations ... 24

2.4. Clocking Resources .. 25
2.4.1. Clocking Architectures Comparison ... 25
2.4.2. Design Conversion Recommendations ... 26

2.5. PLL/MMCM/DCM .. 26
2.5.1. Architecture Primitives Comparison ... 26
2.5.2. CMT Features Comparison ... 28
2.5.3. Design Conversion Recommendations ... 28

2.6. Internal Memory Configuration .. 29
2.6.1. Embedded and Distributed Memory Comparison ... 29
2.6.2. Source HDL Code Example .. 30
2.6.3. Large Memory Blocks ... 31
2.6.4. Read and Write Priority .. 31
2.6.5. Memory Size and Configuration ... 34
2.6.6. Memory Primitives Comparison ... 34
2.6.7. Design Conversion Recommendations ... 35

2.7. DSP Blocks ... 38
2.7.1. DSP Architectures Comparison ... 38
2.7.2. DSP Features Comparison .. 38
2.7.3. DSP Port Mapping Comparison .. 39
2.7.4. Design Conversion Recommendations ... 40
2.7.5. DSP Inferring Design Example .. 40

2.8. SERDES/Transceivers ... 42
2.8.1. SERDES/Transceivers Comparison .. 42
2.8.2. Design Conversion Recommendations ... 43
2.8.3. Lattice Device Supported SERDES Based Standards ... 43

2.9. External Memory Interface ... 45
2.9.1. Lattice Device Supported Standards .. 46

2.10. Other FPGA Device Hardened Functions ... 48
3. Selecting the Right Equivalent Target Device ... 49

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 4

3.1. Step 1: Collect Information from the AMD Report File ... 49
3.2. Step 2: Reconsider Your Device Size ... 50
3.3. Step 3: Select the Equivalent Device ... 50

4. HDL Code Compatibility .. 52
4.1. Introduction .. 52
4.2. Library Declaration and Include Files .. 53

4.2.1. VHDL ... 53
4.2.2. Verilog .. 54

4.3. Unrecognized Primitive Modules .. 54
4.4. Unrecognized IP Modules ... 55
4.5. Unrecognized Architecture Primitive .. 56
4.6. I/O Buffer Primitives .. 57

4.6.1. Design Conversion Recommendations ... 57
4.7. HDL Attributes ... 60

4.7.1. Introduction .. 60
4.7.2. Common Synthesis Attributes Conversion Table ... 60
4.7.3. Common Architecture Attributes Conversion Table .. 61
4.7.4. Physical Placement Attributes .. 62
4.7.5. Attributes Conversion Examples .. 64

5. Software Tools Comparison .. 66
5.1. Introduction .. 66
5.2. Design Flow Using GUI .. 67

5.2.1. Introduction .. 67
5.2.2. FPGA Design Flow ... 69

5.3. Design Flow Using TCL ... 70
6. Tools Constraint Compatibility ... 71

6.1. Introduction .. 71
6.2. Converting SDC File ... 72
6.3. Converting UCF File ... 72
6.4. Converting XDC File ... 73
6.5. Timing Constraint .. 73

6.5.1. Timing Constraints Conversion Table ... 73
6.5.2. Timing Constraint Best Practice.. 73

6.6. Physical Constraint .. 74
6.6.1. Definition .. 74
6.6.2. Physical Constraint Files ... 74
6.6.3. Physical Constraints Conversion ... 75

6.7. XDC File Conversion Example .. 75
7. Design Simulation ... 77

7.1. Supported Simulation Tools and Process .. 77
8. Device Programming... 79

8.1. Programming Mode Options ... 79
8.2. Bitstream Generation .. 79

8.2.1. Bitstream Strategy Settings .. 80
8.2.2. Device Constraint Options (sysConfig) ... 80
8.2.3. Programmer and Programmer File Utility .. 81

References .. 84
Technical Support Assistance ... 86
Revision History .. 87

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 5

Figures
Figure 1.1. IspMACH4000 Family Architecture .. 16
Figure 1.2. Kintex-7 Part Number Description ... 18
Figure 1.3. Lattice ECP5/ECP5-5G Part Number Description ... 18
Figure 1.4. Lattice CertusPro-NX Part Number Description ... 18
Figure 2.1. LUT4 Versus LUT6 Based Architectures for 10-input Logic Function ... 21
Figure 2.2. AMD and Lattice Logic Cell and System Logic Cell Conversion Diagram .. 22
Figure 2.3. High-level Representation of LUT4 Versus LUT6 Logic Gates .. 23
Figure 2.4. Lattice CertusPro-NX Clocking Structure ... 25
Figure 2.5. PLLC Functional Block .. 27
Figure 2.6. Lattice IP Catalog for a PLL Configuration Interface .. 29
Figure 2.7. Lattice DP16K and FIFO16K Primitives for Nexus Platform Devices .. 35
Figure 2.8. FIFO Configuration Interface of Lattice Radiant IP Catalog ... 36
Figure 2.9. Wave Forms of FIFO Dual Clock Module With and Without Registers .. 37
Figure 2.10. Comparison Between AMD and Lattice IP Catalog Interfaces ... 39
Figure 2.11. Synplify Pro RTL View ... 41
Figure 2.12. Design Implementation Comparison Between AMD DSP48E1 and Lattice MULTPREADD18X18 42
Figure 2.13. Lattice CertusPro-NX Device PCS Block .. 43
Figure 2.14. Lattice Radiant Software IP Catalog GUI .. 44
Figure 2.15. Lattice Radiant Software IP Catalog GUI for Memory Interface Generation ... 45
Figure 2.16. IP Catalog LPDDR4 Memory Interface Configuration Window .. 47
Figure 3.1. Utilization Design Information from AMD Report File ... 49
Figure 4.1. Lattice Radiant Software VHDL Library Name ... 53
Figure 4.2. Lattice Radiant Software Verilog Include Search Path ... 54
Figure 4.3. AMD BUFHCE Equivalent Primitive is Lattice DCC Primitive .. 57
Figure 4.4. RTL View of Input, Output and Clock Buffers Automatically Inferred by Lattice Software 58
Figure 4.5. Device constraint Editor view of LVDS Buffer Type attribute (Input A) ... 59
Figure 4.6. I/O Attributes in Map Report ... 59
Figure 4.7. Pinout by Pin Number in Map Report .. 60
Figure 5.1. Lattice Radiant Software Main Interface ... 67
Figure 5.2. Lattice Radiant software Design Process ... 69
Figure 5.3. Lattice Design Flow .. 70
Figure 6.1. Lattice Radiant Software Constraints Flow Process ... 71
Figure 6.2. Input Files and Data Flow of Logical and Physical Domains ... 72
Figure 7.1. Lattice Radiant Software Simulation Wizard ... 77
Figure 7.2. Radiant Software Design and Simulation Flows .. 78
Figure 7.3. Lattice Radiant Software User Guides ... 78
Figure 8.1. Lattice Radiant Software Strategies GUI .. 80
Figure 8.2. Lattice Radiant Software Device Constraint Editor GUI ... 81
Figure 8.3. Lattice Radiant Programmer GUI ... 82
Figure 8.4. Lattice Programming File Utility Control Register GUI ... 82
Figure 8.5. Lattice Radiant Deployment Tool GUI .. 83

Tables
Table 1.1. Selected Device Families for Each Lattice FPGA Device Category ... 9
Table 1.2. Summary of AMD CPLD/FPGA Devices ... 10
Table 1.3. AMD Kintex UltraScale+ Devices and the Closest Lattice Devices Mapping ... 10
Table 1.4. AMD Artix UltraScale+ Devices and the Closest Lattice Devices Mapping .. 11
Table 1.5. AMD Kintex-7 Devices and the Closest Lattice Devices Mapping ... 11

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 6

Table 1.6. AMD Artix-7 T Devices and the Closest Lattice Devices Mapping ... 11
Table 1.7. AMD Spartan-7 Devices and the Closest Lattice Devices Mapping ... 12
Table 1.8. AMD Spartan-6 LX Devices and the Closest Lattice Devices Mapping .. 12
Table 1.9. AMD Spartan-6 LXT Devices and the Closest Lattice Devices Mapping .. 13
Table 1.10. AMD Spartan-3AN Devices and the Closest Lattice Devices Mapping .. 13
Table 1.11. AMD Spartan-3 Devices and the Closest Lattice Devices Mapping ... 14
Table 1.12. AMD Spartan-3E Devices and the Closest Lattice Devices Mapping ... 14
Table 1.13. AMD Spartan-3A Devices and the Closest Lattice Devices Mapping .. 15
Table 1.14. AMD Spartan-3A DSP Devices and the Closest Lattice Devices Mapping ... 15
Table 1.15. AMD CoolRunner-II Devices and the Closest Lattice Devices Mapping .. 17
Table 2.1. AMD Spartan-3 Device Architecture ... 20
Table 2.2. AMD Spartan-7 Device Architecture ... 21
Table 2.3. AMD Kintex UltraScale Device Architecture ... 22
Table 2.4. I/O, Voltage, and Bank Terminology Comparison Between Lattice and AMD Devices ... 24
Table 2.5. Input Mixed Mode for Wide Range Input Buffers ... 24
Table 2.6. Clocking Architecture Comparison Between Lattice and AMD Devices .. 25
Table 2.7. Clock Management Module Comparison Between Lattice and AMD Devices ... 26
Table 2.8. Architecture Primitive Comparison Between Lattice and AMD Devices ... 27
Table 2.9. CMT Features Comparison Between Lattice and AMD Devices .. 28
Table 2.10. RAM Type Comparison Between Lattice and AMD Devices.. 30
Table 2.11. LRAM and UltraRAM Features Comparison Between Lattice and AMD ... 31
Table 2.12. Memory Attribute Comparison Between Lattice and AMD Devices ... 32
Table 2.13. Maximum Memory Available per Lattice Device Family ... 34
Table 2.14. Memory Primitives for Lattice and AMD Devices ... 34
Table 2.15. Port Naming Comparison Between Lattice and AMD Devices .. 35
Table 2.16. DSP Primitive Comparison Between Lattice and AMD Devices .. 38
Table 2.17. DSP Features Comparison Between Lattice and AMD Devices ... 38
Table 2.18. DSP Port Comparison Between Lattice and AMD Devices .. 39
Table 2.19. SERDES Specification Comparison Between Lattice and AMD Devices .. 42
Table 2.20. Standards Supported by the CertusPro-NX Device Family SERDES/PCS ... 43
Table 2.21. DDR Memory Configurations Support .. 46
Table 2.22. Hardened Functions Comparison Between Lattice and AMD Devices.. 48
Table 3.1. List of Information to Collect from the AMD Report File .. 49
Table 3.2. Summary of Lattice Device Specifications Based on Different Device Family .. 50
Table 4.1. FIFO_DC Port Comparison Between Lattice and AMD Generated Modules. .. 56
Table 4.2. Commonly Used Buffers.. 57
Table 4.3. Commonly Used HDL Attributes ... 60
Table 4.4. Commonly Used Architecture Attributes .. 61
Table 4.5. Lattice Radiant and Diamond Software Placement Attributes ... 62
Table 5.1. Software Tools Comparison Between Lattice and AMD Devices .. 66
Table 5.2. Lattice Software Tools Descriptions .. 66
Table 5.3. Lattice Software Tools and Supported Device Families .. 66
Table 5.4. Software Tool Comparison Between Lattice and AMD Software ... 68
Table 5.5. Extension File Comparison Between Lattice and AMD Software .. 68
Table 6.1. Timing Constraints Comparison Between Lattice and AMD Software .. 73
Table 6.2. Lattice Physical Constraints ... 75
Table 7.1. Supported Simulation Tools and Process by AMD Vivado Design Suite and Lattice Radiant/Diamond Software 77
Table 8.1. Programming Mode Options Available By Device Family for AMD and Lattice Devices ... 79

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 7

Abbreviations in This Document
The following table lists abbreviations used in this document.

Abbreviation Definition

AI Artificial Intelligence

AIM Advanced Interconnect Matrix

ADC Analog to Digital Converter

AES Advanced Encryption Standard

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASIC Application-Specific Integrated Circuits

AXI Advanced eXtensible Interface

CLB Configurable Logic Blocks

CMT Clock Management Tile

CRE Cryptographic Engine

DCC Dynamic Clock Control

DCM Digital Clock Management

DCS Dynamic Clock Select

DDR3 Double Data Rate Three

DLL Delay-Locked Loop

DSP Digital Signal Processor

EBR Embedded Block of RAM

ECDSA Elliptic Curve Digital Signature Algorithm

ECLK Edge Clock

FD-SOI Fully Depleted Silicon on Insulator

FPGA Field Programmable Gate Array

GLB Generic Logic Block

GRP Global Routing Pool

GUI Graphical User Interface

HDL Hardware Description Language

HMAC Hash-based Message Authentication Code

HPIO High-Performance Input/Output

I2C Inter-Integrated Circuit

I/O Input/Output

IDE Integrated Development Environment

JTAG Joint Test Action Group

LC Logic Cells

LFCPNX CertusPro-NX Code Name

LFD2NX Certus-NX Code Name

LFMXO5 MachXO5-NX Code Name

LIFCL CrossLink-NX Code Name

LMMI Lattice Memory Mapped Interface

LPDDR4 Low Power Double Data Rate Four

LRAM Large Random Access Memory

LSE Lattice Synthesis Engine

LUT Look Up Table

LDI LVDS Display Interface

LSE Lattice Synthesis Engine

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 8

Abbreviation Definition

LVDS Low Voltage Differential Signaling

MIPI Mobile Industry Processor Interface

ML Machine Learning

MMCM Mixed-Mode Clock Manager

MUX Multiplexer

ORP Output Routing Pool

OS Operating System

PAR Place and Route

PCIe Peripheral Component Interconnect express

PCLK Primary Clock

PCS Physical Coding Sublayer

PIC Programmable I/O Cell

PLA Programmable Logic Array

PLD Programmable Logic Device

PLL Phase-Locked Loop

PTAT Proportional to Absolute Temperature

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SDC Synopsys Design Constraint

SDK Software Development Kit

SECDED Single Error Correction - Double Error Detection

SED Soft Error Detect

SER Soft Error Rate

SERDES Serializer/Deserializer

SEU Single Event Upset

SLC System Logic Cells

SoC System on Chip

SGMII Serial Gigabit Media Independent Interface

TCL Tool Command Language

TDP True Dual Port

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WRIO Wide-Range Input/Output

ZIA Zero-Power Interconnect Array

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 9

1. Competitive Positioning

1.1. Lattice FPGA Devices
Lattice Semiconductor offers a wide range of Field Programmable Gate Array (FPGA) devices that suit different industry
needs. The selection of one device family depends on multiple factors, such as but not limited to, logic density, number of
input/output (I/O) needed, memory requirements, digital signal processing requirements, and security requirements.

The main advantages of FPGA devices are flexibility and adaptability. FPGA devices can implement variety of functions and
can be reprogrammed infinitely to adapt to the needs of various industry segments. For example, the needs for
communication market may be slightly different than the industrial or server market.

Lattice offers a variety of device families that are tuned to the needs of each market and can be segmented into the
following categories. Table 1.1 shows selected device families for each of the categories.

For more information on each device family, refer to the respective device family datasheet. For example, you can refer to
the CertusPro-NX Family Data Sheet (FPGA-DS-02086) to learn more about the Lattice CertusPro™-NX device family.

Table 1.1. Selected Device Families for Each Lattice FPGA Device Category

Category FPGA Device Family Device Capabilities

Mid-Range General-
Purpose FPGA devices
(up to 638 system logic
cells)

Avant™ The Avant devices have the following capabilities:

• Fast and flexible SERDES which supports up to 28 channels of PCIe Gen 4,

25G ethernet.

• Fast external memory that support LPDDR4/DDR4 with speed up to

2400 Mbps and DDR5 with speed up to 2100 Mbps.

• Consume up to 2.5× lower power than competitive products.

• Efficient edge AI processing with up to 7200 INT8 multipliers and 35.6 Mb
embedded memory which enables efficient implementation of AI/ML
algorithms as well as packet buffering of high-speed interfaces.

Low Density Video
Connectivity FPGA
devices

(up to 40k logic cells)

Crosslink™-NX The Crosslink-NX devices have the following capabilities:

• Consume up to 75% less power when compared to similar FPGA devices.

• Have small form factor packaging with sizes as small as 4 mm × 4 mm.

• Have large DSP resources and high memory to logic cell ratios (up to 170
bits per logic cell) which accelerate the artificial intelligence (AI)
inferencing to provide high vision processing applications performance.

• Provide high speed interfaces supporting 2.5 Gb/s Hardened MIPI D-PHY,
5 Gb/s PCIe, 1.5 Gbps programmable I/O, and 1066 Mb/s DDR3.

• Support other interfaces such as LVDS, subLVDS, OpenLDI (OLDI), and
SGMII.

Low-Density General-
Purpose FPGA devices
(up to 150k logic Cells)

CertusPro™-NX The CertusPro-NX devices have the following capabilities:

• Have a high power efficiency.

• Provide up to 100 times higher reliability due to the 100 times lower Soft
Error Rate (SER) from the 28 nm FD-SOI technology.

• Support 10 Gb/s SERDES at the lowest power usage and with the smallest
package size.

• Support LPDDR4 with up to 7.3 Mb of on-chip memory.

Control and Security
FPGA devices

(up to 25k logic cells)

MachXO5™-NX The MachXO5-NX devices have the following capabilities:

• Have a high I/O to logic ratio.

• Have up to 25k logic density, 1.9 Mb of embedded memory, and up to
15.362 Mb of user flash memory.

• Have device security features that can protect your intellectual property
such as internal flash configuration, AES256 bitstream encryption, ECC256
bitstream authentication, configuration port lock, and run-time security.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53126

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 10

Category FPGA Device Family Device Capabilities

Ultra-low Power FPGA
devices

(up to 5k logic cells with
static current of 75 µA)

iCE40 UltraPlus™ The iCE40 UltraPlus devices have the following capabilities:

• Provide low-power connectivity and low-power computing capabilities.

• Solve connectivity issues with a wide variety of interfaces and protocols.

• Provide low-power computational resources for higher levels of
intelligence on the edge.

• Able to implement neural networks for pattern matching necessary to
bring always-on intelligence to the edge.

1.2. AMD CPLD/FPGA Devices
The AMD product portfolio focuses on high-end FPGA devices in terms of logic cells density, performance, SERDES speed for
system on chip (SoC) integration. Table 1.2 shows the summary of the Complex Programmable Logic Devices (CPLD)/FPGA
devices offered by AMD:

Table 1.2. Summary of AMD CPLD/FPGA Devices

Years CPLD/FPGA Devices

Prior to 2001 XC9500 and CoolRunner™ (EOL)

2001–2007 Virtex®, Spartan®-II (EOL), Virtex-II, Spartan-3(EOL), and Virtex-4 (90 nm)

2006–2009 Virtex-5 (65 nm)

2009 Virtex-6 and Spartan-6 (40/45 nm).

2010–2012 Spartan-7, Artix™-7, Kintex™-7, Virtex-7, and Zynq®-7000 (28 nm)

2013–2018 UltraScale™ and UltraScale+™ (16 nm)

2019 Versal™ (7 nm)

You can refer to the AMD documentation for more details on their device offerings. The need for higher integration level
and larger density pushes AMD to move to the smallest process node.

This document focuses on the AMD device offerings that overlap with Lattice in terms of density, features, and
performance. Refer to the Competitive Positioning section for more details.

All the recent AMD FPGA devices are using LUT6 as the basic element to implement logic while Lattice FPGA devices are
using 4-input lookup tables (LUT4). The difference between the two implementations and the impact it may have on the
resource utilization for a given design are discussed in the subsequent sections.

1.3. Device Competitive Positioning Summary
The following Table 1.3 – Table 1.14 in this section provide a rough device mapping between AMD and Lattice devices. In
some cases, you may have multiple options as a replacement device. The subsequent sections will clarify what option is
most suitable for you to help you choose the right device as a replacement.

1.3.1. FPGA Architecture

Table 1.3. AMD Kintex UltraScale+ Devices and the Closest Lattice Devices Mapping

AMD
Device

System Logic
Cells

SRAM

Dist./EBR/Ultra (Mb)

SERDES

(16.3 Gb/s –
32.75 Gb/s)

PLL External
Memory

27 x 18
Mult.

PCIe
Lanes

Closest Lattice
Devices

KU3P 356k 4.7/12.7/13.5 0/16 4 DDR3,

DDR3L,

LPDDR3,

DDR4,

LPDDR4

1,368 16 LAV-AT-G50,
LAV-AT-X50

KU5P 475k 6.1/16.9/18.0 0/16 4 1,824 16 LAV-AT-G70,
LAV-AT-X70

KU9P 600k 8.8/32.1/0 28/0 4 2,520 0 LAV-AT-G70,
LAV-AT-X70

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 11

AMD
Device

System Logic
Cells

SRAM

Dist./EBR/Ultra (Mb)

SERDES

(16.3 Gb/s –
32.75 Gb/s)

PLL External
Memory

27 x 18
Mult.

PCIe
Lanes

Closest Lattice
Devices

KU11P 653k 9.1/21.1/22.5 32/20 8 2,928 64 LAV-AT-G70,
LAV-AT-X70

KU13P 747k 11.3/26.2/31.5 28/0 4 3,528 0 LAV-AT-G70,
LAV-AT-X70

KU15P 1143k 9.8/34.6/36.0 44/32 11 1,968 80 LAV-AT-G70,
LAV-AT-X70

KU19P 1843k 11.6/60.8/81.0 0/32 9 1,080 0 LAV-AT-G70,
LAV-AT-X70

Table 1.4. AMD Artix UltraScale+ Devices and the Closest Lattice Devices Mapping

AMD
Device

System Logic
Cells

SRAM

Dist./EBR (Mb)

SERDES

(12.5 Gb/s –
16.3 Gb/s)

PLL 27 x 18
Mult.

Closest Lattice Devices

AU7P 82k 1.1/3.8 4/0 4 216 LFCPNX-100, LFE5UM5G-85,
ECP3-95, ECP2M-100,
LAV-AT-G30, LAV-AT-X30

AU10P 96k 1.0/3.5 8/12 6 400 LFCPNX-100, LFE5UM5G-85,
ECP3-95, ECP2M-100,
LAV-AT-G30, LAV-AT-X30

AU15P 170k 2.5/5.1 8/12 6 576 ECP3-150, LAV-AT-G30,
LAV-AT-X30

AU20P 238k 3.2/7.0 12 6 900 ECP3-150, LAV-AT-G30,
LAV-AT-X30

AU25P 308k 4.7/10.5 12 8 1,200 ECP3-150, LAV-AT-G50,
LAV-AT-X50

Table 1.5. AMD Kintex-7 Devices and the Closest Lattice Devices Mapping

AMD Device Logic Cells EBR SRAM
(Mb)

SERDES

(12.5 Gb/s)

PLL 27 x 18
Mult.

PCIe (Gen2) Closest Lattice Devices

XC7K70T 65.6k 4.8 8 6 240 1 LAV-AT-E30,
LFCPNX-100

XC7K160T 162.2k 11.7 8 8 600 1 LAV-AT-E30

XC7K325T 326.0k 16.0 16 10 840 1 LAV-AT-E50

XC7K355T 356.1k 25.7 24 6 1,440 1 LAV-AT-E50

XC7K410T 406.7k 28.6 16 10 1,540 1 LAV-AT-E70

XC7K420T 416.9k 30.0 32 8 1,680 1 LAV-AT-E70

XC7K470T 477.7k 34.3 32 8 1,920 1 LAV-AT-E70

Table 1.6. AMD Artix-7 T Devices and the Closest Lattice Devices Mapping

AMD Device Logic Cells EBR SRAM
(Mb)

SERDES

(6.6 Gb/s)

PLL 25 x 18 Mult. Closest Lattice Devices

XC7A12T 13k 0.7 2 3 40 LFE5UM-25, LFE5UM5G-25,
ECP2M-20, ECP3-17,
LFD2NX-9, LFD2NX-17

XC7A15T 17k 0.9 0/2/4 5 45 LFE5UM-25, LFE5UM5G-25,
ECP2M-20, ECP3-17,
LFMXO5-25, LFD2NX-17

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 12

AMD Device Logic Cells EBR SRAM
(Mb)

SERDES

(6.6 Gb/s)

PLL 25 x 18 Mult. Closest Lattice Devices

XC7A25T 23k 1.6 4 3 80 LFE5UM-25, LFE5UM5G-25,
ECP2M-20, ECP3-17,
LFMXO5-25, LFD2NX-28

XC7A35T 33k 1.8 0/2/4 5 90 LFE5UM-45, LFE5UM5G-45,
ECP3-35, LFD2NX-40,
LFD2NX-28, LIFCL-40,
LFCPNX-50

XC7A50T 52k 2.7 0/2/4 5 120 LFCPNX-50, LFE5UM-45,
LFE5UM5G-45, ECP3-70

XC7A75T 75k 3.8 0/4/8 6 180 LFCPNX-100, LFE5UM-85,
LFE5UM5G-85, ECP3-70

XC7A100T 101k 4.9 0/4/8 6 240 LFCPNX-100, ECP3-95,
ECP3-150

XC7A200T 215k 13.1 4/8/16 10 740 ECP3-150

Table 1.7. AMD Spartan-7 Devices and the Closest Lattice Devices Mapping

AMD Device Logic Cells EBR SRAM (kb) PLL 25 x 18 Mult. Closest Lattice Devices

XC7S6 6k 180 2 10 MachXO3L-6900, ECP2-6, LP8K

XC7S15 13k 360 2 20 LFE5U-12, ECP2-12, ECP3-17,
LIFCL-17, LFD2NX-17, LFD2NX-9,
LFMXO5-25

XC7S25 23k 1,620 3 80 LFE5U-25, ECP2-20, ECP3-17,
LIFCL-17, LFD2NX-17,

LFD2NX-28, LFMXO5-25

XC7S50 52k 2,700 5 120 LFE5U-45, ECP2-50, ECP3-70,
LIFCL-40, LFD2NX-40,

LFCPNX-50, LFMXO5-55T

XC7S75 77k 3,240 8 140 LFE5U-85, ECP3-70, ECP2-70,
LFCPNX-100, LFMXO5-100T

XC7S100 102k 4,320 8 160 ECP3-95, ECP3-150, ECP2M-100,
LFCPNX-100, LFMXO5-100T

Table 1.8. AMD Spartan-6 LX Devices and the Closest Lattice Devices Mapping

AMD
Device

Logic
Cells

Dist.
RAM

(kb)

EBR

SRAM

(kb)

EBR

SRAM

Blocks

DLL 18 x 18

Mult.

Embedded

PCIe I/F

Embedded
Mem.
Cntl.

Closest Lattice
Devices

XC6SLX4 4k 75 216 12 2 4 0 0 XO2-4000HC,
XO2-4000HE,
ECP2-6, LP8K,
MachXO3L-4300

XC6SLX9 9k 90 576 32 2 16 0 2 XO2-7000HC,
XO2-7000HE,
ECP2-6, ECP2-12,
MachXO3L-6900,
LFD2NX-9

XC6SLX16 15k 136 576 32 2 32 0 2 ECP3-17, LIFCL-17,
LFD2NX-17,
LFMXO5-25

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 13

AMD
Device

Logic
Cells

Dist.
RAM

(kb)

EBR

SRAM

(kb)

EBR

SRAM

Blocks

DLL 18 x 18

Mult.

Embedded

PCIe I/F

Embedded
Mem.
Cntl.

Closest Lattice
Devices

XC6SLX25 24k 228 936 52 2 38 0 2 ECP2-20, ECP3-35,
LFE5U-25,

LIFCL-17,
LFD2NX-17,

LFD2NX-28,
LFMXO5-25

XC6SLX45 44k 401 2,088 116 4 58 0 2 ECP3-35,
LFE5U-45,
LIFCL-40,
LFD2NX-40,
LFCPNX-50

XC6SLX75 75k 975 4,824 268 6 182 0 4 ECP3-70,
LFE5U-85,
LFCPNX-100

XC6SLX100 101k 975 4,824 268 6 182 0 4 ECP3-70, ECP3-95,
LFCPNX-100

XC6SLX150 147k 1,358 4,824 268 6 182 0 4 ECP3-95,
ECP3-150

Table 1.9. AMD Spartan-6 LXT Devices and the Closest Lattice Devices Mapping

AMD
Device

Logic
Cells

Dist.
RAM

(kb)

EBR
SRAM

(kb)

EBR
SRAM

Blocks

SERDES DLL 18 x 18

Mult.

Embedded

PCIe I/F

Embedded
Mem. Cntl.

Closest Lattice
Devices

XC6SLX25T 24k 228 936 52 2 2 38 1 2 ECP2M-20,
ECP3-35,
LFE5UM-25,
LIFCL-17,
LFD2NX-17,
LFD2NX-28,
LFCPNX-50

XC6SLX45T 44k 401 2,088 116 4 4 58 1 2 ECP3-35,
ECP3-70,
LFE5UM-45,
LIFCL-40,
LFD2NX-40,
LFCPNX-50

XC6SLX75T 75k 692 3,096 172 4/8 6 132 1 4 ECP3-70,
LFE5UM-85,
LFCPNX-100

XC6SLX100T 101k 975 4,824 268 4/8 6 182 1 4 ECP3-95,
LFCPNX-100

XC6SLX150T 147k 1,358 4,824 268 4/8 6 182 1 4 ECP3-95,
ECP3-150

Table 1.10. AMD Spartan-3AN Devices and the Closest Lattice Devices Mapping

AMD Device LUT4 Logic
Cells

Dist.
RAM
(kb)

EBR
SRAM

(kb)

EBR
SRAM

Blocks

DLL 18 x 18
Mult.

User Flash
(Mb)

Closest Lattice
Devices

XC3S50AN 1.4k 1.6k 11 54 3 2 3 0.6 XO2-1200HC,
XP2-5

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 14

AMD Device LUT4 Logic
Cells

Dist.
RAM
(kb)

EBR
SRAM

(kb)

EBR
SRAM

Blocks

DLL 18 x 18
Mult.

User Flash
(Mb)

Closest Lattice
Devices

XC3S200AN 3.6k 4.0k 28 288 16 4 16 3.0 XO2-2000HC,
XO2-2000HE,
XP2-5

XC3S400AN 7.2k 8.1k 56 360 20 4 20 2.4 XO2-7000HC,
XO2-7000HE,
XP2-8, LFD2NX-9

XC3S700AN 11.8k 13.2k 92 360 20 8 20 5.8 XP2-17,

LFD2NX-17

XC3S1400AN 22.5k 25.3k 176 576 32 8 32 12.2 XP2-17, XP2-30,
LFD2NX-28

Table 1.11. AMD Spartan-3 Devices and the Closest Lattice Devices Mapping

AMD Device LUT4 Logic Cells Dist. RAM

(kb)

EBR
SRAM

(kb)

EBR
SRAM

Blocks

DLL 18 x 18

Mult.

Closest Lattice
Devices

XC3S50 1.5k 1.7k 12 72 4 2 4 XO2-1200HC,
XO2-1200UHC,
MachXO3L-1300

XC3S200 3.8k 4.3k 30 216 12 4 12 XO2-4000HC,
XO2-4000HE,
ECP2-6,
MachXO3L-4300

XC3S400 7.2k 8.1k 56 288 16 4 16 XO2-7000HC,
XO2-7000HE,
ECP2-6, ECP2-12,
MachXO3L-6900,
LFD2NX-9

XC3S1000 15.4k 17.3k 120 432 24 4 24 ECP2-20, ECP2M-20,
ECP3-17, LFE5U-12,
LFD2NX-17, LIFCL-17

XC3S1500 26.6k 30k 208 576 32 4 32 ECP2-20, ECP2M-20,
ECP2-35, ECP2M-35,
ECP3-35, LFE5U-25,
LFD2NX-40,

LFD2NX-28, LIFCL-40

XC3S2000 41k 46k 320 720 40 4 40 ECP2-50, ECP2M-50,
ECP3-35, LFE5U-45,
LFD2NX-40, LIFCL-40

XC3S4000 55.3k 62.2k 432 1,728 96 4 96 ECP2-50, ECP2M-50,
ECP2-70, ECP2M-70,
ECP3-70, LFE5U-45,
LFCPNX-50

XC3S5000 66.6k 74.9k 520 1,872 104 4 104 ECP2-70, ECP2M-70,
ECP3-70, LFE5U-85

Table 1.12. AMD Spartan-3E Devices and the Closest Lattice Devices Mapping

AMD Device LUT4 Logic Cells Dist. RAM
(kb)

EBR
SRAM

(kb)

EBR
SRAM

Blocks

DLL 18 x 18

Mult.

Closest Lattice
Devices

XC3S100E 1.9k 2.2k 15 72 4 2 4 XO2-1200HC,
XO2-1200UHC

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 15

AMD Device LUT4 Logic Cells Dist. RAM
(kb)

EBR
SRAM

(kb)

EBR
SRAM

Blocks

DLL 18 x 18

Mult.

Closest Lattice
Devices

XC3S250E 4.9k 5.5k 38 216 12 4 12 LP8K,

MachXO3L-6900,
ECP2-6, LFD2NX-9

XC3S500E 9.3k 10.5k 73 360 20 4 20 LP8K,

MachXO3L-6900,
ECP2-6, ECP2-12,
LFE5U-12, LFD2NX-9

XC3S1200E 17.3k 19.5k 136 504 28 8 28 ECP2-20, ECP2M-20,
ECP3-17, LFE5U-12,
LFD2NX-17, LIFCL-17

XC3S1600E 29.5k 33.2k 231 648 36 8 36 ECP2-35, ECP2M-35,
ECP3-35, LFE5U-25,
LFD2NX-40,

LFD2NX-28, LIFCL-40

Table 1.13. AMD Spartan-3A Devices and the Closest Lattice Devices Mapping

AMD Device LUT4 Logic Cells Dist. RAM
(kb)

EBR
SRAM

(kb)

EBR
SRAM

Blocks

DLL 18 x 18
Mult.

Closest Lattice
Devices

XC3S50A 1.4k 1.6k 11 54 3 2 3 XO2-1200HC,
XO2-1200UHC,
ECP2-6,
MachXO3L-1300

XC3S200A 3.6k 4.0k 28 288 16 4 16 XO2-4000HC,
XO2-4000HE,
ECP2-6,

MachXO3L-4300

XC3S400A 7.2k 8.1k 56 360 20 4 20 XO2-7000HC,
XO2-7000HE,
ECP2-6, ECP2-12,
MachXO3L-6900,
LFD2NX-9

XC3S700A 11.8k 13.2k 92 360 20 8 20 ECP2-12, ECP2-20,
ECP3-17, LFE5U-12,
LFD2NX-17

XC3S1400A 22.5k 25.3k 176 576 32 8 32 ECP2-20, ECP2-35,
ECP3-17, LFE5U-25,
LFD2NX-17, LIFCL-17

Table 1.14. AMD Spartan-3A DSP Devices and the Closest Lattice Devices Mapping

AMD Device LUT4 Logic Cells Dist. RAM

(kb)

EBRSRAM

(kb)

EBR SRAM

Blocks

DLL Closest Lattice Devices

XC3SD1800A 33k 37k 260 1512 84 8 ECP3-35, ECP2-35,
LFD2NX-40,

LFD2NX-28, LIFCL-40

XC3SD3400A 48k 54k 373 2268 126 8 ECP2-50, LFE5U-45,
LFCPNX-50

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 16

1.3.2. CPLD Architecture

Complex programmable logic device (CPLD) is the old programmable logic device (PLD) architecture that is different from
the FPGA device. Lattice is committed to offer a variety of products in this category that can replace the AMD discontinued
parts, mainly the XC9500 and CoolRunner devices.

CoolRunner-II family of product is based on the AMD XC9500 and CoolRunner XPLA3 families. It ranges from 32 to 512
macrocells. The main difference between all these variants is the power, where Coolrunner-II is offering the lowest power
option.

The main characteristic of a CPLD is its deterministic timing, where going from any input pin to any output pin takes 1 × tpd;
where, tpd refers to the propagation delay time. The CPLD devices are characterized by how fast the tpd is. For example,
the tpd can be 2.5 ns, 5 ns or 7.5 ns.

Figure 1.1 shows the architecture of the Lattice ispMACH™4000 family which has a similar architecture to the AMD
CoolRunner.

Figure 1.1. IspMACH4000 Family Architecture

The main building blocks of the ispMACH4000 family architecture are as follows:

• GRP: Global Routing Pool

• AIM: Advanced Interconnect Matrix (CoolRunner)

• ZIA: Zero-Power Interconnect Array (XPLA)

• GLB: Generic Logic Block

• PLA: Programmable Logic Array

• ORP: Output Routing Pool

• I/O Banks

The ispMACH4000 is a newer family when compared to the XC9500/CoolRunner family; thus, offers better performance
and architecture to support larger product term functions and enhanced IO flexibility. Table 1.15 lists the devices that could
be selected to replace the AMD parts.

I/
O

 B
an

k
0

V
C

C
O

0
G

N
D

I/O
Block

ORP 16
Generic

Logic
Block

16 16
Generic

Logic
Block

I/O
Block

16 ORP
36 36

I/O
Block

ORP 16
Generic

Logic
Block

16 16
Generic

Logic
Block

I/O
Block

16 ORP
36 36

C
LK

0/
I

C
LK

1/
I

C
LK

2/
I

C
LK

3/
I

G
O

E0

G
O

E1

V
C

C

G
N

D

TC
K

TM
S

TD
I

TD
O

V
C

C
O

1
G

N
D

I/
O

 B
an

k
1

G
lo

b
al

 R
o

u
ti

n
g

Po
o

l

OSC

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 17

Table 1.15. AMD CoolRunner-II Devices and the Closest Lattice Devices Mapping

AMD Device Macro-cells Distributed
RAM (kb)

EBR SRAM
(b)

EBR SRAM
Blocks

PLLs Closest Lattice Devices

XC2C32A 32 — — — — XO2-256, XO2-640,
ispMACH 4000V/Z 4032,
ispMACH 4000V/Z 4064,
ispMACH 4000V/Z 4128,
ispMACH 4000V/Z 4256,
ispMACH 4000V/Z 4512

XC2C64A 64 — — — —

XC2C128 128 — — — —

XC2C256 256 — — — —

XC2C384 384 — — — —

XC2C512 512 — — — —

1.3.3. Device Temperature Grades

The Lattice FPGA devices are typically offered in commercial, industrial, and automotive temperature grades. Automotive
support is offered in a subset of devices, speed grade and package options. Refer to each family datasheet for accurate
information.

• Commercial Temperature: (Tj = 0 °C – 85 °C)

• Industrial Temperature (Tj = –40 °C – 100 °C)

• Automotive Temperature (Tj = –40 °C – 125 °C)

Extended temperature range: some competitive devices offer an extended temperature range (Tj=0 °C – 100 °C), these
could be replaced with an Industrial temperature range if the extended temperature range is needed. Keep in mind that the
Lattice FPGA devices are very low power and will run cooler than the AMD devices.

On Lattice Certus device family, the on-die junction temperature can be monitored using the internal junction temperature
monitoring diode. The proportional to absolute temperature (PTAT) diode voltage can be monitored by analog to digital
converter (ADC) to provide a digital temperature readout. Refer to the ADC Usage Guide for Nexus Platform
(FPGA-TN-02129) for more details.

1.4. Device Part Number and Speed Grade
Device part numbers are similar for both AMD and Lattice, they integrate several acronyms or indices that define the
parameters of the device. Detailed meaning of each acronym is shown below.

An important factor is the device speed grade; for example, -1, -2, and -3. Faster devices will have a higher number. For
example, -3 device is faster than a -2 device. The same logic is used with the Lattice devices; a -9 device is faster than a -8
device. The device has been tested at the factory to comply with the datasheet specifications for that speed grade.

Some of the AMD devices are offered in lower power versions coded with an L prefix; for example, L1, L2, and G2. Lattice
devices are designed for low power and there is no special coding for low power version devices. Lattice Nexus FPGA
platform uses 28 nm FD-SOI process technology and offers low power options of the same part number that is configurable
at software level (same ordering part number).

1.4.1. AMD Part Number Description

Figure 1.2 describes the AMD 7 series part numbers (Artix-7, Kintex-7, and Vertex 7).

Example: Kintex-7 device with a part number of XC7K325T-2FBG900C.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52779
https://www.latticesemi.com/view_document?document_id=52779

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 18

Figure 1.2. Kintex-7 Part Number Description

1.4.2. Lattice Part Number Description

Figure 1.3 describes the Lattice ECP5/ECP-5G part number and Figure 1.4 describes the Lattice CertusPro-NX part number.

LFE5U - XX - X XXXXX X
Device Family

LFE5U (ECP5 FPGA)

Logic Capacity
12F = 12K LUTs
25F = 25K LUTs
45F = 45K LUTs
85F = 85K LUTs

Speed
6 = Slowest
7
8 = Fastest

Package
TG144 = 144-pin TQFP
BG256 = 256-ball caBGA
MG285 = 285-ball csfBGA
BG381 = 381-ball caBGA
BG554 = 554-ball caBGA
BG756 = 756-ball caBGA

Grade
C = Commercial
I = Industrial

Figure 1.3. Lattice ECP5/ECP5-5G Part Number Description

Logic Capacity

 50 = 50k Logic Cells

100 = 100k Logic Cells

Package Type

 A = Fan Out WLCSP (FOWLP)

 B = BGA(Wirebond)

 L = fcBGA - LIDLESS

 C = fcCSP

LFCPNX

Grade

 C = Commercial

 I = Industrial

 A = Automotive

- XXX - X X X X X

Speed (same number for HP and LP)

 7 = Slowest

 8

 9 = Fastest

Device Family

 CertusPro-NX FPGA

Ball Pitch(mm)

 F = 1.00

 B = 0.80

 S = 0.50

BOM

 G = ROHS6/6

- XXX

Revision (Optional)

 01A = Die Version

2

1

- XXX

Ball Count

 256

 484

 672

Figure 1.4. Lattice CertusPro-NX Part Number Description

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 19

1.4.3. Lattice Ordering Part Numbers Example

For example, CertusPro-NX family part number LFCPNX-100-7ASG256C would be described as follow:

• LFCPNX: device Family

• 100: 100K Logic Cells (LUT4)

• -7: Speed grade

• ASG256: 256 ball WLCSP (Wafer level Chip Scale Package) with 0.5mm pitch

• C: Commercial Grade

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 20

2. Architecture Differences
The section provides you the overview and analysis of the differences between Lattice and AMD architecture focusing on
the AMD 7-Series devices; namely the Spartan-7, Artix-7, Kintex-7, and Virtex-7, and older generation FPGA as well as their
equivalent parts from Lattice Nexus and Avant device families.

This section coves the following topics:

• Old AMD terminology

• LUT4 versus LUT6

• I/O voltage and banks

• Available clocking resources

• Internal memory configuration

• External memory interface

• SERDES/Transceiver blocks

• DSP blocks

• Other hardened functions

2.1. Old AMD FPGA Terminology
Older AMD FPGA such as Spartan-II, Spartan-3, or Virtex II use LUT4 based architecture and have some specific terminology
(shown in Table 2.1) that is discussed in this section to provide a way to compare them with the Lattice architecture
elements.

Table 2.1. AMD Spartan-3 Device Architecture

AMD Device XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000

System Gate 50k 200k 400k 1,000k 1,500k 2,000k 4,000k 500k

Equivalent Logic
Cells1

1,728 4,320 8,064 17,280 29,952 46,000 62,208 74,880

CLB 192 480 896 1,920 3,328 5,120 6,912 8,320

Calculated LUT42 1.5k 3.8k 7.2k 15.4k 26.6k 41k 55.3k 66.6k

Notes:
1. Calculated LUT4 = Number of CLB × 8 (not listed in the datasheet).
2. Equivalent Logic Cells = Number of LUT4 × 1.125 (listed in the datasheet).

Further description of the terms used in Table 2.1 are as follows:

• System gates are used to name the devices as shown in the example below. System gate represents the device density
in equivalent Application-Specific Integrated Circuit (ASIC) gates which is not fully representative of the device usable
logic. In reality, all the architecture elements (such as RAM, Routing, and DSP) are counted in the system gate numbers.

• Logic Cells = 4-input Look Up Table (LUT) + a D flip-flop.

• Configurable Logic Block (CLB) is composed of 8 × Logic Cells

• Equivalent Logic Cells = CLB × 8 Logic Cells × 1.125. The multiplier factor (1.125 ×) is an effectiveness factor that stays
as a gross marketing number.

When migrating design from these older AMD families, the equivalent logic cell numbers are comparable to Lattice logic cell
terminology. In the absence of logic cell details, LUT4 number is also a good comparison metric.

The following example shows the comparison between the AMD Spartan-3 device and Lattice device:

XC3S200 is a Spartan 3 device family with 200k system gates.

To compare this device with Lattice offering, you need to refer to the number of logic cells available in the device.

In this case:

Number of logic cells = Number of CLB × 8 = 480 × 8 = 3,840 logic cells (LUT4+FF)

Proper equivalent device can be XO2-4000HC/XO2-4000HE and XO3L-4300 with 4,000 and 4,300 LUT4 respectively.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 21

2.2. LUT4 vs LUT6

2.2.1. Architecture Description and Differences

One of the main differences between Lattice and the new AMD architecture is the size of the basic element of the FPGA,
which is the Lookup Table (LUT). A LUT6 is a 6-input memory block that is used to implement any logic function with 6
inputs. A LUT4 on the other hand implements any function with 4 inputs. In a design the number of inputs for a given logic
equation varies a lot depending on how you write your HDL and how complex the logic is.

As an example, if you have a 10-input logic function, you need 2 LUT6 to implement your design whereas on a LUT4 based
architecture it takes 3. In this specific case, you need 50% more LUT4 than LUT6 (3 LUT4 versus 2 LUT6). For details, refer to
Figure 2.1.

Figure 2.1. LUT4 Versus LUT6 Based Architectures for 10-input Logic Function

Silicon footprint for LUT4 and LUT6 is not the same. The number of transistors required to build a LUT6 are more than
double the LUT4 implementation and LUT6 implementation will run slightly slower than LUT4.

Every design is different, and the number of levels of logic and pipelining will play a role in the overall design performance.
Some designs may run faster in a LUT4 architecture, the other way around is also true.

To be able to compare both LUT4 and LUT6, AMD literature uses the term “Logic Cell” or “system logic cell” to calculate the
equivalent LUT6 density of their devices. That is, 1 logic cell = 1.6 × number of LUT6.

Logic cell listed in the AMD literature represent the equivalent LUT4 device logic density. This terminology has been
adopted since the move to LUT6 based architecture with Virtex 5, it is a way to compare logic resources to Virtex 4 (using
LUT4).

It is obvious that a LUT6 can integrate more logic than a LUT4 as explained in the example above. AMD set that number to
be 1.6 based on some benchmarking. In reality, the multiplier factor will change for every design and could only be used as
an estimated number.

All the AMD FPGA devices after Virtex-4 have been adopting this multiplier for the naming of the device. Refer to
Table 2.2 and the following example for more details:

Table 2.2. AMD Spartan-7 Device Architecture

AMD Device XC7S6 XC7S15 XC7S25 XC7S50 XC7S75 XC3S100

Logic Cells 6,000 12,800 23,360 52,160 76,800 102,400

Slices 938 2,000 3,650 8,150 12,000 16,000

Calculated LUT6* 3,752 8,000 14,600 32,600 48,000 64,000

*Note: Calculated number of LUT6 = Number of slices × 4

The XC7S6 device has 6,000 logic cells and 938 number of slices.

Each 7 series FPGA slice contains four LUT6 and eight flip-flops.

The logic cell number listed is calculated using this equation:

Logic cells = Number of slices × Number of LUT6 per slice × 1.6

Logic cells = 938 × 4 × 1.6 = 6,003

Hence, the XC7S6 device name has 6,000 logic cells.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 22

System logic cell has been introduced with the AMD UltraScale device family. AMD changed their terminology to consider
extra features added in UltraScale devices architecture. On a high level, these extra features can be summarized in the
addition of dedicated inputs to the CLB flipflop, enabling wider Multiplexer (MUX) function, enhanced carry chain, and
improved clock enable and reset.

All these enhancements allow more logic packing compared to original LUT4 in Virtex-4 architecture. It has been estimated
that these features offer 20% – 30% more capacity for a given design. That is the justification of the 2.1875 multiplication
factor used to convert System Logic Cells to Virtex-4 LUT4 equivalent similar to Logic Cell metric used in 7-Series devices.
Refer to the following formula, Table 2.3, and example for more detail:

1 System logic cell = 2.1875 × Number of LUT6

Table 2.3. AMD Kintex UltraScale Device Architecture

AMD Device System Logic Cells (SLC) CLB LUT

KU025 318 145,440

KU035 444 203,128

KU040 530 242,400

Number of LUT6 is listed as CLB LUT = 145,440 LUT6

Number of SLC = CLB LUT × 2.1875

Number of SLC = 145,440 × 2.1875 = 318,150 LUT4 Equivalent

Lattice also uses some multipliers to convert LUT4 to LC-logic cells (for Nexus Family) and SLC-System Logic Cells (for Avant
Family). Figure 2.2 provides a summary of different multipliers that are used by both AMD and Lattice to move from the
architectural representation to the 4-input LUT metric (LC or SLC).

Architectural
Representation

LC

4LUT

6LUT

SLC

4-Input LUT Metric
Representation

AMD 7-Series and
UltraScale+ Devices

Lattice Nexus and
Avant Devices

1.36×
1.36×

1.6× (7-Series Devices)

Note:

These logic cell (LC) or system logic cell (SLC) multipliers, also called effectiveness factors in some literature, are rough
estimate based on some benchmarking. The value of this effectiveness factor will always be design dependent.

Figure 2.2. AMD and Lattice Logic Cell and System Logic Cell Conversion Diagram

2.2.2. Architecture LUT Size is a Strategic Decision

Selecting LUT4 versus LUT6 is a strategic architectural decision and depends on multiple factors. LUT6 is suitable for very
high-density FPGA devices to allow logic density integration and improve performance. It is also suitable for bleeding edge
technology node.

The same architecture usually scales down to smaller devices. You can see this with the Ultrascale and 7-Series AMD
devices.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 23

Lattice strategic positioning focuses on low to mid-range density FPGA devices with an architecture and technology nodes
that are suitable for the device density based on the offering provided.

LUT4 architecture is optimal for up to 500k LC at 350 MHz in 16 nm. Devices with LUT4 architecture, such as the Lattice
Avant family, offers the required performance with lower power advantage.

LUT4 is lower power when compared to LUT6 because it has 4× less bits. LUT4 has 16 bits, whereas LUT6 has 64 bits. Less
bit count is equivalent to less leakage. The decoding logic is also simpler with LUT4 and will consequently consume less
power.

Figure 2.3 shows a high-level representation of a LUT4 versus LUT6 in logic gates. At the same process node, LUT6 could be
up to 4 times bigger than LUT4 in terms of decoding logic associated with it. The footprint on the silicon is different based
on the process node used and the ratio is also different. However, there is an advantage of using LUT4 for Lattice target
class of devices which are small and mid-range FPGA devices.

Figure 2.3. High-level Representation of LUT4 Versus LUT6 Logic Gates

2.2.3. Design Conversion Recommendations

From the design conversion perspective, there is not much to do to accommodate LUT4 or LUT6 architecture. Usually, the
HDL code is agnostic and is not specific to either architecture. The synthesis tools used will convert your HDL code to the
selected target technology library. For a high-performance design, you may need some pipelining techniques to optimize
implementation for either structure.

In the case where you are using LUT to build distributed memory or shift register, be aware that a LUT4 is a 16-bit memory
block whereas LUT6 is a 64-bit memory block. For more information, refer to the Internal Memory Configuration section.

2.3. I/O, Voltage, and Bank

2.3.1. Architecture Description and Differences

Both Lattice and AMD FPGA devices have configurable I/O with versatility of voltage support. Both group I/Os in banks with
pre-determined size; for example, AMD 50 I/Os. Refer to each vendor for specific I/O related information and voltage
standard support.

For more information on the Lattice CertusPro-NX device family (other Lattice device families have equivalent documents),
refer to the following documents:

• sysI/O User Guide for Nexus Platform (FPGA-TN-02067)

• CertusPro-NX High-Speed I/O Interface (FPGA-TN-02244)

• Sub-LVDS Signaling Using Lattice Devices (FPGA-TN-02028)

There are differences in I/O, voltage and banks terminology used by Lattice and AMD which is summarized in Table 2.4.
Lattice offers flexibility in voltage mixing within the same bank which can give an advantage in terms of usable pins per
bank. For more details, refer to the Voltage Mix within the Same Bank section.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52792
https://www.latticesemi.com/view_document?document_id=53256
https://www.latticesemi.com/view_document?document_id=37643

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 24

Table 2.4. I/O, Voltage, and Bank Terminology Comparison Between Lattice and AMD Devices

AMD Device Lattice Device Descriptions

VCCO VCCIO The bank I/O voltage.

VREF VREF The reference voltage per bank.

VCCAUX VCCAUX The auxiliary voltage.

HP I/O Banks HPIO Banks or High performance I/O Banks
(usually are the bottom banks)

The designated I/O banks that support high performance
signals interface (up to 1.8 V I/O interface).

HR I/O Banks WRIO Banks or Wide Range I/O Banks Designated I/O banks that support up to 3.3 V I/O interface.

2.3.2. Voltage Mix within the Same Bank

Lattice devices, such as the Nexus platform devices, offer a flexible I/O architecture that allows voltage mixing within the
same bank. For more details, refer to the VCCIO Requirement for I/O Standards section of the sysI/O User Guide for Nexus
Platform (FPGA-TN-02067) document.

Table 2.5. Input Mixed Mode for Wide Range Input Buffers

VCCIO (V)

Input Signaling (V)

LVCMOS10 LVCMOS12 LVCMOS15 LVCMOS18 LVCMOS25 LVCMOS33

VCC Powered Buffer VCCAUX Powered Buffer VCCIO Powered Buffer

1.2 ✓
2 ✓

2 ✓
1, 3 — — —

1.5 ✓
2 ✓

2 ✓
1, 3 ✓ — —

1.8 ✓
2 ✓

2 ✓
1, 3 ✓ — —

2.5 ✓
2 ✓

2 ✓
1, 3 ✓ ✓ —

3.3 ✓
2 ✓

2 ✓
1, 3 ✓ ✓

3 ✓

Notes:
1. Increased ICC is due to underdrive.
2. No Hysteresis.
3. Reduced Hysteresis.

Table 2.5 shows that there are multiple compatible voltages for a given VCCIO bank voltage. For example, any voltage
standard can be an input for a VCCIO of 3.3 V. If the number of I/O fits within the bank, only one bank is needed to
implement the requirements. Voltage output will always follow the VCCIO.

This I/O bank voltage mixing flexibility is not offered with AMD devices. For example, for the AMD 7-Series FPGA devices,
the VCCO conditions all the I/O voltages that are accepted in that bank for input and output.

2.3.2.1. Example Case

If your design must support LVCMOS12 and LVCMOS18 for a number of I/O, you may need to split them between 2 banks
which make these 2 banks dedicated to these voltages or any compatible voltage. This will have an impact on the usable I/O
for either bank. You may be losing pins because of these non-compatible voltages within the same bank.

For AMD 7-Series FPGA devices, there are requirements for each standard to be supported within the bank. The I/O
voltages can be mixed if they share the same voltage requirements for VCCO. In this case, if you want to support input for
LVCMOS12, LVCMOS18, LVCMOS25, LVCMOS33 for your design, you will have to use 4 different banks of I/O.

2.3.3. Design Conversion Recommendations

When converting a design, make sure to pay attention to the voltage mix within the bank. Take advantage of the Bank I/O
flexibility in the Lattice devices. You may be able to fit your design into smaller package options.

Use PCLK pins for clock input which have a direct connection to the clock routing or internal PLL. Even though the primary
clock or the PLL can have its input from routing or any pin, it will inject extra delay which is not optimal. If the clock is single
ended, use the PCLK (+) to connect your input.

Designated HPIO banks need to be used for high-speed interfaces including external memory interfaces. These banks have
the required I/O architecture and clocking structure to run at higher speed than the regular I/O.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52792
https://www.latticesemi.com/view_document?document_id=52792

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 25

2.4. Clocking Resources

2.4.1. Clocking Architectures Comparison

AMD architecture offers Primary clocks, Region clocks for the fabric and I/O clocks. MMCM and CMT refer to the clock
management and PLL. Table 2.6 lists the different resources available in the AMD 7-Series architecture and their equivalent
with Lattice.

Table 2.6. Clocking Architecture Comparison Between Lattice and AMD Devices

AMD Clock Buffer Descriptions Lattice Equivalent

BUFG 32 global clock buffers Up to 64 high fanout Primary clock (PCLK)

Internal clock buffer is inferred automatically.

BUFH, BUFR, BUFMR Horizontal, Region clocks

Multi-region clock

Up to 64 high fanout Primary clock (PCLK)

Internal clock buffer is inferred automatically.

BUFIO I/O clock Edge clock (ECLK)

Internal clock buffer is inferred automatically.

BUFGMUX Glitch less clock switch DCS (Dynamic clock select)

BUFGCE Clock gating buffer DCC (Dynamic clock Control)

CMT Clock management tile PLL/DLL

MMCM Mixed mode clock manager PLL/DLL

Note: The clocking structure in the AMD UltraScale devices has been changed and the number of buffers has been reduced
to 3 types only. The table information is still valid.

Lattice device clocking architecture includes optimized skew primary clocks that are distributed all over the fabric.
Depending on the density and device family, the number of primary clocks vary. The clock network is divided into four
clocking quadrants as shown in Figure 2.4: Top Left (TL), Bottom Left (BL), Top Right (TR), and Bottom Right (BR).

BL BR

TRTL

BMID

PLL

12 DCC

16 DCC

18 DCC

OSCBANK 0 PCLK

B
A

N
K

 1
 P

C
L

K
B

A
N

K
 2

 P
C

L
K

BANK 3 PCLKBANK 4 PCLKBANK 5 PCLK ECLK ECLK ECLK

TMID

R
M

ID
L

M
ID

PLL

PLL PLL

SerDes

Figure 2.4. Lattice CertusPro-NX Clocking Structure

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 26

Each of these quadrants has 16 primary clocks that can be distributed to the fabric in the quadrant. The Lattice Diamond
software can automatically route each clock to one of the four quadrants up to a maximum of 16 clocks per quadrant. You
can change how the clocks are routed by specifying a preference in the Lattice software (USE_PRIMARY).

Refer to the specific device datasheet for details about clocking structure of each device. For more information on the
Lattice CertusPro-NX device family (other Lattice device families have equivalent documents), refer to the following
documents:

• CertusPro-NX Family Data Sheet (FPGA-DS-02086)

• sysCLOCK PLL Design and User Guide for Nexus Platform (FPGA-TN-02095)

2.4.2. Design Conversion Recommendations

Software tools assign clocks based on the signal load and connectivity defined in the HDL code. Check for the following
when converting your design:

• Replace the clock buffer with a single net and verify that primary clocks are allocated properly. If not, use design
constraint: USE_PRIMARY to force the software to implement a specific clock on the primary clock routing.

• Replace primitives with Lattice equivalent for BUFGMUX and BUFGCE. For more information, refer to the
HDL Attributes section for the HDL code conversion examples.

• Make sure you are using the PCLK pins for your clock input. They have the most optimal path to the clock network, PLLs
or edge clocks.

2.5. PLL/MMCM/DCM
Both AMD and Lattice offer clock management modules. The names of these entities differ. Lattice offer comparable
functionalities using equivalent modules as described in Table 2.7.

Table 2.7. Clock Management Module Comparison Between Lattice and AMD Devices

AMD Device Lattice Device Descriptions

CMT GPLL/DLL CMT (Clock Management Tile) includes a mixed-mode clock manager (MMCM) and a phase-
locked loop (PLL). The Lattice equivalent is a PLL or DLL and other clocking resources within
the architecture.

MMCM GPLL/DLL MMCM is a Mixed-Mode Clock Manager. The Lattice equivalent is a PLL or DLL.

DCM GPLL/DLL Older generation AMD devices use the DCM (Digital Clock Management) which is replaced by
the CMT and MMCM in newer generation devices. The Lattice equivalent is a PLL or DLL.

Both the AMD UltraScale and 7-series FPGA devices integrate the CMT that includes a MMCM and one PLL for 7-Series
devices or two PLLs for UltraScale devices.

The devices in the Lattice CertusPro-NX family support three to four full-featured general purpose PLLs (GPLLs), each with
up to 6 different outputs. In addition, the dedicated DDRDLL units are also available for high-speed interfaces including
external memory interfaces.

Refer to the specific device datasheet for more details about the clocking resources that are available for each device. For
more information on the Lattice CertusPro-NX device family (other Lattice device families have equivalent documents),
refer to the following documents:

• CertusPro-NX Family Data Sheet (FPGA-DS-02086)

• sysCLOCK PLL Design and User Guide for Nexus Platform (FPGA-TN-02095)

2.5.1. Architecture Primitives Comparison

Unlike Lattice, where only one primitive could be parameterized to define the PLL operation and features, AMD propose
two types of MMCM units: The MMCME#_ADV primitive provides access to all MMCME#_BASE features plus additional
ports for clock switching, access to the dynamic reconfiguration port (DRP), dynamic fine-phase shifting and spread
spectrum support.

Table 2.8 describes the AMD primitives and the equivalent ports from Lattice.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53126
https://www.latticesemi.com/view_document?document_id=52789
https://www.latticesemi.com/view_document?document_id=53126
https://www.latticesemi.com/view_document?document_id=52789

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 27

The AMD primitives are as listed below:

• 7-Series devices: MMCME2_BASE, MMCME2_ADV, PLLE2_BASE, PLLE2_ADV

• UltraScale devices: MMCME3_BASE, MMCME3_ADV, PLLE3_BASE, PLLE3_ADV, PLLE4_BASE, PLLE4_ADV

The Lattice primitives are as listed below:

• LFCPNX, LFD2NX, LFMXO5, LIFCL, UT24C, and UT24CP device families: PLL/PLLA

• Avant device family: PLLC

• iCE40 UltraPlus device family: PLL_B

Clock Enable ports

Phase shift control

LMMI for dynamic
configuration

Internal feedback lines

PLL Clock output

Figure 2.5. PLLC Functional Block

Table 2.8. Architecture Primitive Comparison Between Lattice and AMD Devices

AMD Device Lattice Device Descriptions

CLKIN1,
CLKIN2

REFCK The general clock input.

For Lattice device, only one input is available for the PLL. You can use the DCS
primitive to MUX clock inputs.

CLKFBIN CLKFB For AMD device, CLKFBIN refers to the feedback clock input.

For Lattice device, the PLLREFCS primitive is used to support the dynamic reference
clock switching using the SEL signal.

CLKINSEL N/A For AMD device the primitive signal controls the state of the clock input MUX:
CLKIN1/2.

For Lattice device, you can use the DCS unit to MUX clocks to the PLL.

RST RST The asynchronous reset signal.

For Lattice, set active high to reset the PLL.

DADDR[6:0],
DI[15:0],

DWE,

DEN,

DCLK,

DO[15:0],
DRDY

LMMI_CLK,

LMMI_OFFSET[6:0],

LMMI_REQUEST,

LMMI_RESETN,

LMMI_WDATA[7:0],

LMMI_WR_RDN,

LMMI_RDATA[7:0],

LMMI_RDATA_VALID,

LMMI_READY

The dynamic reconfiguration interface signals.

For Lattice device, the LMMI or APB interface is used for dynamic reconfiguration.

Refer to the sysCLOCK PLL Design and User Guide for Nexus Platform (FPGA-TN-02095)
or the document for respective family for details of operation.

APB serial interface can also be used. The register map is identical to the LMMI.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52789

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 28

AMD Device Lattice Device Descriptions

CLKOUTx,
CLKOUTxB

CLKOP,

CLKOSx

The AMD primitives are referring to the clock output and its inverted version.

For Lattice device, the inverted version of the clock could be done at the clock tree
level.

CLKFBOUT,
CLKFBOUTB

Refclk The dedicated MMCM feedback output and its inverted version.

For Lattice device, the inverted version of the clock could be done at the clock tree
level.

LOCKED LOCK The status of the PLL.

PWRDWN PLLPD_EN_N The AMD primitive is used to power down the MMCMs.

For Lattice device, the same feature exist with the PLLPD_EN_N signal.

PSEN,
PSINCDEC,
PSCLK,
PSDONE

PHASESEL[2:0],

PHASEDIR,

PHASESTEP,

PHASELOADREG

The phase shift control signals.

2.5.2. CMT Features Comparison

UltraScale MMCMs are similar to the MMCM in the AMD 7-Series devices. PLLs are considered as a subset of MMCM with
reduced features. Table 2.9 summarize the difference between AMD MMCM, PLL and their Lattice equivalent replacement
unit.

Table 2.9. CMT Features Comparison Between Lattice and AMD Devices

CMT Features AMD Device MMCM AMD Device PLL Lattice Device PLL (CertusPro-NX)

Input Frequency Range 10 MHz – 800 MHz 19 MHz – 800 MHz 10 MHz – 500 MHz

Output Frequency Range 4.69 MHz – 800 MHz 6.25 MHz – 800 MHz 6.25 MHz – 800 MHz

VCO Frequency 600 MHz – 1,600 MHz 800 MHz – 2,133 MHz 800 MHz – 1,600 MHz

Spread Spectrum Yes No Yes (20 kHz – 200 kHz)

Phase Shift Yes Yes Yes

Number of outputs 8 outputs per MMCM 7 outputs per PLL 6 outputs per PLL (CLKOP, CLKOS, CLKOS2,
CLKOS3, CLKOS4, and CLKOS5)

Fractional Divide Yes Yes Yes

Programmable and
dynamic phase control

Yes Yes Yes

Register interface AXI Bus AXI Bus LMMI or APB

The Nexus PLL supports Spread spectrum clock generation through Lattice Radiant™ IP Catalog. The spread spectrum
function is integrated with the Fractional-N controls and supports Centered Spread or Down Spread, triangle wave, 0.25%
per step from 1.00% to 2.00% with modulation frequency range from 24.42 kHz to 200 kHz.

2.5.3. Design Conversion Recommendations

To convert AMD MMCM and PLL, it is recommended to use the IP Catalog or IP Express to generate equivalent PLL unit for
your design.

Note that using the AMD IP Catalog gives you the option to enable differential buffer when configuring the MMCM or PLL.
This automatically generates a PLL with differential clock input buffer (IBUFDS).

Lattice does not offer the differential buffer generation option at the PLL interface level. In general, all design signals within
the HDL code are defined as single ended pin. The pin type could be assigned at the constraint editor for single ended or
differential type. When locking a differential pin on the constraint editor, the complement is automatically reserved.

Lattice offers the option of instantiating a differential buffer in the HDL code if desired (use DIFFCLKIO primitive for LFCPNX
and UT24CP). For details, refer to Figure 2.6.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 29

Figure 2.6. Lattice IP Catalog for a PLL Configuration Interface

2.6. Internal Memory Configuration

2.6.1. Embedded and Distributed Memory Comparison

This section compares the difference of architecture between Lattice and AMD internal memories. Both architectures
integrate distributed and embedded blocks of RAM. For a small buffering, distributed memory is used. Bigger memory is
implemented in the RAM blocks. Both types could be inferred or instantiated in the code.

If the memory is coded in the HDL code, the synthesis tool will automatically infer either distributed or EBR, based on the
size of the memory. You can also force one or the other implementation by using the syn-ramstyle synthesis attribute. The
syn_ramstyle attribute specifies the implementation to use for an inferred RAM. You can apply syn_ramstyle globally to a
module or a RAM instance.

The following values can be specified globally or on a module or a RAM instance:

• Registers – Causes an inferred RAM to be mapped to registers (flip-flops and logic) rather than the technology-specific
RAM resources. This implementation is not resource efficient. If your RAM resources are limited, you can use this
attribute to map additional RAMs to registers instead of the dedicated or distributed RAM resources.

• Distributed – Causes the RAM to be implemented using the distributed RAM or PFU resources.

• Block_ram – Causes the RAM to be implemented using the dedicated RAM blocks or EBR.

Both Lattice and AMD architectures allow a certain percentage of the available LUTs to be configured as small memory
blocks. These are usually used in complementarity with Block RAM (EBR) to implement small shift register, buffering or to
store small amount of initialization data or filter coefficients.

Since AMD use a LUT6 architecture, each LUT6 can be converted to a 64×1 memory element (512 bits: 64×8 by AMD CLB).

For Lattice architecture a LUT4 is used which translates to a 16×1 memory element. Each Lattice PFU can be converted to a
16×4 memory block (64 bit per PFU). Only slice 0 and slice 1 are available for distributed memory. Slice 2 is used to provide
memory address and control signals. Refer to the specific device datasheet for more details.

Multiple PFUs could be cascaded to generate a larger memory. You can use the Lattice software IP generation tool to
generate such memory.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 30

The source code provided in the Source HDL Code Example section is not specific to Lattice or AMD devices. It can be
targeted to either one with no changes required. You may only need to adjust the attributes to guide the implementation of
the memory (EBR or Distributed).

Refer to the following synthesis tool usage guides for more details about the attributes:

• Reference directory: Reference Guides > Constraints Reference Guide > Lattice Synthesis Engine Constraints > Lattice
Synthesis Engine-Supported HDL Attributes > syn_ramstyle

• Lattice Reference Manual in the Synplify Pro® installation directory.

More details about this subject are discussed in the Attributes Conversion Examples section.

Table 2.10 provides a summary of different resources available for each architecture.

Table 2.10. RAM Type Comparison Between Lattice and AMD Devices

RAM Type AMD Device Lattice Device Descriptions

Distributed Memory LUT6 based LUT4 based The LUT6 has 64-bit memory and LUT4 has 16-bit memory.

Block RAM Size 18 kb/36 kb 18 kb The Lattice Avant device offers a 32 kb block RAM size.

You can use the Lattice software (IP Catalog) to generate the
equivalent module and select the required options. Port names may
differ, refer to Table 2.15 for more details.

Single Port Yes Yes

Pseudo Dual Port Yes Yes

True Dual Port Yes Yes

ROM Yes Yes

FIFO Dual Clock Yes Yes

Memory initialization Yes Yes You can initialize memories to all 1, 0, or provide a custom
initialization memory file.

Power Up Condition 0 0 The default value is 0.

Note: Older generation devices have smaller block RAM sizes.

2.6.2. Source HDL Code Example

The following code is an example of a source HDL code:

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

library synplify;

entity ram is

generic (

 addr_width : natural := 4;

 data_width : natural := 8);

port (

 addr : in std_logic_vector (addr_width - 1 downto 0);

 write_en : in std_logic;

 clk : in std_logic;

 din : in std_logic_vector (data_width - 1 downto 0);

 dout : out std_logic_vector (data_width - 1 downto 0));

end ram;

architecture rtl of ram is

 type mem_type is array ((2** addr_width) - 1 downto 0) of

 std_logic_vector(data_width - 1 downto 0);

signal mem : mem_type;

 -- Define RAM as an indexed memory array.

attribute syn_ramstyle : string;

--attribute syn_ramstyle of mem : signal is "block_ram";

--attribute syn_ramstyle of mem : signal is "distributed";

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 31

begin

 process (clk)

 begin

 if (clk'event and clk = '1') then --Control with clock edge

 if (write_en = '1') then -- Control with a write enable.

 mem(conv_integer(addr)) <= din;

 end if;

 dout <= mem(conv_integer(addr));

 end if;

 end process;

end rtl;

2.6.3. Large Memory Blocks

Large block RAMs are available in the UltraScale+ devices which are called the UltraRAM blocks. These are large blocks of
RAMs meant to serve as additional memory resources beyond what is available in the EBR and PFU for certain video or
communication applications which require a large amount of memory.

Lattice devices has an equivalent Large RAM (LRAM) block with some differences which are listed in Table 2.11. Note that
even smaller density Lattice devices integrate the LRAM blocks.

Table 2.11. LRAM and UltraRAM Features Comparison Between Lattice and AMD

Large RAM Features AMD Device Lattice Device Descriptions

Name UltraRAM LRAM LRAM is offered on the CertusPro-NX devices.

Data width Fixed (72-bits) Configurable (1-64 bits) Refer to the Memory User Guide for Nexus Platform (FPGA-
TN-02094) for more details.

Block RAM Size 288 kb 512 kb —

Single Port Yes Yes UltraRAM can only support read or write per port per cycle
(not a real dual port). It has a fixed read behavior; there are
no user definable read-first, write-first, no-change like with
EBR.

Lattice devices have more flexibility. You can configure the
LRAM operation based on attributes like EBR. Refer to the
Read and Write Priority section for more information.

Pseudo Dual Port Single clock Single clock

True Dual Port Single clock Single clock

ROM No Yes UltraRAM does not support ROM mode.

FIFO No No No native support for both devices.

ECC support Yes Yes Both architectures provide ECC module with Single Error
Correction - Double Error Detection (SECDED) capability.

Memory initialization No Yes You can initialize memories to all 1, 0, or provide a custom
initialization memory file.

Power up condition 0 0 The default value is 0.

2.6.4. Read and Write Priority

To avoid data collision and better control the memory behavior, any port which has both Read access and Write access has
a Write Mode attribute. Both AMD and Lattice devices offer this control.

For AMD devices, this attribute is available for Port A in the Single Port Mode and for both Port A and Port B in True Dual-
Port Mode. In Pseudo Dual-Port and ROM Modes, no Write Mode attribute is available as there are no ports with both Read
access and Write access.

For Lattice devices, there are three possible values for Write Mode attribute: Normal, Write Through, and Read Before
Write. All three modes are supported in the Single Port LRAM, while only Normal and Write Through are supported in the
True Dual-Port LRAM.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52785
https://www.latticesemi.com/view_document?document_id=52785

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 32

The description of each value is as follows:

• In the Normal mode, the output data is not changed nor updated during the write operation.

• In the Write Through mode, the output data is updated with the input data during the write cycle.

• In the Read Before Write mode, the output data port is updated with the existing data stored in the write address, during
a write cycle. This mode is supported only in the Single Port LRAM.

For more information, refer to the Memory Modules User Guide (FPGA-IPUG-02033).

Table 2.12 provides AMD device memory attributes and their Lattice device memory attributes equivalent.

Table 2.12. Memory Attribute Comparison Between Lattice and AMD Devices

AMD Device Attribute Lattice Device Attribute Descriptions

NO_CHANGE Mode Normal mode (default) Data output remains the last read data and is unaffected by a write
operation on the same port.

READ_FIRST or
Read-Before-Write Mode

Read Before Write mode This mode is supported only in the Single Port LRAM.

WRITE_FIRST or
Transparent Mode (Default)

Write Through mode The output data is updated with the input data during the write
cycle.

When the Memory IP module is generated by the IP Catalog, the default parameter is used. You can change it to the desired
value. Below is a DPRAM IP example for a CertusPro-NX device in Verilog.

The module wrapper, will have the WRITE_MODE default parameter normal for both ports A and B. You can force these
values to the desired behavior by changing this parameter.

.WRITE_MODE_A("normal") example:

module TDPRAM_test (

 clk_a_i,

 clk_b_i,

 rst_a_i,

 rst_b_i,

 clk_en_a_i,

 clk_en_b_i,

 wr_en_a_i,

 wr_en_b_i,

 wr_data_a_i,

 addr_a_i,

 rd_data_a_o,

 wr_data_b_i,

 addr_b_i,

 rd_data_b_o) ;

 input clk_a_i ;

 input clk_b_i ;

 input rst_a_i ;

 input rst_b_i ;

 input clk_en_a_i ;

 input clk_en_b_i ;

 input wr_en_a_i ;

 input wr_en_b_i ;

 input [17:0] wr_data_a_i ;

 input [8:0] addr_a_i ;

 output [17:0] rd_data_a_o ;

 input [17:0] wr_data_b_i ;

 input [8:0] addr_b_i ;

 output [17:0] rd_data_b_o ;

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52238

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 33

 parameter MEM_ID = "TDPRAM_test" ; TDPRAM_test_ipgen_lscc_ram_dp_true #(.FAMILY("LFCPNX"),

 .MEM_ID(MEM_ID),

 .MEM_SIZE("18,512"),

 .ADDR_DEPTH_A(512),

 .DATA_WIDTH_A(18),

 .ADDR_DEPTH_B(512),

 .DATA_WIDTH_B(18),

 .ADDR_WIDTH_A(9),

 .REGMODE_A("reg"),

 .RESETMODE_A("sync"),

 .RESET_RELEASE_A("sync"),

 .REGMODE_B("reg"),

 .RESETMODE_B("sync"),

 .RESET_RELEASE_B("sync"),

 .BYTE_ENABLE_A(0),

 .BYTE_SIZE_A(9),

 .BYTE_SIZE_B(9),

 .BYTE_WIDTH_A(2),

 .BYTE_ENABLE_B(0),

 .WRITE_MODE_A("normal"),

 .WRITE_MODE_B("normal"),

 .BYTE_WIDTH_B(2),

 .ADDR_WIDTH_B(9),

 .ECC_ENABLE(0),

 .INIT_MODE("none"),

 .INIT_FILE("none"),

 .INIT_FILE_FORMAT("hex"),
.INIT_VALUE_00("0x00"),

….

.INIT_VALUE_3F("0x00"))

lscc_ram_dp_true_inst (

.clk_a_i(clk_a_i),

 .clk_b_i(clk_b_i),

 .rst_a_i(rst_a_i),

 .rst_b_i(rst_b_i),

 .clk_en_a_i(clk_en_a_i),

 .clk_en_b_i(clk_en_b_i),

 .wr_en_a_i(wr_en_a_i),

 .wr_en_b_i(wr_en_b_i),

 .wr_data_a_i(wr_data_a_i[17:0]),

 .addr_a_i(addr_a_i[8:0]),

 .rd_data_a_o(rd_data_a_o[17:0]),

 .wr_data_b_i(wr_data_b_i[17:0]),

 .addr_b_i(addr_b_i[8:0]),

 .ben_a_i(2'b11),

 .ben_b_i(2'b11),

 .rd_data_b_o(rd_data_b_o[17:0]),

Endmodule ;

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 34

2.6.5. Memory Size and Configuration

Table 2.13 lists the maximum amount of memory available per Lattice device family for EBR and LRAM.

Table 2.13. Maximum Memory Available per Lattice Device Family

Device Family/
Max. Memory

iCE40 UltraPlus
Mach-NX/MachXO/
MachXO2/ MachXO3/
MachXO3D/MachXO5-NX

ECP5/ECP5-5G
CrossLink/
CrossLink-NX

CertusPro-NX Avant

Block RAM 0.12 Mb 1.4 Mb 3.7 Mb 1.1 Mb 3.7 Mb 35.6 Mb

Large RAM
Blocks

1 Mb 0.5 Mb — 2.5 Mb 3.5 Mb —

Distributed
Memory

— 0.184 Mb 0.64 Mb 0.24 Mb 0.64 Mb 4.14 Mb

UFM — 15.36 Mb — — — —

Notes:
Large RAM blocks are offered in smaller density devices.
Memory driven design may be able to fit in smaller devices.

2.6.6. Memory Primitives Comparison

AMD 7-Series device memory blocks are 36 kb and can be split in two 18 kb. The Lattice device EBR are 18 kb each for the
Nexus device family and 32 kb for the Avant device family. Table 2.14 lists the different primitives that you may see with
AMD device architecture and potential Lattice device equivalent primitives for Nexus devices.

Table 2.14. Memory Primitives for Lattice and AMD Devices

Primitive Device Descriptions

RAMB18E1 AMD Device The RAM_MODE attribute determines the mode of the RAM block, either the SDP
mode or true dual-port (TDP) mode. RAMB36E1 AMD Device

FIFO18E1 AMD Device

FIFO36E1 AMD Device

URAM288_BASE AMD Device

DP16K Lattice Device 16 kb Dual Port Block RAM

DPR16X4 Lattice Device Distributed Pseudo Dual Port RAM with Synchronous Write and Asynchronous Read

DPSC512K Lattice Device 512 kb Single Clock Dual Port Block RAM

FIFO16K Lattice Device 16 kb FIFO

PDP16K Lattice Device 16 kb Pseudo Dual Port Block RAM

PDPSC16K Lattice Device 16 kb Pseudo Dual Port Single Clock Block RAM

PDPSC512K Lattice Device 512 kb Single Clock Pseudo Dual Port Block RAM

SP16K Lattice Device 16 kb Single Port Block RAM

SP512K Lattice Device 512 kb Single Port Block RAM

SPR16X4 Lattice Device Distributed Single Port RAM with Synchronous Write and Asynchronous Read

Figure 2.7 shows the block diagrams of Lattice DP16K and FIFO16K primitives for Nexus platform devices.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 35

Figure 2.7. Lattice DP16K and FIFO16K Primitives for Nexus Platform Devices

Table 2.15 provides detailed differences in port naming between Lattice FPGA devices, which is mainly for the CertusPro-NX
devices, and the AMD 7-Series/UltraScale devices.

Table 2.15. Port Naming Comparison Between Lattice and AMD Devices

AMD Device Lattice Device Descriptions

DI[A|B] DI[A|B] Data input bus. DIP parity bus. Can be used for additional data inputs. Lattice DI attribute
can be used for both DI and DIP. DIP[A|B] DI [A|B]

ADDR[A|B] AD[A|B] Address bus.

WE[A|B] WE[A|B] Byte-wide write enable.

EN[A|B] CS[A|B] When inactive no data is written to the block RAM and the output bus remains in its
previous state.

RSTREG[A|B] RST[A|B] Synchronous Set/Reset the output registers (DO_REG = 1). The RSTREG_PRIORITY
attribute determines the priority over REGCE.

RSTRAM[A|B] RST[A|B] Synchronous Set/Reset the output data latches.

CLK[A|B] CLK[A|B] Clock input.

DO[A|B] DO[A|B] Data output bus. Data output parity bus. Can be used for additional data outputs. Lattice
DO attribute can be used for both DO and DOP. DOP[A|B] DO[A|B]

REGCE[A|B] CE[A|B] Output Register clock enable.

CASCADEIN[A|B] N/A Cascade input for 64k × 1 mode. Lattice device uses fabric routing to implement this. It is
transparent to you. CASCADEOUT[A|B] N/A

2.6.7. Design Conversion Recommendations

When converting a memory block from AMD device architecture to Lattice device architecture, you can refer to the
following recommendations:

• Memory Primitives between the two architectures may be too different, it is best to use the IP Express or IP Catalog to
generate a Lattice equivalent memory. Define the size, parameter and attributes using the knowledge acquired in this
section to have an equivalent functional memory.

• Memory types: SPRAM, DPRAM, PDPRAM, FIFO, and ROM.

• Memory sizes: Address and data bus.

• Enable Input/Output registers as needed.

• Enable Byte enable if needed.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 36

• Reset: Synchronous or Asynchronous

• Memory initialization values.

• Enable ECC if required.

• Set WRITE_MODE operation. Note that the default value differs between AMD and Lattice devices.

• The Lattice IP generated should have equivalent ports.

• Choose the same IP module name to minimize source code changes.

• In the source code, change the module instantiated with the one generated. Or create a wrapper that maps the names
of the Lattice module to the AMD module.

Note: When using memory element in your design for filter implementation or other use cases, the latency of data in and
out of the memory is important for the proper functionality of the design. Having a different latency of data out of
the memory element could impact the logic integrity. Latency could be caused by pipeline registers that you enable
for the generated module.

2.6.7.1. Example Case

When you use a FIFO in a digital FIR filter implementation, latency is compensated in the design to have the right filter logic
implemented.

When you generate a FIFO, you have the options to enable the output register and high-speed implementation. Enabling
these options will add extra latency, but the design will have a higher performance and the Memory Tco will be faster. For a
proper conversion, you need to keep latency consistent with the original design. Figure 2.8 shows the FIFO configuration
interface of the Lattice Radiant IP catalog.

Figure 2.8. FIFO Configuration Interface of Lattice Radiant IP Catalog

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 37

The difference in behavior between enabling and disabling the output register is illustrated in the waveforms in Figure 2.9.

FIFO Without Output Registers, Start of Data Read Cycle

Q Data_4Data_1 Data_2 Data_3Invalid Data

FIFO with Output Registers, Start of Data Read Cycle

Q Data_4 Data_5Data_1 Data_2 Data_3Invalid Data

Figure 2.9. Wave Forms of FIFO Dual Clock Module With and Without Registers

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 38

2.7. DSP Blocks

2.7.1. DSP Architectures Comparison

Both Lattice and AMD devices have hardware DSP units as part of their FPGA architectures. The different modes of
operations available are as follows:

• MULT (Multiply)

• MAC (Multiply, Accumulate)

• MULTADDSUB (Multiply, Addition/Subtraction)

• MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

DSP primitives can be directly instantiated in the design HDL source file. Each of the primitives has a fixed set of attributes
that can be customized to meet the design requirements.

Lattice device DSP blocks are configurable to support multiple bus widths. Each block could be configured to support
one 36 × 36, two 18 × 36, four 18 × 18, or eight 9 × 9 bus width.

For more information on the Lattice device DSP, refer to the following documents:

• sysDSP User Guide for Nexus Platform (FPGA-TN-02096), other Lattice device families have equivalent document.

• DSP Arithmetic Modules User Guide (FPGA-IPUG-02050)

• Arithmetic Modules User Guide (FPGA-IPUG-02032)

Primitives for both AMD and Lattice devices are listed in Table 2.16.

Table 2.16. DSP Primitive Comparison Between Lattice and AMD Devices

AMD Primitive
Lattice Primitive

(Nexus Device Family)

Descriptions

DSP48E2 (UltraScale device)

DSP48E1 (7-Series and Virtex 6 device)

DSP48E (Virtex-5 device)

DSP48E/1 (25 × 18)

DSP48E2 (27 × 18)

Larger multipliers can be built by
cascading

MULT18X18 18 × 18 Multiplier with Optional
Input/Output Registers

MULT18X36 18 × 36 Multiplier with Optional
Input/Output Register

MULT36X36 36 × 36 Multiplier with Optional
Input/Output Registers

MULTADDSUB18X18 18 × 18 Multiplier and Accumulator

MULTADDSUB18X36 18 × 36 Multiplier and Adder/Subtractor

MULTPREADD18X18 18 × 18 Multiplier with Pre-Adder

MULTPREADD9X9 9 × 9 Multiplier with Pre-adder

There are more options available, refer to the sysDSP User Guide for Nexus Platform
(FPGA-TN-02096) for more details.

2.7.2. DSP Features Comparison

Table 2.17 compares the AMD DSP48E1 multiplier core and the Lattice DSP core features.

Table 2.17. DSP Features Comparison Between Lattice and AMD Devices

DSP Features AMD Device Lattice Device

Pre-adder Yes Yes

Multiplier Only 25 × 18 (7-Series Device)

And 27 × 18 (UltraScale Device)

36 × 36, 18 × 18, 9 × 9

Add/Subtract/accumulate Yes Yes

Pattern detector Yes Need to be implemented in the logic

Basic logic function (XOR,NOR…) Yes Need to be implemented in the logic

Saturation and rounding options Yes Yes

Cascading DSP blocks Yes Yes

Configurable Pipeline Register Yes Yes

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52791
https://www.latticesemi.com/view_document?document_id=52686
https://www.latticesemi.com/view_document?document_id=52553
https://www.latticesemi.com/view_document?document_id=52791
https://www.latticesemi.com/view_document?document_id=52791

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 39

2.7.3. DSP Port Mapping Comparison

Table 2.18 shows the port mapping between the AMD Multiplier Core and the Lattice IP core.

Table 2.18. DSP Port Comparison Between Lattice and AMD Devices

AMD Device Lattice Device Descriptions

A [] Data_a_i [] Data Input Port A

B [] Data_b_i [] Data Input Port B

CLK clk_i Clock Port

CE clk_en_i Clock Enable Port

SCLR rst_i

(Sync only)

Active HIGH reset for both (sync/Async)

P [] Result_o[] Multiplication result

It is highly recommended to use the IP Catalog to convert the Multiplier Core that targets an AMD device into multipliers for
Lattice FPGA devices. Figure 2.10 shows the difference between AMD and Lattice IP Catalog Interfaces.
Note: The AMD IP Catalog allows you to configure the DSP block from one main interface to implement multiplication,

accumulation, adder, and so on. With Lattice IP Catalog, you have multiple IP Catalog units that you need to select
from depending on the operation mode that you have to implement.

Figure 2.10. Comparison Between AMD and Lattice IP Catalog Interfaces

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 40

2.7.4. Design Conversion Recommendations

You can refer to the following recommendations when performing the conversion:

• In the original code, identify if the DSP or ALU function is inferred or hard coded using the primitives.

• If the function is inferred, Lattice synthesis tool should be able to convert the function using the proper
configuration. Verify implementation and use HDL attribute to force a desired implementation.

• If the source code refers to the primitives, you will need to generate equivalent functional block and instantiate it in
the HDL code. You can use the primitive listed in this section or use the IP Catalog which is recommended.

• Verify the bus size and data sign (signed versus unsigned). Lattice device support signed and unsigned on both ports A
and B.

• Verify the number of pipeline registers. Lattice device DSP blocks offer pipeline stage on top of the input and output
registers. Using the IP Catalog, you can generate a DSP-based or a LUT-based implementation. DSP implementation is
recommended as it offer better performance and does not use fabric logic.

• Replace the AMD component in the source code by the one generated for Lattice device architecture.

• In some designs you may have attributes that guide the implementation to use the DSP blocks of the architecture.
Refer to the followings for more details:

• For these AMD device attributes:

attribute use_dsp48 : string;

attribute use_dsp48 of coreTransform : entity is “yes”;

You can use these equivalent Lattice device attributes:

attribute syn_multstyle : string ;

attribute syn_multstyle of coreTransform : entity is " block_mult " ;
Note: The input, output and pipeline registers will enhance the design performance but may have an impact on the design

functional integrity. Make sure you keep the number of pipeline registers consistent between the original design and
the converted one.

2.7.5. DSP Inferring Design Example

The following VHDL code is not technology dependent, you could target this to either AMD or Lattice device. The synthesis
tool will automatically infer a DSP block to implement the required function unless you have an attribute to force the
implementation in the logic gates.

The function described in the code is a multiplier with pre-adder and uses the input and output registers. The
implementation in either AMD or Lattice should take only one DSP block.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity presubmult is

generic (AWIDTH : natural := 12; -- Width of A input

 BWIDTH : natural := 16; -- Width of B input

 CWIDTH : natural := 16 -- Width of C input);

port (

clk : in std_logic; -- Clock

ain : in std_logic_vector(AWIDTH-1 downto 0); -- A input

bin : in std_logic_vector(BWIDTH-1 downto 0); -- B input

cin : in std_logic_vector(CWIDTH-1 downto 0); -- C input

pout : out std_logic_vector(BWIDTH+CWIDTH downto 0) – Output

);

end presubmult;

architecture rtl of presubmult is

signal a: signed(AWIDTH-1 downto 0);

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 41

signal b : signed(BWIDTH-1 downto 0);

signal c : signed(CWIDTH-1 downto 0);

signal add : signed(BWIDTH downto 0);

signal mult, p, : signed(BWIDTH+CWIDTH downto 0);

begin

process(clk)

begin

if rising_edge(clk) then

 a <= signed(ain);

 b <= signed(bin);

 c <= signed(cin);

 mult <= (resize(a, BWIDTH+1) + resize(b, BWIDTH+1))* c;

end if;

end process;

pout <= std_logic_vector(mult);

end rtl;

Figure 2.11. Synplify Pro RTL View

Going through the Map process, the pipeline registers are no longer visible as they are integrated in the DSP block. The
AMD Vivado™ tool infers a DSP48E1. Based on the block configuration, there is a similar information to the one listed for
Lattice MULTPREADD18X18 that is inferred by the Lattice Radiant software. Input A, B, and C are all registered and output
registers are also enabled. Refer to Figure 2.12 for more details.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 42

Figure 2.12. Design Implementation Comparison Between AMD DSP48E1 and Lattice MULTPREADD18X18

2.8. SERDES/Transceivers

2.8.1. SERDES/Transceivers Comparison

The Lattice device SERDES or transceivers are comparable to those in the AMD devices. The speed and protocols that are
supported may vary between families. Refer to the Lattice specific device summary table or Table 3.2 for details about the
number of SERDES and max speed supported by each family.

For a device to support a certain standard, a compliance to the specification is required. In addition to the SERDES speed,
the requirement is applicable to other aspects such as jitter, eye diagram Rx and Tx, and serial data stream characteristics
support.

Lattice devices are tested for compliance with the standard and for guarantee with the conformity of the signal to the
specification parameters. Refer to the specific device family datasheet for supported protocols by the device. Table 2.19
shows the comparison of the number and speed of SERDES between AMD and Lattice devices.

Table 2.19. SERDES Specification Comparison Between Lattice and AMD Devices

Device
Family/SERDES
Specification

AMD Artix-7 AMD Kintex-7 AMD Virtex-7 Lattice
ECP5/ECP5-5G

Lattice
CertusPro-NX

Lattice Avant

High speed
Transceivers

16 32 96 8 8 28

Max Speed per
Transceiver

6.6 Gb/s 12.5 Gb/s 28.05 Gb/s 5 Gb/s 10.315 Gb/s 25 Gb/s

PCIe Hard Core Gen 2 Gen 2 Gen 2/3 Soft Gen 1/2/3 Gen 1/2/3/4

Note: For Lattice devices, the transceivers are referred to as SERDES in the literature with different speed supported. For
AMD devices, the transceivers are named differently based on their maximum speed supported. This means that
GTP = 6.6 Gb/s, GTX = 12.5 Gb/s, GTH = 13.1 Gb/s, and GTZ = 28.05 Gb/s.

Each protocol implemented using these SERDES/transceivers is compliant to a standard. A physical coding sublayer (PCS)
works behind the SERDES to implement the physical layer and interface to the fabric. This is applicable to most FPGA
devices which includes encoding, decoding, scrambler, and elastic buffer among many others. Figure 2.13 shows a
simplified example of the CertusPro-NX device PCS block.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 43

MPCS Channel

8B/10B PCS

64B/66B PCS (Only Ch2 & Ch3)

Data Path of PMA Only Mode

Channel
Registers

PMA
Controller Fabric

Tx FIFO
&

Rx FIFO

Loopback FIFO

PMA Control Signal Sync

Figure 2.13. Lattice CertusPro-NX Device PCS Block

2.8.2. Design Conversion Recommendations

At a high level, the implemented protocol using SERDES needs to have the same functionalities and to comply to the
standard such as the PCIexpress and Gigabit Ethernet. You need to provide special attention to optional features and IP
core register interface. Multiple options are usually offered. Depending on the IP, one or more of the following options are
available:

• AHB: Advanced High-performance Bus (AHB) is a bus protocol introduced in Advanced Microcontroller Bus Architecture
published by the Arm company. AHB is used for a high-frequency design.

• APB: Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller Bus Architecture (AMBA) family protocols.
APB is used to interface to peripherals that are low bandwidth and takes low power.

• AXI4: The Advanced eXtensible Interface (AXI), is an on-chip communication bus protocol developed by the Arm
company.

• LMMI: Lattice Memory Mapped Interface which is a parallel bus interface.

The choice of the bus interface protocol will have an impact on the rest of the design, and the way to interface and control
the registers of the IP Module. Some work may be needed to adapt the design to the Lattice IP. For more information, refer
to the Lattice Memory Mapped Interface and Lattice Interrupt Interface User Guide (FPGA-UG-02039).

2.8.3. Lattice Device Supported SERDES Based Standards

The number of protocols supported per device will vary. Using the CertusPro-NX device family as an example, the protocols
shown in Table 2.20 can be implemented using the SERDES and associated MPCS.

Table 2.20. Standards Supported by the CertusPro-NX Device Family SERDES/PCS

Standard Data Rate (Mb/s)
System Reference
Clock (MHz)

FPGA Clock (MHz)
Number of Link
Width

Encoding Style

PCI Express Gen11 2,500 100, 125 125 ×1, ×2, ×4 8b10b

PCI Express Gen21
 5,000 100, 125 125 ×1, ×2, ×4 8b10b

PCI Express Gen31 8,000 100, 125 250 ×1, ×2, ×4 128b130b

Ethernet 1000BASE-X 1,250 125 125 x1 8b10b

Ethernet SGMII 1,250 125 125 ×1 8b10b

Ethernet XAUI 3,125 156.25 156.25 ×4 8b10b

Ethernet QSGMII 5,000 125 125 ×1 8b10b

Ethernet 10GBASE-R2 10,312.5 161.1328125 161.1328125 ×1 64b66b

SLVS-EC Grade1 ~1,250 — ~125 ×1, ×2, ×4, ×6, ×8 8b10b

SLVS-EC Grade2 ~2,500 — ~125 ×1, ×2, ×4, ×6, ×8 8b10b

SLVS-EC Grade3 ~5,000 — ~125 ×1, ×2, ×4, ×6, ×8 8b10b

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52297

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 44

Standard Data Rate (Mb/s)
System Reference
Clock (MHz)

FPGA Clock (MHz)
Number of Link
Width

Encoding Style

CoaXPress CXP-1 1,250 125 125 ×1~×8 8b10b

CoaXPress CXP-2 2,500 125 125 ×1~×8 8b10b

CoaXPress CXP-3 3,125 156.25 156.25 ×1~×8 8b10b

CoaXPress CXP-5 5,000 125 125 ×1~×8 8b10b

CoaXPress CXP-6 6,250 156.25 156.25 ×1~×8 8b10b

DP/eDP RBR 1,620 108 162 ×1, ×2, ×4 8b10b

DP/eDP HBR 2,700 135 135 ×1, ×2, ×4 8b10b

DP/eDP HBR2 5,400 135 135 ×1, ×2, ×4 8b10b

DP/eDP HBR3 8,100 135 202.5 ×1, ×2, ×4 8b10b

10-bit/20-bit/40-bit
SERDES

625–8,100 — — ×1~×8 N/A

8-bit/16-bit/32-bit
SERDES

625–8,100 — — ×1~×8 N/A

Generic 8b10b 625–8,100 — — ×1~×8 8b10b

Notes:

1. CertusPro-NX supports a maximum of four lanes PCIe with hard IP.

2. CertusPro-NX SERDES does not support Ethernet 10GBASE-KR. Moreover, not all channels can support 10GBASE-R.

For more information on the CertusPro-NX device family (other Lattice device families have equivalent documents), refer to
the following documents:

• CertusPro-NX Family Data Sheet (FPGA-DS-02086)

• CertusPro-NX SERDES/PCS User Guide (FPGA-TN-02245)

• CertusPro-NX Hardware Checklist (FPGA-TN-02255)

All these IPs could be parametrized using the IP Catalog or IP Express tools integrated with the Lattice Radiant and Diamond
software platforms. A direct connection to the IP server is available for you to download the latest version of any of these
IPs. Figure 2.14 shows an example interface that is displayed for the connectivity IPs that could be installed on a local
machine.

Figure 2.14. Lattice Radiant Software IP Catalog GUI

Note: Not all the IPs are available for all devices. You may see an exclamation mark if the IP does not apply to the selected
device when opening the IP Catalog.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53126
https://www.latticesemi.com/view_document?document_id=53257
https://www.latticesemi.com/view_document?document_id=53255

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 45

2.9. External Memory Interface
Both AMD and Lattice devices support multiple external memory interface protocols such as DDR2, LPDDR2, DDR3, LPDDR3,
and LPDDR4. DDR memory interfaces use a non-continuous bidirectional strobe signal called DQS which is edge aligned with
the data bus (DQ).

The most challenging part of the DDR Memory interface is the clock domain crossing from the DQS strobe signal to the
system fabric clock domain. A 90-degree phase shift needs to be performed on the DQS to clock the data that is received by
the FPGA fabric. Most of Lattice FPGA architectures include hardened PHY layer on specific PIC (Programmable I/O Cell) to
facilitate this transfer.

The CertusPro-NX devices and other device families integrate the following hardened function on the I/O cell:

• DQS Clock Tree spanning the DQS group

• DDRDLL used to generate the 90-degree delay codes

• DLL-compensated DQS delay elements

• Input FIFO for read data clock domain transfer

• Dedicated DDR memory input and output registers

• Dynamic Margin Control Circuit to adjust Read and Write delays

• Input/Output Data Delay used to compensate for DQS clock tree delay

• ×4 or ×8 gearing box to demux the data bus

When migrating from AMD device to Lattice device, pay extra attention to the way the memory controller has been
implemented. For example, AMD Spartan-6 FPGA devices incorporate full hardened memory-controller blocks. Whereas
the AMD 7-Series FPGA devices implement the memory controller with a soft IP core and a hardened PHY layer that
integrate similar functionalities like described above, which is similar to the Lattice design implementation. This method
provides more design flexibility for you to customize your memory controller to meet your requirements.

Older generation AMD devices may have implementations that use the fabric logic for DQ/DQS to FPGA clock domain
transfer. It is recommended to generate the required memory interface with the IPexpress (Diamond) or IP Catalog
(Radiant) to have an optimized implementation and to avoid errors.

Figure 2.15 shows an example of an IP Catalog GUI for memory interface generation. Note that there are multiple options
that can be set which includes the gearing ratio that allows you to have a wider bus with lower speed on the FPGA fabric.

Figure 2.15. Lattice Radiant Software IP Catalog GUI for Memory Interface Generation

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 46

2.9.1. Lattice Device Supported Standards

The external memory support standard will depend on the device family. For example, the CertusPro-NX device can be used
to support the DDR3, DDR3L, LPDDR2, LPDDR3 and LPDDR4 memory interfaces. Refer to Table 2.21 for more details.

For more information on the CertusPro-NX device family (other Lattice device families have equivalent documents), refer to
the following documents:

• CertusPro-NX Family Data Sheet (FPGA-DS-02086)

• sysI/O User Guide for Nexus Platform (FPGA-TN-02067)

• CertusPro-NX High-Speed I/O Interface (FPGA-TN-02244)

• CertusPro-NX Hardware Checklist (FPGA-TN-02255)

Table 2.21. DDR Memory Configurations Support

DDR
Memory

Data
Width

VCCIO DQ DQS
Module
Types

Rank
Chip
Selects

Write
Leveling

CMD/ADDR
Timing

Fmax

DDR3

8, 16,
24, 32
bits

1.5 V SSTL15_I SSTL15D_I
UDIMM,
SODIMM,
RDIMM

Single,
Dual

1, 2,4 Yes 2T3
533
MHz

8, 16,
24, 32
bits

1.5 V SSTL15_I SSTL15D_I Embedded
Single,
Dual

1, 2,4 Yes1 2T3
533
MHz

DDR3L

8, 16,
24, 32
bits

1.35 V SSTL135_II SSTL135D_II
UDIMM,
SODIMM,
RDIMM

Single,
Dual

1, 2,4 Yes 2T3
533
MHz

8, 16,
24, 32
bits

1.35 V SSTL135_II SSTL135D_II Embedded
Single,
Dual

1, 2,4 Yes1 2T3
533
MHz

LPDDR2
16 and
32 bits

1.2 V HSUL12 HSUL12D
Embedded
(Single
Channel)

Single 1 No ODDRX2
533
MHz

LPDDR4
16, 32,
64 bits

1.1 V LVSTL11 LVSTL11D
Embedded
(Single
Channel)

Single 1, 2,4 Yes1 2T3
533
MHz

Notes:
1. If fly-by wiring is implemented.
2. Fly-by wiring is emulated using board traces.
3. CSN uses 1T timing.

All the memory parameters can be set when configuring the memory controller IP with the IP Catalog or IP Express.

Even though Lattice device support a DDR memory controller IP, you can implement your own custom design and take
advantage of the hardened PHY Layer. For this type of implementation, you can refer to the IP Catalog Architecture module
to configure the PHY for a specific memory interface as shown in Figure 2.16.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53126
https://www.latticesemi.com/view_document?document_id=52792
https://www.latticesemi.com/view_document?document_id=53256
https://www.latticesemi.com/view_document?document_id=53255

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 47

Figure 2.16. IP Catalog LPDDR4 Memory Interface Configuration Window

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 48

2.10. Other FPGA Device Hardened Functions
When converting the AMD designs, you may encounter some other hardened functions like the embedded microprocessor
IP (microblaze), ADC, and cryptographic engine. Table 2.22 shows the comparison of these features between the AMD
architecture and their equivalent for Lattice architecture.

Table 2.22. Hardened Functions Comparison Between Lattice and AMD Devices

AMD Device Lattice Device Descriptions

Microblaze: A family of drop-in,
modifiable preset with 32-bit/
64-bit RISC microprocessor
configurations.

RISC-V: A soft IP which contains a 32-bit RISC-V
processor core and optional submodules.

Lattice Propel™ software is the Embedded
Design Environment to implement the RISC-V
soft processor systems in the Lattice FPGA
devices.

XADC: Dual 12-bit 1 MSPS analog-
to-digital converters (ADCs).*

ADC: Dual ADC – 1 MSPS, 12-bit, with
Simultaneous Sampling.

Use the IP Catalog to configure the ADC unit.

Encryption: 256-bit AES
encryption with the HMAC/
SHA-256 authentication.*

• Cryptographic engine (CRE)

• Bitstream encryption – using the AES-
256.

• Bitstream authentication – using the
ECDSA.

• Hashing algorithms – SHA, HMAC

• True Random Number Generator

• AES 128/256 Encryption

Crypto Engine are used during the FPGA
configuration. These functions are available
after the configuration for you to implement
various cryptographic functions into your FPGA
design. CRE bus interface is the LMMI.

Built-in SEU detection and
correction

• Single Event Upset (SEU) Mitigation
Support

• Soft Error Detect (SED) – Embedded hard
macro.

• Soft Error Correction (SEC) – Transparent
to user design operation.

• Soft Error Injection – Emulate SEU event
to debug system error handling.

Lattice CertusPro-NX devices offer extremely
low Soft Error Rate (SER) due to the FD-SOI
technology used.

SEU features are also available.

*Note: Applicable to all AMD 7-Series FPGA devices except for the XC7S6 and XC7S15 devices.

For more information on the Lattice Nexus device family (other Lattice device families have equivalent documents), refer to
the following documents:

• Soft Error Detection (SED)/Correction (SEC) User Guide for Nexus Platform (FPGA-TN-02076)

• ADC User Guide for Nexus Platform (FPGA-TN-02129)

• Single Event Upset (SEU) Report for Nexus Platform (FPGA-TN-02174)

• Advanced Configuration Security User Guide for Nexus Platform (FPGA-TN-02176)

• Using TraceID Technical Note (FPGA-TN-02084)

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52788
https://www.latticesemi.com/view_document?document_id=52779
https://www.latticesemi.com/view_document?document_id=52852
https://www.latticesemi.com/view_document?document_id=53259
https://www.latticesemi.com/view_document?document_id=39093

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 49

3. Selecting the Right Equivalent Target Device

3.1. Step 1: Collect Information from the AMD Report File
AMD tools provide you with a report file that can be found in the project directory or through the Vivado tool
synth_design – Utilization. In the report file, you can find the information shown in Figure 3.1.

Figure 3.1. Utilization Design Information from AMD Report File

Alternatively, you can find the file with the .rpt extension and collect the information shown in Table 3.1. This information
will help you to identify the best fit for your design in terms of used resources.

Table 3.1. List of Information to Collect from the AMD Report File

AMD Design
Information

Lattice Design
Information

Notes

 Logic Cells Logic Cells

For older devices, 1 Equivalent Logic Cell = LC * 1.125

1 logic Cell = 1.6 LUT4 equivalent

1 System Logic Cell = 2.1875 LUT4 equivalent

Block RAM EBR
Block RAM can have different sizes between the 2 architectures. Keep in mind that you
can use the distributed memory if available.

Distributed RAM
Distributed
Memory

The total amount of distributed memory, not the number of LUTs used as distributed
memory. Keep in mind that you can use the EBRs if available.

UltraRAM LRAM AMD design offers 288 kb versus 512 kb per block.

DSP DSP
Take into consideration the configuration mode of each DSP block (MULT,ADD/SUB, and
MAC) and the size (18×18, and so on).

DCM/MMCM sysPLL
The number of PLLs (DCM or MMCM). Refer to the PLL/MMCM/DCM section for
differences and flexibilities of Lattice device PLL structure.

Transceivers SERDES
Collect the information on the number of transceivers and list of implemented protocols.
Refer to the SERDES/Transceivers section to confirm the protocols supported by Lattice
devices.

External Memory
interface

External Memory
interface

The external memory interface speed and size. Refer to the External Memory Interface
section to confirm the interfaces supported by Lattice devices.

N/A User Flash Memory
AMD architecture does not include user flash memory. Look on the board level if there is
such device. Device with user flash memory could be integrated.

PCIe Interface PCIe Interface The number of interfaces and PCIe Gen required.

ADC ADC —

I/O Pins (Max) I/O Pins (Max) Max number of I/Os used.

I/O Voltage I/O Voltage The different interface voltages required.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 50

AMD Design
Information

Lattice Design
Information

Notes

Cryptographic
engine

Cryptographic
engine

Lattice Cryptographic Engine supports the following user-mode features:

• True Random Number Generation (TRNG)

• Secure Hashing Algorithm (SHA) – 256 bits

• Message Authentication Codes (MACs) – HMAC

Internal Oscillator Internal Oscillator —

MIPI (D-PHY) MIPI (D-PHY) The speed required for the MIPI interface.

Non-Volatile1 Non-Volatile1 Some of the Lattice devices are non-volatile which eliminate the need to have an
external boot flash and have the advantage of fast device boot with controlled I/Os.

Temperature
Grade2

Temperature
Grade2

All devices are available in the commercial and industrial grades but not all of them are
available in the automotive grade. It is important to note if you need an automotive
temperature grade device. Refer to the Device Temperature Grades section for more
information.

Notes:
1. Device integrates a non-volatile memory for single or multiple boots.
2. Junction temperature, Commercial operation is from 0 °C to +85 °C, Industrial operation is from –40 °C to +100 °C, and

Automotive operation is from –40 °C to +125 °C.

3.2. Step 2: Reconsider Your Device Size
Keep in mind that you may be able to fit your design in a smaller size Lattice device. The design resource bottleneck may
have driven the selection of a larger AMD device.

For example, you need 300 I/Os for your design. In AMD Spartan-7 Series, XC7S75 is the smallest device option that fits your
requirement. In the AMD Artix-7 Series, XC7A75T is the smallest device option that fits your requirement. Both options
include over 70k logic cells.

If the logic density is not required, you could potentially select the Lattice MachXO2 device family that offers over 300 I/Os
with only 10k logic cells. This selection will give an advantage on the price and power consumption of the device.

3.3. Step 3: Select the Equivalent Device
Select the equivalent device using the information from the previous steps and options provided in Table 3.2.

Table 3.2. Summary of Lattice Device Specifications Based on Different Device Family

Device Family/

Specification

iCE40 MachXO2/
MachXO3/

MachXO5-NX

ECP5 CrossLink/
CrossLink-NX

Certus-NX/
CertusPro-NX

Avant

Logic Cells 5k 25k 150k 39k 100k 637k

Block RAM 0.12 Mb 1.4 Mb 3.7 Mb 1.5 Mb 3.7Mb 36 Mb

Large RAM
Blocks

1 Mb 0.5 Mb — 1 Mb 3.5 Mb —

DSP 8 20 156 64 156 1,800

PLL/DLL 1 2/2 4/2 3/2 4/2 11

SERDES — — 4 — 8 28

SERDES Max
Speed

— — 5 Gb/s — 10.3 Gb/s 25 Gb/s

Memory
interface

— 1,066 Mb/s 800 Mb/s — 1,066 Mb/s 2,400 Mb/s

User Flash
Memory

— 15.36 Mb — — — —

PCIe Interface — — Gen1/2 Gen1/2 Gen1/2/3 Gen1/2/3/4

ADC — 2 — 2 2 —

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 51

Device Family/

Specification

iCE40 MachXO2/
MachXO3/

MachXO5-NX

ECP5 CrossLink/
CrossLink-NX

Certus-NX/
CertusPro-NX

Avant

I/O Pins (Max) 39 306 365 192 305 500

I/O Voltage 1.2 V – 3.3 V 1.0 V – 3.3 V 1.2 V – 3.3 V 1.2 V – 3.3 V 1.0 V – 3.3 V 1.0 V – 3.3 V

Cryptographic
engine

—
AES128/256,
ECDSA, SHA,
HMAC

AES128
AES128/256,

ECDSA, HMAC
AES256, ECDSA

AES256-GCM,
ECC521,
RSA4096, PUF

Internal
Oscillator

2 2 2 2 2 1

MIPI (D-PHY) — 1.25G/Lane — 2.5G/lane — 1.8 Gbps/Lane

Non-Volatile1 Yes Yes No No No No

Temperature
Grade2

Commercial
and Industrial

Commercial,
Industrial and
Automotive

Commercial,
Industrial and
Automotive

Commercial,
Industrial and
Automotive

Commercial and
Industrial

Commercial and
Industrial

Notes:
1. Device integrates a non-volatile memory for single or multiple boots.
2. Junction temperature, Commercial operation is from 0 °C to +85 °C, Industrial operation is from –40 °C to +100 °C, and

Automotive operation is from –40 °C to +125 °C.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 52

4. HDL Code Compatibility

4.1. Introduction
The first step in a conversion is to identify and import the HDL code to the Lattice Radiant or Diamond software. These files
are either VHDL or Verilog. The synthesis output netlist needs to be recompiled to target Lattice technology and cannot be
imported directly.

When importing source files to the Lattice platform, you may get warning and error messages like shown below during the
parse or synthesis phase. All the items listed represent compatibility issues that need to be resolved. There can be multiple
reasons causing the issues and some of the common reasons are as follows:

• Library declaration that needs to be set within the Lattice tool. The library can define the HDL design parameters, and
functions.

• Verilog Include file path needs to be properly set in the software.

• Using unrecognized AMD primitives such as IBUF, OBUF, and BUFHCE.

• Unrecognized IP module that was generated by the AMD tool such as the PLL and FIFO.

The followings are examples of the warning and error messages:

WARNING - <File path and name>/ (185,3-185,57) (VERI-1063) instantiating unknown module 'IBUF'

WARNING - <File path and name>/ (189,3-189,58) (VERI-1063) instantiating unknown module 'OBUF'

WARNING - <File path and name>/ (81,3-88,5) (VERI-1063) instantiating unknown module 'clk_core'

WARNING - <File path and name>/ (91,3-99,5) (VERI-1063) instantiating unknown module 'BUFHCE'

WARNING - <File path and name>/ (255,3-296,5) (VERI-1063) instantiating unknown module
'cmd_parse'

WARNING - <File path and name>/ (314,3-334,5) (VERI-1063) instantiating unknown module
'resp_gen'

WARNING - <File path and name>/ (339,3-349,5) (VERI-1063) instantiating unknown module
'char_fifo'

WARNING - <File path and name>/ (79,3-86,5) (VERI-1063) instantiating unknown module
'debouncer'

WARNING - <File path and name>/ (382,3-394,5) (VERI-1063) instantiating unknown module
'clkx_bus'

WARNING - <File path and name>/ (50,4-62,6) (VERI-1063) instantiating unknown module 'ODDR'

ERROR - <File path and name> (69): cannot open include file design_par.vh. VERI-1245

ERROR - Stopping Synthesis Tool flow due to error.

ERROR - <File path and name> (160): module ignored due to previous errors. VERI-1072

ERROR - Stopping Synthesis Tool flow due to error.

WARNING - <File path and name> (87): parameter declaration becomes local in BUS_SIZE_MIN with
formal parameter declaration list. VERI-1199

WARNING - <File path and name> (88): parameter declaration becomes local in BUS_SIZE_MAX with
formal parameter declaration list. VERI-1199

WARNING - IP Module ODDR not found in top. Skipping Constraint Propagation...

WARNING - IP Module char_fifo not found in top. Skipping Constraint Propagation...

WARNING - IP Module clk_core not found in top. Skipping Constraint Propagation...

ERROR - Can't open file design_par.vh

The warning and error messages provide a good starting point to the conversion process. The next sections provide
solutions to overcome these conversion problems.

In general, you have to perform the following tasks for the conversion process:

• Comment out any AMD-specific library and add the Lattice library, if required.

• Replace the AMD-specific primitives, such as I/O buffers and global clock buffers, with the Lattice primitives or
behavioral HDL code and preferences.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 53

• Replace the AMD core modules, such as MMCM, PLL, memory, and multipliers with the Lattice modules.

• Replace the AMD timing and device constraints (.ucf or .xdc) file with a Lattice source constraints or preferences file
(.sdc or ldc). Refer to the Tools Constraint Compatibility section for more details.

• Optimize the HDL-inferred modules such as the shift registers, counters, and multipliers.

4.2. Library Declaration and Include Files

4.2.1. VHDL

In VHDL, you may have a library declaration in the header of each VHDL code. The first section is a standard IEEE VHDL
library declaration whereas the second section is about a user library that is used. These could reference package file,
design parameters or other initialization data. An example of a VHDL code is shown below:

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_SIGNED.all;

library userlib;

use userlib.userPackage.all;

When compiling the design, you need to make sure the compiled code is in the user library so that it can be referenced
properly by the source code. Note that the default library in the software tools is work. You can change the source code to
use work library or change the software setting to point to the user library.

To set the library in the Lattice Diamond or Radiant software, you can right click on the source file and select Properties
from the selection menu. A window where you can set the VHDL library name will open as shown in Figure 4.1. Do this for
all the VHDL files that reference the user library.

Figure 4.1. Lattice Radiant Software VHDL Library Name

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 54

4.2.2. Verilog

For Verilog designs you may have an include file that is called by the design source code. In order for the design to compile
properly, you need to set a search path for that include file. The parameter file needs to be tied with the project. See the
following code for more details:

// user_param file include design parameters and functions

`include "user_param.vh"

In the Radiant software platform, you can by right click on the active implementation and select Properties from the
selection menu to access the include search path. Multiple search paths can be set. See Figure 4.2 for more details.

Figure 4.2. Lattice Radiant Software Verilog Include Search Path

4.3. Unrecognized Primitive Modules
During the parse or synthesis phase, you may see a warning message of an unknown module like shown below. This
message is usually related to a module that is instantiated in the design but no lower-level HDL source file is found for it.

WARNING - <File path and name>/ (185,3-185,57) (VERI-1063) instantiating unknown module 'IBUF'

WARNING - <File path and name>/ (189,3-189,58) (VERI-1063) instantiating unknown module 'OBUF'

WARNING - <File path and name>/ (91,3-99,5) (VERI-1063) instantiating unknown module 'BUFHCE'

One of the following options should apply:

• If you missed to import the file to the project, look for the files in the source code that could describe the behavior of
the missing module.

• If an AMD architecture primitive is used in the source code, look for an equivalent Lattice architecture module. Some of
the replacement code could be as simple as a signal assignment. For example, buffer instantiation is not required for
Lattice designs. They are inferred during synthesis and map phase automatically. Refer to the I/O Buffer Primitives
section for more information.

• If the module is generated by the AMD IP Catalog tool, an equivalent module needs to be generated in the Lattice
environment using the IP Catalog in the Radiant software or the IPexpress in the Diamond software.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 55

4.4. Unrecognized IP Modules
When there are unrecognized IP modules, it means that the module is generated by the AMD IP Catalog tool. An equivalent
module needs to be generated in the Lattice software environment.

WARNING - <File path and name>/(81,3-88,5) (VERI-1063) instantiating unknown module 'clk_core'

WARNING - <File path and name>/(255,3-296,5) (VERI-1063) instantiating unknown module
'cmd_parse'

In the AMD environment, you can look at the details of the module to determine if it is a primitive or a generated core. In
the example below, Clk_core is an AMD generated IP for a PLL or DCM. It is identified with an orange rectangle in the
Vivado tool and will have an .xci file extension. In this case, an equivalent module in the Lattice environment needs to be
configured.

Once the module is generated, proceed to the code replacement in the HDL source. It is important to keep the same
module name to minimize changes in the HDL code. In this case, see the Verilog source code below as an example:

// AMD HDL code

 //clk_core clk_core_i0 (

 //.clk_in1_p (clk_pin_p),

 //.clk_in1_n (clk_pin_n),

 //.clk_rx (clk_rx),

 //.clk_tx (clk_tx),

 //.reset (rst_i),

 //.locked (clock_locked)

 //);

// LSCC conversion

 clk_core clk_core_i0 (

 .clki_i (clk_pin_p),

 .clkop_o (clk_rx),

 .clkos_o (clk_tx),

 .rstn_i (rst_i),

 .lock_o (clock_locked)

);

Make sure to pay attention to the upper case and lower case in the naming of the module to convert. Especially for mixed
language design. VHDL is not case sensitive whereas Verilog is case sensitive. See the example below for a FIFO module
generated from the AMD tool and a Lattice equivalent instantiation in Verilog. When configured properly, you will have the
same ports, but naming will differ. See Table 4.1 for more details. The same approach is valid for other modules.

//AMD HDL Code

char_fifo char_fifo_i0 (

 .din (char_fifo_din), // Bus [7 : 0]

 .rd_clk (clk_tx),

 .rd_en (char_fifo_rd_en),

 .rst (rst_i),

 .wr_clk (clk_rx),

 .wr_en (char_fifo_wr_en),

 .dout (char_fifo_dout), // Bus [7 : 0]

 .empty (char_fifo_empty),

 .full (char_fifo_full)

);

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 56

//LSCC Conversion

 char_fifo char_fifo_i0 (

 .wr_data_i (char_fifo_din), // Bus [7 : 0]

 .rd_clk_i (clk_tx),

 .rd_en_i (char_fifo_rd_en),

 .rst_i (rst_i),

 .rp_rst_i (),

 .wr_clk_i (clk_rx),

 .wr_en_i (char_fifo_wr_en),

 .rd_data_o (char_fifo_dout), // Bus [7 : 0]

 .empty_o (char_fifo_empty),

 .full_o (char_fifo_full)

);

Table 4.1. FIFO_DC Port Comparison Between Lattice and AMD Generated Modules.

AMD Module Lattice Module

.din .wr_data_i

.rd_clk .rd_clk_i

.rd_en .rd_en_i

.rst .rst_i

— .rp_rst_i*

.wr_clk .wr_clk_i

.wr_en .wr_en_i

.dout .rd_data_o

.empty .empty_o

.full .full_o

*Note: .rp_rst_i is the FIFO pointer reset. AMD module does not have this port. You can keep it open or tie it to the module
reset signal.

4.5. Unrecognized Architecture Primitive
The example below is a BUFHCE module port map. There is no lower-level module or IP generated module that correspond
to BUFHCE in the AMD project environment. This is a primitive that is part of the AMD architecture and does not need to be
described. It will be recognized automatically by the synthesis tool as it is part of the AMD target device library.

In this case, find an equivalent component in the Lattice architecture that does the same function. In majority of cases,
there are equivalent architecture elements that could be used. In the absence of that, find a way to emulate that function
with a custom design.

In the example below, the equivalent primitive to BUFHCE is DCC:

// AMD HDL code

BUFHCE (.O (clk_samp), // 1-bit The output of the BUFH

 .CE (en_clk_samp),// 1-bit Enables propagation of signal from I to O

 .I (clk_tx) // 1-bit The input to the BUFH

);

//LSCC Conversion

DCC DCSInst0 (

.CLKI (clk_tx),

.CE (en_clk_samp),

.CLKO (clk_samp)

);

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 57

DCC

CE CLKO

CLKI

Lattice Primitive

BUFHCE

AMD Primitive

CE

I

O

Figure 4.3. AMD BUFHCE Equivalent Primitive is Lattice DCC Primitive

4.6. I/O Buffer Primitives
Some of the older generation AMD devices require the use of buffer instantiation for differential signals and special buffer
such as clock and GSR. Lattice software does not require this extra step, the buffer is automatically inferred during the
synthesis phase based on the signal used in the design. For example, the differential buffer can be treated as single ended
in the HDL code, the software automatically infers the differential buffer when the signal is defined as differential signal in
the constraint editor. Table 4.2 lists the commonly used buffers in the AMD FPGA devices.

Table 4.2. Commonly Used Buffers

AMD Primitive Description Lattice equivalent

IBUF Input Buffer All these buffer types can be replaced with Signal or wire
declaration in the HDL code with pin or signal attribute in
the software constraint editor.

OBUF Output Buffer

BUFG_FABRIC Global Clock Buffer driven by fabric
interconnect

IBUFDS Differential Input Buffer

4.6.1. Design Conversion Recommendations

Refer to the following list of recommendations for design conversion:

• Remove primitive from the HDL code.

• Replace the primitive with a signal declaration in the entity/module or in the signal declaration section.

• If the primitive is an I/O with special type such as differential and clock, use the lattice constraint editor to insert the
required attribute.

Refer to the following codes for a conversion example:

• Verilog Example:

// AMD HDL code

IBUF IBUF_rst_i0 (.I (rst_pin), .O (rst_i));

OBUF OBUF_txd (.I(txd_o), .O(txd_pin));

//LSCC Conversion

 assign rst_i = rst_pin;

 assign txd_pin = txd_o ;

The following HDL code does not instantiate any input or output buffer nor clock buffer.

At the synthesis level, buffers are added to the design with differentiation between clock buffer and I/O buffer. Refer to the
example below for the output of the Synplify Pro Synthesis tool.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 58

• VHDL Example:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity XORGate is

 Port (clk, rst : in STD_LOGIC;

 A,B : in STD_LOGIC;

 C : out STD_LOGIC);

end XORGate;

architecture Behavioral of XORGate is

begin

process (clk, rst)

begin

 if rst='1' then c <='0';

 elsif clk'event and clk='1' then C <= A Xor B;

 end if;

end process;

end Behavioral;

Figure 4.4. RTL View of Input, Output and Clock Buffers Automatically Inferred by Lattice Software

By using the software constraint editor, you can add any I/O type specific attribute. For example, as shown in Figure 4.5,
input A is selected as an LVDS type.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 59

Figure 4.5. Device constraint Editor view of LVDS Buffer Type attribute (Input A)

Map report shows that pin A has been locked to pin H11 with buffer type LVDS.

At the Map level, there is a DRC check to validate the pin location selection and its compatibility with the I/O bank as well as
any other constraints with the I/O Bank. Refer to Figure 4.6 for more information.

Figure 4.6. I/O Attributes in Map Report

During the place and route (PAR) stage, the input buffer will be replaced with a differential buffer. Signal A is assumed to be
the positive pair of the differential signal (A+). Locking A+ will automatically reserves the A– to be used by the internal
buffer. PAR report shows the pin allocation with the buffer type.

Notice that A+ is located at pin H11 and pin H10 is reserved for the A– complement version of the same signal.

Similarly, you can see the clk signal is placed on a dedicated clock I/O. PCLKT0_0 is a dual function pin that can be used as a
clock or regular I/O. The T in the clock name refers to the True version of the pin. C is the reference complement version of
the clock if it is a differential signal (PCLKC0_0 will reference the complementary pin when the clock is used in the
differential mode). Refer to Figure 4.7 for more information.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 60

Figure 4.7. Pinout by Pin Number in Map Report

4.7. HDL Attributes

4.7.1. Introduction

Both AMD and Lattice devices have attributes that can be used to guide the implementation of a design. The syntax of
these attributes may differ between the two devices. This section covers the common attributes and provide AMD
equivalent syntax that you can use for Lattice implementation. The attributes are segmented into the following categories:

• Synthesis specific attributes (Syn_)

• FPGA architecture attributes

• Physical placement attributes

In general, the HDL attributes are constraints that are attached as text to design objects which are interpreted by the
software. A design object can be a specific port, component pin, net, instance, instantiation, or even an entire design.

An attribute provides information about the object. For example, an attribute might specify where a component in the
logical design must be placed in the physical device, or it might specify a frequency constraint for a net that timing-driven
place and route will attempt to meet.

HDL attributes are typically declared using comment notation in the Verilog HDL or Attribute keyword in the VHDL.

For more information, refer to the following documents:

• FPGA Libraries Reference Guide

• HDL Coding Guidelines

• Design Planning in Diamond

4.7.2. Common Synthesis Attributes Conversion Table

Lattice device has two synthesis options which are LSE (Lattice Synthesis Engine) and Synplify Pro. Most source code HDL
attributes are compatible these two options. When using Synplify Pro, the AMD HDL attributes stay unchanged unless there
are architecture specific attributes.

Refer to the respective documentation for details about all the attributes. Table 4.3 lists the commonly used attributes as
examples.

Table 4.3. Commonly Used HDL Attributes

AMD Attribute Lattice Attribute Descriptions

use_dsp syn_multstyle Specifies whether the multipliers are implemented as dedicated hardware blocks or as
logic.

fsm_extract syn_state_machine Enables/disables the state-machine optimization.

fsm_encoding syn_encoding Specifies the encoding style for a finite state machine (FSM), overriding the default
synthesis encoding.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52213
https://www.latticesemi.com/view_document?document_id=48203
https://www.latticesemi.com/view_document?document_id=45589

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 61

AMD Attribute Lattice Attribute Descriptions

box_type syn_black_box Specifies that a Verilog module or VHDL architecture declaration is for a box without
lower-level description or has an encrypted netlist.

ram_style syn_ramstyle Specifies the implementation to use for an inferred RAM.

iob syn_useioff Packs registers into I/O pad cells.

translate_off/

translate_on

translate_off/

translate_on

Allows you to synthesize designs originally written for use with other synthesis tools
without needing to modify the source code.

4.7.3. Common Architecture Attributes Conversion Table

The architecture physical attribute can be entered in the HDL file to guide the design implementation. The architecture
attributes can be related to the pin placement, I/O voltage, and programmable features, such as slow rate and drive, or
physical placement in the device (floor planning).

Table 4.4 describes the HDL attributes that are commonly used as constraints in the HDL source files. These attributes
generally apply to all Lattice designs and are not specific to any device family.

AMD attributes have different syntax but offer the same capabilities. When converting an AMD design, these attributes
need to be replaced.

Table 4.4. Commonly Used Architecture Attributes

AMD Attribute Lattice Attribute Descriptions Supporting Lattice Device

LOC LOC Specifies a site location for a component or an I/O pin. All

DRIVE DRIVE This attribute is available for output standards that support
programmable drive strength.

All

IOSTANDARD IO_TYPE Sets the I/O standard for an I/O (input, output, and
bidirectional buffers such as IB, OB, and BB).

All

DIFF_TERM DIFFRESISTOR This attribute is attached to the input and output buffers such
as the IB and OB. It is used to provide differential termination.

LIFCL, LFD2NX, and UT24C

PULLTYPE PULLMODE The following PULLMODE values are available:

• UP (default)

• DOWN

• NONE

• KEEPER

• PCICLAMPPULLMODE = 100K, 3P3K, 6P8K, 10K, NA

All

SLEW SLEWRATE Controls each I/O pin that has an individual slew rate control. LIFCL, LFD2NX, and UT24C

Refer to the Reference Guides > Constraints Reference Guide > HDL Attributes in the Lattice Radiant or Diamond software
Help menu for more details.

Refer to the following AMD attributes for a conversion example:

• Verilog Example:

(* LOC = "SLICE_X0Y0" *) reg placed_reg;

(* DRIVE = "2" *) output STATUS,

(* IOSTANDARD = "LVCMOS12" *) output STATUS,

• VHDL Example:

attribute LOC : string;

attribute LOC of placed_reg : label is "SLICE_X0Y0";

attribute DRIVE : integer;

attribute DRIVE of STATUS : signal is 2;

attribute IOSTANDARD : string;

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 62

attribute IOSTANDARD of STATUS: signal is "LVCMOS12";

Conversion to Lattice attributes :

• Verilog Example:

reg placed_reg /* synthesis loc="R40C47" */;

PinType STATUS /* synthesis IO_TYPE="[type_name]" DRIVE="[drive_strength]"
PULLMODE="[mode]" SLEWRATE="[value]"*/;

• VHDL Example:

ATTRIBUTE LOC : string;

ATTRIBUTE LOC OF placed_reg: SIGNAL IS "R5C5D";

ATTRIBUTE IO_TYPE : string;

ATTRIBUTE IO_TYPE OF [pin_name]: SIGNAL IS "[type_name]";

4.7.4. Physical Placement Attributes

Physical placement constraints are used to control the design part placement on a fabric. Both Lattice and AMD software
platforms support placement features. The followings are multiple ways available to enter these constraints:

• HDL code through attributes (Lattice and AMD devices have different HDL syntax)

• Constraint files:

• AMD software: .ucf or .xdc file

• Lattice software: .ldc or .pdc file

• GUI interface part of the software suite:

• AMD software: PlanAhead™ or Floorplanning view

• Lattice software: Floorplan or Physical Designer

Table 4.5 summarizes the placement attributes that are used in the Lattice software for both Radiant and Diamond
software platforms. Note that Radiant and Diamond software have different attribute syntax.

Table 4.5. Lattice Radiant and Diamond Software Placement Attributes

Lattice Software Attribute Descriptions

Radiant
Software

BBOX Indicates the bounding box or the area given in number of rows and columns for a given GRP. This
attribute must appear on the same block as the GRP attribute.

GRP Universal grouping construct. Use this attribute to group blocks within different hierarchies or with
no hierarchy.

RBBOX Indicates the area size of a region. This attribute must appear on the same block as the REGION
attribute.

REGION Indicates the region to which a given GRP belongs to. This attribute must appear on a block that
has a GRP attribute.

RLOC/GLOC RLOC/GLOC (Region Lock/Group Lock) can only be used with REGION or GRP attributes.

Diamond
Software

BBOX Indicates the bounding box or the area given in number of rows and columns for a given UGROUP.

HGROUP Hierarchical grouping construct. Use this attribute to group components that are to be instantiated
multiple times.

HULOC Indicates the physical location of the northwest corner of an HGROUP or UGROUP assignment.

HURLOC Indicates the northwest corner of a region for a given HGROUP or UGROUP definition. This
attribute must appear on the same block as the REGION attribute.

RBBOX RBBOX indicates the area size of a region. This attribute must appear on the same block as the
REGION attribute.

REGION REGION indicates the region to which a given HGROUP or UGROUP belongs to. This attribute must
appear on a block that has a HGROUP or UGROUP attribute.

UGROUP Universal grouping construct. Use the UGROUP attribute to group blocks within different
hierarchies or with no hierarchy. UGROUP differs from HGROUP attribute in that its identifier is not
changed by pre-appending the hierarchy and the block instance.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 63

Refer to the following codes for the Radiant software HDL examples:

• VHDL example:

attribute REGION: string;

attribute REGION of <object>: label is "<REGION_name>";

attribute RLOC: string;

attribute RLOC of <object>: label is "<site>";

attribute RBBOX: string;

attribute RBBOX of <object>: label is "<height>,<width>";

attribute GRP: string;

attribute GRP of <object>: label is "<reg_GRP>";

attribute GLOC: string;

attribute GLOC of <object>: label is "<site>";

attribute BBOX: string;

attribute BBOX of <object>: label is "<height>,<width>";

• Verilog example:

"module serial_reg_custom(D, CLK, CE, RST, Q) /* synthesis REGION="reg_REGION"

 RLOC= "R5C19D"

 RBBOX= "20,15"

 GRP= "reg_GRP"

 GLOC="R10C20D"

 BBOX= "5,5"*/;

serial_reg_custom inst1A(.D(A), .CLK(CLK), .CE(CE), .RST(RST), .Q(adder1_in1));

serial_reg_custom inst1B(.D(B), .CLK(CLK), .CE(CE), .RST(RST), .Q(adder1_in2));

serial_reg_custom inst1C(.D(adder1_sum), .CLK(CLK), .CE(CE), .RST(RST), .Q(SUM));

count count_inst(A,CLK,RST) /* synthesis REGION="reg_REGION" */;

Refer to the following codes for the Diamond software HDL examples:

• VHDL Syntax:

attribute HGROUP: string;

attribute BBOX: string;

• VHDL Example Code:

attribute HGROUP of struct: architecture is "reg_group";

attribute BBOX of struct: architecture is "5,5";

• Verilog Syntax – Synplify

/* synthesis HGROUP= "<hgroup_name>"

BBOX= "<h,w>" */;

• Verilog Example Code – Synplify

/* synthesis HGROUP= "reg_group"

BBOX= "5,5" */;

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 64

4.7.5. Attributes Conversion Examples

This section provides the conversion examples for the RAM_STYLE, BLACK_BOX, and FSM_ENCODING attributes:

• RAM_STYLE attribute:

• AMD VHDL example:

attribute ram_style : string;

attribute ram_style of myram : signal is "distributed";

• Conversion to Lattice attribute:

attribute syn_ramstyle: string;

attribute syn_ramstyle of myram : signal is "distributed";

• Conversion to Lattice Verilog attribute:

module myram (datain,dataout,clk);

output [31:0] dataout;

input clk;

input [31:0] datain;

reg [7:0] dataout[31:0] /* synthesis syn_ramstyle="block_ram" */;

* Lattice Attribute options: Registers, Distributed, Block_ram

• BLACK_BOX attribute:

• AMD VHDL example:

attribute black_box : string;

attribute black_box of beh : architecture is "yes";

• Conversion to Lattice attribute:

attribute syn_black_box: string;

attribute syn_black_box of beh : architecture is true;

• Conversion to Lattice Verilog attribute:

module bl_box(out,data,clk) /* synthesis syn_black_box */;

• FSM_ENCODING attribute:

• AMD VHDL example:

type count_state is (zero, one, two, three, four, five, six, seven);

signal my_state : count_state;

attribute fsm_encoding : string;

attribute fsm_encoding of my_state : signal is "sequential";

• AMD Verilog example:

(* fsm_encoding = "one_hot" *) reg [7:0] my_state;

• Conversion to Lattice VHDL attribute:

attribute syn_encoding : string;

attribute syn_encoding of my_state : signal is "sequential";

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 65

• Conversion to Lattice Verilog attribute:

reg [7:0] my_state /* synthesis syn_encoding = "onehot" */;

reg [7:0] my_state /* synthesis syn_encoding = "Safe, onehot" */;

* Lattice Attribute options: Sequential, onehot, Gray, Safe (combined with any other
type)

A comprehensive guide to library element HDL attributes is available in the FPGA Libraries Reference Guide. You can access
this guide by navigating to Reference Guides > FPGA Libraries Reference Guide from the Lattice Radiant software Help
menu. You can also find more information in the Reference Guides > Constraints Reference Guide > Lattice Synthesis
Engine Constraints > Lattice Synthesis Engine-Supported HDL Attributes from the Lattice Radiant software Help menu.

It is not recommended to edit these library element attributes, as they are usually generated from an array of choices that
are made for module generation using the IP Catalog.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 66

5. Software Tools Comparison

5.1. Introduction
The Lattice design flow for FPGA and CPLD devices is similar in conception and implementation to the AMD design flow.
Both software support hardware description language (VHDL and/or Verilog) as input, that can be targeted to a specific
FPGA device family. Table 5.1 lists the different tools available for the AMD devices and their equivalent Lattice tools.

Table 5.1. Software Tools Comparison Between Lattice and AMD Devices

AMD Software Tool Lattice Software Tool Descriptions

Vivado Design Suite: HL Design Edition
for the following AMD devices:

• UltraScale

• UltraScale+

• 7-Series

Lattice Radiant

Lattice Diamond

Radiant software is the new generation software platform that
supports new devices. Refer to Table 5.3 for list of supported
devices.

ISE* Design Suite for the following
AMD devices:

• Spartan-6

• Virtex-6

• CoolRunner*

• Previous generations

Lattice Radiant or
Lattice Diamond

Depending on the selected equivalent device, Radiant or
Diamond software could be used. Refer to Table 5.3 for list of
supported devices.

Vitis™ Lattice Propel Vivado/Diamond and Radiant software offer a hardware-centric
approach to designing a hardware, while Vitis/Propel software
offer a software-centric approach to develop both hardware and
software SoC.

*Note: AMD ISE Design Suite software has been discontinued and is replaced by the Vivado Design Suite software. The
latest version of AMD ISE Design Suite software was released in October 2013.

Table 5.2 provides the descriptions of each Lattice software tool.

Table 5.2. Lattice Software Tools Descriptions

Lattice Software Tool Descriptions

Lattice Radiant The latest generation FPGA design software environment for Lattice devices. It will replace the Diamond
software in the future. Only new devices are supported by this platform.

Lattice Diamond

Provides an optimized, and tailored design and verification environment for Lattice FPGAs featuring
extensive constraints, advanced optimization, accurate analysis, extensive verification, and fast iterations.

Lattice Propel Provides a complete set of graphical and command-line tools to create, analyze, compile, and debug both
the hardware design of an FPGA-based processor system, and the software design for that processor
system.

Table 5.3 provides the summary of Lattice device families supported by each Lattice software tool.

Table 5.3. Lattice Software Tools and Supported Device Families

Device Family Radiant Software Diamond Software Propel Software Programmer

iCE40 UltraPlus ✓   ✓

iCE40    ✓

MachXO2/MachXO3/

MachXO3D
 ✓ ✓ ✓

ECP5-5G  ✓  ✓

CrossLink/CrossLinkPlus  ✓  ✓

Crosslink-NX ✓   ✓

Certus-NX ✓  ✓ ✓

CertusPro-NX ✓  ✓ ✓

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 67

Device Family Radiant Software Diamond Software Propel Software Programmer

LatticeXP2  ✓  ✓

Avant ✓  ✓ ✓

5.2. Design Flow Using GUI
This chapter covers the following information:

• The differences in terminology and process between the AMD and Lattice tools.

• Methods using similar tools when converting designs from one platform to another.

5.2.1. Introduction

Both AMD and Lattice hardware development platform integrate multiple GUI tools that allow you to go through the FPGA
design process and generate device bitstream to download in the FPGA.

Most of the capabilities of the Vivado tools have their equivalent within the Diamond or Radiant tool. However, the
terminology used by each vendor and how to access these tools differs.

There are different views within the AMD Vivado tool to access design or reporting tools based on the phases of your
design (IO Planning, Floor planning, and Timing analysis).

All the same tools are accessible through the main interface without changing the view and are classified under the menu
“Tools” or through shortcuts in the Lattice Radiant or Diamond tools bar. An example of the Radiant software main
interface is shown in Figure 5.1. Notice that all the software tools are accessible from the tool’s menu or top shortcut bar.
Multiple tabs are available on each view to customize the interface.

Figure 5.1. Lattice Radiant Software Main Interface

Table 5.4 lists most of the available AMD software tools and their equivalent Lattice software tools focusing on the Radiant
software. Lattice Diamond software has similar tools and naming. For further details on how to use these features refer to
the Lattice Radiant Software Design Flow Overview for Xilinx Vivado Users User Guide (FPGA-UG-02165) and
Lattice Diamond Design Flow Overview for Xilinx Vivado Users User Guide (FPGA-UG-02169).

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53646
https://www.latticesemi.com/view_document?document_id=53686

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 68

Table 5.4. Software Tool Comparison Between Lattice and AMD Software

AMD Vivado Design Suite Software Lattice Radiant Software Purpose

Vivado main interface Radiant main interface The main tool interface which can be started from
the Windows or Linux operating systems. TCL console
is also available.

Project Manager > Setting Strategies Project setting, and optimization or implementation
settings.

Project Manager > IP Catalog IP Catalog GUI tool that allows you to customize the
architecture primitive or IP.

Project Manager > Language template Source Template Provides an example source code for a VHDL or
Verilog construct.

Simulation > run simulation ModelSim™

Simulation Wizard

The simulation wizard that allows you to set and run
simulation environment.

RTL Analysis (Schematic) Netlist Analyzer with LSE

HDL Analyst with Synplify Pro

Design RTL schematic view

Vivado Design Suite Synthesis Lattice Synthesis Engine (LSE)

Synplify Pro

The two options of Synthesis tools are available with
Lattice free version.

Vivado Implementation Map Design

Place & Route Design

Design Map, and Place and Route tools.

I/O Planning

Device view and package view.

Device Constraint Editor

Physical Designer

Tools to help select and lock different pins of your
design in package view.

Physical design shows the floorplan view.

Implementation > Constraint Wizard Timing Constraint Editor An interface that helps you set all the timing
constraint of your design.

Timing Analysis Timing Analyzer A GUI tool to analyze timing with cross probing
capability.

Design Runs Run Manager Run Manager helps you to manage running multiple
project implementations and to compare the results.

Vivado logic analyzer (Hardware Manager) Reveal Inserter

Reveal Analyzer/Viewer

On-chip-logic analyzer.

AMD Power Estimator (XPE)

Report Power

Power Calculator An integrated power calculator tool.

Vivado Programmer (Hardware Manager) Programmer Hardware programming tool

AMD Reporting Reports Report viewer tab summarizes all your design
reporting: Synthesis, Map, PAR, Timing, and
Bitgeneration.

Vitis Core Development Kit

AMD Software Development Kit (XSDK)

Lattice Propel Builder Note that Lattice uses RISC-V as the embedded
processor.

When going through the implementation process, multiple files are generated for each phase. The extension of these files
differ between AMD and Lattice software. Table 5.5 shows a summary of commonly used files and their file extensions that
can be used for debug purposes.

Table 5.5. Extension File Comparison Between Lattice and AMD Software

File Type AMD Vivado Design
Suite Software

Lattice Radiant or
Diamond Software

Descriptions

Project file .xpr .rdf

.ldf

• Radiant software project file is .rdf.

• Diamond software project file is .ldf.

Design
constraint file

.xdc .ldc

.pdc

.lpf

.sdc

• Radiant software Pre-synthesis constraints file is *.ldc.

• Radiant software Post synthesis constraint file is *.pdc.

• Diamond software post synthesis constraints file is *.lpf.

• Pre-synthesis design and timing constraints based on SDC format
file is *.sdc.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 69

File Type AMD Vivado Design
Suite Software

Lattice Radiant or
Diamond Software

Descriptions

IP generated
module

.xci .ipx IP generated files with IP Catalog. Generated HDL or .ipx file could be
added to the design project.

5.2.2. FPGA Design Flow

When creating designs for FPGA devices, Lattice and AMD software tools have similarities in terms of concepts, approach,
and functionality. Lattice Radiant and Diamond software framework technology uses the typical FPGA design flow that
adheres to a sequence of steps, which initially requires setting up the design environment and ends with the generation of
programming files that are used to program the hardware.

The AMD Vivado tools design process is segmented as follows:

• Project Manager: To set all project parameters.

• RTL Analysis: To view design architecture and hierarchy.

• Synthesis: To run synthesis and view results.

• Implementation: To set design implementation and constraints settings.

• Program and debug: Device programming related tools.

The Lattice design process, shown in Figure 5.2, includes the following:

• Project Setting: Device, Strategy, one or multiple implementations.

• Synthesis Design: Synthesis using LSE or Synplify Pro.

• Map Design: The process of mapping the design to the target device.

• Place & Route Design: The placement and routing on the target device.

• Export Files: To generate programming files, IBIS Model or other simulation files.

For more information on the design flow, refer to the Lattice Synthesis Engine for Diamond User Guide and see Figure 5.3
for more details on the Lattice design process.

Figure 5.2. Lattice Radiant software Design Process

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=51556

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 70

Timing Synthesis

Constraint Editor

Optional
.ldc/.pdc

.ldc
Verilog/

VHDL

GUI Tools,
PowerCal,
IBIS, SSO

GUI Tools,
Views UDB

Synthesis header

Logical View

Map

UDB Physical View

Place and Route

UDB Physical View

Bitgen

Timing

Logical cell model

Physical cell model

Device Database
Timing, Routing Graph

Back-Anno

D
es

ig
n

 F
lo

w

.bit file

VHDL
and/or
Verilog

Figure 5.3. Lattice Design Flow

5.3. Design Flow Using TCL
Similar to AMD Vivado Design Suite software, Lattice Diamond software also supports TCL (Tool Command Language)
scripting feature that enables a batch capability for running tools in the Diamond software graphical interface. TCL
commands can be used through the command line/terminal or the Lattice Radiant or Diamond stand-alone TCL console
that is included in the software package.

For further details on this subject refer to the following Lattice documentation:

• Tools Help: Reference Guides > TCL Command Reference Guide

• Lattice Radiant Software Design Flow Overview for Xilinx Vivado Users User Guide (FPGA-UG-02165)

• Lattice Diamond Design Flow Overview for Xilinx Vivado Users User Guide (FPGA-UG-02169)

• Lattice Radiant Software 3.2 User Guide

• Lattice Diamond 3.12 User Guide

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53646
https://www.latticesemi.com/view_document?document_id=53686
https://www.latticesemi.com/view_document?document_id=53582
https://www.latticesemi.com/view_document?document_id=53077

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 71

6. Tools Constraint Compatibility

6.1. Introduction
The following types of constraint files are used in the Radiant software:

• *.ldc (via LSE)

• *.sdc (via Synplify Pro and LSE)

• *.fdc (via Synplify Pro)

• *.pdc constraint files

Figure 6.1 details the entry mechanism for the input files and their data flow through the Lattice Radiant software
constraints flow process. Note that the Radiant software also generates a post-synthesis timing report just for LSE.

HDL Entry

Synthesis
(LSE)

SDC/LDC (Timing)

Synplify Pro

FDC/SDC
(Timing)

VM with LDC

UDB (Logical
Netlist + TC)

Map
UDB

(Physical
Netlist + TC)

PAR
UDB (Physical

Netlist +
Routing + TC)

Bitgen

Post-synthesis
STA

Post-map STA Post-PAR STA

TA Report TA Report TA Report

PDC Entry

Indicates the design entry mechanism in the form of HDL and synthesized via
our internal LSE or third party Synplify Pro synthesis tools

Indicates the processes run by the Radiant software

Indicates the input/output constraints files or related output report files such as
the Static Timing Analysis reports out of Map and PAR phase

Figure 6.1. Lattice Radiant Software Constraints Flow Process

The important process to note is that the Unified Database (.udb) used to store the processed data dictates that certain
stages of the constraints need not be re-run in the tool saving processing time. For example, physical constraints on RTL
entered as attributes in the HDL, or pre-synthesis constraints entered using the Pre-Synthesis Timing Constraint
Editor/Synplify Pro SCOPE (or text editor) including .ldc/.fdc (.sdc converted to .fdc) timing constraints would initially run
through synthesis and the data stored is in the .udb file.

Subsequent timing and physical constraints entered using tools such as the Post-Synthesis Timing Constraint Editor,
Placement Mode or Device Constraint Editor and stored in the .pdc file are processed via the mapping run without the need
to re-synthesize the design since the pre-synthesis data resides in the .udb database. As the constraints flow proceeds with
each process like the synthesis, Map, and PAR process, the .udb successively stores a physical netlist, routing, and timing
constraint. The storage of accumulating data throughout the constraints flow in the .udb and reduction in the
re-running processes is one reason for the improved speed and efficiency for the Lattice Radiant software.

In terms of the necessity of pre-synthesis versus post-synthesis timing constraints, usage depends on the complexity and
desired performance of the design results. A simple design requiring few timing constraints with a relaxed fMAX may
require only pre-synthesis timing constraints and runs through the flow from synthesis to place and route phase.

A complex design requiring a higher fMAX performance may have initial pre-synthesis timing constraints entered for
synthesis. Later in the flow, you may want to override or fine tune these timing constraints in addition to adding physical
constraints to reach the desired performance by driving the place and route process.

For example, you might want to specify a higher fMAX to reduce logic levels in the initial stage but lower the fMAX
constraint later in the post-synthesis flow so that the place and route process is not strained when routing the design.

The Radiant software LSE enables you to set pre-synthesis Synopsys® Design (formatted) Constraints, which are directly
interpreted by the synthesis engine.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 72

When you use the LSE, these .sdc constraints are saved to a Lattice Design Constraints file (.ldc). You can create several .ldc
files and select one of them to serve as the active synthesis constraint file for an implementation.

Refer to the Lattice Radiant Timing Constraints Methodology (FPGA-AN-02059) for further details on the use of the
constraints and the Lattice Radiant Software 3.2 User Guide for further details on the Radiant software.

Figure 6.2 shows a detailed comprehensive representation of all the files involved on the logical domain and physical
domain.

Map

CPEReport.txt

User
Constraints
(.ldc/.sdc)

Pre-Synthesis TCE/
Manual Entry

HDL Files
IP + IP

Constraints

CPE (If IP is
available)

*_CPE.ldc

Synthesis
(LSE/Synplify

Pro)

Post-
Synthesis

*_impl_1.ldc

Synplify Pro output
constraints reports:
• *_scck.rpt
• *_cck.rpt

Post-Synthesis
Timing Analysis

Post-Synthesis

UDB
(Netlist +

Timing Constraints)

• *.tws (Timing Report File)

Synplify Pro
SCOPE (.fdc)

Map UDB
(Netlist +

Timing Constraints)

PAR

Post-Map
Timing Analysis

PAR UDB
(Netlist +

Timing Constraints)

Post-PAR
Timing Analysis

Bitgen

Post-Synthesis TCE/
Manual Entry

Physical Constraints
(DCE/Physical Designer

.pdc

Logical Domain Physical Domain

• *.tws (Timing Report File) • *.tws (Timing Report File)

Figure 6.2. Input Files and Data Flow of Logical and Physical Domains

Notes:

• Regarding the physical/timing constraints, constraints entered via any GUI tool such as the Device Constraint Editor or
Timing constraint editor will take precedence over the constraints that are entered via an HDL attribute in the RTL or
.ldc TCL sdc command.

• Constraints entered later in the design flow such as the Post-Synthesis Timing Constraint editor (.pdc) will override a
constraint entered in the Pre-Synthesis Constraint (.ldc or .sdc) editor tool.

• If there are conflicts in the constraint file such as a ldc_set_location TCL command conflicting with a ldc_prohibit on the
same location, then the Radiant software will issue an error message in the design flow.

To complete the design conversion process, it is important to replace the AMD timing and device constraints (.ucf .sdc or
.xdc) file with a Lattice Semiconductor source constraints or preferences file (.prf, .pdc or .sdc). See Table 6.1 for the
equivalent Lattice Semiconductor preferences.

6.2. Converting SDC File
A synopsis design constraint standard format defined in the ASCII text file (with the extension .sdc) that contains design
timing constraints. This usually does not require any changes as both AMD and Lattice software support SDC file format.

6.3. Converting UCF File
UCF files are used to interact with the ISE™ Design Suite software which is an old AMD implementation tool. UCF files are
unique to AMD software and they provide a format for feeding physical and timing constraints into the AMD ISE tools. The
conversion of this type of file can be difficult as you may have constraints that do not have direct equivalents. The same
problem arises with the conversion of UCF to XDC (when you move from the old generation AMD tool ISE to Vivado). The
AMD tool, PlanAhead tcl commands allows you to convert UCF to XDC. You can type in the following syntax:

write_xdc - file <file path and name>

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53772
https://www.latticesemi.com/view_document?document_id=53582

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 73

This will automatically generate an XDC file compatible with Vivado tool (pay attention to the warning generated using this
process as some constraints may not have direct equivalents.

XDC file is based on the SDC file construct and will be much easier to convert to Lattice constraint (.ldc or .pdc).

6.4. Converting XDC File
The Vivado IDE supports the AMD design constraint (XDC) and Synopsys design constraint (SDC) file formats. The SDC
format is for timing constraints while the XDC format is for both timing and physical constraints. Constraints can include
placement, timing, and I/O restrictions.

Most SDC files should be compatible without modification with some limitations. The current LSE timing does not take the
PLL/DLL frequency or phase shift properties into account. It also does not model the different IO_TYPE in the PIO.
Therefore, it is necessary to adjust the timing constraint accordingly.

6.5. Timing Constraint

6.5.1. Timing Constraints Conversion Table

Table 6.1 lists all the constraints that can be used by both Lattice (.ldc) and AMD (.xdc) software. The listed constraints are
based on the SDC construct and are fully compatible.

Table 6.1. Timing Constraints Comparison Between Lattice and AMD Software

AMD Constraint (.xdc) Lattice Constraint (.ldc) Descriptions

create_clock create_clock Creates a clock and defines its characteristics.

create_generated_clock create_generated_clock Creates an internally generated clock and defines its characteristics.

set_clock_groups set_clock_groups Specifies clock groups that are mutually exclusive or asynchronous with each
other in a design so that the paths between these clocks are not considered
during timing analysis.

set_clock_latency set_clock_latency Specifies the behavior of the clock outside of the FPGA device.

set_clock_uncertainty set_clock_uncertainty This constraint indicates that the clock of interest has uncertainties in its
period.

set_false_path set_false_path Identifies paths that are considered false and excluded from timing analysis.

set_input_delay set_input_delay Defines the arrival time of an input relative to a clock.

set_load set_load To accurately perform timing and SSO analysis, the tool needs information
regarding the external load capacitance of nets connected to output ports of
the FPGA device.

set_max_delay set_max_delay Specifies the maximum delay for the timing paths.

set_min_delay set_min_delay Specifies the minimum delay for the timing paths.

set_multicycle_path set_multicycle_path Defines a path that takes multiple clock cycles.

set_output_delay set_output_delay Defines the output delay of an output relative to a clock.

6.5.2. Timing Constraint Best Practice

Timing constraint is very important for a given design implementation as it guides how the design are optimized and has an
impact on the implementation process. Both Synthesis and implementation tools are timing driven. The algorithm will try to
optimize timing scores (all negative Slacks in your design) to a value of zero. Having a partial coverage for timing constraint
may lead the tool to optimize in the wrong area of the design and miss timing in other important regions.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 74

Both the Radiant and Diamond software provide you with valuable information on your timing coverage. You can refer to
the MAP and PAR report files to look for:

• Clock summary: Provides you with a summary of all identified clocks in your design with clock domain crossing to other
clock domains.

• Timing constraint coverage: Provides you with a percentage of constraint coverage. Having a low number means that
your design is not well constrained. It is recommended to be above 90% (ideally, 100% coverage).

• Total timing scores: Provides you with an indication of the total Negative Slack in picosecond. This is the score that the
tool tries to optimize to zero.

• A list of Unconstraint paths.

• Setup and hold time report.

To have a good timing constraint coverage, it is recommended to define the following constraints in this order of priority:

• Identify different clocks and define your frequency constraint.

• Identify and constraint any generated clocks.

• Define input and output delay constraints.

• Define different clock relationship if any.

• Define false paths.

• Define multicycle paths.

For more information on timing constraints, refer to the Reference Guides > Constraints Reference Guide > Lattice
Synthesis Engine Constraints > Synopsys Design Constraints Timing/Physical Constraints or Reference Guides >
Constraints Reference Guide > Lattice Synthesis Engine Constraints > Synopsys Design Constraints from the Radiant
software Help menu.

6.6. Physical Constraint

6.6.1. Definition

Physical constraints are related to the physical domain. The physical constraint guides the Map and PAR tools in the
implementation process and can include the following:

• Pin placement, voltage per bank, and Vref.

• Force the use of certain clock resources (Primary, region, and secondary)

• Creating a group with logical components

• Defining an anchor point for a group or a component

• Defining the configuration mode of the device

6.6.2. Physical Constraint Files

You can assign physical constraints using one or both of the following methods:

• Assign Lattice design constraints (.PDC) via the Device Constraint Editor tool. See the Device Constraint Editor Help
menu for a complete description of each constraint, including syntax rules and examples.

• Assign HDL or schematic-based attributes using design source files. These attributes are used to direct Map and PAR
tools. See HDL Attributes section from the Lattice Radiant/Diamond software Help menu for complete descriptions of
each attribute, including conventions and examples.

Post-Synthesis Design Constraints (.pdc) is the Radiant software design constraints that contain both physical constraints
and any post-synthesis timing constraints. The .pdc file is generated from higher level constraints and is the one that is used
by Map and PAR tools to complete the physical implementation of the design.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 75

6.6.3. Physical Constraints Conversion

The conversion of physical constraints have to be done manually. Table 6.2 lists the supported Lattice physical constraints.

Table 6.2. Lattice Physical Constraints

Lattice Physical Constraint Descriptions

ldc_create_group

Defines a single identifier that refers to a group of objects. Only slice and IO can be created currently.
Refer to the following example:

ldc_create_group -name group1[get_ports{a*}]

ldc_create_region

Defines a rectangular area. Refer to the following example:

ldc_create_region -name region0 -site R16C2D -width 11 -height 30

ldc_set_location When applied to a specified component, it places the component at a specified site or bank and locks
the component to the site or bank. Refer to the following examples:

• ldc_set_location -site 11 [get_ports {A}]

• ldc_set_location -region region0 [get_group {group1}]

ldc_create_vref Defines a voltage reference. The PIO site serves as the input pin for an on-chip voltage reference. Refer
to the following example:

ldc_create_vref -name VREF1_BANK_3 -site N21

ldc_set_vcc Sets the voltage and/or derate for the bank or core. Refer to the following examples:

• ldc_set_vcc -bank 1 3.3

• ldc_set_vcc -bank 1 -derate -3

ldc_set_port Sets the constraint attributes to ports; -iobuf, is used exclusively; -vref must be combined with –iobuf.
Refer to the following example:

ldc_set_port -iobuf {IO_TYPE=HSTL15_II PULLMODE=UP} [get_ports {A}]

ldc_set_sysconfig Sets the sysConfig port attributes. Refer to the following example:

ldc_set_sysconfig {JTAG_PORT=ENABLE PROGRAMN_PORT=ENABLE MCCLK_FREQ=56.2 DONE_OD=ON}

ldc_set_attribute Sets the constraint attributes to the objects or the design if no object is specified. Refer to the following
examples:

• ldc_set_attribute {USE_PRIMARY=TRUE} {USE_PRIMARY_REGION=0,1} [get_nets {clk1_c}]

• ldc_set_attribute GSR_NET=TRUE [get_nets {my_gsr}]

ldc_prohibit Prohibits the use of a site or all sites in a region. Refer to the following examples:

• ldc_prohibit -site AB

• ldc_prohibit -region regionA

For more information on timing constraints, refer to the Reference Guides > Constraints Reference Guide > Lattice
Synthesis Engine Constraints > Synopsys Design Constraints Timing/Physical Constraints or Reference Guides >
Constraints Reference Guide > Lattice Synthesis Engine Constraints > Synopsys Design Constraints from the Radiant
software Help menu.

6.7. XDC File Conversion Example
This section provides an example of converting an AMD XDC file to the Lattice LDC file:

• AMD XDC file example:

create_clock -period 10 -name wClk [get_ports wClk]

create_clock -period 5 -name rClk [get_ports rClk]

set_property PACKAGE_PIN P20 [get_ports {wbtData[7]}]

set_property PACKAGE_PIN V22 [get_ports {wbData[6]}]

set_property PACKAGE_PIN E21 [get_ports {wbData[5]}]

set_property PACKAGE_PIN P23 [get_ports {wbData[4]}]

set_property PACKAGE_PIN V23 [get_ports {wbData[3]}]

set_property PACKAGE_PIN E24 [get_ports {wbData[2]}]

set_property PACKAGE_PIN P25 [get_ports {wbtData[1]}]

set_property PACKAGE_PIN V26 [get_ports {wbData[0]}]

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 76

set_property PACKAGE_PIN E27 [get_ports wclk]

set_property PACKAGE_PIN E28 [get_ports rclk]

set_property IOSTANDARD LVCMOS18 [all_inputs]

set_property IOSTANDARD LVCMOS18 [all_outputs]

create_pblock pblock_1

add_cells_to_pblock [get_pblocks pblock_1] [get_cells -quiet [list arnd1 arnd2 arnd3
arnd4]]

resize_pblock [get_pblocks pblock_1] -add {SLICE_X10Y170:SLICE_X35Y194}

• Conversion to Lattice LDC file:

Timing constraint

create_clock -name {rClk} -period 10 [get_ports rClk]

create_clock -name {wClk} -period 5 [get_ports wClk]

I/O pin locking

ldc_set_location -site {L16} [get_ports wClk]

ldc_set_location -site {L18} [get_ports rClk]

ldc_set_location -site {L14} [get_ports {wbData[0]}]

ldc_set_location -site {L13} [get_ports {wbData[1]}]

ldc_set_location -site {M16} [get_ports {wbData[2]}]

ldc_set_location -site {M15} [get_ports {wbData[3]}]

ldc_set_location -site {M14} [get_ports {wbData[4]}]

ldc_set_location -site {M13} [get_ports {wbData[5]}]

ldc_set_location -site {P14} [get_ports {wbData[6]}]

ldc_set_location -site {P13} [get_ports {wbData[7]}]

Default setting for all I/O to have LVCMOS33 voltage

ldc_set_port -iobuf {IO_TYPE=LVCMOS33 DIFFDRIVE=NA DIFFRESISTOR=OFF}

Create a group box with defined size (10x10) and physical placement guideline (anchor
point R2C2D)

ldc_create_group -name MyGroup -bbox {10 10} [get_cells {arnd1 arnd2 arnd3 arnd4}]

ldc_set_location -site {R2C2D} [ldc_get_groups MyGroup]

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 77

7. Design Simulation

7.1. Supported Simulation Tools and Process
Both AMD Vivado Design Suite and Lattice Radiant/Diamond software support a number of third-party simulators, as shown
in Table 7.1.

Table 7.1. Supported Simulation Tools and Process by AMD Vivado Design Suite and Lattice Radiant/Diamond Software

Simulation Tool AMD Vivado Design Suite Software Lattice Radiant/Diamond Software

Siemens EDA Questa™ Advanced
Simulator

✓ ✓

Siemens EDA ModelSim™ Simulator ✓ ✓

Synopsys® VCS® (Verilog Compiler
Simulator)

✓ ✓

Aldec® Riviera-PRO™ Simulator ✓ ✓

Aldec Active-HDL™ ✓ ✓

Cadence® Xcelium™ Parallel Simulator ✓ 

Cadence Incisive® Enterprise Simulator
(IES)

✓ 

AMD Vivado™ simulator ✓ 

Cadence NC-VHDL  ✓

Cadence NCSim  ✓

Cadence NC-Verilog  ✓

In the AMD Vivado Design Suite software, you can run a simulation by clicking Run Simulation under Simulation on the
Flow Navigator pane. You can choose between Behavioral Simulation, Post-Synthesis Simulation, and Post-Implementation
Simulation.

In the Diamond or Radiant software, you can click on the Simulation Wizard icon (or tools > simulation wizard) to run a
simulation using Modelsim OEM tool. The simulation wizard is used to generate a Simulation Wizard Project (.spf) file and a
simulation script DO file that is executed by ModelSim. Figure 7.1 shows an example of the Radiant software simulation
wizard GUI.

Figure 7.1. Lattice Radiant Software Simulation Wizard

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 78

Figure 7.2 shows the files involved in each type of simulation for the Radiant software.

Timing Synthesis

Constraint Editor

Optional
.ldc/.pdc

.ldc
Verilog/

VHDL

GUI Tools,
PowerCal,
IBIS, SSO

GUI Tools,
Views UDB

Synthesis header

Logical View

Map

UDB Physical View

Place and Route

UDB Physical View

Bitgen

Timing

Logical cell model

Physical cell model

Device Database
Timing, Routing Graph

Back-Anno

D
es

ig
n

 F
lo

w

.bit file

VHDL
and/or
Verilog

Si
m

ul
at

io
n

Fl
ow

.vhd

.vho

.vho +
.sdf

Functional Simulation

Post Route Simulation

Post Route Timing Simulation

Figure 7.2. Radiant Software Design and Simulation Flows

For more information, refer to the user guides from the Lattice Radiant/Diamond software Help menu. Figure 7.3 shows an
example of user guides listed in the Lattice Radiant software Help menu.

Figure 7.3. Lattice Radiant Software User Guides

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 79

8. Device Programming

8.1. Programming Mode Options
After you have created and verified your design, you can use the final output data file to download a bitstream to the FPGA
device using the appropriate programming tool. There are multiple modes of device programming for both Lattice and AMD
devices. For details about these modes, refer to the device datasheet or sysConfig user guide of a specific device family. A
high-level summary of supported modes is listed in Table 8.1.

Table 8.1. Programming Mode Options Available By Device Family for AMD and Lattice Devices

Device Family/
Programming Mode

AMD 7-Series Lattice MachXO Lattice
CertusPro-NX

Lattice
ICE40 UltraPlus

Lattice
CrossLink-NX

SDM*  ✓ (Flash)  ✓ (NVCM) 

SPI ✓ (×1, ×2, and ×4) ✓ ✓ (×1, ×2, and ×4) ✓ ✓

I2C  ✓ ✓  ✓

I3C  ✓ (NX Version) ✓  ✓

BPI (parallel I/F) ✓ (×8 and ×16)    

Multiboot ✓ ✓ ✓ ✓ ✓

Encryption ✓ ✓ (NX Version) ✓  ✓ (NX Version)

Authentication ✓ ✓ (NX Version) ✓  ✓ (NX Version)

Partial Configuration ✓    

Daisy Chaining ✓ ✓ ✓  ✓

JTAG  ✓ ✓ ✓ ✓

*Note: SDM stands for Self-Download-Mode. Some Lattice devices integrate Flash or NVCM. No external boot device is
needed.

8.2. Bitstream Generation
There are different configuration options that are available in the Lattice Radiant and AMD Vivado Design Suite software
that allow you to customize the generated bitstream.

The Vivado Design Suite software interface allows you to select the type of interface, bitstream format and the
programming mode using the Program and Debug step of the flow.

Configuring the additional bitstream settings allows you to access the following advanced settings:

• Configuration mode

• Selection of the SPI flash mode (×1, ×2, and ×4)

• Bitstream encryption

In the Lattice software, all these parameters can be set from the following interfaces:

• Strategy Settings (bitstream format)

• Device Constraint Manager (to set the sysConfig port parameters)

• Programmer and Programmer file utility which include the bitstream conversion debug tools and device programming
utility.

For more information, refer to the following documents:

• Lattice Radiant Software Design Flow Overview for Xilinx Vivado Users User Guide (FPGA-UG-02165)

• Advanced Configuration Security User Guide for Nexus Platform (FPGA-TN-02176)

• Lattice Diamond Design Flow Overview for Xilinx Vivado Users User Guide (FPGA-UG-02169)

• Lattice Radiant Software 3.2 User Guide

• Lattice Diamond 3.12 User Guide

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53646
https://www.latticesemi.com/view_document?document_id=53259
https://www.latticesemi.com/view_document?document_id=53686
https://www.latticesemi.com/view_document?document_id=53582
https://www.latticesemi.com/view_document?document_id=53077

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 80

8.2.1. Bitstream Strategy Settings

In the Radiant software, you can double-click on the strategy to set the output format of the bitstream file:

• Bit File (Binary) – Generates a binary configuration file (.bin) that contains the default outputs of the Bit Generation
process.

• Raw Bit File (ASCII) – Generates an ASCII raw bit text file (.rbt) of ASCII ones and zeros that represent the bits in the
bitstream file. If you are using a microprocessor to configure a single FPGA device, you can include the Raw Bit file in
the source code as a text file to represent the configuration data. The sequence of characters in the Raw Bit file is the
same as the bit sequence that will be written into the FPGA device.

Figure 8.1 shows an example of the Radiant software Strategies GUI.

Figure 8.1. Lattice Radiant Software Strategies GUI

8.2.2. Device Constraint Options (sysConfig)

In the Radiant software, you can find all the SysConfig settings under the General tab. You can set these settings using the
Global tab in the Device Constraint Editor or manually. If you do not specify these settings in the .pdc file, some default
sysConfig constraints will automatically be generated based on the device selection. Figure 8.2 shows an example of the
Radiant software Device Constraint Editor GUI.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 81

Figure 8.2. Lattice Radiant Software Device Constraint Editor GUI

8.2.3. Programmer and Programmer File Utility

The Radiant Programmer in the Radiant software allows you to connect with the hardware and program the device or flash
memory. It offers several views to help you set up your connection to a target board and to program the FPGA devices. If an
item is not showing, choose it in the View menu.

The configuration created by the Programmer will be stored in an .xcf file. The .xcf file contains information about each
device, the data files targeted, and the operations to be performed.

Figure 8.3 shows an example of the Radiant Programmer GUI.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 82

Figure 8.3. Lattice Radiant Programmer GUI

Accessible from the same interface is the Programming File Utility, shown in Figure 8.4, it is a stand-alone tool that allows
you to view, compare, and edit data files. The tool covers the following functions:

• Viewing Data Files

• Comparing Two Data Files

• Editing Feature Row Values

• Editing Control Register Values

• Control Register Dialog Box

• Editing the USERCODE in the Data File

Figure 8.4. Lattice Programming File Utility Control Register GUI

The Radiant Deployment Tool, which is part of the Radiant Programmer interface, allows you to generate other type of files
such as ISC, HEX, and BSDL files as shown in Figure 8.5.

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 83

Figure 8.5. Lattice Radiant Deployment Tool GUI

http://www.latticesemi.com/legal

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 84

References
For more information, refer to the following documents:

• CertusPro-NX Family Data Sheet (FPGA-DS-02086)

• Package Diagrams Data Sheet (FPGA-DS-02053)

• sysI/O User Guide for Nexus Platform (FPGA-TN-02067)

• CertusPro-NX High-Speed I/O Interface (FPGA-TN-02244)

• Sub-LVDS Signaling Using Lattice Devices (FPGA-TN-02028)

• sysCLOCK PLL Design and User Guide for Nexus Platform (FPGA-TN-02095)

• Lattice Radiant Software Design Flow Overview for Xilinx Vivado Users User Guide (FPGA-UG-02165)

• Memory User Guide for Nexus Platform (FPGA-TN-02094)

• Lattice Radiant Software 3.1 User Guide

• Memory Modules User Guide (FPGA-IPUG-02033)

• sysDSP User Guide for Nexus Platform (FPGA-TN-02096)

• DSP Arithmetic Modules User Guide (FPGA-IPUG-02050)

• Arithmetic Modules User Guide (FPGA-IPUG-02032)

• Lattice Radiant Software 3.2 User Guide

• CertusPro-NX SERDES/PCS User Guide (FPGA-TN-02245)

• CertusPro-NX Hardware Checklist (FPGA-TN-02255)

• Lattice Memory Mapped Interface and Lattice Interrupt Interface User Guide (FPGA-UG-02039)

• Soft Error Detection (SED)/Correction (SEC) User Guide for Nexus Platform (FPGA-TN-02076)

• ADC User Guide for Nexus Platform (FPGA-TN-02129)

• Single Event Upset (SEU) Report for Nexus Platform (FPGA-TN-02174)

• Using TraceID Technical Note (FPGA-TN-02084)

• Advanced Configuration Security User Guide for Nexus Platform (FPGA-TN-02176)

• FPGA Libraries Reference Guide

• HDL Coding Guidelines

• Design Planning in Diamond

• Lattice Diamond Design Flow Overview for Xilinx Vivado Users User Guide (FPGA-UG-02169)

• Lattice Diamond 3.12 User Guide

• Lattice Synthesis Engine for Diamond User Guide

For more information, refer to the following Lattice device and training web pages:

• Avant-E web page

• Avant-G web page

• Avant-X web page

• Certus-NX web page

• CertusPro-NX web page

• CrossLink web page

• CrossLink-NX web page

• CrossLinkPlus web page

• LatticeECP2/M web page

• Lattice ECP3 web page

• ECP5/ECP5-5G web page

• LatticeXP2 web page

• iCE40 LP/HX web page

• iCE40 UltraPlus web page

• ispMACH 4000ZE web page

• ispMACH 4000V/Z web page

• MachXO web page

• MachXO2 web page

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53126
https://www.latticesemi.com/view_document?document_id=213
https://www.latticesemi.com/view_document?document_id=52792
https://www.latticesemi.com/view_document?document_id=53256
https://www.latticesemi.com/view_document?document_id=37643
https://www.latticesemi.com/view_document?document_id=52789
https://www.latticesemi.com/view_document?document_id=53646
https://www.latticesemi.com/view_document?document_id=52785
https://www.latticesemi.com/view_document?document_id=53415
https://www.latticesemi.com/view_document?document_id=52238
https://www.latticesemi.com/view_document?document_id=52791
https://www.latticesemi.com/view_document?document_id=52686
https://www.latticesemi.com/view_document?document_id=52553
https://www.latticesemi.com/view_document?document_id=53582
https://www.latticesemi.com/view_document?document_id=53257
https://www.latticesemi.com/view_document?document_id=53255
https://www.latticesemi.com/view_document?document_id=52297
https://www.latticesemi.com/view_document?document_id=52788
https://www.latticesemi.com/view_document?document_id=52779
https://www.latticesemi.com/view_document?document_id=52852
https://www.latticesemi.com/view_document?document_id=39093
https://www.latticesemi.com/view_document?document_id=53259
https://www.latticesemi.com/view_document?document_id=52213
https://www.latticesemi.com/view_document?document_id=48203
https://www.latticesemi.com/view_document?document_id=45589
https://www.latticesemi.com/view_document?document_id=53686
https://www.latticesemi.com/view_document?document_id=53077
https://www.latticesemi.com/view_document?document_id=51556
https://www.latticesemi.com/en/Products/FPGAandCPLD/Avant-E
https://www.latticesemi.com/en/Products/FPGAandCPLD/Avant-G
https://www.latticesemi.com/en/Products/FPGAandCPLD/Avant-X
https://www.latticesemi.com/Products/FPGAandCPLD/Certus-NX
https://www.latticesemi.com/Products/FPGAandCPLD/CertusPro-NX
https://www.latticesemi.com/Products/FPGAandCPLD/CrossLink
https://www.latticesemi.com/Products/FPGAandCPLD/CrossLink-NX
https://www.latticesemi.com/Products/FPGAandCPLD/CrossLinkPlus
https://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP2M
https://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3
https://www.latticesemi.com/Products/FPGAandCPLD/ECP5
https://www.latticesemi.com/Products/FPGAandCPLD/LatticeXP2
https://www.latticesemi.com/Products/FPGAandCPLD/iCE40
https://www.latticesemi.com/Products/FPGAandCPLD/iCE40UltraPlus
https://www.latticesemi.com/Products/FPGAandCPLD/ispMACH4000ZE
https://www.latticesemi.com/Products/FPGAandCPLD/ispMACH4000VZ
https://www.latticesemi.com/Products/FPGAandCPLD/MachXO
https://www.latticesemi.com/Products/FPGAandCPLD/MachXO2

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 85

• MachXO3 web page

• MachXO3D web page

• MachXO5-NX web page

• Lattice Insights web page for Lattice Semiconductor training courses and learning plans

http://www.latticesemi.com/legal
https://www.latticesemi.com/Products/FPGAandCPLD/MachXO3
https://www.latticesemi.com/Products/FPGAandCPLD/MachXO3D
https://www.latticesemi.com/en/Products/FPGAandCPLD/MachXO5-NX
https://www.latticesemi-insights.com/

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 86

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
Application Note

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02081-1.1 87

Revision History

Revision 1.1, September 2024

Section Change Summary

All • Updated SerDes to SERDES.

• Made editorial fixes.

Competitive Positioning In the FPGA Architecture section:

• Added the Lattice LFD2NX-9 device for the following AMD devices:

• XC7A12T

• XC7S15

• XC6SLX9

• XC3S400AN

• XC3S400

• XC3S250E

• XC3S500E

• XC3S400A

• Added the Lattice LFD2NX-17 device for the following AMD devices:

• XC7A12T

• XC7A15T

• XC3S700AN

• XC3S700A

• Added the Lattice LFD2NX-28 device for the following AMD devices:

• XC7A25T

• XC7A35T

• XC7S25

• XC6SLX25

• XC6SLX25T

• XC3S1400AN

• XC3S1500

• XC3S1600E

• XC3SD1800A

Revision 1.0, March 2024

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Migrating Designs from AMD CPLD/FPGA Devices to Lattice FPGA Devices
	Contents
	Abbreviations in This Document
	1. Competitive Positioning
	1.1. Lattice FPGA Devices
	1.2. AMD CPLD/FPGA Devices
	1.3. Device Competitive Positioning Summary
	1.3.1. FPGA Architecture
	1.3.2. CPLD Architecture
	1.3.3. Device Temperature Grades

	1.4. Device Part Number and Speed Grade
	1.4.1. AMD Part Number Description
	1.4.2. Lattice Part Number Description
	1.4.3. Lattice Ordering Part Numbers Example

	2. Architecture Differences
	2.1. Old AMD FPGA Terminology
	2.2. LUT4 vs LUT6
	2.2.1. Architecture Description and Differences
	2.2.2. Architecture LUT Size is a Strategic Decision
	2.2.3. Design Conversion Recommendations

	2.3. I/O, Voltage, and Bank
	2.3.1. Architecture Description and Differences
	2.3.2. Voltage Mix within the Same Bank
	2.3.2.1. Example Case

	2.3.3. Design Conversion Recommendations

	2.4. Clocking Resources
	2.4.1. Clocking Architectures Comparison
	2.4.2. Design Conversion Recommendations

	2.5. PLL/MMCM/DCM
	2.5.1. Architecture Primitives Comparison
	2.5.2. CMT Features Comparison
	2.5.3. Design Conversion Recommendations

	2.6. Internal Memory Configuration
	2.6.1. Embedded and Distributed Memory Comparison
	2.6.2. Source HDL Code Example
	2.6.3. Large Memory Blocks
	2.6.4. Read and Write Priority
	2.6.5. Memory Size and Configuration
	2.6.6. Memory Primitives Comparison
	2.6.7. Design Conversion Recommendations
	2.6.7.1. Example Case

	2.7. DSP Blocks
	2.7.1. DSP Architectures Comparison
	2.7.2. DSP Features Comparison
	2.7.3. DSP Port Mapping Comparison
	2.7.4. Design Conversion Recommendations
	2.7.5. DSP Inferring Design Example

	2.8. SERDES/Transceivers
	2.8.1. SERDES/Transceivers Comparison
	2.8.2. Design Conversion Recommendations
	2.8.3. Lattice Device Supported SERDES Based Standards

	2.9. External Memory Interface
	2.9.1. Lattice Device Supported Standards

	2.10. Other FPGA Device Hardened Functions

	3. Selecting the Right Equivalent Target Device
	3.1. Step 1: Collect Information from the AMD Report File
	3.2. Step 2: Reconsider Your Device Size
	3.3. Step 3: Select the Equivalent Device

	4. HDL Code Compatibility
	4.1. Introduction
	4.2. Library Declaration and Include Files
	4.2.1. VHDL
	4.2.2. Verilog

	4.3. Unrecognized Primitive Modules
	4.4. Unrecognized IP Modules
	4.5. Unrecognized Architecture Primitive
	4.6. I/O Buffer Primitives
	4.6.1. Design Conversion Recommendations

	4.7. HDL Attributes
	4.7.1. Introduction
	4.7.2. Common Synthesis Attributes Conversion Table
	4.7.3. Common Architecture Attributes Conversion Table
	4.7.4. Physical Placement Attributes
	4.7.5. Attributes Conversion Examples

	5. Software Tools Comparison
	5.1. Introduction
	5.2. Design Flow Using GUI
	5.2.1. Introduction
	5.2.2. FPGA Design Flow

	5.3. Design Flow Using TCL

	6. Tools Constraint Compatibility
	6.1. Introduction
	6.2. Converting SDC File
	6.3. Converting UCF File
	6.4. Converting XDC File
	6.5. Timing Constraint
	6.5.1. Timing Constraints Conversion Table
	6.5.2. Timing Constraint Best Practice

	6.6. Physical Constraint
	6.6.1. Definition
	6.6.2. Physical Constraint Files
	6.6.3. Physical Constraints Conversion

	6.7. XDC File Conversion Example

	7. Design Simulation
	7.1. Supported Simulation Tools and Process

	8. Device Programming
	8.1. Programming Mode Options
	8.2. Bitstream Generation
	8.2.1. Bitstream Strategy Settings
	8.2.2. Device Constraint Options (sysConfig)
	8.2.3. Programmer and Programmer File Utility

	References
	Technical Support Assistance
	Revision History
	Revision 1.1, September 2024
	Revision 1.0, March 2024

