=aaLATTICE

MMMMMMMMMMMMMM

High Reliability & Functional
Safety for FPGAs with
Synplify & Radiant

Phil Simpson, Lattice Semiconductor & Khalid Khan, Synopsys

A Lattice Semiconductor White Paper.

March 2024

http://www.latticesemi.com
http://www.latticesemi.com/contact
http://www.latticesemi.com/buy

27110

-]
>
vy
-
m
O
=
O
O
<
-]
m
<
-]
(7))

High Reliability & Functional Safety for FPGAs with Synplify & Radiant
WP0036

3/110

Background

Advances in design and manufacturing technology allow increased factory automation, where tasks
are automatically performed by sophisticated equipment such as industrial robots. Manufacturing
processes require fail-safe mechanisms to prevent human injury or costly downtime. With increased
sophistication and automation of the manufacturing processes, there is an increasing need for error
detection and recovery methods.

In addition to industrial applications, the rise of autonomous driving and driver assisted vehicles is
creating a demand for functional safety design automation. For example, Advanced Driver Assistance
Systems (ADAS) include features such as adaptive cruise control, automatic braking, and lane
departure warning systems. These features require safe operation of vehicles in the event of random
hardware or system failures. These types of failures require safety features that can detect errors and
provide warnings to the driver, or automatically correct and maintain the vehicle in a safe operating
state.

Lattice FPGA Devices

The Lattice Nexus™ FPGA development platform offers a new class of small density SRAM-based devices
which provides a true differentiator for FPGAs destined for use in state-of-the-art systems performing
mission-critical and safety-critical applications for the Commercial, Industrial, Communications, Defense,
Aerospace, and automotive applications.

The Lattice Nexus platform based small FPGA devices deliver performance/power optimization using
Programmable back bias enabled by insulated gate of FD-SOI technology. In addition, the devices have
added capabilities that are necessary for high reliability designs. Critical area size reduction in Nexus
provides 100X SER (Soft Error Rate) reliability improvement over competing FPGA devices. The Nexus
based FPGAs include dedicated intellectual property (IP) blocks that automatically perform ECC (Error
Correcting Code)-based memory scrubbing as a background process. Nexus FPGAs also have an
SED/SEC block built into the configuration memory to facilitate rapid detection and correction of errors
on a frame-by-frame basis without the need for external circuitry.

The Lattice Avant™ 16nm FinFET platform is the foundation for industry leading low power and small
form factor mid-range SRAM-based FPGA families. The high-end features of the Avant platform make
it suitable for networking controllers, PLCs, Edge computers, machine vision, and Industrial robotics
applications in the Industrial market. The DSP performance makes it suitable for Automotive networking
and software defined radio applications, as well as general wireless communications applications.

The Avant mid-range FPGA devices are built upon 16nm low power FinFET technology with the use of
low leakage transistors to balance power and performance. The family includes leading edge reliability
features with updated fast built-in Soft Error Detection, built-in Soft Error Correction and ECC on
memory blocks and external memory interfaces. Avant devices have dedicated logic to perform Cycle
Redundancy Code (CRC) checks for the entire bitstream, which runs in parallel along with ECC. There
are two layers of SED/SEC, ECC logic to detect and correct single bit error per data frame and detect
two-bit errors and CRC logic to detect multi-bit errors in the device.

FPGA Design Tools

The Radiant™ and Synopsys Synplify software provide a full range of features to enable successful
design of Lattice FPGA devices in Safety Critical Applications.

High Reliability & Functional Safety for FPGAs with Synplify & Radiant
WP0036

4.1

The Radiant 2023.2 software provides support for the Nexus and Avant platforms and adds the macro-
based safety critical design flow capability.

The Synopsys Synplify 2023.09 release is the first release of Synplify synthesis tool to provide support
for the Lattice Nexus and Avant platforms. This release provides Advanced Triple Module Redundancy
(TMR), Safe & Fault Tolerant Finite State Machine (FSM) support, memory correction and advanced
debug capabilities such as Error monitoring, fault simulation and hardware fault injection for the Nexus,
Avant, and mature Lattice platforms.

High Reliability Design Techniques
Macro Based Safety Critical Design Flow

m What is a Safety Critical Design Flow
The goal of the safety critical design flow is to ensure that the design implementation of identified
‘Secure’ design block or blocks do not change and that the content of the ‘Secure’ design blocks
can only be accessed by identified signals from within the design.

CLK
RST Secure
—

Interface
Logic

Figure 1:
Safety Critical Design

In the Safety critical Design flow, the ‘secure’ area only contains logic from the secure design block.
It prohibits logic or routing from using this region with the exception of user approved signals, i.e.
user defined interfaces to other blocks. Once the secure design block is complete (functionally
correct and timing closed) the logic in the secure region can be locked at both the placement and
routing level. This is achieved in the Radiant software using the macro design flow.

High Reliability & Functional Safety for FPGAs with Synplify & Radiant
WP0036

5/ 10

Setup Project in » Target Lattice FPGA
Synplify-Elite « Set Implementation Options

» Compile Design to establish design hierarchy

Define Macro in « Identify Secure Block as a Macro
e BN - ldc_create_macro -name <macro_name> {-use_pio <ports_list>} <instance
Synplify-Elite S

* Generates VM Netlist

Synthesize Design o
* Generates LDC - Macro Constraint File

Cor_npile FrrojeCt * Open Project in Radiant
in Radiant « Compile Project

Create Floorplan * Assign the Physical Area of the Device for the Secure Region
Constraint *ldc_create_region -name <region_name> (—anchor <anchor>|-site <site>) -width
<width> -height <height> [-exclusive] [-routing_exclusive]

Recompile Project
in Radiant

* Close Timing on Secure Region with Placement Constraint

Export Macro * Export Post Plage & Route E)fclusiv_e Macro]
* Creates macro .ipm package including <macro_name>_bb.v file

Figure 2:
Creating a Post P&R Macro for a secure region.

Once satisfied that the design is functionally correct and timing closed, the designer will export

the post-place and route macro for the secure block as an exclusive macro. The exclusive macro
is key to the safety critical design flow. This option prevents the rest of the design from using any
unused resources, such as LUT’s, BRAM, DSPs and routing within the secure region. Only signals
that are connected at the RTL level and control signals such as clocks and resets can feed into the
secure region. The exported macro will be used in all future compilations of the complete design.
The <macro_name>.bbv file is used in place of the RTL design for the secure design block in all
subsequent compiles in Synplify for changes in the rest of the design. Synplify will create a VM
netlist with the macro as a black_box. This ensures that Synplify does not resynthesize the secure
macro and any future compiles in Radiant uses the exported macro with locked place and route.
This guarantees the same place and route on the ‘secure’ region and prohibits the use of resources
in the macro region by other parts of the design, thus ensuring that there are no changes to the
secure design block.

Error Detection & Correction

For certain applications, detection of an error is critical. A standard practice to protect against these
areas is to build redundant circuitry into the design. In many cases, this is achieved by performing
TMR. In applications which have area constraints, a designer may use custom methods to correct
errors. Such methods can include applying global reset to the design and scrubbing configuration
memories on the FPGA. In these cases, duplication of logic susceptible to an error could be
sufficient. A comparator can be built on the output of duplicated logic to detect error and designers
can use an error flag to implement their custom error correction method. The area penalty using
this method is lower compared to full triplication techniques as there are only two copies of the

High Reliability & Functional Safety for FPGAs with Synplify & Radiant
WP0036

6//10

modules instead of three. Synplify provides methods to duplicate modules and add comparator
logic automatically to FPGA designs for state machines, memory, and logic. It also provides ways to
access the comparator output to monitor errors and trigger necessary error mitigation logic.

The Nexus and Avant FPGAs include dedicated IP blocks that automatically perform ECC-based
memory scrubbing as a background process.

Nexus FPGAs have an SED/SEC block built into the configuration memory, in order to facilitate
rapid detection and correction of errors on a frame-by-frame basis without the need for external
circuitry.

The Avant devices have an improved, hardware implemented, SED circuit which can be used to
detect SRAM errors so they can be corrected, either automatically or after notification and consent.
The SED hardware in Lattice Avant devices is part of the Configuration block. The SED hardware
reads data from the FPGAs configuration memory and performs an ECC calculation on every frame
of configuration data. With Automatic operation, once a single error is detected it is corrected, a
notification is generated and SED resumes operation. With Consent operation, once a single error
is detected the SED hardware halts and a fabric notification is generated. Upon consent from the
fabric, the single error is corrected and the SED resumes operation. In all modes, if more than one-
bit error is detected within one frame of configuration data, a fabric error notification is generated,
and the SED continues operation.

Redundancy

One of the commonly used methods for protection is to add redundancy. TMR technique involves
triplicating the logic and using single or multiple majority voter(s) to determine the correct output.

This scheme provides protection if one of the copies of the triplicate logic is affected by an error, the
remaining two copies help determine the correct output. The amount of logic to be triplicated depends
on the type of logic that is being protected, e.g. Triplication of registers uses less area than triplication
of entire blocks of combinational logic.

Distributed TMR

Logic blocks can contain sequential feedback loops. A fault introduced in sequential feedback loops
can retain an error over multiple clock cycles even if the enclosing logic block is subjected to TMR.
So it’s important to add a majority voter at the output of registers which are part of feedback loops.
Distributed TMR, a feature available in Synplify, allows designers to triplicate blocks of logic and add
maijority voters to the output of blocks and in the sequential feedback loops.

High Reliability & Functional Safety for FPGAs with Synplify & Radiant
WP0036

71

A
out out
IN2 —p A Ne— A

A\ v

Distributed TMR with no feedback loops Distributed TMR with feedback loops

A0

ouT

A1

Figure 3:
Distributed TMR

Designs can have multiple interconnected blocks which require protection and by using Synplify, the
designer can have the triplication and voter circuitry added automatically.

Multiple Module TMR

Some applications require extra protection for every path in the design. Synplify provides a method
for this level of protection and can add a majority voter at every register in the triplicated copies of the
block that are subjected to distributed TMR.

Figure 4:
Multi-module TMR

High Reliability & Functional Safety for FPGAs with Synplify & Radiant
WP0036

81/

Block TMR

On the other hand, some users cannot afford the cost of voters at the sequential feedback loops in the
design. In this case, the user can apply distributed TMR with voter logic only at the output of modules.
This is referred to as block TMR.

D>

<
v

TV

Figure 5:
Block TMR

With block TMR, if an error affects a register in feedback loop, it can cause accumulation resulting
in a non-functional design. The designer can incorporate ways to detect and mitigate such errors by
resetting the block into the design.

State Machines

Protecting FSM registers is critical for reliable design execution and allowing the state machine to
operate in its legal states. A soft error can create an illegal state within an FSM which could cause
deadlock and therefore the design to fail. Although the techniques described above such as distributed
TMR or local TMR can help FSMs as well, it increases FPGA utilization and can impact design
performance.

To address these types of issues, Synplify provides integrated methods to detect errors on a state
machine register and reset to a valid state.

High Reliability & Functional Safety for FPGAs with Synplify & Radiant
WP0036

9/ 10

always @(state)
begin
case (state)
zero:
out = 4’b0000;
one:
out = 4’b0001;
two:
out = 4'b0010;
default:
out = 4’b0000;
endcase
end
always @(posedge clk or posedge reset)
begin
if (reset)
state = zero;
else
case (state)
zero:
state = one;
one:
if (in)
state = zero;
else
state = two;
two:
state = zero;
endcase

Figure 6:
Example State Machine

Safe encoding: With safe encoding, if an FSM gets into an illegal state because of SEU, a reset signal
is applied to the state machine to bring it into a reset state. The reset signal can be asynchronous or
synchronous. Synplify supports syn_encoding = safe as an attribute on FSM. In the example in figure X,
the FSM has 4 states (s0, s1, s2 and s3). If the FSM goes into an illegal state because of an error, logic
is added to reset the state machine to state s0.

Safe state machine: If an FSM gets into illegal state, it goes into the default state described in the RTL
in the following clock cycle. In the state machine shown above, the default state is s3 and the designer
needs to implement the necessary logic to mitigate the effect of the errors.

Hamming-3 encoding: This is used to encode the state of an FSM and allow detection and correction
of a one-bit error. If one of the state registers changes due to an error, hamming-3 encoding identifies
the correct state. An option to detect bit errors in FSM and correct it in the following clock cycle is
supported.

RAMs

The Nexus and Avant platforms support Error Code Correction logic for Block RAMs (EBR). In the case
of Avant, the EBR has a built in ECC engine. The ECC engine supports a write data width of 64 bits,
and it can be cascaded for larger data widths such as x128, ECC read may be performed in x1, x2, x4,
x8, x16, x32, or x64 modes. The ECC parity generator creates and stores parity data for each 64-bit
word written. When a read operation is performed, it compares the data with its associated parity data
and reports back if any Single Event Upset (SEU) event has changed the data. Any single-bit data
change is automatically corrected at the data output. In addition, two dedicated error flags indicate if

a single-bit or two-bit error has occurred. The use of the ECC is an option that can be enabled in the
BRAM via the IP. An example is shown in figure 7.

High Reliability & Functional Safety for FPGAs with Synplify & Radiant
WP0036

Diagram myebr

myebr

= rd_addr_i[9:0]

Configure myebr:

Property Value

Write Port : Address Depth [2 - 65536]

1024

Write Port : Data Width [1-256]

64

Read Port : Address Depth [2 - 65536]

1024

Read Port : Data Width [1-256)

64

] rd—dk—en—l Total Memory bits 65536
—rd_clk_i I
—rd_en_i d
—|rst | one_err_ et_o Read Port : Enable Output ClockEn 1
- rd_d ata_0[63 :0] Reset Assertion sync
- Wr_addr_l[g:o] Enable Byte Enable [
i two_err_det_o Enable ECC =
— wr_clk_en_i
— Wl'_Cl k_l ‘Memory itializati Initialize to all 0s
f M Fil
={wr_data_i[63:0] ey o
Memory File Format hex
— Wl’_en_i Allow update of initialization data =

ram_dp

| No DRC issues are found.

Figure 7:
Lattice Dual-Port Block RAM IP

Synplify TMR of Block RAM provides correction for multiple bit errors but requires three times more
Block RAM resources. Since FPGAs have limited number of Block RAMs, this may not be feasible
approach for all applications.

To use TMR for Block RAM, a user can enclose RAM in a module and apply Block or Distributed TMR
or specify local TMR for the Block RAM.

Conclusion

A successful and fast implementation of a highly reliable FPGA design requires the right combination of:
1. FPGA silicon features applicable to high reliability applications.

2. Safety Critical Design Flow.

3. Automated high-reliability design flow techniques.

The Lattice Radiant 2023.2 software release together with Synopsys Synplify software provides the full
range of features to enable successful high reliability design implementation in Lattice Nexus and Avant
FPGA devices.

http://www.latticesemi.com
http://www.latticesemi.com/contact
http://www.latticesemi.com/buy

