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Acronym Definition

AHB-L Advanced High-performance Bus-Lite
APB Advanced Peripheral Bus

AXI Advanced eXtensible Interface

BSP Board Support Package

CLINT Core Local Interrupter

DMA Direct Memory Access

EBR Embedded Block RAM

ELF Executable and Linkable Format
GDB GNU Debugger

GPIO General Purpose Input/Output

12C Inter-Integrated Circuit

13C Improved Inter-Integrated Circuit
ISA Instruction Set Architecture
OpenOCD Open On-Chip Debugger.

PLIC Platform Level Interrupt Controller
RAM Random Access Memory

RISC-V Reduced Instruction Set Computer-V
ROM Read Only Memory

RTOS Real-time Operating System

SDK Software Development Kit

SoC System-on-Chip

SPI Serial Peripheral Interface

SRAM Static Random Access Memory.

TCM Tightly Coupled Memory

UART Universal Asynchronous Receiver/Transmitter.
usB Universal Serial Bus
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1. Introduction

1.1. Overview

Lattice embedded system solutions offer RISC-V processors Intellectual Property (IP), memory IP, communication IP (UART,
12C/13C, SPI, and others), and design software such as Lattice Propel™ Builder, Lattice Propel Software Development Kit
(SDK), Lattice Radiant™ software, and Lattice Diamond™ software.

The Lattice Propel Builder is a graphical design tool used to create system that comprises of various modules. These
modaules are IP that the Lattice Propel Builder offers or custom IP you created. Module can be easily instantiated and
connected to other modules in the Lattice Propel Builder Schematic window. The Lattice Propel Builder provides address
management for memory-mapped peripherals in the system. Once system building is completed, the Lattice Propel Builder
generates the hardware code in RTL files and system environment XML file for building embedded software project.

The Lattice Propel SDK is a complete set of tools to create, compile, and debug embedded software project for processor
systems. The Lattice Propel SDK generates the Board Support Package (BSP) for the corresponding system created in the
Lattice Propel Builder. The BSP consists of processor start-up code, device drivers, and platform header file that aids
application software development. The Lattice Propel SDK provides debugging tools such as OpenOCD and GNU GDB for
debugging software on device.

The Lattice Radiant software and the Lattice Diamond software offer the synthesis, mapping, place-and-route, and
bitstream generation capabilities. You can create FPGA bitstream using the software for the system created in the Lattice
Propel Builder. FPGA pin assignment and timing constraints are performed in this stage. The software Programmer tool
offers capability to program the bitstream onto FPGA devices.

The following list shows the documentations for above-mentioned software tools. Complete reading the following
documents as a prerequisite to these guidelines:

e A Step-By-Step Approach to Lattice Propel

e Lattice Propel 2023.2 Builder User Guide (FPGA-UG-02196)

e Lattice Propel 2023.2 SDK User Guide (FPGA-UG-02195)

1.2. Purpose

This document provides guidance on designing with Lattice embedded solutions and information regarding various design
options for Lattice RISC-V processors and IP. The document is organized into sections covering the entire design flow:
selecting the RISC-V processor IP, hardware design, software design, and debugging.

1.3. Audience

The intended audience for this document includes embedded system designers and embedded software developers using
Lattice FPGA devices. The pre-requisite of this technical guidelines is the knowledge in digital design, FPGAs, and embedded
systems.
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2. Lattice RISC-V Processors Family

The Lattice Propel supports three versions of the RISC-V CPU: SM, MC, and RX. Table 2.1 shows an overview of the models
and the basic use cases.

Table 2.1. Lattice RISC-V Use Cases

Model Class Supported Device Family Targeted Software Stack | Typical Application
RX RTOS Capable Lattice Avant™, Lattice Nexus™, e  RTOS (FreeRTOS™) e Higher performance
MachXO5™ e  Bare metal e Network connected

e  External memory support

MC Microcontroller | Lattice Avant, Lattice Nexus, . Bare metal . Mid-performance
MachX03™ (D, L, LF), MachXO2™ | o«  RTOS (third party) e Microcontroller replacement
e  External memory support
SM State Machine Lattice Avant, Lattice Nexus, Bare metal ° Small footprint
MachX03 (D, L, LF), MachX02 e  Simple monitoring and

configuration applications

The RISC-V SM is the “state machine” version and trades performance for reduced area size. This model is for simple
monitoring and control tasks. With small size and area efficient AHB-Lite interconnect, this model is suitable for use in
smaller device families such as MachX02 and MachX03.

The RISC-V MC is the “microcontroller” version. This model balances performance with area. As shown in Table 2.2, the MC
model supports optional features for performance improvement, including the RISC-V ‘M’ extension (hardware-based
integer multiply and divide) and instruction and data caches. This model also optionally supports the RISC-V ‘C’ extension
that uses 16-bit compressed instructions to save code space. The MC model uses AHB-Lite as the native interconnect and is
suitable for use in smaller device families such as MachX02 and MachX03.

The RISC-V RX is the highest performing model in the Lattice RISC-V family. This model is “RTOS” capable as it adds
Supervisor and User modes from the Privileged Architecture portion of the RISC-V ISA. The RX model uses AXI-4 as the
native interconnect for higher performance and more deterministic timing. This model also adds a Platform Level Interrupt
Controller (PLIC) and a Core Local Interrupter (CLINT) for managing external interrupts and timers, respectively. A watchdog
timer and optional UART are integrated into the RX IP. This IP also supports the custom instructions via the Composable
Custom Extension, an emerging industry standard.

Table 2.2. Features Comparison of Lattice RISC-V Variants

Model | Arch Extensions System | Interrupt | System | Cache Memory | Watchdog | Privilege Custom
Bus Controller | Timer Type(s) Level(s) Instructions
RX RV32l | MC AXI-4 PLIC CLINT 2-Way Set | TCM Integrated | Machine Yes
F (optional) Associative | SysMem Supervisor,
RR User
MC RV32l | M (optional) | AHBL PIC Memory | Optional SysMem | — Machine No
C (optional) Mapped | 2-Way Set
mtime Associative
RR
SM RV32l | — AHBL PIC Memory | No Cache SysMem | — Machine No
Mapped
mtime

Refer to the respective IP User Guide for the latest resource and performance data for each RISC-V CPU.
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3. RISC-V Embedded Hardware Design Guidelines

This section describes the options when designing RISC-V embedded hardware systems using the Lattice Propel Builder.

3.1. RISC-V Processor Reset and Exception Vector

RISC-V processor executes the memory address set by reset vector after released from reset. Table 3.1 shows the
supported reset vectors for RISC-V SM, MC, and RX processors. Assign the memory that contains initial software to address
matching the reset vector shown in the table.

Table 3.1. RISC-V Processor Reset Vector

RISC-V Processor Variant Supported Reset Vector®
SM 0x0000_0000
MC 0x0000_0000
RX 0x0000_0000

Note:
1. Based on Lattice Propel version 2023.2. Configurable reset vector is not supported.

Exception vector is the memory address that contains the exception handler code. The Machine Trap-Vector Base-Address
(mtvec) register in the RISC-V processor holds the exception vector. The vector is set by the RISC-V software driver during
runtime. The driver is generated as part of the Board Support Package (BSP). Refer to the Interrupts Section for more
information.

3.2. RISC-V Processor Memory Selection

Memory device is used to store RISC-V processor instructions and data of a software program. The types of memory devices
are described in Table 3.2.

Table 3.2. Types of Memory Device

Types of Memory Device Example Description

Only retains the data while power is supplied to it. Data
is lost when the memory power supply is turned off.

e  Use as temporary storage and has faster access speed.
Read Only Memory (ROM) .
e  Flash .

Cache .
e  Random Access Memory (RAM)

Volatile memory .

Retains data even when power is turned off.

Use for storing contents permanently and usually has
slower access speed compared to volatile memory.

Non-volatile memory .

3.2.1. Cache

Cache memory is a high-speed memory that integrates directly into the RISC-V processor. Cache acts as a temporary
storage that processor can retrieve data faster. Table 3.3 shows the cache capabilities of the Lattice RISC-V processors.

Table 3.3. RISC-V Processor Caches

RISC-V Processor Instruction Cache Data Cache Option to Cache Range
Variant Size Size Disable Cache
SM — — — —
MC 4 Kbytes 4 Kbytes Yes User Configurable
RX 4 Kbytes 4 Kbytes No Instruction: 0x00000000 to OxFFFFFFFF
Data: 0x00000000 to OxOFFFFFFF!
Note:

1. Based on Lattice Propel version 2023.2.
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Enabling the processor caches consumes FPGA memory resources for better CPU performance. It is recommended to
enable cache for design with Lattice Avant, MachX05-NX, CrossLink-NX, CertusPro-NX, and Certus-NX devices.

3.2.2. System Memory

System memory provides easy use of Lattice FPGA memory resources (EBR, Distributed RAM, or Large RAM) as an IP
available in Lattice Propel. System memory does not require connections to external devices from FPGA and can store
RISC-V software and data using FPGA resources.

Table 3.4 shows the system memory IP features and use cases.

Table 3.4. System Memory IP Features and Use Cases

Feature Use Case

AHB-Lite interface Use as memory for RISC-V SM and MC

AXI4 interface Use as memory for RISC-V RX

Configurable as single or dual port memory With dual port memory, the RISC-V Instruction port can be connected directly to

one of the memory ports. The other memory port is for RISC-V data port.

Memory initialization enable Memory is initialized with RISC-V software during FPGA configuration process.
Processor executes instructions stored in memory when out of reset. Typically,
use the bootloader software in this scenario.

3.2.3. Tightly Coupled Memory (TCM)

Tightly Coupled Memory provides the processor low-latency predictable access for critical instruction and data. Lattice
Propel provides TCM IP that can be used with RISC-V RX processor. The TCM IP supports Local Bus Interface which is
connected directly to the RISC-V RX Local Instruction and Data ports. This direct connection provides the RISC-V RX low
latency and predictable access to the memory. TCM uses FPGA memory resources like the system memory.

When using TCM, the first 128 Kbytes of processor address range (0x00000000 to 0xO001FFFF) is reserved for it. If system
memory (or other types of memory) is used for the processor non-TCM instruction port (for example the AXI port), this
memory must start from address 0x00020000.

3.2.4. External SDRAM Memory

External SDRAM memory can be used in applications that require larger memory size. Large program and data can be
stored and accessed on the external memory with increased latency. SDRAM memory requires a controller for refreshing
the memory and handling memory accesses (such as switching between memory banks, rows, and columns).

Lattice Propel offers SDRAM memory controllers for CertusPro-NX and Avant devices. Both memory controllers support
LPDDR4 SDRAM. The memory controller supports AXI4 interface for interfacing to the processor.

Table 3.5 shows the memory controller parameters that you can customize for RISC-V applications.

Table 3.5. LPDDR4 SDRAM Memory Controller Parameters

Parameter Description

DDR Command Frequency (MHz) Change the frequency to the desired value that matches your design. The maximum
frequency is 800 MHz for Lattice Avant devices and 533 MHz for CertusPro-NX devices.

DDR Density Change the density (in terms of Gb) per channel to match the SDRAM chip. This change
affects the address bus width of the controller AX14 interface.

DDR Bus Width Change the bus width for DDR data bus to match the DRAM chip. This change affects the
DQ, DQS, and DMI bus width, and requires update to FPGA pin assignments.

Data Width on Local Data Bus Change the data bus width (range from 32-bit to 256-bit) of the AXI4 interface. RISC-V
processor has 32-bit data bus. To avoid width adaptation, set this parameter to match the
processor width.
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3.2.5. Flash Memory

Flash memory is a non-volatile memory that can store permanent data. Most embedded applications require flash memory
to store the processor program (such as Bootloader) and data (such as media file and configuration file). Flash memory
accesses are different from volatile memory (such as system memory or SDRAM). Writing data to the flash memory
requires erasing the corresponding page before the write occurs. Flash memory controller is required for RISC-V processors
to access the memory.

Lattice Propel offers SPI Flash Controller IP to provide interface from RISC-V processor to a SPI based flash device. This IP
supports single-bit serial data interface to the flash device. The IP provides AHB-Lite based interface for data access and APB
interface for control (registers) access. When connecting the RISC-V RX processor to the AHB-Lite port, a converter bridge is
required.

The input delay of the MISO signal (read data from SPI Flash) requires proper timing constrains for the controller to capture
the correct data. Use the timing constraint set_input_delay to define the delay contributed by the flash device (refer to
flash vendor datasheet) and board traces. Refer to the following examples of input delay constraints for MISO:

e set_input_delay -clock [get_clocks spi_flashQ_inst_spi_clk] -max 8 [get_ports miso_i]

e set_input_delay -clock [get_clocks spi_flashO_inst_spi_clk] -min 7 [get_ports miso_i]

3.3. Interconnects and Bridges

Interconnects connect multiple managers to multiple subordinates in a system. Examples of managers include RISC-V
instruction port, RISC-V data ports, and DMA. Subordinates include peripherals such as UART, SPI, and I12C controllers.
Interconnect provides several functions to the system including the following:

e Decode the managers transaction address and route to the correct subordinate.

e Arbitrate concurrent transactions from multiple managers to a specific subordinate.

e Convert different data widths between managers and subordinates.

Lattice Propel provides Interconnect solutions that are in compliance with Arm Advanced Microcontroller Bus Architecture
(AMBA) including AXI-4, AXI-4 Lite, AHB-Lite, and APB protocols. Select the appropriate Interconnect IP for your project. The
following sub-sections describe each Interconnect solution in detail.

Bridges connect interfaces of different AMBA protocols, for example connecting an AXI-4 manager to an APB subordinate.
The Bridges IP ease system building where you can use the manager or subordinate IP without changing the AMBA
interface.

3.3.1. Using AXI4 Interconnect IP

The AXI4 Interconnect IP connects multiple AXI4 based managers to AXI4 subordinates. This interconnect is useful for
Lattice RISC-V RX processor-based system as both the instruction and data ports are AXI4 interfaces. The AXI4 Interconnect
supports both AXI4 and AXI4-Lite protocols. The protocol type can be configured for individual manager and subordinate.

The AXI4 Interconnect IP is fully parameterizable for your application. Figure 3.1, Figure 3.2, and Figure 3.3 show the IP
Wizard for the configurable parameters. The subsequent subsections discuss the guideline when configuring the AXI4
Interconnect IP.

Configure IP

General External Manager Settings External Subordinate Settings
Property Value
~ General

Total External AXl4 Managers [1 - 32] 2
Total External AX|4 Subordinates [1-32] 2

A User width 4

Figure 3.1. AXI4 Interconnect IP Parameters — General Tab
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Configure IP
General External Manager Settings External Subordinate Settings
Property Value

INFO: Ext Manager Access type list

External Manager AXI 1D width 1

AXl Manager Max Address Width(bits) 32
AXl Manager Max Data Width(bits) 32
AXl Manager Max no.of ID supports 16

[2'd2,2'd2}

External Manager AX| Access Type 0

WR

External Manager AX| Access Type 1

IMNFO: Ext Manager Protocol type list

WR

{1'd0,1"d0}

External Manager AX| protocol 0

A4

External Manager AX| protocol 1

Axl4

IMFO: Ext Manager actual address list

INFQ: Ext Manager CDC Enable list {1'd0,1'd0}
External Manager CDC Enable 0 |
External Manager CDC Enable 1 O

{7'd32,7'd32}

External Manager Address width 0

32

External Manager Address width 1

IMNFO: Ext Manager actual Data width list

32

{11'd32,11'd32

External Manager Data width 0

32

External Manager Data width 1

IMFO: Ext Manager ID supports list

32

{7'd16,7'd16}

External Manager Mo.of IDs 0

16

External Manager Mo.of IDs 1

16

Figure 3.2. AXI4 Interconnect IP Parameters — External Manager Settings Tab
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Configure IP
1 General External Manager Settings External Subordinate Settings
Property Value

~ General
External Subordinate AX| 1D width 2
Al Subordinate Max Address Width(bits) 32
Al Subordinate Max Data Width(bits) 32
AXl Subordinate Max Fragment count ]

~ External Subordinate Access Type Settings

External Subordinate axi Access Type 0 WR
External Subordinate axi Access Type 1 WR
~ External Subordinate Protocol Settings

External Subordinate Protocol type 0 AXl4
External Subordinate Protocol type 1 AXl4
~ External Subordinate CDC Enable Settings

External Subordinate CDC Enable 0
External Subordinate CDC Enable 1
~ External Subordinate Address Settings

External S5ubordinate Address width 0 32
External Subordinate Address width 1 32
~ External Subordinate Data Settings

External Subordinate Data width 0 32
External Subordinate Data width 1 32

Figure 3.3. AXI4 Interconnect IP Parameters — External Subordinate Settings Tab

3.3.1.1. Total External Managers and Subordinates
The AXI4 Interconnect is configured based on the total number of external managers and subordinates in the system.

The Total External AXI4 Managers parameter is set to match with total Managers in the system. For example, RISC-V RX has
2 managers (instruction and data). If other Managers (such as DMA) is connected to the AXI4 Interconnect, increase this
number accordingly.

The Total External AXI4 Subordinates parameter is set to match with total Subordinates in the system that need to connect
with the Managers.

Total managers and total subordinates cannot have the values of 1 because one manager and one subordinate can be
connected directly without an interconnect.

3.3.1.2. AXI Address and Data

The AXI4 Interconnect supports configurable address and data widths to match with all external managers and the
connected subordinates. Set the maximum allowable address and data width on both the manager and subordinate using
the following parameters:

e AXI Manager Max Address Width

e AXI Manager Max Data Width

e  AXI Subordinate Max Address Width

e  AXI Subordinate Max Data width

For each external manager interface, set the actual External Manager Address Width and Data Width parameters to match
with the manager properties. Similar approach applies when setting the External Subordinate Address Width and Data
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Width parameters. For example, the RISC-V RX processor address width is 32 bit and data width is 32 bit. The width value
should not exceed the values set in the maximum allowable parameters.

When the manager and subordinate data widths are not equal, the AXI4 Interconnect inserts width converter to handle the
differences. For example, when connecting the RISC-V RX processor (data width is 32 bit) to LPDDR4 memory controller
subordinate (data width is 256 bit), the interconnect applies width conversion. Note that width converter increases the
logic utilization and may impact the timing performance of the achievable Fmax. For optimizing the interconnect usage,
configure the managers and subordinates to the same width when possible.

3.3.1.3. AXI USER

AXI User signal is for user-defined purposes. The AXI4 Interconnect IP supports configurable AXI User Width parameter that
applies to all manager and subordinate interfaces in the IP. Set the AXI User signal (AXUSER, xUSER, and BUSER) width to
match the application.

For AXI4 manager to AXI4-Lite subordinate, the AXI4 Interconnect IP ignores the AXI User signals when routing the
transactions.

For AX14 manager to AXI4 subordinate, the AXI4 Interconnect IP passes through the AXI User signals without changing the
signals.

3.3.1.4.AXIID

The AXI ID signals are used for transaction identification and ordering. The AXI4 Interconnect supports configurable AXI ID
Width for external managers and subordinates. The External Manager AXI ID Width and External Subordinate AXI ID
Width parameters set the ID widths to match the following equation:
Subordinate ID width > Manager ID width + log2 (number of managers)
For example, on system with RISC-V RX processor where RISC- RX manager ID width = 1 and number of managers = 2, the
subordinate ID width is set to 2 using the equation as follows:
Subordinate ID width = Manager ID width + log2 (number of managers)
=1 + log2 (2)
=2
The AXI Interconnect external subordinate ID width must set to match with the actual subordinate. For example, if the

Interconnect ID width is 2, the subordinate on system memory IP must match. If the subordinate ID width does not match,
the extra bits on ID signal are left undriven and may lead to unpredictable behavior.

The AXI Manager Max no of ID Supports parameter sets maximum allowable number of ID for external managers arriving
at the Interconnect. The External Manager No of ID parameter is set for each manager interface to change the interconnect
reordering depth for transactions ID tracking. The value set for this parameter should not be larger than the maximum
allowable number of ID parameter.

3.3.1.5. Clock Domain Crossing

The AXI4 Interconnect operates at single clock domain which is driven by the axi_aclk_i clock input signal. For system with
single clock domain, the axi_aclk_i is connected to the same clock as with the rest of the system.

However, some external managers or subordinates operate at different clock than the axi_aclk_i. The AXI4 Interconnect
supports clock domain crossing that can be enabled on individual manager or subordinate interface. The External Manager
CDC Enable and External Subordinate CDC Enable parameters is enabled according to the system clock crossing setup.

Figure 3.4 shows RISC-V RX, AXI4 Interconnect, and Memory operate in CLK A domain while DMA operates in CLK B domain.
DMA is connected to the AXI Interconnect where the DMA accesses to the memory that operates in CLK A domain.
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AXI4 Interconnect

> RISC-VRX  |-comoooo » AXI_S00
.
CLK A P axi_aclk_i
___________ » Memory
> DMA = femmmee—o »| AXI_S01
P axi_S01_aclk_i

CLK B

Figure 3.4. Example System with Different Clock Domains

DMA is connected to AXI_S01 port of the AXI4 Interconnect. To turn on clock domain crossing for this port, enable the
External Manager CDC Enable 1 parameter. Additional clock and reset signals listed in Table 3.6 are exported when the CDC
feature is enabled.

Table 3.6. AXI4 Interconnect CDC Signals

CDC Signal Description

axi_S01_aclk_i Clock input for AXI_S01 port. Connect this to the clock that external manager uses (CLK B).

axi_S01_aclken_i Clock enable input (active low) for AXI_S01 port. Connect to the clock source enable signal.
For example, if the clock is from PLL, connect the PLL Lock output signal to this signal.

axi_S01_aresetn_i Reset input (active low) for AXI_SO1 port. This reset signal is de-asserted synchronously to
axi_S01_aclk_i.

3.3.2. Using AHB-Lite Interconnect IP

The AHB-Lite Interconnect IP connects multiple AHB-Lite based managers to AHB-Lite subordinates. This Interconnect is
useful for Lattice RISC-V MC and RISC-V SM processor-based systems as both the instruction and data ports are AHB-Lite
interfaces.

The AHB-Lite Interconnect IP is fully parameterizable for your applications. Figure 3.5 shows the IP Wizard with the
configurable parameters. The subsequent subsections discuss the guideline when configuring the AXI4-Lite Interconnect IP.
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Configure IP
General Main Settings Master Priority Settings Max Burst Size Settings
Property Value
- General
Total AHB-Lite Masters [1 - 32] i2
Total AHB-Lite Slaves [1- 32] 2
Master Address Width(bits) 32
Data Bus Width(bits) 32

~ Master 0 Connection Setting
Master 0 Slave 0 Connect Enable
Master 0 Slave 1 Connect Enable
~ Master 1 Connection Setting

Master 1 Slave 0 Connect Enable

<<} [<f<]

Master 1 Slave 1 Connect Enable

Figure 3.5. AHB-Lite Interconnect IP Parameters — General Tab

3.3.2.1. General Settings

The Total AHB-Lite Managers and Total AHB-Lite Subordinates parameters set the numbers of managers/subordinates that
are connected to the interconnect. The RISC-V MC or SM processor has 2 AHB-Lite manager ports (Instruction and Data).
Only the Data port requires connection to multiple subordinates (peripherals). The Instruction port is usually connected
directly to memory that stores the program. When the Instruction port require access to a shared memory, increase the
value for Total AHB-Lite Managers and connect the Instruction port to the AHB-Lite interconnect that grants access to the
shared memory.

When the AHB-Lite Interconnect is configured with multiple managers and subordinates, all connections between managers
and subordinates are enabled by default. In the example showed in Figure 3.5, 2 managers and 2 subordinates results in 4
interconnection logics. If one of the managers does not require access to a specific subordinate, the Connect Enable
checkbox can be disabled. For example, if Manager 0 does not access Subordinate 1, uncheck Manager 0 Subordinate 1
Connect Enable to reduce the logic generated for the Interconnect and improve overall Fmax.

3.3.2.2. Main Settings

The Main Settings tab lists the default base address and range for each subordinate that is enabled on the AHB-Lite
Interconnect. The actual addresses are not set via parameters in this setting tab.

When creating RISC-V system with the Lattice Propel Builder, each subordinate base address and range are set up in the
Address tab of the Lattice Propel Builder GUI. This address information is then propagated to the AHB-Lite Interconnect IP
during system generation in the Lattice Propel Builder. The generated system (RTL code) parameterizes the AHB-Lite
Interconnect IP with the addresses from the Lattice Propel GUI during IP instantiation.

3.3.2.3. Master Priority Settings

The Master Priority Settings tab allows selection of the AHB-Lite subordinates arbitration scheme. Select either Round
Robin or Fixed Priority scheme to match the application requirements.

3.3.2.4. Max Burst Size Settings

The Max Burst Size Settings tab allows selection of the maximum burst size for each AHB-Lite subordinates in the
interconnect. If the manager performs burst transaction on one subordinate and the transaction exceeds the said maximum
burst size setting, the interconnect sends an error response to the manager. This prevents a manager from hogging the bus
by generating very long bursts.
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3.3.3. Using APB Interconnect IP

The APB interface is commonly used for low bandwidth bus interface such as peripherals access. In a typical embedded
system, the processor interfaces to multiple peripherals such as 12C controller, UART, and GPIO. These peripherals do not
require high performance bus and typically uses the APB interface.

RISC-V RX has AXl4 interface and RISC-V SM or MC has AHB-Lite interface. The processors use conversion bridges such as
AXIl4-to-APB bridge to connect the processor interface to the APB-based peripherals. These bridges operate on per interface
basis where a bridge is required for each peripheral. APB Interconnect allows a single manager to connect to multiple
subordinates, eliminating the need for individual bridge.

Figure 3.6 shows the RISC-V RX data port accessing to GPIO, SPI flash controller, and LPDDR4 memory controller. All these

peripherals have APB based subordinate interface. A single AXI-to-APB bridge converts the AXI interface from the AXI4
Interconnect to APB interface. Subsequently, the APB Interconnect connects the interface to multiple peripherals.

Top Module
rstn_i System
Memory
ddr_pll_refclk_i
—¥ L
-tO-, gpio_lo
AXI-to-APB APB | | Ghio )
Bridge Interconnect
[ —
Flash I/F
RISC-V RX CPU AXI4 Interconnect S (AES >
Controller
AXI-to-AHB
JUARTVE o — Lite Bridge
- | UART
~| LPDDR4 | | pppRaiF
Memory « »
Controller

=== Control Path
Data Path

Figure 3.6. System with APB Interconnect for Peripherals Access

3.3.4. Using Bridges IP

Bridges connect different types of AMBA interfaces in the Lattice Propel system. The following bridges are available in the
Lattice Propel Builder:

e  AXl4-to-AHB-Lite bridge

e  AXIl4-to-APB bridge

e  AHB-Lite-to-APB bridge

3.3.4.1. AXI4-to-AHB-Lite Bridge

This bridge connects RISC-V RX AXI4 interface to any AHB-Lite subordinate interface. As the RISC-V processor has 32-bit data
width, the AXI_AHB Data Bus Width parameter is set to 32.

The AXI ID Width parameter is set to the value that matches the upstream manager. For example, if the upstream manager
is an AX14 Interconnect with ID Width of 2, the bridge value is set to 2.

The AXI User Width parameter defines the AXI USER signal width and is set to a value that matches the upstream manager.

The AXI4-to-AHB-Lite bridge does not support clock domain crossing where the AX14 and AHB-Lite interfaces operate at
different clock domains. However, if AXI4 Interconnect is used as the upstream, you can enable clock domain crossing in the
AXI14 Interconnect. Refer to the Using AXI4 Interconnect IP section for details.

3.3.4.2. AXl4-to-APB Bridge

This bridge connects RISC-V RX AXI4 interface to any APB subordinate interface. As the RISC-V processor has 32-bit data
width, the AXI_APB Data Bus Width parameter is set to 32.
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Application Note

The AXI ID Width parameter is set to the value that matches the upstream manager. For example, if the upstream manager
is an AX14 Interconnect with ID Width of 2, the bridge value is set to 2.

The AXI User Width parameter defines the AXI USER signal width and is set to a value that matches the upstream manager.

The AXI4-to-APB bridge does not support clock domain crossing where the AXI4 and APB interfaces operate at different
clock domains. However, if AXI14 Interconnect is used as the upstream, you can enable clock domain crossing in the AXI4
Interconnect. Refer to the Using AXI4 Interconnect IP section for details.

3.3.4.3. AHB-Lite-to-APB Bridge

This bridge connects RISC-V SM or MC AHB-Lite interface to any APB subordinate interface. Configure the bridge Address
Width and Data Bus Width parameters to 32-bit when interfacing with RISC-V processors.

The bridge supports a separate APB clock domain from the AHB-Lite clock domain. This allows the slower peripherals to be
decoupled from the system clock domain and may make it easier to reach timing objectives. Check the APB Clock Enable
parameter to enable separate clock and reset signals for APB domain, namely pclk_i and presetn_i.

3.3.5. Using Feedthrough IP

The Feedthrough IP allows you to export the specific AMBA bus out from the Lattice Propel Builder system to the higher-
level module. This is useful when connecting IP that is not available in the Lattice Propel Builder. For example, you can
connect the exported bus to an IP in the Lattice Radiant project. The Lattice Propel Builder offers AHB-Lite Feedthrough and
APB Feedthrough IP that export the AHB-Lite and APB bus respectively.

Figure 3.7 shows the Lattice Propel Builder system with the feedthrough IP. The AHB-Lite feedthrough (ahbl_feed_inst) is
connected from the AHB-Lite Interconnect for the processor to access to external IP. Similarly, the APB feedthrough
(apb_feed_inst) is connected to APB Interconnect located at the top right of Figure 3.7.

apb_feed_inst
[+ > apb_feed_inst_APB_MO_interface
gpio0_inst
ahbl2apb0_inst
EHAHEL S0 . - .
N apb0_inst i
presetn_i
ni  APB_MOE) fE3APE_S00 APE_MO2EE — D et
ck_i apb_presetn_i APE_MOLT . uart)nst
pdk_i apb pdk i APB_MOIED FHAPE_SD
— l —_— mstni INT_MIET]
i s Trxd_o
d_i
sysmem0_inst
cpul_inst | fAHEL_SD
HRIRQ_SIAHEL_MO_INSTREE ERAHEL S1
—]cHIRQ_SO TIMER_IRQ_MOC{Z= ahblo_inst il _pressen i
k_i ) AHEL_M1_DATAEH e ahbl_hck_i
n i Sy'stem _resetn_ i G AHELMoED -
hbl_holk_i AHBL_MOZEE] ahbl_feed_inst
I lII]“*El_BO AHBL_MOE & ahb_feed_inst_AHBL_M0_interface

Figure 3.7. Lattice Propel Builder System with Feedthrough IP

When connecting to the external subordinate, set Export Interface As to Slave in the Bridge Module/IP Block Wizard as
shown in Figure 3.8.
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Configure Component from Module apb_feedthrough Version 1.0.0
Set the following parameters to configure this component.

Diagram aph_feed Configure IP

General

Property
Address Width(bits)
Data Bus Width(bits)
Enable PSLVERR signal
Export Interface as

apb_feed

—‘P8750 APBﬁM}—

apb_feedthrough

-
14 » | No DRC issues are found.

= LATTICE

Value

10
32

Slave

Generate Cancel

Figure 3.8. APB Feedthrough Module/IP Block Wizard

To create a memory-mapped address space for the feedthrough block, click Generate in the Bridge Module/IP Block Wizard
in Figure 3.8. When interface to RISC-V processor, the software code accesses the block via the assigned address. Figure 3.9
shows the address space for the APB feedthrough in the Address tab in the Lattice Propel Builder.

Schematic Address =, Start Page

Cell Base Address Range End Address | Lock

* cpul_inst

~ LocalMemory

cpul_inst/pic_timer_registers 0xFFFFO000

2K OxFFFFOTFF

* mc_template_official/cpul_inst/riscv_ahbl_m_instr_Address_Space(32 address bits: 4G)

sysmem{_inst/AHBL_S0 0x00000000 32K 0x00007FFF [

* mc_template_official/cpul_inst/riscv_ahbl_m_data_Address_Space(32 address bits: 4G)

ahbl_feed_inst/AHBL_S0 0x00008C00 1K 0x00008FFF [
aph_feed_inst/APB_S0 0x00008800 1K 0x00008BFF [
gpiol_inst/APB_SO 0x00008400 1K 0x000087FF [
sysmem0_inst/AHBL_S1 0x00000000 32K 0x00007FFF [
wart0_inst/APB_SO 0x00008000 1K 0x000083FF [

Figure 3.9. Address Map of Feedthrough IP

3.4. Assigning Address Map

The Lattice Propel Builder supports assigning addresses to all memory-mapped peripherals in the embedded system. The
address map is managed via the Address tab in the Lattice Propel Builder. The Auto Assign feature in the Lattice Propel
Builder allows the tool to automatically assign non-overlapping addresses to all peripherals. However, there are situations

where manual address assignments are required.
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Peripherals addresses must not be assigned to the processor cacheable range, so that the processor reads the peripheral
registers value from the actual register value and not from the cache.

For RISC-V RX processor, the cache range is from address 0x0000_0000 to OxOFFF_FFFF, For peripherals that do not need
caching, do not assign the addresses into this address range. Figure 3.10 shows the address map for GPIO and UART
peripherals that are assigned to non-cacheable range of the RISC-V RX processor that starts from address 0x1000_0000.

When the addresses are assigned correctly, check the Lock option to avoid unnecessary changes by you or the Auto Assign
feature.

Schematic Address 4y, Start Page
Cell Base Address Range End Address  Lock
* cpul_inst
b LocalMemory

¥ n_template_4/cpul_inst/risov_m_data_Address_Space(32 address bits: 4G)

s0_apb_gpio_inst/APB_ S0 0x10000000 4K 0x10000FFF  [X
s1_apb_uart inst/APB_S0  0x10001000 4K 0x10001FFF  [3
tem0_inst/LOCAL_BUS_IF SO 0x00000000 64K 0x0000FFFF  [4

¥ n_template_4/cpul_inst/risov_m_instr_Address_Space(32 address bits: 4G)
system0_inst/AX]_S0 0x00200000 4K 0x00200FFF |4
tem0_inst/LOCAL_BUS_IF_S1 0x00000000 64K 0x0000FFFF [

Figure 3.10. Address Map for Peripherals

When ICACHE and DCACHE features are turned on for RISC-V MC processor, the address assignment method must be

applied for peripherals that do not need to be cached. The cacheable range is configured in the RISC-V MC IP Wizard via

DCACHE_RANGE_LOW and DCACHE_RANGE_HIGH parameters.

Note:

1. Based on Lattice Propel 2023.2 and RISC-V RX 2.3.0. Refer to the RISC-V RX CPU IP Core User Guide (FPGA-IPUG-02241)
for more information.
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4. RISC-V Embedded Software Design Guidelines

This section describes the options when designing RISC-V embedded software systems using the Lattice Propel Software
Development Kit (SDK).

4.1. Software Project Support

RISC-V SM, MC, and RX processors support bare metal software applications. The Board Support Package (BSP) provides
drivers for processor startup initialization and accessing the IP in the system. When creating a new Lattice C/C++ Project in
the Lattice Propel SDK, select Hello World Project for bare metal based applications.

The Lattice Propel SDK supports creating FreeRTOS based projects. FreeRTOS is available only when using the RISC-V RX
processor. When creating a new Lattice C/C++ Project in the Lattice Propel SDK, select the FreeRTOS Project. For more
information, refer to the FreeRTOS web page.

4.2. Board Support Package (BSP)

The Board Support Package (BSP) is generated when creating a Lattice C/C++ Project in the Lattice Propel SDK. The BSP
provides the following:

e RISC-V processor start-up code and drivers for interrupt, exception, timer, cache, and watchdog

e Device drivers for IP in the system

e Platform header file that defines memory-mapped addresses, IP parameters, and C Macro

Table 4.1 lists the BSP components and the corresponding file hierarchy in the Lattice Propel SDK project.

Table 4.1. BSP Components and Hierarchy

Component Hierarchy

RISC-V processor drivers For RISC-V RX: <Project Name>/src/bsp/driver/riscv_rtos/
For RISC-V MC: <Project Name>/src/bsp/driver/riscv_mc/
For RISC-V SM: <Project Name>/src/bsp/driver/riscv_sm/
Device drivers <Project Name>/src/bsp/<device name>

Example: <Project Name>/src/bsp/driver/gpio/

Platform header file <Project Name>/src/bsp/sys_platform.h

4.2.1. Updating BSP

Update BSP when changes are made in the Lattice Propel Builder. This includes adding, removing, or upgrading IP, changing
IP parameters, and changing the memory-mapped addresses. To update BSP, follow these steps:

1. Click Design > Generate in the Lattice Propel Builder to generate the latest system.
2. Inthe Lattice Propel SDK, under Project Explorer view, select the C/C++ project to update.
3. Click Project > Update Lattice C/C++ Project....

The Update System and BSP wizard opens as shown in Figure 4.1.
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Update System and BSP

Select system environment file and B5SP package

Current System env: | C:/Iscc/propel/2023.2/workspace/Example/src/sys_env.xml

New System env: | C:/Users/Lattice/Crosslink_NX_ledi_HW_Radiant/sge/sys_env.xml Browse...

[]Re-generate toolchain parameters and linker script
[ Update BSP package
Update BSP Driver Information

Driver Name Current |P Version (Driver Version) Mew IP Version (Driver Version)
riscv_m 24,0 24.1

gpio 6.2 (1.6.2)
system_memory 2.0.0 2.0.1 (2.0.1)

uart 1.3.0 31

| te Cancel
Figure 4.1. Update System and BSP Wizard

4. If your Lattice Propel Builder project has a different path as Current System env, click Browse to the latest Lattice Propel
Builder project sge/ directory and select the sys_env.xml file.

5. If you change the processor system memory, check Re-generate toolchain parameters and linker script. For example, if
you change the processor connection to the program memory, update the connection in the linker script. Do not check
this option if there is no change to maintain the current linker script.

6. Check Update BSP package to update the device drivers. The wizard shows the new driver version (when available) that
for the updated BSP.

7. Click Update to make changes.

4.3. Software Compiler Optimization Options

Compiler optimization is a tool to improve performance and reduce code size with any modern CPU. Optimization is
particularly important when dealing with Reduced Instruction Set Computer (RISC) architectures. RISC architectures such as
RISC-V implicitly assume that the compiler solves structural issues that other architectures handle at the hardware level.
Furthermore, well optimized code can make efficient use of the deep register files associated with RISC architectures,
minimizing potentially costly accesses to main memory.

Optimization can significantly reduce instruction count, decrease memory footprint, and increase performance.

During the development phase, optimization may be counterproductive. Aggressive optimization increases compile times
and slows down development. Optimization may also remove or reorder instructions, complicating debugging. For example,
when single stepping through optimized code, execution may not be consistent with the high-level source (even though the
code logically produces the correct result).

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

4.3.1. C/C++ Compiler Flow

The conventional process of compiling C/C++ source code into an executable binary image consists of four phases, as shown
in Figure 4.2:

1. Preprocessing
2. Compilation
3. Assembly

4. Linking

C/C++ Source

[ Preprocessor j

C/C++ Source

y
[ Compiler j

Assembly Files

h 4
[ Assembler ]
Object Files
h 4

)

Executable (*.elf)

Figure 4.2. Phases of Compilation

Linking is the only phase that has a complete view of the entire program. Global optimizations across the whole program
can only be performed by the linker.

Most optimizations are local optimizations performed by the compiler. Optimizations are performed on each source code
module, one at a time.

4.3.2. Compiler Architecture

Compiling refers to converting high-level source into binary machine code. However, as shown in the C/C++ Compiler Flow
section, the compiler performs only one part of the overall process.
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The Lattice Propel SDK uses the GNU toolchain to build application images. The GNU compiler has three stages as shown in
Figure 4.3.

Front End
(Language Specific)

Intermediate
Representation

Optimization

Intermediate
Representation

Back End
(CPU Specific)

Figure 4.3. Generalized Compiler Architecture

The first stage which is the front end, is specific to a high-level language. The front end parses and analyzes high-level
source code and converts the source code into a language independent intermediate representation that is passed to the
next stage.

The second stage optimizes the intermediate representation that was produced by the front end. The nature of the
optimization (for example performance versus code size) and the degree of effort are controlled by command line
arguments to the compiler. When the second stage has completed optimization, a new, language independent,
intermediate representation is passed to the final stage which is the back end.

A back end is specific to a CPU architecture. The primary function is to convert the intermediate representation produced
by the optimization phase into instructions that can execute on the target hardware. The output of the back end is
assembly code that can be passed to the assembler, the next stage after the compiler in the build flow.

With this modular compiler architecture, the same optimization engine and target specific back end can support multiple
high-level languages by using a different, language specific front end. Similarly, the same front-end and optimization engine
can generate code for different variants of the same CPU architecture (for example 32-bit versus 64-bit) and different
architectures (for example ARM versus RISC-V).

The front and back ends do little to optimize the code. If the compiler is invoked with optimization disabled, the output is a
literal translation of the input source into assembly code. The output code has no logical reductions in instruction count and
is not optimized for architectural features of the target CPU.

4.3.3. Optimization Levels

The GNU compiler supports many optimization algorithms. For a complete list of these algorithms, refer to the GCC, the
GNU Compiler Collection web page. Most optimizations reduce the number of instructions in the compiled code which
increases performance and reduces the program size in memory. However, some optimization algorithms increase code
space to enhance performance or vice-versa.

Some optimization routines are iterative and can significantly increase compilation time.
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The GNU compiler allows individual optimization algorithms to be invoked at the command line. The compiler also groups
commonly used algorithms into different levels based on the desired tradeoffs. The levels and the corresponding command
line arguments are shown in Table 4.2.

Table 4.2. GNU Compiler Optimization Levels and Command Line Arguments

gcc Command Line Argument Description

-00 Disables optimization

-01 Runs optimizations that increase performance without increasing memory size and compilation
time

-02 Runs optimizations in -O1 and optimizations that increase compilation time

-03 Runs optimizations in -O2 and adds optimizations that sacrifice code space for improved
performance

-Ofast Runs optimizations in -O3 and adds several optimizations that are not valid for C/C++ standards
compliant code

-Os Runs optimizations that reduce program size without impacting the performance

-Og Runs subset of optimizations that do not alter execution order that is useful for debugging

4.3.4. C/C++ Compiler Optimization in the Lattice Propel Software

The Lattice Propel SDK invokes the GNU compiler to build applications. You can control the arguments that the Lattice
Propel software sends to the compiler, including optimization level, via the GUI settings.

You can change the optimization level using the GUI in several ways. During project creation, you can change the
optimization level in the C/C++ Compiler tab in the Lattice Toolchain Setting window, as shown in Figure 4.4.

£ C/C++ Project O X

Lattice Toolchain Setting

Configuration: | Debug ~

Lib Setting C/C++ Compiler C/C++ Linker

[JEnable all common warnings (-Wall)
Enable uart function (-DLSCC_STDIO_UART_APE)
[ Verbase Lad

Optimization level | None(-00) ~

Debug level

Maximum(-g3} ~

< Back Mext >

Cancel

Figure 4.4. Optimization Setting during Project Creation
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You can also change the optimization level after project creation in the Project Properties menu as shown in Figure 4.5.

7
o

type filter text

w

Resource
Builders
C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
MCU
Project Natures
Project References
Run/Debug Settings
SystemVerilog Project Prope
Task Tags
Validation

Settings

Configuration: | Debug [ Active ]

i® Tool Settings %) Toolchains M Devices & Build Steps

@ Target Processor
@ Optimization
(% Warnings
(%2 Debugging
~ [ GNU RISC-V Cross Assembler
@ Preprocessor
(8 Includes
(&2 Warnings
@ Miscellaneous
~ B GNU RISC-V Cross C Compiler
(# Preprocessor
22 Includes
@ Optimization
@ Warnings
(8 Miscellaneous
~ B3 GNU RISC-V Cross C Linker
@ General
@ Libraries
(8 Miscellaneous
~ 85 GNU RISC-V Cross Create Listing
@ General
~ B3 GNU RISC-V Cross Print Size
@ General
~ B3 Lattice Create Memory Deployment
2 General

—| Optimization Level
Message length (T essageiongtivet)
‘char' is signed (-fsigned-char)
Function sections (-ffunction-sections)
Data sections (-fdata-sections)

[[INe commeon unitialized (-fno-common)

Mone (-00)

[JDo not inline functions (-fno-inline-functions)
() Assume freestanding environment (-ffreestanding)
[] Disable builtin (-fno-builtin)

[[]Position independent code (-fPIC)
[ Link-time optimizer (-flto)

[]single precision constants (-fsingle-precision-constant)

[[] Disable loop invariant move {-fno-move-loop-invariants)

Manage Configurations...

Build Artifact_J5h Rinars Parsers €3 Error Parsers

Other optimization flags |

Restore Defaults

Apply and Close

Apply

Cancel

Figure 4.5. Changing Optimization Level from the Lattice Propel SDK Project Settings

The default Optimization Level is -O0 which turns off optimization. During the initial stages of a project, it is recommended
to turn off optimization so that compile times remain short and instruction ordering matches that of the source code. For
most applications, enable optimizations in the design cycle prior to the creation of a release candidate.

4.3.5. Fine Grain Control of Optimization

You can apply different levels of optimization to different parts of an embedded program using the GNU C/C++ compiler.

As shown in Figure 4.6, the #pragma GCC optimize command optimizes all subsequent code at the optimization level
specified in the argument in double quotes.
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i O X
€] powerc = 08
‘1 "
2
3 #pragma GCC optimize("03")
4
52int power(unsighed int x, unsigned int n)
6 {
7 unsigned prpd = 1;
8 unsigned inf i;
9
10 for (i=@; ign; i=i+1)
11 prod = érod * X,
12
13 return prod
14 } #
15 b4

Figure 4.6. Using the #pragma Directive to Control Optimization Level

You can also apply optimization at the granularity of functions using the __attribute__ in the GNU compiler. Different
attributes can apply useful properties to functions, variables, type definitions, and optimization level. Figure 4.7
demonstrates the syntax for applying level 3 optimization to a function. The __attribute__ keyword applies only to the
specified function.

=__attribute__ ((optimize ("03"))) int power(unsigned int x, unsigned int n)

unsigned prod = 1;
unsigned int i;

for (i=0; i<n; i=i+1)
prod = prod * x;

return prod;

Figure 4.7. Applying an Optimize Attribute to a Function
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4.3.6. Linker Relaxation

Some optimizations can only be applied globally. For RISC-V architecture, because of the design of the jump, load, and store
instructions, linker relaxation optimization can only be performed once the whole program has been assembled and the
locations of code and data are known.

The width of RISC-V instructions is equal to or less than the width of the address bus (32 bits). A RISC-V instruction cannot
contain an immediate value that spans across the entire addressable memory space. Instead, RISC-V instructions compute a
target address by adding a smaller immediate offset to a value contained in a register.

Loads and stores add a twelve-bit immediate field in the instruction to the contents of a register in the CPU register file.
Jump instructions compute the target address by adding an immediate offset to either a register in the register file or to the
Program Counter.

If the target address of a jump or a memory access is unknown at the time the instructions are emitted by the compiler, the
compiler assumes the target address is outside the range of the offset provided by the immediate field. To cover the full
range of potential target addresses, the compiler includes an instruction to load the higher order address bits of the target
address into a register.

Because of code locality, the extra instruction is typically not necessary for most load, store, and jump instructions.
However, it can only be determined at the linking stage whether a given operation requires a register to be loaded with the
high order bits of its target address.

During linker relaxation, the linker scans the program as a whole and determines whether the target address of an
operation is within the range of the immediate field from a register that holds a known value. The register for jump
instructions can be the Program Counter. For load and store instructions, the register is in the register file and is designated
as the Global Pointer. The Global Pointer is loaded during startup with an address that is near the location of most variables
in memory.

If the linker detects that an operation can reach the target address without loading a new register value, the linker removes
the extra register load instruction added by the compiler. This cuts in half, the number of instructions required for loads,
stores and jumps. Linker relaxation results in significant gains in terms of both code size and performance.

Linker relaxation is enabled by default.

4.3.7. Link Time Optimization

Link time optimization is an option provided by the GNU C/C++ compiler and is a global optimization. This optimization
forwards extra information to the linker and causes the linker to run optimization on the program.

Link time optimization may marginally improve performance. Link time optimization may increase code size.
Refer to the GNU GCC documentation for additional information.

Link time optimization is disabled by default.

4.4. Linker Script

Linking is the final step in translating a set of source files and libraries into an executable binary. Prior stages in the build
process, which are the pre-processor, compiler, and assembler, produce a set of object files that the linker combines to
form the complete program. Figure 4.8 shows the phases of compilation.
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C/C++ Source

[ Preprocessor j

C/C++ Source

A 4
[ Compiler J

Assembly Files

A 4
[ Assembler j
Object Files
A 4

)

Executable (*.elf)

Figure 4.8. Phases of Compilation

You can control the GNU linker utility, Id, via command line arguments. For simple, natively compiled applications, the
default settings are sufficient. More complex embedded applications require more control over the linking process. Control
via command line becomes cumbersome and it is common practice to place linker arguments into a linker script file.

4.4.1. Linker Scripts in the Lattice Propel SDK

The Lattice Propel SDK automatically generates a linker script during the Lattice C/C++ Project creation. The autogenerated
script is based on the memory configuration of the Lattice Propel Builder SoC design. This default script is suitable for
simple designs. For more complex designs, add customizations to the default script.

The Lattice Propel SDK supports the following modifications to a linker script:

e  GUI based linker script configuration

e Text based editing

4.4.1.1. GUI Based Linker Script Configuration

To open the GUI based linker script editor in the Lattice Propel SDK, double click the linker.Id file in the src directory of your
Lattice C/C++ project. Figure 4.9 shows the Linker Configuration GUI.
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el Linker < = B
Linker Script: linker.Id

Available Memory Regions

Mame Attributes Base Address Size M Attribut
- emory rioutes
temlinst WK D 010000 ¢ Extracted from SoC DeSign
STACK and HEAP Size

HEAP_SIZE: | 0xD | Stack and Heap Sizes

STACK_SIZE: | D ADD | - Edit to Project Requirements
Section to Memory Region Mapping

CODE: [tomlimst v Specify Memory Reglons Where

<+ Code and Data Reside

DATA:  teml_inst ~ Edit to Project Requirements

Section Name Memaory Region

fext tem0_inst

«ctors tem{_inst

Jdtors tcm(inst

rodata tem{_inst

.data tem(inst

bss tem0inst

heap tem0_inst

stack tcminst

Ovwverview | linker.ld

Figure 4.9. Lattice Propel SDK Linker Configuration GUI

The GUI displays the memory regions that are available in the SoC design which the project is based. Modify stack and heap
sizes by changing the values in the text boxes. For SoC designs that have multiple memory regions, you can partition the
code and data into separate memory regions using the GUI.

You can only make limited changes to the linking process using the Linker Configuration GUI. For more complex designs
requiring more customizations, edit the text of the default linker script directly.
4.4.1.2. Text Based Linker Script Customization

To open the text based linker script editor, double click the linker.ld file in the src directory of your Lattice C/C++ project
and click the linker.Id tab at the bottom of the pane as shown in Figure 4.10.
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&
Tl Linker
1/* Lattice Generated linker script, for normal executables */
2
JENTRY (_start)
4
5 HEAP_SIZE = DEFINED( HEAP SIZE) ? HEAP SIZE : 0x®;
6 STACK SIZE = DEFINED( STACK SIZE) ? STACK SIZE : OxAQ0;
7
2MEMORY
9{
10 sysmem@_inst (rwx) : org = 8x@, len = 0x28000
11}
12
13 SECTIONS
14{
15 /* CODE */
16 .text : ALIGN(4)
17 1
18 _ftext = .;
19 KEEP (*(SORT(.crt*)))
20 *(.text .text.* .gnu.linkonce.t.*)
21 KEEP (*(.init))
22 KEEP (*(.fini))
23 . = ALIGN(4);
24 _etext = .;
25 } >sysmem@ inst
26
27 .ctors : ALIGN(4)
28 ]
29 _ctors_start = .;
30 KEEP (*(.init_array*))
31 KEEP (*(SORT(.ctors.*)))
32 KEEP (*(.ctors))
33 . = ALIGN(4);
34 _ctors_end = .;
35  } >sysmem@ inst
<
Cverview hnker.ld‘

\ linker.ld Tab

Figure 4.10. Lattice Propel SDK Linker Script Text Editor

4.4.2. Lattice Propel SDK Default Linker Script

GNU compatible linker scripts are written in the Linker Command Language. The default linker script provided by the Lattice
Propel software consists of three commands in the following sequence:

1. ENTRY: Identifies the entry point, the first instruction to be executed in the program.

2. MEMORY: Specifies the different memory regions visible to the processor and the characteristics such as base address,
size, and accessibility (read, write, execute).

3. SECTIONS: Specifies how the object file input sections are mapped to the ELF output sections.

Figure 4.11 shows the beginning of an autogenerated linker script for a system with two separate memories: one for storing
instructions and one for storing data.
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o
pe

&) Linker 3

2
JENTRY (_start)
a

7
8MEMORY
5{

12}

13

14 SECTTONS
15 {

16 /* CODE */

19 _ftext = .;

24 . = ALIGN(4);

2K atavt — .
<

Overview | linker.ld

17  .text : ALIGN(4)

10 sysmem@d_inst (rx) : org
11 sysmeml_inst (rw) : org

20 KEEP (*(SORT(.crt*)))
21 *(.text .text.* .gnu.linkonce.t.*)
22 KEEP (*(.init))
23 KEEP (*(.fini))

5_HEAP_SIZE = DEFINED(_HEAP SIZE) ? _HEAP SIZE :
6 STACK STZE = DEFINED( STACK STZE) ? STACK SIZE :

9x0, len = 0x8000
0x10000, len = @x10000

o

1/* Lattice Generated linker script, for normal executables */

Figure 4.11. Autogenerated Linker Script for SoC System with Two Memory Regions

4.4.2.1. Linker Script ENTRY Command

The ENTRY command in the GNU Linker Command Language defines the first executable instruction in the output binary.

The ENTRY command takes a symbol name as an argument. In the Lattice BSPs for the bare metal and FreeRTOS execution

environments, the startup code uses the symbol, “

_start”, to denote the first instruction. For example, Figure 4.12 shows

the beginning of “crt0.S” for RISC-V MC where the first instruction, a jump, is assigned the “_start” symbol.

7oy
i

P

Entry Point
8

g

13
14
15
16

47
£

[S] ert0s X

1 .section
2 .global start
3 .global main

4 .weak
5 .weak

Le]
—p 7/ _start:

.crte

irq_callback
esr_callback

j crtInit

SW
SW
SwW
SwW

x1,
x5,
x6,
x7,

P e

10 .global trap_entry
11 .align 4
12 trap_entry:

1*4(sp)
2%4(sp)
3*4(sp)
4*4(sp)

[ AP |

O X
= 8

”~

Figure 4.12. _start Entry Point in RISC-V MC BSP
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4.4.2.2. Linker Script MEMORY Command

The MEMORY command in the GNU Linker Command Language informs the linker the memories available, memory
locations in address space, memory sizes, and the operations the memories can support (for example read, write, or
execute). The command also associates each memory block with a name that is used internally by the linker.

& o x
T Linker % =0
1/* Lattice Generated linker script, for normal executables */
2
JENTRY (_start)
4

5_HEAP_SIZE = DEFINED(_HEAP_SIZE) ? _HEAP_SIZE : 0x0;

6_STACK_SIZE = DEFINED(_STACK_SIZE) ? _STACK_SIZE : 0xA0®; _— Attributes (read. execute)

7
2 MEMORY
9{
10 sysmemd_inst (rx): org = 0x0, len = 0x8000
Py sysmeml_inst (rw) : org = 0x10000, len = 0x10000
12}
13

il T Length of Region in Bytes
16 /* CODE */
17 .text : ALIGN(4)

18 {

19 _ftext = .; \
20 KEEP (*(SORT(.crt*)))

21 *(.text .text.* .gnu.linkonce.t.*)

22 KEEP (*(.init))

23 KEEP (*(.fini))

24 . = ALIGN(4);

= atavi — . N

Overview | linker1d

Memory Region Name

Base Address (Origin) of Region

Figure 4.13. MEMORY Command Defining Two Memory Regions

In Figure 4.13, two memory regions are defined. The first, sysmemO_inst, is the instruction memory and is configured as
read only in the Lattice Propel Builder SoC project. The autogenerated attribute field consists of only ‘r’ and ‘x’ for read and
execute, and omits ‘w’ for write. Similarly, the sysmem1_inst memory is only connected to the data bus in the SoC design
and the attributes are ‘r’ for read and ‘w’ for write while ‘x’ for execute is omitted.

Note: The Lattice Propel SDK debugger requires instruction memory to be read-writable via the RISC-V data bus. The
debugger is not able to run on a Lattice SoC configured in Figure 4.13 because the program memory is not writable.

4.4.2.3. Linker Script SECTIONS Command

The SECTIONS command specifies how the parts (for example instructions, constants, variables, stack, and so on) of a
program are arranged in memory.

The inputs to the linking process are a collection of object files. These files are a combination of pre-compiled libraries and
high-level source modules of the program after being processed by the compiler and assembler.

The input object files are partitioned into sections. Some of the common sections are as follows:
e _text: program instructions

e .rodata: read only data (for example constant strings)

e .data: initialized global variables

e .bss: uninitialized global variables

The SECTIONS command defines the output sections that appears in the output *.elf file. The command also specifies the
mapping of the input sections in the object files to the output sections.

The linker script that is automatically generated by the Lattice Propel SDK defines the following output sections:

e _text: program instructions

e .ctors/.dtors: C++ global constructor/destructor tables

e .rodata: read only data

e .data: initialized global variables

e .bss: uninitialized global variables

e .heap: pool of memory for dynamic allocation (for example malloc)

e  _stack: program stack

The sections of the input object files and the file names (.text, .rodata, etc.) are defined by the GNU compiler and assembly
tools. The output sections typically have the same names although this is not a requirement for the linker utility.
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You can place the same type of program information in different sections. For critical code and non-critical code that are in
the .text input sections, you can also place critical code in a cacheable memory region and place non-critical code using a
different name in a non-cacheable memory region.

4.4.2.4, text Output Section
Figure 4.14 shows the definition for the .text output section.

Name of Output Section

= o = Align to Word Length of
— — CPU (32 bits = 4 bytes)

Store Address of \QTI‘;X
Start of .text Section g /* CODE */ ~ i
\ 4 text : ALTGN(S) Place C Run Time (crt0.S)

|_— Code First

Preserve Code that \ﬁ\i ftext /
. 9 ext = .; .
Does Not Appear in Call Graph Rm KEEP (*(SORT(.crt*))) Use Wildcards to Import

(for example: Vector Tables) \ *(.text .text.* .gnu.linkonce.t.*)4—— | .text Sections from Input Object Files
\ KEEP (*(.init))

Advance Location Counter (.) 23 KEEP (*(.fini))
to the Next 32-bit Boundary ~ ~——T—=+» . = ALIGN(4);

AzﬂE/, _etext = .;

T} >sysmem@_inst L .
Sftotfe f\gdrfi_ss of End _—7750 ‘\ Place Output .text Section in ‘sysmem0_inst
ot .text section < > Memory Region (Program Memory)

Owerview | linker.ld

Figure 4.14. Autogenerated Linker Script .text Section

The output section declaration starts with the name of the section, followed by a colon and a call to the ALIGN function.
ALIGN(4) forces the location counter to the next four byte or 32-bit boundary. This ensures that the instructions in the .text
section are properly aligned for execution by the RISC-V processor.

The linker’s location counter tracks the next location for code or data in memory. The period character, ‘., is a built-in
variable in the GNU Linker Command Language that provides access to the location counter.

The value of the location counter can be read into symbols. In the .text declaration, the ‘_ftext’ and ‘_etext’ symbols are
assigned at the beginning and ending locations by reading the location counter before and after the input text sections are
imported.

The key lines of this output section definition are in lines 20-23. These lines use wildcards (‘*’) to select input object files
and sections. The input section names that match the specifiers are placed in the output .text section in the order in which
they match.

The first match pulls the “.crt0” section into the .text output section. This section is defined in the crt0.S BSP file. As this
section holds the C runtime startup code, this section is placed at the beginning of the program.

The KEEP keyword prevents the linker from pruning code and data which the call graph algorithms may mistakenly classify
as unused. For example, the “.crt0” section includes interrupt vector tables that are not called explicitly, where KEEP
ensures the linker does not remove the tables from the final executable.

The next matches are the .text sections from all input object files, which are the bulk of the program.

C++ constructs such as inline functions and virtual tables may cause code and data to be duplicated across multiple object
files. The compiler places these functions and data into sections with names containing the “linkonce” pattern. When the

linker encounters an input section name containing "linkonce", the linker adds that section to the output section for only

one time. This prevents unnecessary code and data replication.

The “.init” and “.fini” contain library functions that execute global constructors at startup and global destructors when the
program exits. These functions are called implicitly. The KEEP keyword ensures the functions are not removed from the
.text output section.

Writing to the location counter built-in variable, ‘.’, advances the location of the next placement. Figure 4.14 shows an
example where ALIGN(4) is assigned to ‘.. This assigned variable advances the location counter to the next 32-bit boundary.

The final line of the .text output definition directs the linker to place the section in the ‘sysmemQ_inst’ memory region. This
region is accessible via the SoC instruction bus and the base address is 0x00000000, which is the reset vector of the CPU.
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4.4.2.5. .ctor and .dtor Sections

The .ctor and .dtor sections are mainly associated with C++ global constructors and destructors. Figure 4.15 shows
the .ctors and .dtors output section definitions from the autogenerated linker script.

@ [m) X

Name of Output Section ) Linker X =0 )
\m - = Align to Word Length of
Store Address of zi iCtOPS © ALIGN(4) < CPU (32 bits = 4 bytes)
Start of .ctors Section ~™————_ | _ctors_start - .
31 KEEP (*(.init_array*)) €— L ]
Preserve Code that —/“{; KEEP (*(SORT(.ctors.*))) Import .init_array Constructor Pointers

Does Not Appear in Call Graph (for é—n&» KEEP (*(.ctors)) \
example: Constructors/Destructors) . = ALIGN(4); ~—__ Import Legacy Constructors (ctors)

3
/_ctom‘»_em_i = . Pointers and Sort by Priority
36 >sysmem@_inst

3
Advance Location Counter (.) / / ~—~— .
to the Next 32-bit Boundary 38 idtors 1 ALIGN(4) Import Legacy Constructor Pointers
39
St Add £ / 40 _dtors_start = .;
E oC;ef tressso i 41 KEEP (*(SORT(.dtors.*))) "~~~ Place Output .ctors Section in ‘sysmem0_inst’
ne o clors section 42 KEEP (*(.dtors)) Memory Region (Program Memory)
43 . = ALIGN(4);

44} >sysmem@_inst
ac

< 3>
Overview | linkerld

Figure 4.15. Definition for .ctors and .dtors Output Sections

The .ctors and .dtors sections are tables that hold pointers to the global constructors and destructors. As with other output
sections, the .ctors and .dtors definitions start with the output section name followed by a call to the ALIGN function to
ensure proper alignment to a 32-bit word boundary.

The linker script supports the following input section types that hold constructor and destructor pointer tables:

e The “.init_array” input sections are the modern format the GNU GCC uses to package global constructor and destructor
pointer tables.

e The “.ctors” and “.dtors” input sections are included for backwards compatibility with the legacy code.

Although the constructor and destructor pointer tables are not executable code, the tables are not data and are closely
related to the program. The .ctors and .dtors output sections are placed in the sysmem0_inst memory region with the .text
section.

4.4.2.6. .rodata Section

The .rodata output section holds read only constant data. Figure 4.16 shows the output section definition for .rodata in the
autogenerated linker script.

@& a x
. Bl -a Align to Word Length of CPU
Name of OUPULSection — 10/~ DA Y ren(e) 4T (32bits =4 bytes)
a8 |
49 *(.rdata) €— Alternate Input Section Name for

50 *(.rodata .rodata.*) Read-Only Data

51 *(.gnu.linkonce,r,*)\
Advance Location Counter () _____L52—¥. = ALIGN(4); ——— Use Wildcards to Import .rodata
to the Next 32-bit Boundary E% } >sysmeml_inst \ v Sections from Input Object Files
< >
Srentew 02 T~ linkonce Read-Only Data

Place Output .rodata Section in ‘sysmemZ1_inst’
Memory Region (Data Memory)

Figure 4.16. Definition for .rodata Output Section
The output section definition specifiers import “.rodata” input sections and input sections with an alternate name, “.rdata”.

The specifiers also match the name, “.gnu.linkonce.r”, which can result from the inclusion of C++ constructs such as inline
functions.
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The final line of the .rodata output section definition places the section in the second memory region, sysmem1_inst, which
is allocated for data.

4.4.2.7. .data Section

Figure 4.17 shows the definition for the “.data” output section.

- Align to Word Length of
Name of Output Section — CPU (32 bits = 4 bytes)

5] Linker = a8
\sﬁ.data : ALTGN(2) Import .data Sections

"
56 /
57 *(.data .data.*)

Advance Location Counter (.) -~ *('g:l:iéril?tkl{)mce.d.*)% Assign Global Pointer Symbol
P —_— . = H

0 the Next 32-bit Boundary 0 PROVIDE( _global pointer$ - . + 0x800 );4—— (if not defined in the code)

*(.sdata .sdata.*)

*(.gnu.linkonce.s.*) ¥—

*(.srodata.cst16)

* —

,Ei;gﬂ:tgi:ti; «— Import “Small Read-Only Data” Sections

*(.srodata.cst2)

*(.srodata .srodata.*)

—————==—». - ALIGN(4);

69  } »sysmeml_inst <
< 3>

Import linkonce Data Sections

Import “Small Data” Sections

Advance Location Counter (.)
to the Next 32-bit Boundary

o

Place Output .data Section in ‘sysmem1_inst’
v Memory Region (Data Memory)

Ovwerview | linker.ld

Figure 4.17. Definition for .data Output Section

The .data output section keeps global, initialized variables, particularly smaller variables, close to the address pointed at by
the “global pointer” which is the “gp” register in the register file. This improves performance and code size via linker
relaxation (see the Linker Relaxation section).

Figure 4.18 shows the encodings for the RISC-V load and store instructions, where a RISC-V core reads data from and writes
data to the memory.

Base Register

31 20& 15 14 12 11 76 0

‘ imm{11:0] [ rsl ‘ funct3 rd ‘ opcode <4——LOAD Instruction
12 5 3 5 7
offset[11:0] base width dest LOAD

12-bit Offsets
(Sign Extended)

76 0
imm|11:5] | rs2 rsl funct3 | imm[4:0] | opcode | <4—STORE Instruction
7 5 5 3 5 7
offset[11:5] sTC base width  offset[4:0] STORE

Base Register

Figure 4.18. RISC-V Load and Store Instruction Encodings

The load and store instructions add a base address to a signed, 12-bit offset to specify the target address. The “rs1” field in
the instruction indexes a register that holds the base address, while the immediate field encodes the offset. A naive
memory access requires two instructions: one to pre-load the base address into a register and a second to execute the load
or store operation.

However, if a register already contains a value within the range of a signed, 12-bit immediate from the target address, the
register pre-load is not required. The linker script places the smaller variables close to the global pointer register to ensure
the memory access is within the 12-bit window of a known register value.
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Application Note

The output section definition imports the .data sections and linkonce data sections from the input object files. Depending
on compiler settings, these sections are the larger data structures and arrays that are accessed via pointer. Linker relaxation
is not able to enhance the performance for these sections.

After forcing alignment to the next 32-bit boundary, the script creates a __global_pointer$ symbol that points to the value
of the location counter plus an offset of 0x800. The __global_pointer$ symbol is used in the startup code to initialize the
“gp” register, a register in the register file.

=T

w [m} >
crtd.s X = B8
62 crtInit: £

63 la t@, trap_entry
64 csrw mbvec, t8
65  c¢srwi mstatus, ©
66 csrwi mie, ©

67

68 .option push

% i:pgson_nzggézijointer&? < Initialize gp Register using Value Assigned
71 .option pop to “__global_pointer$” in the Linker Script
72 la sp, _stack start

72 - N

Figure 4.19. Startup Code Initializing gp (Global Pointer Register)

The “PROVIDE” keyword assigns the __global_pointer$ symbol if the symbol is not already given a value in the code.

After the assignment of the global pointer, the script imports the “.sdata” and “.srodata” sections which are the “small
data” sections that the compiler creates based on a configurable threshold, as shown in Figure 4.20.

% Properties for riscv_mc_hellowarld m] %

Settings P

Resource
Builders
«w C/C++ Build Configuration: |Debug [ Active] ~ |  Manage Configurations...

Build Verizbles
Environment
Logging 3 Tool Settings 3 Toolchains M Devices #* Build Steps Build Artifact Binary Parsers €3 Error Parsers
Settings
Tool Chain Editor (2 Target Processor Architecture RV32| (-march=r32i7) v

C/C General 3 Optimization Multiply extension (RVM)

=
Mcu (2 Warnings -
[ Atomic ext RVA
Project Natures @ Debugging omic extension (RVA)

Project References ~ B GNU RISC-V Cross Assembler Flosting point | Mone -
o o)
Run/Debug Settings (£ Preprocessor Compressed extension (RVC)

SystemVerilog Project Prope (2 Includes
Task Tags (5 Warnings Integer ABI ILP32 (-mabi=ilp32*) o

Validation (& Miscellaneous
~ ) GNU RISC-V Cross C Compiler
(5 Preprocessor Tuning Toolchain default v

Floating point ABI | None v

@ Includes ——

(£ Optimization !
9 ot @ | — Threshold for Small Data in Bytes
@ Miscellaneous

8 GNU RISC-V Cross C Linker
& General [ Small prologue/epilogue (-msave-restore)

Code model Teolchain default ~

Align Teolchain default (-mtune) v

(B Libraries Force string operations to calllibrary functions (-mmemcpy)
(% Miscellaneous Other target flags |

v 1) GNU RISC-V Crass Create Listing
3 General

- B GNU RISC-V Cross Print Size
2 General

~ B Lattice Multi Memory Deplayment (CODE SEGMENT)
(5 General

1) Lattice Multi Memory Deployment (DATA SEGMENT)
(3 General

@ o s Cancel

Figure 4.20. Configuration of the Small Data Limit in Lattice Propel SDK

The final line of the .data output section places the section in the sysmem1_inst memory region which is allocated for data
storage.
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4.4.2.8. .bss Section

The definition of the “.bss” output section is shown in Figure 4.21.

Name of Output Section

Assign Location of Start of .bss to
Symbol in Startup Code

Advance Location Counter (.)
to the Next 32-bit Boundary —w—_|

Assign Location of End of .bss to__—
Symbol in Startup Code

Do Not Include Data in Output Image
(Reserve Space)

o

& o x

/ ALIGN(4) 4/

7T .bss (NOLOAD)

72 1

—p _bss_star/
74 *(.sbhss*)
75 *(.gnu. linkonce.sb.*)

76 *(.bss .bss.*)k7—

77 *(.gnu.linkonce.b.*)

4] Linker X

= LATTICE

Align to Word Length of

__— CPU (32 bits = 4 bytes)

—— Import Small .bss Sections

———Import .bss Sections

73 * (COMMON ) ¢

77— . ALIGN(4);

_bss_end = .3

Import COMMON Sections into .bss

Place Output .bss Section in ‘sysmem1_inst’

80
%1} >sysmeml_inst <
Q9

Overview | linker.ld

Memory Region (Data Memory)

Figure 4.21. Definition for .bss Output Section

The .bss (“Block Start by Symbol”) section reserves space for global and static variables that are not initialized by the source

code.

In the C/C++ standards, such variables are required to be zeroed out. Instead of storing a bunch of zeros in the output ELF,

the C startup code performs the zeroing of the .bss section at program launch.

The NOLOAD keyword instructs the linker to exclude the actual BSS data in the output image to avoid increasing the output
binary image unnecessarily. For the C runtime code to initialize the memory associated with .bss, the linker points the C
runtime code to the .bss location in the memory. The _bss_start symbol captures the value of the location counter at the
beginning of the .bss section and the _bss_end symbol captures the value at the end of .bss section. C startup code starts
and stops zero initializing the memory based on the _bss_start and _bss_end symbols.

Figure 4.22 shows the .bss initialization code in the crt0.S source file. The C run time implements a loop that uses the
_bss_start and _bss_end symbols as initial and terminal values, respectively.

&

crtlS X
73
74bss_init:
75 la a@, bss start
76 la al, bss end
77bss_loop:

78 beq a@,al,bss_done
79 sw zero,@(a@)

20 add a®,a0,4

81 j bss_loop

32 bss_done:

a2

£

© O

v

Figure 4.22. .bss Initialization Loop in crt0.S Source File

As .bss section contains variables that are placed in the memory region reserved for data, sysmem1_inst.

4.4.2.9. .heap Section

Figure 4.23 shows the output section definition for the “.heap” section.
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Do Not Include Data in Output Image
(Reserve Space)

@ Align to Length of Long Integer
Name of Output Section &) Linker X / (64 bits = 8 bytes)
\gg‘.heap (NOLOAD) : ALIGN(Z) “ .
84 { Advance Location Counter by

)

c

Save Location of Start of Heap w PROVIDE ( _heap_staV Configured Size of Heap
[ PROVIDE ( _ heap_start = .);
g . = . + _HEAP_SIZE; Force Location Counter to the Next
- = ALTGN(8); 4%________// 64-bit Boundary
‘wPRO\{IDE ( _heap_end =

) ':':O:ﬂ;l(ig'gejp—e"d =0 Place Output .heap Section in ‘sysmem1_inst
v - h . Memory Region (Data Memory)

< >
Overview | linker.ld

Save Location of End of Heap

wfop o o oo

[N=GT ¥ =

[N}

Figure 4.23. Definition for .heap Output Section

The heap is a pool of memory reserved for dynamic allocation. No variables are assigned to the heap at link time and there
is nothing to initialize. The NOLOAD keyword instructs the linker to exclude initial values for heap in the output executable
image.

To reserve the required space, the output section advances the location counter, *.’, by the heap size as defined in the
“ HEAP_SIZE” symbol near the top of the linker script.

As shown in Figure 4.24, HEAP_SIZE and _STACK_SIZE symbols are defined using tertiary operators. If the symbols are
already defined in the program, the existing value is used. If the symbols are not defined, the constant value from the Linker
“Overview” GUI tab is used.

e m] x
&l Linker X = O
4 -~

5 _HEAP_STZE = DEFINED(_HEAP STZE) ? HEAP SIZE : 0x100;
6 STACK_SIZE = DEFINED( STACK SIZE) ? STACK SIZE : 0xA0®;
7 W

Overview | linker.ld

Figure 4.24. Defining Heap and Stack Size Symbol

The .heap output section definition also assigns multiple symbols to record the start and stop addresses of the heap, which
is required for dynamic memory libraries such as malloc.

The last line of the .heap output section definition places the section in sysmem1_inst, the data memory region.
4.4.2.10. .stack Section

The definition of the “.stack” output section is shown in Figure 4.25.

Do Not Include Data in Output Image
(Reserve Space)

&
fea)

[m] X
\%}( ;/
93 ™, stack (NOLOAD) : ALIGN(16) 2
{

Name of Output Section L~ Align to 128-bit Boundary (16 bytes)

o

B

Assign Location of END of Advance Location Counter by

.stack to Symbol for BSP i > pRS"IDE (ﬁggﬁkﬁgg_:m/-/ Configured Size of Stack
' ' 97 . = ALTGN(16); ——u | ) _
Assign Location of STARTOf _| . eourpe ( stack start = .); —— Force Alignment to 128-bit Boundary
.stack to Symbol for BSP $WO\HDE Cend = .);
PROVIDE (end = .); o o
Assign Location of End of ==77,, } >sysmem1§25t < ) _ Place Output .stack Section in ‘sysmem1_inst
Program to Symbol < > Memory Region (Data Memory)

Overview | linker.ld

Figure 4.25. Definition for .stack Output Section
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The .stack output section is aligned with a 128-bit boundary which is required by the RISC-V calling convention and is for the
‘Q’ extension which adds quad precision floating point. Note that ‘Q’ extension is not supported for Lattice RISC-V.

The .stack output section definition reserves space for stack. This section uses the NOLOAD keyword to inform the linker
not to add the contents of the stack to the output ELF.

The linker script reserves memory for the stack by advancing the location counter by the amount of the _STACK_SIZE
symbol. Like the _HEAP_SIZE symbol, STACK_SIZE is defined near the beginning of the script using a tertiary expression
that selects the value from the GUI if the symbol is not defined elsewhere.

The .stack output section definition also defines _stack_start and _stack_end symbols for use in the BSP. By convention, the
RISC-V stack grows downward so the _stack_end symbol is assigned at the beginning of the section definition and
_stack_start is defined at the end.

The stack is placed in the data memory region, sysmem1_inst.

4.5. Interrupts

Interrupts are fundamental to embedded systems. An interrupt is essentially an unscheduled function call and is not
synchronized to normal program flow. Using interrupts, an embedded processor responds to time critical events quicker
and more deterministically than a loop that periodically polls for the condition. Most real time operating systems (RTOS)
use preemptive multitasking and interrupts are integral to preemption.

Interrupt hardware and software vary across different CPU architectures and execution environments (for example bare
metal, schedulers, and real time operating systems). Understanding the CPU, interrupt controller, and BSP interrupt handler
is key to effective and efficient development.

4.5.1. RISC-V Interrupt Architecture

The following is a brief overview of the RISC-V interrupt architecture. For detailed information on RISC-V interrupts, refer to
the RISC-V ISA specification, Volume II: RISC-V Privileged Architectures in the RISC-V Specifications web page.

The RISC-V ISA groups interrupts and exceptions into a general category named “traps”. Certain RISC-V architectural
features, including some Control and Status Registers (CSRs), are shared by interrupts and exceptions.

While interrupts are caused by events that are asynchronous to program execution, exceptions are synchronous. The CPU
generates an exception as a direct result of executing a given instruction. This exception can be a result of an error such as a
misaligned address or an illegal instruction. An exception may also be forced by design, such as when the ECALL instruction
is executed.

When a trap, either an interrupt or an exception occurs, RISC-V transfers control to a trap handler firmware routine. The

trap handler is part of the execution environment. For embedded systems, the trap handler usually comes with the board

support package (BSP). The RISC-V interrupt logic obtains the memory address of the trap handler via a register that the

execution environment loads during program startup.

Trap handler determines the cause of the trap and calls the appropriate service routine to respond to the interrupt or

exception event. The RISC-V ISA defines the following methods to respond to the events:

e Directed mode causes the program counter to be loaded with the same address regardless of the cause of the trap.

e Vectored mode is for exceptions but uses a jump table for the different interrupt sources which can improve interrupt
latency.

The RISC-V ISA comprehends three general interrupt sources: timer, software, and external.

e Timer interrupts are generated by a CPU’s integrated timer and are used for time-slicing in multi-tasking operating
systems.

e Software interrupts are intended for inter-processor messaging, which allow one core or hart to interrupt another (or
itself).

e External interrupts come from external sources, for example, the CPU’s peripherals.

For RISC-V implementations that support multiple privilege levels, interrupt sources are split into privilege mode-specific
versions. For example, a RISC-V core that supports Machine and Supervisor privilege modes can have as many as 6 interrupt
inputs: machine timer, machine software, machine external, supervisor timer, supervisor software, and supervisor external.
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4.5.1.1.RISC-V Trap Handling CSRs

Table 4.3 list the key RISC-V control and status registers (CSRs) related to traps. These CSRs are for machine mode or
supervisor level equivalents.

Table 4.3. Key RISC-V Trap Handling CSRs

CSR Name Description

mtvec Contains the vector base address for the trap handler. Controls the mode: directed or vectored.

mcause Indicates the cause of the trap. Bit fields that indicate whether the trap is an interrupt or an exception and the
type of interrupt or exception.

mstatus Contains status and control bits including global interrupt enables and the status of the CPU core prior to the
trap.

mepc The value of the program counter is copied to the mepc register when a trap occurs. The contents of the mepc

register are written back to the program counter when returning from the trap.

mscratch Scratchpad register. Useful for operating systems in storing an index into a task context table.

For complete details about the RISC-V CSRs, refer to the RISC-V ISA specification, Volume II: RISC-V Privileged Architectures
in the RISC-V Specifications web page.

4.5.2. Lattice RISC-V Interrupt Controller Hardware

An embedded system may need to support multiple external interrupts. As a RISC-V core supports only one external
interrupt input per privilege level, interrupt controller hardware must be added to RISC-V based designs to aggregate
external interrupts into a single signal.

The external interrupt controller for the Lattice RISC-V CPUs varies depending on the model, as shown in Table 4.4.

Table 4.4. Lattice RISC-V External Interrupt Controllers by Model

RISC-V Model External Interrupt Controller
RX Platform Level Interrupt Controller (PLIC)
MC Programmable Interrupt Controller (PIC)
SM Programmable Interrupt Controller (PIC)

4.5.2.1. Programmable Interrupt Controller (PIC)

The Programmable Interrupt Controller (PIC) is a proprietary Lattice IP. The PIC is used on the RISC-V MC and SM
processors. Figure 4.26 shows a block diagram of the PIC.
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IRQ_SO PIC_STATUS.O REGISTERS
PIC_POL.O

PIC_STATUS
HWRITE PIC_ENABLE  |g———— AHB-L
HDATA.O PIC_SET
PIC_POL
HADDR
RO s1 L PIC_STATUS.1
PIC_POL.1
HWRITE
HDATA.1
PIC_ENABLE.O
HADDR
°
. PIC_ENABLE.1 IRQ_OUT
([ ]
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Figure 4.26. Programmable Interrupt Controller (PIC)

When enabled, the PIC supports between two and eight external interrupt inputs. The PIC has an AHB-Lite control interface
consisting of four registers: PIC_STATUS, PIC_ENABLE, PIC_SET, and PIC_POL (polarity).

The interrupt channels for PIC are not complicated. The flip-flop holds the current pending interrupt state of the channel
and the state can be read via the PIC_STATUS register. The input is inverted or not inverted based on the value of the
respective bit in the PIC_POL register. The pending state can be cleared by an AHBL write to the PIC_STATUS register
address with a value of one in the respective data bit. The firmware can force a channel into the pending state by writing a
one to the corresponding bit of the PIC_SET register. The bits in the PIC_ENABLE register control whether a pending
interrupt on the respective channel causes the IRQ output to be asserted. All channels are identical and the channels are
independent from one another.

In the RISC-V MC and SM processors, IRQ_OUT output from the PIC drives the external machine interrupt input to the CPU
core.
4.5.2.2. Platform Level Interrupt Controller (PLIC)

The Platform Level Interrupt Controller (PLIC) is defined by the RISC-V Task Group. The Lattice RISC-V RX processor uses the
PLIC as the interrupt controller. Figure 4.27 shows the block diagram of the PLIC from the specification.
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Figure 4.27. Platform Level Interrupt Controller (PLIC) Block Diagram

PLIC has up to 1024 interrupt sources. The Lattice RISC-V RX implementation supports only up to 32 interrupt sources. The
first interrupt, interrupt zero (at the left of Figure 4.27), is reserved and not functional.

The PLIC has two outputs, one for machine privilege level external interrupts and one for supervisor level external
interrupts.

The gateways at the top of the block diagram recognize and queue up interrupts. The PLIC gateways in the RISC-V RX
support only level sensitive, high true, interrupts. When a gateway detects an interrupt assertion, the gateway sets the
corresponding interrupt pending bit, IP.

The interrupt priority of an interrupt is a programmable register. When the interrupt pending bit, IP, is set, the interrupt
priority bit field is forwarded to the PLIC core. If the interrupt enable bit, IE, is set for machine or supervisor outputs, the
interrupt priority continues to be forwarded towards the respective output.

If a second, lower numbered interrupt is also pending at the same time, the two priorities are compared. The larger of the
two continues to be forwarded, along with an interrupt ID field. If both interrupts have the same priorities, the interrupt
with the lower interrupt ID value continues to be forwarded.

The winning priority is then compared with an interrupt threshold that is programmable on a per output basis. If the
priority of the interrupt is greater than the threshold, the external interrupt pending bit, EIP, is set and the interrupt is
asserted to the appropriate privilege level of the CPU.

The PLIC employs a Claim/Complete protocol to service and retire interrupts. To initiate a claim, the firmware performs a
read of the claim/complete register of the PLIC. The PLIC returns the ID of the highest priority interrupt that is pending. If
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no interrupt is pending, the PLIC returns a zero, the ID of the reserved, non-functional interrupt input. During the claim, the
PLIC also clears the claimed interrupt’s interrupt pending bit, IP.

Although the claimed interrupt’s IP bit is cleared, the interrupt cannot occur again until the PLIC receives a completion from
the firmware. The firmware performs a completion by writing the interrupt ID back to the claim/complete register. The
completion is the final step in handling the interrupt.

For complete technical details on the PLIC, see the specification in the RISC-V Platform-Level Interrupt Controller
Specification web page and the RISC-V RX CPU IP Core User Guide (FPGA-IPUG-02241).

4.5.3. Lattice RISC-V Trap Handlers

The trap handling firmware that is part of the Lattice RISC-V BSPs is written in assembly. The trap handlers for RISC-V
MC/SM and RISC-V RX are different, primarily because of the different execution environments for the processors: bare
metal for RISC-V MC/SM and FreeRTOS for RISC-V RX.

Both trap handler routines perform the same general operations as follows:

1. Save the CPUs state, such as register file and key CSRs.

2. Determine the source of the trap: interrupt or exception.

3. Call the appropriate handler routine.

4. Restore the CPUs state. The state may be different following a task switch.
5

Execute the appropriate return instruction to resume the program.

4.5.3.1. Bare Metal Trap Handler
Figure 4.28 shows the bare metal trap handler that is part of the RISC-V MC/SM BSP.
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Figure 4.28. Bare Metal Trap Handler for RISC-V MC and SM

The trap_entry symbol marks the beginning of the trap handler routine. The startup code uses this symbol to initialize the
mtvec CSR. This assignment causes the CPU hardware to jump to the trap handler when an interrupt or exception occurs.

RISC-V hardware does not automatically push the CPU state to the stack. The firmware stores the state of the machine
during an interrupt by using a series of sw (store word) instructions and the addi operation. The sixteen registers stored
are used by the bare metal execution environment. The integer addition operation updates the stack pointer by subtracting
sixty-four bytes (16 words), the amount that the stack has grown downward in memory.
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After the CPU state is saved, the trap handler retrieves the value in the mcause CSR and loads the value into a register, a0,
for comparison. The most significant bit of mcause indicates whether the trap is caused by an interrupt or an exception. As
the most significant bit is also the sign bit, a branch if less than zero (b1t z) instruction can be used to test the value of the
bit and branch to the appropriate routine to handle the trap.

For an interrupt, the C function, irq_callback () is called.

63 O x

L.¢] interrupt.c X = B8
56=void irq_callback(unsigned int mcause) .
57 {
58
59 if ((mcause & MCAUSE_VAL MASK) == MCAUSE_VAL MTIP) {
6 if (int_table[S INT TIMER].isr) {

Call Timer ISR EY int _table[S INT TIMER].isr(int table[S INT TIMER].
62 context);
63 L}
64 } else if ((mcause & MCAUSE_ VAL MASK) == MCASUE_VAL MEIP) {
65 int idx;
66 for (idx = S _INT_PICO; idx < S_INT NUM; idx++) {
Retrieve External Interrupt ISR and 67 | if (pic_int_pending(idx)) {
Call with Corresponding Context 68 if (int_table[idx].isr) {
69 int_table[idx].isr(int_table[idx].
70 context);
71
Clear Interrupt — » pic_int clear(idx);
73 1
74 }
75 }
76 }
77 v
< 2>

Figure 4.29. Bare Metal BSP irq_callback( )

The irqg_callback () function relies on a global, array-based table named int_table. The table stores the following

pointers:

e Function pointers to the interrupt service routines for the timer and the external interrupts.

e A pointer to a context data structure for each interrupt input. The pointer is passed to the interrupt service routine
when the routine is called.

The context data allows the service routine function to avoid hard coding key parameters such as the base address of an
associated peripheral. It also permits a single function be used as the interrupt service routine for multiple instances of the
same type of peripheral.

The initialization routine of the timer configures the table entry for the timer ISR. Table entries for the external interrupts
are initialized by APl calls to the pic_isr register () function.

When called, the irq_callback () function determines the source of the interrupt and looks up the corresponding table
entry in int_table. The function calls the ISR function using the context data. Once the ISR finishes processing the
interrupt and returns, the interrupt is cleared in the PIC (if the interrupt was an external interrupt) and program flow
returns to the trap handler where the CPU state is restored and normal program execution resumes.

4.5.3.2. Lattice FreeRTOS Trap Handler

Lattice’s trap handler for the FreeRTOS execution environment is split between an assembly routine and a C function.
Figure 4.30 shows the trap handler assembly code for the Lattice implementation of FreeRTOS. The code is executed when
an exception occurs. The code is also executed when an interrupt occurs, and the core is set for Direct mode interrupts.
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Figure 4.30. Trap Handler (Direct Mode) for Lattice Implementation of FreeRTOS

FreeRTOS declares and maintains a table of state contexts. FreeRTOS uses the mscratch CSR to hold a pointer to the table
entry for the currently running task.

The trap handler routine first retrieves the pointer to the current state context by swapping the contents of mscratch
with the register, t 6. The routine then saves the contents of the register file to that table entry using the reg_save
assembly macro. After the other register values have been saved, the original value of t 6 is retrieved and stored. The
address of the instruction that was interrupted is retrieved from the mepc CSR and is the final state information that is
stored to the state context table.

Once the CPU state has been stored, the assembly routine calls the C language portion of the trap handler. The function is
called with the values of the CSRs, mepc, mcause, and mscratch in the argument registers, a0-a2.

Figure 4.31 shows the C language portion of the trap handler.
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He | X
[g] trap.c 3¢ = 0
93=reg t trap_handler(reg t epc, reg t cause, context t *cxt) ~
94 {
95 reg t return_pc = epc;
96 reg t cause code = cause & Oxfff;
97
98 if (cause & ©@x80000000) {
99 /* Asynchronous trap - interrupt */
100 // DEBUG("interrupt!, cause=%d\r\n", cause code);
101 isr_callback(cause code);
162 } else {
103 /¥ Synchronous trap - exception */
104 // DEBUG("exception!, cause=%d, epc=0x%08x\r\n", cause code, epc);
105 return_pc = esr_callback(cause code, epc, cxt);
106 1
107
108 return return_pc;
109 } y

Figure 4.31. C Language Portion of Trap Handler for FreeRTOS

The most significant bit of the mcause CSR indicates whether the trap is an interrupt or an exception. The
trap_handler () function calls the BSP callback function according to the CSR bit. Figure 4.32 illustrates the program
flows when handling software, timer, and external interrupts.
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plic_int_table[irq].isr(plic_int_table[irq].context);

plic_complete(mode, irq);

Figure 4.32. Program Flow for Handling Interrupts

Each type of interrupt has its own handler function. All handler functions use a data structure that holds a function pointer
to the respective interrupt service routine and a pointer to a context data for the interrupt service routine to process the
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interrupt. When an interrupt occurs, the interrupt service routine is called with the pointer to the context data as an
argument.

As multiple external interrupts may occur, the data structures are organized as an array, plic_int_table. The entriesin
plic_int_table are ordered to match the corresponding interrupt IDs in the PLIC. When the interrupt handler
performs a PLIC claim operation, the table index is the ID that the PLIC returns.

The external interrupt handler uses this index to retrieve the function pointer to the interrupt service routine and context
data. Once it has called the interrupt service routine and the routine returns, the external interrupt handler completes the
interrupt with the PLIC hardware and returns to the trap handler.

The trap handler then restores the CPU state. The restored state can be the original task or the next task in FreeRTOS’s
ready queue, if a task switch occurred during the interrupt.

4.5.4. Using the Lattice RISC-V BSP Interrupt Firmware

The differences between the programmable interrupt controller (PIC) of RISC-V MC and SM and the platform level interrupt
controller (PLIC) of RISC-V RX include the driver firmware that is provided to initialize and control the hardware.

However, the BSP drivers for the PIC and PLIC utilize a table to support external interrupts. Each entry in these tables stores
a pointer to the interrupt service routine function and a second pointer to context data for the interrupt service routine to
process the interrupt.

Initialize these tables for the trap handling firmware in the BSP to call the appropriate interrupt service routine when an

interrupt occurs. The PIC and PLIC drivers provide API calls to register external interrupts to the corresponding entries in the
interrupt table. These calls also enable the interrupt in the interrupt controller hardware.

4.5.4.1. pic_isr_register()
The call signature for pic_isr_register() is:
unsigned char pic_isr_register(unsigned char src,
void (*isr) (void *),
void *context)

where,
src: PIC input port number (interrupt number)
isr: pointer to the ISR function
context: void pointer to the associated context data structure

The pic_isr_register() function initializes the interrupt’s entry in the int_table global array. The function also
enables the interrupt in the PIC hardware.

The pointer to the context is passed as a void pointer to be generic. If you develop a driver for custom hardware, define a
data structure to hold the information required by the ISR. Register pointers to instances of that data with BSP by casting
the data as type void *.

4.5.4.2. plic_int_register()
The call signature for plic_int_register() is:
int plic_int_register(uint8_t src,
uint8_t priority,
uint8_t mode,
irqg_handler isr,
void *context)

where,
src: PLIC input port number (interrupt number)
priority: PLIC priority of the interrupt
mode: privilege level of the interrupt, supervisor or machine level
isr: pointer to the ISR function
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context: void pointer to the associated context data structure
The plic_int_register() function initializes the interrupt’s entry in the plic_int_table. The function also initializes the
PLIC hardware for the interrupt including the priority and enabling the interrupt at the correct privilege level.
The pointer to the context is passed as a void pointer to be generic. If you develop a driver for custom hardware, define a
data structure to hold the information required by the ISR. Register pointers to instances of that data with BSP by casting
the data as type void *.
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5. RISC-V System Debugging

5.1. Using OpenOCD Debugger and Reveal Analyzer

The Lattice Propel SDK supports software debugging using OpenOCD and GNU GDB to debug software related issues. The
Lattice Propel SDK User Guide (FPGA-UG-02195) provides information about using the OpenOCD debugger.

The Lattice Radiant software and the Lattice Diamond software provide the Reveal Analyzer for debugging Lattice FPGA
designs. This debugging method monitors the FPGA logic and signals for finding hardware related issues. The Debugging
with Reveal Usage Guidelines and Tips Application Note (FPGA-AN-02060) provides information about using the Reveal
Analyzer.

Because problems encountered during FPGA embedded system development is difficult to identify whether it is software or
hardware related, use the OpenOCD Debugger and Reveal tools to perform root cause investigation. An example is when
the software code performs the correct sequences to setup the hardware but the expected behavior is not observed.
Capture the hardware signals using the Reveal Analyzer to provide insight for the issues. Coupled with software debugger,
software execution (using breakpoint) can be paused at the precise moment for the Reveal Analyzer to trigger on the
desired conditions and capture the signals.

Figure 5.1 shows the general flow when debugging using the OpenOCD Debugger and the Reveal Analyzer.

www.latticesemi.com/legal


http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=54001
https://www.latticesemi.com/view_document?document_id=53770
https://www.latticesemi.com/view_document?document_id=53770

Lattice RISC-V Embedded Design Guidelines

s LATTICE

Application Note
Add Logic Analyzer using
Revel Inserter for current
Lattice Radiant/Lattice
Diamond project

Setup Trace Slgnals of the
component under debug

Setup the Trigger Conditions
for Reveal Analyzer to capture
the trace signals

C

ecompile project to obtain
updated bitstream

4{ rogram bitstream to FPGA)

(

ex

Start Debug session in Lattice

Propel SDK. Execute code up
c

Create software project in
Lattice Propel SDK and
develop the software

A 4

Build software project to obtain
executable binary

Create Debug Configuration in
Lattice Propel SDK without
starting the Debugger

A 4

Set breakpoint at code under
debugging

Create a new (or open
isting) Reveal Analyzer. The
Analyzer is in Ready state.

to the breakpoint and pause.

o to Reveal Analyzer and
lick Run to start capturing and

{ wait for trigger condition.

A 4

at executes hardware access
when Trigger condition

Go to Lattice Propel SDK
Debugger and step the code
th,

happens.

Analyze waveform captured in
the Reveal Analyzer to identify
potential root cause.

Figure 5.1. Debugging Flow Using the OpenOCD Debugger and the Reveal Analyzer
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5.2. Using Breakpoints

Breakpoints are a fundamental tool in the debugging process. They permit the designer to halt the program execution when
reaching a prespecified condition. The designer can then perform typical debug functions such as checking the state of the
CPU’s registers and CSRs, verifying that variables in memory contain expected values, and observing program flow by single
stepping the code following the breakpoint.

Lattice RISC-V implementations currently support two types of breakpoints: software breakpoints and hardware
breakpoints. Both types of breakpoints halt program execution when reaching a particular location in the instruction
memory. However, the approaches are different for the two types of breakpoints.

5.2.1. Hardware Breakpoints

A hardware breakpoint uses a comparator to test the value of the program counter against a value that debugger utility
programs into the debug logic. When the PC matches the hardware breakpoint address, control of CPU execution is
transferred to the debug core.

Execution resumes only when the debugger utility directs the CPU debug core to exit the debug state. The instruction that
resides at the address of the hardware breakpoint is executed upon return from the debug state, not prior to entering it.

Lattice RISC-V CPUs support two hardware breakpoints.

5.2.2. Software Breakpoints

The RISC-V ISA defines a special instruction, EBREAK, that passes control to the debugging environment. The debugger uses
the EBREAK instruction to implement software breakpoints.

When a developer sets a software breakpoint, the debugger utility identifies the address in program memory that
corresponds to the targeted line of source code. The debugger utility replaces the instruction at that target address with the
EBREAK instruction or the 16-bit equivalent, C.EBREAK, depending on the size of the original instruction.

When the program execution encounters the EBREAK instruction, control is transferred to the CPU debug module which
halts the program execution. The developer can examine or modify the system state according to their debug strategy.

When the developer commands the debugger to resume program execution, the debugger performs the following
operations:

1. Replace the EBREAK instruction with the original instruction.

2. Transfer control to the CPU to execute the original instruction.

3. Rewrite the EBREAK instruction back to the location of the software breakpoint.

4. Resume normal program execution.

The RISC-V CPUs support unlimited software breakpoints as software breakpoints do not rely on finite hardware resources.

However, when using software breakpoints, the debugger must be able to modify instruction memory at the address of the
targeted instruction. If the debugger is unable to modify the instruction memory, the design can only use hardware
breakpoints. For example, a design that executes instructions from SPI flash via Execute in Place (XiP) feature must use
hardware breakpoints as the debugger is unable to dynamically alter the SPI flash memory. Similarly, the Physical Memory
Protection unit (PMP) for RISC-V RX could be configured to block write access to instruction memory following startup.

5.3. Using Semihosting

Semihosting is a mechanism that enables code running on the target to communicate with and use the I/O of the host
computer. This method is useful during the development stage to output messages to the debug console without using the
UART interface. Semihosting operates by stopping the processor execution and transferring the data from target to the
host. Hence, semihosting generally does not provide high performance.

Lattice Propel SDK provides semihosting support. You can enable semihosting during project creation or changing the
project property after project creation.
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5.3.1. Enabling Semihosting During Project Creation in Lattice Propel SDK

Select Semihosting (--oslib=semihost) under System Library when creating a new C/C++ project in the Lattice Propel SDK as
shown in Figure 5.2.

S C/C++ Project O X

Lattice Toolchain Setting

Configuration: | Debug ~

Lib Setting  C/C++ Compiler C/C++ Linker

() Mo default libraries (-nodefaultlibs)
(O Newlib

() Newlib-nano (--specs=nano.specs)
(®) Picolibe (--specs=picolibc.specs)

Printf Level
(®) Integer only printf (-DPICOLIBC_INTEGER_PRINTF_SCANF)

() Float printf {-DPICOLIBC_FLOAT PRINTF_SCANF)
(O Full printf (-DPICOLIBC_DOUBLE_PRINTF_SCANF)

System Library
(O Default

(®) Semihosting {--oslib=semihost)
() Dummyhosting (--oslib=dummyhost)

f:?;' < Back MNext = Cancel

Figure 5.2. System Library Settings During C/C++ Project Creation

5.3.2. Enable Semihosting After Project Creation

If semihosting is not selected during project creation, you can change the project property to enable semihosting as follows:
Select the project in the Lattice Propel Project Explorer window.

Click File > Properties.

Select C/C++ Build > Settings > GNU RISC-V Cross C Linker > Miscellaneous.

In Other linker flags, type --oslib=semihost.

Click Apply and Close.

S e

Click Project > Build Project.
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type filter text

Resource
Builders
w C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
MCU
Project Natures
Project References
Run/Debug Settings
SystemVerilog Project Prop:
Task Tags
Validation

o . .
i.: Properties for riscv_me_helloworld

Settings

Configuration: | Debug [ Active ]

& Tool Settings 1) Toolchains M Devices # Build Steps

~

Build Artifact Binary Parsers @ Error Parsers

@ Target Processor
(# Optimization
@ Warnings
(2 Debugging
~ 13 GNU RISC-V Cross Assembler
@ Preprocessor
(# Includes
@ Warnings
@ Miscellaneous
~ 1 GNU RISC-V Cross C Compiler
@ Preprocessor
(# Includes
@ Optirnization
(# Warnings
@ Miscellaneous
~ B3 GNU RISC-V Cross C Linker
# General
@ Libraries
@ Miscellaneous
~ 3 GNU RISC-V Cross Create Listing
@ General
~ 83 GNU RISC-V Cross Print Size
@ General
w 183 Lattice Create Memory Deployment
@ General

Linker flags (-Xlinker [option])

Manage Configurations...

LER AR AR

Other objects

LER AR

Generate map | "&{BuildArtifactFileBaseMName}.map"

[] Cross reference (-Xlinker --cref)

[ Print link map (-Xlinker --print-map)

[ Use newlib-nane (--specs=nano.specs)
[] Use float with nano printf (-u _printf_float)
[[] Use float with nano scanf {-u _scanf_float)
[1Do not use syscalls (--specs=nosys.specs)
[ Verbose (-v)

Other linker flags | --specs=picolibe.specs -DPICOLIBC_INTEGER_PRINTF_SCANF --oslib=semihost ‘

Restore Defaults

Apply

Apply and Close

Figure 5.3. Enable Semihosting After Project Creation

Cancel

Semihosting supports file I/O access to the host using fopen, fwrite, and fread functions. To enable this feature, set the
heap size to non-zero in your project linker script as follows:

1.
2.
3.

Double click linker.ld.

Change the HEAP_SIZE value. You can set the value to 0x800 as shown in the example in Figure 5.4.

Expand the project in Project Explorer and locate the linker script in src > linker.Id.
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Linker Script: linker.ld

Available Memory Regions

Name Attributes  Base Address Size
sysmem{_inst WX Ox0 s 8000

STACK and HEAP Size

HEAP_SIZE: | 0x800 |
STACK_SIZE: | 0xADD |

Figure 5.4. Changing Linker Script Heap Size

Write code in application that exercises fopen, fwrite, or fread.

5. Clean and rebuild the project.

5.4. Setting UART Serial Interface

Serial interface such as UART is a debug technique for printing messages to the console.
Most Lattice development boards have a component that converts the USB interface to UART. This conversion allows the
board to send or receive UART signals to computer over the USB.

Figure 5.5 shows the Certus-Pro NX Evaluation Board which has the FTDI2232H chip for USB to UART interface. The UART
signals are connected to the BDBUS channel of the chip, and shares the channel with the 12C interface. Install jumpers on
the board to connect the UART signals to the FTDI2232H chip.

When assigning FPGA pins to the UART controller in your Lattice Propel Builder system, assign the UART IP TXD signal to the
RXD pin and IP RXD signal to the TXD pin of the FTDI2232H chip.

When opening a Terminal program on computer (for example Putty or TeraTerm), the program may show 2 COM ports
instead of 1. As there are 2 channels on the FTDI2232H chip, select the COM port that corresponds to the number of
channels on the chip. The larger number COM port represents the UART interface.

Refer to the development board user guide and schematic when performing pin assignments and using the UART interface.
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Figure 5.5. CertusPro-NX Evaluation Board UART Interface Schematic
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Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.
For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.
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