= LATTICE

Composable Custom Extensions on
Lattice RISC-V RX User Guide

Application Note

FPGA-AN-02075-1.1

March 2024

Composable Custom Extensions on Lattice RISC-V RX User Guide .I.ILATTICE

Application Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The
information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered
inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have
been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE
PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK
USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE
REDUDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF
FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and other
items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as
register names and state names it has been necessary to continue to utilize older terminology for compatibility.

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1 2

http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

= LATTICE

Contents
ACroNYMS iN THiS DOCUMIEBNTueiiiiiie ettt ettt e e e e e ettt e e e e e e e e s etbaeeeeeeee s ataaeeaaeeesasstasseaeaaesassssaeeaaassanssasaeaeesesannsseannes 6
O [o o (3ot { To T o [PPSR PP 7
1.1. N E T a1 aT=A 00T a1V7=To | o] o IR PP PPPPPPPPPPPRE 7
000 I O T 4o T=T o Vol P U OO RPN 7
0 0 R - { o - | I V- Y 'R 7
B O 1V =T VT TP PSP PP PR UPPPOPI 8
3. CFU-LI: Interface Between RISC-V @nd CFUcocciiiiiiiiiiiieeite ettt ettt ettt et seee s b e s bt e sbeessatessaeesneesneen 9
3.1. SIBNAI DEFINITIONS ...ttt et sb et e bt e e bt e s bb e e bt e e sbe e e bt e e sbbeeneeesmbeesabeesnreenneeenns 9
3.2. CFU FATUIE LEVEIS ...ttt ettt ettt ettt e e sttt e st e e s sa e e e s ate e e s aaee e e sabaeeeenstaeesnasaeessasaeeesssanennnns 10
3.3. CFU-L2 in the Lattice Propel BUilder SOfLWAIEceiiiiiie ettt s e e et eeba e e e ebae e e e sareeeenes 10
L o S W Yo T = T =T o o =Y USRS 12
4.1. O RS ettt ettt ettt ettt ettt e s bt ettt e h e e a et e h e e hte e b et e bt e e b te e bt e e b eeenh et e b te e hteenh e e e nhbeeah e e e nh b e e ehbeenhbeenhbeenhbeenhteenaeeenateenaaeens 12
g R o 4Tt U Y=Y =Yt] o O R 12
g A o1 U =Y (U O 2 SR 13
4.2. LT AU ot o T o PP PP OPP PP 13
4.2.1. R-EYPE ENCOING . ittt ettt et h et e s bt e bt e s bt e e be e e s ae e e sabeessbeesneeesbbeesnbeesnreennneenns 13
Ny N B Y/ o Y= 3l o Tolo Yo [T V- TR USSR 14
4.2.3. FIEX-TYPE ENCOTING . .uveiiiiiie ittt ettt e et e e et e e e et e e e e eabae e e etaeeaeateeeeeasaeaesabseaeastseesansaeeeansanaann 14
4.2.4. Software Model and the CFU-LIccooiiiiiiiiiieiieiieeie sttt site e sia e steesite e sabeesaaeesabeessaeesaseesaneenas 15
4.3. FITIMNIWAIE <.ttt ettt ettt e sttt e e st e e e bttt e s bt e e s sabeeeeesbeeesanbaeeesase e e e easbeeesansbeeesabneeesnbeeesansneeenanneas 16
Y XYY o1 o LY A I Y V= U= - SR 16
o B 11 B YL W T o= U =SSR 17
T e O o = o] fe Yol T o Tl 1V = Lol o L PO PP OPPP PP 21
5. DESIGN EXAMIPIES ..ttt ettt et sttt e b e e bt bt e e b e s bt e e b et bt e e b et e bt e e bt e e bt e e b e e e bt e e b e e ebeesares 27
5.1. SiMpPle ENdIaNNess CONVEISIONccciiiiieiitieeeeiteeeeetteeesteeeeestteeeeebaeeesetaaeeesataeaeassasesassseeasasaesaanssssesassseesssenaann 27
5.1.1. Propel BUIldEr SOfEWAIE. ...cc..viii ettt ettt e et e e e st e e e e et e e e e ntaeeesataeeeestaeesnssaeeesasaeaeasseeennnes 27
T80 00 o T o R =1V Y I I PR SSPRRN 28
5.1.3. Endianness SWapping CFU MOAUIE RTL.......uuiiiciieeiiiiieeeiiee e eeteee e stteesesete e e s teae e saaeeeesnteeessnnneeesnsaneesnseesnnnes 29
TR 0 S =Y o Y o] [[411 2= 1 SR SPSRN 31
2 0] =T T o ol TSRS TUPRR 32
TEChNICAl SUPPOIT ASSISTANCE .ceuviiiiiieiiieiie ettt ettt ettt e et e bt e s bt e bt e e bt e e bt e e bt e e beesabeeebeeeabeeebeesabeeebeesabeeeabeesareean 33
LAY EY o] T 113 0 /N 34

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Composable Custom Extensions on Lattice RISC-V RX User Guide .I.ILATTICE

Application

Note

Figures

Figure 2.1.
Figure 3.1.
Figure 3.2.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 4.8.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 5.5.

SIMPIE CFU-BASEU SYSTEM....uiiiiiiiieiiiiiee ettt ettt e e e e e e e et e e e e e e e eeattataeeeaeeeessstasseaaseesasstaassaaeeesansssaneaaeaesansrrnns 8
R OV 2y oY o i T={V] =Y o] s I C1U] DRSPS 10
CFU-LI Exported to Higher Level of HIErarChy..........ooeiir ettt et e e e e eere e e s e e e snrae e eenens 11
[3g Lot 0 Y=Y LYot o] g 1] 2R (014 200) PR 12
cfu_status CSR (0x801)
CFU R-type Instruction
CFU I-type Instruction....
CFU flex-type InStructioncccceeveereeneeneeniennnen.
CFU flex-type Instruction Alternate Encoding
Relationship between Instructions and CSRs of the CPU and the CFU-LI
Enabling the Preprocess ONlY OPtioNiie it eee et e e e re e e seae e e estt e e e eensaaeesasaeeeessraeesnnsneeesnseeeenns
ENable CFU POt 0N RISC-V RX..uuiiiiiiiiieeiee ettt ettt st s bttt s bt st e st e s bt e sabe e s bt e sabeesabeesabeesbeesabeesneesabeesneenane
RISC-V RX Design Exporting CFU-L2, Clock and RESELccceccuiiiiiiiieiciieecctes ettt se e e s e e eeaaae e e snaee e
TOP-LEVEI RTL .ttt ettt ettt ettt et e bt e be e e bt e be e e bt e e bb e e bt e e bbe e bt e e abb e e beeesbbe e beeesmbeesnneesnbeennneens
Endianness SWapping CFU MOTUIE.......co.ii ittt ettt st st sb e s e s bt e sabeesneesane
Endianness SWapping EXamMPIe FIFMWAIEcccuiiiiiiieeeeciieeeeiiee e eitee e e eitee e e tte e e etaee e e tbeeeeebaeeesabasaeesreeeeessaeeesssnaans

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1 4

http://www.latticesemi.com/legal

Composable Custom Extensions on Lattice RISC-V RX User Guide .I.ILATTICE

Application Note

Tables

TabIE 3.1, CFU-LI POt D iNitiONS .uveeiiiiiieciiteeiie e eeccitteee e eecettee et e e e e e setbee e e e e e e e s bbareeeeeeesesbaaaseeeeesesssssaeesesesassssbeseseessensssraneseessannes 9
TADIE 3.2. CFU FEATUIE LEVEIS ... ettt ee ettt e e e e et e et e e e e e s tbaaaeeeeeesesbasaeeeeeesanssssaaeeaeeeanssssaaeeeeseesansraraaaeeas 10
Table 4.1. RISC-V ISA Opcodes (INS[1:0] = 11) .iiiiiieiiiiiieeiieeeieeeies et e et et eete e e steesbeeebeeesteeebeessbeesseesaseesseesnseesnseesnsessnseennne 13

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1 5

http://www.latticesemi.com/legal

= LATTICE

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

ABI Application Binary Interface

CFU Custom Function Unit

CFU-LI Custom Function Unit Logical Interface

CPU Central Processing Unit

CSR Control and Status Register

CcX Composable Extension

CXu Composable Extension Unit

GUI Graphical User Interface

HDL Hardware Description Language

ISA Instruction Set Architecture

RISC-V An open-source instruction set architecture based on reduced instruction set computing (RISC) principles.
This free and open standard enables a new era of processor innovation through open standard
collaboration.

RTL Register Transfer Level

SDK Software Development Kit

SoC System on Chip

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

Lattice Semiconductor’s RISC-V RX CPU includes an optional interface to a composable extension unit (CXU), also known as
custom function unit (CFU). This interface enables the addition of user-defined custom instructions that can be used to
accelerate complex and/or regularly executed operations, thereby improving system performance.

The purpose of this application note is to provide an introduction on how to implement a simple CFU, connect it to the
RISC-V RX core, and write firmware that executes CFU-specific instructions.

1.1. Naming Conventions

1.1.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

Note: The RISC-V Composable Custom Extensions Specification had recently been updated to change key terminology
custom function unit (CFU) to composable extension unit (CXU). However, the RISC-V Composable Custom Extensions
Specification is still in the draft stages and is subject to change. This document will continue to use the older
terminology—CFU—until the newer term is widely adopted by the community. For more information, refer to the
latest RISC-V RX CPU IP User Guide (FPGA-IPUG-02230) and the RISC-V Composable Custom Extensions Specification.

1.1.2. Signal Names

e _nare active low (asserted when value is logic 0)
e _jareinputsignals

e o areoutput signals

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53848
https://github.com/grayresearch/CX/blob/main/spec/spec.pdf

= LATTICE

2. Overview

The Composable Custom Extensions Specification is an emerging industry standard. Lattice’s RISC-V RX core implements a
subset of the features described in the specification to enable the addition of custom accelerators while avoiding negative
impacts on CPU core performance.

The Composable Custom Extensions Specification defines a CFU logical interface (CFU-LI) and protocol by which a RISC-V
CPU can be attached to and communicate with one or more custom accelerator blocks.

Figure 2.1 shows the relationship between a Composable Custom Extensions-compliant RISC-V core, a CFU, and the CFU-LI
that connects the two.

CFU-LI
RISC-V < > CFU

Figure 2.1. Simple CFU-Based System

The specification allocates three of the op codes that the RISC-V instruction set architecture (ISA) reserves for custom
instructions. When executed by a Composable Custom Extensions compliant core, these instructions cause the core to issue
a request over the CFU-LI to the targeted CFU.

A request will generally include two operands: either the contents of two of the registers in the CPU’s register file or a single
register from the register file and an immediate value. The CFU-LI can use handshaking similar to AXI4 for both request and
response transactions and this allows a CFU to support fixed or variable length processing delays. Once the CFU has
processed a request, it responds with status information and an optional result. The result is stored in the RISC-V’s register
file at a location specified by a field within the instruction that initiated the request.

The Composable Custom Extensions Specification also assigns a small subset of the Control and Status Registers (CSRs) that
are reserved by the RISC-V ISA for the purposes of adding custom features. These CSRs are used to configure the CFU-LI, to
select the current target CFU, and to select the CFU’s state context, if the implemented function is stateful and multiple
threads are using it. CFU status information is accumulated in one of these CSRs and can be read back or cleared via
standard RISC-V CSR read/write instructions.

Note: The Lattice Propel™ Builder design environment does not provide CFU switching infrastructure and does not support
the composable custom extensions feature, IStateContext.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. CFU-LI: Interface Between RISC-V and CFU

The CFU-LI is an interconnect and protocol by which the RISC-V issues requests to the CFU and the CFU communicates

responses.

3.1.

Signal Definitions

The signals defined in the CFU specification are repeated in Table 3.1.

Table 3.1. CFU-LI Port Definitions

Signal Name Direction Width Parameter Width Level Description

clk system -> CFU — 1 1+ CPU core clock

rst system -> CFU — 1 1+ System reset

clk_en system -> CFU — 1 1+ Clock enable

req_valid CPU -> CFU — 1 Request Valid: Handshaking signal indicating that the
CPU is sending a request.

req_ready CFU -> CPU — 1 2+ Request Ready: Handshaking signal indicating that CFU
is ready to receive a new request. Required for variable
latency CFU types.

req_id CPU -> CFU CFU_REQ_ID_W N/A 3 Request ID: To track outstanding requests with
reordering (Feature Level 3) type CFUs. Not supported
by RISC-V RX.

reg_cfu CPU -> CFU CFU_CFU_ID_W 4 All Request CFU ID: To identify which CFU is being
requested in a multiple CFU design.

req_state CPU -> CFU CFU_STATE_ID_W | 3 1+ Request State ID: Selects which state to use when
processing the request. For example, in cases where
multiple threads use the same stateful CFU.

reg_func CPU ->CFU CFU_FUNC_ID_W 3 All Request Function ID: Selects which function to perform
within the specified CFU (For example, load state vs.
accumulate).

reg_insn CPU -> CFU CFU_INSN_W 32 2+ Request Raw Instruction: The entire 32-bit instruction
whose execution generated the request.

req_data0 CPU -> CFU CFU_DATA_W 32 All Request Operand Data 0: The first operand of the
requested CFU operation.

req_datal CPU -> CFU CFU_DATA_W 32 All Request Operand Data 1: The second operand of the
requested CFU operation.

resp_valid CFU -> CPU — 1 1+ Response Valid: Handshaking signal from the CFU
indicating that the CFU has completed the requested
operation and that the result is available on resp_data.

resp_ready CPU -> CFU — 1 2+ Response Ready: Handshaking signal from the CPU
indicating that it is ready to receive the CFU response.

resp_id CFU -> CPU CFU_REQ_ID_W N/A 3 Response ID: To track outstanding requests with
reordering (Feature level 3) type CFUs. Not supported
by RISC-V RX.

resp_status CFU -> CPU CFU_STATUS_W 6 All Response Status: Carries a success or error code from
the CFU in response to a request.

resp_data CFU -> CPU CFU_DATA_W 32 All Response Data: The result of the CFU operation.

Written to a register within the register file specified by
the rd field of the instruction that initiated the request.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Composable Custom Extensions on Lattice RISC-V RX User Guide .I.ILATTICE

Application Note

3.2. CFU Feature Levels

The CFU Specification defines four feature levels (0-3), as shown in Table 3.2. However, the RISC-V RX is configured to
support feature level 2 only. Consequently, the CFU ports on the RISC-V RX are of type CFU-L2.

Table 3.2. CFU Feature Levels

Feature Level CFU Type RISC-V RX Support
0 Combinatorial Requires an adapter
1 Fixed latency Requires an adapter
2 Variable latency Supported

3 Reordering Not supported

Feature levels 0 and 1 can be supported by driving the level 2 inputs to the CPU core to the appropriate constant logic
levels. Feature level 3 is not supported.

3.3. CFU-L2 in the Lattice Propel Builder Software

When a RISC-V RX is instantiated within the Lattice Propel Builder software, one or two CFU ports can be exported by
enabling the checkbox for the Enable cfu port option and selecting the number of CFU ports, as shown in Figure 3.1.

&, Module/IP Block Wizard X

Configure Component from Module riscv_rtos Version 2.2.0
Set the following parameters to configure this component.

Diagram cpud Configure IP
4| Property Value

~ General
Processor Mode Balanced
~ Debug Configuration |

Debug Enable

~ Debug Configuration
JTAG Channel Selection for Certain Devices [14- 16] 14

~ Tightly Ce
Lo

TCM Enable =2

cpu0 ~ Instruction/Data Configuration

Instruction Port Enable =2

AXI_M_DATAH

R
FHiRQ 52 AXI_M_INSTRH

[HRQ_S3

CFU_L2_M - CRu
clk_realtime_i qE %E s -
LOCAL_BUS_M_DATAH nable cfu port
clk_system_i Number of CFU [1-2]
LOCAL_BUS_M_INSTRHH |~ Fiiccanm

rstn_i

AXI Register Slice Type 0

system_resetn_o Number of User Interrupt Requests. [1 - 30] 2
Interrupt for Supervisor Mode
Width of PLIC pricrity register [2 - 3] 3
~ NMI Configuration
Non-maskable interrupt enable
~ Optional Local slaves
Enable UART instance
~ Local UART

riscv_rtos

4 > No DRC issues are found.

Generate Cancel

Figure 3.1. RISC-V RX Configuration GUI

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1 10

http://www.latticesemi.com/legal

Composable Custom Extensions on Lattice RISC-V RX User Guide .I.ILATTICE

Application Note

Once a CFU-enabled RISC-V RX is present in a Propel Builder design, it can be connected to your custom logic by exporting
the CFU-L2 port to a higher level in the hierarchy, as shown in Figure 3.2.

cpul_inst {Tssys ck
ERQ_52 AXLM_DATARE {> system_resetn
HHRQ_S3 CFU_L2_MOFF] {=> cpul_inst_CFU_L2_MO_interface
lk_realtime_i LOCAL_BUS_M_DATAHH
clk_systerm_i LOCAL_BUS_M_INSTRER)
rstn_i system_resetn_o tem0_inst
FLOCAL_BUS_IF_S0

:-ELDCAL_BU S_IF 51
sys_clk

sys_rst_n

Figure 3.2. CFU-LI Exported to Higher Level of Hierarchy

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1 11

http://www.latticesemi.com/legal

= LATTICE

4. CFU Software Model

The RISC-V ISA reserves a set of instruction opcodes as well as address blocks within control status register (CSR) space to
enable the addition of custom instructions and functionality. The CFU specification assigns functionality to subsets of both
resources.

4.1. CSRs

The CFU specification defines the following four new CSRs:

mcfu_selector: Selects the active CFU and the state context within that CFU.

cfu_status: Accumulates error flags from CFU.

mcfu_selector_table: Not currently implemented in RISC-V RX. Holds the base address of the CFU selector table used
to allow unprivileged code to modify the mcfu_selector.

cfu_selector_index: Not currently implemented in RISC-V RX. User mode accessible CSR that allows unprivileged code
to cause the mcfu_selector to be written with the CFU ID and state context stored at the specified index in the CFU
selector table.

4.1.1. mcfu_selector CSR

The mcfu_selector CSR is used to select the active CFU and its state context.

31 30 24 23 16 15 87 0
en reserved state_id reserved cfu_id
Figure 4.1. mcfu_selector CSR (0xBCO)
en: CFU-L2 enable. Enables custom interface multiplexing when set.

state_id: Selects the current state ID. The lower three bits of this field will be driven on the req_state port of the
selected CFU-L2 port during a CFU request.

cfu_id: Selects the current CFU ID. The lower four bits of this field will be driven on the req_cfu port of the
RISC-V’s CFU-L2 port during a CFU request. If the RISC-V RX is configured to export two CFU-L2 interfaces,
the least significant bit of this field will control which port (Port 0 or Port 1) will send subsequent
requests.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.1.2. cfu_status CSR

The cfu_status CSR accumulates error flags returned by the CFU(s). Error flag bits can be cleared by writing zeros to the CSR.

reserved CU | OP FI OF | sI Cl

Figure 4.2. cfu_status CSR (0x801)

CU: Custom CFU operator error

OP: CFU operation error

Fl: Invalid CFU function ID error

OF: Selected state context is in the off-state error
Sl: Invalid CFU state ID error

Cl: Invalid CFU ID error

4.2. Instructions

The Composable Custom Extensions Specification defines three general instruction encodings. The first two encodings are
based on the RISC-V ISA’s R-type and I-type instructions. The third encoding— flex-type—can also be mapped to the
RISC-V’s R-type instruction encoding although it does not expect a response.

The RISC-V ISA reserves four opcodes for custom instructions, as shown in Table 4.1.

Table 4.1. RISC-V ISA Opcodes (inst[1:0] = 11)

inst [4:2] 000 001 010 011 100 101 110 111

inst [6:5] (>32b)
00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32 48b
01 STORE STORE-FP custom-1 AMO oP LUI OP-32 64b
10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/rv128 48b
11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128 > 80b

The Composable Custom Extensions specification uses three of these opcodes for custom instructions:
e CUSTOMO for the R-type CFU instruction

e CUSTOMLI for the I-type CFU instruction

e CUSTOM2 for the flex CFU instruction

4.2.1. R-type Encoding

The CFU Specification’s R-type instruction is based on the RISC-V ISA’s Integer Register-Register instruction format. It takes
two operands in the form of two indices—rs1 and rs2—into the CPU’s register file. A third index into the register file—rd—
specifies where the result of the operation is to be stored.

31 25 24 20 19 15 14 12 1 7 6 0
cf_id[9:3] rs2 rsl cf_id[2:0] rd o 0 0 1 0 1 1
Custom Function ID Source Register 2 Source Register 1 Custom Destination CFU R-type Op Code
Function ID Register

Figure 4.3. CFU R-type Instruction

www.latticesemi.com/legal

http://www.latticesemi.com/legal

. . i . am
ComE:aosz-abIe Custom Extensions on Lattice RISC-V RX User Guide H- LATTICE
Application Note

4.2.2. I-type Encoding

The CFU Specification’s I-type instruction is similar to the RISC-V ISA’s Integer Register-Immediate instruction format. It
takes two operands in the form of an index—rsI—into the CPU’s register file and an eight-bit, sign extended immediate
value in the instruction’s imm field. The result is stored in the register file at the index specified by the rd field.

31 24 23 20 19 15 14 12 11 7 6 0
imm[7:0] cf_id[3:0] rsl 0O 0 O rd 0o 1 0 1 0 1 1
8-bit Signed Extended Custom Function Source Register 1 Fixed Destination Register CFU I-type Op Code
Immmediate ID

Figure 4.4. CFU I-type Instruction

4.2.3. Flex-type Encoding

The CFU Specification’s flex-type encoding is used to initiate operations that do not require a response. For example,
nothing is written back to the register file by a flex-type operation. There are two forms of the flex-type instruction
encoding—a primary form in Figure 4.5 and an alternate form in Figure 4.6.

31 25 24 20 19 15 14 12 11 7 6 0

cf_id[9:3] rs2 rsl cf_id[2:0] custom 1 0 1 1 0 1 1

Custom Function ID Source Register 2 Source Register 1 Custom User Definable CFU flex-type Op Code

Figure 4.5. CFU flex-type Instruction

31 7 6 0
custom 1 01 10 1 1
User Definable Field CFU flex-type Op
Code

Figure 4.6. CFU flex-type Instruction Alternate Encoding

The primary purpose of the flex-type encoding is to provide a mechanism to alter the currently selected state context of the
targeted CFU. The custom fields of both flex-type forms are available to the connected CFU(s) via the CFU-LI's raw
instruction bus—req_insn—and can be used as you see fit.

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1 14

http://www.latticesemi.com/legal

. . i . am
ComE:aosz-abIe Custom Extensions on Lattice RISC-V RX User Guide H- LATTICE
Application Note

4.2.4. Software Model and the CFU-LI
Figure 4.7 shows the relationship between the instructions and CSRs of the CPU and the CFU-LI.

RISC-V RX
instruction register file
rsl >
ALU
rs2 >
rd > >
E E .
of id (’
mcfu_selector CSR cfu_status CSR
en state_id cfu_id cuop fiof sici
l l v v R v T
req_state req_cfu req_insn req_func req_datal req_data0 resp_data resp_status CFU-LI
A A
> LR
] Ly
state
> Contexts . > datapath
L |
CFU
[

Figure 4.7. Relationship between Instructions and CSRs of the CPU and the CFU-LI

The req_state and req_cfu busses originate in the mcfu_selector CSR. The req_insn bus is the entire 32-bit instruction word.
The source of the req_func bus is the cf_id field of the instruction. The 32-bit req_data0 and req_datal busses are sourced
by the register file registers that are indexed by the rs1 and rs2 fields of the R-type instruction, respectively (for the I-type
instruction, req_datal is sourced by the imm field of the instruction).

The 32-bit result of the CFU operation is returned on the resp_data bus and is stored in the register file at the location
indexed by the rd field of the instruction. Any errors during the transaction are accumulated in the cfu_status CSR.

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1 15

http://www.latticesemi.com/legal

= LATTICE

4.3. Firmware

4.3.1. Assembly Language

The Composable Custom Extensions Specification describes a new assembler instruction, cfu_reg (cx_reg), that
enables CFU custom instructions to be initiated. Note that the standard GNU assembler that currently ships with the Propel
SDK does not support the cfu_reg (cx_reg) instruction.

CFU custom instructions can still be represented in assembly code. The GNU assembler implements two directives— .insn
and .word—that can be used to insert arbitrary instruction into the assembly source code.

4.3.1.1. .insn Assembly Directive

The .insn directive has three forms:

. .insn type, operand [,..,operand_n]
. .insn insn_length, value
. .insn value

The R and | versions of the first form are:

R-type: .insn r opcode, func3, func7, rd, rsl, rs2
I-type: .insn i opcode, func3, rd, rsl, imml2

These can be useful for issuing the R-type and I-type CFU instructions. For example, an R-type CFU instruction can be
written in assembly as:

.insn r ©@x@B, cf_id[2:0], cf_id[9:3], rd, rsl, rs2
Where:

r — Denotes the type of encoding (R-type)

0x0B — is the opcode for the R-type CFU instruction

cf_id[2:0] — lower 3 bits of the Function ID within the targeted CFU

cf_id[9:3] — upper 7 bits of the Function ID within the targeted CFU

rd — destination register

rs1 —is the first source register

rs2 —is the second source register

Similarly, an I-type instruction could be written as:

.insn i @x2B, 0x@, rd, rsl, (imm << 4 | cf_id)
Where:

i — denotes the type of encoding (I-type).

0x2B —is the opcode for the I-type CFU instruction.

0x0 —is the CFU I-type’s “fixed” bit field of all zeros.

rd — specifies destination register.

rs1 — specifies the source register.

imm — is the eight-bit sign extended immediate value.

cf_id —is the Function ID (4-bits) within the targeted CFU.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The main version of the CFU flex-type instruction is similar to the R-type, except that the CFU response data is not written
back to the CPU’s register file. In the place of the destination register field—rd—the flex-type instruction has a 5-bit user
defined immediate value. So, the CFU flex-type instruction can be written in assembly as:

.insn r ©x5B, cf_id[2:0], cf _id[9:3], custom, rsl, rs2
Where:

r — Denotes the type of encoding (R-type).

0x5B —is the opcode for the flex-type CFU instruction.

cf_id[2:0] — lower 3 bits of the Custom Function ID.

cf_id[9:3] — upper 7 bits of the Custom Function ID.

custom — 5-bit user defined immediate value
(.insn expects a register name. For example, one of x0 through x31).

rs1 —is the first source register.

rs2 —is the second source register.

4.3.1.2. .word Assembly Directive

The nominal purpose of the .word assembly directive is to insert 32-bit data words into assembly source. However, it can
also be used to insert 32-bit instructions.

The .word directive has a simple form:
.word value
Where:

value —is a 32-bit value to be inserted into the assembly code.

Note that the assembler can evaluate C-like expressions so value can be specified in terms of shifted and bit-wise OR’d
constants. For example, the alternate version of the CFU flex-instruction can be written in assembly using the .word
pseudo directive:

.word (custom << 7 | @x5B)
Where:
custom — is the 25-bit immediate custom field of the CFU flex-type instruction.

0x5B —is the opcode of the CFU flex-type instruction.

The . set assembly directive can be used to set the value of a symbol. Note that .set does not emit any code. In the
example above, the symbol, ‘custom’ could be set to a value as follows:

.set custom, 0x123456

4.3.2. High-Level Language

The standard GNU C/C++ compiler that ships with the Propel SDK cannot translate high-level source into instructions that
take advantage of custom accelerator logic. Modifying the compiler to do so is beyond the scope of this document.

4.3.2.1. Inline Assembly

If high-level source code such as C or C++ is to issue custom CFU instructions, it must do so using inline assembly. The GNU
C extended asm keyword can be used to facilitate insertion of assembly statements into C/C++ source code.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

There are two forms of an extended asm statement—a form that supports “goto” operations (For example, jumps or calls)
and a form that does not support “goto” operations. For the purposes of this application note, only the latter form is
relevant.

asm syntax with output operands and not gotos:

asm asm-qualifiers (AssemblerTemplate
:OutputOperands
[:InputOperands
[:Clobbers]])

Where:

asm-qualifiers — One or more of the keywords: volatile, inline, goto. Itis recommended that the
volatile qualifier be used in CFU applications to prevent the compiler from optimizing out
the inline assembly instruction(s). The goto qualifier is not expected to be used in CFU-related

operations.

AssemblerTemplate — A string literal describing the assembly code instruction. Similar to a printf format string, the
AssemblerTemplate contains a mix of fixed text and tokens that refer to input and output
parameters.

OutputOperands — A comma-separated list of C/C++ variables that are modified by the instruction(s) in the

AssemblerTemplate. For a single CFU instruction, this would be a single variable (R-type and I-
type instructions) or no variables (flex-type instruction).

InputOperands — An optional comma-separated list of C/C++ variables that are read by the instruction(s) in the
AssemblerTemplate. For a single CFU instruction, this would be one variable (I-type instruction),
two variables (R-type and flex-type instructions) or no variables (alternate flex-type encoding).

Clobbers - An optional comma-separated list of registers that are changed (“clobbered”) by the
AssemblerTemplate, beyond those listed as outputs. For CFU instructions, this is expected to be
an empty list.

”

Note: For ANSI C, the asm keyword should be both preceded and followed by double underscores. For example, “__asm__

A deep discussion of all the options available for the AssemblerTemplate is beyond the scope of this document. For the
purposes of writing RISC-V CFU inline assembly, note that tokens in the AssemblerTemplate string are prefixed by a percent
sign, ‘%’. Tokens can refer to elements in the input and output operand lists either by numeric position in the arguments
lists (For example, %0, %1, and so on) or by a symbolic name. This document uses symbolic names.

Symbolic names are enclosed by square brackets (For example, [my_operand]) in both the AssemblerTemplate string and in
the respective OutputOperands or InputOperands list. Each element in those lists also contains a constraint enclosed in
double quotation marks and the name of the associated C variable enclosed in parenthesis.

For CFU operations, an output constraint is typically going to be “=r”. The equals sign, ‘=", means that the value in the
variable is overwritten and the ‘r’ means that the result is to be placed in a register. For input operations, the constraint is
typically going to be “r”, which means that the source of the data is a register.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

So, a single element in an OutputOperands list might look like:

[res]”=r’(result)

And an element in the InputOperands list might look like:

[rs1]”’r”(input_argument)

4.3.2.2. |-Type Instruction Inline Assembly Example
Putting this all together, to execute an I-type instruction from C source such that:

Function ID: 3

Immediate Value: 12

Source: Cvariable, unsigned int arg
Destination: Cvariable, unsigned int result

Write the following C code:
unsigned int arg=10; // some arbitrary input
unsigned int result; // variable to store the result of the cfu computation
__asm__ volatile (“.insn i @x2B, 0, %[rd], %[rs1], (12 << 4 | @xe3)”
: [rd]”=r”(result)
: [rs1]”r”(arg)
)
4.3.2.3. R-Type Instruction Inline Assembly Example

Similarly, if an R-type instruction was to be executed from C source:

Function ID: 1

Source 1 Cvariable, unsigned int argl
Source 2: Cvariable, unsigned int arg2
Destination: Cvariable, unsigned int result

Write the following code:

unsigned int argl=0x44001100; // some arbitrary input
unsigned int arg2=25; // some arbitrary input
unsigned int result; // variable to store the result of the cfu computation

__asm__ volatile (“.insn r @x@B, 1, 0, %[rd], %[rsl], %[rs2]”
[rd]”=r”(result)
[rs1]”r”(argl), [rs2]”r”(arg2)
)s

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.3.2.4. Flex-Type Instruction Inline Assembly Example

The flex-type encoding will be similar to the R-type inline assembly command. The difference is that the AssemblerTemplate
string will explicitly reference a register and the OutputOperands list will be empty. The umber of the destination register
will be the value that appears in the flex-type encoding’s 5-bit custom field. For a flex-type instruction:

Function ID: 1
Source 1 Cvariable, unsigned int argl
Source 2: Cvariable, unsigned int arg2
Custom Field Value: 17

Write the following code:
unsigned int argl=0x44001100; // some arbitrary input

unsigned int arg2=25; // some arbitrary input

__asm__ volatile (“.insn r ©x5B, 1, 0, x17, %[rsl], %[rs2]”

[rs1]”r”(argl), [rs2]”r”(arg2)
)

4.3.2.5. CFU CSR Access Inline Assembly

High-level source must also use inline assembly to read, write, or modify CSRs, including the CFU-related CSRs. For example,
to write to the mcfu_selector CSR, use the RISC-V assembly pseudo instruction, csrw (CSR write):

unsigned int cfu_en = 1;
unsigned int cfu_id = 0;
unsigned int state_id = 5;

unsigned int config = (cfu_en << 31) | (state_id << 16) | (cfu_id << @);

__asm__ volatile (“csrw OxBCO, %[rsl]” // mcfu_selector CSR address=0xBC@
// empty OutputOperands list

: [rs1]“r”(config) // use C variable, config, as input

)5

A read from the cfu_status CSR can be performed using the, csrr (CSR read) pseudo-instruction:

unsigned int status;

__asm__ volatile (“csrr %[res], 0x801” // cfu_selector CSR address=0x801
: [res]“=r”(status) // read result stored in “status”

)s // no input arguments

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.3.3. Preprocessor Macros

The C/C++ preprocessor operates via string substitution and can be useful when there is a need to programmatically build
string constants at compile time.

Inline assembly only facilitates the insertion of the rs1, rs2, and rd fields into the Assembly Template string. Preprocessor
macros enable the insertion of other required substrings such as the value of the opcode and the CFU Function ID (cf_id).

The SHA-3 Template that ships with the Propel Builder 2024.1 and later makes use of macros in its example firmware. This
subsection reviews relevant aspects of preprocessor macros for those who may be unfamiliar with the C/C++ language.

4.3.3.1. Macro Definitions

C/C++ preprocessor macros are created using the #define preprocessor directive. The #define directive has two forms:

t#tdefine identifier [token-string]

ttdefine identifier(paraml, param2, ...) [token-string]
The second form creates a function-like macro that is useful for simplifying the construction of inline assembly calls:

identifier — The macro name. Every occurrence of the identifier string that follows the macro definition will
be “expanded” by replacing the identifier with the token-string.

paraml, param2,... - Optional parameters. An argument placed in the position of a given parameter will be used to
replace any instance of the parameter’s name within the token-string.

token-string - A fragment of valid C code which replaces each instance of the identifier that comes after the
macro’s definition. Any occurrences of a parameter name within the body of the token-string
will be replaced by the argument in that parameter’s position within the parameter list.

4.3.3.2. Using Macros to Create Strings

For example, a macro that builds a greeting string can be written as:
#tdefine GREETING(name) “Hello ” name “!”

and can be used in subsequent code:

GREETING(“John”)

Which expands to:

“Hello ” “John” “I1»

The parameter, name, is replaced by the argument, “John”, at name’s position in the parameter list.
The compiler will interpret the successive double quoted strings as a single string:

“Hello John!”

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

If the parameter in the macro definition is preceded by a hash character, #, then the argument will automatically be
enclosed in double quotes during macro expansion. This allows invocations of the macro to be simplified by omitting the
double quotes around the argument. So, the new macro definition would be:

t#tdefine GREETING(name) “Hello ” #name “!*

and the new invocation would look like:

GREETING(John)

4.3.3.3. Arithmetic Expressions within Macros

Macros can also be defined as arithmetic expressions. For example, a macro that finds the minimum value of two
expressions can be written as:

#define MIN(A, B) ((A) < (B) ? (A) : (B))

and can be used in subsequent code:

z = MIN(X, y);

This statement is expanded by the preprocessor and passed to the compiler as:

z=((x)<(y)?(x):());

The use of parentheses around the parameters in the token-string as well as the token-string itself ensures that order of
operations is preserved. For example, in C/C++ the less than comparison operator has higher precedence than bitwise
operations such as bitwise AND.

z = MIN(x & Ox05, y);

If the parentheses around the parameters were omitted from the macro definition above, the macro would expand to the
following:

Z =X &0Ox05 <y ? x & 0x05 : y;

The compiler performs the comparison, 0x05 <y, and then bitwise AND the result with the variable x, which is not what a
user of the macro would intuitively expect. The use of parentheses in the macro definition avoids this potential problem.

4.3.3.4. Code Blocks within Macros

A macro can consist of multiple C/C++ statements within a code block. For example, the MIN macro can be rewritten using
an if-else statement instead of the tertiary operator:

#tdefine MIN2(A,B) \
({ \
int result; \

if ((A) < (B)) \
result = (A); \

else \
result = (B); \

result; \

1)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

where the backslash character, ‘\/, serves as the line continuation character.

The GNU C/C++ compiler supports a non-standard feature called “statement expressions” that allows a code block to take
on the value of its last expression. This allows a code block to be used on the right-hand side of an assighment statement.
In the MIN2 macro above, the last expression is simply the result variable. So, the MIN2 macro can be used to determine
the smaller of two integer expressions, like the MIN macro, shown earlier.

z = MIN2(x, y);

4.3.3.5. SHA-3 Template Macros
The Propel Builder software 2024.1 and later includes a template that demonstrates the computation of the SHA-3 hash
using the CFU feature.

The firmware portion of the template uses macros to simplify the process of writing inline assembly commands that insert
the CFU custom instructions. These include macros for the R-type, I-type, and several versions of the flex instructions.

Here, we review the macro for the I-type instruction as it provides a good example of how these macros use the previously
covered GNU C/C++ preprocessor and compiler features to add custom instructions to the high-level source code.

The SHA-3 template defines the “opcode_|” macro as follows:

#tdefine opcode_I(opcode, func3, func4, rsl, imm)
({
register unsigned long result;
asm volatile(
".word (
(" #opcode ") |
(regnum_%[result] << 7) |
(regnum_%[argl] << 15) |
((" #imm ") << 24) |
((" #func3 ") << 12) |
((" #funcd ") << 20));\n"
: [result] "=r" (result)
: [argl] "r" (rsl)
)s
result;

}

i A A

The Composable Custom Extensions Specification defines its I-type instruction as shown in Figure 4.4.

The I-type instruction contains six fields: imm, cf_id[3:0], rs1, rd and a fixed, 3-bit field that must be set to all zeros
(other values are reserved for future use). The opcode_TI macro’s parameter list corresponds directly with five of these six
values:

opcode_I(opcode, func3, func4, rsl, imm)

The destination register field, rd, is the holding register that the compiler associates with the variable named result.

register unsigned long result;

The macro uses inline assembly to insert a single, custom instruction via the asm keyword.

asm volatile(

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Within the assembly template, the .word directive is used to build the custom instruction.

".word (

Note that every occurrence of a parameter (for example, opcode, imm, func3, and func4) is preceded by the hash or pound
symbol, #. Wherever the macro is invoked, those parameters will be replaced by the invocation’s corresponding arguments
and they’ll be enclosed in double quotes. After preprocessing, the inline assembly code inside of the assembly template will
consist of a series of double quoted substrings. The compiler concatenates these substrings into a single string.

The .word assembly directive expects a purely numeric argument. However, the inline assembly function inserts register
names (for example, x1, a2, t4, etc.) into the resulting assembly code and these register names are alphanumeric.

The SHA-3 template reconciles this problem by defining a set of symbols that it uses to translate the register names into
their corresponding numeric register file indices. The symbol names are the names of the registers, prefixed by the
“regnum_" string. The symbol values are the indices. For example, the symbol for register x2 is “regnum_x2". The
“regnum_x2" symbol is assigned a value of 2, the position of x2 within the register file.

”

Because this translation occurs during the assembly phase, the SHA-3 template defines the symbols using the “.set
assembler directive from within the inline assembly statements:

asm(".set regnum_x0 , ©
asm(".set regnum x1 , 1
asm(".set regnum_x2 , 2
asm(".set regnum_x3 , 3
asm(".set regnum x4 , 4
asm(".set regnum_x5 , 5

For example, if the compiler chose register x5 to hold the value of the variable, result, the portion of the macro’s token
string,

(regnum_%[result] << 7)

would be output by the preprocessor as:

(regnum_x5 << 7)

And, because the regnum_x5 symbol is defined with a value of 5, the assembler interprets the subexpression as equivalent
to:

(5 << 7)

Where 5 is the register index of x5 and it is left shifted by 7 bits to the location of rd, the I-type instruction’s destination
register field.

In addition to the translation symbols, the SHA-3 template also defines symbols corresponding to the three custom
instruction opcodes: CUSTOMO for R-type instructions, CUSTOM1 for I-type instructions, and CUSTOM? for flex
instructions.

asm(".set CUSTOMG , ©Ox0B");
asm(".set CUSTOM1 , ©Ox2B");
asm(".set CUSTOM2 , Ox5B");

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Composable Custom Extensions on Lattice RISC-V RX User Guide

Application Note

= LATTICE

Putting this all together, the opcode_I macro can be used to simplify the insertion of CFU instructions. For example,

result =

Where:
CUSTOM1:

input_arg:

213:

opcode_I(CUSTOM1, @, 1, input_arg, 213);

The RISC-V ISA custom-1 opcode (0x2B) that is used by the Custom Composable Extensions
specification to encode I-type instructions.

The value of the func3 parameter at bit position 12. In the Composable Custom Extensions
Specification, this field is reserved and must be set to a value of 0.

The value of the func4 parameter at bit position 20. This is the cf_1d field in the Composable
Custom Extensions Specification. The ¢f_id field must be set with the number of desired CFU
function ID.

A variable whose value will be placed in the register pointed at by the rs1 field. That value will
also be driven on the req_data0 bus when the instruction request is sent to the CFU.

The value of the imm parameter is placed at bit 24 of the instruction. The 8-bit imm field will be
sign extended to 32-bits and driven on the req_datal bus during the transaction request to the
CFU.

4.3.3.6. Debugging Macros

C/C++ preprocessor macros can be difficult to debug. One helpful debug strategy for macros is to examine the preprocessed
source code. This can be achieved within the Propel SDK by checking the Preprocess only (-E) option as shown in Figure 4.8.

Settings

MCU

Task Tags
Validation

@)

331 Properties for cfu_baseline_20231107b [m] X
type filter text Setting: = - 8
Resource
. A
Builders - . — - =
~v C/C++ Build & Tool Settings) Toolchains l Devices # Build Steps Build Artifact o Binary Parsers @3 Error Parsers

Build Variables
Environment

Legging

Tool Chain Editor
C/C++ General

Project Natures

Project References
Run/Debug Settings
SystemVerilog Project Prope

Do not search system directories (-nostdinc)
Preprocess only (-E)

(&3 Target Processor
(%3 Optimization
&3 Warnings
(& Debugging
~ B3 GNU RISC-V Cross Assembler
(% Preprocessor
% Includes
\51_‘7‘ Warnings
(3 Miscellaneous
~ 3 GNU RISC-V Cross C Compiler
(5% Preprocessor
Includes
(% Optimization
(3 Warnings
(2 Miscellaneous
~ 83 GNU RISC-V Cross C Linker
(2 General

Defined symbaols (-D)

|SCC_STDIO_UART_APB

Undefined symbols (-U) & ®) &

& Miscellanecus

~ & GNU RISC-V Cross Create Listing
(2 General

v 3 GNU RISC-V Cross Print Size
(2 General

v 8 Lattice Create Memory Deployment
(2 General

Apply and Close

Cancel

Figure 4.8. Enabling the Preprocess Only Option

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1

25

http://www.latticesemi.com/legal

Composable Custom Extensions on Lattice RISC-V RX User Guide .I.ILATTICE

Application Note

When the Preprocess only option is enabled, the build process will halt following the preprocessor stage and the resulting
C/C++ source code will be written to files with the *.o file extension. The preprocessed source can be examined to verify
that the macro produces the desired C/C++ statement or expression.

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1 26

http://www.latticesemi.com/legal

= LATTICE

5. Design Examples

5.1. Simple Endianness Conversion

The following is a simple design example to demonstrate one way that a minimal CFU design could be implemented. The
design performs a trivial endianness swap. Given a 32-bit input, the CFU accelerator in this example performs byte
swapping in a single instruction.

This design enables one CFU-L2 port on a RISC-V RX and exports it from the Propel Builder software’s graphical layer to a
higher level register transfer level (RTL) module in the hierarchy. Within the RTL module, the CFU-L2 interface is connected
to the custom endianness swapping CFU module, which is also implemented in RTL (as opposed to being packaged for
instantiation within the Propel Builder software).

5.1.1. Propel Builder Software

Within an existing Propel Builder RISC-V design, enable one CFU port by enabling the Enable cfu port checkbox in the RISC-V
RX configuration GUI and setting Number of CFU to 1, as shown in Figure 5.1. .

%. Module/IP Block Wizard X

Canfigure ¢ Madule riscv_rtas Vi 220
Set the folowing parameters to configure this companent

Diagram coud Configure IP

- Debug Configuration

Debug Enable =
~ Debug

JTAG Channel Selection for Certain Devices [14-16] 14
~ Tightly Coupled Memory(TCM) Configuration

TCM Enable -]

cpul ©

) Instruetion Port Enable [~]
R 52 AXI_M_DATA
S AXI—MJNSTRE‘ AX| Register Slice Type 0

IRQ S3
HRQ CFU_L2_Md4| - CFU Configuration
clk_realtime_i ; Enable cfu port]
LOCAL_BUS_M_DATAH Nurber of CFU [1-2] -
 PLIC Configuration
Number of User Interrupt Requests. [1 - 30] 2

clk_system_i

LOCAL_BUS_M_INSTR
rstn_i b

system_resetn_o| Interrupt for Supervisor Mode
Width of PLIC priority register [2-3] 3

~ = = = NMI Configuration
I'ISCVJ‘tOS Won-maskable interrupt enable
~ Optional Local slaves
Enable UART instance
* Local UART

Generate | Cancel |

Figure 5.1. Enable CFU Port on RISC-V RX

Once the CFU port has been enabled, it can be exported to a higher level of the hierarchy by right-clicking on the
CFU_L2_MO port on the RISC-V and selecting Export. The system clock and system reset signals should also be exported by
creating output ports and connecting them to the respective signals. To create output ports, from the Edit menu, select
Create Port.

Once the CFU port, system clock, and system reset have been exported (see Figure 5.2), validate, generate the design, and
run the Lattice Radiant™ software from the Propel Builder software. For more information on how to run the Radiant
software from the Proper Builder software, refer to the Lattice Propel 2023.1 Builder User Guide (FPGA-UG-02185).

www.latticesemi.com/legal

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53852

= LATTICE

pllo_inst
rstn_i] i"-,i clkop_: | system0_inst
ki lock
|4]
ad_aclk i
eguation_medule_inst -
™o -
[dk_system_o
{&> cpu0_inst_CFU_L2_MO_interface
cpul_inst B
tem0_inst
1 AXI_M_INSTR
L— woss LOCAL_BUS_IF_S0
cFu_Lz_ Mo
osc0_inst — mRQsz | LOCAL_BUS_IF_S1
g = LOCAL_BUS_M_DATA |
i }—fsysrstn
111 hf _clk_out o LOCAL_BUS_M_INSTR
hf_out_en_i _realtime_i ys_ck
If_clk_out_o AXI_M_DATA f——
ek _systam_i - R —
- system_resatn_c
3xi_ic0_inst . . p————{ > system_resetn o
axi2apbl_inst B —
AXI4_S
APB3 1M
s0_apb_gpio_inst > s0_gpio[7:0]
—_——
L e
INTR
axizapb0_inst i .
— _ gpio_io[7:0]
i
AXI4_S -
APE3 M
| s1_apb_uart_inst
2 EEEEE—

APB_S0 s1_uart_txd_o
s1_uart_rxd_i i INT_MO
i d_o
J

i

Figure 5.2. RISC-V RX Design Exporting CFU-L2, Clock and Reset

5.1.2. Top-Level RTL

Figure 5.3 shows a Verilog implementation example of a top-level module that instantiates and connects the RISC-V RX SoC
design from the Propel Builder software to the endianness swapping CFU module.

module SoC_LFCPNX_Eval RV32IMC_RX_CFU_endianness_top (

input rstn_i,
input sl uart_rxd_i,
output sl _uart_txd_o,
output [7:0] leds_o

)s
wire clk_system;
wire system_resetn;
wire [7:0] s@_gpio;
wire [3:0] req_cfu;
wire [31:0] req_datao;
wire [31:0] req_datal;
wire [2:0] reqg_func;
wire [31:0] reg_insn;
wire [2:0] req_state;
wire [31:0] resp_data;
wire req_ready;
wire req_valid;
wire resp_ready;
wire resp_valid;

assign leds_o = s@_gpio;

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

SoC_LFCPNX_Eval_RV32IMC_RX_CFU_endianness soc@(
.clk_system_o (clk_system),
.system_resetn_o (system_resetn),
.rstn_i (rstn_1i),
.s1 _uart_rxd_i (s1_uart_rxd_i),
.s1 uart_txd o (s1_uart_txd o),

.S@_gpio (s0_gpio),
.Cpu@_inst CFU_L2 M@ _interface_req_cfu_© portbus (req_cfu),
.cpu@_inst_CFU_L2_M@_interface_req_data®_@_ portbus (req_dataoe),
.cpu@_inst_CFU_L2_M@_interface_req_datal_@_ portbus (req_datal),
.cpu@_inst_CFU_L2_M@_interface_req_func_0_portbus (req_func),
.cpu@_inst_CFU_L2 _Me@_interface_req_insn_0 portbus (req_insn),
.cpu@_inst_CFU_L2 _Me@_interface_req_state_0_portbus (req_state),
.cpu@_inst_CFU_L2 _Me@_interface_resp_data_0_portbus (resp_data),
.Ccpu@_inst_CFU_L2 Me@_interface_req_ready 0 port (req_ready),
.Ccpu@_inst_CFU_L2 M@_interface_req_valid_© port (req_valid),
.cpu@_inst_CFU_L2 _M@_interface_resp_ready 0 port (resp_ready),
.Ccpu@_inst_CFU_L2 _Me@_interface_resp_valid_© port (resp_valid)
)
swap_endianness cfu_0 (
.clk i (clk_system),
.rstn_i (system_resetn),
.req_cfu_i (req_cfu),
.req_datao_i (req_datae),

.req_datal_i
.req_func_i

.reqg_insn_i

.req_state_i
.resp_data_o
.req_ready_o
.req_valid_i
.resp_ready_i
.resp_valid o

(req_datal),
(reg_func),
(reg_insn),
(req_state),
(resp_data),
(req_ready),
(req_valid),
(resp_ready),
(resp_valid)

)8

endmodule

Figure 5.3. Top-Level RTL

5.1.3. Endianness Swapping CFU Module RTL

Figure 5.4 shows the RTL example for the endianness swapping module.

module swap_endianness (

input clk i,
input rstn_i,
/* CFU-L2 interface signals B

input [3:0] req_cfu_i,

input [31:0] req_datae i,
input [31:0] req_datal_i,
input [2:0] req_func_i,
input [31:0] req_insn_i,
input [2:0] req_state_i,
output [31:0] resp_data_o,
output req_ready_o,

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

/* always send CFU_OK status */

/*

req_datao@_i[31:24] };

/*

input req_valid_i,
input resp_ready_i,
output resp_valid_o,
output [2:0] resp_status_o
)
localparam CFU_OK = 3'b000;
reg req_ready_r;
reg [31:0] resp_data_r;
reg resp_valid_r;
assign resp_data_o = resp_data_r;
assign resp_valid o = resp_valid_r;
assign req_ready_o = resp_ready_i;
assign resp_status_o = CFU_OK;
always @(posedge clk_i or negedge rstn_i)
begin
if (rstn_i == 1'b0)
begin
resp_data_r <= 32'h00000000;
resp_valid _r <= 1'be;
end
else
begin
if (req_valid_i)
*/
begin
resp_data_r <= { req_data@_i[7:0], /*
*/
req_data@_i[15:8],
req_datao_i[23:16],
resp_valid r <= 1'bl;
*/

end

else if (resp_ready_i)
response...*/

begin

resp_valid r <= 1'b@;

*/

end

end
end

endmodule

/*

/*

if a valid CFU request from the CPU is present

swap bytes on data@ input

signal response is valid on next cycle

only after CPU has acknowledged the

...do we deassert response valid

Figure 5.4. Endianness Swapping CFU Module

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.1.4. Example Firmware

Figure 5.5 shows the firmware that issues requests and reads the response from the endianness swapping CFU module.

static void endianness_test()

{

unsigned int input_arg = 0x01234567;

unsigned int cfu_en = 1;
unsigned int state = 0;
unsigned int cfu_id = 0;
unsigned int config = (cfu_en << 31) | (state << 16) | (cfu_id << @);

unsigned int result;
unsigned int status;

// setup mcfu_selector CSR
// use CSR write pseudo instruction to write mcfu_selector

__asm__ volatile ("csrw OxBCO, %[rs]" // mcfu_selector CSR location = ©xBCO
: // write operation so OutputOperands is an empty list
: [rs]"r"(config) // write the value of "config" C variable to the CSR
)

// issue instruction to CFU
// I-type Instruction:

[/ +------------- +----- +------- R e T +
// | imm12 | rs1 | func3 | rd | opcode |
[/ - +----- +---mm - - Y T T +
// 31 20 15 12 7 0
//

// .insn i opcode, func3, rd, rsl, imml2

__asm__ volatile (".insn i ox2b, @, %[rd], %[rs1], ©"

: [rd]"=r"(result)
: [rs1]"r"(input_arg)

)
// read cfu_status CSR
__asm__ volatile ("csrr %[stat], ox8o1" // cfu_status CSR location=0x801
: [stat]"=r"(status) // read result stored in “status”
)
printf("Swap Result (©x%02x)- In: Ox%08x Out: ©x%e8x\r\n", status, input_arg, result);
return;

Figure 5.5. Endianness Swapping Example Firmware

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Composable Custom Extensions on Lattice RISC-V RX User Guide .I.ILATTICE

Application Note

References

For more information, refer to the following resources:

e Lattice Propel 2023.1 Builder User Guide (FPGA-UG-02185)

e Lattice Propel 2023.1 SDK User Guide (FPGA-UG-02186)

e RISC-V RX CPU IP User Guide (FPGA-IPUG-02230)

e RISC-V Composable Custom Extensions Specification (0.91.230811)

e RISC-V Instruction Set Manual, Volume I: RISC-V User-Level ISA | Five EmbedDev (five-embeddev.com)
e RISC-V Instruction Set Manual, Volume Il: Privileged Architecture | Five EmbedDev (five-embeddev.com)
e RISC-V-Directives (sourceware.org)

e Extended Asm (Using the GNU Compiler Collection (GCC))

e RISC-V RX CPU IP Core web page

e Lattice Propel Design Environment web page

e Lattice Insights web page for Lattice Semiconductor training courses and learning plans

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1 32

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53852
https://www.latticesemi.com/view_document?document_id=53853
https://www.latticesemi.com/view_document?document_id=53848
https://github.com/grayresearch/CX/blob/main/spec/spec.pdf
https://five-embeddev.com/riscv-isa-manual/latest/riscv-spec.html
https://five-embeddev.com/riscv-isa-manual/latest/riscv-privileged.html
https://sourceware.org/binutils/docs/as/RISC_002dV_002dDirectives.html
https://gcc.gnu.org/onlinedocs/gcc-10.2.0/gcc/Extended-Asm.html#AssemblerTemplate
https://www.latticesemi.com/products/designsoftwareandip/intellectualproperty/ipcore/ipcores04/risc-v-rx-cpu
https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/LatticePropel
https://www.latticesemi-insights.com/

Composable Custom Extensions on Lattice RISC-V RX User Guide .I.ILATTICE

Application Note

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/en/Support/AnswerDatabase.

© 2023 - 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02075-1.1 33

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/en/Support/AnswerDatabase

Revision History

Revision 1.1, March 2024

= LATTICE

Section

Change Summary

Overview

Updated the following sentences in this section:

The specification allocates three of the opcodes that the RISC-V instruction set architecture (ISA)
reserves for custom instructions

A request will generally include two operands: either the contents of two of the registers in the CPU’s
register file or a single register from the register file and an immediate value.

The Composable Custom Extensions Specification also assigns a small subset of the Control and
Status Registers (CSRs) that are reserved by the RISC-V ISA for the purposes of adding custom
features.

CFU-LI: Interface
Between RISC-V and CFU

Updated the following signal names in Table 3.1. CFU-LI Port Definitions:

clk
rst
req_cfu

CFU Software Model

Updated the following sentence in this section:
The RISC-V ISA reserves a set of instruction opcodes as well as address blocks within control status
register (CSR) space to enable the addition of custom instructions and functionality.

Updated the 4.2 Instructions section.

Added the 4.2.4 Software Model and the CFU-LI section.

Updated the 4.3.1 Assembly Language section.

Added the 4.3.1.1 .insn Assembly Directive section.

Added the 4.3.1.2 .word Assembly Directive section.

Updated section title 4.3.2.1 asm Keyword to 4.3.2.1 Inline Assembly.

Updated the Function ID 0 to 3 in the 4.3.2.2 |-Type Instruction Inline Assembly Example section.
Updated the code in the 4.3.2.4 Flex-Type Instruction Inline Assembly Example section.
Updated the code in the 4.3.2.5 CFU CSR Access Inline Assembly section.

Added 4.3.3 Preprocessor Macros section.

Updated the code in Figure 5.4. Endianness Swapping CFU Module.

Updated the code in Figure 5.5. Endianness Swapping Example Firmware.

Revision 1.0, December 2023

Section

Change Summary

All

Initial release.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Composable Custom Extensions on Lattice RISC-V RX User Guide
	Contents
	Acronyms in This Document
	1. Introduction
	1.1. Naming Conventions
	1.1.1. Nomenclature
	1.1.2. Signal Names

	2. Overview
	3. CFU-LI: Interface Between RISC-V and CFU
	3.1. Signal Definitions
	3.2. CFU Feature Levels
	3.3. CFU-L2 in the Lattice Propel Builder Software

	4. CFU Software Model
	4.1. CSRs
	4.1.1. mcfu_selector CSR
	4.1.2. cfu_status CSR

	4.2. Instructions
	4.2.1. R-type Encoding
	4.2.2. I-type Encoding
	4.2.3. Flex-type Encoding
	4.2.4. Software Model and the CFU-LI

	4.3. Firmware
	4.3.1. Assembly Language
	4.3.1.1. .insn Assembly Directive
	4.3.1.2. .word Assembly Directive

	4.3.2. High-Level Language
	4.3.2.1. Inline Assembly
	4.3.2.2. I-Type Instruction Inline Assembly Example
	4.3.2.3. R-Type Instruction Inline Assembly Example
	4.3.2.4. Flex-Type Instruction Inline Assembly Example
	4.3.2.5. CFU CSR Access Inline Assembly

	4.3.3. Preprocessor Macros
	4.3.3.1. Macro Definitions
	4.3.3.2. Using Macros to Create Strings
	4.3.3.3. Arithmetic Expressions within Macros
	4.3.3.4. Code Blocks within Macros
	4.3.3.5. SHA-3 Template Macros
	4.3.3.6. Debugging Macros

	5. Design Examples
	5.1. Simple Endianness Conversion
	5.1.1. Propel Builder Software
	5.1.2. Top-Level RTL
	5.1.3. Endianness Swapping CFU Module RTL
	5.1.4. Example Firmware

	References
	Technical Support Assistance
	Revision History
	Revision 1.1, March 2024
	Revision 1.0, December 2023

