

Machine Vision: Barcode Detection

Reference Design

FPGA-RD-02280-1.0

December 2023

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 2

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is
proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 3

Contents
Contents ... 3
Acronyms in This Document ... 8
1. Introduction .. 9

1.1. Design Process Overview .. 9
2. Setting Up the Basic Environment .. 10

2.1. Tools and Hardware Requirements... 10
2.1.1. Lattice Tools ... 10
2.1.2. Hardware .. 10

2.2. Setting Up the Linux Environment for Machine Training .. 10
2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU............................. 11
2.2.2. Setting Up the Environment for Training and Model Freezing Scripts ... 13
2.2.3. Creating New Environment with the yml File Provided ... 14

3. Code Structure .. 18
3.1. Code structure for MobileNet-v1 based Barcode Detection .. 18
3.2. Code Structure for Yolov5 – Focus Layer based Barcode Detection ... 18

4. Dataset Preparation.. 19
4.1. Downloading the Dataset .. 19
4.2. Labelling Artelab Dataset Using the LabelImg Tool .. 19
4.3. Annotate Images ... 20

4.3.1. Open LabelImg Tool ... 20
4.4. Convert LabelImg Tools VOC XML Label Format to Kitti Format .. 24

5. Training Code Preparation .. 25
5.1. Neural Network Architecture .. 25

5.1.1. Barcode Detection Network Output .. 28
5.1.2. Training Code Overview ... 28

5.2. Training ... 38
6. Creating a Frozen File ... 42

6.1. Convert Keras model to tensorflow pb ... 42
7. Model Evaluation .. 43

7.1. Run Inference on test set. ... 43
7.2. Calculate MAP ... 43

8. Creating a Binary File with the Lattice sensAI Software ... 45
9. Hardware (RTL) Implementation .. 50

9.1. Top Level Information ... 50
9.1.1. Block Diagram ... 50
9.1.2. Operational Flow .. 50
9.1.3. Core Customization .. 51

9.2. Architectural Details .. 52
9.2.1. Pre-processing Operation ... 52
9.2.2. Post-processing operation ... 52

10. Creating the FPGA Bitstream File ... 54
Appendix A. Yolov5 Training Code Preparation .. 56
Appendix B. Yolov5 Barcode Detection Network Output ... 59
Appendix C. Yolov5 Training Code Overview .. 60

C.1. Training Yolov5 .. 67
Appendix D. Yolov5 Frozen File Creation .. 70
Appendix E. Yolov5 Model Evaluation and mAP calculation .. 71

E.1. Run Inference on Test Set .. 71
E.2. Calculate MAP .. 71

Appendix F. Yolov5 Binary File creation using sensAI NN Compiler ... 72
Appendix G. Yolov5 Hardware RTL Implementation... 79

G.1. Top Level Information ... 79

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 4

Block Diagram ... 79
Operational Flow .. 79
Core Customization .. 80

G.2. Architectural Details .. 82
Pre-processing Operation ... 82
Post-processing operation .. 82

References .. 83
Technical Support Assistance ... 84
Revision History .. 85

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 5

Figures
Figure 1.1. Lattice Machine Learning Design Flow ... 9
Figure 2.1. Lattice CertusPro-NX Voice and Vision Machine Learning (VVML) Board, Rev A ... 10
Figure 2.2. CUDA Archive Page ... 11
Figure 2.3. Download CUDA Configuration .. 12
Figure 2.4. cuDNN Library Installation .. 13
Figure 2.5. Anaconda Installation ... 13
Figure 2.6. Accept License Terms ... 13
Figure 2.7. Confirm/Edit Installation Location .. 14
Figure 2.8. Launch/Initialize Anaconda Environment on Installation Completion ... 14
Figure 2.9. env_barcode.yml (1) ... 14
Figure 2.10. env_barcode.yml (2) ... 15
Figure 3.1. MobileNet-v1 Training Code Directory Structure ... 18
Figure 3.2. Yolov5: Training Code Directory Structure ... 18
Figure 4.1. Arte-lab Dataset Directory Structure .. 19
Figure 4.2. Arte-lab Sample Image ... 19
Figure 4.3. LabelImg Tool Installation ... 20
Figure 4.4. LabelImg Tool .. 20
Figure 4.5. Open Dataset Directory .. 21
Figure 4.6. Saving Output Directory ... 21
Figure 4.7. Drawing Bounding Box.. 22
Figure 4.8. Saving Label and Image .. 22
Figure 4.9. LabelImg Tool .. 23
Figure 4.10. Output Label Folder .. 23
Figure 4.11. Output Kitti Label Folder .. 24
Figure 4.12. Kitti Label Format ... 24
Figure 5.1. MobileNet-v1 Architecture ... 26
Figure 5.2. Training Code Flow Diagram ... 29
Figure 5.3. Code Snippet: Snippet: Input Image Size Config ... 30
Figure 5.4. Code Snippet: Anchors Per Grid Config #1 (grid sizes) ... 30
Figure 5.5. Code Snippet: Classes ... 30
Figure 5.6. Code Snippet: Anchors Per Grid Config #2 ... 30
Figure 5.7. Code Snippet: Anchors per Grid Config #3 ... 31
Figure 5.8. Code Snippet: Training Parameters .. 32
Figure 5.9. Code Snippet: Forward Graph Fire Layers .. 33
Figure 5.10. Code Snippet: Forward Graph Last Convolution Layer ... 33
Figure 5.11. Grid Output Visualization #1 ... 34
Figure 5.12. Grid Output Visualization #2 ... 34
Figure 5.13. Code Snippet: Interpret Output Graph ... 35
Figure 5.14. Code Snippet: Bbox Loss ... 35
Figure 5.15. Code Snippet: Confidence Loss ... 36
Figure 5.16. Code Snippet: Class Loss ... 36
Figure 5.17. Code Snippet: dataset iterator ... 36
Figure 5.18. Code Snippet: Image Scale.. 37
Figure 5.19. Code Snippet: Reduce Learning Rate on Plateau.. 37
Figure 5.20. Code Snippet: Save ... 37
Figure 5.21. Code Snippet: Transfer Learning .. 37
Figure 5.22. Code Snippet: Freezing Layers .. 38
Figure 5.23. Training Input Parameter .. 38
Figure 5.24. Execute Training Script ... 39
Figure 5.25. Execute Training with Transfer Learning .. 39
Figure 5.26. Execute Training with Transfer Learning + Frozen Layers .. 40
Figure 5.27. TensorBoard: Generated Link ... 40

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 6

Figure 5.28. TensorBoard .. 40
Figure 5.29. Backbone Graph .. 41
Figure 5.30. Example Files in Log Folder ... 41
Figure 5.31. Example Checkpoints and Training Model .. 41
Figure 6.1. Keras to tf converter directory ... 42
Figure 7.1. Inference directory ... 43
Figure 7.2. Run Inference .. 43
Figure 7.3. Inference Output .. 43
Figure 7.4. mAP Directory Structure ... 43
Figure 7.5. mAP Calculation .. 44
Figure 8.1. sensAI – Home Screen .. 45
Figure 8.2. sensAI – Select Framework, Device, IP, Network File, and Image/Video Data ... 46
Figure 8.3. sensAI – Select Debug Mode and Enable Embedded Mode ... 46
Figure 8.4. sensAI – Update Project Settings .. 47
Figure 8.5. Analyze and Compile Project .. 48
Figure 8.6. Q Format Settings for Each Layer (1) .. 48
Figure 8.7. Compiled Project... 49
Figure 9.1. Top Block Diagram of Barcode Detection with CertusPro-NX Voice and Vision ML (Rev A) Board 50
Figure 9.2. Downscaling from 1080p to 480p (Obtaining 4x2 Pixels in 480p from 18 x 6 Pixels in 1080p) 50
Figure 9.3. Downscaling Image ... 52
Figure 10.1. Radiant Software .. 54
Figure 10.2. Radiant Software – Open Project.. 54
Figure 10.3. Radiant Software – Bitstream Generation Export Report .. 55
Figure A.1. Yolov5 Architecture ... 56
Figure A.2. Yolov5: Bottleneck CSP Architecture .. 57
Figure C.1. Yolov5 Code Snippet: Input Image Size Config .. 60
Figure C.2. Yolov5 Code Snippet: Anchors Per Grid Config #1 (Grid Sizes) ... 60
Figure C.3. Yolov5 Code Snippet: Classes ... 60
Figure C.4. Yolov5 Code Snippet: Anchors Per Grid Config #2 .. 60
Figure C.5. Yolov5 Code Snippet: Anchors per Grid Config #3 .. 61
Figure C.6. Yolov5 Code Snippet: Training Parameters .. 62
Figure C.7. Yolov5 Code Snippet: Filter Values ... 63
Figure C.8. Yolov5 Code Snippet: Focus Layer .. 63
Figure C.9. Yolov5 Code Snippet: Forward Graph Last Convolution Layer ... 63
Figure C.10. Yolov5 Grid Output Visualization #1 ... 64
Figure C.11. Yolov5 Grid Output Visualization #2 ... 64
Figure C.12. Yolov5 Code Snippet: Interpret Output Graph ... 65
Figure C.13. Yolov5 Code Snippet: Bbox Loss ... 65
Figure C.14. Yolov5 Code Snippet: Confidence Loss ... 66
Figure C.15. Yolov5 Code Snippet: Class Loss ... 66
Figure C.16. Yolov5 Code Snippet: Optimizer ... 66
Figure C.17. Yolov5 Code Snippet: Training .. 67
Figure C.18. Yolov5 Code Snippet: Training .. 67
Figure C.19. Yolov5: Execute Run Script ... 68
Figure C.20. Yolov5 TensorBoard: Generated Link .. 68
Figure C.21. Yolov5 TensorBoard .. 68
Figure C.22. Yolov5: Image Menu of TensorBoard ... 69
Figure C.23. Yolov5: Example of Checkpoint Data Files at Log Folder .. 69
Figure D.1. Yolov5: Run genpb.py to Generate Inference .pb .. 70
Figure D.2. Yolov5: Frozen Inference. pb Output ... 70
Figure E.1. Yolov5: Run Inference .. 71
Figure E.2. Yolov5: Inference Output .. 71
Figure E.3. Yolov5: mAP File ... 71
Figure E.4. Yolov5: mAP Calculation ... 71

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 7

Figure F.1. Yolov5: sensAI – Home Screen ... 72
Figure F.2. Yolov5: sensAI – Select Framework, Device, IP, Network File, and Image.. 73
Figure F.3. Yolov5: sensAI – Select Project Setting ... 73
Figure F.4. Yolov5: sensAI – Update Project Settings ... 74
Figure F.5. Yolov5: Analyze Project ... 74
Figure F.6. Yolov5: Q Format Settings for Each Layer (1) ... 75
Figure F.7. Yolov5: Q Format Settings for Each Layer (2) ... 76
Figure F.8. Yolov5: Q Format Settings for Each Layer (3) ... 77
Figure F.9. Yolov5: Compile Project .. 78
Figure G.1. Yolov5: Top Level Block Diagram of Barcode Detection with CertusPro-NX Voice and Vision ML (Rev A) Board
 .. 79
Figure G.2. Yolov5: Downscaling from 1080p to 480p (Obtaining 4 x 2 pixels in 480p from 18 x 6 pixels in 1080p) 80
Figure G.3. Yolov5: Downscaling Image .. 82

Tables
Table 9.1. Core Parameters .. 51
Table 9.2. Camera Parameters ... 52
Table G.1. Core Parameters - Yolov5 .. 81
Table G.2. Camera Parameters - Yolov5 ... 81

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 8

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

CKPT Checkpoint

CNN Convolutional Neural Network

CPNX CertusPro-NX

CSP Cross Stage Partial network

EVDK Embedded Vision Development Kit

FPGA Field Programmable Gate Array

LED Light-Emitting Diode

MLE Machine Learning Engine

NN Neural Network

NNC Neural Network Compiler

SD Secure Digital

SDHC Secure Digital High Capacity

SDXC Secure Digital extended Capacity

SPI Serial Peripheral Interface

USB Universal Serial Bus

VIP Video Interface Platform

VnV Voice and Vision

VVML Voice and Vision Machine Learning Board

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 9

1. Introduction
The Barcode Detection design process uses the CertusProTM-NX Voice and Vision Machine Learning Board. This
document describes the barcode detection reference design.

1.1. Design Process Overview
The design process involves the following steps:

1. Training the model.

• Setting up the basic environment.

• Preparing the dataset.

• Training the machine.

• Training the machine and creating the checkpoint data.

• Creating the frozen file (*.pb).

2. Compiling the neural network: creating the filter and firmware binary files with Lattice sensAITM 6.0 program.

3. FPGA design: creating the FPGA Bit stream file.

4. FPGA bitstream and Quantized Weights and Instructions: flashing the binary and bitstream files to the CertusPro-
NX VVML hardware.

NN Models

Training Dataset

Training Scripts

 ML Frameworks

(TensorFlow, Keras,

Caffe, ...)

Training Model

FPGA Design

NN IP

System Interface

FPGA Tools (Lattice

Diamond, Lattice

Radiant, ...)

NN Compiler
Trained

Model

Lattice FPGA

Quantized

Weights and

Instructions

FPGA

Bitstream

Figure 1.1. Lattice Machine Learning Design Flow

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 10

2. Setting Up the Basic Environment

2.1. Tools and Hardware Requirements
This section describes the required tools and environment setup for training and model freezing.

2.1.1. Lattice Tools
• Lattice RadiantTM software v2022.1: refer to http://www.latticesemi.com/latticeradiant

• Lattice Radiant Programmer v2022.1: refer to http://www.latticesemi.com/latticeradiant

• Lattice Neural Network Compiler v 6.1: refer to
 https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler

2.1.2. Hardware

This design uses the CertusPro-NX Voice and Vision Machine Learning (VVML) Board, Rev A Board, as shown in
Figure 2.1.

Figure 2.1. Lattice CertusPro-NX Voice and Vision Machine Learning (VVML) Board, Rev A

2.2. Setting Up the Linux Environment for Machine Training
This section describes the steps for NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 18.04 Operation System. The
NVIDIA library and TensorFlow version is dependent on PC and Ubuntu/Windows version.

http://www.latticesemi.com/legal
http://www.latticesemi.com/latticeradiant
http://www.latticesemi.com/latticeradiant
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 11

2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU

2.2.1.1. Installing the CUDA Toolkit

To install CUDA toolkit-11.1, go to https://developer.nvidia.com/cuda-toolkit-archive and click on specific required
version (CUDA 10.1) from the list. Refer to Figure 2.2.

Figure 2.2. CUDA Archive Page

http://www.latticesemi.com/legal
https://developer.nvidia.com/cuda-toolkit-archive

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 12

Select the appropriate combination of as highlighted in Figure 2.3. to get the cuda toolkit download option.

Figure 2.3. Download CUDA Configuration

Once downloaded, follow the Installation Instructions given in the download block of the webpage.

2.2.1.2. Installing the cuDNN

To install the cuDNN:

1. Create an NVIDIA developer account: https://developer.nvidia.com.

2. Download cuDNN lib:
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-
linux-x64-v7.1

3. Execute the following commands to install cuDNN:

$ tar xvfcudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h/usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudochmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 13

Figure 2.4. cuDNN Library Installation

2.2.2. Setting Up the Environment for Training and Model Freezing Scripts

This section describes the environment setup information for training and model freezing scripts for 64-bit Ubuntu
18.04. Anaconda provides one of the easiest ways to perform machine learning development and training on Linux.

Installing Anaconda Python

To install the Anaconda and Python 3:

1. Go to https://www.anaconda.com/products/distribution

2. Scroll down for Anaconda Additional Installers.

3. Download Python3 version of Anaconda for Linux.

4. Run the command below to install the Anaconda environment:

$ sh Anaconda3-2022.10-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release.

Figure 2.5. Anaconda Installation

5. Accept the license.

Figure 2.6. Accept License Terms

6. Confirm the installation path. Follow the instruction on screen if you want to change the default path.

http://www.latticesemi.com/legal
https://www.anaconda.com/products/distribution

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 14

Figure 2.7. Confirm/Edit Installation Location

7. After installation, enter No, as shown in Figure 2.8.

Figure 2.8. Launch/Initialize Anaconda Environment on Installation Completion

2.2.3. Creating New Environment with the yml File Provided

The project structure is provided with the corresponding yml file env_barcode.yml which directly creates the required
virtual environment.

Figure 2.9. env_barcode.yml (1)

Prior to executing this file, you need to edit certain information in yml file. Follow the steps below:

1. After successful installation of Ananconda, navigate to its directory /home/user/anaconda3/ to find env folder.
Copy path to this env folder.

2. Open env_barcode.yml and make changes below:

Set your environment name in first line of the file as shown below.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 15

Figure 2.10. env_barcode.yml (2)

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 16

3. Modify the last line in the yml file with the new path and environment name.

Figure 2.11. env_barcode.yml Prefix Line Edit

4. Activate your conda environment using the command below:

 $ source anaconda3/bin/activate

Figure 2.12. Anaconda Activate

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 17

5. Create the environment from the env_barcode.yml file using the command below:

 $ conda env create -f env_barcode.yml

Figure 2.13. env_barcode.yml Execution

Figure 2.14. env_barcode.yml Execution Completion

6. Hit the following command to activate your newly created environment:

 $ conda activate <your env name>

Figure 2.15. Activating the Environment

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 18

3. Code Structure
Download the Lattice Barcode Detection demo training code. The reference design comes with two algorithms for
barcode detection, which are MobileNet-v1 and Yolov5. The directory structures are shown in Figure 3.1. and Figure 3.2.

3.1. Code structure for MobileNet-v1 based Barcode Detection

Figure 3.1. MobileNet-v1 Training Code Directory Structure

3.2. Code Structure for Yolov5 – Focus Layer based Barcode Detection

Figure 3.2. Yolov5: Training Code Directory Structure

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 19

4. Dataset Preparation
This section describes steps and guidelines used to prepare the dataset to train the barcode detection demo for CPNX-
VNV.

Note: This section is for the example reference. Lattice Semiconductor only provides the guidelines and/or examples
which can be used as reference for preparing the dataset for given use cases. Lattice Semiconductor does not recommend
and/or endorse any dataset(s). Lattice Semiconductor strongly recommends you gather and prepare your own datasets
for your end applications.

4.1. Downloading the Dataset
In this document, we use Artelabs 1-D barcode Dataset
(http://artelab.dista.uninsubria.it/downloads/datasets/barcode/medium_barcode_1d/medium_barcode_1d.html)
as reference. This dataset is under the Creative Commons Attribution 3.0. License. Download the Dataset and extract
the data.

Figure 4.1. shows the Arte-lab dataset directory structure and Figure 4.2. shows the Arte-lab sample image.

Figure 4.1. Arte-lab Dataset Directory Structure

Figure 4.2. Arte-lab Sample Image

4.2. Labelling Artelab Dataset Using the LabelImg Tool
Activate your environment and install the LabelImg tool using the command below. Figure 4.3. shows the output of the
installation.

$ python pip install labelImg

http://www.latticesemi.com/legal
http://artelab.dista.uninsubria.it/downloads/datasets/barcode/medium_barcode_1d/medium_barcode_1d.html

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 20

Figure 4.3. LabelImg Tool Installation

4.3. Annotate Images

4.3.1. Open LabelImg Tool

After installation of the LabelImg tool, use the command below to launch the tool as shown in Figure 4.4.

$ labelImg

Figure 4.4. LabelImg Tool

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 21

1. Click on the Open Dir menu option on left of the LabelImg tool GUI and select your Dataset directory that contains
the images as shown in Figure 4.5.

Figure 4.5. Open Dataset Directory

2. Click on the Change Save Dir menu option to select a folder where you want to save your annotation file as shown
in Figure 4.5.

Figure 4.6. Saving Output Directory

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 22

3. Click on the Create RectBox menu option as shown in Figure 4.7 to draw bounding box around the barcode.

Figure 4.7. Drawing Bounding Box

4. Label them as barcode and click on OK. After that, the Save menu option becomes active. You can now save the
label for the image. Click Save as shown in Figure 4.8.

Figure 4.8. Saving Label and Image

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 23

5. You can review all saved images. If required, the Delete Box menu option enables you to remove or edit the
existing bounding box as shown in Figure 5.9.

Figure 4.9. LabelImg Tool

6. All the labelled images have corresponding voc format .xml files created in the Change save directory as shown in
Figure 4.10.

Figure 4.10. Output Label Folder

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 24

4.4. Convert LabelImg Tools VOC XML Label Format to Kitti Format
• Download the Lattice Barcode Detection and Reading demo training code.

• There is “voc_xml_to_kitty.py” file in Training directory.

• Run command below to convert “VOC XML for images” format to “Kitti” format.

$ python voc_xml_to_kitty.py --input _dir < path to output folder of labelImg tool
containing xml files> --output <Output folder for saving kitti format files>

Figure 4.11. and Figure 4.12. show the output label folder and the label format, respectively.

Figure 4.11. Output Kitti Label Folder

Figure 4.12. Kitti Label Format

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 25

5. Training Code Preparation
Note: Refer to Appendix A for Training Code Preparation for Yolov5 Architecture based Barcode Detection Design.

5.1. Neural Network Architecture
This section provides information on the Convolution Network Configuration of the Barcode Detection design. The
Neural Network model of the Barcode Detection design uses MobileNetV1 NN base model and the detection layer of
the SqueezeDet model.

Image Input (320 x 240 x 1)

Fire 1 DWConv3 - 32 Conv3 - # where:

• Conv3 = 3 x 3 Convolution filter Kernel size

• # = The number of filter

DWConv3 - 32- # where:

• DWConv3 = Depth wise convolution filter with 3x3
size

• # = The number of filter

Conv1 - 32- # where:

• Conv1 = 1 x 1 Convolution filter Kernel size

• # = The number of filter

For example, Conv3 - 16 = 16 3 x 3 convolution filters

BN – Batch Normalization

BN

Relu

Maxpool

Conv1 – 32

BN

Relu

Maxpool

Fire 2 DWConv3 - 32

BN

Relu

Conv1 – 32

BN

Relu

Fire 3 DWConv3 – 32

BN

Relu

Maxpool

Conv1 – 32

BN

Relu

Fire 4 DWConv3 – 64

BN

Relu

Maxpool

Conv1 – 64

BN

Relu

Fire 5 DWConv3 – 64

BN

Relu

Conv1 – 64

BN

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 26

Relu

Fire 6 DWConv3 – 128

BN

Relu

Conv1 – 128

BN

Relu

Fire 7 DWConv3 – 128

BN

Relu

Conv1 – 128

BN

Relu

Conv12 Conv3 – 42

Figure 5.1. MobileNet-v1 Architecture

• As shown in Figure 5.1, this model consists of seven fire layers followed by one convolution layer. Fire layer
contains convolution, depth wise convolution, batch normalization and relu layers with pooling layer only in fire1,
fire 3, and fire 4. Layers fire 2, fire 5, fire 6, and fire 7 do not contain pooling.

• Note that fire 1 contains two Maxpooling operations to reduce calculation complexity and model size.

• Layer contains Convolution (conv), batch normalization (bn) and relu layers.

• Layer information:

• Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels) which convolves with input layer/image and generates activation map (i.e.,
feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each of these
filters can be thought of as feature identifiers, like straight edges, simple colors, and curves and other high-
level features. For example, the filters on the first layer convolve around the input image and “activate” (or
compute high values) when the specific feature (say curve) it is looking for is in the input volume.

• Relu (Activation layer)

After each convolutional layer, it is a convention to apply a nonlinear layer (or activation layer) immediately
afterward. The purpose of this layer is to introduce nonlinearity to a system that computes linear operations in
the convolutional layers (element wise multiplications and summations). ReLU layers work better than
nonlinear functions such as tanh and sigmoid because the network is able to faster (because of computational
efficiency) without impacting accuracy. The ReLU layer applies the function f(x) = max (0, x) to all the values in
the input volume. This layer just changes all the negative activations to 0. This layer increases the nonlinear
properties of the model and the overall network without affecting the receptive fields of the convolutional
layer.

• Pooling Layer

After some ReLU layers, programmers may choose to apply a pooling layer. It is also referred to as a down
sampling layer. In this category, there are also several layer options, with Maxpooling being the most popular.
This layer takes a filter (normally of size 2x2) and a stride of the same length. It then applies it to the input
volume and outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once we know that a specific feature is in the original input
volume (there will be a high activation value), its exact location is not as important as its relative location to

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 27

the other features. This layer drastically reduces the spatial dimension (the length and the width change but
not the depth) of the input volume. This serves two main purposes.

The first is that the number of parameters or weights is reduced by 75%, thus lessening the computation cost.
The second is that it will control over fitting. This term refers to when a model is so tuned to the training
examples that it is not able to generalize well for the validation and test sets. A symptom of over fitting is
having a model that gets 100% or 99% on the training set, but only 50% on the test data.

• Batch Normalization Layer
The batch normalization layer reduces the internal covariance shift. To train a neural network, you need to
preprocess the input data. For example, you can normalize all data so that it resembles a normal distribution
(that is, zero mean and a unitary variance) to prevent the early saturation of non-linear activation functions,
such as the sigmoid function, and assuring that all input data is in the same range of values.

However, the problem appears in the intermediate layers because the distribution of the activations is
constantly changing during training. This slows down the training process because each layer must learn to
adapt them to a new distribution in every training step. This problem is known as internal covariate shift.

Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following the process below when training:

• Calculate the mean and variance of the layers input.

• Normalize the layer inputs using the previously calculated batch statistics.

• Scale and shift to obtain the output of the layer.
This makes the learning of layers in the network more independent of each other and allows you to be more
flexible with weight initialization, works as regularization in place of dropout and other regularization
techniques.

• Depth wise Convolution and 1 x 1 Convolution Layer
Depth wise convolutions are used to apply a single filter per each input channel (input depth). Pointwise
convolution, a simple 1 × 1 convolution, is then used to create a linear combination of the output of the depth
wise layer.
Depth wise convolution is extremely efficient relative to standard convolution. However, it only filters input
channels and does not combine them to create new features. An additional layer that computes a linear
combination of the output of depth wise convolution via 1 × 1 convolution is needed to generate these new
features.
The 1 × 1 convolutional layer compresses an input tensor with large channel size to one with the same batch
and spatial dimension, but smaller channel size. Given a 4D input tensor and a filter tensor of
shape [filter_height, filter_width, in_channels, channel_multiplier], containing in_channels, convolutional
filters of depth 1, depthwise_conv2d applies a different filter to each input channel, the layer concatenates
the results together. The output has in_channels * channel_multiplier channels.

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of
the network and control over fitting.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 28

5.1.1. Barcode Detection Network Output

Note: Refer to Appendix B for the network output for Yolov5 Architecture based Barcode Detection Design.

For MobileNet-V1 architecture, the input image model first extracts feature maps, overlays them with a W x H grid and
at each cell computes K pre-computed bounding boxes called anchors. Each bounding box has the following:

• Four scalars (x, y, w, h)

• A confidence score (Pr(Object)x IOU)

• C conditional classes

Hence current model architecture has a fixed output of W x H x K x (4 + 1 + C). Where:

• W, H = Grid Size

• K = Number of anchor boxes

• C = Number of classes for detection

Based on the description above, the model has a total of 12600 output values. It is derived from following:

• 20 x 15 grid

• 20 anchor boxes per grid

• 6 values per anchor box consisting of:

• 4 bounding box coordinates (x, y, w, h)

• 1 class probability

• 1 confidence score

So, total 15 x 20 x 20 x 6 = 36000 output values.

Note: Smaller images do not work as well with the resulting spacer grid. If your images are smaller, stretch the devices
to default size. You can also up-sample them beforehand.

If your images are bigger and you are not satisfied with the results of the default image size, you can try using a denser
grid, as details might get lost during the downscaling.

5.1.2. Training Code Overview

Note: Refer to Appendix C for training code overview for Yolov5 Architecture based Barcode Detection Design.

Figure 5.2. shows the training code flow diagram.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 29

Figure 5.2. Training Code Flow Diagram

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 30

Training code can be divided into the following parts:

• Model config

• Model building

• Model freezing

• Data preparation

• Training for overall execution flow

Details of each can be found in the subsequent sections.

Model Config

Demo uses Kitti dataset and SqueezeDet main/config/create_config.py maintains all the configurable parameters for
the model. A summary of configurable parameters is shown below:

• Image size

• Change mc.IMAGE_WIDTH and mc.IMAGE_HEIGHT to configure Image size (width and height) in
src/config/kitti_squeezeDet_config.py

Figure 5.3. Code Snippet: Snippet: Input Image Size Config

• Grid dimensions are H = 15 and W = 20. Update them based on anchors per grid size changes.

Figure 5.4. Code Snippet: Anchors Per Grid Config #1 (grid sizes)

• Batch size

Change mc.BATCH_SIZE in training/main/config/create_config.py to configure batch size.

• Output classes

Edit classes in src/config/config.py as shown below.

Figure 5.5. Code Snippet: Classes

• Anchors per grid

• Change cfg.ANCHOR_PER_GRID in training/main/config/create_config.py to configure anchors per grid.

Figure 5.6. Code Snippet: Anchors Per Grid Config #2

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 31

• If you want to run network on your own dataset, you need to adjust the anchor sizes. Anchors are prior
distribution over what shapes your boxes should have. The better this fits to the true distribution of boxes, the
faster and easier your training can be.

• To determine anchor shapes, first load all ground truth boxes and pictures. If your images do not have all the
same size, normalize their height and width by the image’s height and width. All images need be normalized
before being fed to the network. You need to do the same to the bounding boxes and consequently, the
anchors.

• Second, perform a clustering on these normalized boxes. You can use k-means without feature whitening to
determine the number of clusters either by eyeballing or by using the elbow method.

• Check for boxes that extend beyond the image or have a zero to negative width or height.

Figure 5.7. Code Snippet: Anchors per Grid Config #3

• Training parameters

Other training related parameters such as learning rate, loss parameters, and different thresholds can be
configured in src/config/kitti_yolov5_config.py.

http://www.latticesemi.com/legal
https://en.wikipedia.org/wiki/Elbow_method_%28clustering%29

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 32

Figure 5.8. Code Snippet: Training Parameters

The SqueezeDet class constructor builds a model which can be divided in below sections:

• Forward graph:

• File path: main/model/SqueezeDet.py -> _create_model()

• CNN architecture consists of convolution, batch normalization, relu, maxpool and 1 x 1 depth wise convolution
layers.

• Default forward graph consists of seven fire layers as described in Figure 5.9.

• The length of network is generated based on the argument depth which consists of the number of filters for
each layer.
Note: The minimum length supported is 5. The maximum length supported is 10.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 33

Figure 5.9. Code Snippet: Forward Graph Fire Layers

Note: Layers have depth wise 2D convolution.

Figure 5.10. Code Snippet: Forward Graph Last Convolution Layer

• Interpretation graph

This block interprets output from the network and extracts predicted class probability, predicated confidence scores,
and bounding box values.

Output of the convnet is a 15 x 20 x 120 tensor. There are 120 channels of data for each of the cells in the grid that
is overlaid on the image and contains the bounding boxes and class predictions. The 120 channels are not stored
consecutively. Figure 5.11 shows the details.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 34

Figure 5.11. Grid Output Visualization #1

For each grid, the cell values are aligned as shown in Figure 5.12:

Figure 5.12. Grid Output Visualization #2

As shown in Figure 5.13, output from conv12 layer (4D array of batch size x 15 x 20 x 120) needs to be sliced with
proper index to get all values of probability, confidence, and coordinates.

Code snippet Interpret Output: main/utils/utils.py -> slice_predictions()

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 35

Figure 5.13. Code Snippet: Interpret Output Graph

For confidence score (between 0 and 1), sigmoid is used.

To predict the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Apply a softmax layer
for probability distribution.

• Bboxes: bboxes_from_deltas()

This block calculates bounding boxes based on anchor box and predicated bounding boxes.

• IOU: tensor_iou()

This block calculates Intersection over Union for detected bounding boxes and actual bounding boxes.

• Loss graph

File Location: main/model/SqueezeDet.py -> loss()

This block calculates different types of losses that need to be minimized. To learn detection, localization, and
classification, the model defines a multi-task loss function. There are three types of losses that are considered for
calculation:

• Bounding box

This loss is regression of the scalars for the anchors.

Figure 5.14. Code Snippet: Bbox Loss

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 36

• Confidence score

• To obtain a meaningful confidence score, each box’s predicted value is regressed against
the Intersection over Union of the real and the predicted box. During training, we compare ground
truth bounding boxes with all anchors and assign them to the anchors that have the largest overlap
(IOU) with each of them.

• The “closest” anchor is selected to match the ground truth box such that the transformation needed
is reduced to minimum. Equation evaluates to 1 if the kth anchor at position-(i, j) has the
largest overlap with a ground truth box, and to 0 if no ground truth is assigned. This way, we only
include the loss generated by the “responsible” anchors.

• As there can be multiple objects per image, we normalize the loss by dividing it by the number of
objects.

Figure 5.15. Code Snippet: Confidence Loss

• Class

The last part of the loss function is cross-entropy loss for classification for each box to perform classification,
as we would for image classification.

Figure 5.16. Code Snippet: Class Loss

In one model architecture, you obtain the bounding box prediction, the classification, and the confidence score.

5.1.2.1. Training

• Training data generator

The main/model/datageberator.py script reads dataset and creates iterator that feeds data to model in a given
batch size.

Figure 5.17. Code Snippet: dataset iterator

• Data generator scales image pixel values from [0, 255] to [0, 2] as shown in Figure 5.18. It also converts images
to gray scale if the model is trained with the –gray flag.

• Current human count training code uses mean = 0 and scale = 1/128 (0.0078125) in the pre-processing step.

http://www.latticesemi.com/legal
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 37

Figure 5.18. Code Snippet: Image Scale

• Training Callbacks

• Reduce learning Rate on Plateau:

Figure 5.19. Code Snippet: Reduce Learning Rate on Plateau

• Save Checkpoint:

Figure 5.20. Code Snippet: Save

• Transfer Learning

You can pass model checkpoint or saved keras model as argument in –init .

Note: Checkpoint architecture and model should match.

Checkpoints are restored if you are using log directory with existing training.

Figure 5.21. Code Snippet: Transfer Learning

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 38

• Freezing Layers

If you are using a pre-trained checkpoint and want to the freeze model until some layer, you can provide a
flag:

–freeze_landmark sub set of layername.
For example: --freeze_landmark = fire5

Figure 5.22. Code Snippet: Freezing Layers

5.2. Training
To train the machine:

1. Modify training script.

Training script at @train.sh is used to trigger training. Figure 5.23 shows the input parameters that can be
configured.

Figure 5.23. Training Input Parameter

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 39

• --dataset_path: dataset directory path. Example: /home/dataset/qvga_dataset.

• --logdir: log directory where checkpoint files are generated while the model is training.

• --val_set_size: validation split percentage.

• --validation_freq: validation frequency in terms of number of epochs.

• --gray: add flag to train model with grayscale images.

• --early_pooling: add flag to use early-pooling.

• --filterdepths: comma separated list of number of features for each layer.
You can use depth length of 5 to 10 (default: 7).

• --sparsity: list of fraction to prune layer channels.
Note: First fire layer is not pruned so length of sparsity list should be one less than length of filter depths.

• --epochs: comma separated epoch list for training, pruning, and fine-tuning.

• –gpuid: if the system has more than one gpu, it indicates the one to use.

• --configfile: config file name. If the file exist in logdir, the code will reuse it, otherwise it creates a new file.

• --runpruning: add flag to run pruning after training is completed.

• --usecov3: use normal convolution as first layer instead of depthwise 1 x 1 convolutional layer.

• --usedefaultvalset: add this flag if you want to reuse validation set images from val.txt. If flag is not present,
the code creates a new validation set.

• --freeze_landmark: if you want to freeze some layers in network, you can provide a subpart or layer name as
argument and the code freezes weights until that layer. Example: fire1, fire6.

• --init: if you want to specify a pre-trained model to load weights.

2. Execute the train.sh script to start training as shown in Figure 5.24., Figure 5.25., and Figure 5.26.

Figure 5.24. Execute Training Script

Figure 5.25. Execute Training with Transfer Learning

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 40

Figure 5.26. Execute Training with Transfer Learning + Frozen Layers

Note: If the model is not converging in pruning, you can reduce sparsity and rerun.

3. Start TensorBoard.

$ tensorboard –logdir=<log directory of training>

For example: tensorboard –logdir=’./logs/train/tensorboard’

4. Open the local host port on your web browser.

Figure 5.27. TensorBoard: Generated Link

5. Check the training status on TensorBoard.

Figure 5.28. TensorBoard

Figure 5.29 shows the backbone graph, Figure 5.30 shows the example files in the log folder, and Figure 5.31 shows
example checkpoints and training model.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 41

Figure 5.29. Backbone Graph

Figure 5.30. Example Files in Log Folder

Figure 5.31. Example Checkpoints and Training Model

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 42

6. Creating a Frozen File
Note: Refer to Appendix D for creating frozen files for Yolov5 Architecture based Barcode Detection Design.

This section describes the procedure for freezing the MobileNet-v1 model, which is aligned with the Lattice sensAI tool.
Perform the steps below to generate the frozen protobuf file.

6.1. Convert Keras model to tensorflow pb
Barcode-QVGA code contains keras2tf.py under keras-to-tf-converter directory as shown in Figure 6.1.

Figure 6.1. Keras to tf converter directory

Note: If you did any quantization change in the training code binary_ops.py, replicate the changes in binary_ops.py.

Run the command below to generate pb in the same path as the h5 file.

$ python keras2tf.py –kerasmodel <h5 model path>

The script saves the corresponding. pb file in the given input kerasmodel directory.

Note: For models trained on tensorflow version < 2.x, you need to upgrade your environment and create another
environment with tensorflow version 2.5x and beyond for generating pb files. You can compile with the latest
NNcompiler v6.0.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 43

7. Model Evaluation
Note: Refer to Appendix E for Model Evaluation and mAP calculation for Yolov5 Architecture based Barcode Detection
Design.

This section describes steps to calculate model performance in terms of MAP.

7.1. Run Inference on test set.
Barcode Detection QVGA code contains qvga_inference_320x240.py under inference directory as shown in Figure 7.1.

Figure 7.1. Inference directory

Note: If you did any change in the training code regarding image size, number of anchors, or grid size, you need to
replicate the changes in the inference script.

Run the command below to run inference on test set.

$ python qvga_inference_320x240.py –pb <converted pb path> --input_image <test set images
path>

Figure 7.2. Run Inference

The command above saves images with bbox drawn in inference_output/image_output and produce kitti output in
inference_output/predictions as shown in Figure 7.3.

Figure 7.3. Inference Output

7.2. Calculate MAP
The Barcode Detection QVGA code contains qvga_inference_320x240.py in the inference directory as shown in
Figure 7.4.

Figure 7.4. mAP Directory Structure

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 44

Run the command below to calculate mAP using predictions generated from inference and groundtruth from test set.

$ python main.py –input_images <input test set images path> --ground_truth <input test set
labels path> --predictions <path to prediction generated from inference> --no-animation –
no-plot

Figure 7.5. mAP Calculation

After a successful run, the script shows the mAP for each class and the total mAP, as shown in Figure 7.5.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 45

8. Creating a Binary File with the Lattice sensAI Software
Note: Refer to Appendix F for Binary File Creation for Yolov5 Architecture based Barcode Detection Design.

This section describes how to generate a binary file using the Lattice sensAI version 6.0 software.

Figure 8.1. sensAI – Home Screen

To create the project in theLattice sensAI software:

1. Click File > New.

2. Enter the following settings:

• Project name

• Framework – TensorFlow

• Class – CNN

• Device – CertusPro-NX

• IP – Advanced_CNN

3. Click Network File and select the network (PB) file.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 46

Figure 8.2. sensAI – Select Framework, Device, IP, Network File, and Image/Video Data

4. Click the Image/Video/Audio Data button and select the input image file.

Figure 8.3. sensAI – Select Debug Mode and Enable Embedded Mode

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 47

5. Click Next.

6. Set the following attributes:

• Mean Value for Data Pre-Processing: 0

• Scratch Pad Memory Block Size: 8192

• ARGS MAX Size: 4096

• External Memory Interfaced: 8388608

• Scale Value for Data Pre-Processing: 0.0078125

• Number of VE SPD: 4

• Multi-port parallel: 2

Figure 8.4. sensAI – Update Project Settings

7. Click Ok to create project.

8. Double-click on Analyze as shown in Figure 8.5.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 48

Figure 8.5. Analyze and Compile Project

9. Confirm the Q format of each layer as shown in Figure 8.6.

Figure 8.6. Q Format Settings for Each Layer (1)

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 49

10. Double-click Compile to generate the firmware and filter binary file as shown in Figure 8.7.

Figure 8.7. Compiled Project

The firmware bin file location is displayed in the compilation log. Use the generated firmware bin on hardware for
testing.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 50

9. Hardware (RTL) Implementation
Note: Refer to Appendix G for Hardware (RTL) Implementation for Yolov5 Architecture based Barcode Detection
Design.

9.1. Top Level Information

9.1.1. Block Diagram

Figure 9.1. Top Block Diagram of Barcode Detection with CertusPro-NX Voice and Vision ML (Rev A) Board

9.1.2. Operational Flow
• The external camera Sony IMX214 is configured using I2C Master Block i2c_single.v.

• The real time input image data is received by the video path. The RAW10 data from (csi2_to_parallel.v) is sent to
downscale_1080p_to480p.v, which downscales the 1080p (1920x1080) image data received from the camera to
480p (640x480). Downscaling is performed by selecting 4 lines out of every 9 lines and 1 pixel out of 3 pixels.
Overall, 4 Valid pixels are passed from 27 pixels (9 x 3 window).

Figure 9.2. Downscaling from 1080p to 480p (Obtaining 4x2 Pixels in 480p from 18 x 6 Pixels in 1080p)

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 51

• After the image is downscaled to 480p, it is passed to pre-processing crop_downscale_front_qvga.v, which performs
crop and downscale operations to provide a compatible input image resolution of 320 x 240 to the ML engine.

• The 6 Mb firmware BIN file (.mcs) is loaded to the SPI Flash module spi_loader_spram.v configured with starting
address 24’h300000 to end address 24’h800000.

• ML Engine receives the downscaled image data from crop_downscale_front_qvga.v through the axi interface and
the firmware file through the AXI hyperbus interface to provide an inference result output.

• ML inference output is stored in a FIFO register and passed to det_out_filter.v for post processing.

• For final output display, the osd_back_qvga_human_count.v module performs barcode detection on the image
received from the video path and the downscaled image obtained from the crop and downscale module using the
ML object detection pixel information obtained from the det_out_filter.v block.

• Output of osd_back_qvga_human_count.v is passed to the rgb2ycbcr module, which converts RGB data of pixels to
YCbCr data which is compatible for FX3. FX3 is passed to the host for display.

9.1.3. Core Customization

Table 9.1 and Table 9.2 show the available parameters.

Table 9.1. Core Parameters

Parameter Value Description

USE_ML 1’b1 Indicates 1: Enable/0: Disable to use CNN engine.

EN_UART 1’b0 Indicates 1: Enable/0:Disable UART for video output.

FLASH_START_ADDR 24’h300000 Indicates starting address to load Firmware in external SPI flash.

FLASH_END_ADDR 24’h800000 Indicates ending address to load Firmware in external SPI flash.

CNN IP Attributes Default Value Description

Number of LRAMs 7 Number of LRAMs in the ML SPD.

Number of VE SPD Packs 8 1 VE SPD Pack = 4 VE SPDs. Number of EBRs in a VE SPD is the attribute below.

Number of EBRs in VE SPD 4
1 VE SPD Pack = 4 VE SPDs. This attribute specifies the number of EBRs in a VE

SPD.

Max AXI4 external

memory DMA Burst
31 Max burst limit on AXI4 bus during DMA transactions with external memory.

LMMI read mode BYTE
Access width mode for LMMI read interface (reading data out of the IP) BYTE:

byte mode; HWORD: 16 bit half word mode; WORD: 32 bit word mode.

LMMI Write mode BYTE
Access width mode for LMMI write interface (writing data into the IP) BYTE: byte

mode; HWORD: 16-bit half word mode; WORD: 32 bit word mode.

No. of Convolution engines 1

Number of parallel convolution engines. Higher compute throughput can be

achieved with a greater number of engines, at the expense of higher utilization

of DSP resources.

Enable 4 parallel ports for

1x1 convolution
Unchecked

Enable four parallel ports internally for high bandwidth data accesses for 1 × 1

convolutions.

Enable Vector ALU Checked Enables the Vector Engine for pixelwise ALU operations.

Enable 5x5 convolution Checked Enables 5 × 5 convolutions inside the Conv EU.

Enable 7x7 convolution Checked Enables 7 × 7 convolutions inside the Conv EU.

Enable Argmax pool Checked Enables the Argmax pool compute module.

Enable Maxpool stride=1

module
Checked Enables the 1-D stride=1 maxpool compute engine.

Avant Mode Unchecked
IMPORTANT: This must be enabled for LAV-AT devices and disabled for

CertusPro-NX devices.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 52

Table 9.2. Camera Parameters

Module Parameter/ Port Sony IMX258 Sony IMX214

vvml_barcode_detection_top.v SENSOR_SLAVE_ADDR 7'h1A 7’h10

vvml_barcode_detection_top.v NUM_OF_TRANS_I2C d80 d81

vvml_barcode_detection_top.v
(downscale_1080p_to480p)

USE_IMX214 1'b0 1'b1

i2c_m_ctrl.v Instance
rom_sonyimx258
u_rom_sonyimx258

rom_sonyimx214
u_rom_sonyimx214

ROM IP
(rom_sonyimx258/rom_sonyimx214)

Config ROM Read
Address

9 Bit 9 Bit

ROM IP
(rom_sonyimx258/rom_sonyimx214)

ROM Address Depth 320 324

9.2. Architectural Details

9.2.1. Pre-processing Operation
• The crop_downscale_front_qvga.v video processing block is used to crop and downscale the image data to make it

compatible with the ML engine.

• Masking values for incoming image data from the camera are set to capture the image data of resolution 640 ×
480.

• As shown in Figure 9.3, a 640 × 480 image is downscaled to 320 × 240 image resolution using block size 2.

Figure 9.3. Downscaling Image

• The accumulated pixel values are written to the accumulation buffer while the data from the buffer is sent to the
ML engine for inference through the line buffer.

9.2.2. Post-processing operation
The post-processing operation is explained as follows:

• After the image is scaled down to 320 x 240, it is passed to the ML engine through the axi_ws2m1.v module.

• When the ML engine completes processing the input image, it asserts the enable signal and starts transmitting
processed data at its output port which is stored in FIFO. This data is then used in calculating bounding boxes in
det_out_filter.v.

• When bounding box co-ordinates are calculated, it is passed to osd_back_qvga_human_count.v.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 53

• The osd_back_qvga_human_count.v module receives mainly the 320 x 240 downscaled image from the pre-
processing module and the ML engine result data from the post processing block.

• Using the pixel information of barcode detection received from the post-processing block, the OSD module
performs text and graphics addition over the 320 x 240 downscaled image.

• In the final segmentation output display, the barcode can be observed in grayscale with bounding box.

• Upon completion of data processing in OSD, it is sent to FX3 via rgb2ycbcr.

The pre-processing and post-processing cycle goes on until the board is powered on and the real time image is
captured by the camera.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 54

10. Creating the FPGA Bitstream File
This section provides the procedure for creating your FPGA bitstream file using the Lattice Radiant Software.

To create the FPGA bit stream file, follow the steps below.

1. Open the Lattice Radiant software, as shown in Figure 10.1.

Figure 10.1. Radiant Software

2. Click File > Open Project and from project database, open the Radiant project file (.rdf) from the
vvml_barcode_detection folder, as shown in Figure 10.2.

Figure 10.2. Radiant Software – Open Project

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 55

3. Click Export Files to generate the bit file. View the log message in Export Reports that indicates the generated
bitstream. Find this bit file under /vvml_barcode_detection/impl_1, as shown in Figure 10.3.

Figure 10.3. Radiant Software – Bitstream Generation Export Report

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 56

Appendix A. Yolov5 Training Code Preparation
This section provides information on the Convolution Neural Network configuration of the Yolov5 Barcode Detection
design.

1 x 160 x 160 x 1

Focus Layer

ConvBNRelU - # where:

• Conv3x3-BatchNorm-ReLU

• # - The number of filters

For example, ConvBNReLU - 8 = 8 3 x 3 convolution
filter followed by BatchNorm and ReLU

BottleNeckCSP - # where:

 # - The number of outputs

ConvBNReLU-16

MaxPool

ConvBNReLU-32

MaxPool

BottleneckCSP-32

ConvBNReLU-64

BottleneckCSP-64

ConvBNReLU-128

BottleneckCSP-128

ConvBNReLU-256

BottleneckCSP-256

ConvBNReLU-256

Conv1x1-20

Figure A.1. Yolov5 Architecture

As shown in Figure A.1, this model contains convolution (Conv), batch normalization (BN), Relu and Bottleneck CSP.

• Layer information

• Focus Layer
Focus layer acts like a transformation from space to depth. In YOLOv5, we reduce the cost of Conv2d
computation using tensor reshaping to reduce space (resolution) and increase the depth (number of channels).
The input is transformed as such: [b, c, h, w] -> [b, c*2, h//2, w//2].

• Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of several filters
(sometimes referred to as kernels), which convolves with input layer/image and generates an activation map
(that is the feature map). This filter is an array of numbers. The numbers are called weights or
parameters. Each of these filters can be thought of as feature identifiers, such as straight edges, simple colors,
and curves and other high-level features. For example, the filters on the first layer convolve around the input
image and activate (or compute high values) when the specific feature (such as curve) it is looking for is in the
input volume.

• Relu (Activation layer)

After each convolutional layer, it is a convention to apply a nonlinear layer (or activation layer) immediately
afterward. The purpose of this layer is to introduce nonlinearity to a system that has just been computing
linear operations during the convolutional layers (just element wise multiplications and summations). The Relu
layer applies the function f(x) = max (0, x) to all of the values in the input volume. This layer changes all
negative activations to 0. This layer increases the nonlinear properties of the model and the overall network
without affecting the receptive fields of the convolutional layer.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 57

• Bottleneck CSP

CSP stands for cross stage partial network. YOLO is a deep network. YOLO uses residual and dense blocks to
enable the flow of information to the deepest layers and to overcome the vanishing gradient problem.
However, a downside of using dense and residual blocks is redundant gradients. CSP helps reduce this issue by
truncating the gradient flow.
YOLOv5 employs CSP strategy to partition the feature map of the base layer into two parts and then merges
them through a cross-stage hierarchy as shown in Figure A.2.

ConvBNReLU
k, s, p, c

ConvBNReLU
k, s, p, c

ConvBNReLU
k, s, p, c

BottleNeck 1

Concat

ConvBNReLU
k, s, p, c

C3

× 3

BottleNeck 1

ConvBNReLU
k1, s1, p0, c

ConvBNReLU
k3, s1, p1, c

h × w × c

Figure A.2. Yolov5: Bottleneck CSP Architecture

Applying this strategy comes with big advantages to YOLOv5 as it helps reduce the number of parameters and
a great amount of computation (less FLOPS), which leads to increasing the inference speed that is crucial in
real-time object detection models.

• Pooling Layer

After some Relu layers, you may choose to apply a pooling layer. It is also referred to as a down sampling
layer. In this category, there are several layer options, with Maxpooling being the most popular. This takes a
filter (normally of size 2 × 2) and a stride of the same length. It then applies it to the input volume and outputs
the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once you know that a specific feature is in the original input
volume (there is to be a high activation value), its exact location is not as important as its relative location to
the other features. This layer drastically reduces the spatial dimension (the length and the width change but
not the depth) of the input volume. This serves two main purposes. The first is that the number of parameters
or weights is reduced by 75%, thus lessening the computation cost. The second is that it can control over
fitting. This term refers to when a model is so tuned to the training examples that it is not able to generalize
well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or 99% on the
training set, but only 50% on the test data.

• Batch Normalization Layer

The batch normalization layer reduces the internal covariance shift. To train a neural network, the input data
is preprocessed. For example, you can normalize all data so that it resembles a normal distribution, which
means, zero mean and a unitary variance, to prevent the early saturation of non-linear activation functions
like the sigmoid function, assuring that all input data is in the same range of values.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 58

But the problem appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt them to
a new distribution in every training step. This problem is known as internal covariate shift.

The batch normalization layer forces the input of every layer to have approximately the same distribution in
every training step by following the process below during training.

Calculate the mean and variance of the layers input:

• Normalize the layer inputs using the previously calculated batch statistics.

• Scales and shifts to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be more
flexible about weight initialization, works as regularization in place of dropout and other regularization
techniques.

• Drop-out Layer

Drop-out layers have a very specific function in neural networks. After training, the weights of the network are
tuned to the training examples they are given such that the network does not perform well when given new
examples. This layer “drops out” a random set of activations in that layer by setting them to zero. It forces the
network to be redundant. This means the network should be able to provide the right classification or output
for a specific example even if some of the activations are dropped out. It makes sure that the network is not
getting too “fitted” to the training data and thus helps alleviate the over fitting problem.

Note: This layer is only used during training, but not during test time.

• Fully connected Layer

This layer takes an input volume (whatever the output is of the conv or Relu or pool layer preceding it) and
outputs an N dimensional vector where N is the number of classes that the program must choose from.

• Quantization

Quantization is a method to bring the neural network to a reasonable size, while also achieving high
performance accuracy. This is especially important for on-device applications, where the memory size and
number of computations are necessarily limited. Quantization for deep learning is the process of
approximating a neural network that uses floating-point numbers by a neural network of low bit width
numbers. This dramatically reduces both the memory requirement and computational cost of using neural
networks.

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of
the network and control over fitting.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 59

Appendix B. Yolov5 Barcode Detection Network Output
The Barcode Detection network generates the output tensor of dimension (BATCH_SIZE, Anchor Width, Anchor Height,
60). This can be interpreted by Yolov5 detection.

Barcode Detection Demo has one class as shown below:

• barcode

From the input image model, the network first extracts feature maps, overlays them with a W × H grid and at each cell
computes K pre-computed bounding boxes called anchors. Each bounding box has the following:

• Four scalars (x, y, w, h)

• A confidence score (Pr(Obj)xIOU)

• C conditional classes

Hence the current model architecture has a fixed output of W × H × K (4 + 1 + C). Where:

• W, H = Grid Size

• K = Number of Anchor boxes

• C = Number of classes for which we want detection

Based on the description above, the model has a total of 12000 output values. It is derived from following:

10 × 10 grid

 20 anchor boxes per grid

 6 values per anchor box. It consists of:

 4 bounding box coordinates (x, y, w, h)

 1 class probability

 1 confidence score

Total 10 × 10 × 20 × 6 = 12000 output values.

Note: Smaller images do not work as well with the resulting spacer grid. If your images are smaller, stretch the images
to default size. You can also up-sample them beforehand.

If your images are bigger and you are not satisfied with the results of the default image size, you can try using a denser
grid, as details might get lost during the downscaling.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 60

Appendix C. Yolov5 Training Code Overview
The training code can be divided into the following parts:

• Model config

• Model building

• Model freezing

• Data preparation

• Training for overall execution flow

Details of each can be found in the subsequent sections.

Model Config

The demo uses Kitti dataset and Yolov5 model. kitti_yolov5_config() maintains all the configurable parameters for the
model. A summary of configurable parameters is shown below:

• Image size

• Change mc.IMAGE_WIDTH and mc.IMAGE_HEIGHT to configure Image size (width and height) in
src/config/kitti_squeezeDet_config.py

Figure C.1. Yolov5 Code Snippet: Input Image Size Config

• Grid dimension would be H = 10 and W = 10. anchor_shapes variable of set_anchors() in
src/config/kitti_yolov5_config.py indicates anchors width and heights. Update based on anchors per grid size
changes.

Figure C.2. Yolov5 Code Snippet: Anchors Per Grid Config #1 (Grid Sizes)

• Batch size

Change mc.BATCH_SIZE in src/config/kitti_yolov5_config.py to configure batch size.

• Output classes

Edit classes in src/config/config.py as shown below.

Figure C.3. Yolov5 Code Snippet: Classes

• Anchors per grid

• Change mc.ANCHOR_PER_GRID in src/config/kitti_yolov5_config.py to configure anchors per grid.

Figure C.4. Yolov5 Code Snippet: Anchors Per Grid Config #2

• Change hard coded anchors per grid in set_anchors() in src/config/kitti_yolov5_config.py. Here B (value 20)
indicates anchors per grid.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 61

• If you want to run network on your own dataset, you need to adjust the anchor sizes. Anchors are prior
distribution over what shapes your boxes should have. The better these fit the true distribution of boxes, the
faster and easier your training can be.

• To determine anchor shapes, first load all ground truth boxes and pictures. If your images do not have all the
same size, normalize the height and width by the image’s height and width. All images need to be normalized
before being fed to the network. You need to do the same to the bounding boxes and consequently, the
anchors.

• Second, perform a clustering on these normalized boxes. You can use k-means without feature whitening and
determine the number of clusters either by eyeballing or by using the elbow method.

• Check for boxes that extend beyond the image or have a zero to negative width or height.

Figure C.5. Yolov5 Code Snippet: Anchors per Grid Config #3

• Training parameters

Other training related parameters like learning rate, loss parameters and different thresholds can be configured in
src/config/kitti_yolov5_config.py.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 62

Figure C.6. Yolov5 Code Snippet: Training Parameters

Model Building

The Yolov5 class constructor builds models, which can be divided into the following sections:

• Forward graph

• Interpretation graph

• Loss graph

• Training graph

• Visualization graph

Details of each graph are explained as follows:

• Forward graph

• CNN architecture consists of Focus Layer, Convolution, Batch normalization, Relu, and Maxpool layers.

• Forward graph consists of one focus layer, one fire layer, and 17 bsconv layers.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 63

Figure C.7. Yolov5 Code Snippet: Filter Values

Figure C.8. Yolov5 Code Snippet: Focus Layer

Figure C.9. Yolov5 Code Snippet: Forward Graph Last Convolution Layer

• Interpretation graph

This graph consists of the following sub-blocks:

• Interpret Output
This block interprets output from network and extracts predicted class probability, predicated confidence
scores and bounding box values.
Output of the convnet is a 10 × 10 × 120 tensor. There are 120 channels of data for each of the cells in the grid
that is overlaid on the image, and contains the bounding boxes and class predictions, which means the 120
channels are not stored consecutively and need to be sorted. Figure C.10 and Figure C.11Figure 5.11 show the
details.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 64

Figure C.10. Yolov5 Grid Output Visualization #1

For each grid, cell values are aligned as shown in Figure C.11:

Figure C.11. Yolov5 Grid Output Visualization #2

As shown in the code below, output from fire_o layer (4Dd array of batch size × 10 × 10 × 120) needs to be
sliced with a proper index to get all values of probability, confidence, and coordinates.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 65

Figure C.12. Yolov5 Code Snippet: Interpret Output Graph

For confidence score between 0 and 1, sigmoid is used.
To predict the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Apply a
softmax layer for a nice probability distribution.
Bbox: this block calculates bounding boxes based on anchor box and predicated bounding boxes.
IOU: this block calculates Intersection over Union for detected bounding boxes and actual bounding boxes.
Probability: this block calculates detection probability and object class.

• Loss graph
This block calculates different types of losses which need to be minimized. To learn detection, localization and
classification, the model defines a multi-task loss function. There are three types of losses, which are considered
for calculation:

• Bounding box
This loss is regression of the scalars for the anchors.

Figure C.13. Yolov5 Code Snippet: Bbox Loss

• Confidence score

• To obtain meaningful confidence score, the predicted value of each box is regressed against
the Intersection over Union of the real and the predicted box. During training, compare the ground truth

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 66

bounding boxes with all anchors and assign them to the anchors that have the largest overlap (IOU) with
each of them.

• The reason being, to select the closest anchor to match the ground truth box such that the transformation
needed is reduced to minimum. Equation evaluates to 1 if the k-th anchor at position-(i, j) has the
largest overlap with a ground truth box, and to 0 if no ground truth is assigned to it. This way, we only
include the loss generated by responsible anchors.

• As there can be multiple objects per image, normalize the loss by dividing it by the number of objects
(self.num_objects).

Figure C.14. Yolov5 Code Snippet: Confidence Loss

• Class
The last part of the loss function is cross-entropy loss for classification for each box to perform image
classification.

Figure C.15. Yolov5 Code Snippet: Class Loss

In one model architecture, you obtain the bounding box prediction, the classification, as well as the confidence
score.

• Optimizer
This block is responsible for training the model with Momentum optimizer to reduce all losses.

Figure C.16. Yolov5 Code Snippet: Optimizer

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 67

• Training

Figure C.17. Yolov5 Code Snippet: Training

sess.run feeds the data and labels batches to network and optimizes the weights and biases.

C.1. Training Yolov5
To train the machine:

1. Modify the training script.

The training script at @train.sh is used to trigger training. Figure C.18 shows the input parameters which can be
configured.

Figure C.18. Yolov5 Code Snippet: Training

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 68

2. Execute the train.sh script to start training.

Figure C.19. Yolov5: Execute Run Script

3. Start TensorBoard.

$ tensorboard –-logdir=<log directory of training>

For example: tensorboard –logdir=’./logs/’

4. Open the local host port on your web browser.

Figure C.20. Yolov5 TensorBoard: Generated Link

5. Check the training status on TensorBoard.

Figure C.21. Yolov5 TensorBoard

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 69

Figure C.22 shows the image menu of TensorBoard.

Figure C.22. Yolov5: Image Menu of TensorBoard

6. Check if the checkpoint, data, meta, index, and events (if using TensorBoard) files are created at the log directory.
These files are used for creating the frozen file (*.pb).

Figure C.23. Yolov5: Example of Checkpoint Data Files at Log Folder

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 70

Appendix D. Yolov5 Frozen File Creation
This section describes the procedure for freezing the model, which is aligned with the Lattice sensAI software. Perform
the steps below to generate the frozen protobuf file.

Command to generate the Frozen (.pb) File

$ python genpb.py --ckpt_path <COMPLETE_PATH_TO_LOG_DIRECTORY>/model.ckpt-<ckpt number> --
input_node_name image_input –output_node_name fire_o/convolution

Example: python genpb.py –ckpt_path logs/yolov5/train/model.ckpt-499999. --input_node_name
batch –output_node_name fire_o/convolution

Figure D.1. Yolov5: Run genpb.py to Generate Inference .pb

• genpb.py uses the latest checkpoint in train directory to generate frozen ‘.pb’ file.

• Once the genpb.py is executed successfully <ckpt-prefix>_frozenforInference.pb file can be found in the log
directory, as shown in Figure D.1.

Figure D.2. Yolov5: Frozen Inference. pb Output

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 71

Appendix E. Yolov5 Model Evaluation and mAP calculation
This section contains guide to calculate model performance in terms of MAP.

E.1. Run Inference on Test Set
The Barcode code contains ‘inference.py’ under the inference directory as shown in Figure E.1.

Note: If you make any change in the training code regarding image size, number of anchors or grid size, you must
replicate those changes in the inference script.

Run the command below to run inference on test set.

$ python inference.py –pb <converted pb path> --input_image <test set images path>

Figure E.1. Yolov5: Run Inference

The command above can save images with bbox drawn in inference_output/image_output and resultant kitti output in
inference_output/predictions, as shown in Figure E.2.

Figure E.2. Yolov5: Inference Output

E.2. Calculate MAP
Barcode Detection code contains main.py under the Training directory as shown in Figure E.3.

Figure E.3. Yolov5: mAP File

Run the command below to calculate mAP using predictions generated from inference and groundtruth from test set.

$ python .\main.py --input_images ..\training\datasets\test\images\ --ground_truth
..\training\datasets\t

est\labels\ --predictions ..\training\datasets\test\images_out\predictions\ --no-animation
--no-plot

Figure E.4. Yolov5: mAP Calculation

After the successful run of the script, mAP for each class and the total mAP are shown.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 72

Appendix F. Yolov5 Binary File creation using sensAI NN Compiler
This section describes how to generate binary file using the Lattice sensAI version 6.0 software.

Figure F.1. Yolov5: sensAI – Home Screen

To create the project in sensAI tool:

1. Click File > New.

2. Enter the following settings:

• Project name

• Framework – TensorFlow

• Class – CNN

• Device – CertusPro-NX

• IP – Advanced_CNN

3. Click Network File and select the network (PB) file.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 73

Figure F.2. Yolov5: sensAI – Select Framework, Device, IP, Network File, and Image

4. Click the Image/Video/Audio Data button and select the input image file.

Figure F.3. Yolov5: sensAI – Select Project Setting

5. Click Next.

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 74

6. Set the following attributes:

• Mean Value for Data Pre-Processing: 0

• Scratch Pad Memory Block Size: 8192

• ARGS MAX Size: 4096

• External Memory Interfaced: 8388608

• Scale Value for Data Pre-Processing: 0.0078125

Figure F.4. Yolov5: sensAI – Update Project Settings

7. Clock Ok to create project.

8. Double click on Analyze.

Figure F.5. Yolov5: Analyze Project

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 75

9. Confirm the Q format of each layer as shown below.

Figure F.6. Yolov5: Q Format Settings for Each Layer (1)

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 76

Figure F.7. Yolov5: Q Format Settings for Each Layer (2)

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 77

Figure F.8. Yolov5: Q Format Settings for Each Layer (3)

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 78

10. Double-click on Compile to generate the firmware and filter binary file.

Figure F.9. Yolov5: Compile Project

The firmware bin file location is displayed in the compilation log. Use the generated firmware bin on hardware for
testing.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 79

Appendix G. Yolov5 Hardware RTL Implementation

G.1. Top Level Information

Block Diagram

Figure G.1. shows the top-level block diagram of barcode detection with the CertusPro-NX Voice and Vision ML (Rev A)
board.

Figure G.1. Yolov5: Top Level Block Diagram of Barcode Detection with CertusPro-NX Voice and Vision ML (Rev A)
Board

Operational Flow

Figure G.2. shows image downscaling from 1080p to 480p.

• The external camera Sony IMX214 is configured using I2C Master Block i2c_single.v.

• The real time input image data is received by Video path. The RAW10 data from csi2_to_parallel.v is sent to
downscale_1080p_to480p.v which downscales the 1080p (1920 x 1080) image data received from the camera to
480p (640 x 480). Downscaling is performed by selecting four lines out of every nine lines and one pixel out of
three pixels. Overall, four valid pixels are passed from 27 pixels (9 x 3 window).

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 80

Figure G.2. Yolov5: Downscaling from 1080p to 480p (Obtaining 4 x 2 pixels in 480p from 18 x 6 pixels in 1080p)

• After the image is downscaled to 480p, it is passed to pre-processing crop_downscale_front_vga_tracking.v which
performs crop and downscale operation to provide a 160 x 160 (with padding of 40 blank rows) image to the focus
layer. The focus layer starts generating an address, 32-bit data, and valid write enable signals to the ML engine
through the LMMI interface.

• The 6 Mb firmware BIN file (.mcs) is loaded to the SPI Flash module spi_loader_spram.v configured with starting
address 24’h300000 to end address 24’h800000.

• The ML Engine receives the downscaled image data from focus_layer.v through LMMI interface and the firmware
file through the AXI hyperbus interface to provide an inference result output.

• The ML inference output is stored in FIFO and passed to det_out_filter.v for post processing.

• For final output display, the osd_back_qvga_human_count.v module performs barcode detection on image
received from the video path and the downscaled image obtained from the Crop and Downscale module using the
ML object detection pixel information obtained from the det_out_filter.v block.

• Output of osd_back_qvga_human_count.v is passed to the rgb2ycbcr module, which converts RGB data of pixels to
YCbCr data which is compatible for FX3. FX3 passes this to the host for display.

Core Customization

Table G.1. and Table G.2. show the available parameters.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 81

Table G.1. Core Parameters - Yolov5

Parameter Value Description

USE_ML 1’b1 Indicates 1: Enable/0: Disable to use CNN engine.

EN_UART 1’b0 Indicates 1: Enable/0: Disable UART for video output.

FLASH_START_ADDR 24’h300000 Indicates starting address to load Firmware in external SPI flash.

FLASH_END_ADDR 24’h800000 Indicates ending address to load Firmware in external SPI flash.

FL_OFFSET
(crop_downscale_front_vga_tracking.v)

433152
Indicates Focus Layer starting address offset in ML IP LRAM. It should
be obtained from the SensAI compiler log while generating mcs.

CNN IP Attributes
Default
Value

Description

Number of LRAMs 7 Number of LRAMs in the ML SPD.

Number of VE SPD Packs 8
1 VE SPD Pack = 4 VE SPDs. Number of EBRs in a VE SPD is the attribute

below.

Number of EBRs in VE SPD 4
1 VE SPD Pack = 4 VE SPDs. This attribute specifies the number of EBRs

in a VE SPD.

Max AXI4 external memory DMA Burst 31
Max burst limit on AXI4 bus during DMA transactions with external

memory.

LMMI read mode WORD

Access width mode for LMMI read interface (reading data out of the

IP) BYTE: byte mode; HWORD: 16-bit half word mode; WORD: 32-bit

word mode.

LMMI Write mode WORD

Access width mode for LMMI write interface (writing data into the IP)

BYTE: byte mode; HWORD: 16-bit half word mode; WORD: 32-bit word

mode.

No. of Convolution engines 1

Number of parallel convolution engines. Higher compute throughput

can be achieved with more number of engines, at the expense of

higher utilization of DSP resources.

Enable 4 parallel ports for 1x1

convolution
Unchecked

Enable four parallel ports internally for high bandwidth data accesses

for 1 × 1 convolutions.

Enable Vector ALU Checked Enables the Vector Engine for pixelwise ALU operations.

Enable 5x5 convolution Checked Enables 5 × 5 convolutions inside the Conv EU.

Enable 7x7 convolution Checked Enables 7 × 7 convolutions inside the Conv EU.

Enable Argmax pool Checked Enables the Argmax pool compute module.

Enable Maxpool stride=1

module
Checked Enable the 1-D stride=1 maxpool compute engine.

Avant Mode Unchecked
IMPORTANT: This must be enabled for the Avant devices and disabled

for the CertusPro-NX devices.

Table G.2. Camera Parameters - Yolov5

Module Parameter/ Port Sony IMX258 Sony IMX214

vvml_barcode_detection_top.v SENSOR_SLAVE_ADDR 7'h1A 7’h10

vvml_barcode_detection_top.v NUM_OF_TRANS_I2C d80 d81

vvml_barcode_detection_top.v
(downscale_1080p_to480p)

USE_IMX214 1'b0 1'b1

i2c_m_ctrl.v Instance
rom_sonyimx258
u_rom_sonyimx258

rom_sonyimx214
u_rom_sonyimx214

ROM IP (rom_sonyimx258/rom_sonyimx214) Config ROM Read Address 9 bits 9 bits

ROM IP (rom_sonyimx258/rom_sonyimx214) ROM Address Depth 320 324

http://www.latticesemi.com/legal

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 82

G.2. Architectural Details

Pre-processing Operation
• The crop_downscale_front_vga_tracking.v video processing block is used to crop and downscale the image data to

make it compatible with the ML engine.

• Masking values for incoming image data from the camera are set to capture the image data at 640 × 480.

• As shown below, the 640 × 480 image is downscaled into 160 x 160 image resolution using block size 4.

Figure G.3. Yolov5: Downscaling Image

• The accumulated pixel values are written into accumulation buffer. While reading the data from the buffer is sent
to the ML engine for inference via the focus layer.

Post-processing operation
The post-processing operation is explained as follows:

• After the image is down scaled to 160 x 160, it is passed to the ML engine via the focus layer module.

• When the ML engine completes processing the input image, it asserts the enable signal and starts transmitting
processed data at its output port which is stored in FIFO. This data is the used in calculating bounding boxes in
det_out_filter.v.

• When bounding box co-ordinates are calculated, it is passed to osd_back_qvga_human_count.v.

• The osd_back_qvga_human_count.v module receives the 160 x 160 downscaled image from the pre-processing
module and the ML engine data from the post processing block.

• Using the pixel information of barcode detection received from post-processing block, the OSD module performs
text and graphics addition over the 160 x 160 downscaled image.

• In the final segmentation output display, the barcode present can be observed in grayscale with bounding box.

• Upon completion of data processing in the OSD, it is sent to FX3 via rgb2ycbcr.

The pre-processing and post-processing cycle continues until the board is powered on and the real time image is
captured by the camera.

http://www.latticesemi.com/legal

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 83

References
• CertusPro-NX FPGA web page

• Lattice CertusPro-NX Reference Designs

• Lattice Radiant Software FPGA web page

• Lattice senseAI web page

• Lattice Insights for Lattice Semiconductor training courses and learning plans

http://www.latticesemi.com/legal
https://www.latticesemi.com/en/Products/FPGAandCPLD/CertusPro-NX
https://www.latticesemi.com/solutionsearch?&qiptype=3614c818569f4eecb0602ba20a521a41&qprod=8f4583d065fd436eb0e9797e92b18379&active=refdesign
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
file:///C:/Users/eooi/Downloads/•%09https:/www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/sensAI
https://www.latticesemi-insights.com/

Machine Vision: Barcode Detection
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 84

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at
www.latticesemi.com/en/Support/AnswerDatabase.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
https://www.latticesemi.com/en/Support/AnswerDatabase

 Machine Vision: Barcode Detection
 Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02280-1.0 85

Revision History

Revision 1.0, December 2023

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Machine Vision: Barcode Detection
	Contents
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting Up the Basic Environment
	2.1. Tools and Hardware Requirements
	2.1.1. Lattice Tools
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU
	2.2.1.1. Installing the CUDA Toolkit
	2.2.1.2. Installing the cuDNN

	2.2.2. Setting Up the Environment for Training and Model Freezing Scripts
	2.2.3. Creating New Environment with the yml File Provided

	3. Code Structure
	3.1. Code structure for MobileNet-v1 based Barcode Detection
	3.2. Code Structure for Yolov5 – Focus Layer based Barcode Detection

	4. Dataset Preparation
	4.1. Downloading the Dataset
	4.2. Labelling Artelab Dataset Using the LabelImg Tool
	4.3. Annotate Images
	4.3.1. Open LabelImg Tool

	4.4. Convert LabelImg Tools VOC XML Label Format to Kitti Format

	5. Training Code Preparation
	5.1. Neural Network Architecture
	5.1.1. Barcode Detection Network Output
	5.1.2. Training Code Overview
	5.1.2.1. Training

	5.2. Training

	6. Creating a Frozen File
	6.1. Convert Keras model to tensorflow pb

	7. Model Evaluation
	7.1. Run Inference on test set.
	7.2. Calculate MAP

	8. Creating a Binary File with the Lattice sensAI Software
	9. Hardware (RTL) Implementation
	9.1. Top Level Information
	9.1.1. Block Diagram
	9.1.2. Operational Flow
	9.1.3. Core Customization

	9.2. Architectural Details
	9.2.1. Pre-processing Operation
	9.2.2. Post-processing operation

	10. Creating the FPGA Bitstream File
	Appendix A. Yolov5 Training Code Preparation
	Appendix B. Yolov5 Barcode Detection Network Output
	Appendix C. Yolov5 Training Code Overview
	C.1. Training Yolov5

	Appendix D. Yolov5 Frozen File Creation
	Appendix E. Yolov5 Model Evaluation and mAP calculation
	E.1. Run Inference on Test Set
	E.2. Calculate MAP

	Appendix F. Yolov5 Binary File creation using sensAI NN Compiler
	Appendix G. Yolov5 Hardware RTL Implementation
	G.1. Top Level Information
	Block Diagram
	Operational Flow
	Core Customization

	G.2. Architectural Details
	Pre-processing Operation
	Post-processing operation

	References
	Technical Support Assistance
	Revision History
	Revision 1.0, December 2023

