= LATTICE

Scripting Lattice FPGA Build Flow

Application Note

FPGA-AN-02073-1.0

October 2023

Scripting Lattice FPGA Build FlowLATTICE

Application Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The
information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered
inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have
been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE
PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK
USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE
REDUDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF
FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 2

http://www.latticesemi.com/legal

= LATTICE

Contents
(0] 01T 0| £ TS TP PP UPPUPPTP RPN 3
ACroNYMS iN THiS DOCUMIEBNTuiiiiiiie et e ettt e e e e ee et e e e e e e e e s tbaeeeeeeee s ataaeeaaeeesasstasaeaeaaesassssaeaeaassassasaeaeesesannsseaneeas 5
1. Lattice SCripted FIOW OVEIVIEW ...ccuvieiieiiieeeeiieeeeitee ettt e e ettt e e ette e e e stbeeeeettaeesaaaaeasataaeeasssaseessaseesntsseeansteeesansaaeesasananan 6
1.1 Types Of TOOI AULOMATION SCHIPLS ...viiiiiiieiiiiee et et e ettt e e et e e e et e e e ebaee e e tbeeeeeabteeeeassseeesateseeesbasesassaseeansanaaan 6
0 0 O I Yol 7o) PP 6
O O - | ol Y o T o £ UUR 6
00 0 T |V o1 oY 1Ty ol T SRR 6
2. Scripting With Lattice DIamMONdeocueiiiiieiieieiiieete ettt ettt et ettt ebe e e bt e e bt e be e e bt e s bbeebe e e sbbesbeeenbneenee s 7
2.1. GENETAl INTOMMATION ..eiiiiiieee e et se e e et e e s sabt e e e sbteeessabeeeesaseeeesasbaeessabaeesnnsteessnnees 7
2,11, TCL COMMANG LOE .utiiieiiiieeeiieeeeitiee e ettt e e eetaeeeeetteeeestbeeeeassaeeeeassaaeeasbssesansaseesssaaeeasbaseeanssseessssaesastaseeanseseesansees 7
2.1.2. FINdinNg BatCh COMMANASciiiiiiiiieiiiieeceiiee e ctee ettt eeeite e e ette e e e tbeeeeeabaeeesataeeesabaeeeasssseesssaaessstaeasanssesesnsens 8
2.2. (=Y ol D IT- T a o) oo I W@ Yol g o] 413V SR 8
2.2.1. Invoking TCL Scripts in Lattice DIiamONd.........cccoueieeiiiieeiiee e et e et e e stee e et e e e e are e e snreeeesataeeeensaeeesnnnns 8
2.2.2. Main BUild FIOW TCL SCHIPEING vieivvieeeitiieeceiieeesiiee e ettt e eette s e stteeeesateeessaseeeesateesessseeeenssseeessseeessssenessnseesesnnsees 9
2.3. (Y ad ol N DI Toa o o o =T ol o T Yol T 4 o= PSP 9
2.3.1. Setting up the BatCh ENVIFONMENT ...cc.eiiiiiiiiiiiieete ettt ettt et e st saneesaee e saneesaeee e 9
2.3.2. Main BUild FIOW BatCh SCIIPTINGeeeiiiiieeeiiie ettt e tee e et e e e te e e e s tae e e esabaeeeeasaeeesabsaaaesteeennnns 10
3. Scripting With Lattice RAIANTccciuiiieiiiie ettt e sttt e e e te e e e s tb e e e e stbee e e abaaeesabaseeanstaeeeassasaesataeeeanssaeesssens
3.1 GENETAl INFOMMALION ...iitiiiit ettt s e e s at e e sateesabeesbteesabeesabeesabeesateenaseesateensseenns
00 00 O 1 0| S Y=Y o Yo o SRS

3.1.2. Finding Batch Commands
3.2. Lattice Radiant TCL Scripting

3.2.1. Invoking TCL Scripts in Lattice RAdiantcccuuiiiiiiiiieiieee ettt e 12
3.2.2. Main BUild FIOW TCL SCIPELING «..veeeiuiiiiitiitieesiie ettt ettt ettt ettt e b e e ebe s bt e e sbnesbe e e sbnesneeennnesnee s 13

3.3. Lattice Radiant BatCh SCIIPLING.........eii ittt ettt e e e e tte e e et e e e e s be e e eebbeeeetsaeeesateeaeensaeeeennees 13
3.3.1. Setting up the BatCh ENVIFONMENTviiiiiiie ettt ettt e et e e s tre e st e e e e at e e e snaaeeesanaeeeesteeennes 13
3.3.2. Batch Scripting the Main BUild FIOW.......cccuuiiiiiiiee ettt ettt se e e st e e e e stte e e eeaaae e e sataeeeestaeeennns 14

4. SCripting With LattiCe PrOPEL.....cceeeeeee ettt ee ettt e e et e e et e e e st e e s este e e sanseaeesnnaeeeansteeeennseeeesnsenanan 16
4.1. GENETAl INFOMMALION ..ottt ettt sa e e s at e e sabe e sab e e sabeesabeesabeessbeesabeesaseesntaensneenes 16
4.2. TCL SCripting Propel BUIIETccuveieiieeiieeiieee ettt sttt et e st e st e sab e sabe e s bt e sabeesmneesars 16
4.2.1. INVOKING TCL SCIIPES c.vteettieitteeiteeeitte ettt ettt ettt ettt ettt e sttt e it e e sbteesbe e e sue e e bt e e sbbeebeeesabeesateesabeesneeessseennneesnseennneenns 17

4.3. Lattice Propel SDK MaKefile SCHIPTING ...veiiieiiie ettt ettt e et e e e ab e e e e eta e e e e abeeeeennaeeeennneas 17
4.3.1. Customizing the Make BUild FIOWccccuuiiiiiiiec ettt ettt e ettt e e et e e e e bt e e e eeate e e eeanaeaeeabaeaaan 18

TR = 0 o o] [2 0T o IS ol T SRR 21
5.1. Lattice RAdiant BUIIA FIOW ...ccuviiiiieiiiiiiieciee ettt sttt st st esabe e sbeesabeesabeesabeesnsaesabeesnseesases 21
5.1.1. TCLComMMANd BUIlA SCIIPT ...vveiiieiiee ettt e et e e et e e et e e e e e e sataeeeesteeeennnneeesnsaeeeenseeennnes 21
5.1.2. FPGA Build Flow Batch Script (WINGQOWS)c.ueeiuieiiiieiiieeciieeriieesiteeseteeste e steesiee s vaeesaeeessaeesaeeessaeensnesssseensnees 22
5.1.3. FPGA Build FIOW BatCh SCript (LINUX).....ccioueeeieeiieeitieeiieesiieestessteesiteesteeesiaeesteeeseaesseeessaeensneessneensasssssesnsess 23

5.2. Lattice DIamoNd BUIlA FIOWcccuuiicuiiiiieiiie et cies ettt stee s te e st e et e st e st e sabe e sbeesabeesbaesabeesnseesnseesnseesnses 24
5.2.1. TCLCOMMANA BUIIA SCIIPT ...viiiiiiiiee ettt et ee e e st e e e ettt e e e teee e sbbeeeestbeeesessaeaeesasaaensteeannnns 24
5.2.2. FPGA Build FIOW Batch SCript (LINUX)....eeeeeeieeeeiiieeeiiieececteeeeeiteeestteeeesiteeeseataeeesasseesestasesenssesesnsssassnssesennnes 25
Appendix A. Lattice FPGA Build Scripts for LINUX @and WINAOWScuuiiiiiiieeeiiiiecciiee e cieee e et eeeaee e e snreeesiree e seasaaeesanaeaeas 27
(20 LT =] g Lol TP PRSP PPPPRRN 30
RI=Te gL el o I U] o] o Yo Yo XY] = gL SR 31
REVISION HISTOIY ...tiiiiiiii ittt st s et e st e e s sa et e s e b et e e s b e e e s sa b et e e e s b e e e s aan e e e s sane e e e enreeesannaeeesannees 32

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 2.1. Lattice Diamond TCL ComMmMaNd LOZ REPOIT ...ccueviiiiiiiieecciieeeetes e stee s ettt e e et e e e st e e e e e e e e esasaeeesanaeeeenteeeenssneeesnsananans 7
Figure 2.2. Searching Lattice Diamond Console Output for the synpwrap Commandccocueeeveeriienieenieenee e 8
Figure 2.3. Lattice Diamond BatCh Mode TOOI FIOWcoii ittt ettt e e e e et e e e e e e e et r e e e e e e eesanraaaeaaeas 10
Figure 3.1. Lattice Radiant TCL COMM@ANd LOZ REPOI......ciiiuiiiiiiiiiiieiieeiiteeeiie ettt ettt et sttt sate e st e e sireesnteesmreesneeens 11
Figure 3.2. Lattice Radiant Last BUild LOZ REPOITcccuuiieeeiiiiie et ettt e eeit e eettte e e s te e e e ette e e eeabaeeeeabaeaeesteeeensaaeesabaeeeensreeeensaens 12
Figure 3.3. Lattice Diamond Console Search Output for the synpwrap Command...........ccccooiieiiiiiieeeiiie e e et 12
Figure 3.4. Lattice Radiant BatCh MOde TOO! FIOWcc.uuiiiiiiiieciee ettt e e e et e e e et e e e snaa e e e sasaeeeennreeeennnnens 15
Figure 4.1. High-Level Overview of Lattice Propel Auto-Generated Makefile SCriptscccevevieriiciie e, 18
Figure 4.2. Auto-Generated Makefile BUild SCript OVEIVIEW.........uiiiiiiieieiiii e ceee e ctee st e eetee s e stte e e ssae e e saaee e e sabaeesesreeesnneens 19
Figure 4.3. makefile.target Script Content to Automatically Initialize the Design System Memory IPccccceevcveeeeiveeecnneen. 20
Figure 4.4. ipgen.tcl Script Content Used to Regenerate the Design System Memory IPcocccooiiiiiiiiiieinieeniecnieeeeeene 20
Figure 4.5. mem_cfg.cfg File Content Used to Regenerate the Propel System Memory IPcccoeeeeiiiieeciiee e, 20
Figure 5.1. Lattice Radiant TCL BUild SCript EXAMPIEceiciiiiiicciiee e ciiee ettt s e e e ettt e e e eatae e e ste e e eesbeeesaseeeesabaeeeensreeeensanas 21
Figure 5.2. Lattice Radiant Windows Batch Mode Script EXamPIeoeeeeuiiiiiciiee et ste e et e et 22
Figure 5.3. Lattice Radiant Linux Batch MoOde EXaMPIE....cc.uuiiiieiiie ettt e e et e e e tre e e enae e e e sata e e e s nnreeeennneeas 23
Figure 5.4. Lattice Diamond TCL BUild SCript EXamMIPIE.....coocuiiiiiiiee ettt e tee s et e e e st e e e aae e e e satae e e s nre e e snaeens 24
Figure 5.5. Lattice Diamond Linux Batch Mode EXaMPIEuviiieiiiiiiiiieeeiee ettt e e e e et e e e s e e e saaee e e sabaeesenreeesnnneens 25

Tables

Table 4.1. Propel Builder Features and TCL COMMANGSuueieiiiieeeiiireeeteeeesiteeeestteeeseaeeeesaaeeeessseeessseessssseesessseeesssssesessssees 16

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build Flow

Application Note

= LATTICE

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

ELF Executable Linking File

FPGA Field Programmable Gate Array
LSE Lattice Synthesis Engine

SDK Software Development Kit

TCL Tool Command Language

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0

http://www.latticesemi.com/legal

= LATTICE

1. Lattice Scripted Flow Overview

1.1. Types of Tool Automation Scripts

There are three main types of scripts that are used in the Lattice FPGA tool development flow: TCL, batch, and makefile.
Depending on the type of script, there are different types of commands and command syntaxes. Aside from that, there are
also differences in the way each script is used in the tool development flow also varies depending on the type of script
being used. For example, TCL and batch scripts are often used to build an FPGA project from a set of RTL files, while
makefile scripts are used in an embedded design flow to compile C/C++ applications.

1.1.1. TCL Scripts

TCL (Tool Command Language) scripts consist of TCL commands which are used to interface with Lattice’s main design
tools. Most things, which can be done in Lattice Radiant™, Lattice Diamond®, or Lattice Propel™ user interfaces, have
corresponding TCL commands that can be used to reproduce the user interface-level behavior in a scripted design flow.
These types of commands can be used to do things such as rebuild a project, interface with a debug project, configure IP,
and more.

Aside from Lattice specific TCL commands, there are also global TCL commands which are built into each TCL interpreter
and are not unique to the Lattice tool flow. These types of TCL commands are often used in conjunction with tool specific
TCL commands in order to improve the robustness of a TCL script. One such example would be to use the “file exists” TCL
command in an if else statement in order to determine whether a file has been generated, with the if else clause being used
to generate the file if necessary. An example script demonstrating this type of TCL command usage is shown in the TCL
Command Build Script section.

TCL scripts require a TCL interpreter in order to execute. All of Lattice’s main software tools: Radiant, Diamond, and Propel
come with a built-in TCL console which can be used directly from each tool’s respective user interface. A useful feature of
these integrated TCL consoles it that as you use each tool’s user interface, their respective TCL commands are output here.
The advantage of this is that you can use the TCL commands that are output here in order to understand what commands
you should use in a scripted flow in order to reproduce user interface behavior. Aside from the built-in TCL console, all the
tools mentioned also have standalone interactive TCL console’s which can be used to execute TCL commands and invoke
TCL scripts entirely separately from a tool’s user interface. For more information on how to invoke TCL scripts in the Lattice
tool flow, refer to Invoking TCL Scripts in Lattice Diamond and Invoking TCL Scripts in Lattice Radiant.

1.1.2. Batch Scripts

Batch scripts consist of command-line level commands, which are a lower-level than TCL commands and typically require
additional setup for the commands to be accessible and executable at the command-line level. This setup typically involves
setting some environment variables in order to establish the location of the active Lattice tool installation. The primary use
for batch scripts is to invoke core Lattice tool processes such as synthesis, MAP, or place and route in order to automate a
design’s build flow entirely separate from any Lattice tool’s user interface. Something to keep in mind is that not all user
interface-level functions have equivalent command-line batch mode commands.

1.1.3. Makefile Scripts

Makefile scripts are specific to the Lattice Propel tool flow and are primarily used to compile code for embedded C/C++
projects. It is not required for users to create their own makefile scripts as Lattice Propel automatically generates the
required compilation scripts for a project. The primary usage for a customized makefile script in the Lattice tool flow is to
build an embedded project differently than the default settings. One such example would be to generate an additional
memory initialization file with a different format than hex such as binary. For more information about makefile scripts and
how they fit into the Lattice Propel tool flow, refer to Lattice Propel SDK Makefile Scripting section.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build Flow
Application Note

= LATTICE

2. Scripting with Lattice Diamond

2.1. General Information

The first thing to consider when creating a script to automate the Lattice Diamond tool flow is how much of the flow you
want to script. If you intend to simply automate a design’s build flow, either a TCL script or batch script can be used since
both script types can use commands to run through synthesis, MAP, PAR, and bitstream generation. However, if you intend
to reproduce some user interface-level functionality such as Reveal Analyzer debugging or memory initialization through
ECO editor, you need to use a TCL script as there are no equivalent batch mode commands for either of these features.

To find more information about Diamond’s various TCL and batch commands and their respective options, refer to the
Command Line Reference Guide and TCL Command Reference Guide sections of the Diamond web help (Help > Lattice
Diamond Help). Aside from the web help, each command also has built-in help information which can be accessed by typing
-help following the name of the command (such as synthesis -help).

2.1.1. TCL Command Log

Another feature of the Lattice Diamond is the TCL command log, which can be accessed from the Diamond’s report menu.
As you develop your projects using the Diamond’s user interface, a history of all the TCL commands that were executed
from each session is stored in the TCL command log report. This report is useful as it can be used to easily understand the
commands that should be used in order to reproduce user interface-level functionality in a TCL script. In most cases, these
commands can be directly copied from this report to a TCL command script.

[™ Bitstream/JEDEC
v [Analysis Reports
D Map Trace
D Place & Route Trace
D Thermal Analysis
[170 Tirning Analysis
=7 Tool Reports
[110 550 Analysis

£

TSI
v 7 Messages

= Al Messages

@ User Defined Filters

Hierarchy Parsing Report

¥ TCL Command Log

Design Summary 230503133957
v [T Project #5tart recording tcl command: 5/3/2023 13:34:42

Project Summary #Project Location: C:/Users/jacob/xo3d; Project name: xo3d
~ 7 Process Reports source "C:/Users/jacob/xodd/diamond_setup_template.tcl”

r ing: 13:39:57

?ﬁﬁynplif}rprn #5top recording: 5/3/2023 13:3%9:5

(3 Map

[Place & Route

[Signal/Pad pn230607215440

#5tart recording tcl command: €/7/2023 21:54:01

#Project Location: C:/Users/jacob/xo3d; Project name: xo3d
pri_project open “C:/Users/jacob/xold/xo3d.ldf"

source "C:/Usersa/jacck/xoid/hdle_generats _tbhtemplate.tcl™
source "C:/Users/jacob/xo3d/hdle_generate_tbdeclaration.tcl”
source "C:/Usera/jacob/xold/hdle_generate_tbdeclaration.tel”
#5top recording: 6/7/2023 21:54:40

pn230713165519

#Start recording tcl command: 7/13/2023 15:12:14

#Froject Location: Ci/Users/jacob/xo3d; Project name: xo3d
prij_project open "C:/Users/jacob/xo3d/xo3d.ldf"
pwc_command new

pwe_settings set -freg 33

pwc_command exit

#5top recording: 7/13/72023 1€:55:19

Figure 2.1. Lattice Diamond TCL Command Log Report

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0

http://www.latticesemi.com/legal

= LATTICE

2.1.2. Finding Batch Commands

Another feature of Lattice Diamond is its ability to allow you to parse through the tool’s output using CTRL + F. Using this
method, you can parse through the Diamond’s tool output in order to find the batch commands that are executed in order
to build the project. This is useful to get an idea of the command’s syntax and what options to use considering most batch
commands have more options than their TCL equivalents. For example, when you search synwrap in the Diamond tools’
output after running the synthesis, you can find the batch mode command that you need to run through synthesis in a
batch script.

Putput
X Find: Isynpwrapl] O Next Q) Previous [] Case Sensitive

Starting: "prj_run Synthesis -impl impll -task Synplify Synthesis”

AARARAAANAAAAAAA A AR AR AN A AR A AR AR AR AR AR AR AR AR AR AR AR AAAARARAANR

1 1 Pra
** Synplify Pro oo
AARAAAAAARAAAAAAARNAARAAN AR A AR A AAR AR A AR A AR A AR AR AR AR AR AR AR AR

D & -msg -prj "xo3d impll synplify.tcl” -log "xo3d impll.srf"
'I.cp'yrl'gnt (<) 1562-2020 Lattlc-:—ASéﬁlc'cnduétc::'!-b:pzzra't'lcn."AJ.I rights reserved.
Lattice Diamond Version 3.12.1.454
INFO - Synplify synthesis engine is launched.

s a8 14 s

Figure 2.2. Searching Lattice Diamond Console Output for the synpwrap Command

2.2. Lattice Diamond TCL Scripting

2.2.1. Invoking TCL Scripts in Lattice Diamond

There are two main ways to invoke a TCL script in the Lattice tool flow, using either the built-in TCL console or by launching
a script on tool startup.

In order to invoke a TCL script in the built-in TCL console, simply type source followed by the location and name of the TCL
script you want to invoke (for example, source /home/<user home directory>/projects/build.tcl). Note that in this method of
invoking TCL scripts, the source is a TCL command itself which can be used to invoke a TCL script from within a TCL script.
For example, you can invoke TCL script 1 from the command-line using the source command, and then have the same TCL
script #1 invoke another TCL script 2 by inputting another source command within the original script.

The second method for invoking TCL scripts in the Lattice tool flow is to invoke them on tool startup. To do this, launch the
Diamond tool directly from the command line with the startup script specified as an option. The exact syntax and method
for invoking a script on tool startup varies depending on the operating system.
e Windows
e Launch Diamond user interface and run the script:
e <Diamond install path>/bin/nt64/pnmain.exe -t <TCL script location>/<TCL script name>.tcl
e Launch Diamond Console Mode and run the script:
e <Diamond install path>/bin/nt64/pnmainc.exe <TCL script location>/<TCL script name>.tcl
e Linux
e Launch Diamond user interface and run the script:
e <Diamond install path>/bin/lin64/diamond -t <TCL script location>/<TCL script name>.tcl
e Launch Diamond Console Mode and run the script:
e <Diamond install path>/bin/lin64/diamondc <TCL script location>/<TCL script name>.tcl

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.2.2. Main Build Flow TCL Scripting

In general, the process for TCL scripting the main build flow in Diamond is simple and only requires a single command
(prj_run) with a few command variants, assuming that a project is already created and has its associated files added. The
general syntax for this command is prj_run <Implementation stage> -impl <implementation name>, where the
implementation stage is the specific process that you want to run your project through (such as synthesis, MAP, and PAR). A
useful feature of the prj_run command is only a single command is required to build an entire project from synthesis to
bitstream generation, as prj_run Export -impl ... automatically runs through all stages before bitstream generation. For
example, if nothing has been run, then synthesis, MAP, and PAR automatically runs before running through bitstream
generation.
e TCLCommand-PRJ_RUN
e Syntax — prj_run <implementation stage> -impl <implementation name> [-forceOne | -forceAll]
e Command options:
e Implementation stage:
e synthesis (LSE and Synplify Pro®)
e translate (Synplify Pro only)

e MAP
e PAR
e Export

e Implementation name — Name of the active project implementation.

e -forceOne — Optional; Reruns the specified stage regardless of whether it has already been run or not. Default
behavior is to not rerun a stage that is already ran if this option is not included.

e -forceAll — Optional; Reruns the specified stage and all stages before it regardless of whether or not they have
already been run. The default behavior is not to rerun a stage that is already ran if this option is not included.

2.3. Lattice Diamond Batch Scripting

2.3.1. Setting up the Batch Environment

Before Diamond’s main build commands can be used in a batch script, there is some additional setup required. This setup is
always at the beginning of each script and is required in order to configure the command line environment to recognize
Lattice batch mode commands. The exact process for setting up the batch environment is operating system dependent, and
generally involves setting a few environment variables that have to do with Diamond’s installation path.

2.3.1.1. Setting Up the Batch Script in Windows

To setup the batch script in Windows:

1. Create a new .bat file.

2. Add the following lines at the beginning of the script:
a. set PATH=<Diamond install path>/bin/nt64;<Diamond install path>/ispfpga/bin/nt64
b. set FOUNDRY=<Diamond install path>/ispfpga

3. Configure the remainder of the script using batch mode commands for each stage of the Diamond project flow
(synthesis, MAP, and PAR).

a. For more information about this portion of the script, refer to section 2.3.2 Main Build Flow
b. To run the script, the name in the Windows command line or powershell. For example, C:/Users/<user home
directory>/projects/my_xo2proj/build_design.bat.
2.3.1.2. Setting Up the Batch Script in Linux
To setup the batch script in Linux:
1. Create a new .bat file by running the touch <script name>.bat command.

2. Make the batch script executable by running the chmod +x <script name>.bat command.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. Add the following lines at the beginning of the script:
a. export bindir=<Diamond install path>/bin/lin64
b. source Sbindir/diamond_env

4. Configure the remainder of the script using batch mode commands for each stage of the Diamond project flow
(synthesis, MAP, and PAR).

5. To run the script, type the name in the Linux command line. For example, /home/<user home
directory>/projects/xo2proj/build.bat.

2.3.2. Main Build Flow Batch Scripting

In general, the process of batch scripting the main portion of the Diamond’s build flow consists of a few commands that
take the input of the previous command in order to generate the next intermediary file in the build flow. For the most part,
the commands required to build a project from RTL to a programming file are the same and vary only depending on the tool
you want to use for synthesis.

If you choose LSE as the synthesis tool, only the synthesis command is required. However, if selected synthesis tool is
Synplify Pro, there are a few additional commands that are required. To perform synthesis with Synplify, the synpwrap
command is used to interface with the Synplify Pro batch mode engine and generate an EDIF file. However, there is an
additional translate stage that must be done before the synthesis output is passed to MAP which involves the EDIF2NGD
and NGDBUILD commands to convert the EDIF file into an NGD.

Once the NGD file is generated using the two synthesis commands, the remainder of the batch mode flow is the same,
requiring users to invoke MAP, PAR, and BITGEN in order to generate the programming file for the project. Figure 2.3 shows
the Diamond batch mode tool flow.

SYNTHESIS SYNPWRAP

(5]
™

EDIF2NGD

y
s

NGDBUILD

I

MAP

PAR

BITGEN

Figure 2.3. Lattice Diamond Batch Mode Tool Flow

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. Scripting with Lattice Radiant

3.1. General Information

When creating a script to automate the Lattice Radiant tool design flow, consider what parts of the Radiant tool
development you want to script. If you want to automate the design’s build flow, you can use either a TCL script or batch
script since both script types can use commands to run through synthesis, MAP, PAR, and bitstream generation. However, if
you intend to reproduce some user interface-level functionality, such as Reveal Analyzer debugging or memory initialization
through ECO editor, you need to use a TCL script as there are no equivalent batch mode commands for either of these
features.

To find out more information about the Lattice Radiant’s various TCL and batch commands and their respective options,
refer to the Command Line Reference Guide and TCL Command Reference Guide sections of the Diamond web help (Help >
Lattice Radiant Software Help). Aside from the Radiant web help, each command also has a built-in help information, which
can be accessed by typing -help following the name of the command (for example, synthesis -help).

3.1.1. Useful Reports

3.1.1.1. TCL Command Log Report

The TCL command log is one of the features of Lattice Radiant and can be accessed by going to Reports > Misc Reports > TCL
Command Log. As you develop your projects using the Lattice Diamond’s user interface, a history of all TCL commands that
are executed from each session is stored in this TCL command log report. This report is useful as it can be used to
understand the commands that must be used in order to reproduce user interface-level functionality in the TCL script. In
most cases, these commands can be directly copied from the report to a TCL command script.

Reports TCL Comenand Log

Project Sumemary pn230809141507

¥ Synithesss Repors

b1 Map Reports

L] Flace & Roule Reports L
¥ [Export Repans .
- MisE: REmaits . N _ surceScount _
£ : ~
Las! Build Log

e PR230822235507

U 330 Anakysis f

Constrain! DRC

Figure 3.1. Lattice Radiant TCL Command Log Report

3.1.1.2. Last Build Log Report

Another useful feature of Lattice Radiant is its Last Build Log report. This report contains the output of Radiant’s console
from the last time the project was built and is easily parseable in order to find the batch mode commands that were
executed by Radiant. By searching through this report for the specific batch mode build commands, you can easily identify
what commands and command options you need to use in the batch mode scripts in order to rebuild the design from the
command line.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Beporin Lt Butid Log

*) epons

Flace & Soube Heports cemad 41 xag

S0 AN

Cormiaing DRIC

ol S

Figure 3.2. Lattice Radiant Last Build Log Report

3.1.2. Finding Batch Commands

Aside from the reports mentioned, another method for finding batch commands in Radiant is to directly parse through the
console output using CTRL + F. Using this method, you can parse through the Radiant’s tool output in order to find the batch
commands that were executed in order to build their project. This is useful to get an idea of a command’s syntax and what
options to use considering most batch commands have more options than their TCL equivalents. For example, by searching
for par in the Radiant tool output after running synthesis, you can easily find the batch mode command that you need to
use in order to run Place and Route again using the same files in a batch script.

< Find: parl
T T T T

Flace & Route Design

ot -f "clnx project_impl l.plt® "clnx project _impl 1 map.udb®™ "clnx project_impl 1.udb®

|:ﬂ:tl¢e Place and Route Report for Design "clnx project impl 1 map.udb”

Figure 3.3. Lattice Diamond Console Search Output for the synpwrap Command

3.2. Lattice Radiant TCL Scripting

3.2.1. Invoking TCL Scripts in Lattice Radiant

There are two main ways to invoke a TCL script in the Lattice tool flow, using either the built-in TCL console or by launching
a script on tool startup.

In order to invoke a TCL script in the built-in TCL console, simply type “source” followed by the location and name of the TCL
script you want to invoke (for example, source /home/<user home directory>/projects/build.tcl). Something else to keep in
mind regarding this method of invoking TCL scripts, is that source is a TCL command itself which can be used to invoke a TCL
script from within a TCL script. For example, you can invoke TCL script 1 from the command-line using the “source”
command, and then have the same TCL script 1 invoke another TCL script 2 by inputting another “source” command within
the original script.

The second method for invoking TCL scripts in the Lattice tool flow is to invoke them on tool startup. To do this, Radiant
must be launched directly from the command line with the startup script specified as an option. The exact syntax and
method for invoking a script on tool startup varies depending on the operating system.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

e Windows
e Launch the Radiant user interface and run the script:
e <Radiant install path>/bin/nt64/pnmain.exe -t <TCL script location>/<TCL script name>.tcl
e lLaunch the Radiant Console Mode and run the script:
e <Radiant install path>/bin/nt64/pnmainc.exe <TCL script location>/<TCL script name>.tcl
e Linux
e Launch Radiant user interface and run the script:
e <Radiant install path>/bin/lin64/radiant -t <TCL script location>/<TCL script name>.tcl
e Launch Radiant Console Mode and run the script:
e <Radiant install path>/bin/lin64/radiantc <TCL script location>/<TCL script name>.tcl

3.2.2. Main Build Flow TCL Scripting

In general, the process for the main build flow TCL scripting in Radiant is simple and only requires a single command
(pri_run) with a few command variants, assuming that a project is already created and has its associated files added. The
general syntax for this command is prj_run <Implementation stage> -impl <implementation name>", where the
implementation stage is the specific process that you want to run your project through (such as synthesis, MAP, and PAR). A
useful feature of the prj_run command is that only a single command is required to build an entire project from synthesis to
bitstream generation, as the prj_run Export -impl ...” automatically runs through all stages before bitstream generation. For
example, if nothing has been run, then synthesis, MAP, and PAR automatically runs before running through bitstream
generation.
e TCLCommand: PRJ_RUN

e Syntax — prj_run <implementation stage> -impl <implementation name> [-forceOne | -forceAll]

e Command options:

e Implementation stage:
e synthesis (LSE and Synplify Pro)

e MAP
e PAR
e Export

e Implementation name — name of the active project implementation

e -forceOne — Optional; Reruns the specified stage regardless of whether it has already been run or not. Default
behavior is to not rerun a stage that is already ran if this option is not included.

e -forceAll — Optional; Reruns the specified stage and all stages before it regardless of whether they have
already been run or not. Default behavior is to not rerun a stage that is already ran if this option is not
included.

3.3. Lattice Radiant Batch Scripting

3.3.1. Setting up the Batch Environment

Before the Radiant’s main build commands can be used in a batch script, there is an additional setup required. This setup is
always at the beginning of each script and is required in order to configure the command line environment to recognize
Lattice batch mode commands. The exact process for setting up the batch environment is operating system dependent and
involves setting a few environment variables that have to do with the Radiant’s installation path.

3.3.1.1. Setting up the Batch Script in Windows
To set up the batch script in Windows:
1. Create a new .bat file.

2. Add the following two lines to the beginning of the script:
e set PATH=<Radiant install path>/bin/nt64;< Radiant install path>/ispfpga/bin/nt64
e set FOUNDRY=< Radiant install path>/ispfpga

3. Configure the remainder of the script using batch mode commands for each stage of the Radiant project flow
(synthesis, MAP, and PAR).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

a. For more information about this portion of the script, refer to Batch Scripting the Main Build Flow section.

4. To run the script, type the name into the Windows command line or powershell. For example,
C:/Users/Jacob/projects/clnx_soc_proj /build.bat.

3.3.1.2. Setting up a Batch Script in Linux

To set up the batch script in Linux:

1. Create a new .bat file: touch <script name>.bat.

2. Make the batch script executable: chmod +x <script name>.bat.

3. Add the following two lines to the beginning of the script:
e export bindir=<Radiant install path>/bin/lin64
e source Shindir/radiant_env

4. Configure the remainder of the script using batch mode commands for each stage of the Radiant project flow (such as
Synthesis, MAP, and PAR).

5. To run the script, simply type it’s name in the Linux command line. For example, /home/<user home
directory>/projects/clnx_soc/build.bat.

3.3.2. Batch Scripting the Main Build Flow

Overall, the process of batch scripting the main portion of the Radiant’s build flow consists of a few commands that take
the input of the previous command in order to generate the next intermediary file in the build flow. For the most part, the
commands required to build a project from RTL to a programming file are the same and only varies depending on the tool
you want to use for synthesis.

If LSE is the synthesis tool of choice, only the synthesis command is required. However, if Synplify Pro is the selected
synthesis tool, you must use the synpwrap command instead. From this point onwards, the remainder of the batch mode
build flow is the same, requiring the postsyn command to convert the output of both synthesis engines into UDB format,
which is used for the remainder of the flow.

Once a UDB file is generated by postsyn, the remainder of the batch mode flow is the same, which requires you to invoke
MAP, PAR, and lastly BITGEN in order to generate the programming file for the project. Refer to Figure 3.4 for a more
detailed graphic of the Diamond batch mode tool flow.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

SYNTHESIS SYNPWRAP

LSE Synplify

POSTSYN

*

MAP

+

PAR

*

BITGEN

t

Figure 3.4. Lattice Radiant Batch Mode Tool Flow

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 15

http://www.latticesemi.com/legal

= LATTICE

4. Scripting with Lattice Propel

4.1. General Information

The two main types of scripts that can be used in the Lattice Propel embedded development flow are TCL and makefile. For
Lattice Propel Builder, the TCL scripts can be used in order to reproduce user interface functionality and perform tasks such
as create a project, generate IP, and manage address spaces separately from the Propel Builder’s main user interface.
Although the Propel Builder TCL scripts require a little more effort to setup, these scripts can be used to easily replicate the
entire SoC project build flow without having to interact with the tool user interface.

Aside from TCL scripts, the other type of script that can be used in the Propel’s embedded development flow is the makefile
scripts. This script is used in the Lattice Propel SDK to compile codes and generate memory initialization files. As mentioned,
these scripts are automatically generated before a project is built and require no user intervention in order to build a
project. In general, the makefile script customization is done to generate additional files from compilation, mostly in a
different format or type.

4.2. TCL Scripting Propel Builder

As mentioned before, most of the Propel Builder’s user interface functionalities can be reproduced in a scripted flow using
TCL commands. Table 4.1 lists the some of the frequently used Propel Builder TCL commands.

Table 4.1. Propel Builder Features and TCL Commands

User Interface Feature Associated TCL Command(s) Description

Project Creation sbp_design new Create a new SoC project from a template.

Project Opening sbp_design open Open an existing SoC project using .sbx file.

IP Generation ipgen Generate an IP from scratch or regenerate an existing IP.
IP Instantiation sbp_add_component Instantiate a generated IP to the active SoC design.

Instantiate a .sbx component as a sub-block to the active SoC

Sub-block Instantiation sbp_add_sbxcomp design

Implement custom glue logic in an SoC design, such as custom

Adding Glue Logi bp_add_gluelogi > . ;
Ing Llue Loglc sop_add_gluelogic RTL, bus concatenation, an inverter, or bus split.
Port Creation sbp_add_port Create a new top-level port.
Port Editing sbp__modify_port Ef:iit 3{1 existing top-level port to modify its name, width, or
direction.
. . . E t ted t interf. f tt
Port Exporting sbp_export_pins, sbp_export_interface XpOrE any unconnecled ports or Interfaces of a component to

the top-level of a design.

sbp_connect_net,
Connecting Components | sbp_connect_interface_net,
sbp_connect_group

Connect the ports or interfaces of a source component to
another destination component.

Address Space sbp_assign_addr_seg, sbp_design Manually or automatically set the base address for a memory
Management auto_assign_addresses mapped component in the active SoC project.
Address Space Perform a design rule check to ensure the validity of the active

sbp_design drc

Verification SoC design’s address space and memory mapped components.

Regenerate all the RTL in the project, including IP and the top-

Generate RTL Wrapper sbp_design generate level Verilog or VHDL wrapper.

Generate TCL scripts to export the active SoC design to

Generate Tool Scripts sbp_design pge dge Diamond or Radiant depending on the current device.

Generate system platform definition files, IP drivers, and
sbp_design pge sge system environment XML file which is used in Propel SDK
C/C++ projects.

Generate SW Project
Files

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

For more information on any of the TCL commands mentioned, refer to the TCL Commands section in the Lattice Propel
Builder user guide. In addition, all TCL commands have help information which can be accessed by typing -help after any TCL
command (for example, sbp_design -help).

4.2.1. Invoking TCL Scripts

Like Lattice Radiant and Lattice Diamond, there are two ways to invoke TCL scripts in the Propel Builder, using either the
built-in TCL console or by launching a script on the tool startup.

In order to invoke a TCL script in the built-in TCL console, type source followed by the location and name of the TCL script
you want to invoke (for example, source /home/<user home directory>/projects/build.tcl). Note that source is actually a TCL
command, which can be used to invoke a TCL script from within a TCL script. For example, you can invoke TCL script 1 from
the command line using the source command. Then, the TCL script 1 invokes TCL script 2 by typing another source
command within the original script.

Another method for invoking the TCL scripts in the Lattice tool flow is to invoke them on the tool startup. To do this, the
Propel Builder must be launched directly from the command line with the startup script specified as an option. The exact
syntax and method for invoking a script on tool startup varies depending on the operating system.
e Windows
e Launch the Propel Builder user interface and run the script below:
e <Propel install path>/builder/rtf/bin/nt64/propelbld.exe <TCL script location>/<TCL script name>.tcl -gui
e Launch Propel Builder Console Mode and run the script below:
e <Propel install path>/builder/rtf/bin/nt64/propelbld.exe <TCL script location>/<TCL script name>.tcl
e Linux
e Launch Propel Builder user interface and run the script below:
e <Propel install path>/builder/rtf/bin/lin64/propelbldwrap <TCL script location>/<TCL script name>.tcl -gui
e Launch Propel Builder Console Mode and run the script below:
e <Propel install path>/builder/rtf/bin/lin64/propelbldwrap <TCL script location>/<TCL script name>.tcl

4.3. Lattice Propel SDK Makefile Scripting

The purpose of the make utility in the Propel’s embedded development tool flow is to compile and convert source code into
executables that can run on actual hardware. A makefile script consists of a set of definitions and rules, which are used to
perform all stages of the compilation flow in order to convert a project’s source code into the final compilation output.
Figure 4.1 shows a high-level overview of the contents of the Propel’s autogenerated makefile script.

In the Propel project development flow, you are not required to create your own makefile scripts to compile your C/C++
projects, Propel automatically generates the necessary build script. In fact, it is recommended that you do not edit the
generated makefiles as these are regenerated each time a project is rebuilt. This means any changes made directly to these
files are overwritten. Instead of directly modifying the Propel generated makefiles, the generated makefile provides several
hooks for you to integrate your own makefile scripts (such as makefile.init, makefile.defs, and makefile.targets). Refer to
Customizing the Make Build Flow section on how to use these hooks and how they work.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

Build Rules

Figure 4.1. High-Level Overview of Lattice Propel Auto-Generated Makefile Scripts

Aside from the optional makefile hooks, the overall structure of the makefile script can be summarized in three main
sections. The first are the includes, which include the subdir.mk files for the entire project. These subdir.mk files contain
makefile variable assignments and rules that describe how to assemble the source code. Next is the variable assignments,
which define the main variables used to build the entire project. The variables are used in the final portion of the script,
which are the build rules that describe what needs to be built, what items are required to build the project, and all the
other steps required to generate the final memory initialization files.

The build rules begin from a set of source files, which are converted into assembly files by the GCC or G++ compiler that
performs preprocessing, compilation, optimization, and code generation. These assembly files are then converted to object
files by the assembler. Next, the linker script is used to combine the generated object files with any precompiled libraries in
order to output an ELF (executable linking file). Finally, the GNU objcopy utility is used in order to generate the final output
memory initialization file for the Propel design.

4.3.1. Customizing the Make Build Flow

As mentioned, the Propel SDK automatically generates the required makefile script and associated dependency files in
order to compile a C/C++ project, so no user intervention is required in order to compile a design. The auto-generated
makefile script provides three main entry points for you to customize your make build flow. Figure 4.2 shows lines 5, 18,
and 49 contain three files called makefile.init, makefile.defs, and makefile.targets. These files are not automatically
generated, and you must create this from scratch in the top-level C/C++ project directory if you want to customize your
makefile build flow. If these files do not exist, the make utility skips over these includes and continue with the rest of the
build flow.

Although the exact contents of the additional makefile scripts vary depending on your intention, the makefile.defs is
well-suited for custom variable definitions due to its location in the makefile build flow. In addition, the makefile.targets is
useful for adding additional targets, rules, outputs, or tasks that are not natively supported by default in the Propel SDK.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 18

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

Figure 4.2. Auto-Generated Makefile Build Script Overview

One potential use case for the makefile customization is to automatically initialize a design’s system memory IP each time a
C/C++ project is built. Figure 4.3 shows how to create an additional makefile script called makefile.targets with a rule to do
some task external from Propel SDK. The syntax for this file is fairly simple, initially requiring secondary-outputs: <rule
name> at the top of the script. If there are multiple rules in the file, it needs to be included in the same line (for example,
secondary-outputs rulel rule2 rule3...). As shown from line 45 in Figure 4.2, the secondary-outputs tag is used as the entry
point to the makefile build flow and invokes all rules within the target.

The next part of the makefile.targets script consists of the actual rules that are invoked by the secondary-outputs. The first
line sysmem_init: is the name of the rule and indicates that the following lines must be executed as part of the rule. Next,
the Propel Builder’s interactive TCL console is invoked with the ipgen.tcl script in order to automatically regenerate the
system memory IP with the updated memory initialization file.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 19

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

Figure 4.3. makefile.target Script Content to Automatically Initialize the Design System Memory IP

Figure 4.4 shows the contents of the ipgen.tcl TCL script. This script is straightforward, using the set command to set the
project variables that specify the location of the system memory IP to be configured, its original source, and the parameter
configuration file. The main portion of this script is lines 7 to 9, which utilizes the exec command to invoke the ipgen.exe
command line executable, which is used to regenerate the system memory IP. The only other external file required in the
usage flow is the IP parameter configuration file, as shown in Figure 4.5, which contains the IP parameters being set and the
corresponding values. In this particular example, the location of the new memory initialization file is hardcoded, so the IP is
regenerated each time this script is run.

2 set sysmem dir "C:/Users/jacob/lfcpnx soc/lfcpnx soc/lib/latticesemi.com/ip/sysmem0/2.0.0"
set sysmem src "C:/lscc/propel/2023.1/builder/rtf/ip/common/system memory"

set sysmem cfg "C:/Users/jacob/lfcpnx _soc/mem cfg.cfg"

exec C:/lscc/propel/ /buildexr/rtf/ispfpga/bin/ntéd/ipgen.exe -o Ssyemem dir \
-ip $sysmem src -name "sysmem0" -platform "Propel” -a "LFCPNX" -p "LFCPNX-100" \
-t "LPG672" -sp "S_High-Pertormance__l.UV" -cfg § MeT -

Figure 4.4. ipgen.tcl Script Content Used to Regenerate the Design System Memory IP

1 {

2 "ADDR DEPTH™: 3152,

3 "BORT COUNT™ 2,

4 "INIT M": true,

5 "INIT FILE'™: "C:/Users/jacob/lfcpnx soc/workspace/lfcpnx_ sw/Debug/lfcpnx sw.mem",
6 "REGMODE 50™: true,

7 "REGMODE 51'™: true

8 }

Figure 4.5. mem_cfg.cfg File Content Used to Regenerate the Propel System Memory IP

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 20

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

5. Example Build Scripts

5.1. Lattice Radiant Build Flow

5.1.1. TCL Command Build Script

set proj_name “"clnx proj tecl”
set proj_dir "/home/jimercado/my designs/${proj_name}"
set proj_rdf "§{proi_dir}/§(proi_name}.rdf"

set device "LIFCL-40-8BGIS6C"
set speed "8 High-Performance 1.0W™

Jif | [file exists 3 r] == 0} {
file mkdir 3p i diz
ed
prj_create -name Spo name =impl "impl 1% =dev Sde -performance ; aynthesis "synplify®

pri_add source "Shome/jmercado/rtl/ l:':llrl-nt_ﬂ-t Er.vw"
prj_add_scurce "/home/jmercade/rtl/my osc/my osc.ipx”

} else |
PE_open S
}

puts "Starting to build the design”
pri_run Export -impl impl 1 -foresill
prj_save

Figure 5.1. Lattice Radiant TCL Build Script Example

The following shows the description of the TCL command build script:
e Lline2toline?7
e Basic project related parameter definitions used to simplify the script and improve its readability.
e Line10toLine 18
e |[f portion of an if else block, which checks for the existence of the project directory.
e If the project directory does not exist, the mkdir file is used to create it.
e cdis used to change the current directory to the current project’s directory.
e prj_create is used to create a new Radiant project using the specified device settings.
e To finish the project setup, prj_add_source is used to add the source RTL for the design.
e Lline19to Line 22
e Else portion of an if else block. In this block, it is assumed the project already exists. Therefore, there is nothing to
be done to set it up.
e cdis used to change the current directory to the project’s directory.
e Lline 24 to Line 26
e putsis used to print out a statement indicating that the design is about to be built.
e prj_run export runs through the entire design flow beginning from synthesis up until bitstream generation.
e -forceAll option is used to force every stage of the build flow to rerun each time the script executes.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 21

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

5.1.2. FPGA Build Flow Batch Script (Windows)

export bindir="/home/jmercado/lscc/radiant/2023.1/bin/lin€4"
2 source $bindir/radiant_env

nx_proj_tcl”
me/jmercado/my designs/${proj_name}"

synthesis -a "LIFCL" -p "LIFCL-40" -t "CABGA25¢" -sp "8_High-Performance_ l.0V" -path "$(proj_dir}" \
rer "§(proj_dir)/source/count_attr.v"” "${proj_dir}/source/my osc/rtl/my osc.v" -top “"count”™ \
put_hdl "$(proj_name} syn.vm"

I yn -a "LIFCL" -p "LIFCL-40" -t "CABGA25¢" -sp "&_High-Performance_ l.0V" -oc “commercial” -w \
12 top =0 "$(proj_name} postsyn.udb” "${proj_name} syn.vm"

-1 "§({pro)_name} postsyn.udb” -0 "${proj_name} map.udb"
par =w "${proj_name} map.udb™ "3{proj_name} par.udb”
bitgen -w "¢ (proj_name} par.udb”

Figure 5.2. Lattice Radiant Windows Batch Mode Script Example

The following shows the description of the FPGA build flow batch script in Windows:
e LinelandLine?2
e These two commands are required for any Lattice Radiant or Diamond FPGA batch script in Linux.
e These commands set an environment variable that indicates where the active Radiant installation is located and
then sources a setup script to finish setting up the command line environment.
e LinedandlLine5
e Basic project related parameter definitions used to simplify the script and improve its readability.
e Line7toline9
e Command to invoke synthesis with LSE.
e The output of synthesis is the clnx_proj_tcl.vm file.
e Lline 11l and Line 12
e Post-synthesis command used to convert the structural Verilog file from synthesis to UDB format.
e The output of post-synthesis is the clnx_proj_tcl_syn.vm file.
e Llinel4d
e Command used to run map for the active design using the UDB generated from post-synthesis.
e The output of this command is the clnx_proj_tcl_map.udb file.
e Llinel6
e Command used to run place and route on the UDB file generated by MAP.
e The output of this command is the cInx_proj_tcl_par.udb UDB file.
e Llinel8
e Command used to generate a bitstream based off the UDB generated by the place and route engine.
e The output of this command is the cInx_proj_tcl_par.bit bitstream file.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 22

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

5.1.3. FPGA Build Flow Batch Script (Linux)

set PATH~C:/lscc/radiant/2023.1/bin/neéd;C:/1scc/radiant/2023.1/1spfpga/bin/nced
set FOUNDRY»C:/lacc/radiant/2023.1/1ispipga

set proj_name="crosslinkax_soc”
synthesis -a "LIFCL" -p "LIFCL-40" -t “CABGA25¢" =-sp "E_High-Per
e 0

"% {proj_dir)/scurce/count_atir

"${proj_name}_syn.va®

ormance_1.0V" =-path "§{proj_dirj" \

yn -a "LIFCL" -p "LIFCL-40" -t "CABGA25¢" -sp "8_High-Performance l1.0V" -oc “"commercial”™ \
=top =0 "S{proj)_name) postsyn.udb” “{{pro)_name) syn.vm"

.

map -4 "§(proj_name} postsyn.uddb® -0 “$(proj_name} map.udb”

r =W "Z{proj)_name} map.udb®™ "§{pro)_name} par.udb”
-w "&{proj_naxne} par.udd”

Figure 5.3. Lattice Radiant Linux Batch Mode Example

The following shows the description of the FPGA build flow batch script in Linux:
e LlinelandLine?2
e These two commands are required for any Lattice Radiant or Diamond FPGA batch script in Windows.
e These commands set the two required environment variables to configure the Windows command line interpreter
to be able to recognize Lattice tool commands.
e Lined
e Basic project related parameter definitions used to simplify the script and improve its readability.
e Line6toline8
e Command to invoke synthesis with LSE.
e The output of synthesis is the clnx_proj_tcl.vm file.
e Line10and Line 11
e Post-synthesis command used to convert the structural Verilog file from synthesis to UDB format.
e The output of post-synthesis is the clnx_proj_tcl_syn.vm file.
e Llinel3
e Command used to run map for the active design using the UDB generated from post-synthesis.
e The output of this command is the cInx_proj_tcl_map.udb file.
e Llinel5
e Command used to run place and route on the UDB file generated by MAP.
e The output of this command is the c/nx_proj_tcl_par.udb UDB file.
e Llinel7
e Command used to generate a bitstream based off the UDB generated by the place and route engine.
e The output of this command is the cInx_proj_tcl_par.bit bitstream file.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 23

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

5.2. Lattice Diamond Build Flow

5.2.1. TCL Command Build Script

1 set proj_dir "/home/lattice/Desktop/xo2 proj"
2 set proj_name "xo2 proj"

cd Fproj_dir
@ prj_project open "${proj dir}/5{proj name}.ldf"

8 prj_run Synthesis -impl impll
g prj_run Translate -impl impll
10 prj_run Map -impl impll

11 prj_run PFAR -impl impll

12 prj_run Export -impl impll

Figure 5.4. Lattice Diamond TCL Build Script Example

The following shows the description of the TCL command build script:
e LlinelandLline2
e Basic project related parameter definitions used to simplify the script and improve its readability.
e Llined
e Not required, but the cd command is used to change the current working directory to the project’s directory.
e Lline8toline12
e Multiple prj_run commands are used to run each stage of the project development flow.
e Alternatively, only the prj_run Export -impl impl1 command can be used as this automatically runs at any stages
before export, which have not been run already.
e This example script includes individual prj_run commands for synthesis, MAP, PAR, and Export. However, this
is not required and typically is only done to allow you more granularity in the script’s functionality if you only
want to run up to a certain process stage.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 24

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

5.2.2. FPGA Build Flow Batch Script (Linux)

1 export bindir="/home/jmercado/lscc/diamond/3.12/bin/1ling4"
2 source $hindir/diamond env

1 2XpOrt proj_name="counter”
g ort proj_dirs"/home/imercado/projects/s{proj_nams}-

synpwrap -prj "#{proj_dir}/fcounter_ project_impll synplify.tcl®

edifZngd -1 "MachX03D™ -d LAMXO3D-4300HC -path "#proj_dir™ 3\
10 "&{prod_dir}/&{proj_name}.edi”™ "§{proj_name}.ngo”
ngdbuild -a "MachX03D" -d LAMMXO3D-4300HC N
-p "/home/jmercadoflscc/diamond/3.12/ispfpga/sesc00/data™

- ma - oma

14 p "fproj_dir® "f{proj_namel.ngoe” "%{proj_name}.ngd”

1€ map -a “"MachX¥02® *3{proj_name}.ngd" -o *5{proj_name} map.ncd®
par =W "F{proj_name} map.ncd” “%{proj_name} par.ncd™ A
"#{pro]_name] map.pri”

21 pitgen -w "§{proj_name} par.ncd” "§{proj_name} map.prf”

Figure 5.5. Lattice Diamond Linux Batch Mode Example

The following shows the description of the FPGA build flow batch script in Linux:
e LlinelandlLline2
e These two commands are required for any Lattice Radiant or Diamond FPGA batch script in Linux.
e These commands set an environment variable that indicates where the active Diamond installation is located, and
then sources a setup script to finish setting up the command line environment.
e Lline3andline4
e Basic project related parameter definitions used to simplify the script and improve its readability.
e Lline7
e Command used to run synthesis with Synplify Pro.
e The output of this command is the counter.edi EDI file.
e This command uses another tool generated TCL script, counter_project_impl1_synplify.tcl, to load the project
settings for synthesis with Synplify Pro.
e To easily generate this file, run through synthesis at least once beforehand in the Diamond user interface.
e This file can be directly reused in a command line batch script flow.
e Lline9toline 14
e edif2ngd and ngdbuild are used to run the translate stage of the Diamond project flow in order to convert the
synthesis output into an NGD file which can be used by Diamond’s mapper.
e The output of edif2ngd is the counter.ngo file.
e The output of ngdbuild is the counter.ngd file.
e Llinel6
e Command used to run map for the active design using the NGD file generated from the translate stage.
e Output of this command is the counter_map.ncd file.
e Lline18tolLine 19
e Command used to run place and route on the NCD file generated by MAP.
e The output of this command is the counter_par.ncd NCD file.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 25

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

e line2l
e Command used to generate a bitstream based off the UDB generated by the place and route engine.
e The output of this command is the counter_par.bit bitstream file.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 26

http://www.latticesemi.com/legal

= LATTICE

Appendix A. Lattice FPGA Build Scripts for Linux and Windows

set proj_name “clnx_proj_tcl”
set proj_dir “/home/jmercado/my designs/${proj_name}”
set proj_rdf “${proj_dir}/${proj name}.rdf”

set device “LIFCL-40-8BG256C”
set speed “8 High-Performance_1.0Vv”

if { [file exists $proj dir] == 0} {
file mkdir $proj dir
cd $proj_dir

prj_create -name $proj_name -impl “impl_1” -dev $device -performance $speed -synthesis
“synplify"

prj_add_source “/home/jmercado/rtl/count_attr.v”
prj_add_source “/home/jmercado/rtl/my_osc/my_osc.ipx”

} else {
prj_open $proj_rdf
}

puts “Starting to build the design”
prj_run Export -impl impl_1 -forceAll
prj_save

export bindir="/home/jmercado/lscc/radiant/2023.1/bin/1in64”
source $bindir/radiant_env

export proj_name= clnx_proj_tcl”
export proj_dir="/home/jmercado/my_designs/${proj_name}”

synthesis -a “LIFCL” -p “LIFCL-40” -t “CABGA256” -sp “8_High-Performance_1.0V” -path
“${proj_dir} \

-ver “${proj_dir}/source/count_attr.v” “${proj_dir}/source/my_osc/rtl/my_osc.v” -top
“count” \

-output_hdl “${proj_name}_syn.vm”

postsyn -a “LIFCL” -p “LIFCL-40” -t “CABGA256” -sp “8_High-Performance_1.0V” -oc
“commercial” -w \

-top -o “${proj_name}_postsyn.udb” “${proj_name}_syn.vm”

map -i “${proj_name} postsyn.udb” -o “${proj_name}_map.udb”

par -w “${proj_name} map.udb” “${proj name} par.udb”

bitgen -w “${proj name} par.udb”

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

set PATH=C:/lscc/radiant/2023.1/bin/nt64;C:/1lscc/radiant/2023.1/ispfpga/bin/nt64
set FOUNDRY=C:/lscc/radiant/2023.1/ispfpga

set proj_name="crosslinknx_soc”

synthesis -a “LIFCL” -p “LIFCL-40” -t “CABGA256” -sp “8_High-Performance_1.0V” -path
“${proj_dir} \

-ver “${proj dir}/source/count_attr.v” “${proj dir}/source/my osc/rtl/my osc.v” -top
“count” \

-output_hdl “${proj name} syn.vm”

postsyn -a “LIFCL” -p “LIFCL-40” -t “CABGA256” -sp “8 High-Performance_1.0V” -oc
“commercial® -w \

-top -0 “${proj_name}_postsyn.udb” “${proj_name}_syn.vm”

map -i “${proj_name}_postsyn.udb” -o “${proj_name}_map.udb”

par -w “${proj_name}_map.udb” “${proj_name}_par.udb”

bitgen -w “${proj_name}_par.udb”

set proj_dir “/home/lattice/Desktop/x02_proj”
set proj_name “x02_proj”

cd $proj_dir

prj_project open “${proj_dir}/${proj_name}.1ldf”
prj_run Synthesis -impl impll

prj_run Translate -impl impl1l

prj_run MAP -impl impll

prj_run PAR -impl impll
prj_run Export -impl impll

www.latticesemi.com/legal

http://www.latticesemi.com/legal

export bindir="/home/jmercado/lscc/diamond/3.12/bin/1in64”
source $bindir/diamond_env

export proj_name="counter”
export proj_dir="/home/jmercado/projects/${counter}”

synpwrap -prj “${proj_dir}/counter_project_impll_synplify.tcl”

edif2ngd -1 “MachX03D” -d LAMX03D-4300HC -path “$proj_dir” \
“${proj_dir}/${proj name}.edi” “${proj _name}.ngo”

ngdbuild -a “MachX03D” -d LAMX03D-4300HC \

-p “/home/jmercado/lscc/diamond/3.12/ispfpga/se5c00/data” \
-p “$proj_dir” “${proj _name}.ngo” “${proj name}.ngd”

map -a “MachX02” “${proj_name}.ngd” -o “${proj name} map.ncd”

par -w “${proj_name} map.ncd” “${proj name} par.ncd” \
“${proj_name} map.prf”

bitgen -w “${proj_name}_par.ncd” “${proj_name}_map.prf”

= LATTICE

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Scripting Lattice FPGA Build FlowLATTICE

Application Note

References

For more information, refer to:

e Lattice Radiant FPGA design software

e Lattice Diamond FPGA design software

e Lattice Propel FPGA design software

e Llattice Insights for Lattice Semiconductor training courses and learning plans

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 30

http://www.latticesemi.com/legal
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/LatticeDiamond
https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/LatticePropel
https://www.latticesemi-insights.com/

Scripting Lattice FPGA Build FlowLATTICE

Application Note

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0 31

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

Scripting Lattice FPGA Build Flow

Application Note

= LATTICE

Revision History

Revision 1.0, October 2023

Section

Change Summary

All

Initial release.

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02073-1.0

32

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Scripting Lattice FPGA Build Flow
	Contents
	Acronyms in This Document
	1. Lattice Scripted Flow Overview
	1.1. Types of Tool Automation Scripts
	1.1.1. TCL Scripts
	1.1.2. Batch Scripts
	1.1.3. Makefile Scripts

	2. Scripting with Lattice Diamond
	2.1. General Information
	2.1.1. TCL Command Log
	2.1.2. Finding Batch Commands

	2.2. Lattice Diamond TCL Scripting
	2.2.1. Invoking TCL Scripts in Lattice Diamond
	2.2.2. Main Build Flow TCL Scripting

	2.3. Lattice Diamond Batch Scripting
	2.3.1. Setting up the Batch Environment
	2.3.1.1. Setting Up the Batch Script in Windows
	2.3.1.2. Setting Up the Batch Script in Linux

	2.3.2. Main Build Flow Batch Scripting

	3. Scripting with Lattice Radiant
	3.1. General Information
	3.1.1. Useful Reports
	3.1.1.1. TCL Command Log Report
	3.1.1.2. Last Build Log Report

	3.1.2. Finding Batch Commands

	3.2. Lattice Radiant TCL Scripting
	3.2.1. Invoking TCL Scripts in Lattice Radiant
	3.2.2. Main Build Flow TCL Scripting

	3.3. Lattice Radiant Batch Scripting
	3.3.1. Setting up the Batch Environment
	3.3.1.1. Setting up the Batch Script in Windows
	3.3.1.2. Setting up a Batch Script in Linux

	3.3.2. Batch Scripting the Main Build Flow

	4. Scripting with Lattice Propel
	4.1. General Information
	4.2. TCL Scripting Propel Builder
	4.2.1. Invoking TCL Scripts

	4.3. Lattice Propel SDK Makefile Scripting
	4.3.1. Customizing the Make Build Flow

	5. Example Build Scripts
	5.1. Lattice Radiant Build Flow
	5.1.1. TCL Command Build Script
	5.1.2. FPGA Build Flow Batch Script (Windows)
	5.1.3. FPGA Build Flow Batch Script (Linux)

	5.2. Lattice Diamond Build Flow
	5.2.1. TCL Command Build Script
	5.2.2. FPGA Build Flow Batch Script (Linux)

	Appendix A. Lattice FPGA Build Scripts for Linux and Windows
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, October 2023

