

Lattice 5G ORAN Solution Stack 1.1 : Secure IEEE 1588 Precision Timing Protocol (PTP)

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

Lattice supports the use of inclusive language in its written assets. This document, however, may include terminology referring to port states and clock roles to comply with IEEE Std 1588™-2019.

Contents

Contents	
Figures	
Tables	7
Acronyms in This Document	
1. Introduction	
1.1. Learning Objectives	
2. Hardware and Software Requirements	10
2.1. Hardware Requirements	10
2.2. Software Requirements	
3. Hardware Features and Setup	
3.1. 1588PTP Mother Board	
3.1.1. Features	
3.1.2. Jumper Configuration	
3.1.3. Powering up the 1588PTP Mother Board	
3.1.4. Control Buses – I ² C, UART, and SPI	
3.1.5. LEDs and Switches	
3.1.6. Headers/Connectors	
3.2. 1588PTP Daughter Board	
3.2.1. Features	
3.2.2. Clock Sources	
3.2.3. Powering up the 1588PTP Daughter Board	
3.2.4. LEDs and Switches	
3.2.5. Headers/Connectors	
3.3. Assembling the 1588PTP Mother Board and 1588PTP Daughter Board	
3.4. Programming the FPGA	
3.4.1. Status LEDs	
4. Installing the Software on the Host Machine	
4.1. Wireshark Packet Verification	
5. IEEE 1588 PTP Overview	
5.1. Theory of Operation	
5.1.1. PTP Profiles	
5.1.2. PTP Port Roles	
5.1.3. PTP Clock Types	
<u> </u>	
5.2.1. User Space Application	
6. IEEE 1588 PTP Solution Stack Application User Interface	
6.1. Main Navigation Menu	
6.2. Getting Started – Home	
6.2.1. Configuration File Selection	
6.2.2. Profile Options	
6.2.3. Configuration Settings	
6.2.4. VLAN Settings	
6.2.5. ARP Settings	
6.3. Dashboard	
6.4. Data Plots	
6.5. Stats. Analysis	
6.6. Status and Configuration Settings	
6.6.1. Configuration Settings	
6.6.2. Advanced Configuration Settings	

7. GNSS	47
7.1. GNSS Configurations (Read/Write)	47
7.2. Reading/Writing Configuration Files	47
	51
9. IEEE 1588 PTP Node Setup Example	52
	52
9.1.1. Profile Overview	52
9.1.2. Setup Objective	52
9.1.3. Setup	52
9.1.4. Profile Settings	54
9.1.5. Wireshark Snapshot	56
References	59
Technical Support Assistance	60
Revision History	61

Figures

Figure 3.1. 1588PTP Mother Board Jumper Location	12
Figure 3.2. Lattice 1588PTP Mother Board Connection	13
Figure 3.3. 1588PTP Daughter Board Clock Diagram	21
Figure 3.4. SyncE Recovered Clock – Port 0 and Port 1	22
Figure 3.5. Lattice 1588PTP Daughter Board Connection	22
Figure 3.6. 1588PTP Daughter Board Power Architecture	23
Figure 3.7. 1588PTP Mother Board and 1588PTP Daughter Board Assembly	25
Figure 3.8. 1588PTP Mother Board Serial Interface	
Figure 3.9. Creating a New Project from Scan	26
Figure 3.10. Device Properties Window for SPI Flash Programming	
Figure 3.11. Programmer Menu Bar	
Figure 3.12. Programmer Output Window	
Figure 5.1. Software Solution Overview	
Figure 6.1. Main Navigation Menu	
Figure 6.2. Configuration File Selection	
Figure 6.3. Profile Setup	
Figure 6.4. Configuration Settings	
Figure 6.5. Edit and Stop Buttons	
Figure 6.6. Save, Clear, and Run Buttons	
Figure 6.7. VLAN Options	
Figure 6.8. QinQ Options	
Figure 6.9. ARP Entries for IPv4	
Figure 6.10. ARP Entries for IPv6	36
Figure 6.11. Dashboard Table	
Figure 6.12. Data Plots	
Figure 6.13. Statistical Analysis Plots	
Figure 6.14. Configuration Settings	
Figure 6.15. Clocks and Ports	
Figure 6.16. PTP Synchronization	
Figure 6.17. System Clock Synchronization	
Figure 6.18. Port Statistics	
Figure 6.19. Port Stats (Rate)	
Figure 6.20. Clock Type	
Figure 6.21. Message Transmission	
Figure 6.22. TC Type	
Figure 6.23. Delay Compensation	
Figure 6.24. GNSS Settings	
Figure 6.25. DPLL Clock Source	
Figure 6.26. Holdover Status Indicator - Normal State	
Figure 6.27. Holdover Status Indicator – Holdover State	
Figure 6.28. DPLL Clock Alarm	
Figure 6.29. Traffic Settings for Port 0 and Port 1	
Figure 7.1. GNSS Configuration Setup	
Figure 7.2. COM Port Selection	
Figure 7.3. Tools Selection	
Figure 7.4. GNSS Configurations	
Figure 7.5. GNSS Generation Selection	
Figure 7.6. GNSS Configuration File Path	
Figure 7.7. File Transfer Status	
Figure 9.1. PTP Setup for IEEE 1588 Default Profile	
Figure 9.2. Profile Selection	52

Figure 9.3. Profile Clock Selection	53
Figure 9.4. IEEE 1588 Clock Selection	53
Figure 9.5. Sync Message in IEEE 1588 Default Profile	
Figure 9.6. Follow Up Message in IEEE 1588 Default Profile	57
Figure 9.7. Delay-Req Message	58
0 7 1 0-	

Tables

Table 3.1. Jumper Configuration	11
Table 3.2. I ² C Bus Connection	13
Table 3.3. UART Bus Connection.	13
Table 3.4. SPI Bus Connections	14
Table 3.5. General Purpose LED Signals	15
Table 3.6. 7-Segment LED Signals	15
Table 3.7. DIP Switch Signals	15
Table 3.8. Push Buttons Switch Signals	16
Table 3.9. SPI Flash Configuration Header Pin Connections	16
Table 3.10. ADC Test Header Pin Details – P1	16
Table 3.11. ADC Test Header Pin Details – P2	16
Table 3.12. SFP Connector Pin Details – 1 G Ethernet – 1	17
Table 3.13. SFP Connector Pin Details – 1 G Ethernet – 2	17
Table 3.14. SFP Connector Pin Details – 10 G Ethernet – 1	18
Table 3.15. SFP Connector Pin Details – 10 G Ethernet – 2	
Table 3.16. PCIe Edge Connector Pin Details	19
Table 3.17. Clock Sources	20
Table 3.18. Power Supply Options	23
Table 3.19. PLL Lock LED Definition	24
Table 3.20. Power Status LED Definition	24
Table 3.21. Push Button Signal Definition	24
Table 3.22. SMA Connections	24
Table 3.23. 1588PTP Mother Board Status LED Description	29
Table 3.24. 1588PTP Daughter Board Status LED Description	29
Table 6.1. Clock Source Description	45
Table 9.1. Grand Master Clock (GM) Setting	
Table 9.2. Ordinary Clock (OC) Setting	54
Table 9.3. Boundary Clock (BC) Setting	55
Table 9.4. Transparent Clock (TC) Setting	55
Table 9.5. CertusPro-NX FPGA Power Supplies	58

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
AEAD	Authenticated Encryption with Associated Data
AES	Advanced Encryption Standard
AHBL	Advanced High-performance Bus-Lite
APB	Advanced Peripheral Bus
AXI	Advanced eXtensible Interface
BC	Boundary Clock
CDF	Cumulative Distribution Function
CF	Correction Factor
CPU	Central Processing Unit
DMA	Direct Memory Access
ECC	Elliptical Curve Cryptography
FIFO	First-In-First-Out
FMC	FPGA Mezzanine Card
FTDI	Future Technology Devices International
GM	Grand Master Clock
GNSS	Global Navigation Satellite System
HMAC	Hash Message Authentication Code
HPC	High Pin Count
ICV	Integrity Check Value
IRQ	Interrupt Request
OCXO	Oven Controlled Crystal Oscillator
ORAN	Open Radio Access Network
OC	Ordinary Clock
OSE	ORAN Security Enclave
PCle	Peripheral Component Interconnect Express
PDF	Probability Density Function
PKC	Public Key Cryptography
PTP	Precision Time Protocol
RISC-V	Reduced Instruction Set Computer-V
RSA	Rivest–Shamir–Adleman
RTL	Register-Transfer Level
SHA384	Secure Hash Algorithm 384
SMBus	System Management Bus
TC	Transparent Clock
TLV	Type Length Value
TSN	Time Sensitive Network
UART	Universal Asynchronous Receiver-Transmitter

1. Introduction

This user guide provides instructions for using the Lattice ORAN™ Solution Stack 1.1 – Secure IEEE 1588 Software. The evaluation kit consists of two boards: the 1588PTP Mother Board and the 1588PTP Daughter Board. The 1588PTP Mother Board features the CertusPro™-NX FPGA, which is built on the Lattice Nexus FPGA platform using low power 28 nm FD-SOI technology.

1.1. Learning Objectives

By following the steps in this guide, the user will be able to:

- Set up the IEEE 1588 evaluation kit.
- Install and run the IEEE 1588 PTP solution stack application (user interface) to configure and monitor clocks.
- Get the graphical plots (including CDF, PDF) for the synchronization parameters.
- Understand and complete a sample IEEE 1588 PTP setup.

2. Hardware and Software Requirements

2.1. Hardware Requirements

- Lattice IEEE 1588
 - 1588PTP Mother Board
 - 1588PTP Daughter Board
- PC with Core-i3 fifth generation CPU or higher with Virtualization ON (if supported)
- Motherboard with PCIe-×16, ×8 or ×4 slot supporting Gen2 or above
- 4 GB RAM or higher
- 120 GB ROM or higher.
- Secure boot: Disabled (if available).
- Mini-USB to USB-A cable to program the FPGA
- Two fiber optic cables (3 meters each) to connect the PTP nodes over 10 G Ethernet

2.2. Software Requirements

- Operating System: Ubuntu 20.04 LTS (recommended)
- Lattice ORAN 1588 solution stack installer that includes:
 - Kernel modules
 - Daemon application and services
 - Lattice ORAN solution stack application
- Wireshark application
- Lattice Radiant™ software version 2.2 or later to program the FPGAs
- FPGA bit file for the 1588PTP Mother Board (Lattice_PTP_CC_Demo.bit)

3. Hardware Features and Setup

3.1. 1588PTP Mother Board

This section covers the features of the 1588PTP Mother Board and the steps in loading the demo bit file to the SPI flash that is connected to the CertusPro-NX FPGA. On subsequent power up, the 1588PTP Mother Board is configured with the loaded bit file through the MSPI configuration interface.

3.1.1. Features

The 1588PTP Mother Board includes the following features:

- CertusPro-NX FPGA (LFCPNX-100-9LFG672I)
- PCIe ×4 Gen3 support
 - Endpoint configuration
 - Root port configuration
- 2× SFP 1 G Ethernet
- 2× SFP 10 G Ethernet
- 2× SerDes channels extended to BOARD TO BOARD connector
- On-board Boot Flash 512 Mb Serial Peripheral Interface (SPI) Flash, with Quad read feature
- USB-B connection for device programming. UART and Inter-Integrated Circuit Bus (I²C) utility are also available on the same port.
- 7 Segment Display, five-input DIP switch, 8 status LEDs for customer purposes
- Lattice Radiant software programming support

Caution: The Lattice 1588PTP Mother Board contains ESD-sensitive components. ESD safe practices should be followed while handling and using the board.

3.1.2. Jumper Configuration

Install the jumpers listed in Table 3.1. If this is the first time the board is used, the jumpers should be in the indicated configuration.

Table 3.1. Jumper Configuration

<u> </u>		
Jumper	Description	Settings
J5	FTDI- UART or I ² C selection	Default 1–2 UART, Short 2-3 for I ² C
J7	FTDI- UART or I ² C selection	Default 1–2 UART, Short 2-3 for I ² C
J14	V _{CCIO} selection for Bank 0	Default short 1-2 for VCCIO=3.3 V, short 2-3 for VCCIO=1.8 V
J19	PCIe link selection	Default Short 2-4 for PCIe X4, Short 1-2 for PCIe X1

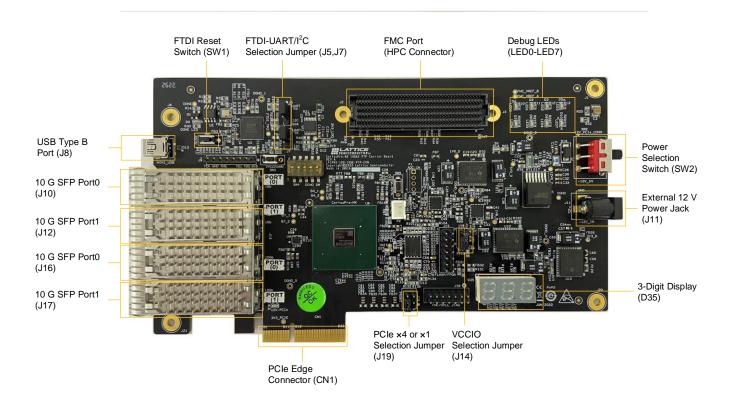


Figure 3.1. 1588PTP Mother Board Jumper Location

3.1.3. Powering up the 1588PTP Mother Board

For the kit setup, the 1588PTP Mother Board draws power from the PC through the PCle port.

To power up the 1588PTP Mother Board:

- 1. Ensure that the power selection switch (SW2) is in the 12V_PCIe_CONN position to receive power from the PCIe port.
- 2. Connect the 1588PTP Mother Board to the PC through the PCle port.
- 3. Verify that power is received through the D36 LED (12V IN PCIE), which lights up in green.

Notes:

Alternatively, for testing or programming purposes, use an external 12 V adapter to power the 1588PTP Mother Board. In this case, ensure that SW2 is in the 12V IN position to receive power from the external 12 V adapter.

To program the FPGA/SPI flash, the board is connected to the PC running the Lattice Radiant software using the Mini USB Type-A Cable. See the Programming the FPGA section.

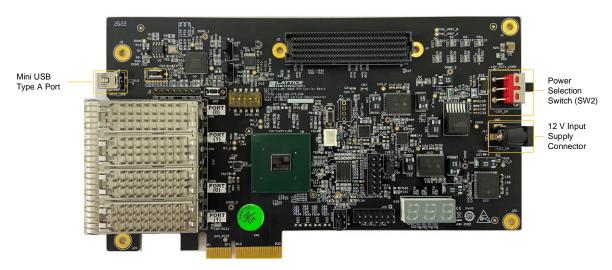


Figure 3.2. Lattice 1588PTP Mother Board Connection

3.1.4. Control Buses – I²C, UART, and SPI

This section describes the topology of the various configuration and communication buses.

3.1.4.1. I²C Topology

This I²C bus has the signal names FTDI_I2C_SCL and FTDI_I2C_SDA. When the jumpers (J5, J7) are closed on pins 2-3, the I²C bus is connected to a dedicated CertusPro-NX GPIO bank 1. I²C and UART share the same output port B on FTDI chip. The I²C connections are summarized in Table 3.2.

Table 3.2. I²C Bus Connection

Signal Name	CertusPro-NX Ball Location	FTDI Chip Ball Location	Jumper
FTDI_I2C_SCL	M7	38	J7
FTDI_I2C_SDA	M6	39&40	J5

3.1.4.2. UART Topology

The board provides one UART communication interface by providing a flexible connection between the CertusPro-NX device and FTDI chip. Close the two jumpers, J32 and J33, to connect to two general-purpose I/O in Bank 1, as shown in Table 3.3. This UART is alternative to I²C bus by setting FTDI configuration.

Table 3.3. UART Bus Connection

Signal Name	CertusPro-NX Ball Location	FTDI Chip Ball Location	Jumper
FTDI_UART_TXD	L8	38	J7
FTDI_UART_RXD	M9	39	J5

3.1.4.3. SPI Topology

One of the major functions of SPI connections on the board is to support CertusPro-NX configuration from the SPI Flash or the Parallel Configuration Header (J15), as shown in Table 3.4. Lattice 1588PTP Mother Board can support both Master SPI (MSPI) and Slave SPI (SSPI) modes for CertusPro-NX configuration.

Table 3.4. SPI Bus Connections

Signal Name	CertusPro-NX Ball	Parallel Configuration Header Pin
CONN_FLASH_MCLK	G6	12
CONN_FLASH _MOSI	H7	5
CONN_FLASH _MISO	Н6	7
CONN_FLASH_CS#	G7	2
CONN_FLASH_DQ2	K5	11
CONN_FLASH_DQ3	H4	9
MCSNO	Н3	3
CONN_PROGRAMN	G4	1*
DONE	G5	4*
CONN_INITN	G2	6*

Note:

1. These connections are possible if 0 Ω resistors are installed.

3.1.5. LEDs and Switches

This section describes the 1588PTP Mother Board LEDs and switches.

3.1.5.1. General Purpose LEDs

The Lattice 1588PTP Mother Board provides eight LEDs that are connected to I/O within Bank 1. The LEDs are lighted with green color when the output is driven HIGH. The designated pins are connected as shown in Table 3.5.

Table 3.5. General Purpose LED Signals

Signal Name	CertusPro-NX Ball Location	CertusPro-NX Bank/Color	LED Reference
LED0	R5	1/Green	D4
LED1	R4	1/Green	D2
LED2	R8	1/Green	D3
LED3	R9	1/Green	D5
LED4	U8	1/Green	D7
LED5	R7	1/Green	D8
LED6	R6	1/Green	D9
LED7	P8	1/Green	D10

3.1.5.2. Seven Segment LED

The Lattice 1588PTP Mother Board provides eight LEDs that are connected to I/O within Bank 1. The LEDs are lighted with green color when the output is driven HIGH.

Table 3.6. 7-Segment LED Signals

Signal Name	CertusPro-NX Ball Location
SEG_A	M4
SEG_B	M3
SEG_C	M2
SEG_D	M1
SEG_E	N1
SEG_F	N2
SEG_G	N3
SEG_DP	N4
F_K_DIG1	L6
F_K_DIG2	L3
F_K_DIG3	L2

3.1.5.3. DIP Switch

Five CertusPro-NX pins are connected to the DIP switch (SW1) to allow manual actuating input to the FPGA. One side of each switch is connected to GPIOs within Bank 5 and is pulled up through 4.7 k Ω resistors. The other side is grounded. The designated pins are connected as shown in Table 3.7.

Table 3.7. DIP Switch Signals

Signal Name	CertusPro-NX Ball Location	CertusPro-NX Bank
SWITCH1	AA23	5
SWITCH2	AB22	5
SWITCH3	AC22	5
SWITCH4	AA22	5
SWITCH5	W21	5

3.1.5.4. Push Buttons

The Lattice 1588PTP Mother Board provides four push button switches, SW2, SW3, SW7, for demo and user applications. One of the buttons is pre-defined functional pin, and the other three are generic pins. Pressing these buttons drive a logic level "0" to the corresponding I/O pins. The designated pins are connected as shown in Table 3.8.

Table 3.8. Push Buttons Switch Signals

Signal Name	CertusPro-NX Ball Location	Push Button Reference	Logic Level at Button Pressed
PROGRAMN	G4	SW3	0
F_RESET_N	N9	SW5	0
FTDI_RESET	_	SW1	0

3.1.6. Headers/Connectors

This section describes Lattice 1588PTP Mother Board headers/connectors and pin mapping.

3.1.6.1. External Flash Configuration Header

Table 3.9. SPI Flash Configuration Header Pin Connections

J15 Pin Number	Signal Name	CertusPro-NX Ball Location
1	CONN_PROGRAMN	G4*
2	CONN_FLASH_CS#	-
3	MCSNO	H3
4	DONE	G5
5	CONN_FLASH_DQ0	H7*
6	CONN_INITN	G2*
7	CONN_FLASH_DQ1	H6*
8	_	_
9	CONN_FLASH_DQ3	H4*
10	VCCIO0	_
11	CONN_FLASH_DQ2	K5*
12	CONN_FLASH_MCLK	G6*
13	GND	_
14	GND	_

Note:

3.1.6.2. ADC Test Header

The 1588PTP Mother Board has onboard header connectors to feed in ADC input signals to the Certus Pro-NX FPGA.

Table 3.10. ADC Test Header Pin Details - P1

P1 Pin Number	Signal Name	CertusPro-NX Ball Location
1	AF2	AF2
2	AE2	AE2
3	AE1	AE1
4	AD1	AD1

Table 3.11. ADC Test Header Pin Details - P2

P2 Pin Number	Signal Name	CertusPro-NX Ball Location
1	AC1	AF2
2	AC2	AE2

^{1.} These connections are possible if 0 Ω resistors are installed.

3.1.6.3. SFP Connectors

Table 3.12. SFP Connector Pin Details - 1 G Ethernet - 1

J12 Pin Number	Signal Name	CertusPro-NX Ball Location
1	GND	_
2	F_SFP3_TX_FAULT	T20
3	F_SFP3_TX_DISABLE	T19
4	F_SFP3_I2C_SDA	T18
5	F_SFP3_I2C_SCL	U19
6	F_SFP3_ABS	U22
7	3V3_OUT	_
8	F_SFP3_LOS	U18
9	3V3_OUT	_
10	GND	_
11	GND	_
12	F_SFP3_RX_N	V25
13	F_SFP3_RX_P	V24
14	GND	_
15	3V3_OUT	_
16	3V3_OUT	_
17	GND	_
18	F_SFP3_TX_P	U26
19	F_SFP3_TX_N	V26
20	GND	_

Table 3.13. SFP Connector Pin Details – 1 G Ethernet – 2

J10 Pin Number	Signal Name	CertusPro-NX Ball Location
1	GND	_
2	F_SFP4_TX_FAULT	U24
3	F_SFP4_TX_DISABLE	U25
4	F_SFP4_I2C_SDA	V18
5	F_SFP4_I2C_SCL	V19
6	F_SFP4_ABS	V21
7	3V3_OUT	_
8	F_SFP4_LOS	V20
9	3V3_OUT	_
10	GND	_
11	GND	_
12	F_SFP4_RX_N	V22
13	F_SFP4_RX_P	V23
14	GND	_
15	3V3_OUT	_
16	3V3_OUT	_
17	GND	_
18	F_SFP4_TX_P	AE24
19	F_SFP4_TX_N	AF24
20	GND	_

Table 3.14. SFP Connector Pin Details - 10 G Ethernet - 1

J16 Pin Number	Signal Name	CertusPro-NX Ball Location
1	GND	_
2	F_SFP1_TX_FAULT	P26
3	F_SFP1_TX_DISABLE	P25
4	F_SFP1_I2C_SDA	P23
5	F_SFP1_I2C_SCL	P22
6	F_SFP1_ABS	P21
7	3V3_OUT	_
8	F_SFP1_LOS	R20
9	3V3_OUT	_
10	GND	_
11	GND	_
12	F_SFP1_RX_N	B13
13	F_SFP1_RX_P	C12
14	GND	_
15	3V3_OUT	_
16	3V3_OUT	_
17	GND	_
18	F_SFP1_TX_P	A12
19	F_SFP1_TX_N	A11
20	GND	_

Table 3.15. SFP Connector Pin Details - 10 G Ethernet - 2

J17 Pin Number	Signal Name	CertusPro-NX Ball Location
1	GND	_
2	F_SFP2_TX_FAULT	R21
3	F_SFP2_TX_DISABLE	R19
4	F_SFP2_I2C_SDA	R18
5	F_SFP2_I2C_SCL	R22
6	F_SFP2_ABS	T22
7	3V3_OUT	_
8	F_SFP2_LOS	R25
9	3V3_OUT	_
10	GND	_
11	GND	_
12	F_SFP2_RX_N	B10
13	F_SFP2_RX_P	C10
14	GND	_
15	3V3_OUT	_
16	3V3_OUT	_
17	GND	_
18	F_SFP2_TX_P	A9
19	F_SFP2_TX_N	A8
20	GND	_

3.1.6.4. PCIe Edge Connectors

Table 3.16. PCIe Edge Connector Pin Details

CN1 Pin Name	Signal Name	CertusPro-NX Ball	CN1 Pin Name	Signal Name	CertusPro-NX Ball
A1	PCIe_EC_PRSNT#1	_	B1	12V_IN_PCIE	_
A2	12V_IN_PCIE	_	B2	12V_IN_PCIE	_
А3	12V_IN_PCIE	_	В3	12V_IN_PCIE	_
A4	GND	_	B4	GND	_
A5	No Connection	_	B5	No Connection	T8
A6	No Connection	_	В6	No Connection	T7
A7	No Connection	_	В7	GND	_
A8	No Connection	_	B8	3V3_PCle	_
A9	3V3_PCle	_	В9	No Connection	P9
A10	3V3_PCle	_	B10	No Connection	_
A11	F_PCle_EC_PRSNT	R26	B11	No Connection	P19
A12	GND	_	B12	No Connection	_
A13	F_PCle_EC_100MHz_CLK_P	F20 ¹	B13	GND	_
A14	F_PCle_EC_100MHz_CLK_N	E20 ¹	B14	EP_PCle_RXD0_P	G24 ¹
A15	GND	_	B15	EP_PCle_RXD0_N	G25 ¹
A16	EP_PCle_TXD0_P	F26 ¹	B16	GND	_
A17	EP_PCle_TXD0_N	E26 ¹	B17	PCIe_EC_PRSNT#2	_
A18	GND	_	B18	GND	_
A19	No Connection	_	B19	EP_PCle_RXD1_P	E24 ¹
A20	GND	_	B20	EP_PCle_RXD1_N	D25 ¹
A21	EP_PCle_TXD1_P	C26 ¹	B21	GND	_
A22	EP_PCle_TXD1_N	B26 ¹	B22	GND	_
A23	GND	_	B23	EP_PCle_RXD2_P	C24 ¹
A24	GND	_	B24	EP_PCle_RXD2_N	B23 ¹
A25	EP_PCle_TXD2_P	A25 ¹	B25	GND	_
A26	EP_PCle_TXD2_N	A24 ¹	B26	GND	_
A27	GND	_	B27	EP_PCle_RXD3_P	C21 ¹
A28	GND	_	B28	EP_PCle_RXD3_N	C22 ¹
A29	EP_PCle_TXD3_P	A22 ¹	B29	GND	_
A30	EP_PCle_TXD3_N	A21 ¹	B30	No Connection	_
A31	GND	_	B31	PCIe_EC_PRSNT#2	_
A32	No Connection	_	B32	GND	_

Note:

1. Connects to CertusPro-NX if Endpoint PCIe is selected.

3.2. 1588PTP Daughter Board

This section covers the features of the 1588PTP Daughter Board.

3.2.1. Features

The 1588PTP Daughter Board has the following features:

- Network clock synchronizer DPLL (SiT95147).
- Stratum 3E OCXO (SiT5711).
- GNSS timing module (LEA-M8T-0).
- 2xRJ48 ports for ToD/pps In & Out.
- 2xSMA ports for DPLL Frequency In and Out.

Caution: The 1588PTP Daughter Board contains ESD-sensitive components. ESD safe practices should be followed while handling and using the development board.

3.2.2. Clock Sources

The 1588PTP Daughter Board has four clock sources for the DPLL. Refer to Table 3.17 and Figure 3.3 for more details regarding the clock sources.

DPLL has four input clock sources, INO, IN1, IN2, IN3, which generates the required output clocks from one of these inputs. The circuit is designed such that the input INO of DPLL can be connected to either SyncE_Recovered_Clock or Freq_In (Test input clock on SMA port 17) or GNSS timepulse2 clock. All these provisions are for testing and debugging purposes.

SyncE_Recovered_Clock is a recovered clock that is recovered from either Port-0 or Port 1 as shown in Figure 3.4. Freq_In is the external input clock that can be connected to SMA port J7.

The inputs IN1 of DPLL is connected to GNSS, IN2 is connected to SyncE_Recovered_Clk1, and IN3 is connected to OCXO. IN1, IN2, IN3 are the ones that are required for PTP functionality.

Table 3.17. Clock Sources

Clock Frequency	Signal Name	Clock Sources	DPLL PIN	Туре	Description
8 kHz-10 MHz	GNSS_TIME_PULSE_2_DPLL	U1 (GNSS)	63	Single ended	Connected to FPGA (Optionally Connected to IN0)
10 MHz	Freq_In	Test Input (SMA port J7)	63	Single Ended	Test Frequency input to DPLL (Connected to IN0)
161.1328 MHz	FPGA_CLKOUT_10MHz_P FPGA_CLKOUT_10MHz_N	1588PTP Mother Board	63/64	Differential	10 MHZ clock output from FPGA ¹ (Connected to IN0)
8 kHz-10 MHz	GNSS_TIME_PULSE_1_DPLL	U1 (GNSS)	61	Single ended	Connected to IN1
161.1328 MHz	SyncE_Recovered_Clk_FMC_P SyncE_Recovered_Clk_FMC_N	1588PTP Mother Board	14/15	Differential	SyncE recovered clock ² (Connected to IN2)
10 MHz	OCXO_DPLL_CLK_IN	U7	61	Single Ended	(Connected to IN3)

Notes:

- 1. The input clock on INO of DPLL can be selected through jumper J13. The default setting is FPGA_CLKOUT_10MHz_P connected as single ended clock .
- 2. SyncE recovered clock from Port 0 or Port 1 is routed to DPLL as SyncE_Recovered_Clk1_FMC_P/N. The selection of SyncE Master Port is through the user interface.

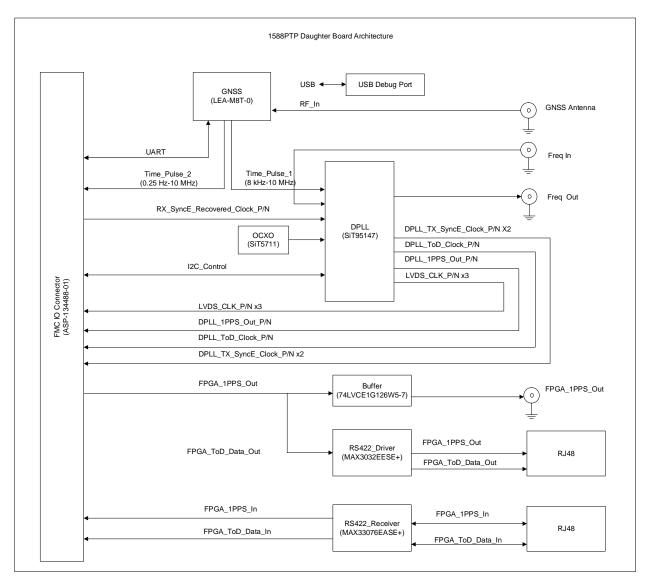


Figure 3.3. 1588PTP Daughter Board Clock Diagram

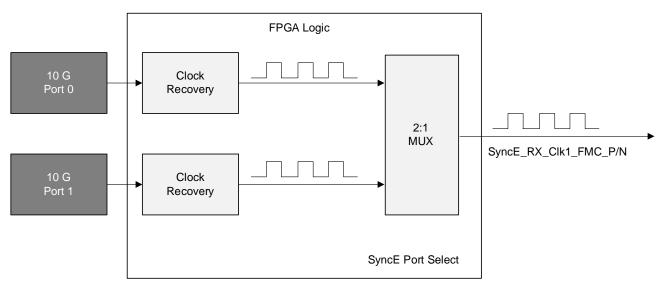


Figure 3.4. SyncE Recovered Clock - Port 0 and Port 1

3.2.3. Powering up the 1588PTP Daughter Board

Before powering up the 1588PTP Daughter Board, ensure that it is firmly plugged into the 1588PTP Mother Board. The 1588PTP Daughter Board draws power from the 1588PTP Mother Board through the FMC port.

Switch J2 on the 1588PTP Daughter Board should be set to the 12V_IN position. However, to use an external 12V adapter to power the 1588PTP Daughter Board, the switch J2 should be set to the EXT_12V position.

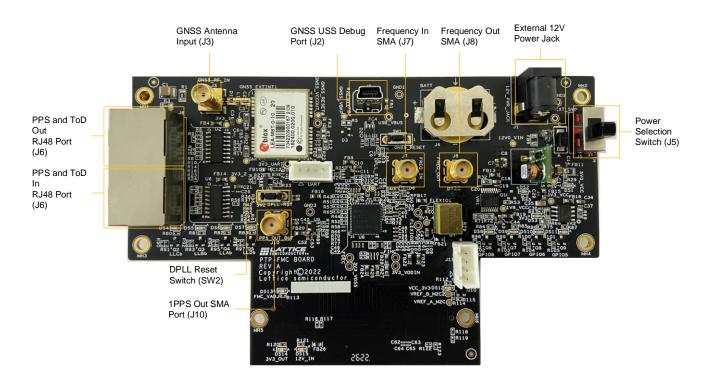


Figure 3.5. Lattice 1588PTP Daughter Board Connection

3.2.3.1. 1588PTP Daughter Board Power Scheme

The 1588PTP Daughter Board has most of the onboard regulators powered by an external 12 V power.

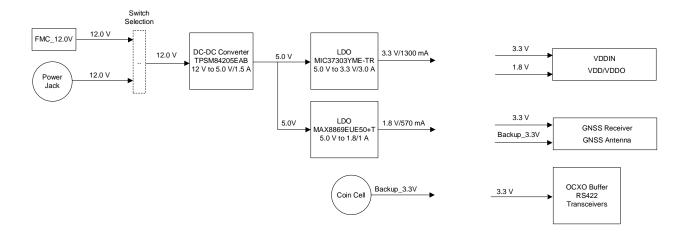


Figure 3.6. 1588PTP Daughter Board Power Architecture

Table 3.18. Power Supply Options

Part	Supply Name	3.3 V	1.8 V
DPLL	VDDIN	Fixed	
_	VDD	_	Fixed
_	VDDS	Fixed	
_	VDD01	_	Fixed
_	VDDO2	_	Fixed
_	VDDO3	_	Fixed
_	VDD05	Selectable	Selectable
_	VDD06	_	Fixed
_	VDD07	_	Fixed
_	VDD00T	_	Fixed
_	VDDOB	Selectable	Selectable
GNSS	VCC	Fixed	_
_	VCCBCKP	Fixed	_
ОСХО	VCC	Fixed	_
Buffer	VCC	Fixed	_
RS422 Transceivers	VCC	Fixed	_

3.2.4. LEDs and Switches

3.2.4.1. PLL Lock LEDs

The 1588PTP Daughter Board has four LEDS to indicate the Loss of Lock in DPLL. The details are shown in Table 3.19.

Table 3.19. PLL Lock LED Definition

LED Designator	Color/Status	Signal indication	
DS6	Red/Loss of Lock	LLAb	
DS5	Red/Loss of Lock	LLBb	
DS4	Red/Loss of Lock	LLCb	
DS7	Red/Loss of Lock LLDb		
DS6	Red/Loss of Lock LLAb		

3.2.4.2. Power Status LEDs

The 1588PTP Daughter Board status LEDs provide a visual indication of power status as shown in Table 3.20.

Table 3.20. Power Status LED Definition

LED Designator	Color	Description
DS1	Green	5V0_VCC
DS3	Green	VCC_3V3
DS2	Green	VCC_1V8
DS12	Red	VCC_3V3
DS15	Green	12V_IN
DS14	Green	3V3_OUT
DS13	Green	FMC_VADJ_3V3

3.2.4.3. Push Buttons

The 1588PTP Daughter Board provides two push button switches, SW1, SW2, for reset purposes. The designated pins are connected as shown in Table 3.21.

Table 3.21. Push Button Signal Definition

Signal Name	Push Button Reference	Logic Level at Button Pressed
GNSS_RESET_N	SW1	0
DPLL_RST	SW2	0

3.2.5. Headers/Connectors

The headers and connectors of 1588PTP Daughter Board are as shown in Table 3.22.

Table 3.22. SMA Connections

SMA Designator	Signal Name	Description
J7	Freq_IN	Frequency input (IN0) to DPLL
J8	Freq_Out	Frequency out (Out5) from DPLL
J3	GNSS_RF_IN	GNSS antenna to GNSS module
J10	1PPS_Out	1PPS output from FPGA/DPLL

3.3. Assembling the 1588PTP Mother Board and 1588PTP Daughter Board

The 1588PTP Daughter Board is plugged into the 1588PTP Mother Board through the FMC connector. The receptacle J2 on the 1588PTP Mother Board and plug J12 on the 1588PTP Daughter Board are connected. Figure 3.7 shows the assembly.

Figure 3.7. 1588PTP Mother Board and 1588PTP Daughter Board Assembly

The 1588PTP Mother Board can be plugged into the PCIe (×4 or ×16) of the PC through the PCIe ×4 or ×16 cable. Power ON the 1588PTP Mother Board as indicated in the Powering up the 1588PTP Mother Board section.

3.4. Programming the FPGA

The USB port on the 1588PTP Mother Board is used to flash the firmware to the card as shown in Figure 3.8. The 1588PTP Mother Board has a built-in download controller for programming the CertusPro-NX device. It uses an FT2232H Future Technology Devices International (FTDI) part to convert USB to JTAG. The USB is connected to PC with Lattice Radiant Programmer tool installed and the latter is used to flash and download firmware to the card.

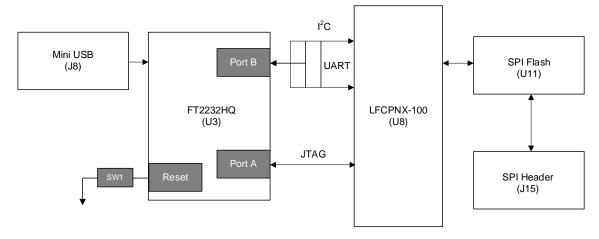


Figure 3.8. 1588PTP Mother Board Serial Interface

To program the CertusPro-NX FPGA device:

- 1. Connect the board to the PC running the Lattice Radiant software using the Mini USB Type-A cable.
- 2. Open the Lattice Radiant Programmer software and create a new project. In the **Getting Started** dialog box, enter the **Project Name** and **Project Location** as shown in Figure 3.9.
- Select Create a new project from scan and choose the settings for the Cable, Port, and TCK Divider Setting (0-30×) fields.
- 4. Click OK.

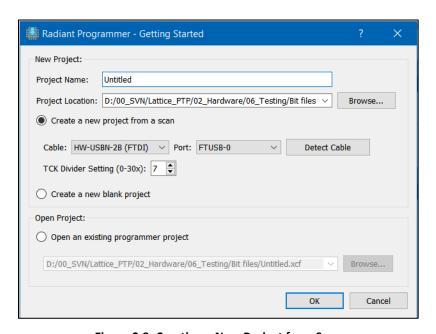


Figure 3.9. Creating a New Project from Scan

5. In the **Device Properties** dialog box, the **LFCPNX** (Device Family) and **LFCPNX-100** (Device) are indicated on the title bar. Select **Operation: Erase, Program** under **Device Operation** as shown in Figure 3.10.

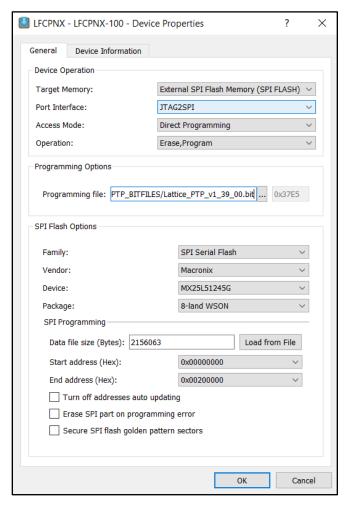


Figure 3.10. Device Properties Window for SPI Flash Programming

- 6. Select the .bit file in **Programming file**.
- 7. Click OK.
- 8. In the main interface, click the Programming button from the menu bar to start programming.

Figure 3.11. Programmer Menu Bar

If the FPGA programming is successful, the output console displays an Operation Successful message.

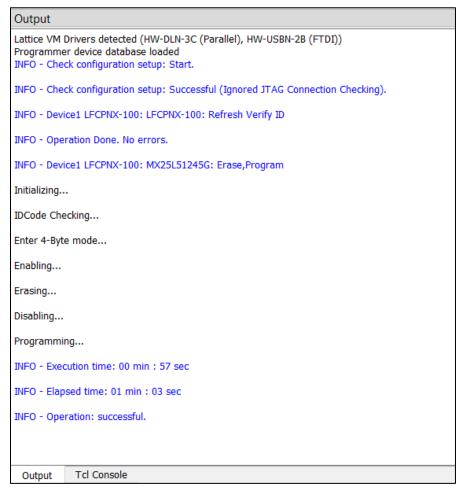


Figure 3.12. Programmer Output Window

If the programming operation fails, refer to the troubleshooting section of the document.

After programming, power cycle the board and check the status LEDs on the board according to Table 3.23 and Table 3.24.

3.4.1. Status LEDs

The description of each status LED is provided in Table 3.23 and Table 3.24.

Table 3.23. 1588PTP Mother Board Status LED Description

Sl. No	LED Reference	Name	Description
1	D1	FTDI_UART_RXD	Green: blinks when UART is receiving data
2	D6	Done	Green: lights up when SPI Boot is successful
3	D12	FMC_VADJ_3V3	Green: lights up when 3.3 V is generated
4	D14	5V	Green: lights up when 5 V is generated
5	D20	3V3_OUT	Green: lights up when 1.8 V is generated
_	D27	INITN	Red: blinks when SPI boot is happening
6	D30	5V	Green: lights up when 5 V is generated
7	D32	3V3_OUT	Green: lights up when 3.3 V is generated
8	D34	5V	Green: lights up when 5 V is generated
9	D36	12V_IN_PCIE	Green: lights up when 12 V is derived from PCIe port

Table 3.24. 1588PTP Daughter Board Status LED Description

Table 3.24. 13001 11 Budgitter Bodia Status LED Bescription			
SI. No	LED Reference	Name	Description
1	DS1	VCC_5V0	Green: lights up when 5 V is generated
2	DS2	VCC_1V8	Green: lights up when 1.8 V is generated
3	DS3	VCC_3V3	Green: lights up when 3.3 V is generated
4	DS4	LLCb	Red: lights up when Loss of Lock in PLL C has happened
5	DS5	LLBb	Red: lights up when Loss of Lock in PLL C has happened
6	DS6	LLAb	Red: lights up when Loss of Lock in PLL C has happened
7	DS7	LLDb	Red: lights up when Loss of Lock in PLL C has happened
8	DS13	FMC_VADJ_3V3	Green: lights up when 3.3 V is received form 1588PTP Mother Board
9	DS14	3V3_OUT	Green: lights up when 3.3 V is received form 1588PTP Mother Board

4. Installing the Software on the Host Machine

This section outlines the process for installing the software onto the host machine. Before you begin, ensure that the system has an active internet connection.

To install the application on the host machine:

- 1. Extract the compressed software package to a folder using the tar command.
- 2. The installer downloads the required packages from the repository provided by Linux and Ubuntu.
- 3. Right-click the *installer.sh* file in the folder and change its permissions to *Executable*.
 - Note: This can also be done using the chmod command.
- 4. Run the *installer.sh* using the command ./installer.sh.
- 5. The installer installs the kernel, modules, services, and user interface on the system.
- 6. After the installation is completed with no errors, restart the system.
- 7. When the system starts, open the terminal (Ctrl + Alt + T) and run the application using the command *sudo lattice_ORAN_1588_Solution*.
- 8. When the application starts, it checks for the hardware. If hardware is found, the user can configure and run the clock. If hardware is not found, the user can only perform post-processing on previously saved data.

4.1. Wireshark Packet Verification

To verify the PTP packets:

- 1. Open the Wireshark application to capture Ethernet data from all available ports.
- 2. Capture PTP packets to verify the various fields and parameters that were set by the PTP packet generator.

5. IEEE 1588 PTP Overview

5.1. Theory of Operation

5.1.1. PTP Profiles

The IEEE 1588-2019 standard includes the concept of PTP profiles to describe the network parameters, allowed clock types, clock domain number, and others.

The Lattice ORAN solution stack supports the following profiles:

- IEEE 1588-2019 default profile
- ITU-T Telecom profile for frequency (G.8265.1)
- ITU-T Telecom profile for time with full timing support (G.8275.1)
- ITU-T Telecom profile for time with Partial timing support (G.8275.2)
- IEEE 802.1AS-(gPTP)

The Lattice ORAN solution stack conforms to the following timing characteristics:

- ITU-T G.8273: Framework of phase and time clocks

 !
- ITU-T G.8273.2: Timing characteristics of telecom boundary clocks and telecom time slave clocks for use with full timing support from the network
- ITU-T G.8273.3: Timing characteristics of telecom transparent clocks for use with full timing support from the network
- ITU-T G.8273.4: Timing characteristics of telecom boundary clocks and telecom time slave clocks for use with partial timing support from the network
- ITU-T G.8262: Timing characteristics of synchronous equipment slave clock
- ITU-T G.8262.1: Timing characteristics of enhanced synchronous equipment slave clock

5.1.2. PTP Port Roles

- Master The entity distributing time to slave ports.
- Slave The device that synchronizes itself to the PTP master.

5.1.3. PTP Clock Types

The following clocks are defined in IEEE 1588 PTP:

Ordinary Clock (OC)

It only has one clock port. For an Ordinary Clock, a clock port may not necessarily correspond to a physical port. Ordinary clock can be GM to distribute time.

- Master this distributes PTP time to slaves.
- Slave this synchronizes PTP time with the master.
- Boundary Clock (BC)

Boundary clock requires a minimum of two PTP ports. At least one port must be slave and others are master. The Boundary clock synchronizes its clock from Slave Port using PTP messages. The Master Port acts as master for the clocks connected on the Master Port.

Transparent Clock (TC)

A Transparent Clock assists in the delay measurement between a master and a slave by including a Correction Factor (CF) that tells the slave how much delay the Transparent Clock added. This in general applies to Layer 2 bridges, and a TC's clock ports correspond to physical interfaces.

Other clock types are defined as per ITU-T and IEEE profiles defined in PTP Profiles.

32

5.2. Software Design Overview

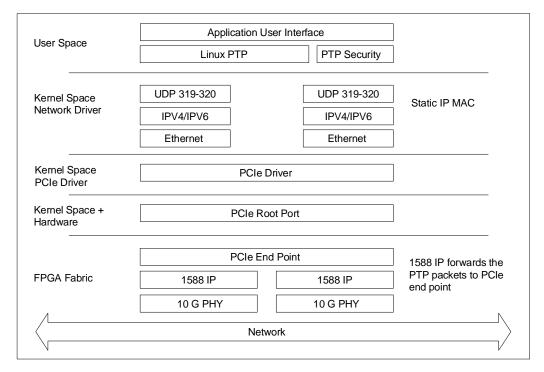


Figure 5.1. Software Solution Overview

5.2.1. User Space Application

- Lattice ORAN 1588 solution stack user interface to configure, run and monitor the clocks.
- linuxptp engine for the PTP messages and servo.
- PTP security, which implements security based on the integrated security processing conformant to Section 16.14.1 in IEEE 1588-2019.
- Configuration and Control modules to communicate/provide hardware settings to FPGA.

5.2.2. Kernel Space Drivers

- NIC driver with 2×10 G ports with TCP/IP protocol suite
- PTP hardware clock driver
- PCIe driver with ×4 Gen 2 support
- GNSS driver
- Supporting character drivers for debugging, configuration, and data transfer

6. IEEE 1588 PTP Solution Stack Application User Interface

This section describes the user interface for configuring, running, and monitoring the clocks. The steps for configuring the clocks are also provided.

6.1. Main Navigation Menu

The main navigation menu includes the following:

- Home: The application landing page (profile selection page)
- Dashboard: Data table showing the synchronization parameters
- Data Plots: Graph plots for the obtained data
- Stats. Analysis: Statistical plots for some of the key performance parameters
- About: General information, Application usage tips, and Glossary

Figure 6.1. Main Navigation Menu

6.2. Getting Started - Home

The Home interface provides option for selecting/loading the configuration file, setting up the Profile and editing the configuration settings among others.

6.2.1. Configuration File Selection

To create/load a configuration file:

- 1. Under Create/Load File, select New File or Load File.
- 2. Enter the file name without spaces.
- 3. Click the Apply button.

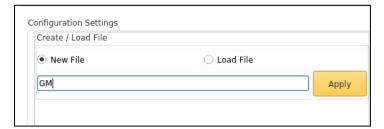


Figure 6.2. Configuration File Selection

6.2.2. Profile Options

To set up the profile, select the options available from the drop-down menu under:

- Profile
- Profile Clock
- IEEE 1588 Clock

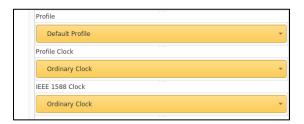


Figure 6.3. Profile Setup

6.2.3. Configuration Settings

After selecting the required profile clocks and IEEE 1588 clock, a configuration setting is generated with the default values, which the user can edit if needed.

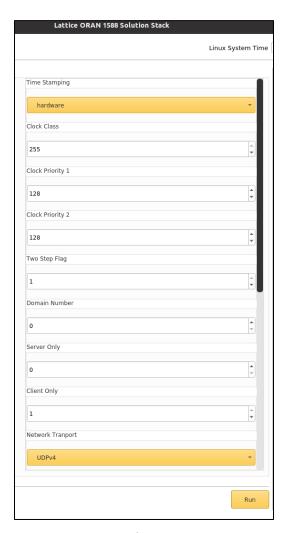


Figure 6.4. Configuration Settings

Once the user is done with editing the configuration settings, the user must save the configurations. All the configurations are saved in the /home/lattice/Profile_clocks/ folder. After the configuration is saved, the PTP engine can be started.

To start the PTP engine, click the Run button.

To stop the process, click the Stop button.

Once stopped, the user can only clear the previous configurations and set up a new configuration afresh.

To clear all the input fields, click on the Clear button.

To change the required configuration, click the Stop button first and then click the Edit button.

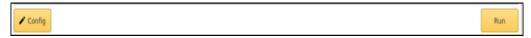


Figure 6.5. Edit and Stop Buttons

To save the inputs, click the Save button and then click Run to start the PTP engine.

To clear all the input fields, click the Clear button.

Figure 6.6. Save, Clear, and Run Buttons

6.2.4. VLAN Settings

VLAN has three modes:

- Disable: VLAN is disabled.
- VLAN: Sends single VLAN tag
- QinQ: Sends double VLAN tag

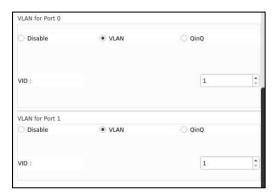
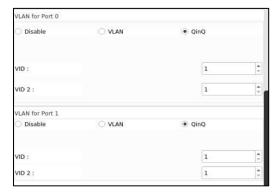



Figure 6.7. VLAN Options

Figure 6.8. QinQ Options

6.2.5. ARP Settings

A few default ARP entries are added during the installation process. To use different IP and MAC addresses, the user can manually add the IP and MAC addresses in the ARP Entries section.

- Select Network: Network type IPv4 or IPv6.
- IP: IP address
- MAC: MAC address
- Add ARP
- ARP Table

Figure 6.9. ARP Entries for IPv4

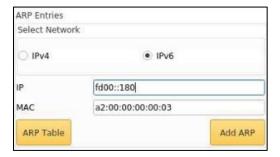


Figure 6.10. ARP Entries for IPv6

ARP is used only for unicast message transmission and supports only IPv4 and IPv6.

If using a tester, the tester's IP and MAC addresses must be entered manually in all the machines (nodes).

6.3. Dashboard

In the *Dashboard* interface, the data generated by the PTP engine can be viewed in tabular form. If the PTP engine is running, the table is updated at an interval of 1 sec.

- Load File: Loads any previous data
- Time Error PHC: If the PHC clock is running, the data is displayed in this section.
- Stop: Stops the PTP engine
- Save Data: Saves the data

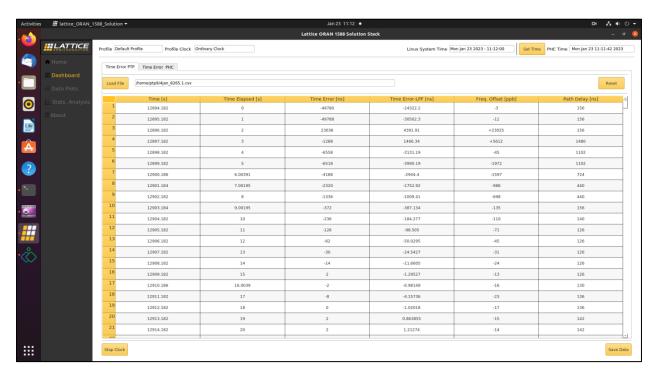


Figure 6.11. Dashboard Table

6.4. Data Plots

In the *Data Plots* interface, the *Time Error Vs Time Elapsed* graph is plotted using the data from the dashboard table. Enter the required range using the *Start/End* fields and click *Set Range*.

Click Calculate to show Max |TE| and CTE for the selected range.

Click MTIE Plot and TDEV Plot to plot graphs for the selected range.

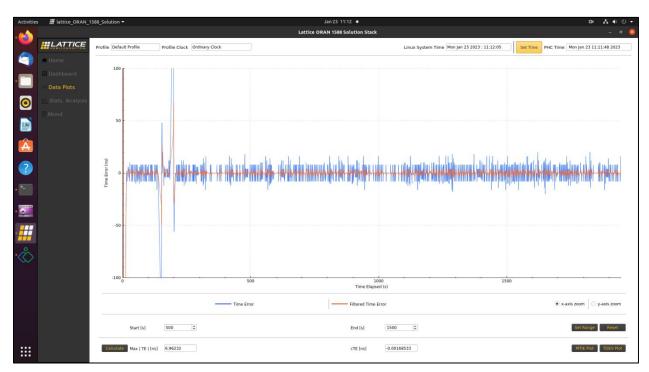


Figure 6.12. Data Plots

6.5. Stats. Analysis

The Stats. Analysis interface features four statistical plots:

- Time Error/Freq. Offset/Path Delay
- Histogram
- PDF of Histogram and PDF of Normal Distribution
- CDF of Histogram and CDF of Normal Distribution

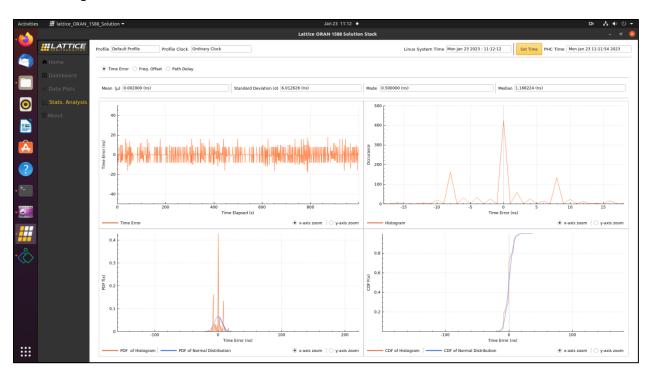


Figure 6.13. Statistical Analysis Plots

6.6. Status and Configuration Settings

The status and configuration settings are read back from the FPGA and displayed in the rightmost section of the *Home* interface.

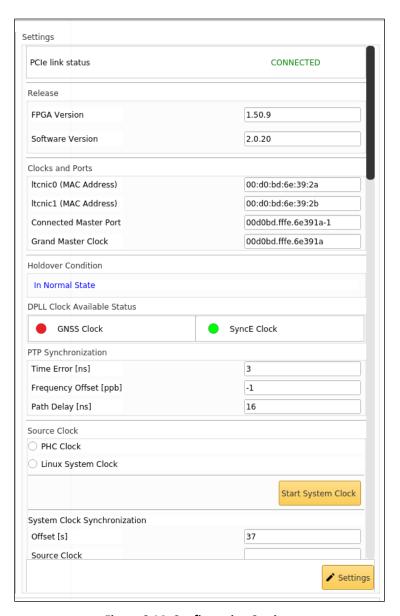


Figure 6.14. Configuration Settings

6.6.1. Configuration Settings

- PCIe link status: Shows the link status between the DUT and the Linux system.
- Release: Displays the FPGA Version and the Software Version.
- Clocks and Ports: Displays the MAC Address of both the ports. If the PTP engine is running, the Connected Master Port and Grand Master Clock identities are also displayed.

Figure 6.15. Clocks and Ports

• PTP Synchronization: If the PTP engine is running, this section shows the Time-Error, Frequency-Offset, and Path Delay data.

Figure 6.16. PTP Synchronization

- Source Clock: This section provides the option to synchronize the Linux system clock with the PHC (running in FPGA).
 Source Clock indicates the clock with which the other clock is synchronized.
- In the case of Grand Master with GNSS as clock source, the Linux system has the GNSS time. So, the Source clock should be Linux system clock. The PHC keeps synchronizing itself with the *Linux System Clock*.
- In the case of T-BC or T-TSC, the PHC should be the source clock. Linux System Clock keeps synchronizing itself with PHC.
- Clicking the *Start System Clock* starts the synchronization.
- The synchronization parameters for these clocks are displayed in the system clock synchronization section.
- System Clock Synchronization: This section shows the parameters for the PHC Linux system clock synchronization. These are *Time Error*, *Frequency Offset*, and *Path Delay*.

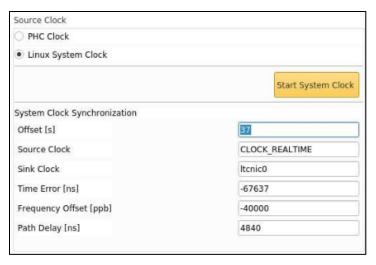


Figure 6.17. System Clock Synchronization

 Port Statistics: This section displays the number of received and transmitted packets of both the PTP and non-PTP traffic. A PTP node has two 10 G ports. PTP and non-PTP traffic at these ports in both RX and TX directions are displayed.

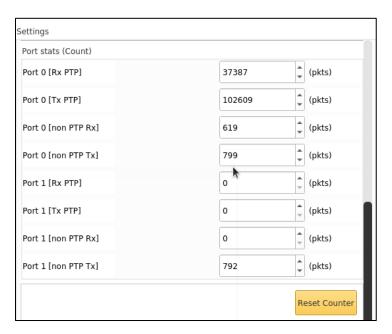


Figure 6.18. Port Statistics

• Port Stats (Rate): This section shows the rate at which the packets of both the PTP and non-PTP traffic are received and transmitted.

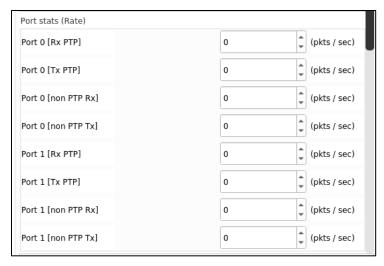


Figure 6.19. Port Stats (Rate)

• Clock Type: Displays the clock type configuration. Whether the clock is set to **One Step or Two Step**.

Figure 6.20. Clock Type

Message Transmission: Displays the network layer used for the PTP transmission. Supports L2, IPv4, IPv6.

Figure 6.21. Message Transmission

• TC Type: Displays the configuration setting if the PTP node is set as a TC, E2E TC, P2P TC, or Not set as TC.

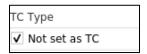


Figure 6.22. TC Type

6.6.2. Advanced Configuration Settings

There are a few advanced configuration settings that can be applied for the PTP node. These can be directly configured using the user interface in run time.

- Port Delay and 1pps Compensation
- DPLL Clock Source Selection
- GNSS Settings
- Traffic selection MUX

To edit these fields, click the *Edit* button, make the necessary modifications, and then click the *Update* button to apply the changes.

- Delay Compensation:
 - Egress to compensate the Egress delay for the port.
 - Ingress to compensate the Ingress delay for the port.
 - *pps* to compensate phase error of the pps output w.r.t ToD.

To accurately synchronize the slave clock to the Grand Master, the clocks must be compensated with appropriate path delays. The Egress and Ingress delays are added to the total path delay. When compensated, these delays are excluded from the path delay. Then, the cable delay becomes the path delay and the same is displayed in the user interface. Upon changing the *pps* value, the clock's phase is change. The user interface shows the default values set for the PTP node. The user can edit these values if required.

Figure 6.23. Delay Compensation

• GNSS: For Grand Master application, GNSS can be used as the time reference. A GNSS module is present on the FMC board. This GNSS can be started or stopped using the enable /disable radio buttons.

Figure 6.24. GNSS Settings

- DPLL Clock: DPLL is used for jitter attenuation of the SyncE recovered clock. It provides the necessary clocks for the ToD counter and 10 G Ethernet. The clock source can be selected based on the user requirement.
- Clock Priority order is set to GNSS >> SyncE >> OCXO
 There are four input clock sources.
 - Stratum 3E Ovenized Crystal Oscillator (OCXO): An onboard OCXO with 10MHz output can be set as the input clock for the DPLL. OCXO provides a stable clock and is primarily used for Grand Master Clock or Holdover scenario.

 Note: The default DPLL input clock source is OCXO.
 - SyncE Port 0: For ITU-T G.8275.1 profile, SyncE is used as frequency assist. To provide SyncE support, clock is recovered from the upstream port and provided to the downstream port. The recovered clock is fed to the DPLL for jitter attenuation. The selection of upstream and downstream ports is up to the user. The recovered clocks from both the ports are connected to the DPLL. When SyncE Port 0 is set as the clock source, the recovered clock from Port 0 is considered as the input for DPLL to generate the required output clocks.

Note: When the user selects *ITU-T G.8275.1*, SyncE is manually set depending upon the upstream/downstream port configuration.

- SyncE Port 1: When SyncE Port 1 is set as the clock source, the recovered clock from Port 1 is considered as the input for DPLL to generate the required output clocks.
- GNSS: GNSS also provides 8 KHz-10 MHz clock on its TimePulse output. This clock can be set as the input clock to
 DPLL to generate the required output clocks. In Grand Master Clock scenario, this clock can be used as the
 reference clock to generate the required output clocks. To configure the TimePulse clock output, detailed steps are
 provided in the GNSS section.

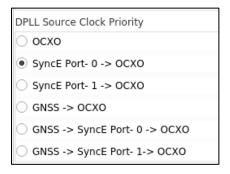


Figure 6.25. DPLL Clock Source

Table 6.1. Clock Source Description

Clock Source Options	Clock Source Description
ОСХО	GNSS clock and SyncE clock are disabled in FPGA logic. DPLL locks to OCXO
SyncE Port0 >> OCXO	GNSS clock is disabled DPLL locks to SyncE recovered clock (from Port 0) If SyncE is lost, DPLL falls back to OCXO
SyncE Port1 >> OCXO	GNSS clock is disabled DPLL locks to SyncE recovered clock (from Port 1) If SyncE is lost, DPLL falls back to OCXO
GNSS >> SyncE Port0 >> OCXO	DPLL locks to GNSS clock (8 MHz) SyncE recovered clock (from Port 0) and OCXO are available for fall back If GNSS clock is lost, SyncE will be the fallback option If SyncE is also lost, DPLL locks to OCXO reference
GNSS >> SyncE Port1 >> OCXO	DPLL locks to GNSS clock (8 MHz) SyncE recovered clock (from Port 1) and OCXO are available for fall back If GNSS clock is lost, SyncE will be the fallback option If SyncE is also lost, DPLL locks to OCXO reference
GNSS >> OCXO	DPLL locks to GNSS clock (8 MHz) If GNSS is lost, DPLL locks to OCXO

46

• When the clock moves from *Normal State* to *Holdover State* due to loss of PTP, it is displayed in the user interface, as shown in Figure 6.26 and Figure 6.27.

Figure 6.26. Holdover Status Indicator - Normal State

Figure 6.27. Holdover Status Indicator – Holdover State

- The clock source to which DPLL is locked is displayed in the user interface, as shown in Figure 6.28.
- When GNSS and SyncE are lost, OCXO is always the fallback option.
- This indication also serves the Alarm requirement on clock switchover during noise tolerance tests.

Figure 6.28. DPLL Clock Alarm

- Traffic at Port: To mix the PTP and non-PTP traffic in the transmit direction, a traffic mixer block is provided that can mix non-PTP traffic with the PTP traffic. The non-PTP traffic can be routed from Port 0 or Port 1 or User Logic. The mixer block helps emulate network scenarios where PTP and non-PTP traffic coexist.
 - The PTP traffic always exists in the transmit path. To add non-PTP traffic, the options below are provided for each of the ports.
 - PTP traffic (PCIe): To transmit only PTP traffic received on the PCIe port.
 - PTP traffic (PCIe) + Port (0) non-PTP traffic: To add non-PTP traffic received on Port (0) to the PTP traffic.
 - PTP traffic (PCIe) + Port (1) non-PTP traffic: To add non-PTP traffic received on Port (1) to the PTP traffic.
 - PTP traffic (PCle) + User traffic: To add the non-PTP traffic from the User logic to the PTP traffic.

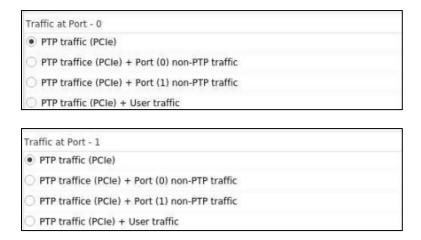


Figure 6.29. Traffic Settings for Port 0 and Port 1

7. GNSS

7.1. GNSS Configurations (Read/Write)

The GNNS module in the 1588PTP Daughter Board is LEA-M8T from u-blox. It is a GNSS positioning module featuring the high-performance u-blox M8 positioning engine and easy to integrate and combine exceptional positioning performance with highly flexible power, design, and connectivity options.

For setting up the GM clock, GNSS can be used as the source of clock and UTC time. GNSS module can be configured using the u-center application provided by u-blox. The configuration can be loaded into the non-volatile memory. These are auto loaded after every power cycle.

The u-center can be used to create configuration file of a u-blox GNSS positioning module and store it as an ASCII text file containing hexadecimal records. Such a file can be loaded to or retrieved from the u-blox GNSS module.

In u-center Tools menu, select GNSS configuration to open the GNSS configuration dialog box.

The following functions are available:

- Specify the name of a new configuration file to store current configuration from the u-blox GNSS module.
- Specify the name of an existing configuration file and load this configuration into the u-blox GNSS module.
- A flag can be set to force storing the configuration into a battery-backed RAM (BBR) or flash, applicable for u-blox 5 to u-blox 8/M8 only.

7.2. Reading/Writing Configuration Files

To read and write configuration files:

1. Connect the PTP hardware to a PC running the u-center application.

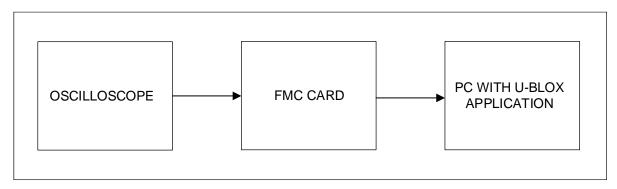


Figure 7.1. GNSS Configuration Setup

- 2. Power ON the 1588PTP Mother Board using either an external 12V adapter or PCle cable. The 1588PTP Daughter Board can be powered from 1588PTP Mother Board through the FMC connector by toggling the power selection switch J5.
- 3. Connect the 1588PTP Daughter Board to the PC through USB Type-A to Type B mini-Cable at port J2.

4. In the u-center application, select **Receiver > Connection** and the appropriate COM port to access the GNSS module.

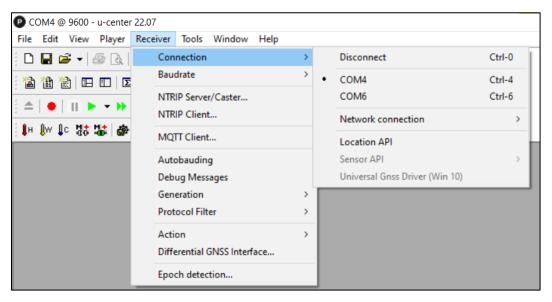


Figure 7.2. COM Port Selection

5. Select Tools > Receiver Configuration.

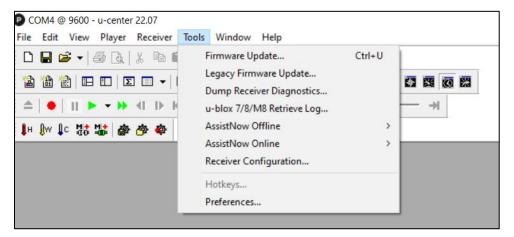


Figure 7.3. Tools Selection

The Load/Save Receiver Configuration GNSS configuration dialog box opens.

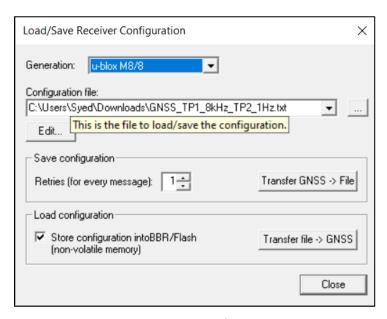


Figure 7.4. GNSS Configurations

6. In Generation, select u-blox M8/8.

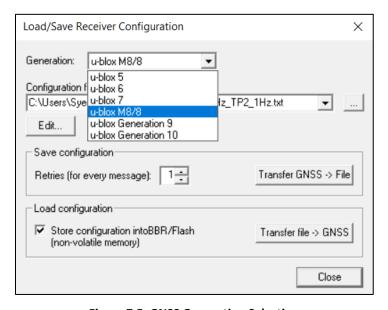


Figure 7.5. GNSS Generation Selection

7. In **Configuration file**, load the GNSS configuration file from the right path.

Figure 7.6. GNSS Configuration File Path

Note: Make sure to reset the GNSS in the hardware.

8. Click Transfer file-> GNSS.

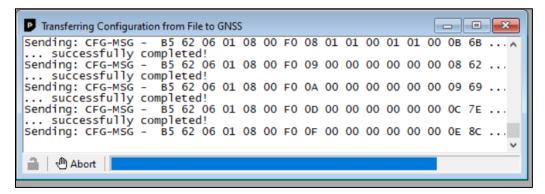


Figure 7.7. File Transfer Status

Note: Make sure to check the configuration version details.

- 9. Once the configuration file is uploaded, a Successfully Completed message is displayed and GNSS configuration window automatically closes.
- 10. To read an existing configuration file, select the name of the file, and click the **Transfer file > GNSS** button. The GNSS configuration window closes. The progress window shows the status of the operation and the closes after a successful transfer.
- 11. To write a new configuration file, click **Transfer GNSS > File**. The GNSS configuration window closes. The progress window shows the configurations being pulled and stored into a local file in ASCII format.
- 12. Select the **Store configuration into BBR/Flash** checkbox if the parameters need to be stored into the device's non-volatile memory (BBR/Flash). This option is applicable for u-blox 5 to u- blox 8/M8 generation receivers.

The user can abort the transfer by clicking the **Abort** button. It is not possible to close the window unless the transfer is completed or aborted.

It is not recommended to read/write configuration while the u-blox GNSS device is in sleep mode.

8. Secure IEEE 1588 PTP

The Lattice ORAN solution stack implements added security based on the integrated security processing conformant to Section 16.14.1 in IEEE 1588-2019. The security feature provides source authentication, message integrity, and replay attack protection for PTP messages. Security implements an authentication TLV which contains an Integrity Check Value (ICV). The ICV can be used to authenticate the PTP message sender on the fly. ICV implements HMAC-SHA256-128 algorithm. In this algorithm, the output is truncated to 128 bits. The key size is the size of hash value produced by SHA-256 (256 bits).

Secure IEEE 1588 PTP performs the following:

- Generates Authentication TLV (Type Length Value) that carries the information required for cryptographic verification.
- Generates and verifies ICV.
- ICV is computed as HMAC-SHA256 truncated to 128 bits.
- Supports two-step clocks. (One-step clock is not supported).

Note: Works only when secure PTP is enabled at all the nodes.

9. IEEE 1588 PTP Node Setup Example

9.1. IEEE 1588 Default Profile

9.1.1. Profile Overview

This standard defines the PTP protocol that provides precise synchronization of clocks in packet-based networked systems. The Precision Time Protocol (PTP) generates a master—slave relationship among the PTP Instances in the system. The clocks in all PTP Instances ultimately derive their time from a clock known as the *Grand Master Clock*.

The standard allows multicast communication, unicast communication, or both. The standard specifies requirements for mapping the protocol to specific network implementations and defines such mappings, including User Datagram Protocol (UDP)/Internet Protocol (IP versions 4 and 6), and layer-2 IEEE 802.3 Ethernet.

9.1.2. Setup Objective

To demonstrate time synchronization between four PTP nodes: GM (Grand Master), BC (Boundary Clock), TC (Transparent Clock), and OC (Ordinary Clock). All the clocks are configured as two-step clocks.

9.1.3. Setup

The setup has four PTP nodes connected as shown in Figure 9.1.

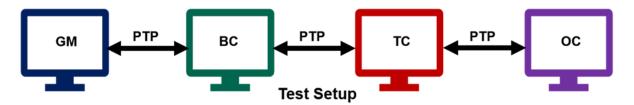


Figure 9.1. PTP Setup for IEEE 1588 Default Profile

To perform time synchronization between four PTP nodes:

- 1. Open the Lattice ORAN 1588 solution application.
- 2. In Configurations Settings, under Profile, select Default Profile.

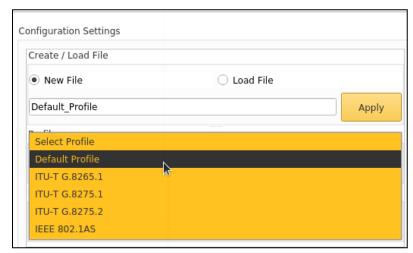


Figure 9.2. Profile Selection

3. Under Profile Clock, select any option (Ordinary Clock, Boundary Clock, Grand Master Clock, or Transparent Clock).

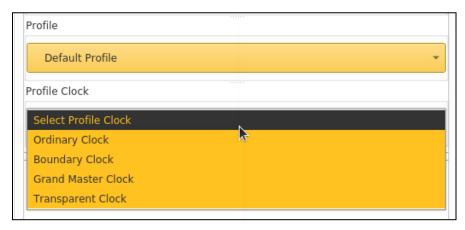


Figure 9.3. Profile Clock Selection

4. Select the IEEE 1588 Clock.

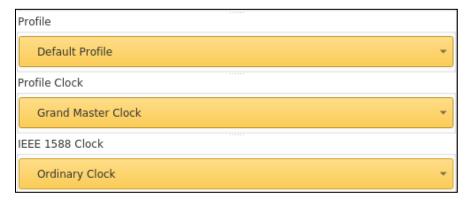


Figure 9.4. IEEE 1588 Clock Selection

5. Run the PTP4L process by clicking on the **Run** button.

9.1.4. Profile Settings

The profile settings are provided in this section.

Table 9.1. Grand Master Clock (GM) Setting

Parameter	Value	Comments
[global]	_	_
verbose	0	Print messages to the standard output if enabled. The default is 0 (disabled)
time_stamping	hardware	Hardware timestamping
clock_type	OC	Clock type as per 1588 standard
twoStepFlag	0	1-step clock enabled
domainNumber	0	Domain Number of the clock
serverOnly	1	PTP Node set to packet master
network_transport	UDPv4	Message transmission type is UDP
logSyncInterval	0	Sync interval of 2 ⁻⁰ i.e. 1 sync message per second
logMinDelayReqInterval	0	Minimum value of Delay request interval = 2^{-0} i.e. 1 delay request per second
logAnnounceInterval	1	Announce interval of 2 ⁻¹ i.e. 1 Announce message every 2 seconds
[ltcnic0]	_	_
delay_mechanism	E2E	Select the delay mechanism. Possible values are E2E, P2P and Auto. The default is E2E

Table 9.2. Ordinary Clock (OC) Setting

Parameter	Value	Comments
[global]	_	-
verbose	0	Print messages to the standard output if enabled. The default is 0 (disabled)
time_stamping	Hardware	Hardware timestamping
clock_type	OC	Clock type as per 1588 standard
twoStepFlag	0	1-step clock enabled
clockClass	255	The OC which can only become slave with clockClass equal to 255
domainNumber	0	Domain number of the clock
network_transport	UDPv4	Message transmission type is UDP
logSyncInterval	0	Sync interval of 2 ⁻⁰ i.e. 1 sync message per second
logMinDelayReqInterval	0	Minimum value of Delay request interval = 2 ⁻⁰ i.e. 1 delay request per second
logAnnounceInterval	1	Announce interval of 2 ⁻¹ i.e. 1 Announce message every 2 seconds
[ltcni0]	_	_
delay_mechanism	E2E	Select the delay mechanism. Possible values are E2E, P2P and Auto. The default is E2E

Table 9.3. Boundary Clock (BC) Setting

Parameter	Value	Comments
[global]	_	-
verbose	0	Print messages to the standard output if enabled. The default is 0 (disabled)
time_stamping	hardware	Hardware timestamping
clock_type	BC	Clock type as per 1588 standard
twoStepFlag	1	1-step clock enabled
domainNumber	0	Domain Number of the clock
logSyncInterval	0	Sync interval of 2 ⁻⁰ i.e. 1 sync message per second
logAnnounceInterval	1	Announce interval of 2 ⁻¹ i.e. 1 Announce message every 2 seconds
logMinDelayReqInterval	0	Minimum value of Delay request interval = 2 ⁻⁰ i.e. 1 delay request per second
network_transport	UDPv4	Message transmission type is UDP
[ltcnic0]	_	-
boundary_clock_jbod	1	Just a bunch of devices. The PTP node takes this node and synchronizes the PHC clock, if it is a slave.
delay_mechanism	E2E	Select the delay mechanism. Possible values are E2E, P2P and Auto. The default is E2E.
[ltcnic1]	_	_
boundary_clock_jbod	1	Just a bunch of devices. The PTP node takes this node and synchronizes the PHC clock, if it is a slave.
delay_mechanism	E2E	Select the delay mechanism. Possible values are E2E, P2P and Auto. The default is E2E.

Table 9.4. Transparent Clock (TC) Setting

Parameter	Value	Comments
[global]	_	-
verbose	0	Print messages to the standard output if enabled. The default is 0 (disabled)
time_stamping	hardware	Hardware timestamping
clock_type	E2E_TC	Clock type as per 1588 standard
twoStepFlag	0	1-step clock enabled
domainNumber	0	Domain Number of the clock
logAnnounceInterval	1	Announce interval of 2-1 i.e. 1 Announce message every 2 second
logSyncInterval	0	Sync interval of 2-0 i.e. 1 sync message per second
logMinDelayReqInterval	0	Minimum value of Delay request interval = 2-0 i.e. 1 delay request per second
free_running	1	The clock source of PHC is free running OCXO if it is the best master
network_transport	UDPv4	Message transmission type is UDP
[ltcnic0]	_	_
delay_mechanism	E2E	Select the delay mechanism. Possible values are E2E, P2P and Auto. The default is E2E
[ltcnic1]	_	-
delay_mechanism	E2E	Select the delay mechanism. Possible values are E2E, P2P and Auto. The default is E2E

9.1.5. Wireshark Snapshot

Wireshark snapshots are shown below Sync message, Follow-up and Delay-Resp message are shown below.

```
Ethernet II, Src: LatticeS_6e:39:eb (00:d0:bd:6e:39:eb), Dst: IPv4mcast_01:81 (01:00:5e:00:01:81)
  Internet Protocol Version 4, Src: 192.168.3.91, Dst: 224.0.1.129
 User Datagram Protocol, Src Port: 319, Dst Port: 319
Precision Time Protocol (IEEE1588)
  ▶ 0000 .... = transportSpecific: 0x0
.... 0000 = messageId: Sync Message (0x0)
    0000 .... = Reserved: θ
     .... 0010 = versionPTP: 2
     messageLength: 44
     subdomainNumber: 0
     Reserved: 0
  ▶ flags: 0x0200
   correction: 0.000000 nanoseconds
     Reserved: 0

    ClockIdentity: 0x00d0bdfffe6e39ba

    SourcePortID: 2
     sequenceId: 761
     control: Sync Message (0)
     logMessagePeriod: 0
     originTimestamp (seconds): 0
     originTimestamp (nanoseconds): 0
                                                           . . ^ . . . . n9 · · · Е
     01 00 5e 00 01 81 00 d0 bd 6e 39 eb 08 00 45 00
0010 00 48 d9 30 40 00 01 11 fa ef c0 a8 03 5b e0 00
                                                          ·H · 0@ · · · · · [ · ·
                                                          ···? ? 4 [a···,··
9929 01 81 01 3f 01 3f 00 34
                               5b 61 00 02 00 2c 00 00
     02 00 00 00 00 00 00 00
                               90 90 90 90 90 90 d0
                                                          ...n9....
0048
     bd ff fe 6e 39 ba 00 02
                               02 f9 00 00 00 00 00 00
     00 00 00 00 00 00 ea 51
                               7e 72 00 00 00 00 00 00
                                                          ..... Q ~r.....
     00 00 00 00 00 00 00 00
                               00 00 00 00 00 00 00 00
     00 00 00 00 00 00 00 00
0070
                               00 00 00 00 00 00 00 00
     00 00 00 00 00 00 00 00
                               00 00 00 00 00 00 00 00
     00 00 00 00 00 00 00
                               99 99 99 99 99 99 99
     00 00 00 00 00 00 00
                               99 99 99 99 99 99 99
     00 00 00 00 00 00 00 00
                               80 80 80 80 80 80 80 80
99c8
     00 00 00 00 00 00 00 00
                               89 99 99 99 99 99 99
9b99
     00 00 00 00 00 00 00 00
                               00 00 00 00 00 00 00 00
88e9 00 00 00 00 00 00 00 00
                               00 00 00 00 00 00 00
00f0 00 00 00 00 00 00 00 00
```

Figure 9.5. Sync Message in IEEE 1588 Default Profile


```
subdomainNumber: 0
     Reserved: 0
     flags: 0x0000
        0.... False
        .0.. .... = PTP profile Specific 2: False
        .... ..0. .... = PTP_TW0_STEP: False
        .....0 .... = PTP_ALTERNATE_MASTER: False
.....0. = FREQUENCY_TRACEABLE: False
        .....0 ... = TIME_TRACEABLE: False
.....0 ... = PTP_TIMESCALE: False
.....0 ... = PTP_UTC_REASONABLE: False
        .... ... ... ... ... 9. = PTP_LI_59: False
.... ... ... 0 = PTP_LI_61: False
    correction: 273320.000000 nanoseconds
     Reserved: 0
     ClockIdentity: 0x00d0bdfffe6e39ba
SourcePortID: 2
     sequenceId: 761
     control: Follow_Up Message (2)
     logMessagePeriod: 0
     preciseOriginTimestamp (seconds): 16681 7953
preciseOriginTimestamp (nanoseconds): 622035328
      01 00 5e 00 01 81 00 d0 bd 6e 39 eb 08 00 45 00
      00 48 d9 31 49 00 01 11
                                fa ee c0 a8 03 5b e0 00
                                                             H-10 · · · · · [ · ·
      01 81 01 40 01 40 00 34
                                0f 34 08 02 00 2c 00 00
                                                            ...0.0.4 .4..., ..
                                                            .....+. .......
                                88 88 88 88 88 88 88 88 88
      00 00 00 00 00 04 2b a8
9949
      bd ff fe 6e 39 ba 00 02
                                02 f9 02 00 00 00 63 6e
                                                            ...n9... ....
          70 25 13 81 80 4e 66
                                d9 29 00 00 00 00 00 00
                                                            %---Nf ·)-
      00 00 00 00 00 00 00 00
                                00 00 00 00 00 00 00 00
      00 00 00 00 00 00 00 00
9979
                                00 00 00 00 00 00 00 00
      00 00 00 00 00 00 00 00
                                88 88 88 88 88 88 88 88
      00 00 00 00 00 00 00
                                88 88 88 88 88 88 88 88
00a0
      00 00 00 00 00 00 00 00
                                00 00 00 00 00 00 00 00
0000
      00 00 00 00 00 00 00 00
                                00 00 00 00 00 00 00 00
      00 00 00 00 00 00 00 00
                                00 00 00 00 00 00 00 00
      00 00 00 00 00 00 00
                                99 99 99 99 99 99 99
      00 00 00 00 00 00 00 00
                                00 00 00 00 00 00 00 00
99f0
      00 00 00 00 00 00 00 00
```

Figure 9.6. Follow Up Message in IEEE 1588 Default Profile


```
subdomainNumber: 0
    Reserved: 0
    flags: 0x0000
      0... ---- = PTP_SECURITY: False
      .0.. .... = PTP profile Specific 2: False
      .... ..0. .... = PTP_TW0_STEP: False
      .....0 .... = PTP_ALTERNATE_MASTER: False
.....0. = FREQUENCY_TRACEABLE: False
      .....0 ... = TIME_TRACEABLE: False
.... 0... = PTP_TIMESCALE: False
       .... .... .0.. = PTP_UTC_REASONABLE: False
   Reserved: 0
   ClockIdentity: 0x00d0bdfffe6e39da
    SourcePortID: 1
    sequenceId: 404
    control: Delay_Req Message (1)
    logMessagePeriod: 127
    originTimestamp (seconds): 0
    originTimestamp (nanoseconds): 0
    01 00 5e 00 01 81 00 d0 bd 6e 39 da 08 00 45 00
                                                 . . ∧ . . . . . n9 · · · E
0010
    00 48 bc 32 40 00 01 11 17 f9 c0 a8 03 50 e0 00
                                                 H-20 --- P--
    01 81 01 3f 01 3f 00 34
                          a5 bf 01 02 00 2c 00 00
                                                 ...?.?.4 .....
9838
    bd ff fe 6e 39 da 00 01 01 94 01 7f 00 00 00 00
                                                ...n9....
    00 00 00 00 00 00
```

Figure 9.7. Delay-Req Message

Table 9.5 shows a summary of all the required power supplies.

Table 9.5. CertusPro-NX FPGA Power Supplies

Supply	Voltage (Nominal Value ²)	Description
V _{CC}	1.2 V	FPGA core power supply
V _{CCGPLL}	1.2 V	General Purpose PLL Supply Voltage. Should be isolated from excessive noise.
V _{CCAUX25VPP}	2.5 V	Auxiliary Supply Voltage for Bank 1, 2 and NVCM programming.
V _{CCIO[2, 1, 0]}	1.2 V to 3.3 V	I/O Driver Supply Voltage for Bank 0, 1, or 2. Each bank has its own V_{CCIO} supply: V_{CCIO0} is used in conjunction with pins dedicated and shared with device configuration.
V _{CC_DPHYx} ¹	1.2 V	Digital Supply Voltage for D-PHY. Should be isolated from excessive noise.
V _{CCA_DPHYx} ¹	1.2 V	Analog Supply Voltage for D-PHY. Should be isolated and from excessive noise.
V _{CCPLL_DPHYx} ¹	1.2 V	PLL Supply voltage for D-PHY. Should be isolated and <i>clean</i> from excessive noise.
V _{CCMU_DPHYx} ¹	1.2 V	V_{CC_DPHY1} , V_{CCA_DPHY1} and V_{CCPLL_DPHY1} ganged together in the WLCSP36 package. Should be isolated from excessive noise.

Notes:

- 1. X denotes bank number.
- 2. Refer to CertusPro-NX Family Data Sheet (FPGA-DS-02086) for recommended minimum and maximum values.

References

- IEEE Std 1588-2019, "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems"
- ITU-T G.8265.1, "Precision time protocol telecom profile for frequency synchronization", June 2021
- ITU-T G.8275.1, "Precision time protocol telecom profile for phase/time synchronization with full timing support from the network", March 2020
- ITU-T G.8275.2, "Precision time protocol telecom profile for phase/time synchronization with partial timing support from the network", March 2020
- IEEE Std 802.1AS-2020. "Timing and Synchronization for Time-Sensitive Application"
- ITU-T G.8273, "Framework of phase and time clocks", March 2018
- ITU-T G.8273.2, "Timing characteristics of telecom boundary clocks and telecom time slave clocks for use with full timing support from the network", October 2020
- ITU-T G.8273.3, "Timing characteristics of telecom transparent clocks for use with full timing support from the network", October 2020
- ITU-T G.8273.4, "Timing characteristics of telecom boundary clocks and telecom time slave clocks for use with partial timing support from the network", March 2020
- ITU-T G.8262, "Timing characteristics of synchronous equipment slave clock", November 2018
- ITU-T G.8262.1, "Timing characteristics of enhanced synchronous equipment slave clock", November 2022
- Lattice ORAN web page
- Calnex Solutions, https://www.calnexsol.com/en/product-detail/1295-paragon-neo-4
- Lattice 5G ORAN Solution Stack 1.1: Secure IEEE 1588 Precision Timing Protocol (PTP) NDA Only, (FPGA-RD-02275).
- Bringing Security to 5G ORAN Deployments
- Lattice Insights for Lattice Semiconductor training courses and learning plans

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at https://www.latticesemi.com/Support/AnswerDatabase.

Revision History

Revision 1.1, August 2023

Section	Change Summary	
All	General update: Renamed boards to 1588PTP Mother Board and 1588PTP Daughter Board.	
Introduction	Renamed boards to 1588PTP Mother Board and 1588PTP Daughter Board.	
Hardware and Software Requirements	 Renamed boards to 1588PTP Mother Board and 1588PTP Daughter Board. Removed Kernel 5.10.154 (custom Build) Deb package from Software Requirements subsection. 	
Hardware Features and Setup	 Renamed boards to 1588PTP Mother Board and 1588PTP Daughter Board. Updated feature to 2× SerDes channels extended to BOARD TO BOARD connector. Updated Table 3.17. Clock Sources. Modified the details for 161.1328 MHz and 161.1328 MHz clock frequencies. Modified footnote 1. 	
Installing the Software	Modified the procedure for installing the application to the host machine.	
IEEE 1588 PTP Solution Stack Application User Interface	 Added information on clearing all input fields or previous configurations and setting up a new configuration. Updated Figure 6.5. Edit and Stop Buttons. Updated Figure 6.14. Configuration Settings. Update the Advanced Configuration Settings subsection. Added bullet item Clock Priority order is set to GNSS >> SyncE >> OCXO. Updated Figure 6.25. DPLL Clock Source. Added Table 6.1. Clock Source Description. Added information on clock holdover state and DPLL clock. Added Figure 6.26. Holdover Status Indicator - Normal State; Figure 6.27. Holdover Status Indicator - Holdover Status; and Figure 6.28. DPLL Clock Alarm. 	
GNSS	Renamed boards to 1588PTP Mother Board and 1588PTP Daughter Board.	
References	Removed FPGA Design and Implementation of Secure IEEE 1588 Precision Timing Protocol for ORAN and 5G New Radio Applications and added Lattice Insights.	

Revision 1.0, June 2023

Section	Change Summary
All	Initial release.

www.latticesemi.com