
Automate Stack 3.0

Reference Design

FPGA-RD-02267-1.0

March 2023

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 2

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not
rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the
Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in
conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a situation where personal injury,
death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice
reserves the right to make any changes to the information in this document or to any products at any time without notice.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 3

Contents
Acronyms in This Document ... 12
1. Introduction .. 13

1.1. Components .. 14
2. Design Overview ... 15

2.1. Theory of Operation .. 15
2.2. FPGA Design .. 16

2.2.1. Main System ... 16
2.2.2. Node System ... 20

2.3. Ether Control IP ... 22
2.3.1. Features .. 23
2.3.2. EtherControl Main .. 24
2.3.3. Register Description ... 25
2.3.4. EtherControl Node .. 43

2.4. FIFO DMA .. 45
2.5. SGMII TSE MAC Wrapper .. 46
2.6. UDP Stack .. 49
2.7. 2.7 Multiport Extension ... 52
2.8. LPDDR4 Controller ... 55
2.9. SPI Flash Controller (QSPI Streamer) ... 56
2.10. CNN Co-Processor Unit (CCU).. 56
2.11. Motor Control and PDM Data Collector .. 58
2.12. SPI Manager IP Design Details ... 66

2.12.1. Overview ... 66
2.12.2. SPI Manager Register Map ... 68
2.12.3. Programming Flow ... 68

2.13. I2C Manager IP Design Details ... 69
2.13.1. Overview ... 70
2.13.2. I2C Manager Register Map .. 70
2.13.3. Programming Flow ... 71

2.14. UART IP Design Details .. 72
2.14.1. Overview ... 73
2.14.2. Programming Flow ... 74

3. Resource Utilization .. 76
4. Software APIs .. 77

4.1. Main System APIs .. 77
4.1.1. Tasks of the Main System ... 77
4.1.2. OPCUA PubSub : ... 79
4.1.3. Create_UADP_NetworkMessage: ... 79
4.1.3.1. NetworkMessage Header: .. 79
4.1.4. GroupHeader: ... 80
4.1.5. Extended NetworkMessage Header: .. 81

4.2. Node System APIs .. 83
4.2.1. Tasks of the Node System .. 83
4.2.2. Key Functions ... 83

5. Communications ... 86
5.1. Communication between Host and Main System ... 86

5.1.1. Messages from Host to Main System ... 86
5.1.2. Messages from Main System to Host ... 86

5.2. Communication between Main System and Node System(s) ... 86
5.2.1. Messages from Main System to Node System ... 86
5.2.2. Messages from Node System to Main System ... 86

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 4

Appendix A: Predictive Maintenance with TensorFlow Lite ... 88
A.1 Introduction ... 88
A.1. Setting Up the Linux Environment for Neural Network Training .. 89

A.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU 89
A.1.2. Setting Up the Environment for Training and Model Freezing Scripts ... 91
A.1.3. Installing the TensorFlow version 1.15 ... 92
A.1.4. Installing the Python Package ... 93

A.2. Creating the TensorFlow Lite Conversion Environment .. 94
A.3. Preparing the Dataset ... 94

A.3.1. Dataset Information ... 95
A.4. Preparing the Training Code .. 95

A.4.1. Training Code Structure .. 95
A.4.2. Generating tfrecords from Augmented Dataset .. 96
A.4.3 Neural Network Architecture ... 96
A.4.4. Training Code Overview ... 98
A.4.5. Training from Scratch and/or Transfer Learning .. 105

A.5. Creating Frozen File ... 108
A.5.1. Generating .pbtxt File for Inference ... 108
A.5.2. Generating the Frozen (.pb) File ... 108

A.6. TensorFlow Lite Conversion and Evaluation ... 109
A.6.1. Converting Frozen Model to TensorFlow Lite .. 109
A.6.2. Evaluating TensorFlow Lite model .. 110
A.6.3. Converting TensorFlow Lite To C-Array .. 110

Appendix B: Setting up the Wireshark tool .. 111
Appendix C: Automate Stack 3.0 Bitfile and Binary Generation ... 113

C.1 Steps for Bit File Generation ... 113
C.1.1 MAIN SYSTEM ... 113
C.1.2 NODE SYSTEM ... 118

C.2 Steps for Binary Generation .. 124
C.2.1 Main System ... 124
C.2.2 Node system ... 129

Technical Support Assistance ... 133
Revision History .. 134

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 5

Figures
Figure 1.1. Top Level Block Diagram of Automate Stack 3.0 ... 14
Figure 2.1. Automate Stack 3.0 Architecture ... 15
Figure 2.2. Main System Architecture ... 17
Figure 2.3. System Level User Flow ... 18
Figure 2.4. Node System Architecture ... 21
Figure 2.5. Ether Control Block Diagram .. 22
Figure 2.6. EtherControl Main Block Diagram ... 24
Figure 2.7. EtherControl Node ... 43
Figure 2.8. Top-Level Block Diagram of TSE_MAC IP (SGMII Easy Connect) .. 47
Figure 2.9: UDP Stack Top Level Architecture.. 49
Figure 2.10:Architecture of Multiport IP ... 53
Figure 2.11. Register Map of Multiport extension IP ... 53
Figure 2.12. Motor Controller Interface with Motor ... 58
Figure 2.13. SPI Manager IP Core Block Diagram ... 67
Figure 2.14. I2C Manager IP Core Functional Diagram ... 70
Figure 2.15. UART IP Core Functional Block Diagram .. 73
Figure 2.16. UART Data Format ... 75
Figure 4.1: UADP Version ... 80
Figure 4.2: UADP Message packet header ... 80
Figure 4.3: Create_UADP_NetworkMessage ... 81
Figure 4.4: UADP Network message format .. 82
Figure 5.1: Data flow from Host to Node system via Main system ... 87

Figure A.1. Clark Equation and the plot ... 88
Figure A.2. PDM Data Collected from a broken motor .. 88
Figure A.3. PDM Data Collected from broken motor ... 89
Figure A.4. Download CUDA Repo ... 89
Figure A.5. Install CUDA Repo .. 89
Figure A.6. Fetch Keys .. 89
Figure A.7. Update Ubuntu Packages Repositories ... 90
Figure A.8. CUDA Installation ... 90
Figure A.9. cuDNN Library Installation ... 90
Figure A.10. Anaconda Installation .. 91
Figure A.11. Accept License Terms .. 91
Figure A.12. Confirm/Edit Installation Location ... 91
Figure A.13. Launch/Initialize Anaconda Environment on Installation Completion .. 91
Figure A.14. Anaconda Environment Activation .. 92
Figure A.15. TensorFlow Installation ... 92
Figure A.16. TensorFlow Installation Confirmation ... 92
Figure A.17. TensorFlow Installation Completion .. 92
Figure A.18. Easydict Installation ... 93
Figure A.19. Joblib Installation ... 93
Figure A.20. Keras Installation ... 93
Figure A.21. OpenCV Installation ... 94
Figure A.22. Pillow Installation .. 94
Figure A.23. Predictive Maintenance Dataset ... 95
Figure A.24. Training Code Directory Structure ... 95
Figure A.25. Training Code Flow Diagram .. 98
Figure A.26. Code Snippet: Hyper Parameters .. 99
Figure A.27. Code Snippet: Build Input .. 99
Figure A.28. Code Snippet: Parse tfrecords ... 100

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 6

Figure A.29. Code Snippet: Convert Image to Gray Scale .. 100
Figure A.30. Code Snippet: Convert Image to Gray Scale .. 100
Figure A.31. Code Snippet: Create Queue ... 100
Figure A.32. Code Snippet: Add Queue Runners ... 101
Figure A.33. Code Snippet: Create Model .. 101
Figure A.34. Code Snippet: Fire Layer .. 101
Figure A.35. Code Snippet: Convolution Block .. 102
Figure A.36. Code Snippet: Feature Depth Array for Fire Layers ... 102
Figure A.37. Code Snippet: Forward Graph Fire Layers ... 103
Figure A.38. Code Snippet: Loss Function .. 103
Figure A.39. Code Snippet: Optimizers .. 103
Figure A.40. Code Snippet: Restore Checkpoints .. 104
Figure A.41. Code Snippet: Save .pbtxt .. 104
Figure A.42. Code Snippet: Training Loop .. 104
Figure A.43. Code Snippet: LearningRateSetterHook .. 105
Figure A.44. Code Snippet: Save Summary for Tensorboard ... 105
Figure A.45. Code Snippet: logging hook ... 105
Figure A.46. Predictive Maintenance – Run Script .. 105
Figure A.47. Predictive Maintenance – Trigger Training .. 106
Figure A.48. Predictive Maintenance – Trigger Training with Transfer Learning .. 106
Figure A.49. Predictive Maintenance – Training Logs .. 106
Figure A.50. Predictive Maintenance – Confusion Matrix ... 107
Figure A.51. TensorBoard – Launch ... 107
Figure A.52. TensorBoard – Link Default Output in Browser ... 107
Figure A.53. Checkpoint Storage Directory Structure .. 108
Figure A.54. Generated ‘.pbtxt’ for Inference ... 108
Figure A.55. Run genpb.py To Generate Inference .pb ... 109
Figure A.56. Frozen Inference .pb Output ... 109

Figure B.1. Downloadable link of Wireshark .. 111
Figure B.2. Wireshark tool: Ethernet selection .. 111
Figure B.3. Wireshark tool - write udp.port == 1486 ... 111
Figure B.4. Source and Destination udp packet ... 112
Figure B.5. Wireshark tool - first udp packet ... 112

Figure C.1. Lattice Radiant Device Selector for Main System .. 113
Figure C.2. Strategy for Build Generation for Main System ... 114
Figure C.3. MAP analysis setting for Main system bitfile generation .. 114
Figure C.4. PAR setting for Main system bitfile generation ... 115
Figure C.5. PAR Timing analysis setting for Main system bitfile generation .. 115
Figure C.6. Device Constraint Selection for Main System .. 116
Figure C.7. Device Constraint Selection for Main System .. 116
Figure C.8. Run All button .. 116
Figure C.9. system initialization file ... 117
Figure C.10. ISR RAM Initialization File .. 117
Figure C.11. Validate Button .. 118
Figure C.12. Generate SGE button ... 118
Figure C.13. Radiant tool button .. 118
Figure C.14. Run all button .. 118
Figure C.15. Lattice Radiant Device Selector for Node System .. 119
Figure C.16. Strategy for Build Generation for Node System .. 119
Figure C.17. MAP analysis setting for Node system bitfile generation .. 120

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 7

Figure C.18. PAR setting for Node system bitfile generation... 120
Figure C.19. PAR Timing analysis setting for Node system bitfile generation ... 121
Figure C.20. Device Constraint Selection for Node System ... 121
Figure C.21. Global Constraints for Node System .. 122
Figure C.22. Run All .. 122
Figure C.23. system0 initialization ... 123
Figure C.24. Validate Button .. 123
Figure C.25. Generate SGE button ... 123
Figure C.26. Radiant Tool Button ... 123
Figure C.27. Run All Button .. 124
Figure C.28. Propel 2022.1 application .. 124
Figure C.29. Select Directory .. 124
Figure C.30. Import Project .. 124
Figure C.31. Existing Project into Workspace .. 125
Figure C.32. Import Project .. 126
Figure C.33. Clean All Configurations ... 127
Figure C.34. Console .. 127
Figure C.35. Build All .. 128
Figure C.36. Completing Process ... 128
Figure C.37. Propel application .. 129
Figure C.38. Select Directory .. 129
Figure C.39. Import Project .. 129
Figure C.40. Existing Project into Workspace .. 130
Figure C.41. Select project ... 130
Figure C.42. Clean All Configurations ... 131
Figure C.43. Console .. 131
Figure C.44. Build All .. 132
Figure C.45. Completing Process ... 132

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 8

Tables
Table 2.1. Main System Memory Map ... 19
Table 2.2. Node System Memory Map .. 21
Table 2.3. Ether Control Interfaces .. 22
Table 2.4. EtherControl Main Global Register Map (RISC-V) ... 25
Table 2.5. EtherControl Main Local Chain 1 Register Map (RISC-V) .. 25
Table 2.6. EtherControl Main Local Chain 2 Register Map (RISC-V) .. 25
Table 2.7. DMA FIFO Enable/AXI4 Disable Register ... 26
Table 2.8. PHY Link Status Register .. 26
Table 2.9. Active Nodes Register ... 26
Table 2.10. FIFO Status Register for PDM Data ... 27
Table 2.11. Clear Interrupt Received Register ... 27
Table 2.12. Interrupt Polling Register .. 27
Table 2.13. Start Transaction in All Chains ... 27
Table 2.14. IP Busy Register ... 28
Table 2.15. AXI4_TOUT_R .. 28
Table 2.16. Chain 1 Start Transaction Register .. 28
Table 2.17. Chain 1 Packet Head Register ... 28
Table 2.18. Chain 1 Frame Number Register ... 28
Table 2.19. Chain 1 Number of Node Register .. 28
Table 2.20. Chain 1 Node Data Length Register .. 29
Table 2.21. Chain 1 Node Request Data Burst Register ... 29
Table 2.22. Chain 1 Node Request Type Register .. 29
Table 2.23: Chain 1 Node Address Register ... 29
Table 2.24. Chain 1 CRC Count Register ... 29
Table 2.25. Chain 1 Interrupt Info Register .. 30
Table 2.26. Chain 1 FIFO Status Register Request Data ... 30
Table 2.27. Chain 1 Node Motor Status Register ... 30
Table 2.28. Chain 1 Node Delay Register ... 31
Table 2.29. Chain 2 Start Transaction Register .. 31
Table 2.30. Chain 2 Packet Head Register ... 31
Table 2.31. Chain 2 Frame Number Register ... 31
Table 2.32. Chain 2 Number of Node Register .. 31
Table 2.33. Chain 2 Node Data Length Register .. 32
Table 2.34. Chain 2 Node Request Data Burst Register ... 32
Table 2.35. Chain 2 Node Request Type Register .. 32
Table 2.36. Chain 2 Node Address Register ... 32
Table 2.37: Chain 2 CRC Count Register .. 32
Table 2.38: Interrupt Info Register .. 33
Table 2.39: Chain 2 FIFO Status Register Request Data ... 33
Table 2.40: Chain 2 Node Motor Status Register ... 33
Table 2.41: Chain 2 Node Delay Register ... 33
Table 2.42: EtherControl Main Global Register Map (PCIe) .. 34
Table 2.43. EtherControl Main Local Chain 1 Register Map (PCIe) .. 34
Table 2.44. EtherControl Main Local Chain 2 Register Map (PCIe) .. 34
Table 2.45. DMA FIFO Enable/AHBL Disable Register .. 35
Table 2.46. PHY Link Status Register .. 35
Table 2.47. Active Nodes Register ... 35
Table 2.48. FIFO Status Register for PDM Data ... 35
Table 2.49. Interrupt Polling Register .. 36
Table 2.50. Clear Interrupt Received Register ... 36
Table 2.51. Start Transaction in All Chains ... 36

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 9

Table 2.52. IP Busy Register ... 36
Table 2.53. AHBL Bus Timeout Count Register .. 36
Table 2.54. Node Response PDM Data Register .. 37
Table 2.55. Chain 1 Start Transaction Register .. 37
Table 2.56. Chain 1 Packet Head Register ... 37
Table 2.57. Chain 1 Frame Number Register ... 37
Table 2.58. Chain 1 Number of Node Register .. 37
Table 2.59. Chain 1 Node Data Length Register .. 37
Table 2.60. Chain 1 FIFO Status Register Request Data ... 38
Table 2.61. Chain 1 Node Request Type Register .. 38
Table 2.62. Chain 1 Node Address Register ... 38
Table 2.63. Chain 1 CRC Count Register ... 38
Table 2.64. Chain 1 Interrupt Info Register .. 39
Table 2.65. Chain 1 FIFO Status Register Request Data ... 39
Table 2.66. Chain 1 Node Request Burst Register ... 39
Table 2.67. Chain 1 Node Motor Status Register ... 39
Table 2.68. Chain 1 Node Delay Register ... 40
Table 2.69. Chain 2 Start Transaction Register .. 40
Table 2.70. Chain 2 Packet Head Register ... 40
Table 2.71. Chain 2 Frame Number Register ... 40
Table 2.72. Chain 2 Number of Node Register .. 40
Table 2.73. Chain 2 Node Data Length Register .. 40
Table 2.74. Chain 2 FIFO Status Register Request Data ... 41
Table 2.75. Chain 2 Node Request Type Register .. 41
Table 2.76. Chain 2 Node Address Register ... 41
Table 2.77. Chain 2 CRC Count Register ... 41
Table 2.78. Interrupt Info Register... 42
Table 2.79. Chain 2 Node Request Burst Register ... 42
Table 2.80. Chain 2 Node Motor Status Register ... 42
Table 2.81. Chain 2 Node Delay Register ... 42
Table 2.82. EtherControl Node Register Map .. 43
Table 2.83. DMA Control Register ... 43
Table 2.84. FIFO Data Register ... 43
Table 2.85. Motor Status Register ... 44
Table 2.86. DMA Done Indication Register .. 44
Table 2.87. Interrupt Status Register ... 44
Table 2.88. Motor Config/Status Address Register (or) PDM Data Transfer Size Register .. 44
Table 2.89. Motor Configuration Data Register ... 44
Table 2.90. FIFO Error Register .. 45
Table 2.91. Clear Interrupt Received Register ... 45
Table 2.92. FIFO DMA Register Map .. 45
Table 2.93. FIFO DMA Control Registers .. 45
Table 2.94. DEST_BASE_ADDR Register ... 46
Table 2.95. DEST_END_ADDR Register .. 46
Table 2.96. Write Status Register .. 46
Table 2.97. Read Status Register ... 46
Table 2.98:Register Map of SGMII TSE MAC IP .. 48
Table 2.99. Register Map of UDP Stack.. 50
Table 2.100. Enable IPv6 Register .. 51
Table 2.101. Destination MAC Address Register ... 51
Table 2.102. Destination IPv4 Address Register .. 51
Table 2.103. Gateway IP Address Register .. 51
Table 2.104. Subnet Mask Register.. 51

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 10

Table 2.105. Destination Rx Port Number Register ... 51
Table 2.106. Destination Tx Port Number Register ... 51
Table 2.107. Destination Tx IP Address Register ... 51
Table 2.108. Destination IPv6 Address Register .. 52
Table 2.109. Subnet Prefix Length Register ... 52
Table 2.110. IPv6 Gateway Address Register ... 52
Table 2.111. Pause Configuration Register .. 52
Table 2.112. Register Map of Multiport Extension .. 53
Table 2.113. Write Data Register ... 53
Table 2.114. Control Register .. 54
Table 2.115. Read Data Register .. 54
Table 2.116. Status register ... 54
Table 2.117. Packet Count ... 54
Table 2.118. Register Map of LPDDR4 Controller .. 55
Table 2.119. CNN Co-Processor Unit Registers .. 56
Table 2.120. CNN Co-Processor unit control register .. 56
Table 2.121. CNN Co-Processor Unit Register ... 56
Table 2.122. Sign Select Configuration Register .. 57
Table 2.123. Input Offset Configuration Register .. 57
Table 2.124. Filter Offset Configuration Register .. 57
Table 2.125. Filter Offset Configuration Register .. 57
Table 2.126. Input Depth Configuration Register .. 57
Table 2.127. Input Data Address Configuration Register ... 57
Table 2.128. Filter Data Address Configuration Register ... 58
Table 2.129. CNN Co-Processor Unit Output Register ... 58
Table 2.130. Predictive Maintenance and Motor Control Registers .. 59
Table 2.131. Motor Control 0 – Minimum RPM .. 59
Table 2.132. Motor Control 1 – Maximum RPM .. 59
Table 2.133. Motor Control 2 – RPM PI Control Loop Integrator Gain (kI) .. 60
Table 2.134. Motor Control 3 – RPM PI Control Loop Proportional Gain (kP) ... 60
Table 2.135. Motor Control 4 – Torque PI Control Loop Integrator Gain (kI) .. 60
Table 2.136. Motor Control 5 – Torque PI Control Loop Proportional Gain (kP) ... 60
Table 2.137. Motor Control 6 – Synchronization Delay and Control ... 60
Table 2.138. Motor Control Register 7 – Target RPM .. 61
Table 2.139. Motor Control Register 8 – Target Location.. 62
Table 2.140. Motor Control Register 9 – Current Location .. 62
Table 2.141. Motor Status Register 0 – RPM ... 62
Table 2.142. Motor Status Register 1 .. 62
Table 2.143. Predictive Maintenance Control Register 0 .. 63
Table 2.144. Predictive Maintenance Control Register 1 .. 63
Table 2.145. Predictive Maintenance Status Register ... 64
Table 2.146. Predictive Maintenance Current/Voltage Data Register ... 64
Table 2.147. Predictive Maintenance Current/Voltage Data Register ... 64
Table 2.148. Versa Board Switch Status Register .. 65
Table 2.149. Versa Board LED & PMOD Control Register .. 65
Table 2.150. SPI Manager Register Map .. 68
Table 2.151. I2C Manager IP Core Registers Summary .. 70
Table 2.152. UART Register Map ... 74
Table 3.1. Main System Resource Utilization .. 76
Table 3.2. Node System Resource Utilization .. 76

Table A.1. Predictive Maintenance Training Network Topology ... 96

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 11

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 12

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

AI Artificial intelligence

AXI4 Advanced eXtensible Interface Architecture 4

BLDC Brushless DC

CCU CNN Co-processor Unit

CNN Convolutional Neural Network

DDR Double Data Rate

DL Deterministic Latency

DMA Direct Memory Access

Etherconnect Light weight packet-based protocol similar to ethernet

FIFO First In First Out

FPGA Field Programmable Gate Array

GPIO General-Purpose Input/Output

GUI Graphical User Interface

I2C Inter-Integrated Circuit

IP address Internet Protocol address

IPV4 Internet Protocol Version 4

ISR Interrupt Service Routine

MAC Media Access Control Address

ML Machine Learning

MQTT Message Queuing Telemetry Transport

MS Main System

NS Node System

OPC Open Platform Communications

OPCUA Open Platform Communications Unified Architecture

OS Operating System

PCIe Peripheral Component Interconnect express

PDA Percent Defective Allowable

PDM Predictive Maintenance

PMOD Peripheral Module Interface

QSPI Quad Serial Peripheral Interface

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RPM Revolutions Per Minute

SFP Small Form Factor Pluggable

SGMII Serial Gigabit Media Independent Interface

SOC System on Chip

SPI Serial Peripheral Interface

UA Unified Architecture

UART Universal Asynchronous Receiver-Transmitter

UADP Unified Access Data Plane

UDP User Datagram Protocol

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 13

1. Introduction
Lattice Automate stack provides a solution for industrial automation that includes predictive maintenance using ML/AI,
communication over Ethernet cable, and a BLDC motor control IP implemented in RTL. The solution enables the user to
control multiple motors connected to node systems that are chained using Ethernet cable. The main system that synchronizes
operations of the node system also runs neural network trained using RISC-V and CNN Co-Processor for predictive
maintenance. The entire solution can work with or without external host. We provide reference design with a user interface
that runs on host and controls motor operations. The user interface also displays the status of motor and alerts user when
motor requires maintenance. Users can use all APIs provided with this reference design and can implement entire system
without host system. In this case C/C++ code running on RISC-V sends required commands to control motors. The entire
system with all sub-components is shown in further sections.

Lattice Automate Stack 1.0 supports web-based user interface which is running on host (system PC) and single chain of nodes
for controlling the motors.

Lattice Automate Stack 1.1 supports two chains of nodes that can be connected to 1 main system board. All the nodes are
synchronized physically. Main system supports dynamic pulse-based system synchronization scheme, in which it checks nodes
disconnection during runtime and compensates clock ppm to calculate synchronization delay. It supports OPC UA
server/client-based user interface which is running on host PC and client is running on Raspberry Pi board.

Lattice Automate Stack 2.0 supports all features of Lattice Automate Stack 1.1. It supports MQTT broker/client-based host
application, Python Interface as host control, and also supports PCIe® interface as host for high-speed applications. In the
node side, it has motor IP for motor-based features and has standard SPI Manager and I2C Manager interfaces to connect
various peripherals (sensors) into system.

Lattice Automate Stack 3.0 supports free RTOS(RISC-V) CPU IP and OPC-UA client-based host PC which is connected to
CertusPro-NX (Main system) using Ethernet cable. Host PC and Main system can also be connected to a common ethernet
switch. OPC-UA server is running on free RTOS(RISC-V) in main board and OPC-UA client is running on host PC. Communication
between Host PC(Client) and free RTOS (server) is established over 1G ethernet network . SGMII, TSE MAC, UDP Stack, and
LPDDR4, and Multiport Extension IPs are used to enable data exchange between RISC-V and Host PC. AHBL bus interface is
replaced by AXI4 bus interface. IPs with AXI4 Manager communicates using common AXI4 Interconnect with other AXI4
subordinate based IPs connected interconnect. AXI4 bus interface has more throughput than AHBL and it also allows CPU to
run on higher frequency as well (up to 100 MHz) and it allows parallel data transfer between subordinate and manager. This
main system SOC supports only 1G port for node system chain connection due to 1G port and resources limitations on the
target board. Figure 1.1 shows the Automate Stack solution and its subcomponents.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 14

Figure 1.1. Top Level Block Diagram of Automate Stack 3.0

1.1. Components
The Automate Stack 3.0 release includes the following components:

• System on Chip (SOC)

• Main System IPs

• EtherControl IP (With SGMII/RGMII (phy or sfp)), FIFO DMA, CNN Co-Processor Unit (CCU), SPI Flash

Controller, Multiport extension, UDP Stack, SGMII TSE MAC, and Reset Synchronizer.

• Node System IPs

• EtherControl IP (With SGMII/RGMII (phy or sfp)), FIFO DMA, BLDC motor control IP, and Data collector for

predictive maintenance

• Modbus, I2C Manager, and SPI Manager

• Software

• Firmware (APIs)

• APIs to send instructions to motor control IP, collect status of motors, and collect data for predictive

maintenance Compiled TensorFlow-Lite C++ library for RISC-V (Required for neural network inference).

• User Interface

• Controls motor, collects status and data for predictive maintenance, and displays a warning when

maintenance is required.

• Machine Learning

• Trained Neural Network for predictive maintenance

• Script to train network with user-collected data.

Note: The generic RISC-V subsystem components are excluded from the list of components.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 15

2. Design Overview

2.1. Theory of Operation
The overall architecture is shown in Figure 2.1. The automate stack 3.0 consists of one Main System (MS) with ether connect
main and multiple Node Systems (NS). The host will be connected to the MS through Ethernet cable. Application software
with GUI running on host can send commands to the MS and receive motor maintenance data from the system for AI training.
The MS can propagate the commands to NS for motor control and gather maintenance data from NS.

The Certus™-NX versa board and CertusPro™-NX versa board are used for basic demo of complete system.

Automate Main System

Automate Node
System

Automate Node
System

Automate Node
System

Automate Node
System

Debug Port
(UART)

Host-PC
(OPC UA Client)

Ethernet Cable

Ethernet Cable

Ethernet Cable

Ethernet Cable

Ethernet Cable
IG Interface

Figure 2.1. Automate Stack 3.0 Architecture

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 16

2.2. FPGA Design

2.2.1. Main System

The Main System architecture is shown in Figure 2.2.The AXI4 Interconnect has four managers and nine subordinates:

The following are the AXI4 Interconnect managers:

• RISC-V CPU Instruction Cache

• RISC-V CPU Data Cache

• CNN Co-Processor Unit

• FIFO DMA

The following are the AXI4 Interconnect subordinates:

• ISR RAM

• Data RAM (port S0 and S1)

• CNN Co-Processor Unit

• FIFO DMA

• Ether Control

• AXI2APB Bridge

• Multiport Extension

• QSPI Memory Controller with pre-fetch buffer (SPI Flash Controller)

The free RTOS(RISC-V) CPU, CNN Co-processor Unit (CCU), and FIFO DMA can access data to the shared memory Data Ram,
Ether Control, SPI Flash Controller, FIFO DMA, CNN Co-processor Unit (CCU), Multiport Port Extension and AXI2APB bridge
directly and UDP IP, SGMII TSE MAC Wrapper, Multiport Extension & GPIO through AXI2APB bridge. Multiport Extension,
GPIO, Ether Control can generate interrupts to RISC-V CPU.

For performance and nearly deterministic latency (DL), it uses port S0 of the Data RAM exclusively for RISC-V CPU access. The
other two managers, CNN Co-Processor Unit and FIFO DMA, access port S1 of the Data RAM. This way, the contention is
avoided.

Note: Physically there is only one piece of shared memory but with two independent ports. In the memory map, S0 is assigned
with a lower base address and S1 is assigned with a higher base address. In real terms, these refer to the same physical
address. The two different address spaces for S0 and S1 allow the AXI4 Interconnect to route the transaction to the right port.

For better performance and nearly deterministic latency, Ether Control port supports one physical interface and it allows
system to maintain a chain of nodes supporting up to 8 nodes.

The main firmware is stored in the external SPI flash. The ISR RAM contains the initial boot code for RISC-V as well as the
interrupt service routines (ISRs) and other performance-critical functions. There are two implementation options:

• During boot, the boot loader copies the ISR code from the external flash to internal ISR RAM. It then sets up the ISR
function pointer to this internal memory address.

• The ISR code is integrated in the bitstream and firms the ISR code in the ISR RAM as ROM code.

The first option can be used during initial development for debugging. The second option can be used in the final production
release since it does not increase any system boot time.

The system is working at CPU frequency of 80 (System may be tuned to 100 MHz as well in upcoming release) MHz, the
ethernet MAC protocol is working at 125 MHz and DDR Interface is working at 133 MHz

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 17

Figure 2.2. Main System Architecture

The firmware binary is stored in the external QSPI flash. When RISC-V at the Main System boots up, it sets the registers at
QSPI Memory Controller (SPI Flash Controller). Then RISC_V jumps to the loaded firmware and executes the binary.

The RISC-V CPU fetches the commands and data from the host through DDR Interface(Channel one) by accessing AXI4 port
of Multiport Extension IP through the AXI4 Interconnect.

RISC-V CPU sets the registers inside the CNN Co-Processor Unit and starts PDA operation. RISC-V CPU polls another register
in the CNN Co-Processor Unit to check its operation status. RISC-V CPU requests for the new data for predictive maintenance
from the subordinate PDM data collector by sending instructions through EtherControl IP. The data received from the

QSPI memory

controller + Pre

Ftech

S

DMA FIFO

S M

Ethercontrol Main

S

AXI4 Interconnect

IRQ 3

Debug

Interface(UART)

S M

CNN

Processor

M M

RISCV

RTOS

GPIO

S

AXI4 to APB

S

M

S

DATA

RAM

S

SGMII/

RGMII

Node system

SGMII_TSE_MAC

Wrapper

S

UDP Stack

S

 UDP

AXI

Stream

MAC AXI

Stream

IRQ 4

LPDDR4

Memory

UART

S

ISR RAM

S

LPDDR4

Controller

S

 Multiport Extension

S

A

P

B

I

n

t

e

r

c

o

n

n

e

c

t

HOST

1G Ethernet

IRQ 1

IRQ 2

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 18

subordinate through Ethercontrol is transferred to data memory with DMA operation or sent to the host PC through
Ethercontrol.

OPCUA UADP packet is created for the publisher and sent to the subscriber, it received the packet using ether control and its
payload send to the UDP IP. UDP payload is further written to LPDDR4 and interrupt triggered to RISC-V, RISC-V sends read
request to multiport extension IP. Top packets are stored in a FIFO. RISC-V fetches data from FIFO and passes to opcua
software module. OPCUA software module decodes the UADP packet and extract RFL command. RFL packets are created and
sent to the node system over ether control interface, which performs packetization and sends them to the downstream Node
System. Node system takes the specific action according to the RFL command (RFL packet).

The information is written/read to/from peripherals connected to Nodes through SPI Manager/I2C Manager/ Modbus same
as information is written (config)/read to (status)/from motor control IP.

RISC-V CPU gathers predictive maintenance data from downstream Node Systems through EtherControl and sends this data
to the host PC from DDR Memory (Channel two) through AXI4 port. RISC-V CPU reads data from EtherControl through its AXI4
subordinate port, performs data processing, stores the data in the Data RAM, and then sends it to UART through APB.
Alternatively, EtherControl can send downstream data to the FIFO DMA through its FIFO port, and FIFO DMA can write the
data to the Data RAM directly.

At the end of every predictive maintenance cycle in software running on RISC-V, an update is sent to the host PC through
Ethercontrol.

OPCUA
create/decode Packet

LPDDR4

UDP IP

Ethernet Mac

Write Req to
Multiport

Read_req to
Multiport

Software

Software & RTL

RTL

Figure 2.3. System Level User Flow

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 19

2.2.1.1. Memory Map

The Main System memory map is defined in Table 2.1.

Table 2.1. Main System Memory Map

Base Address End Address
Range
(Bytes)

Range
(Bytes in hex)

Size (kB) Block

F2000000 F20FFFFF 1048576 100000 1024 CPU CLINT

FC000000 FC3FFFFF 4194304 400000 4096 CPU PLIC TIMER

10000000 10000FFF 4096 1000 4 GPIO

F0000000 F00003FF 1024 400 1 RESERVED

F0000400 F1FFFFFF 32505856 1F00000 31744 RESERVED

F2100000 FBFFFFFF 1.66E+08 9F00000 162816 RESERVED

FC400000 FFFFFFFF 6.2E+07 3C00000 61440 RESERVED

100A0000 100A0FFF 4096 1000 4 CNN Co-Processor Unit (CCU)

00080000 000FFFFF 524288 80000 512 CPU Data Ram
Port S0: base address 0x000C0000
Port S1: base address: 0x000E0000

00100000 0010FFFF 65536 10000 64 ISR RAM

10100000 10107FFF 32768 8000 32 FIFO DMA

10108000 0010FFFF 32768 8000 32 Ether Control

00000000 0007FFFF 524288 80000 512 SPI FLASH CONTROLLER

10090000 10091FFF 4096 1000 4 UART

10001000 10001FFF 4096 1000 4 SGMII TSE MAC Wrapper

10002000 10002FFF 4096 1000 4 UDP Stack

10110000 10117FFF 32768 8000 32 Multiport Extension (AXI4)

10091000 10091FFF 4096 1000 4 Multiport Extension (APB)

Note: Cache range of CPU lies from 0x00000000 to 0x0FFFFFFF.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 20

2.2.2. Node System

The Node System architecture is shown in Figure 2.4. It consists of one AHBL Interconnect with three managers and eight
subordinates.

The following are the Node System managers:

• RISC-V CPU Instruction Cache

• RISC-V CPU Data Cache

• FIFO DMA

The following are the Node System subordinates:

• ISR RAM

• Data RAM (port S0 and S1)

• Motor Control and PDM Data Collector (port S0 and S1)

• FIFO DMA

• EtherControl

• QSPI Memory Controller with perfect buffer (SPI Flash Controller)

• AHBL2APB bridge.

• SPI Manager

• I2C Manager

AHBL2APB bridge is connected to APB Interconnect which is having 3 APB interface-based subordinates SPI Manager, I2C
Manager, and UART to interface different peripherals in the system (for example, sensors).

For Data RAM with two AHBL subordinate ports, see the description in the previous section. For Motor Control and PDM Data
Collector, it has two AHBL subordinate ports (S0 and S1). Port S0 is used to access the Motor Control and PDM registers while
port S1 is used to access the data collected by PDM Data Collector.

The main firmware is stored in the external SPI flash. The ISR RAM contains the initial boot code for RISC-V as well as the
interrupt service routines (ISRs) and other performance-critical functions. There are two implementation options:

• During boot, the bootloader copies the ISR code from the external flash to internal ISR RAM. It then sets up the ISR
function pointer to this internal memory address.

• The ISR code is integrated in the bitstream and firms the ISR code in the ISR RAM as ROM code.

• The first option can be used during initial development for debugging. The second option can be used in the final
production release since it does not increase any system boot time.

The system is working at frequency of 75 MHz while the protocol is working at 125 MHz.

The CPU can access data from the Data RAM, access the register file inside EtherControl, and control the registers at FIFO
DMA and QSPI Memory Controller. Either RISC-V CPU or FIFO DMA can move the data stored at the register file inside
EtherControl to Motor Control block. They can also move the data collected by PDM Data Collector back to EtherControl and
send out through the Ethernet upstream port.

There is one feature added in EtherControl IP in protocol layer. It supports additional frame/packet type 10 which enables
the system to enhance performance while fetching bulk data. More details are given in the EtherControl user guide.

There are no major changes in EtherControl Node module.

Note: In Node System, previous version (AHBL subordinate support) of FIFO DMA, SPI Flash Controller, and Ethercontrol IP
are used.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 21

IR
Q

3

IR
Q

0

IR
Q

1

IR
Q

2

UART I2C SPI

APB Interconnect

ISR
RAM

S

I D

RISC V CPU

M M

Data RAM

S0 S1

SPI
Flash Controller

S

AHBL2APB
Bridge

S

AHBL Interconnect

S0 S1 M S S

Motor Control &
PDM Data Collector FIFO DMA Ethercontrol Node Ethernet

(UPSTREAM)

Ethernet
(DOWNSTREAM)

Figure 2.4. Node System Architecture

2.2.2.1. Node System Memory Map of Node System

The Node System memory map is defined in Table 2.2.

Table 2.2. Node System Memory Map

Base Address End Address Range (Bytes)
Range

(Bytes in hex)
Size (Kbytes) Block

00190000 00197FFF 32768 8000 32 CPU instruction RAM

00080000 000807FF 2048 800 2 CPU PIC TIMER

00080800 000BFFFF 260096 3F800 254 RESERVED

000C0000 000FFFFF 262144 40000 256 CPU Data Ram
Port S0 base address: 0x000C0000
Port S1 base address: 0x000E0000

00100000 00107FFF 32768 8000 32 FIFO DMA

00108000 0010FFFF 32768 8000 32 EtherControl

00110000 0017FFFF 458752 70000 448 RESERVED

00000000 0007FFFF 512000 7D000 512 SPI Flash Controller

001864000 001867FF 1024 400 2 UART

00184000 00185FFF 8192 2000 8 Motor Control & PDM Data Collector
Port S0 base address: 0x00184000
Port S1 base address: 0x00185000

00186000 00FFFFFF 15179776 E7A000 14824 RESERVED

01400000 01FFFFFF 16777216 1000000 16384 External SPI flash

001868000 00186BFF 1024 400 1 SPI Manager

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 22

Base Address End Address Range (Bytes)
Range

(Bytes in hex)
Size (Kbytes) Block

00186000 001863FF 1024 400 1 I2C Manager

2.3. Ether Control IP
The Ether Control block is needed in both Main System and Node System. There is a Verilog parameter SYSTEM_TYPE, which
sets this block as either Main System or Node System. For the Main System, there is no Ethernet Upstream; only two Ethernet
downstream ports. For Node System, it has both Ethernet Upstream (1) and Ethernet Downstream(1) ports. For the last Node
System, the Ethernet Downstream port can be disabled. Input/Output FIFO interface is selected using SYSTEM_TYPE
parameter.

In the main system, the Ether Control IP has an output FIFO interface to send bulk data to DMA FIFO block while in the node
system, the Ether Control block has an input FIFO interface to receive bulk data from DMA FIFO module, which is coming from
the Data Collector IP. The AXI4 interface is used to support one host along with FIFO interface for bulk data.

The Sync Pulse generator block is available in the Ether Control manager only. It is used to generate pulse for the dynamic
synchronization of nodes.

The Ether Control consists of an existing IP block (lscc_sgmii_gbe_pcs), Ether Connect, register file, and glue logic as shown in
Figure 2.5.

Note: In Automate 3.0, PCIe based path is disabled by default.

Figure 2.5. Ether Control Block Diagram

Table 2.3. Ether Control Interfaces

Interface Direction Description

IRQ Output Interrupt to RISC-V CPU

FIFO Output FIFO output to FIFO DMA

FIFO Input FIFO input to Ether Control

AXI4 Subordinate 0 Input and Output AXI4 subordinate port for host 1 along with FIFO output interface to control IP.

AHBL Subordinate 1 Input and Output AHBL subordinate port for host 2 independent of FIFO.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 23

Interface Direction Description

Ethernet Upstream Input and Output
Send Ethernet packets to Main System or Upper Node System
This interface is disabled for Main System Ether Control.

Ethernet1 Downstream Input and Output
Send ethernet packets to lower Node Systems
This interface is disabled for the last Node System Ether Control.

Ethernet2 Downstream Input and Output
Send ethernet packets to lower Node Systems
This interface is disabled for the last Node System Ether Control.

2.3.1. Features

The key features of the Ether Control IP include:

• Real time Ethernet network support

• Two chain support (only one chain enabled in 3.0 system)

• Full Duplex data communication support

• RGMII interface support

• SGMII interface support

• AXI4 Node interfaces for controlling IP from AXI4 based manager block

• FIFO Interface for bulk data transfer (both normal and extended mode) (Only for AXI4 S0)

• Runtime Cable Break Detection Support

• Propagation Delay adjustment (Synchronization) Support

• Parameter based Main and Node Selection

• Maximum of 32 nodes support

• One AXI4 and One AHBL Bus support for EtherControl Main

• Max 256 bytes data length support

• Random Node access support – EtherControl Main

• RGMII/SGMII Selection

• 1G (125 MHz) physical interface support- RGMII/SGMII PHY, SFP support

• Dynamic/Runtime node scanning

• 4 kB Rx and Tx data buffers support

• Configuration Write (Motor Configuration), Status Read(Motor Status), Bulk data read(PDM data) – Normal and Extended

• Interrupt support (only for AXI4 S0)

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 24

2.3.2. EtherControl Main

Figure 2.6. EtherControl Main Block Diagram

data_bus_arbitration

(control signals are selected on the basis of

slave_bus_busy signal)

Application Layer CH1

Protocol

Layer CH1

Physical

Layer CH1

Application Layer CH2

Protocol

Layer CH2

Physical

Layer CH2

Main Top

 PCIE_ENABLE = 1

RISC V

Interrupt

DMA FIFO

Interface

Data to be transfrd

b/w links
Data to be transfrd

b/w links

 I2C

LMMI_app

SFP_ENABLE = 1

AHBL_subordinate_1_bus_control

 PCIE_ENABLE = 1

Arbitrator

CH1

Arbitrator

CH2

Sync_pulse

generator

Data

generator

Data

capture

Data

generator

Data

capture

AXI4_subordinate_0_bus_control

Enabled By Default

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 25

2.3.3. Register Description

2.3.3.1. EtherControl Main (RISC-V)

The register address map for AXI4 Bus 0 (RISC-V) shown in Table 2.4 specifies the available IP Core registers for the main
system configuration. The offset of each register increments by four to allow easy interfacing with the processor and System
Buses. In this case, each register is 32-bit wide wherein the used and unused bits are mentioned. The unused bits are treated
as reserved – read access returns 0. The registers are divided into Global and Local ones. The global registers are common for
all the chains, while the local ones are local to the respective chains.

Table 2.4. EtherControl Main Global Register Map (RISC-V)

EtherControl Register Name Register Function Base Address (0x10108000) Access

DMACTR_R DMA FIFO Enable/AXI4 Disable Register Base + 0x00 Read/Write

PHLNK_R PHY Link Status Register Base + 0x04 Read

NDACT_R Active Nodes Register Base + 0x08 Read

FSRPDM_R FIFO Status Register for PDM Data CDC Base + 0x0C Read

ETHINTR_R Interrupt Poll Register Base + 0x10 Read

CLRCVD_R Clear Interrupt Received Register Base + 0x14 Read/Write

TX_ALL_STRT_R Transaction starts for all chains Base + 0x18 Read/Write

IP_STATUS_R IP Busy Status Base + 0x20 Read/Write

AXI4_TOUT_R AXI4 Bus Timeout Count Register Base + 0x28 Write

Table 2.5. EtherControl Main Local Chain 1 Register Map (RISC-V)

EtherControl Register Name Register Function Base Address (0x1010800) Access

TXSTR_R_1 Start Transaction Register Base + 0x00 Read/Write

PKTHD_R_1 Packet Head Register Base + 0x04 Read/Write

FRNUM_R_1 Frame Number Register Base + 0x08 Read/Write

NDCNT_R_1 Number of Node Register Base + 0x0C Read/Write

NDLN_R_1 Node Data Length Register Base + 0x10 Read/Write

MTDT_R_1 Node Request Data Burst Register Base + 0x14 Read/Write

RQDT_R_1 Node Request Type Register Base + 0x18 Read/Write

RQAD_R_1 Node Address Register Base + 0x1C Read/Write

CRCNT_R_1 CRC Count Register Base + 0x20 Read

INTR_R_1 Interrupt Info Register Base + 0x24 Read

FSRREQD_R_1 FIFO Status Register Request Data Base + 0x28 Read

MTRST_R_1 Node Motor Status Register Base + 0x100 to 0x1FC Read

DLY_R_1 Node Delay Register Base + 0x200 to 0x2FC Read

Table 2.6. EtherControl Main Local Chain 2 Register Map (RISC-V)

EtherControl Register Name Register Function Base Address (0x10108400) Access

TXSTR_R_2 Start Transaction Register Base + 0x00 Read/Write

PKTHD_R_2 Packet Head Register Base + 0x04 Read/Write

FRNUM_R_2 Frame Number Register Base + 0x08 Read/Write

NDCNT_R_2 Number of Node Register Base + 0x0C Read/Write

NDLN_R_2 Node Data Length Register Base + 0x10 Read/Write

MTDT_R_2 Node Request Data Burst Register Base + 0x14 Read/Write

RQDT_R_2 Node Request Type Register Base + 0x18 Read/Write

RQAD_R_2 Node Address Register Base + 0x1C Read/Write

CRCNT_R_2 CRC Count Register Base + 0x20 Read

INTR_R_2 Interrupt Info Register Base + 0x24 Read

FSRREQD_R_2 FIFO Status Register Request Data Base + 0x28 Read

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 26

EtherControl Register Name Register Function Base Address (0x10108400) Access

MTRST_R_2 Node Motor Status Register Base + 0x100 to 0x1FC Read

DLY_R_2 Node Delay Register Base + 0x200 to 0x2FC Read

The Global register description is given below:

Table 2.7. DMA FIFO Enable/AXI4 Disable Register

DMACTR_R Base + 0x00

Byte 3 2 1 0

Name DMACTR_R

Default Reserved Reserved Reserved 0

Access R/W

DMACTR_R[0]: 0: DMA FIFO enabled, AXI4 disabled | 1: DMA FIFO disabled, AXI4 enabled

Table 2.8. PHY Link Status Register

PHLNK_R Base + 0x04

Byte 3 2 1 0

Name Physical Link Chain 2 Physical Chain 1

Default 0 0 0 0

Access R

PHLNK_R[0]: 1: Main System PHY link established for chain 1 and 0: Main System PHY link not established for chain 1

PHLNK_R[15:1]: Each bit from bit 1 to bit 15 shows the link status of the respective nodes in chain 1

PHLNK_R[16]: 1: Main System PHY link established for chain 2 and 0: Main System PHY link not established for chain 2

PHLNK_R[31:17]: Each bit from bit 17 to bit 31 shows the link status of the respective nodes in chain 2

Table 2.9. Active Nodes Register

NDACT_R Base + 0x08

Byte 3 2 1 0

Name Active Node Chain 1+2 Active Node Chain 1+2 Active Node Chain 2 Active Node Chain 1

Default 0 0 0 0

Access R

NDACT_R[7:0]: Gives number of nodes actually connected physically to the system

NDACT_R[15:8]: Gives number of nodes actually connected physically to the system in chain 2

NDACT_R[31:16]: Gives total number of physically connected nodes in both chains

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 27

Table 2.10. FIFO Status Register for PDM Data

FSRPDM_R Base + 0x0C

Byte 3 2 1 0

Name FSRPDM_R

Default Reserved Reserved Reserved 0

Access R

FSRPDM_R[0]: Empty signal of RX FIFO

FSRPDM_R[1]: Full signal of RX FIFO

FSRPDM_R[2]: Overflow error of RX FIFO

FSRPDM_R[3]: Underflow error of RX FIFO

FSRPDM_R[4]: Reserved

FSRPDM_R[5]: Reserved

FSRPDM_R[6]: Reserved

FSRPDM_R[7]: Reserved

Table 2.11. Clear Interrupt Received Register

CLRCVD_R Base + 0x14

Byte 3 2 1 0

Name CLRCVD_R

Default Reserved Reserved Reserved 0

Access R/W

CLRCVD_R[0]: Received clr bit from CPU

CLRCVD_R[7:1]: Reserved

CLRCVD_R[31:8]: Reserved

Table 2.12. Interrupt Polling Register

ETHINTR_R Base + 0x10

Byte 3 2 1 0

Name Ethernet Interrupt from Chain 2 Ethernet Interrupt from Chain 1

Default Reserved 0 Reserved 0

Access R

ETHINTR_R[0]: Interrupt bit from Chain 1

ETHINTR_R[7:1]: Reserved

ETHINTR_R[15:8]: Reserved

ETHINTR_R[16]: Interrupt bit from Chain 2

ETHINTR_R[31:17]: Reserved

Table 2.13. Start Transaction in All Chains

TX_ALL_STRT_R Base + 0x18

Byte 3 2 1 0

Name TX_ALL_STRT_R

Default Reserved Reserved Reserved 0

Access R/W

TX_ALL_START_R[0]: Received clear bit from CPU

TX_ALL_START_R[7:1]: Reserved

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 28

Table 2.14. IP Busy Register

IP_BUSY_R Base + 0x20

Byte 3 2 1 0

Name IP_BUSY_R

Default Reserved Reserved Reserved 0

Access R/W

IP_BUSY_R[0]: 1 : AXI Bus 0 Busy | 0: AXI 0 bus Free (Only for reading)

IP_BUSY_R[1]: 1 : AXI Bus 1 Busy | 0: AXI 1 bus Free

IP_BUSY_R[7:2]: Reserved

Table 2.15. AXI4_TOUT_R

AXI4_TOUT_R Base + 0x28

Byte 3 2 1 0

Name AXI4_TOUT_R

Default 0 0 0 0

Access W

AXI4_TOUT_R[31:0]: Sets the value of AXI4 timeout count to free the bus

The local register 1 description is given below:

Table 2.16. Chain 1 Start Transaction Register

TXSTR_R_1 Base + 0x00

Byte 3 2 1 0

Name TXSTR_R_1

Default Reserved Reserved Reserved 0

Access R/W

TXSTR_R_1[0]: 1: Start the transaction | 0: No transaction

Table 2.17. Chain 1 Packet Head Register

PKTHD_R_1 Base + 0x04

Byte 3 2 1 0

Name PKTHD_R_1

Default Reserved Reserved Reserved 0

Access R/W

PKTHD_R_1[0]: 1: User values are updated | 0: No update

Table 2.18. Chain 1 Frame Number Register

FRNUM_R_1 Base + 0x08

Byte 3 2 1 0

Name FRNUM_R_1

Default Reserved Reserved Reserved 0

Access R/W

FRNUM_R_1[7:0]: Frame number for the current frame

Table 2.19. Chain 1 Number of Node Register

NDCNT_R_1 Base + 0x0C

Byte 3 2 1 0

Name NDCNT_R_1

Default Reserved Reserved Reserved 0

Access R/W

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 29

NDCNT_R_1[7:0]: Number of nodes configured by the user

Table 2.20. Chain 1 Node Data Length Register

NDLN_R_1 Base + 0x10

Byte 3 2 1 0

Name NDLN_R_1

Default Reserved Reserved Reserved 0

Access R/W

NDLN_R_1[7:0]: Data length of nodes to be configured by the user

Table 2.21. Chain 1 Node Request Data Burst Register

MTDT_R_1 Base + 0x14

Byte 3 2 1 0

Name MTDT_R_1

Default Reserved Reserved Reserved 0

Access R/W

MTDT_R_1[7:0]: Data to be sent from the Main System to Node Systems by the user

Table 2.22. Chain 1 Node Request Type Register

RQDT_R_1 Base + 0x18

Byte 3 2 1 0

Name RQDT_R_1

Default Reserved Reserved Reserved 0

Access R/W

RQDT_R_1[7:0]: Type of data requested by the user

Table 2.23: Chain 1 Node Address Register

RQAD_R_1 Base + 0x1C

Byte 3 2 1 0

Name RQAD_R_1

Default Reserved Reserved Reserved 0

Access R/W

RQAD_R_1[7:0]: Address requested by the user

Table 2.24. Chain 1 CRC Count Register

CRCNT_R_1 Base + 0x20

Byte 3 2 1 0

Name CRCNT_R_1

Default Reserved Reserved Reserved 0

Access R

CRCNT_R_1[7:0]: Gives the count of errors generated by doing CRC on the data

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 30

Table 2.25. Chain 1 Interrupt Info Register

INTR_R_1 Base + 0x24

Byte 3 2 1 0

Name INTR_R_1

Default Reserved Reserved Reserved 0

Access R

RQAD_R_1 Base + 0x1C

Byte 3 2 1 0

Name RQAD_R_1

Default Reserved Reserved Reserved 0

Access R/W

INTR_R_1[31:0]: Gives the type of interrupt generated according to type of available data

0x01: Motor Configuration

0x02: Motor Status

0x03: PDM Data

0x04: Training Pkt

0x05: Pkt Head

0x06: Extended PDM Data

Table 2.26. Chain 1 FIFO Status Register Request Data

FSRREQD_R_1 Base + 0x28

Byte 3 2 1 0

Name FSRREQD_R_1

Default Reserved Reserved Reserved 0

Access R

FSRREQD_R_1[0]: Overflow error of TX 1 FIFO

FSRREQD_R_1[1]: Underflow error of TX 1 FIFO

FSRREQD_R_1[2]: Empty signal of TX 1 FIFO

FSRREQD_R_1[3]: Full signal of TX 1 FIFO

FSRREQD_R_1[4]: Reserved

FSRREQD_R_1[5]: Reserved

FSRREQD_R_1[6]: Reserved

FSRREQD_R_1[7]: Reserved

Table 2.27. Chain 1 Node Motor Status Register

MTRST_R_1 Base + 0x100 - 0x1FC

Byte 3 2 1 0

Name MTRST_R_1

Default 0 0 0 0

Access R

Base + 0x100: Node 1 status

Base + 0x104: Node 2 status (will progress like this for other nodes)

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 31

Table 2.28. Chain 1 Node Delay Register

DLY_1 Base +0x200 - 0x2FC

Byte 3 2 1 0

Name DLY_1

Default 0 0 0 0

Access R/W

Base + 0x200: Node 1 Delay

Base + 0x204: Node 2 Delay (will progress like this for other nodes)

The local register 2 descriptions are given below:

Table 2.29. Chain 2 Start Transaction Register

TXSTR_R_2 Base +0x00

Byte 3 2 1 0

Name TXSTR_R_2

Default Reserved Reserved Reserved 0

Access R/W

TXSTR_R_2[0]: 1: Start the transaction | 0: No transaction

Table 2.30. Chain 2 Packet Head Register

PKTHD_R_2 Base +0x04

Byte 3 2 1 0

Name PKTHD_R_2

Default Reserved Reserved Reserved 0

Access R/W

PKTHD_R_2[0]: 1: User values are updated | 0: No update

Table 2.31. Chain 2 Frame Number Register

FRNUM_R_2 Base +0x08

Byte 3 2 1 0

Name FRNUM_R_2

Default Reserved Reserved Reserved 0

Access R/W

FRNUM_R_2[7:0]: Frame number for the current frame

Table 2.32. Chain 2 Number of Node Register

NDCNT_R_2 Base +0x0C

Byte 3 2 1 0

Name NDCNT_R_2

Default Reserved Reserved Reserved 0

Access R/W

NDCNT_R_2[7:0]: Number of nodes configured by the user

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 32

Table 2.33. Chain 2 Node Data Length Register

NDLN_R_2 Base +0x10

Byte 3 2 1 0

Name NDLN_R_2

Default Reserved Reserved Reserved 0

Access R/W

NDLN_R_2[7:0]: Data length of nodes to be configured by the user

Table 2.34. Chain 2 Node Request Data Burst Register

MTDT_R_2 Base +0x14

Byte 3 2 1 0

Name MTDT_R_2

Default Reserved Reserved Reserved 0

Access R/W

MTDT_R_2[7:0]: Data to be sent from the Main System to Node Systems by the user

Table 2.35. Chain 2 Node Request Type Register

RQDT_R_2 Base +0x18

Byte 3 2 1 0

Name RQDT_R_1

Default Reserved Reserved Reserved 0

Access R/W

RQDT_R_2[7:0]: Type of data requested by the user

Table 2.36. Chain 2 Node Address Register

RQAD_R_2 Base +0x1C

Byte 3 2 1 0

Name RQAD_R_1

Default Reserved Reserved Reserved 0

Access R/W

RQAD_R_2[7:0]: Address requested by the user

Table 2.37: Chain 2 CRC Count Register

CRCNT_R_2 Base +0x20

Byte 3 2 1 0

Name CRCNT_R_2

Default 0 0 0 0

Access R

CRCNT_R_2[7:0]: Gives the count of errors generated by doing CRC on the data

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 33

Table 2.38: Interrupt Info Register

INTR_R_2 Base +0x24

Byte 3 2 1 0

Name INTR_R_2

Default 0 0 0 0

Access R

INTR_R_2[31:0]: Gives the type of interrupt generated according to type of available data

0x01: Motor Configuration

0x02: Motor Status

0x03: PDM Data

0x04: Training Pkt

0x05: Pkt Head

0x06: Extended PDM Data

Table 2.39: Chain 2 FIFO Status Register Request Data

FSRREQD_R_2 Base +0x28

Byte 3 2 1 0

Name FSRREQD_R_2

Default Reserved Reserved Reserved 0

Access R

FSRREQD_R_2[0]: Overflow error of TX 1 FIFO

FSRREQD_R_2[1]: Underflow error of TX 1 FIFO

FSRREQD_R_2[2]: Empty signal of TX 1 FIFO

FSRREQD_R_2[3]: Full signal of TX 1 FIFO

FSRREQD_R_2[4]: Reserved

FSRREQD_R_2[5]: Reserved
FSRREQD_R_2[6]: Reserved
FSRREQD_R_2[7]: Reserved

Table 2.40: Chain 2 Node Motor Status Register

MTRST_R_2 Base +0x100 – 0x1FC

Byte 3 2 1 0

Name MTRST_R_2

Default 0 0 0 0

Access R

Base + 0x100: Node 1 status
Base + 0x104: Node 2 status (will progress like this for other nodes)

Table 2.41: Chain 2 Node Delay Register

DLY_R_2 Base +0x200 – 0x2FC

Byte 3 2 1 0

Name DLY_R_2

Default 0 0 0 0

Access R

Base + 0x200: Node 1 Delay
Base + 0x204: Node 2 Delay ……..(will progress like this for other nodes)

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 34

2.3.3.2. EtherControl Main (PCIe)

The register address map for AHBL Bus 1 (PCIe) shown in Table 2.42 specifies the available IP Core registers for main system
configuration. The offset of each register increments by eight to allow easy interfacing with the Processor and System Buses.
In this case, each register is 64-bit wide wherein the used and unused bits are mentioned. The unused bits are treated as
reserved – read access returns 0. The registers are divided into Global and Local ones. The global registers are common for
all the chains while the local ones are local to the respective chains.

Table 2.42: EtherControl Main Global Register Map (PCIe)

PCIe Register Name Register Function
Base Address
(0x10118000)

Access Used Bits

DMACTR_P DMA FIFO Enable/AHBL Disable Register Base + 0x00 Read/Write [31:0]

PHLNK_P Phy Link Status Register Base + 0x00 Read [63:32]

NDACT_P Active Nodes Register Base + 0x08 Read [31:0]

FSRPDM_P FIFO Status Register for PDM Data CDC Base + 0x08 Read [63:32]

ETHINTR_P Interrupt Poll Register Base + 0x10 Read [31:0]

CLRCVD_P Clear Interrupt Received Register Base + 0x10 Read/Write [63:32]

TX_ALL_STRT_P Transaction starts for all chains Base + 0x18 Read/Write [31:0]

IP_STATUS_P IP Busy Status Base + 0x20 Read/Write [31:0]

AHBL_TOUT_P AHBL Bus Timeout Count Register Base + 0x28 Write [31:0]

DTOUT_P Node Response PDM Data Register 0x00108400 + 0x40 Read [63:0]

Note: For PCIe based path, the PDM data goes through the AHBL interface to the DMACTR register that needs to be controlled.

Table 2.43. EtherControl Main Local Chain 1 Register Map (PCIe)

PCIe Register Name Register Function
Base Address
(0x10118100)

Access Used Bits

TXSTR_P_1 Start Transaction Register Base + 0x00 Read/Write [31:0]

PKTHD_P_1 Packet Head Register Base + 0x00 Read/Write [63:32]

FRNUM_P_1 Frame Number Register Base + 0x08 Read/Write [31:0]

NDCNT_P_1 Number of Node Register Base + 0x08 Read/Write [63:32]

NDLN_P_1 Node Data Length Register Base + 0x10 Read/Write [31:0]

FSRREQD_P_1 FIFO Status Register Request Data Base + 0x10 Read [63:32]

RQDT_P_1 Node Request Type Register Base + 0x18 Read/Write [31:0]

RQAD_P_1 Node Address Register Base + 0x18 Read/Write [63:32]

CRCNT_P_1 CRC Count Register Base + 0x20 Read [31:0]

INTR_P_1 Interrupt Info Register Base + 0x20 Read [63:32]

MTDT_P_1 Node Request Data Burst Register Base + 0x28 Read/Write [63:0]

MTRST_P_1 Node Motor Status Register Base + 0x100 to 0x1FC Read [63:0]

DLY_P_1 Node Delay Register Base + 0x200 to 0x2FC Read [63:0]

Table 2.44. EtherControl Main Local Chain 2 Register Map (PCIe)

PCIe Register Name Register Function
Base Address
(0x10118400)

Access Used Bits

TXSTR_P_2 Start Transaction Register Base + 0x00 Read/Write [31:0]

PKTHD_P_2 Packet Head Register Base + 0x00 Read/Write [63:32]

FRNUM_P_2 Frame Number Register Base + 0x08 Read/Write [31:0]

NDCNT_P_2 Number of Node Register Base + 0x08 Read/Write [63:32]

NDLN_P_2 Node Data Length Register Base + 0x10 Read/Write [31:0]

FSRREQD_P_2 FIFO Status Register Request Data Base + 0x10 Read/Write [63:32]

RQDT_P_2 Node Request Type Register Base + 0x18 Read/Write [31:0]

RQAD_P_2 Node Address Register Base + 0x18 Read/Write [63:32]

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 35

PCIe Register Name Register Function
Base Address
(0x10118400)

Access Used Bits

CRCNT_P_2 CRC Count Register Base + 0x20 Read]31:0]

INTR_P_2 Interrupt Info Register Base + 0x20 Read [63:32]

MTDT_P_2 Node Request Data Burst Register Base + 0x28 Read [63:0]

MTRST_P_2 Node Motor Status Register Base + 0x100 to 0x1FC Read [63:0]

DLY_P_2 Node Delay Register Base + 0x200 to 0x2FC Read [63:0]

The Global register description is given below:

Table 2.45. DMA FIFO Enable/AHBL Disable Register

DMACTR_P Base + 0x00

Byte 3 2 1 0

Name DMACTR_P

Default Reserved Reserved Reserved 0

Access R/W

DMACTR_P[0]: 0: DMA FIFO enabled, AHBL disabled | 1: DMA FIFO disabled, AHBL enabled

Table 2.46. PHY Link Status Register

PHLNK_P Base + 0x00

Byte 7 6 5 4

Name Physical Link Chain 2 Physical Chain 1

Default 0 0 0 0

Access R

PHLNK_P[32]: 1: Main System PHY link established for chain 1 and 0: Main System PHY link not established for chain 1
PHLNK_P[47:33]: Each bit from bit 33 to bit 47 shows the link status of the respective nodes in chain 1
PHLNK_P[48]: 1: Main System PHY link established for chain 2 and 0: Main System PHY link not established for chain 2
PHLNK_P[63:49]: Each bit from bit 49to bit 63 shows the link status of the respective nodes in chain 2

Table 2.47. Active Nodes Register

NDACT_P Base + 0x08

Byte 3 2 1 0

Name Active Node Chain 1+2 Active Node Chain 1+2 Active Node Chain 2 Active Node Chain 1

Default 0 0 0 0

Access R

NDACT_P[7:0]: Gives number of nodes actually connected physically to the system

Table 2.48. FIFO Status Register for PDM Data

FSRPDM_P Base + 0x08

Byte 7 6 5 4

Name FSRPDM_P

Default Reserved Reserved Reserved 0

Access R

FSRPDM_P[32]: Empty signal of RX FIFO
FSRPDM_P[33]: Full signal of RX FIFO
FSRPDM_P[34]: Overflow error of RX FIFO
FSRPDM_P[35]: Underflow error of RX FIFO
FSRPDM_P[36]: Reserved
FSRPDM_P[37]: Reserved
FSRPDM_P[38]: Reserved
FSRPDM_P[39]: Reserved

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 36

Table 2.49. Interrupt Polling Register

ETHINTR_P Base + 0x10

Byte 3 2 1 0

Name Ethernet Interrupt from Chain 2 Ethernet Interrupt from Chain 1

Default Reserved 0 Reserved 0

Access R/W

ETHINTR_P[0]: Interrupt bit from Chain 1
ETHINTR[7:1]: Reserved
ETHINTR[15:8]: Reserved
ETHINTR[16]: Interrupt bit from Chain 2
ETHINTR[31:17]: Reserved

Table 2.50. Clear Interrupt Received Register

CLRCVD_P Base + 0x10

Byte 7 6 5 4

Name CLRCVD_P

Default Reserved Reserved Reserved 0

Access R/W

CLRCVD[39]: Received CLR bit from CPU
CLRCVD[39:33]: Reserved

Table 2.51. Start Transaction in All Chains

TX_ALL_STRT_P Base + 0x18

Byte 3 2 1 0

Name TX_ALL_STRT_P

Default Reserved Reserved Reserved 0

Access R/W

TX_ALL_STRT_P [0]: 1: Start the transaction | 0: No transaction

Table 2.52. IP Busy Register

IP_Busy_P Base + 0x20

Byte 3 2 1 0

Name AHBL_Bus_P

Default Reserved Reserved Reserved 0

Access R/W

AHBL_BUSY_P[0]: 1: AHBL Bus 0 Busy | 0: AHBL 0 bus Free (only for reading)
AHBL_BUSY_P[1]: 1 : AHBL Bus 1 Busy | 0: AHBL 1 bus Free
AHBL_BUSY_P[7:2]: Reserved

Table 2.53. AHBL Bus Timeout Count Register

AHBL_TOUT_P Base + 0x28

Byte 3 2 1 0

Name AHBL_TOUT_P

Default Reserved Reserved Reserved 0

Access W

AHBL_TOUT_P[31:0]: Sets the value of AHBL timeout count to free the bus

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 37

Table 2.54. Node Response PDM Data Register

DTOUT_P 0x00108400 + 0x40

Byte 7 6 5 4 3 2 1 0

Name DTOUT_P

Default 0 0 0 0 0 0 0 0

 R

DTOUT_P[63:0]: PDM Data out from the nodes which are requested by the user
The local register 1 description is given below:

Table 2.55. Chain 1 Start Transaction Register

TXSTR_P_1 Base + 0x00

Byte 3 2 1 0

Name TXSTR_P_1

Default Reserved Reserved Reserved 0

Access R/W

TXSTR_P_1[0]: 1: Start the transaction | 0: No transaction

Table 2.56. Chain 1 Packet Head Register

PKTHD_P_1 Base + 0x00

Byte 7 6 5 4

Name PKTHD_P_1

Default Reserved Reserved Reserved 0

Access R/W

PKTHD_P_1[32]: 1: User values are updated | 0: No update

Table 2.57. Chain 1 Frame Number Register

FRNUM_P_1 Base + 0x08

Byte 3 2 1 0

Name FRNUM_P_1

Default Reserved Reserved Reserved 0

Access R/W

FRNUM_P_1[7:0]: Frame number for the current frame

Table 2.58. Chain 1 Number of Node Register

NDCNT_P_1 Base + 0x08

Byte 7 6 5 4

Name NDCNT_P_1

Default Reserved Reserved Reserved 0

Access R/W

NDCNT_P_1[39:32]: Number of nodes configured by the user

Table 2.59. Chain 1 Node Data Length Register

NDLN_P_1 Base + 0x10

Byte 3 2 1 0

Name NDLN_P_1

Default Reserved Reserved Reserved 0

Access R/W

NDLN_1[7:0]: Data length of nodes to be configured by the user

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 38

Table 2.60. Chain 1 FIFO Status Register Request Data

FSRREQD_P_1 Base + 0x10

Byte 7 6 5 4

Name FSRREQD_P_1

Default Reserved Reserved Reserved 0

Access R

FSRREQD_P_1[32]: Overflow error of TX 1 FIFO
FSRREQD_P_1[33]: Underflow error of TX 1 FIFO
FSRREQD_P_1[34]: Empty signal of TX 1 FIFO
FSRREQD_P_1[35]: Full signal of TX 1 FIFO
FSRREQD_P_1[36]: Reserved
FSRREQD_P_1[37]: Reserved
FSRREQD_P_1[38]: Reserved
FSRREQD_P_1[39]: Reserved

Table 2.61. Chain 1 Node Request Type Register

RQDT_P_1 Base + 0x18

Byte 3 2 1 0

Name RQDT_P_1

Default Reserved Reserved Reserved 0

Access R/W

RQDT_1[7:0]: Type of data requested by the user

Table 2.62. Chain 1 Node Address Register

RQAD_P_1 Base + 0x18

Byte 3 2 1 0

Name RQAD_1

Default Reserved Reserved Reserved 0

Access R/W

RQAD_P_1[39:32]: Address requested by the user

Table 2.63. Chain 1 CRC Count Register

CRCNT_P_1 Base + 0x20

Byte 3 2 1 0

Name CRCNT_P_1

Default Reserved Reserved Reserved 0

Access R

CRCNT_P_1[7:0]: Gives the count of errors generated by doing CRC on the data

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 39

Table 2.64. Chain 1 Interrupt Info Register

INTR_P_1 Base + 0x24

Byte 7 6 5 4

Name INTR_P_1

Default Reserved Reserved Reserved 0

Access R

INTR_P_1[63:32]: Gives the type of interrupt generated according to type of available data
0x01: Motor Configuration
0x02: Motor Status
0x03: PDM Data
0x04: Training Pkt
0x05: Pkt Head
0x06: Extended PDM Data

Table 2.65. Chain 1 FIFO Status Register Request Data

FSRREQD_1 Base + 0x28

Byte 3 2 1 0

Name FSRREQD_1

Default Reserved Reserved Reserved 0

Access R

FSRREQD_1[0]: Overflow error of TX 1 FIFO
FSRREQD_1[1]: Underflow error of TX 1 FIFO
FSRREQD_1[2]: Empty signal of TX 1 FIFO
FSRREQD_1[3]: Full signal of TX 1 FIFO
FSRREQD_1[4]: Reserved
FSRREQD_1[5]: Reserved
FSRREQD_1[6]: Reserved
FSRREQD_1[7]: Reserved

Table 2.66. Chain 1 Node Request Burst Register

MTDT_P_1 Base + 0x28

Byte 7 6 5 4 3 2 1 0

Name MTDT_P_1

Default 0 0 0 0 0 0 0 0

 R/W

MTDT_P_1[63:0]: Data to be sent from the main to nodes by the user

Table 2.67. Chain 1 Node Motor Status Register

MTRST_P_1 Base + 0x100 – 0x1FC

Byte 7 6 5 4 3 2 1 0

Name MTRST_P_1

Default 0 0 0 0 0 0 0 0

 R

Base + 0x100: Node 1 status
Base + 0x104: Node 2 status (will progress like this for other nodes)

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 40

Table 2.68. Chain 1 Node Delay Register

DLY_P_1 Base + 0x200 – 0x1FC

Byte 7 6 5 4 3 2 1 0

Name DLY_P_1

Default 0 0 0 0 0 0 0 0

 R

Base + 0x200: Node 1 Delay
Base + 0x204: Node 2 Delay (will progress like this for other nodes)
The local register 2 descriptions are given below:

Table 2.69. Chain 2 Start Transaction Register

TXSTR_P_2 Base +0x00

Byte 3 2 1 0

Name TXSTR_P_2

Default Reserved Reserved Reserved 0

Access R/W

TXSTR_P_2[0]: 1: Start the transaction | 0: No transaction

Table 2.70. Chain 2 Packet Head Register

PKTHD_P_2 Base +0x00

Byte 7 6 5 4

Name PKTHD_P_2

Default Reserved Reserved Reserved 0

Access R/W

PKTHD_P_2[32]: 1: User values are updated | 0: No update

Table 2.71. Chain 2 Frame Number Register

FRNUM_P_2 Base +0x08

Byte 3 2 1 0

Name FRNUM_P_2

Default Reserved Reserved Reserved 0

Access R/W

FRNUM_P_2[7:0]: Frame number for the current frame

Table 2.72. Chain 2 Number of Node Register

NDCNT_P_2 Base +0x08

Byte 7 6 5 4

Name NDCNT_P_2

Default Reserved Reserved Reserved 0

Access R/W

NDCNT_P_2[39:32]: Number of nodes configured by the user

Table 2.73. Chain 2 Node Data Length Register

NDLN_P_2 Base +0x10

Byte 3 2 1 0

Name NDLN_P_2

Default Reserved Reserved Reserved 0

Access R/W

NDLN_P_2[7:0]: Data length of nodes to be configured by the user

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 41

Table 2.74. Chain 2 FIFO Status Register Request Data

FSRREQD_P_2 Base +0x10

Byte 7 6 5 4

Name FSRREQD_P_2

Default Reserved Reserved Reserved 0

Access R

FSRREQD_P_2[32]: Overflow error of TX 1 FIFO
FSRREQD_P_2[33]: Underflow error of TX 1 FIFO
FSRREQD_P_2[34]: Empty signal of TX 1 FIFO
FSRREQD_P_2[35]: Full signal of TX 1 FIFO
FSRREQD_P_2[36]: Reserved
FSRREQD_P_2[37]: Reserved
FSRREQD_P_2[38]: Reserved
FSRREQD_P_2[39]: Reserved

Table 2.75. Chain 2 Node Request Type Register

RQDT_P_2 Base + 0x14

Byte 3 2 1 0

Name RQDT_P_1

Default Reserved Reserved Reserved 0

Access R/W

RQDT_P_2[7:0]: Type of data requested by the user

Table 2.76. Chain 2 Node Address Register

RQAD_P_2 Base + 0x14

Byte 7 6 5 4

Name RQAD_P_2

Default Reserved Reserved Reserved 0

Access R/W

RQAD_P_2[39:32]: Address requested by the user

Table 2.77. Chain 2 CRC Count Register

CRCNT_P_2 Base + 0x20

Byte 3 2 1 0

Name CRCNT_P_2

Default Reserved Reserved Reserved 0

Access R

CRCNT_P_2[7:0]: Gives the count of errors generated by doing CRC on the data

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 42

Table 2.78. Interrupt Info Register

INTR_P_2 Base + 0x20

Byte 7 6 5 4

Name INTR_P_2

Default 0 0 0 0

Access R

INTR_P_2[63:32]: Gives the type of interrupt generated according to type of available data
0x01: Motor Configuration
0x02: Motor Status
0x03: PDM Data
0x04: Training Pkt
0x05: Pkt Head
0x06: Extended PDM Data

Table 2.79. Chain 2 Node Request Burst Register

MTDT_P_2 Base + 0x28

Byte 7 6 5 4 3 2 1 0

Name MTDT_P_1

Default 0 0 0 0 0 0 0 0

Access R/W

MTDT_P_2[63:0]: Data to be sent from the main to nodes by the user

Table 2.80. Chain 2 Node Motor Status Register

MTRST_P_2 Base + 0x100 – 0x1FC

Byte 7 6 5 4 3 2 1 0

Name MTRST_P_2

Default 0 0 0 0 0 0 0 0

Access R

Base + 0x100: Node 1 status
Base + 0x104: Node 2 status (will progress like this for other nodes)

Table 2.81. Chain 2 Node Delay Register

DLY_P_2 Base + 0x200 – 0x2FC

Byte 7 6 5 4 3 2 1 0

Name DLY_P_2

Default 0 0 0 0 0 0 0 0

Access R

Base + 0x200: Node 1 status

Base + 0x204: Node 2 status (will progress like this for other nodes)

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 43

2.3.4. EtherControl Node

FPGA (SYSTEM_TYPE == 1)

PHY PHY
RGMII/
SGMII

RGMII/
SGMII

Downstream
Rx

Downstream
Tx

Upstream
Rx

Upstream
Tx

Sync
Generate

User Logic

User Logic

User Logic

Ethernet

(Not in last slave)

Ethernet

Figure 2.7. EtherControl Node

Table 2.82. EtherControl Node Register Map

EtherControl Register Name Register Function Address Access

DMACTR DMA control Register Base + 0x00 Read/Write

FFDT FIFO data Register Base + 0x04 Write

RCMTR Motor Status Register Base + 0x08 Write

DMST DMA Done Indication Register Base + 0x0C Write

INTST Interrupt Status Register Base + 0x10 Read

MTAD Motor Config/Status Address Register

or PDM Data Transfer Size Register

Base + 0x14 Read

MTDT Motor Config Data Register Base + 0x18 Read

FFER FIFO error Register Base + 0x1C Read

CLRCVD Clear Interrupt Received Register Base + 0x3C Read/Write

Table 2.83. DMA Control Register

DMACTR Base +0x00

Byte 3 2 1 0

Name DMACTR

Default Reserved Reserved Reserved 0

Access R/W

DMACTR[0]: 0: DMA FIFO enabled, AHBL disabled | 1: DMA FIFO disabled, AHBL enabled

Table 2.84. FIFO Data Register

FFDT Base +0x04

Byte 3 2 1 0

Name FFDT

Default Reserved Reserved Reserved 0

Access R/W

FFDT[7:0]: Data incoming to the FIFO present in EtherControl Node System

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 44

Table 2.85. Motor Status Register

RCMTR Base +0x08

Byte 3 2 1 0

Name RCMTR

Default Reserved Reserved Reserved 0

Access R/W

RCMTR[7:0]: Motor status

Table 2.86. DMA Done Indication Register

DMST Base +0x0C

Byte 3 2 1 0

Name DMST

Default Reserved Reserved Reserved 0

Access R/W

DMST[7:0]: DMA done status

Table 2.87. Interrupt Status Register

INTST Base +0x10

Byte 3 2 1 0

Name INTST

Default Reserved Reserved Reserved 0

Access R/W

INTST[7:0]: Gives the type of interrupt thrown by the node system

Table 2.88. Motor Config/Status Address Register (or) PDM Data Transfer Size Register

MTAD Base +0x14

Byte 3 2 1 0

Name MTAD

Default 0 0 0 0

Access R

MTAD[31:0]: Gives the config/status address or PDM data transfer size

Table 2.89. Motor Configuration Data Register

MCDR Base +0x18

Byte 3 2 1 0

Name MCDR

Default 0 0 0 0

Access R

MCDR[31:0]: Gives the data available for motor configuration

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 45

Table 2.90. FIFO Error Register

FFER Base +0x1C

Byte 3 2 1 0

Name FFER

Default Reserved Reserved Reserved 0

Access R/W

FFER[0]: Overflow error of FIFO
FFER[1]: Underflow error of FIFO
FFER[2]: Downstream sync signal for particular node
FFER[3]: Empty status of FIFO
FFER[4]: Full status of FIFO
FFER[5]: Reserved
FFER[6]: Reserved
FFER[7]: Reserved

Table 2.91. Clear Interrupt Received Register

CLRCVD Base +0x3C

Byte 3 2 1 0

Name CLRCVD

Default Reserved Reserved Reserved 0

Access R/W

CLRCVD[0]: Received clr bit from CPU
CLRCVD[7:1] : Reserved

2.4. FIFO DMA
This block has two FIFO interfaces, one is active when it is used in the main system to collect the PDM data received by the
EtherControl manager Bus 0. The other interface is active for node and has the pdm data from the motor control data collector
block.

This block also has an AXI4 subordinate and manager interface. The register space for this block is as shown in Table 2.92.

The AXI4 Subordinate interface is used to control DMA operations by external manager (which is CPU) and AXI4 manager
interface is used to perform for DMA operations. More information about this IP is given FIFO DMA user guide.

Table 2.92. FIFO DMA Register Map

Register Name Register Function Address Access

CNTR FIFO DMA Control Register Base + 0x00 Read/ Write

DEST_BASE_ADDR Destination Base Address Register Base + 0x04 Read/ Write

DEST_END_ADDR Destination End Address Register Base + 0x08 Read/ Write

STATUS Write Status Register Base + 0x0C Read

STATUS_RD Read Status Register Base + 0x10 Read

Table 2.93. FIFO DMA Control Registers

CNTR Base +0x00

Byte 3 2 1 0

Name CNTR

Default Reserved Reserved Reserved 0

Access R/W

CNTR[0]: Used to control read operation.
CNTR[1]: Used to reset the destination register to the destination base address.
CNTR[2-7]: Reserved

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 46

Table 2.94. DEST_BASE_ADDR Register

DEST_BASE_ADDR Base +0x04

Byte 3 2 1 0

Name DEST_BASE_ADDR

Default 0 0 0 0

Access R/W

DEST_BASE_ADDR[31:0]: Base Address Location

Table 2.95. DEST_END_ADDR Register

DEST_END_ADDR Base +0x08

Byte 3 2 1 0

Name DEST_END_ADDR

Default 0 0 0 0

Access R/W

DEST_END_ADDR[31:0]: END Address Location

Table 2.96. Write Status Register

STATUS Base +0x0C

Byte 3 2 1 0

Name STATUS

Default Reserved Reserved Reserved 0

Access R

STATUS[2:0] : Write Status
STATUS[3:31] : Reserved

Table 2.97. Read Status Register

STATUS_RD Base +0x1C

Byte 3 2 1 0

Name STATUS_RD

Default Reserved Reserved Reserved 0

Access R

STATUS_RD[2:0] : Read Status
STATUS_RD[3:31] : Reserved

2.5. SGMII TSE MAC Wrapper
The SGMII TSE MAC Wrapper block is needed in Main System to receive and transmit data from and to host and is developed
using existing SGMII and TSE MAC IPs.

SGMII IP converts the serial data coming from host through ethernet cable connected to onboard SFP into GMII format (8-bit
data) and transmits it to TSE MAC IP. I2C Manager and LMMI App IP are used for SFP Configuration and linkup.

 TSEMAC IP core contains all necessary logic, interfacing, and clocking infrastructure necessary to integrate an external
industry-standard Ethernet PHY with an internal processor efficiently and with minimal overhead.

The TSEMAC IP core supports the ability to transmit and receive data between the standard interfaces, such as APB or AHB-
Lite, and an Ethernet network. The main function of TSEMAC IP is to ensure that the Media Access rules specified in the 802.3
IEEE standard are met while transmitting a frame of data over Ethernet. On the receiving side, the TSEMAC extracts different
components of a frame and transfers them to higher applications through the FIFO interface.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 47

Figure 2.8. Top-Level Block Diagram of TSE_MAC IP (SGMII Easy Connect)

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 48

Table 2.98:Register Map of SGMII TSE MAC IP

 Register Name Description

00H - 01H Mode register Enables/Disables IP Core functions.

02H - 03H Transmit and Receive Control register
This register can be overwritten only when
Rx MAC and Tx MAC are disabled. This
register controls various features of MAC.

04H - 05H Maximum Packet Size register

This register can be overwritten only when
MAC is disabled. All frames longer than the
value (number of bytes) in this register is
tagged as long frames.

08H - 09H Inter-Packet Gap register Time between packet transmission.

0AH - 0BH TSEMAC IP Core Address register 0

Contains the Ethernet address of the port. 0CH - 0DH TSEMAC IP Core Address register 1

0EH - 0FH TSEMAC IP Core Address register 2

12H - 13H Transmit and Receive Status register
This register reports events that have
occurred while receiving or transmitting a
packet.

14H - 15H
GMII Management Interface Control
register

The GMII Management Access register
controls the Management Interface
Module. This register can be overwritten
only when the interface is not busy. A write
operation is ignored when the interface is
busy.

16H - 17H GMII Management Data register

The contents of this register are
transmitted when a Write operation is to
be performed. When a Read operation is
performed, this register contains the value
that was read from a PHY register.

32H - 33H VLAN Tag Length/type register
The VLAN tag register has the VLAN TAG
field of the most recent tagged frame that
was received. This is a read-only register.

22H - 23H Multicast_table_0 register

Multicast Table. Eight tables that make a
64-bit hash.

24H - 25H Multicast_table_1 register

26H - 27H Multicast_table_2 register

28H - 29H Multicast_table_3 register

The main function of Rx MAC is to accept formatted data from G/MII interface and pass it to LMMI interface through FIFO.
During this, Rx MAC performs following functions: detect the start of the frame, compare MAC address, re-calculate CRC,
process the control frame, and pass it to the flow control module.

Transmit MAC (Tx MAC) is responsible for controlling access to the physical medium. Tx MAC reads data from a Tx FIFO when
the FIFO is not empty and when it detects an active tx_fifoavail. Tx MAC then formats this data into an Ethernet packet and
passes it to the G/MII module.

For more details on the IP, refer to Tri-Speed Ethernet MAC IP Core - Lattice Radiant Software (FPGA-IPUG-02084).

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52476

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 49

2.6. UDP Stack
The UDP Stack IP is specialized toward data transmission and reception over the internet. The UDP Protocol helps to establish
a low-latency and loss-tolerating connections established over the network. Flexibility is ensured through run-time
programmability of all the required network parameters (local, destination, and gateway IP addresses; UDP ports; and MAC
address).

The main block for UDP protocol implementation is UDP Rx and UDP Tx. Also, IP Core supports the essential Address
Resolution Protocol (ARP) and NDP (Neighbour Discovery Protocol) for multiple access networks and ICMP (Internet Control
Message Protocol) and ICMP6 (for IPv6) Echo Request and Response messages ("ping") to test network connectivity. This IP
supports commonly used standard interfaces for configuration and data such as APB and AXI4 stream respectively.

For more details, refer to the IP User Guide.

Figure 2.9: UDP Stack Top Level Architecture

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 50

The register Map of UDP Stack IP is given below:

Table 2.99. Register Map of UDP Stack

Register Name Offset Description

REG_ENABLE_IPV6 0x00 0x00: [0] reg_enable_ipv6.

[31:1]: reserved

REG_MAC_ADD_L 0x04 0x04: reg_mac_add_l [31:0]

REG_MAC_ADD_H 0x08 0x08: [15:0] reg_mac_add_h [47:32]

 [31:16] reserved

REG_IPV4_ADD 0x0C 0x0C: reg_ipv4_add [31:0]

REG_GATEWAY_ADD 0x10 0x10: reg_gateway_add [31:0]

REG_SUBNET_MASK 0X14 0x14: reg_subnet_mask [31:0]

REG_RX_PORT 0x18 0x18: [15:0] reg_rx_port

 [31:16] reserved.

REG_TX_UDP_DST_SRC_PORT 0x1C 0x1C: [31:16]: reg_tx_udp_dst_port

[15:0]: reg_tx_udp_src_port

REG_TX_DST_IP_ADD_W0 0x20 0x20:reg_tx_dst_ip_add_w0 [31:0]

REG_TX_DST_IP_ADD_W1 0X24 0x24: reg_tx_dst_ip_add_w1 [63:32]

REG_TX_DST_IP_ADD_W2 0X28 0x28: reg_tx_dst_ip_add_w2 [95:64]

REG_TX_DST_IP_ADD_W3 0X2C 0x2C: reg_tx_dst_ip_add_w3 [127:96]

REG_IPV6_ADD_W0 0x30 0x30: reg_ipv6_add_w0[31:0]

REG_IPV6_ADD_W1 0X34 0x34: reg_ipv6_add_w1[63:32]

REG_IPV6_ADD_W2 0X38 0x38: reg_ipv6_add_w2[95:64]

REG_IPV6_ADD_W3 0X3C 0x3C: reg_ipv6_add_w3[127:96]

IPv6_SUBNET_PREFIX_LENGTH

0x40

0x40: [7:0] IPv6_SUBNET_PREFIX_LENGTH

 [31:8] reserved

REG_IPV6_GATEWAY_ADD_W0 0x44 0x44: reg_ipv6_gateway_add_w0[31:0]

REG_IPV6_GATEWAY_ADD_W1 0X48 0x48: reg_ipv6_gateway_add_w1[63:32]

REG_IPV6_GATEWAY_ADD_W2 0X4C 0x4C:reg_ipv6_gateway_add_w2[95:64]

REG_IPV6_GATEWAY_ADD_W3 0X50 0x50:reg_ipv6_gateway_add_w3[127:96]

REG_PAUSE_CONFIG 0x54 0x54: [15:0] pause_time.

 pause_cntrl.

 [31:17] reserved

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 51

Table 2.100. Enable IPv6 Register

Bit
field

Name Access Width description

0

31:1

reg_enable_ipv6 RW 1 0 means IPv4 is enabled by default.

1 means IPv6 is enabled by default.

Table 2.101. Destination MAC Address Register

Bit
field

Name Access Width description

31:0 reg_mac_add_l RW 32 Destination MAC address is a unique 'hardware' address,
which the user must choose for each instance. It is essential
that this input matches the MAC address used by MAC
interface.

15:0 reg_mac_add_h RW 16

Table 2.102. Destination IPv4 Address Register

Bit
field

Name Access Width description

31:0 reg_ipv4_add RW 32 Destination IPV4 address is an address that is located in IP
Header.

Table 2.103. Gateway IP Address Register

Bit
field

Name Access Width description

31:0 reg_gateway_add RW 32 Gateway IP address is a gateway via which packets destined
for a WAN are routed.

Table 2.104. Subnet Mask Register

Bit
field

Name Access Width description

31:0 reg_subnet_mask RW 32 Subnet mask is used to determine whether an IP address is
local (LAN) or remote (WAN).

Table 2.105. Destination Rx Port Number Register

Bit
field

Name Access Width description

15:0 reg_rx_port RW 16 Destination Port number of UDP receiver.

31:16 RESERVED RW 16 READ ALL 0

Table 2.106. Destination Tx Port Number Register

Bit
field

Name Access Width description

31:16 reg_tx_udp_dst_port RW 16 Destination Port number of UDP transmitter.

15:0 reg_tx_udp_src_port RW 16 Source Port number of UDP transmitter.

Table 2.107. Destination Tx IP Address Register

Bit
field

Name Access Width description

31:0 reg_tx_dst_ip_add_w0 RW 32

Destination IP address of UDP transmitter.
31:0 reg_tx_dst_ip_add_w0 RW 32

31:0 reg_tx_dst_ip_add_w0 RW 32

31:0 reg_tx_dst_ip_add_w0 RW 32

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 52

Table 2.108. Destination IPv6 Address Register

Bit
field

Name Access Width description

31:0 reg_ipv6_add_w0 RW 32

Destination IPv6 address.
31:0 reg_ipv6_add_w1. RW 32

31:0 reg_ipv6_add_w2. RW 32

31:0 reg_ipv6_add_w3. RW 32

Table 2.109. Subnet Prefix Length Register

Bit
field

Name Access Width description

7:0
reg_ipv6_subnet_prefi

x_len
RW 8 Denotes how many bits of the address define the network in

which it exists
31:8 Reserved RW 24

Table 2.110. IPv6 Gateway Address Register

Bit
field

Name Access Width description

31:0 reg_ipv6_gateway_ad
d_w0

RW 32

Denotes how many bits of the address define the network in
which it exists.

31:0 reg_ipv6_gateway_ad
d_w1

RW 32

31:0 reg_ipv6_gateway_ad
d_w2

RW 32

31:0 reg_ipv6_gateway_ad
d_w3

RW 32

Table 2.111. Pause Configuration Register

Bit
field

Name Access Width description

15:0 pause_time RW 16
1-bit Pause control and 16 bits pause time

31:8 pause_cntrl RW 1

2.7. 2.7 Multiport Extension
Multiport IP with DDR and 4 FIFOs is a sub-system where multiple data streams can be handled simultaneously. It involves
the use of DDR (Double Data Rate) memory for high-speed data storage and 4 FIFOs (First-In-First-Out) to manage the data
flow. These FIFOs act as buffers, temporarily storing incoming data until it can be processed or transmitted. The DDR memory
module is responsible for storing data in a high-speed, double data rate format. The overall architecture of Multiport
Extension IP is shown in Figure 2.11.
The DDR memory is divided in two channels: One for Host and other for RISC -V CPU. The address and range for both channels
can be configured using parameters: CH1_ADDR_RANGE, CH1_START_ADDR, CH2_ADDR_RANGE, and CH2_START_ADDR.
CH2_START ADDR should start at least from CH1_ADDR_RANGE + CH1_START_ADDR.
Data in LPDDR4 is written in 64 Byte burst i.e., two transfers of 32 byte each in one transaction.
For more details on IP, refer to Multiport Extension IP user guide.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 53

Figure 2.10:Architecture of Multiport IP

Figure 2.11. Register Map of Multiport extension IP

Table 2.112. Register Map of Multiport Extension

Register Name Register Description Offset Access

WR_DATA_REG Write Data Register 0x00 RW

CNTR_REG Control Register 0x04 RW

RD_DATA_REG Read Data Register 0x08 RO

STATUS Status register 0x0C RO

PCKT_COUNT_REG Packet Count 0x10 RO

Table 2.113. Write Data Register

WR_DATA_REG Base + 0x00

Byte 3 2 1 0

Name WR_DATA_REG

Default 0 0 0 0

Access RW

WR_DATA_REG[31:0]: RISC-V FIFO writes data

ARB_GRANT

AXI4

UDP

RX

MULTIPORT EXTENSION

WP1 FIFO

WP2 FIFO

 RP1 FIFO RP2 FIFO

ARBITER

MASTER

LPDDR4

A

X

I

4

B

U

S

DATA_MUX

UDP

TX

DDR

BUS

APB

BUS

ARB_REQ_4

ARB_REQ_

3

ARB_REQ_2
ARB_REQ_

1

AXI4 Manager

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 54

Table 2.114. Control Register

CNTR_REG Base + 0x04

Byte 3 2 1 0

Name CNTR_REG

Default 0 0 0 0

Access RW

CNTR_REG[15:0]: Response Packet Length

CNTR_REG[16]: Write request

CNTR_REG[17]: Read request

CNTR_REG[31:18]: Reserved

Table 2.115. Read Data Register

RD_DATA_REG Base + 0x08

Byte 3 2 1 0

Name RD_DATA_REG

Default 0 0 0 0

Access RO

RD_DATA_REG[31:0]: RISC-V FIFO write data

Table 2.116. Status register

STATUS Base + 0x0C

Byte 3 2 1 0

Name STATUS

Default 0 0 0 0

Access RO

STATUS[15:0]: Request Packet Length

STATUS[16]: UDP Write FIFO Full signal

STATUS[17]: UDP Write FIFO Empty signal

STATUS[18]: RISC-V Write FIFO Full signal

STATUS[19]: RISC-V Write FIFO Empty signal

STATUS[20]: RISC-V Read FIFO Full signal

STATUS[21]: RISC-V Read FIFO Empty signal

STATUS[22]: UDP Read FIFO Full signal

STATUS[23]: UDP Read FIFO Empty signal

STATUS[24] : Interrupt Info

STATUS[25]: Pll lock register

STATUS[31 : 26] : Reserved

Table 2.117. Packet Count

PCKT_COUNT_REG Base + 0x10

Byte 3 2 1 0

Name PCKT_COUNT_REG

Default 0 0 0 0

Access RO

PCKT_COUNT_REG[31: 0] : UDP Packet Count

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 55

2.8. LPDDR4 Controller
Multi-port Extension IP is developed using existing LPDDR4 Memory Controller IP.

The LPDDR4 Memory Controller IP Core consists of three main blocks: Controller, Training engine, and PHY. There are two
main interfaces: AXI4 and APB. AXI4 interface provides access to external memory to issue reads and writes. The APB interface
provides interface to training engine and for error status-related registers for memory and configuration registers for training
engine.

The Register Map of LPDDR4 is shown below:

LPDDR4 Initialization and Training:

• Enable initialization and training by writing to Training Operation Register. For simulation purposes, it is recommended
to shorten the initialization by setting TRN_OP_REG.init_en = 0 and set 1 to all training enable bits.
This step can be skipped when running on the actual FPGA device since the initialization and training are enabled by
default.

• Write 2’h3 to Reset Register to un-reset the CPU and Memory Training Engine. Initialization and training begin after this
step.

• Wait for completion of initialization and training by either of these steps:

• Wait for init_done_o signal assertion

• Poll Status Register until STATUS_REG.write_training done bit is asserted

• Wait for write_training done interrupt

The Steps for calibration are:

• Write the 0x20 register (training operation) as 0x1f, which is already by default 0x1f.

• After that read the 0x24 register (status).

• The register value at this point comes as 0x3001f, which means write_trn_done, read_trn_done, write_lvl_done,
cbt_done, phy_ready all are asserted high. Also, the output port init_done_o is asserted high after this process.

The user can initiate AXI4 write and read access after the init_done_o signal asserts. Not all AXI4 accesses are supported. The
proper translation of data from local data bus format to LPDDR4 format is not guaranteed when unsupported transaction is
issued. The local databus access is converted to LPDDR4 BL16 or BL32 depending on the amount of data required by the local
data bus burst access. The Memory Controller does not support unaligned addresses.

Table 2.118. Register Map of LPDDR4 Controller

For more details, refer to Memory-Controller-IP-Core-Radiant-SW (FPGA-IPUG-02127).

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 56

2.9. SPI Flash Controller (QSPI Streamer)
This module is designed to stream data from external flash to FPGA using quad SPI data lines. It supports max 100 MHz for
LFD2NX and LFCL devices. It has a prefetch buffer to enable cache feature for internal block of FPGA. Register space for this
block is defined in register map section. This block does not have any configuration register to control it. There are basic
settings (static configuration) which need to be selected during build generation. As per register map, complete SPI flash
memory is directly accessible through AXI4 interface. AXI 4 interface supports both code and data reading features. This block
does not support flash data write operation. This module is used in both main system and node system SOCs. This module
only supports Micron and Macronix only.

In main system, it is used to steam instructions and static data into RISC-V from external SPI flash, and other parts of data
section are stored in data ram.

At node end, it is used to stream instruction only into RISC-V from external SPI flash.

2.10. CNN Co-Processor Unit (CCU)
This block has an AXI4 Manager interface so that it can retrieve data directly from Data RAM or EtherControl block. This block
can also fetch data from UART. For example, after the host PC has processed the training data and come up with a new set
of weights, the CCU can get the new weights through UART.

This block also has an AXI4 subordinate interface so that RISC-V CPU can control CNN Co-Processor Unit (CCU) through its
registers.

Table 2.119. CNN Co-Processor Unit Registers

CCU Register Name Register Function Address Access

PDMACR CCU Control Register Base + 0x00 Read/Write

PDMASR CCU Status Register Base + 0x04 Read

SIGSELR Sign Select Configuration Register Base + 0x08 Read/Write

INOFFSETCR Input Offset Configuration Register Base + 0x0C Read/Write

FILOFFSETCR Filter Offset Configuration Register Base + 0x10 Read/Write

INDEPTHCR Input Depth Configuration Register Base + 0x14 Read/Write

INADDRCR Input Data Address Configuration Register Base + 0x18 Read/Write

FILADDRCR Filter Data Address Configuration Register Base + 0x1C Read/Write

ACCOUTR CCU Output Register Base + 0x20 Read

Table 2.120. CNN Co-Processor unit control register

PDMACR Base + 0x00

Bits Others 0

Name Unused START

Default Unused 0

Access Unused R/W

START: Setting 1’b1 to this register triggers the start of CCU process

Table 2.121. CNN Co-Processor Unit Register

PDMASR Base + 0x04

Bits Others 0

Name Unused DONE

Default Unused 0

Access Unused R

DONE:

1’b0: CCU process is NOT completed

1’b1: CCU process is completed

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 57

Table 2.122. Sign Select Configuration Register

SIGSELR Base + 0x08

Bits Others 0

Name Unused SIGN_SEL

Default Unused 0

Access Unused R/W

SIGN_SEL: Sign selector of input and filter values

1’b0: Unsigned (TinyML HPD)

1’b1: Signed (ours)

Table 2.123. Input Offset Configuration Register

INOFFSETCR Base + 0x0C

Bits Others 8 : 0

Name Unused INPUT_OFFSET

Default Unused 0

Access Unused R/W

INPUT_OFFSET: Input offset (2s complement - signed number [–256 ~ 255])

Table 2.124. Filter Offset Configuration Register

FILOFFSETCR Base + 0x10

Bits Others 8: 0

Name Unused FILTER_OFFSET

Default Unused 0

Access Unused R/W

FILTER_OFFSET: Filter offset (2s complement - signed number [–256 ~ 255])

Table 2.125. Filter Offset Configuration Register

FILOFFSETCR Base + 0x10

Bits Others 8: 0

Name Unused FILTER_OFFSET

Default Unused 0

Access Unused R/W

Table 2.126. Input Depth Configuration Register

INDEPTHCR Base + 0x14

Bits Others 9: 0

Name Unused INPUT_DEPTH_BY_2_M1

Default Unused 0

Access Unused R/W

INPUT_DEPTH_BY_2_M1: Input depth × 2 – 1 (0 ~ 1023); cover 512 depths

Table 2.127. Input Data Address Configuration Register

INADDRCR Base + 0x18

Bits Others 16: 0

Name Unused INPUT_DATA_ADDR

Default Unused 0

Access Unused R/W

INPUT_DATA_ADDR: Address to INPUT_DATA – start point of blob

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 58

Table 2.128. Filter Data Address Configuration Register

FILADDRCR Base + 0x1C

Bits Others 16: 0

Name Unused FILTER_DATA_ADDR

Default Unused 0

Access Unused R/W

FILTER_DATA_ADDR: Address to FILTER_DATA – start point of filter

Table 2.129. CNN Co-Processor Unit Output Register

ACCOUTR Base + 0x20

Bits Others 31: 0

Name Unused ACC_OUT

Default Unused 0

Access Unused R

ACC_OUT: Accelerator output data

2.11. Motor Control and PDM Data Collector
This block has two AHBL subordinate interfaces that reside in the Node System. It provides direct control to motors through
its logic and interface to power electronics. It also collects predictive maintenance data from the motors.

This block is used only in the Node Systems. The top level of the Node System has an AHBL wrapper which has two AHBL
subordinate ports. Mainly it consists of Motor Control and Predictive Maintenance (MC/PDM) Registers, Motor Control logic,
and PDM Data Collector as shown in Figure 2.12.

24 Volt @ 4.5 Amps
DC Power Supply

BLDC Motor

Trenz – TEP0002
Motor Diver

Drivers

ADCs
(SPI)

SVPWM
20 kHz

Quadrature
Generator

q

d

A

B

C

Vector
Generator

θ

Error
PI

Control

Target
RPM

Target
Power

PDM
Status and

Control

A
H

B
L_

S0
In

te
rf

ac
e

BLDC Motor Control and Predictive Maintenance IP

Signal
Processing

PDM
Memory

Motor
Status and

Control

A
H

B
L_

S1

In
te

rf
ac

e

Figure 2.12. Motor Controller Interface with Motor

The Motor Control and PDM Registers interface with the AHB-L bus to configure, control, and monitor the Motor Control IP.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 59

Table 2.130. Predictive Maintenance and Motor Control Registers

PDM/Motor Register Name Register Function Address Access

MTRCR0 Motor Control Register 0 – Min RPM Base + 0x00 Read/Write

MTRCR1 Motor Control Register 1 – Max RPM Base + 0x04 Read/Write

MTRCR2 Motor Control Register 2 – RPM PI kI Base + 0x08 Read/Write

MTRCR3 Motor Control Register 3 – RPM PI kP Base + 0x0C Read/Write

MTRCR4 Motor Control Register 4 – Torque PI kI Base + 0x10 Read/Write

MTRCR5 Motor Control Register 5 – Torque PI kP Base + 0x14 Read/Write

MTRCR6 Motor Control Register 6 – Sync Delay & Control Base + 0x18 Read/Write

MTRCR7 Motor Control Register 7 – Target RPM Base + 0x1C Read/Write

MTRCR8 Motor Control Register 8 – Target Location Base + 0x20 Read/Write

MTRCR9 Motor Control Register 9 – Location Base + 0x24 Read/Write

MTRSR0 Motor Status Register 0 - RPM Base + 0x28 Read

MTRSR1 Motor Status Register 1 – Limit SW & System Status Base + 0x2C Read

PDMCR0 Predictive Maintenance Control Register 0 Base + 0x30 Read/Write

PDMCR1 Predictive Maintenance Control Register 1 Base + 0x34 Read/Write

PDMSR Predictive Maintenance Status Register Base + 0x38 Read

PDMDDR Predictive Maintenance ADC Data Register Base + 0x3C Read

PDMQDR Predictive Maintenance ADC Data Register Base + 0x40 Read

BRDSW DIP and Push Button Switches Base + 0x50 Read

BRDLEDS LEDs and 7-Segment Base + 0x54 Read/Write

Table 2.131. Motor Control 0 – Minimum RPM

MTRCR0 Base + 0x00

Byte 3 2 1 0

Name PI_DELAY MTRPOLES MINRPM

Default 0 0 0 0

Access R/W

MTRCR0[15:0]: MINRPM – Minimum RPM is the initial open loop motor starting RPM. Valid values are 10 to (216 -1).

MTRCR0[23:16]: MTRPOLES: Number of motor stator poles. Valid values are 1 to 255.

MTRCR0[31:24]: PI_DELAY: This is the RPM PI update rate. Valid values are 1 to 255.

Table 2.132. Motor Control 1 – Maximum RPM

MTRCR1 Base + 0x04

Byte 3 2 1 0

Name tbd MAXRPM

Default 0 0 0 0

Access R/W

MTRCR1[15:0]: MAXRPM – Maximum RPM is the upper limit RPM. Valid values are MINRPM to (216 -1).

MTRCR1[31:16]: TBD

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 60

Table 2.133. Motor Control 2 – RPM PI Control Loop Integrator Gain (kI)

MTRCR2 Base + 0x08

Byte 3 2 1 0

Name RPMINT_MIN RPMINTK

Default 0 0 0 0

Access R/W

MTRCR2[15:0]: RPMINTK – This is the gain of the Integrator part of the RPM PI control loop. Valid values are 1 to (216 -1).

MTRCR2[31:16]: RPMINT_MIN – Is the Integrator Anti-Windup Threshold. Valid values are 1 to (216 -1).

Table 2.134. Motor Control 3 – RPM PI Control Loop Proportional Gain (kP)

MTRCR3 Base + 0x0C

Byte 3 2 1 0

Name RPMINT_LIM RPMPRPK

Default 0 0 0 0

Access R/W

MTRCR3[15:0]: RPMPRPK – Is the gain of the Proportional part of the RPM PI control loop. Valid values are 1 to (216 -1).

MTRCR3[31:16]: RPMINT_LIM – Is the Integrator Anti-Windup Clamp. Valid values are 1 to (216 -1).

Table 2.135. Motor Control 4 – Torque PI Control Loop Integrator Gain (kI)

MTRCR4 Base + 0x10

Byte 3 2 1 0

Name TRQINT_MIN TRQINTK

Default 0 0 0 0

Access R/W

MTRCR4[15:0]: TRQINTK – Is the gain of the Integrator part of the Torque PI control loop. Valid values are 1 to (216 -1).

MTRCR4[31:16]: TRQINT_MIN – Is the Integrator Anti-Windup Threshold. Valid values are 1 to (216 -1).

Table 2.136. Motor Control 5 – Torque PI Control Loop Proportional Gain (kP)

MTRCR5 Base + 0x14

Byte 3 2 1 0

Name TRQINT_LIM TRQPRPK

Default 0 0 0 0

Access R/W

MTRCR5[15:0]: TRQPRPK – Motor Power or Torque PI Proportional Gain, depends on value of MTRCR6[2].

MTRCR6[2] = 0: Motor Power - valid values are 0 to 1023.

MTRCR6[2] = 1: Torque PI Proportional Gain - valid values are 1 to (216-1).1

MTRCR5[31:16]: TRQINT_LIM – Is the Integrator Anti-Windup Clamp. Valid values are 1 to (216 -1).

Table 2.137. Motor Control 6 – Synchronization Delay and Control

MTRCR6 Base + 0x18

Byte 3 2 1 0

Name MTRCTRL SYNCDLY

Default 0 0 0 0

Access R/W

MTRCR6[21:0]: SYNCDLY1 – Is the Motor control delay to compensate for Ethernet daisy-chain and processing delay. Used to
synchronize starting and stopping of multiple motors simultaneously. Valid values are 0 to (222 -1).

MTRCR6[23:22]: MTRCTRL_SYNDLYSF1 – Sync Delay Scale Factor

 00 = Disable Sync Delay (single motor control or sync not used).

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 61

 01 = Sync Delay Units is nano-seconds (10-9)

 10 = Reserved

 11 = Reserved

MTRCR6[24]: RESET_PI – Reset the RPM PI Control

 0 = Normal Operation

 1 = Force the output to match the input (zero input values force the output to default of
 120 rpm)

MTRCR6[25]: STOP – Hold the Motor in Position

 0 = Normal Operation

 1 = Stop the motor rotation

MTRCR6[26]: TRQPI_MODE – Torque Control Mode controls how MTRCR5[15:0]: TRQPRPK is used:

 0 = Open Loop Mode – TRQPRPK value specifies Motor Power.

 1 = Closed Loop Mode – TRQPRPK value specifies the gain of the Proportional part of the Torque
 PI control loop.1

MTRCR6[27]: ESTOP – Emergency Stop

 0 = Normal Operation.

 1 = Engage E-Brakes without sync delay or MTR_ENGAGE.1

MTRCR6[28]: ENABLE – Enable Motor Drivers

 0 = Disable Motor Drivers

 1 = Enable Motor Drivers

MTRCR6[29]: MTR_MODE

 0 = RPM Control – Slew to target RPM and continue to run until stop or change in RPM target

 1 = Location Control – Rotate specified number of degrees or turns then stop. Ramp up from zero
 to Max RPM, run as needed, then ramp back down to zero.1

MTRCR6[30]: DIRECTION

 0 = Clockwise Rotation

 1 = Counter-Clockwise Rotation

MTRCR6[31]: ENGAGE – Sync Signal to latch all Control Registers from AHBL clock domain (50–100 MHz) to Motor clock
domain (24–25 MHz). Write to all other control registers first (including this one with this bit off). Write to this register (read-
modify-write) to set this bit. It can also be used to synchronize multiple nodes.

 0 = No Updates to Motor or PDM Control registers.

 1 = Transfer all control registers from AHBL holding registers to Motor PDM active registers.

Table 2.138. Motor Control Register 7 – Target RPM

MTRCR7 Base + 0x1C

Byte 3 2 1 0

Name tbd TRGRPM

Default 0 0 0 0

Access R/W

MTRCR7[15:0]: TRGRPM – Target RPM. Valid values are 0 to (216 -1).

MTRCR7 [31:16]: tbd

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 62

Table 2.139. Motor Control Register 8 – Target Location

MTRCR8 Base + 0x20

Byte 3 2 1 0

Name TRGLOC

Default 0 0 0 0

Access R/W

MTRCR8[31:0]: TRGLOC – Target Location. Valid values are -2,147,483,648 (-232) to 2,147,483,647 (232 -1).1

Approximately 24.8 hours @ 4,000 RPM counting each degree.

Table 2.140. Motor Control Register 9 – Current Location

MTRCR9 Base + 0x24

Byte 3 2 1 0

Name MTRLOC

Default 0 0 0 0

Access R

MTRCR9[31:0]: MTRLOC – Motor Location. Valid values are -2,147,483,648 (-232) to 2,147,483,647 (232 -1).1

Table 2.141. Motor Status Register 0 – RPM

MTRSR0 Base + 0x28

Byte 3 2 1 0

Name tbd MTRSTRPM

Default 0 0 0 0

Access R

MTRSR0[15:0]: MTRSTRPM – Current Motor RPM. Valid values are 0 to (216 -1).1

MTRSR0[31:16]: tbd.

Table 2.142. Motor Status Register 1

MTRSR1 Base + 0x2C

Byte 3 2 1 0

Name MTRSR1

Default 0 0 0 0

Access R

MTRSR1[0]: MTRSTR_MOV – Motor Moving
 0 = Motor Stopped or coasting

1 = Motor Moving under control
MTRSR1[1]: ACCEL – Motor Accelerating

0 = Motor Not Accelerating
1 = Motor Accelerating

MTRSR1[2]: DECL - Motor Deaccelerating
0 = Motor Not Deaccelerating
1 = Motor Deaccelerating

MTRSR1[3]: RPM_LOCK - Motor at Target RPM
0 = Motor Not @ Target RPM
1 = Motor @ Target RPM

MTRSR1[4]: MTRSTR_STOP
0 = Motor not stopped
1 = Motor at zero RPM

MTRSR1[5]: MTRSTR_VLD_RPM
0 = RPM to Theta period calculation is still in process or invalid RPM request
1 = RPM to Theta period calculation is complete

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 63

MTRSR1[31:6]: tbd

Table 2.143. Predictive Maintenance Control Register 0

PDMCR0 Base + 0x30

Byte 3 2 1 0

Name PDMCR0

Default 0 0 0 0

Access R/W

PDMCR0[0]: START – Start PDM data collection.
0 = Collection not started
1 = Collection started

PDMCR0[1]: PKDTEN – PDM Normalization Peak Detect Enable
0 = PDM Peak Detect is Disabled
1 = PDM Peak Detect is Enabled

PDMCR0[2]: FOLDEN – Enable Single Folding of PDM data
0 = Single Fold disabled
1 = Single Fold enabled

PDMCR0[3]: 2FOLDEN – Enable Double Folding of PDM data. All PDM training data was captured using Double Folding.
0 = Double Folding disabled
1 = Double Folding enabled

PDMCR0[4]: CONTINUOUS – Collect data as long as START = 1.
0 = Fixed – Collect PDM data for set number of rotations
1 = Continuous – Collect PDM data continuously (counting rotations in status reg)

PDMCR0[5]: TBD
PDMCR0[6]: CALIB – ADC offset calibration

0 = Normal operation
1 = Calibrate ADC offsets (motor not running)

PDMCR0[7]: ADCH – ADC Channel Select for PDMDDR and PDMQDR registers
0 = ADC Channel = Amps
1 = ADC Channel = Volts

PDMCR0[15:8]: PREREVS – Pre-Data Collection Revolutions
Number of Theta (Field Vector) revolutions to ignore before Data Collection. All PDM training data was captured using a value
of 15.
PDMCR0[31:16]: DCREVS – Data Collection Revolutions
Theta (Field Vector) revolutions to capture PDM data (armature revs scale based on number of motor stator poles.
The motor used for training has 4-poles – 16 Theta rotations equate to four motor shaft rotations). Valid values 1 to 65,536.
All PDM training data was captured using 200 rotations.

Table 2.144. Predictive Maintenance Control Register 1

PDMCR1 Base + 0x34

Byte 3 2 1 0

Name PDMCR1

Default 0 0 0 0

Access R/W

PDMCR1: TBD

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 64

Table 2.145. Predictive Maintenance Status Register

PDMSR Base + 0x38

Byte 3 2 1 0

Name PDMSR

Default 0 0 0 0

Access R

PDMSR[0]: DONE – PDM activity status
 0 = PDM is not done with collecting data
 1 = PDM is done with collecting data
PDMSR[1]: BUSY – PDM activity status
 0 = PDM is not active
 1 = PDM is busy collecting data
PDMSR[2]: CAL_DONE – ADC Offset Calibration status
 0 = Offset calibration is not done
 1 = Offset calibration is done
PDMSR[3]: READY – PDM Data Collector status
 0 = Not ready to collect data
 1 = Ready to collect data
PDMSR[15:4]: TBD
PDMSR[31:16]: PDMSR_ROT – Current count of Theta rotations PDM data has been collected for.

Table 2.146. Predictive Maintenance Current/Voltage Data Register

PDMDDR Base + 0x3C

Byte 3 2 1 0

Name ADC1 ADC0

Default 0 0 0 0

Access R

PDMDDR[15:0]: ADC0 Voltage or Current reading Phase A1

PDMDDR[31:16]: ADC1 Voltage or Current reading Phase B1

Table 2.147. Predictive Maintenance Current/Voltage Data Register

PDMQDR Base + 0x40

Byte 3 2 1 0

Name ADC3 ADC2

Default 0 0 0 0

Access R

PDMQDR[15:0]: ADC2 Voltage or Current reading Phase C1

PDMQDR[31:16]: ADC3 Voltage or Current reading of DC supply1

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 65

Table 2.148. Versa Board Switch Status Register

BRDSW Base + 0x50

Byte 3 2 1 0

Name TBD PMOD2 DIPSW PBSW

Default 0 0 0 0

Access R

PBSW[0]: SW5 – Pushbutton 2
 0 = Switch active (pressed)
 1 = Switch inactive
PBSW[1]: SW3 – Pushbutton 1
 0 = Switch active (pressed)
 1 = Switch inactive
PBSW[2]: SW2 – Pushbutton 3
 0 = Switch active (pressed)
 1 = Switch inactive
PBSW[7:3]: n/c - undefined
DIPSW[3:0]: SW10 – DIP Switch
 0 = Switch closed
 1 = Switch open
DIPSW[7:4]: n/c – undefined
PMOD2[0]: J8 Pin 1 I/O
PMOD2[1]: J8 Pin 2 I/O
PMOD2[2]: J8 Pin 3 I/O
PMOD2[3]: J8 Pin 4 I/O
PMOD2[4]: J8 Pin 7 I/O
PMOD2[5]: J8 Pin 8 I/O
PMOD2[6]: J8 Pin 9 I/O
PMOD2[7]: J8 Pin 10 I/O

Table 2.149. Versa Board LED & PMOD Control Register

BRDLEDS Base + 0x54

Byte 3 2 1 0

Name PMOD2DIR PMOD2 7SEG LED

Default 0xF 0xF 0xF 0xF

Access R/W

LED[0]: LED D18 – 0 = On, 1 = Off

LED[1]: LED D19 – 0 = On, 1 = Off

LED[2]: LED D20 – 0 = On, 1 = Off

LED[3]: LED D21 – 0 = On, 1 = Off

LED[4]: LED D22 – 0 = On, 1 = Off

LED[5]: LED D23 – 0 = On, 1 = Off

LED[6]: LED D24 – 0 = On, 1 = Off

LED[7]: LED D25 – 0 = On, 1 = Off

7SEG[0]: D36 Segment a – 0 = On, 1 = Off

7SEG[1]: D36 Segment b – 0 = On, 1 = Off

7SEG[2]: D36 Segment c – 0 = On, 1 = Off

7SEG[3]: D36 Segment d – 0 = On, 1 = Off

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 66

7SEG[4]: D36 Segment e – 0 = On, 1 = Off

7SEG[5]: D36 Segment f – 0 = On, 1 = Off

7SEG[6]: D36 Segment g – 0 = On, 1 = Off

7SEG[7]: D36 Segment dp – 0 = On, 1 = Off

PMOD2[0]: J8 Pin 1 I/O

PMOD2[1]: J8 Pin 2 I/O

PMOD2[2]: J8 Pin 3 I/O

PMOD2[3]: J8 Pin 4 I/O

PMOD2[4]: J8 Pin 7 I/O

PMOD2[5]: J8 Pin 8 I/O

PMOD2[6]: J8 Pin 9 I/O

PMOD2[7]: J8 Pin 10 I/O

PMOD2DIR[0]: J8 Pin 1 Direction – 0 = Input, 1 = Output

PMOD2DIR[1]: J8 Pin 2 Direction – 0 = Input, 1 = Output

PMOD2DIR[2]: J8 Pin 3 Direction – 0 = Input, 1 = Output

PMOD2DIR[3]: J8 Pin 4 Direction – 0 = Input, 1 = Output

PMOD2DIR[4]: J8 Pin 7 Direction – 0 = Input, 1 = Output

PMOD2DIR[5]: J8 Pin 8 Direction – 0 = Input, 1 = Output

PMOD2DIR[6]: J8 Pin 9 Direction – 0 = Input, 1 = Output

PMOD2DIR[7]: J8 Pin 10 Direction – 0 = Input, 1 = Output

Note: Register function is not supported in the initial release.

2.12. SPI Manager IP Design Details
The Serial Peripheral Interface (SPI) is a high-speed synchronous, serial, full-duplex interface that allows a serial bitstream of
configured length (8, 16, 24, and 32 bits) to be shifted into and out of the device at a programmed bit transfer rate. The Lattice
SPI Manager IP Core is normally used to communicate with external SPI subordinate devices such as display drivers, SPI
EPROMS, and analog-to-digital converters.

The SPI Manager IP is used to be integrated in node system SOC design as defined in node system top level architectural
diagram. This IP can be controlled by C/C++ APIs of node system CPU to read/write data from/to certain SPI based
peripheral/sensors. These C/C++ based APIs can be controlled by main system as well.

This section only provides minimum details on the SPI Manager IP required for integration and control. For more details, refer
to SPI Manager IP user guide.

2.12.1. Overview

The SPI Manager IP Core allows the CPU inside the FPGA to communicate with multiple external SPI subordinate devices. The
data size of the SPI transaction can be configured to be 8, 16, 24, or 32 bits. This IP is designed to use an internal FIFO of
configurable depth to minimize the host intervention during data transfer. SPI Manager IP Core supports all SPI clocking
modes – combinations of Clock Polarity (CPOL) and Clock Phase (CPHA) to match the settings of external devices.

The SPI Manager IP provides a bridge between LMMI/AHB-Lite/APB and standard external SPI bus interfaces (functional
diagram is shown in Figure 2.13. On the external, off-chip side the SPI Manager Controller IP has a standard SPI bus interface.
On the internal, on-chip side, the SPI Manager Controller IP has LMMI/AHB-Lite/APB subordinate interface depending on the
Interface attribute settings.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 67

LMMI Device

SLV_SEL_REG

CFG_REG

CLK_PRESCL_REG

CLK_PRESCH_REG

INT_STATUS_REG

INT_ENABLE_REG

INT_SET_REG

BYTE_COUNT_REG

BYTE_RST_REG

WR_DATA_REG
RD_DATA_REG

Clock
Generator

Control
Logic

LMMI/LINTR

LMMI2AHB-Lite
Bridge

LMMI2APB BridgeAPB INTERFACE
(Optional)

AHB-Lite INTERFACE
(Optional)

Write
FIFO

Read
FIFO

SPI Master IP

SPI Top

SPI Master

SPI Slave

LINTR

Data Path

Shift Register

sclk_o

ss_o[n-1:0)

miso_o

mosi_i

Figure 2.13. SPI Manager IP Core Block Diagram

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 68

2.12.2. SPI Manager Register Map

Table 2.150. SPI Manager Register Map

Offset LMMI
Offset

APB/AHBL
Register Name Access Type Description

0x0 0x00 WR_DATA_REG WO Write Data Register

0x0 0x00 RD_DATA_REG RO Read Data Register

0x1 0x04 SLV_SEL_REG RW Subordinate Select Register

0x2 0x08 CFG_REG RW Configuration Register

0x3 0x0C CLK_PRESCL_REG RW Clock Pre-Scaler Low Register

0x4 0x10 CLK_PRESCH_REG RW Clock Pre-Scaler High Register

0x5 0x14 INT_STATUS_REG RW1C Interrupt Status Register

0x6 0x18 INT_ENABLE_REG RW Interrupt Enable Register

0x7 0x1C INT_SET_REG WO Interrupt Set Register

0x8 0x20 WORD_CNT_REG RO Word Count Register

0x9 0x24 WORD_CNT_RST_REG WO Word Count Reset Register

0xA 0x28 TGT_WORD_CNT_REG RW Target Word Count Register

0xB 0x2C FIFO_RST_REG WO FIFO Reset Register

0xC 0x30 SLV_SEL_POL_REG RW Subordinate Select Polarity Register

0xD 0x34 FIFO_STATUS_REG RO FIFO Status Register

0xE

0xF
0x38-0x3C Reserved RSVD

Reserved. Write access is ignored and 0 is returned
on read access.

Table 2.150 lists the address map and specifies the registers available to the user. The offset of each register is dependent on
the Interface attribute setting as follows:

• Interface selected to be LMMI: the offset increments by one

• Interface selected to be either AHBL or APB: the offset increments by four to allow easy interfacing with the Processor
and System Buses. In this mode, each register is 32-bit wide wherein the upper unused bits are reserved and the lower
bits are described in each register description.

Note:
1. For more details on the registers above, refer to SPI Manager IP Core – Lattice Radiant Software (FPGA-IPUG-02069).

2. The RD_DATA_REG and WR_DATA_REG share the same offset. Write access to this offset goes to WR_DATA_REG while

read access goes to RD_DATA_REG.

2.12.3. Programming Flow

2.12.3.1. Initialization

The following SPI Manager registers should be set properly before performing SPI transaction:

• SLV_SEL_REG – Set 1’b1 to the bit for the target node. Set 1’b0 to other bits.

• SLV_SEL_POL_REG – may be configured once after reset since this setting is usually fixed.

• CLK_PRESCL_REG – Set based on target sclk_o frequency.

• CLK_PRESCH_REG – Set based on target sclk_o frequency.
The CPU needs to update the above registers only when SPI Manager aster is switching to different subordinate device. This
means there is no need to perform initialization again if the next transaction is for the currently selected subordinate device.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52473

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 69

2.12.3.2. Transmit/Receive Operation
The following are the recommended steps for performing the SPI transaction. This assumes that the module is not currently
performing any operation.
1. Set the following CFG_REG fields according to the target Subordinate settings: cpha, cpol, ssnp, and lsb_first. Set the

only_write field based on the current transaction. If CFG_REG.only_write is 1’b0, SPI manager performs both transmit

and receive operations (full-duplex). On the other hand, if CFG_REG.only_write is 1’b1, SPI Manager IP Core performs

Transmit operation only.

2. Set TGT_WORD_CNT_REG according to the number of words to transfer.

3. Reset WORD_CNT_REG by writing 8’hFF to Word Count Reset Register

4. Write data words to WR_DATA_REG, amounting to ≤ FIFO Depth.

Optional: If interrupt mode is desired, enable target interrupts in INT_ENABLE_REG If number of words to transfer is
≤ FIFO Depth, set tr_cmp_en = 1’b1. If number of words to transfer is > FIFO Depth, set the following: tx_fifo_aempty_en
= 1’b1 and tr_cmp_en = 1’b1. Other interrupts not specified above are disabled.

5. If total number of words to transfer > FIFO Depth, wait for Transmit FIFO Almost Empty Interrupt.

a. If polling mode is desired, read INT_STATUS_REG until tx_fifo_aempty_int asserts.

b. If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT_STATUS_REG and check that

tx_fifo_aempt_int is asserted.

6. Clear Transmit FIFO Almost Empty Interrupt by writing 1’b1 to INT_STATUS_REG.tx_fifo_aempty_int. Clearing all

interrupts by writing 8’hFF to INT_STATUS_REG is also okay since the user is not interested in other interrupts for this

recommended sequence.

7. Write data words to WR_DATA_REG, amounting to less than or equal to (FIFO Depth – TX FIFO Almost Empty Flag).

8. If CFG_REG.only_write = 1’b0, read all the data in RD_DATA_REG. It is expected that Receive FIFO has (FIFO Depth – TX

FIFO Almost Empty Flag - 1) amount of data words. Read INT_STATUS_REG.rx_fifo_ready_int to check if RD_DATA_REG is

already empty.

9. If there is remaining data to transfer, go back to Step 6. Note that you can read Word Count Register to determine the

number of words already transferred in SPI interface.

10. Wait for Transfer Complete Interrupt.

a. If polling mode is desired, read INT_STATUS_REG until tr_cmp_int asserts.

b. If interrupt mode is desired, set INT_ENABLE_REG = 8’h80 then wait for interrupt signal to assert. Then read

INT_STATUS_REG and check that tr_cmp_int is asserted.

11. Clear all interrupts by writing 8’hFF to INT_STATUS_REG.

12. If CFG_REG.ONLY_WRITE = 1’b0, read all the data in RD_DATA_REG. Read INT_STATUS_REG.rx_fifo_ready_int to check if

RD_DATA_REG is already empty

2.13. I2C Manager IP Design Details
The I2C (Inter-Integrated Circuit) bus is a simple, low-bandwidth, short-distance protocol. It is often seen in systems with
peripheral devices that are accessed intermittently. It is commonly used in short-distance systems, where the number of
traces on the board should be minimized. The device that initiates the transmission on the I2C bus is commonly known as the
Manager, while the device being addressed is called the Subordinate.

The I2C Manager IP is used to be integrated in node system SOC design as defined in node system top level architectural
diagram. This IP can be controlled by C/C++ APIs of node system CPU to read/write data from/to certain I2C based
peripheral/sensor. These C/C++ based APIs can be controlled by main system as well.

This section only provides minimum details of the I2C Manager IP required for the integration and controlling. Refer to the
I2C Manager IP user guide for more details.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 70

2.13.1. Overview

The I2C Manager IP Core accepts commands from LMMI/APB interface through the register programming. These commands
are decoded into I2C read/write transactions to the external I2C subordinate device. The I2C bus transactions can be
configured to be 1 to 256 bytes in length.

The I2C Manager Controller can operate in interrupt or polling mode. This means that the CPU can choose to poll the I2C
Manager for a change in status at periodic intervals (Polling Mode) or wait to be interrupted by the I2C Manager Controller
when data needs to be read or written (Interrupt Mode).

Figure 2.14 shows the functional diagram of the I2C Manager Controller.

APB2LMMI
Bridge

I²C
Master IP

To Slaves

A
P

B
 IN

T
E

R
FA

C
E

(O
p

ti
o

n
a

l)

LM
M

I I
N

T
E

R
F

A
C

E

I²C
 IN

TE
R

FA
C

E

apb_paddr_i[15:0]

apb_psel_i

apb_penable_i

apb_pwrite_i

apb_pwdata_i[31:0]

apb_pready_o

apb_prdata_o[31:0]

apb_psleverr_o

dk_i

rst_n_i

lmmi_request_i

lmmi_wr_rdn_i

lmmi_offset_i[3:0]

lmmi_wdata_i[7:0]

lmmi_rdata_o[7:0]

lmmi_data_valid_o

lmmi_ready_o

int_o

scl_io

sda_io

Figure 2.14. I2C Manager IP Core Functional Diagram

2.13.2. I2C Manager Register Map
The CPU can control the I2C Manager IP Core by writing to and reading from the configuration registers. The I2C Manager IP
Core configuration registers can be performed at the run-time.
Table 2.151 lists the address map and specifies the registers available to you. The offset of each register is dependent on
attribute APB Mode Enable setting as follows:

• APB Mode Enable is Unchecked – the offset increments by 1

• APB Mode Enable is Checked – the offset increments by 4 to allow easy interfacing with the Processor and System

Buses. In this mode, each register is 32-bit wide wherein the upper bits [31:8] are reserved and the lower 8 bits [7:0]

are described in the Programming Flow section.

The RD_DATA_REG and WR_DATA_REG share the same offset. Write access to this offset goes to WR_DATA_REG while read
access goes to RD_DATA_REG.

Table 2.151. I2C Manager IP Core Registers Summary

Offset LMMI
Offset

APB/AHBL
Register Name Access Type Description

0x0 0x00 WR_DATA_REG WO Write Data Register

0x0 0x00 RD_DATA_REG RO Read Data Register

0x1 0x04 SLAVE_ADDRL_REG RW Subordinate Address Lower Register

0x2 0x08 SLAVE_ADDRH_REG RW Subordinate Address Higher Register

0x3 0x0C CONTROL_REG WO Control Register

0x4 0x10 TGT_BYTE_CNT_REG RW Byte Count Register

0x5 0x14 MODE_REG RW Mode Register

0x6 0x18 CLK_PRESCL_REG RW Clock Prescaler Low Register

0x7 0x1C INT_STATUS1_REG RW1C First Interrupt Status Register

0x8 0x20 INT_ENABLE1_REG RO First Interrupt Enable Register

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 71

Offset LMMI
Offset

APB/AHBL
Register Name Access Type Description

0x9 0x24 INT_SET1_REG WO First Interrupt Set Register

0xA 0x28 INT_STATUS2_REG RW1C Second Interrupt Status Register

0xB 0x2C INT_ENABLE2_REG RO Second Interrupt Enable Register

0xC 0x30 INT_SET2_REG WO Second Interrupt Set Register

0xD 0x34 FIFO_STATUS_REG RO FIFO Status Register

0xE 0x38 SCL_TIMEOUT_REG RW SCL Timeout Register

0xF
0x3C Reserved RSVD

Reserved. Write access is ignored and 0 is returned
on read access.

Note: RW1C (Writing 1’b1 on register bit clears the bit to 1’b0. Writing 1’b0 on register bit is ignored). For more details on
the registers above, refer to I2C Manager IP Core – Lattice Radiant Software User Guide (FPGA-IPUG-02071).

2.13.3. Programming Flow

2.13.3.1. Initialization

The following I2C Manager registers can be set outside of the actual transaction sequence. These should be set properly
before starting an I2C transaction:

• SLAVE_ADDRL_REG, SLAVE_ADDRH_REG – Set the address of the target Subordinate Device

• CLK_PRESCL_REG – Set based on target scl_io frequency. The upper bits, MODE_REG. clk_presc_high are set during
transactions because they are grouped with mode register.

• SCL_TIMEOUT_REG – Set to 8’h00 if the user does not want to check the SCL timeout or set to desired timeout value.

• INT_ENABLE2_REG – it is recommended to enable all interrupts in this register to check for error/unexpected events.

When accessing multiple devices, the SLAVE_ADDRL_REG or SLAVE_ADDRH_REG registers should be set prior to transaction.

2.13.3.2. Writing to the Subordinate Device

The following are the recommended steps for performing I2C write transaction, this assumes that the module is not currently
performing any operation and initialization is completed.

To perform I2C write transaction:
1. Set the following MODE_REG fields according to the desired transfer mode: bus_speed_mode, addr_mode, ack_mode,

clk_presc_high. Set the trx_mode field to 1’b0 for write transaction.

2. Set TGT_BYTE_CNT_REG according to the number of bytes to transfer.

3. Write data to WR_DATA_REG, amounting to ≤ FIFO Depth.

4. Set CONTROL_REG.start to 1’b1 to start the I2C transaction.

Optional: If interrupt mode is desired, Enable target interrupts in INT_ENABLE1_REG. If number of words to transfer is
≤ FIFO Depth, set tr_cmp_en = 1’b1 If number of words to transfer is > FIFO Depth, set the following: tx_fifo_aempty_en
= 1’b1 and tr_cmp_en = 1’b1. Other interrupts in this register are disabled.

5. If total number of bytes to transfer > FIFO Depth, wait for Transmit FIFO Almost Empty Interrupt. If polling mode is desired,

read INT_STATUS1_REG until tx_fifo_aempty_int asserts. If interrupt mode is desired, simply wait for interrupt signal to

assert, then read INT_STATUS1_REG and check that tx_fifo_aempt_int is asserted. In both cases, read also

INT_STATUS2_REG to ensure that the transfer is good. I2C Manager IP Core

6. Clear Transmit Buffer Almost Empty Interrupt by writing 1’b1 to INT_STATUS1_REG.tx_fifo_aempty_int. Clearing all

interrupts in this register by writing 8’hFF to INT_STATUS1_REG is also okay since the user is not interested in other

interrupts for this recommended sequence.

7. Write data to WR_DATA_REG, amounting to less than or equal to (FIFO Depth – TX FIFO Almost Empty Flag).

8. If there is remaining data to transfer, go back to Step 6.

9. Wait for Transfer Complete Interrupt.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52458

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 72

10. If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts. If interrupt mode is desired, set
INT_ENABLE1_REG = 8’h80 then wait for interrupt signal to assert. Read INT_STATUS1_REG and if tr_cmp_int is
asserted.

11. Clear all interrupts by writing 8’hFF to INT_STATUS1_REG.

2.13.3.3. Reading from the Subordinate Device
The following are the recommended steps for performing I2C read transactions, assuming that the module is currently not
performing any operation and if initialization is completed.
To perform I2C read transaction:
1. Set the following MODE_REG fields according to the desired transfer mode: bus_speed_mode, addr_mode, ack_mode,

clk_presc_high. Set the trx_mode field to 1’b1 for read transaction.

2. Set TGT_BYTE_CNT_REG according to the number of bytes to transfer.

3. Set CONTROL_REG.start to 1’b1 to start the I2C transaction.

Optional: If interrupt mode is desired, enable target interrupts in INT_ENABLE1_REG If number of words to transfer is
≤ FIFO Depth, set tr_cmp_en = 1’b1.

4. If number of words to transfer is > FIFO Depth, set the following: rx_fifo_afull_en = 1’b1 and tr_cmp_en = 1’b1. Other

interrupts in this register are disabled.

5. If total number of bytes to receive > FIFO Depth, wait for Receive FIFO Almost Full Interrupt. If polling mode is desired,

read INT_STATUS1_REG until rx_fifo_afull_int asserts. If interrupt mode is desired, wait for the interrupt signal to assert,

and then read INT_STATUS1_REG and check if rx_fifo_afull_int is asserted. In both cases, read also INT_STATUS2_REG to

ensure that the transfer is good.

6. Clear Receive FIFO Almost Full Interrupt by writing 1’b1 to INT_STATUS1_REG.rx_fifo_afull_int. Clearing all interrupts in

this register by writing 8’hFF to INT_STATUS1_REG is also okay since the user is not interested in other interrupts for this

recommended sequence.

7. Read all data from RD_DATA_REG. It is expected the amount of received data is less than or equal to (FIFO Depth – TX

FIFO Almost Empty Flag). Read FIFO_STATUS_REG to confirm if Receive FIFO is emptied.

8. If there is remaining data to receive, go back to Step 5.

9. Wait for Transfer Complete Interrupt. If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts If

interrupt mode is desired, set INT_ENABLE1_REG = 8’h80 and wait for the interrupt signal to assert. Read

INT_STATUS1_REG and check that tr_cmp_int is asserted.

10. Clear all interrupts by writing 8’hFF to INT_STATUS1_REG.

11. Read all the remaining data from RD_DATA_REG.

2.14. UART IP Design Details
The Lattice Semiconductor UART (Universal Asynchronous Receiver/Transmitter) IP Core is designed for use in serial
communication, supporting the RS-232.

The UART IP is used to be integrated in the node system SOC design as defined in node system top level architectural diagram.
This IP can be controlled by C/C++ APIs of node system CPU to read/write data from/to certain UART/modbus based
peripheral/sensor. These C/C++ based APIs can be controlled by main system as well.

This section only provides minimum details of the UART IP required for the integration and controlling. Refer to the UART IP
user guide for more details.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 73

2.14.1. Overview
The UART IP Core performs two main functions:

• Serial-to-parallel conversion on data characters received from an external UART device

• Parallel-to-serial conversion on data characters received from the Host located in the FPGA
The CPU can read the complete status of the UART at any time during the functional operation. Status information reported
includes the type and condition of the transfer operations being performed by the UART IP Core, as well as any error
conditions (parity, overrun, framing, or break interrupt).
The UART IP has implemented a processor-interrupt system similar to UART 16450. Interrupts can be programmed to your
requirements, minimizing the computing required to handle the communications link. The UART IP currently does not
implement the MODEM-control feature of UART 16450.
The registers of UART IP Core are accessed by the CPU (FPGA internal components) through an AMBA APB interface. The
functional block diagram of UART IP Core is shown in Figure 2.15. The dashed lines in the figure are optional
components/signals, which means they may not be available in the IP when disabled in the attribute.

UART 16450
Register Set

TXMTT

THR/
XMIT
FIFO

TX
FSM

RXCVER

RBR/
RCVR
FIFO

RX
FSM

UART IP Core

int_o

APB I/F

tx_ready_n_o

txd_o

rx_ready_n_o

rxd_o

Figure 2.15. UART IP Core Functional Block Diagram

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 74

2.14.1.1. UART Register Description

The register address map, shown in Table 2.152, specifies the available IP Core registers. This is based on register set of UART
16450 but the offset address is changed to simplify the access to each register. The offset of each register increments by four
to allow easy interfacing with the Processor and System Buses. In this case, each register is 32-bit wide wherein the lower 8
bits are used and the upper 24 bits are unused. The unused bits are treated as reserved – write access is ignored and read
access returns 0.

Table 2.152. UART Register Map

Offset Register Name Access Type Description

0x00 RBR RO Receive Buffer Register

0x00 THR WO Transmitter Holding Register

0x04 IER RW Interrupt Enable Register

0x08 IIR RO Interrupt Identification Register

0x0C LCR RW Line Control Register

0x10 Reserved RSVD Reserved

0x14 LSR RO Line Status Register

0x18-0x1C Reserved RSVD Reserved

0x20 DLR_LSB WO Divisor Latch Register LSB

0x24 DLR_MSB WO Divisor Latch Register MSB

0x28-0x3C Reserved RSVD Reserved

Note: Details of Registers is given in UART IP Core – Lattice Propel Builder User Guide (FPGA-IPUG-02105).

2.14.2. Programming Flow

2.14.2.1. Initialization
The following UART register fields should be set properly before performing UART transaction:

• Line Control Register – even_parity_sel, parity_en, stop_bit_ctrl, char_len_sel

• Divisor Latch Registers – divisor_msb, divisor_lsb
These should match the corresponding setting in the communicating UART for the serial transaction to be successful.
Note that reset values of these register fields are configurable during IP generation. Thus, in some applications, initialization
step is not necessary when attributes are properly set.

2.14.2.2. Transmit Operation

The following are the steps for transmitting character data through the UART IP Core. This is assuming that the IP is not
performing transmit operation or at least the XMIT FIFO is empty.

Transmit Operation – Interrupt Mode
To perform transmit operation in interrupt mode:
1. Write the data to THR. In FIFO mode, user can write up to 16-character data.

2. Set IER.thre_int_en=1’b1 to enable Transmit Holding Register Empty interrupt.

3. Wait for Transmit Holding Register Empty interrupt to assert.

4. Wait for interrupt assertion and check that IIR[3:0]= 4’b0010.

5. If the user needs to send more characters, repeat Steps 1-3 until all characters are sent.

When using interrupts, set IER.thre_int_en=1’b0 to disable the interrupt.

Transmit Operation – Polling Mode
To perform transmit operation in polling mode:
1. Write a data to THR. It is recommended not to enable FIFO for polling mode to save resources.

2. Read LSR until the thr_empty bit asserts.

3. If the user needs to send more characters, repeat Steps 1 and 2 until all characters are sent.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52880

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 75

2.14.2.3. Receive Operation

The following are the steps for the receiving character data through the UART IP Core. This is assuming that the IP core is not
performing receive operation.

Receive Operation – Interrupt Mode
To perform receive operation in interrupt mode:
1. Enable the following interrupts:

a. Received Data Available Interrupt (IER.rda_int_en=1’b1) – to notify the host that a data is received.

b. Receiver Line Status interrupt (IER.rls_int_en=1’b1) – to notify the host of receive statuses such as error and break

condition.

2. Wait for interrupt assertion and check that IIR[2:0]= 3’b100 (Receive Data Available). If Receiver Line Status Interrupt

asserts (IIR[2:0]=3’b110), read the LSR to determine the cause.

3. If Receiver Line Status Interrupt does not occur, read the character data from RBR:

a. If Receive Data Available Interrupt occurs, read a data from RBR.

b. If Character Timeout Interrupt occurs, read LSR. If LSR.data_rdy=1’b1, read RBR.

4. Repeat Steps 2-3 until all expected data are received.

Receive Operation – Polling Mode
To perform receive operation in polling mode:
1. Read LSR until the thr_empty bit asserts. Also, check that no error status bits are asserted.

2. Read RBR if there is no error.

3. If the user needs to receive more characters, repeat Steps 1 and 2 until all characters are received.

2.14.2.4. Data Format
The character data written to THR and read from RBR is in little endian format as shown in Figure 2.16.

0 D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

7-Bit Data

8-Bit Data

Figure 2.16. UART Data Format

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 76

3. Resource Utilization
The resource utilization for the Main System is shown in Table 3.1

Table 3.1. Main System Resource Utilization

Blocks LUTs EBRs LRAMs DSPs Comments

RISC-V CPU 5757 18 — 6 —

ISR RAM 116 32 — — —

Data RAM (System Memory) 884 — 2 — —

AXI4 Interconnect 17719 — — — —

APB Interconnect 78 — — — —

FIFO DMA 924 16 — — —

EtherControl 4810 16 — — —

UART 271 — — — —

GPIO 108 — — — —

PLL 1 — — — —

SPI Flash Controller 508 1 — — —

AXI2APB 269 0 — — —

CNN Coprocessor Unit (CCU) 992 — — 4 —

Reset Sync 78 — — — —

Multiport Extension 16414 — — 65 —

UDP Stack 8870 — — 4 —

SGMII MAC Wrapper 4346 7 — — —

Top-level 2 — — — —

Total 62147 90 2 79 —

The resource utilization for the Node System is shown in Table 3.2.

Table 3.2. Node System Resource Utilization

Blocks LUTs EBRs LRAMs
DSP

MULT
Comments

RISC-V CPU 2537 2 — — —

ISR RAM 51 16 — — —

Data RAM (System Memory) 155 0 2 — —

AHBL Interconnect 1721 — — — —

APB Interconnect 14 — — — —

FIFO DMA 754 16 — — —

EtherControl 4209 11 — — —

SPI Flash Controller 229 1 — — —

AHBL2APB 148 — — — —

Motor Control Data Collector 4152 17 — 15.5 —

UART 261 — — — —

I2C Manager 585 — — — —

SPI Manager 398 — — — —

Top-level 2 — — — —

Total 15216 63 2 15.5 —

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 77

4. Software APIs

4.1. Main System APIs

4.1.1. Tasks of the Main System

The Main System acts as an interface between the user interface and the node system, which controls the motor IP. The
commands are then sent to the nodes for configuration through EtherConnect. The Main System also enables the user
interface to monitor various parameters of the motors. The system also receives commands from the GPIO switches attached
to the board and sends these commands to the nodes for configuration through EtherConnect as well.

The tasks to be carried out by the Main System can be categorized as follows:

• System Initialization
This API is used to configure the EtherControl and establish communication between the Main system and nodes. This
takes place as soon as there is a power cycle or reset is pressed.

• Handle all the interrupts (GPIO, EtherConnect) and respond to the interrupts by taking appropriate actions.
Communication with the host system, Node System, and mechanical switches occur through interrupts and the Main
System takes appropriate actions based on the interrupts caused. The priority order of all the interrupts is
GPIO > EtherConnect.

• Switch Configuration over GPIO
Users can Start, Stop, Accelerate, and Decelerate the motors with the help of switches provided. The Main System
configures the node motor IP as per the switch configuration.

• Communicate with host system user interface over Ethernet
The host system user interface sends configuration data and status check commands to the Main System, and the Main
System responds based on the command.

• Communicate with Node System and motor IP over EtherConnect
As per the commands received by the Main System, it creates burst packets to send to the Node System, which the Node
System then receives and implements them. This communication between the main and Node System happens over
EtherConnect and at a given time, a maximum of 256 bytes can only be transmitted from either direction.

• ISR3_EtherConnect

static void etherConnect_isr (void *ctx)

• The primary function of the EtherConnect ISR function is to set the interrupt flag, acknowledge the interrupt, and return
a value. The EtherConnect interrupt is used as an acknowledgment of the completion of a single transaction of a
command sent by the Main System to the Node System. The IRQ value for EtherConnect is IRQ3.

• System Initialisation API

int system_initialisation (void)

• This API is present in the main.c file. It does not take any parameter and returns an integer value. It returns 0 if everything
is successfully completed or a – 1 if there is an error.

• This API is used to establish communication between the Main System and the Node System. It enables the DMA FIFO
module and sends 10 broadcast packets to detect the number of nodes available and active in the whole setup. By reading
the PHY Link Status register, it affirms whether the communication is established or not, and accordingly, turns ON the
Main System LEDs. This API then sends three training packets and one normal packet to the Node System through the
EtherConnect in order to affirm the connection establishment with the Node System.

• Motor Configuration API

• int motor_config_api(uint32_t address, uint32_t data, uint32_t multi)

This API is present in the main.c file. It needs three parameters namely:

• address: signifies a register in the Motor Control IP

• data: what needs to be written in that register

• multi: data to be transmitted on multiple chains or selected chain only

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 78

It returns the following integer values:

• 0: if everything is correct

• –1: if there was any error

The API is called when there is a requirement to configure a register in the Motor Control IP of the Node System. This
occurs in two cases:

• when there is an ON switch on any GPIO

• The API creates burst packets that are sent to the Node System over EtherConnect. The header in the burst packet
indicates that a particular packet is for Motor Configuration and for which nodes this packet is intended. Once the burst
packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start Transaction Register.
After the Node System completes the task successfully, the Main System receives an interrupt and validates the value of
the interrupt info register. Upon the confirmation of the value of the interrupt info register, this API returns a 0 value or
a –1 if there is an error.

• Motor Status API

• int motor_status_api(uint32_t address, uint32_t multi)

• This API is present in the main.c file. It needs one parameter:

• address: signifies a register in the Motor Control IP

• multi: etherconnet packet to be transmitted on multiple chains or selected chain only

It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

• The API is called when there is a requirement to read a register in the Motor Control IP of the Node System.

• The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst packet
indicates that a particular packet is for Motor Status Read and for which nodes this packet is intended. Once the burst
packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start Transaction Register.
After the Node System has taken appropriate actions successfully, the Main System receives an interrupt and it validates
the value of the interrupt info register. Upon the confirmation of the value of the interrupt info register, this API returns
a 0 value or a –1 if there is an error.

• PDM Data Fetch API

• int pdm_data_fetch_api(uint32_t total_size, uint32_t node_addr)

• The API is present in the main.c file. It needs one parameter:

• total_size: the size of the PDM data required from user interface

• node_addr: node select value sent in packet

• It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

• The API is called when there is a requirement to read a bulk maintenance data from the Motor Control IP of the Node
System.

• The maximum data that can be transferred in a single transaction from node to Main System is 256 bytes. Therefore, if
the total_size is larger than 256 bytes, chunks of 256 bytes are requested one by one until the total_size requirement is
met.

• This API first configures the DMA register by writing the destination base and destination end address in specific registers.
The API creates burst packets that are sent to the Node System over EtherConnect. The header in the burst packet
indicates that a particular packet is for PDM Data Fetch and for which node this packet is intended. Once the burst packet
is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start Transaction Register. After
the Node System completes the task successfully, the Main System receives an EtherConnect interrupt and it validates
the value of the interrupt info register. The value of the DMA status register is to be validated as confirmation of the
same. A successful validation signifies that a single chunk of data is successfully written into the Main System memory.
This process is repeated until all the chunks are received by the Main System.

• A final EtherConnect interrupt is then received from the Node System signifying the completion of the PDM data fetches
command for the total_size. Upon confirmation of the value of the interrupt info register, this API returns with 0 value.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 79

• PDM bulk Data Fetch API

• int pdm_bulk_data_fetch_api (uint32_t total_size, uint32_t node_addr)

• The API is present in the main.c file. It needs two parameters:

• total_size: the size of the PDM data required from the user interface

• node_addr: node select value sent in packet

• It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

• The API is called when there is a requirement to read a bulk maintenance data from the Motor Control IP of the Node
System.

• This API is extended version of PDM Data Fetch API, as total size of data fetch depends on number of active nodes present
in that chain.

4.1.2. OPCUA PubSub :

In PubSub model, a Publisher component can define DataSets that contain Variables or EventNotifiers.The Publisher will then
publish DataSetMessages, which contain DataChanges or Events. The sender defines in Datasets what will be sent, instead of
the receiver. Publishers are the source of data, and the Subscribers consume that data. Communication in PubSub is message-
based. Publishers send messages to a Message Oriented Middleware, Subscribers express interest in specific types of data,
and process messages that contain this data. OPCUA PubSub supports two different Message Oriented Middleware variants,
namely UDP based and Ethernet based protocols. Subscribers and Publishers use datagram protocols like UDP. The core
component of the Message Oriented Middleware is a Message Broker. Subscribers and Publishers use standard messaging
protocols like UDP or MQTT to communicate with the pub-sub.

• OPC UA defines two different Network types for PubSub:

• Local Network - which can use UDP Broadcast (or Unicast in some cases) or Ethernet APL. The messages are
optimized binary UADP, which is defined in the OPC UA specifications. So, only OPC UA Subscribers can interpret
the messages.

• Message Queue Broker - which can be an MQTT or AMQP broker, in practice. In this case, the messages are typically
JSON messages, although UADP can be used for improved performance. The OPC Foundation has defined a
standard content structure for the messages, but basically, any JSON subscriber can interpret them.

Main System module implements following functions:

• Generic variable Create_UADP_NetwokMessage ()

• Generic variables UADP NetworkMessage_parse ()

4.1.3. Create_UADP_NetworkMessage:

4.1.3.1. NetworkMessage Header:

The NetworkMessage is a container for DataSetMessages and includes information shared between DataSetMessages.

Parameter of Network Message Header:

• UADPVersion - The UADPVersion for this specification version is 1.

• UADPFlags - This flag enabled group header, Payload header, PublihserId.

• ExtendedFlags1 - The ExtendedFlags1 shall be omitted if bit 7 of the UADPFlags is false. The PublihserId type is DataType
Uint16.

• ExtendedFlags2 - The ExtendedFlags2 shall be omitted if bit 7 of the ExtendedFlags1 is false.

• PublisherId - The Id of the Publisher that sent the data. Valid DataType are Uintger and String.

• DataSetClassId - The DataSetClassId is associated with the DataSets in the NetworkMessage.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 80

Network
Message
Header

Group
Header

Payload
Header

Extended
Network
Message
Header

Payload

Figure 4.1: UADP Version

Network
Message
Header

Group
Header

Payload
Header

Extended
Network
Message
Header

Payload

1 Byte 1 Byte 1 Byte
1….n
Byte 16 Byte

NetworkMessage Header

GroupFlags
Writer

GroupId
Group

Version

Network
Message
Number

Sequence
Number

1 Byte 2 Byte 4 Byte 2 Byte 2 Byte

Group Header

TimeStamp
Pico

Seconds
Promoted

Fields

8 Byte 2 Byte n Byte

Extended Network Message Header

Figure 4.2: UADP Message packet header

4.1.4. GroupHeader:

The group header shall be omitted if bit 5 of the UADPFlags is false.

• GroupFlags - GroupFlags is used for writerGroupId, GroupVersion enabled, NetworkMessageNumber enabled,
SequenceNumber enabled.

• WriterGroupId - Unique id for the WriterGroup in the Publisher.

• GroupVersion - Version of the header and payload layout configuration of the NetworkMessages sent for the group.

• NetworkMessage Number - Unique number of a NetworkMessage combination of PublisherId and WriterGroupId within
one PublishingInterval.

• SequenceNumber - Sequence number for the NetworkMessage.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 81

4.1.5. Extended NetworkMessage Header:
• Timestamp - The time the NetwrokMessage was created.

• PicoSeconds - Specifies the number of 10 picosecond intervals which shall be added to the Timestamp.

• PromotedFields - PromotedFields are provided, the number of DataSetMessages in the Network Message shall be one.

4.1.5.1. Payload

Payload is defined with exact data of Node variables like nodeIds, requestType, and these values. UADP packet format size is
64 bytes, the header size is 20 Bytes and Payload size is 44 bytes.

Start

Initialize write group config and
enabled content mask Group

Header, Writer Group Id, Publisher
Id, and Payload Header flags

Initialize data set Message
structure according to the UADP

default configuration flags

Send Data set message into send
network message to create

network message header part

Check writer Group Pubsub
encoding type

Initialize Network message
structure using Data Set Message

and Writer group config and
prepare Network message Header

Prepare the payload in encode
Network message depends on the

GUI response

End

Break No

Yes

Figure 4.3: Create_UADP_NetworkMessage

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 82

UADP_NetworkMessage_parse:

This module parses the data received from the publisher. publisher sends the 64 Bytes opcua pubsub message, which holds
the 20 bytes NetworkMessage header and, 44 Bytes payload. In payload data get the node ids and these node Ids are identify
the method call or node variables or method variables, After identification creates an udp data reponse header,csv nodeid,
request Type and value and writes the udp data request on lpddr memory and get the udp data response from lpddr memory.
Parse data get method nodeIds then called the method according to the method nodeid like startmotor , stop motor, power
off, etc.

void UADP_NetWork_Parse(unsigned int *Buffer);

The API is present in the UADP_NetworkMessage.c file. It gets the network message buffer from the GUI side.

Figure 4.4: UADP Network message format

 udp_response_func:

This module writes the udp data request to the LPDDR4 memory and gets the udp data response from LPDDR4 memory.

void udp_response_func ()

The API is present in the UADP_NetworkMessage.c file. It does not require any parameter.

method_callbacks:

This module checks the method id and called the method like start motor, stop motor, power off, update config, run pdm
.etc.

void method_callbacks(unsigned char method)

The API is present in the rfl.c file. It gets the method nodeID parameter.

rfl_Update_config:

This module updates the motor variable configuration like rpm, breaker amps, number of Poles, Max power, etc.

void rfl_Update_config()

The API is present in the rfl.c. file. It does not require any parameter.

Start_motor:

This function will start motor if motor is off or update target rpm of node.

void Start_motor()

The API is present in the rfl.c file. It does not require any parameter.

Stop_motor:

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 83

This function will stop motor of all nodes. This function will work when one of the motors is running.

void Stop_motor()

The API is present in the rfl.c file. It does not require any parameter.

poweroff_motor:

This function will stop the power supply of all nodes. This function will work when one of the motors is running. This function
will be disabled if all motors are off.

void poweroff_motor()

The API is present in the rfl.c file. It does not require any parameter.

get_background:

This function will check Rpmlock, motor voltage and motor current status in background.

void get_background()

The API is present in the rfl.c file. It does not require any parameter.

run_Pdm:

This moudle is collect the Pdm data to generate the the Pdm image.

void run_Pdm();

The API is present in the rfl.c file. It does not require any parameter.

4.2. Node System APIs

4.2.1. Tasks of the Node System

The Node System acts to control the Motor IP and get its status as commanded by the Main System. It communicates with
the Main System by receiving commands through EtherConnect. It performs the actions and responds to the Main System
with interrupts as acknowledgment for the tasks executed.

The tasks to be carried out by a master system can be categorized as follows:

• Communicate with the master system over EtherConnect

• As per the commands sent by the Main System, the Node System is supposed to either configure the motor, share the
motor status, or share the bulk PDM data

• Perform key functions

4.2.2. Key Functions
• Main () function

• int main (void)

• Upon power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts
(EtherConnect, UART).

• The main function then waits for the ether_interrupt_flag to get high. The EtherConnect ISR sets the flag,
ether_interrupt_flag when a command is received from the Main System. When the main function finds that the flag is
set, it reads the INTERRUPT STATUS register to decode which command is received. Based on the value of this register,
the main function calls the appropriate functions.

• Node Perpherials init

• u08 general_init (void)

• Upon power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts for
UART, EtherConnect. It also initializes Modbus, SPI, and I2C protocols.

• ISR1_EtherConnect

• static void etherConnect_isr (void *ctx)

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 84

• The primary function of the EtherConnect ISR function is to set the interrupt flag, acknowledge/clear the interrupt and
return an integer value. The EtherConnect interrupts are used as indicators of the receipt of a command sent by the Main
System to the Node System. The IRQ value for EtherConnect is 0.

• Node Configuration API

• int node_config_api(void)

• The API is present in the main.c file. It does not require any parameter.

• It returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

• The API is called when the main function receives a Node Config command in its Interrupt Status Register. This API reads
the NODE ADDRESS register. This register contains an address of the peripheral (I2C, Modbus, SPI, and Motor IP) which
is supposed to be configured. Next, the NODE CONFIG DATA register is read. This register has the configuration data. This
data is then written into the address. If there is a read or write error, the API returns a –1 value. Once completed, the
API returns a 0 value.

• Node Status API

• int node_status_api(void)

• The API is present in the main.c file. It does not require any parameter. This returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

• The API is called whenever the main function receives a Node Status command in its Interrupt Status Register. This API
reads the NODE ADDRESS register. This register contains an address of the Node peripherial (Modbus, SPI, I2C, Motor IP)
whose configuration value is supposed to be read. This address is then read and stored in a local variable data. This data
is then written into the NODE STATUS register. If there is any read or write error, the API sends –1 value back. If everything
goes okay, the API returns 0 value.

• PDM Data Fetch API

• int pdm_data_fetch_api(void)

• The API is present in the main.c file. It does not require any parameter. This returns the following integer values:

• 0: if all tasks are successfully completed

• –1: if there is an error

• The API first reads the size of PDM data required from the PDM ADDRESS register. It then writes the base address value
and the end address (base address + size) value at the designated registers in the FIFO DMA Module. It then enables the
FIFO DMA module by sending writing 0x00000003 first and then 0x00000000 to the FIFO DMA CONTROL register. Once
done, it polls the DMA STATUS register for the indication of completion of the PDM data fetch. Once it receives the done
value, it sets the DMA DONE INDICATE register. If there is any read or write error, the API sends –1 value back. If
everything goes okay, the API returns 0 value.

• Node Peripheral APIs

• I2C Master
The following are the I2C BSP functions used in the main.c file for writing and reading the I2C slave data:

• uint8_t i2c_master_write(struct i2cm_instance × this_i2cm, uint16_t address,uint8_t data_size, uint8_t ×

data_buffer)

• uint8_t i2c_master_read(struct i2cm_instance × this_i2cm, uint16_t address,uint8_t read_length, uint8_t

× data_buffer)

• SPI Master
The following are the SPI BSP functions used in the main.c file for writing and reading SPI slave data:

• uint8_t spi_master_write(struct spim_instance × this_spim,uint8_t data_size, uint8_t × data_buffer)

• uint8_t spi_master_read(struct spim_instance × this_spim,uint8_t read_length, uint8_t × data_buffer)

• Modbus RTU Master
The following are the Modbus module functions used in the main.c file for writing and reading Modbus RTU slave
data:

• eMBErrorCode eMBMasterInit(eMBMode eMode, void *dHUART, ULONG ulBaudRate, void *dHTIM)

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 85

• This function initializes the ASCII or RTU module and calls the init functions of the porting layer to prepare the hardware.
Note that the receiver is still disabled and no Modbus frames are processed until eMBMasterEnable() is called.

• eMBErrorCode eMBMasterPoll(void)

• This function must be called periodically. The timer interval required is given by the application dependent Modbus slave
timeout. Internally the function calls xMBMasterPortEventGet() and waits for an event from the receiver or transmitter
state machines.

• unsigned int modbus_req (unsigned int mod_addr, unsigned int mod_data)

• This function parses the data received from Main system and fetches slave id command type and data from it. This calls
the functions below based on the command type.

• eMBMasterReqWriteHoldingRegister (slaveid, regnum, regdata, timeout)

• eMBMasterReqWriteCoil (slaveid, regnum, regdata, timeout)

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 86

5. Communications
This section describes the communications between the host to the Main System and the communication between the Main
System and the Node Systems. A detailed breakdown of message vocabulary and packet structure may be covered in a
separate document.

5.1. Communication between Host and Main System
Initially, this connection is implemented using an Ethernet interface. Most of the messages should be ASCII to facilitate
debugging using a terminal program on the Host.

5.1.1. Messages from Host to Main System
• Motor Configuration and Control

• PDM Configuration and Control

• Request Motor Status

• Request PDM Status

• Request PDM Data - Normal

• Request PDM Data - Extended

5.1.2. Messages from Main System to Host
• System Information (Link Status, Connected Nodes, Local Delay of Nodes, and others)

• Motor Status

• PDM Status

• PDM Data - Normal

• PDM Data - Extended

5.2. Communication between Main System and Node System(s)
The physical connection between the Main System and Node System is implemented using Ethernet Cat-5 cables. The physical
connection between the first Node System and subsequent Node System(s) also uses Ethernet Cat-5 cables, in a daisy-chain
fashion for both chains.

5.2.1. Messages from Main System to Node System
• Motor Configuration and Control

• PDM Configuration and Control

• Request Motor Status

• Request PDM Status

• Request PDM Data - Normal

• Request PDM Data - Extended

5.2.2. Messages from Node System to Main System
• Node Information (Link Status, Connected Nodes, Local Delay, etc.)

• Motor Status

• PDM Status

• PDM Data - Normal

• PDM Data – Extended

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 87

Figure 5.1: Data flow from Host to Node system via Main system

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 88

Appendix A: Predictive Maintenance with TensorFlow Lite

A.1 Introduction

The predictive maintenance is supported in Automate stack using trained neural network. Currently, the network is trained
with data collected from good and bad BLDC motors. We further provide scripts and models for users to train the network
with their own dataset. This section describes how models can be trained using TensorFlow framework on a GPU machine
and later translated to a runtime object for deployment on main system RISC-V for inferencing using TensorFlow-Lite
converter.

The ADC on the motor control board reads the current as data and then this data is transformed using Clark transform
equation shown below. The transformed data when plotted will show as a circle. Any distortion in this circle gives the
indication that motor is not operating normally. Note that the data collected in the GUI and used for training is a double
folded version of this plot. This folding helps to reduce sparsity in the image and reduce amount of data that needs to be
transferred from node to main system.

𝑖𝐷 = (
√2

√3
) 𝑖𝐴 − (

1

√6
) 𝑖𝐵 − (

1

√6
) 𝑖𝐶 𝑎𝑛𝑑 𝑖𝑄 = (

1

√2
) 𝑖𝐵 − (

1

√2
) 𝑖𝐶

Figure A.1. Clark Equation and the plot

Below is bad image generated from PDM data of a broken motor:

Figure A.2. PDM Data Collected from a broken motor

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 89

Below is good image generated from PDM data of good motor:

Figure A.3. PDM Data Collected from broken motor

A.1. Setting Up the Linux Environment for Neural Network Training

This section describes the steps for setting up NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS. The NVIDIA
library and TensorFlow version are dependent on the PC and Ubuntu/Windows version.

A.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU

A.1.1.1. Installing the CUDA Toolkit

To install the CUDA toolkit, run the following commands in the order specified below:
$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-

repo-ubuntu1604_10.1.105-1_amd64.deb

Figure A.4. Download CUDA Repo

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.debA

Figure A.5. Install CUDA Repo

$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.p

ub

Figure A.6. Fetch Keys

http://www.latticesemi.com/legal
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 90

$sudo apt-get update

Figure A.7. Update Ubuntu Packages Repositories

$ sudo apt-get install cuda-9-0

Figure A.8. CUDA Installation

A.1.1.2. Installing the cuDNN
To install the cuDNN:

1. Create NVIDIA developer account: https://developer.nvidia.com.

2. Download cuDNN lib: https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

3. Execute the commands below to install cuDNN
$ tar xvfcudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h/usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudochmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*

Figure A.9. cuDNN Library Installation

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 91

A.1.2. Setting Up the Environment for Training and Model Freezing Scripts

This section describes the environment setup information for training and model freezing scripts for 64-bit Ubuntu 16.04.
Anaconda provides one of the easiest ways to perform machine learning development and training on Linux.

A.1.2.1. Installing the Anaconda Python
To install the Anaconda and Python 3:
1. Go to https://www.anaconda.com/products/individual#download web page.

2. Download Python3 version of Anaconda for Linux.

3. Run the command below to install the Anaconda environment:
$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release.

Figure A.10. Anaconda Installation

4. Accept the license.

Figure A.11. Accept License Terms

5. Confirm the installation path. Follow the instruction onscreen if you want to change the default path.

Figure A.12. Confirm/Edit Installation Location

6. After installation, enter no.

Figure A.13. Launch/Initialize Anaconda Environment on Installation Completion

http://www.latticesemi.com/legal
https://www.anaconda.com/products/individual#download

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 92

A.1.3. Installing the TensorFlow version 1.15

To install the TensorFlow version 1.15:
1. Activate the Anaconda environment by running the command below:

$ source <conda directory>/bin/activate

Figure A.14. Anaconda Environment Activation

2. Install the TensorFlow by running the command below:
$ conda install tensorflow-gpu==1.15.0

Figure A.15. TensorFlow Installation

3. After installation, enter Y.

Figure A.16. TensorFlow Installation Confirmation

TensorFlow installation is complete.

Figure A.17. TensorFlow Installation Completion

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 93

A.1.4. Installing the Python Package

To install the Python package:
1. Install Easydict by running the command below:

$ conda install –c conda-forge easydict

Figure A.18. Easydict Installation

2. Install Joblib by running the command below:
$ conda install joblib

Figure A.19. Joblib Installation

3. Install Keras by running the command below:
$ conda install keras

Figure A.20. Keras Installation

4. Install OpenCV by running the command below:
$ conda install opencv

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 94

Figure A.21. OpenCV Installation

5. Install Pillow by running the command below:
$ conda install pillow

Figure A.22. Pillow Installation

A.2. Creating the TensorFlow Lite Conversion Environment

To create a new Anaconda environment and install tensorflow=2.2.0:
1. Create a new Anaconda environment.

$ conda create -n <New Environment Name> python=3.6

2. Activate the newly created environment.
$ conda activate <New Environment Name>

3. Install Tensorflow 2.2.0.

Note: We have noticed output differences in Tensorflow(2.2.0) and Tensorflow-gpu(2.2.0) in terms of tflite size.
It is recommended to use TensorFlow (2.2.0).
$ conda install tensorflow=2.2.0

4. Install opencv.
$conda install opencv

A.3. Preparing the Dataset

This section describes the steps and guidelines used to prepare the dataset for training the predictive maintenance.

Note: In the following sections, Lattice provides guidelines and/or examples that can be used as references for preparing the
dataset for the given use cases. Lattice is not recommending and/or endorsing any dataset(s). It is recommended that
customers gather and prepare their own datasets for their specific end applications.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 95

A.3.1. Dataset Information

In the predictive maintenance demonstration, there are three classes: bad, Normal, and unknown. The dataset should be
organized as shown in Figure A.23,contains bad motor data and 1 contains normal motor data.

Figure A.23. Predictive Maintenance Dataset

A.4. Preparing the Training Code

Notes:

• Training and freezing code use Tensorflow 1.15.0 since some of the APIs used in training code are not available in
Tensorflow 2.x.

• For the TensorFlow Lite conversion in the TensorFlow Lite Conversion and Evaluation section, TensorFlow 2.2.0 is used.

A.4.1. Training Code Structure

Download the Lattice predictive maintenance demo training code. Figure A.24 shows the directory structure.

Figure A.24. Training Code Directory Structure

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 96

A.4.2. Generating tfrecords from Augmented Dataset

This demo only takes tfrecords of a specific format for input. As susch, generate the tfrecords first. Run the command below
to generate tfrecords from input dataset.
$ python tfrecord-gen.py -i <Input_augmented_dataset_root> -o <Output_tfrecord_path>

The input directory should follow the structure shown in Figure A.24.

A.4.3 Neural Network Architecture

This section provides information on the Convolution Neural Network Configuration of the Predictive Maintenance design.

Table A.1. Predictive Maintenance Training Network Topology

Input Gray Scale Image (64×64×1)

Fire1

Conv3x3 – 8 Conv3×3 - # where:

• Conv3×3 – 3 × 3 Convolution filter Kernel size

• # - The number of filters

For example, Conv3×3 - 8 = 8 3 × 3 convolution filter

Batchnorm: Batch Normalization

FC - # where:

• FC – Fully connected layer

• # - The number of outputs

Batchnorm

ReLU

Maxpool

Fire2

Conv3×3 – 8

Batchnorm

ReLU

Fire3

Conv3×3 – 16

Batchnorm

ReLU

Maxpool

Fire4

Conv3×3 – 16

Batchnorm

ReLU

Fire5

Conv3×3 – 16

Batchnorm

ReLU

Maxpool

Fire6

Conv3×3 – 22

Batchnorm

ReLU

Fire7

Conv3×3 – 24

Batchnorm

ReLU

Maxpool

Dropout Dropout - 0.80

logit FC – (3)

In Table A.1, Layer contains Convolution (conv), batch normalization (BN), ReLU, pooling, and dropout layers. Output of layer
logit is (Broken [0], Normal [1], Unknown [2]) 3 values.

• Layer information

• Convolutional Layer:
In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters (sometimes
referred as kernels) which convolve with input layer/image and generate an activation map (such as feature map).
This filter is an array of numbers (the numbers are called weights or parameters). Each of these filters can be thought
of as feature identifiers, like straight edges, simple colors, and curves and other high-level features. For example, the
filters on the first layer convolve around the input image and “activate” (or compute high values) when the specific
feature (say curve) it is looking for is in the input volume.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 97

• ReLU (Activation Layer)
After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward. The
purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear operations
during the conv layers (just element wise multiplications and summations).In the past, nonlinear functions like tanh
and sigmoid were used, but researchers found out that ReLU layers work far better because the network is able to
train a lot faster (because of the computational efficiency) without making a significant difference to the accuracy.
The ReLU layer applies the function f(x) = max (0, x) to all of the values in the input volume. In basic terms, this layer
just changes all the negative activations to 0. This layer increases the nonlinear properties of the model and the
overall network without affecting the receptive fields of the conv layer.

• Pooling Layer
After some ReLU layers, programmers may choose to apply a pooling layer. It is also referred to as a down sampling
layer. In this category, there are also several layer options, with Maxpooling being the most popular. This basically
takes a filter (normally of size 2×2) and a stride of the same length. It then applies it to the input volume and outputs
the maximum number in every sub-region that the filter convolves around.
The intuitive reasoning behind this layer is that once the user knows that a specific feature is in the original input
volume (a high activation value results), its exact location is not as important as its relative location to the other
features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the width change
but not the depth) of the input volume. This serves two main purposes. The first is that the number of parameters
or weights is reduced by 75%, thus lessening the computation cost. The second is that it controls overfitting. This
term refers to when a model is so tuned to the training examples that it is not able to generalize well for the validation
and test sets. A symptom of overfitting is having a model that gets 100% or 99% on the training set, but only 50% on
the test data.

• Batchnorm Layer
Batch normalization layer reduces the internal covariance shift. In order to train a neural network, perform
pre-processing to the input data. For example, the user can normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). Reason being preventing the early saturation of non-
linear activation functions like the sigmoid function, assuring that all input data is in the same range of values, etc.
But the problem appears in the intermediate layers because the distribution of the activations is constantly changing
during training. This slows down the training process because each layer must learn to adapt themselves to a new
distribution in every training step. This problem is known as internal covariate shift.
Batch normalization layer forces the input of every layer to have approximately the same distribution in every training
step by following below process during training time:

• Calculate the mean and variance of the layers input.

• Normalize the layer inputs using the previously calculated batch statistics.

• Scales and shifts in order to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be carefree about
weight initialization, works as regularization in place of dropout and other regularization techniques.

• Drop-out Layer
Dropout layers have a very specific function in neural networks. After training, the weights of the network are so
tuned to the training examples they are given that the network doesn’t perform well when given new examples. The
idea of dropout is simplistic in nature. This layer drops out a random set of activations in that layer by setting them
to zero. It forces the network to be redundant. That means the network should be able to provide the right
classification or output for a specific example even if some of the activations are dropped out. It makes sure that the
network is not getting too “fitted” to the training data and thus helps alleviate the over fitting problem. An important
note is that this layer is only used during training, and not during test time.

• Fully connected Layer
This layer basically takes an input volume (whatever the output is of the conv or ReLU or pool layer preceding it) and
outputs an N dimensional vector where N is the number of classes that the program must choose from.

• Quantization
Quantization is a method to bring the neural network to a reasonable size, while also achieving high performance
accuracy. This is especially important for on-device applications, where the memory size and number of
computations are necessarily limited. Quantization for deep learning is the process of approximating a neural

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 98

network that uses floating-point numbers by a neural network of low bit width numbers. This dramatically reduces
both the memory requirement and computational cost of using neural networks.

The above architecture provides nonlinearities and preservation of dimension that help to improve the robustness of the
network and control overfitting.

A.4.4. Training Code Overview

resnet_main.py

Mode is
Evaluation?

No Yes

Create training
data input pipeline

Build model

Restore
checkpoint if

available

Build evaluation
model

Restore
checkpoints

Run evaluation
on given batches
and print states

Mode is
Freeze?

Save inference
.pbtxt

Exit

Training loop

No

Yes

Train model

Save
checkpoints

Create input FIFO
queue

Create input pipe
with augmentation

operations

Read TFrecords

Create evaluation
data input pipeline

Create input FIFO
queue

Read TFrecords

Figure A.25. Training Code Flow Diagram

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 99

A.4.4.1. Configuring Hyper-Parameters

Figure A.26. Code Snippet: Hyper Parameters

• Set number of classes in num_classes (default = 3).

• Change batch size for specific mode if required.

• hps: it contains list of hyper parameters for custom resnet backbone and optimizer.

A.4.4.2. Creating Training Data Input Pipeline

Figure A.27. Code Snippet: Build Input

• build_input () from cifer_input.py reads Tfrecords and creates some augmentation operations before pushing the input
data to FIFO queue.

• FLAGS.dataset: dataset type (signlang)

• FLAGS.train_data_path: input path to tfrecords

• FLAGS.batch_size: training batch size

• FLAGS.mode: train or eval

• FLAGS.gray: True if model is of 1 channel otherwise False

• hps[1]: num_classes configured in model hyperparameters

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 100

Read tfrecords

Figure A.28. Code Snippet: Parse tfrecords

• The above snippet reads tfrecord files and parses its features which are height, width, label, and image.

Converting Image to Grayscale and Scaling the Image

Figure A.29. Code Snippet: Convert Image to Gray Scale

• Convert RGB image to gray scale if gray flag is true.

Figure A.30. Code Snippet: Convert Image to Gray Scale

• Unstack channel layers and convert to BGR format if the image mode is not gray. The RGB is converted to BGR because
the iCE40 works on BGR images.

• Divide every element on image with 128 so that the values can be scaled to 0-2 range.

Creating Input Queue

Figure A.31. Code Snippet: Create Queue

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 101

• tf.RandomShuffleQueue is queue implementation that dequeues elements in random order.

Figure A.32. Code Snippet: Add Queue Runners

• Above snippet enqueues images and labels to the RandomShuffleQueue and adds queue runners. This directly feeds data
to network.

A.4.4.3. Model Building

CNN Architecture

Figure A.33. Code Snippet: Create Model

• Build_graph () method creates training graph or training model using given configuration.

• Build_graph creates model with seven fire layers followed by dropout layer and fully connected layers. Where each fire
layer contains convolution, relu as activation, batch normalization, and max pooling (in Fire 1, 3, 5 & 7 only). Fully
connected layer provides the final output.

Figure A.34. Code Snippet: Fire Layer

Arguments of _vgg_layer:

• First argument is name of the block.

• Second argument is input node to new fire block.

• oc: output channels is the number of filters of the convolution.

• freeze: setting weighs are trainable or not.

• w_bin: Quantization parameter for convolution

• a_bin: quantization parameter for activation binarization(relu).

• pool_en: flag to include Maxpool in firelayer.

• min_rng, max_rng: Setting maximum and minimum values of quantized activation. Default values for min_rng = 0.0 and
max_rng = 2.0.

• bias_on: Sets bias add operation in graph if true.

• phase_train: Argument to generate graph for inference and training.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 102

Figure A.35. Code Snippet: Convolution Block

• In the resnet_model.py file, the basic network construction blocks are implemented in specific functions as below:

• Convolution – _conv_layer

• Batch normalization – _batch_norm_tensor2

• ReLU – binary_wrapper

• Maxpool – _pooling_layer

• _conv_layer

• Contains code to create convolution block. Which contains kernel variable, variable initializer, quantization code,
convolution operation, and ReLU if argument relu is True.

• _batch_norm_tensor2

• Contains code to create batch-normalization operations for both training and inference phases.

• Binary_wrapper

• Used for quantized activation with ReLU.

• _pooling_layer

• Adds Max pooling with given kernel-size and stride size to training and inference graph.

Feature Depth of Fire Layer

Figure A.36. Code Snippet: Feature Depth Array for Fire Layers

• List depth contains feature depth for seven fire layers in network.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 103

Figure A.37. Code Snippet: Forward Graph Fire Layers

Loss Function and Optimizers

Figure A.38. Code Snippet: Loss Function

• Model uses softmax_cross_entropy_with_logitds because the labels are in form of class index.

Figure A.39. Code Snippet: Optimizers

• Here, there are four options for selecting optimizers. In this model, use the mom optimizer as default.

A.4.4.4. Restore Checkpoints

Checkpoints are restored from log directory and then start training from that checkpoint if checkpoints exist in log directory.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 104

Figure A.40. Code Snippet: Restore Checkpoints

A.4.4.5. Saving .pbtxt

If mode is freeze it saves the inference graph (model) as. pbtxt file. The. pbtxt file is used later for freezing.

Figure A.41. Code Snippet: Save .pbtxt

A.4.4.6. Training Loop

Figure A.42. Code Snippet: Training Loop

• MonitoredTrainingSession utility sets proper session initializer/restorer. It also creates hooks related to checkpoint and
summary saving. For workers, this utility sets proper session creator which waits for the chief to initialize/restore. Refer
to tf.compat.v1.train.MonitoredSession for more information.

• _LearningRateSetterHook:

http://www.latticesemi.com/legal
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/MonitoredSession

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 105

Figure A.43. Code Snippet: LearningRateSetterHook

• This hook sets learning rate based on training steps performed.

• Summary_hook

Figure A.44. Code Snippet: Save Summary for Tensorboard

• Saves tensorboard summary for every 100 steps.

• Logging_hook

Figure A.45. Code Snippet: logging hook

• Prints logs after every 100 iterations.

A.4.5. Training from Scratch and/or Transfer Learning

A.4.5.1. Training

Open the run script and edit parameters as required.

Figure A.46. Predictive Maintenance – Run Script

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 106

To start training run the run script as mentioned below.
$./run

Figure A.47. Predictive Maintenance – Trigger Training

A.4.5.2. Transfer Learning

Figure A.48. Predictive Maintenance – Trigger Training with Transfer Learning

• To restore checkpoints, no additional action is required. Run the same command again with the same log directory. if the
checkpoints are present in log path where it is restored and continue training from that step.

A.4.5.3. Training Status

Training status can be checked in logs by observing different terminologies like loss, precision, and confusion matrix.

Figure A.49. Predictive Maintenance – Training Logs

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 107

Figure A.50. Predictive Maintenance – Confusion Matrix

Use TensorBoard utility for checking training status.

• Start TensorBoard by below command:
$ tensorboard –logdir=<log directory of training>

Figure A.51. TensorBoard – Launch

• This command provides the link, which needs to be copied and opened in any browser such as Chrome, Firefox, and
others, or right-click on the link and click on Open Link.

Figure A.52. TensorBoard – Link Default Output in Browser

• Similarly, other graphs can be investigated from the available list.

• Check if the checkpoint, data, meta, and index files are created in the log directory. These files are used for creating the

frozen file (*.pb).

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 108

Figure A.53. Checkpoint Storage Directory Structure

A.5. Creating Frozen File

This section describes the procedure for freezing the model, which is aligned with the Lattice SensAI tool. Perform the steps
below to generate the frozen protobuf file:

A.5.1. Generating .pbtxt File for Inference

Once the training is completed run below command to generate inference .pbtxt file.

Note: Do not modify config.sh after training.
$ python resnet_main.py --train_data_path=<TFRecord_root_path> --

log_root=<Logging_Checkpoint_Path> --train_dir=<tensorboard_summary_path> --

dataset='signlang' --image_size=64 --num_gpus=<num_GPUs> --mode=freeze

Figure A.54. Generated ‘.pbtxt’ for Inference

It generates the .pbtxt file for inference under the train log directory.

A.5.2. Generating the Frozen (.pb) File

$ python genpb.py --ckpt_dir <COMPLETE_PATH_TO_LOG_DIRECTORY>

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 109

Figure A.55. Run genpb.py To Generate Inference .pb

• genpb.py uses .pbtxt generated by procedure in the Generating .pbtxt File for Inference section and latest checkpoint in

train directory to generate frozen .pb file.

• Once the genpb.py is executed successfully, the <ckpt-prefix>_frozenforinference.pb becomes available in the log

directory as shown in below image.

Figure A.56. Frozen Inference .pb Output

A.6. TensorFlow Lite Conversion and Evaluation

This section contains information for converting frozen pb to TensorFlow Lite model, quantizing the model, and evaluating
on test dataset.

Note: It is recommended to use Tensorflow 2.2.0 (CPU Only) instead Tensorflow 1.15.0 In TensorFlow Lite conversion flow.

Use Environment created from the Creating the TensorFlow Lite Conversion Environment section.

A.6.1. Converting Frozen Model to TensorFlow Lite

User can find “gen_tflite_and_quant.py” under training code which converts frozen model to TensorFlow Lite and also
quantize it with INT8 quantization.
$ python gen_tflite_and_quant.py --input_path <sample images path> --tflite_path

<output tflite path> --pb <frozen pb file>

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 110

Arguments information:

• --input_path: sample images that are used for quantization.

• --tflite_path: (default motor-model.tflite) output tflite path

• --pb: Frozen pb path

The command saves TensorFlow Lite at given path.

A.6.2. Evaluating TensorFlow Lite model

$ python evaluate_tflite.py --dataset_path <dataset_path> --tflite_path <tflite

path>

Argument information:

• --dataset_path: Test set path. Note that the labels should be (0, 1) for predictive maintenance.

• --tflite_path: tflite model path

The command shows accuracy on both classes.

A.6.3. Converting TensorFlow Lite To C-Array

$ xxd -i your-tflite-model-path.tflite > out_c_array.cc

The command generates c array at path given by user.

For detailed instructions on setting compiling the code, installing the client-end application, automating stack 3.0 bit file and
generating binary, programming the Automate Stack on SPI Flash memory, troubleshooting the main system board,
debugging using Docklight, OPCUA Modeler, and CSV file, refer to Automate Stack 3.0 Demo User Guide (FPGA-UG-02164).

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53597

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 111

Appendix B: Setting up the Wireshark tool
Note: To download the wireshark tool: https://www.wireshark.org/download.html

Figure B.1. Downloadable link of Wireshark

1. Now open the Wireshark tool and select the network (Ethernet)

2. Click on the Ethernet network

Figure B.2. Wireshark tool: Ethernet selection

3. Now click on the run() button.

4. Check udp message use port filter (udp.port == 1486) on the top bar

Figure B.3. Wireshark tool - write udp.port == 1486

http://www.latticesemi.com/legal
https://www.wireshark.org/download.html

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 112

5. Check the both Source and destination IP.

Figure B.4. Source and Destination udp packet

6. Click on the UDP packet

Figure B.5. Wireshark tool - first udp packet

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 113

Appendix C: Automate Stack 3.0 Bitfile and Binary Generation

C.1 Steps for Bit File Generation

C.1.1 MAIN SYSTEM

1. Open Generated Radiant Project in Radiant Tool.

2. Select Family: LFCPNX

3. Select Device: LFCPNX-100

4. Select Operating Condition: Industrial

5. Select Package: LFG672

6. Performance Grade: 9_High-Performance_1.0V

7. Part Number: LFCPNX-100-9LFG672I

Figure C.1. Lattice Radiant Device Selector for Main System

8. Change strategy as shown below: Frequency Parameter 250 MHz

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 114

Figure C.2. Strategy for Build Generation for Main System

9. Go to the Strategy and select the Map Design

10. Select the Map Timing Analysis.

11. Select the highlighted part as mentioned in the below image.

Figure C.3. MAP analysis setting for Main system bitfile generation

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 115

12. Select the Place & Route Design

13. Select the only highlighted parts as mentioned below image.

Figure C.4. PAR setting for Main system bitfile generation

14. Select the Place and Route Timing Analysis.

15. Select the only highlighted parts as mentioned in the below image.

Figure C.5. PAR Timing analysis setting for Main system bitfile generation

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 116

16. Use same PDC if FPGA is same otherwise update PDC file as per FPGA pins

17. Click on the Device Constraint Editor.

Figure C.6. Device Constraint Selection for Main System

18. Click on the Global

19. Use below Global constraint: Clock is 90 MHz

Figure C.7. Device Constraint Selection for Main System

20. Click on run all then bitfile will be generated.

Figure C.8. Run All button

21. Open the propel builder 2.2 tool.

22. Double-click on the system0_inst.A pop-up will appear on the screen.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 117

Figure C.9. system initialization file

23. Initialize Data memory with generated PDM_DataSection.mem file in TFLite_code folder of C project.

24. Click on the Generate button

25. Double-click on the ISR_RAM_inst. A pop-up will appear on the screen as mentioned in the below image.

Figure C.10. ISR RAM Initialization File

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 118

26. Initialize Data memory with generated PDM_codeSection.mem file in TFLite_code folder of C project.

27. Click on the Generate button

28. Click on the Validate button

Figure C.11. Validate Button

29. Click on the Generate SGE button.

Figure C.12. Generate SGE button

30. Open the radiant tool from propel builder interface.

Figure C.13. Radiant tool button

31. Select FPGA and update the constraint from above points 1 to 19.

32. Click on “run all” and then bitfile will be generated.

Figure C.14. Run all button

C.1.2 NODE SYSTEM

1. Open Generated Radiant Project in Radiant Tool.

2. Select Family: LFD2NX

3. Select Device: LFD2NX-40

4. Select Operating Condition: Commercial

5. Select Package: CABGA256

6. Performance Grade: 8_High-Performance_1.0V

7. Part Number: LFD2NX-40-8BG256C

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 119

Figure C.15. Lattice Radiant Device Selector for Node System

8. Change strategy as shown below: Frequency Parameter 200 MHz

Figure C.16. Strategy for Build Generation for Node System

9. Go to the Strategy and select the Map Design

10. Select the Map Timing Analysis.

11. Select the highlighted part as mentioned in the below image.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 120

Figure C.17. MAP analysis setting for Node system bitfile generation

12. Select the Place & Route Design

13. Select the only highlighted parts as mentioned in the below image.

Figure C.18. PAR setting for Node system bitfile generation

14. Select the Place and Route Timing Analysis.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 121

15. Select the only highlighted parts as mentioned in the below image.

Figure C.19. PAR Timing analysis setting for Node system bitfile generation

16. Use same PDC if FPGA is same otherwise update PDC file as per FPGA pins.

17. Click on the Device Constraint Editor as mentioned below.

Figure C.20. Device Constraint Selection for Node System

18. Click on the Global

19. Use below Global constraint: Clock is 90 MHz.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 122

Figure C.21. Global Constraints for Node System

20. Click on run all then bit file will be generated.

Figure C.22. Run All

21. Open the propel builder 2.2 tool.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 123

22. Double-click on the system0_inst. A pop-up will appear on the screen as mentioned in the below image.

Figure C.23. system0 initialization

23. Initialize Data memory with generated c_node_system.mem file in debug folder of C project.

24. Click on the Validate button

Figure C.24. Validate Button

25. Click on the Generate SGE button.

Figure C.25. Generate SGE button

26. Open the radiant tool from propel builder interface.

Figure C.26. Radiant Tool Button

27. Select FPGA and update constraint from above points 1 to 19.

28. Click on “run all.” A bitfile will be generated.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 124

Figure C.27. Run All Button

C.2 Steps for Binary Generation

C.2.1 Main System

1. Double-click on the “Lattice Propel SDK 2022.1” to open the dialogue box as shown in fig.

Figure C.28. Propel 2022.1 application

2. To select the workspace, browse the template location

Figure C.29. Select Directory

3. “C:\lscc\propel\2022.1\templates\Automate\main_system” by clicking on the “Browse” option as shown in below
image, and then click on “Launch” to launch the workspace.

Figure C.30. Import Project

4. Click on “import” to import firmware project template.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 125

5. Select Existing Project in Workspace from General list and click on next as shown in below image.

Figure C.31. Existing Project into Workspace

6. Select the root directory and browse the template location.

7. Select the project as shown in below: C:\lscc\propel\2022.1\templates\Automation\main_system_2_0

8. Click on finish.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 126

Figure C.32. Import Project

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 127

9. Right-click on the firmware project folder “Predictive_TFLite_code2_0” and select the option as shown in the below
image to clean the project before building.

Figure C.33. Clean All Configurations

10. After selecting the option as shown in above image, observe the console and wait for the process to complete to 100%.
After completion, the message shown in below image will appear on console.

Figure C.34. Console

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 128

11. After cleaning, right-click on the “Predictive_TFLite_code2_0” and select the option as shown in below image to build
the project.

Figure C.35. Build All

12. Wait for the process to complete to 100%. After completion, the message shown in below image appears on console.

Figure C.36. Completing Process

13. To locate the binary file and .mem file to below path:
C:\lscc\propel\2022.1\templates\Automation\main_system_2_0\Predictive_TFLite_code2_0

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 129

C.2.2 Node system

1. Double-click on the “Lattice Propel SDK 2022.1” to open the dialogue box.

Figure C.37. Propel application

2. To select the workspace, browse the template location

Figure C.38. Select Directory

3. “C:\lscc\propel\2022.1\templates\Automate\node_system” by clicking on the “Browse” option as shown in below
image, and then click on the “Launch” to launch the workspace.

Figure C.39. Import Project

4. Click on the “import” or go to the “import” from “file” to import firmware project template.

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 130

5. Select Existing Project in Workspace from General list and click on next as shown in below image.

Figure C.40. Existing Project into Workspace

6. Select the root directory and browse template location.

7. Select the project as shown in below: C:\lscc\propel\2022.1\templates\Automation\node_system_2_0

8. click on finish.

Figure C.41. Select project

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 131

9. Right-click on the firmware project folder “c_node_system_2_0” and select the option as shown in below image to
clean the project before building.

Figure C.42. Clean All Configurations

10. After selecting the option as shown in above image observe the console and wait for the process to complete to 100%.
After completion, the message shown in below image appears on console.

Figure C.43. Console

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 132

11. After cleaning, right-click on the “c_node_system_2_0” and select the option as shown in below image to build the
project.

Figure C.44. Build All

12. Wait for the process to complete to 100%. After completion, the message shown in below image appears on console.

Figure C.45. Completing Process

13. To locate the binary file and .mem file to below path:
C:\lscc\propel\2022.1\templates\Automation\node_system_2_0\c_node_system_2_0

http://www.latticesemi.com/legal

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 133

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/en/Support/AnswerDatabase.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/en/Support/AnswerDatabase

Automate Stack 3.0
Reference Design

© 2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02267-1.0 134

Revision History

Revision 1.0, March 2023

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Automate Stack 3.0
	Acronyms in This Document
	1. Introduction
	1.1. Components

	2. Design Overview
	2.1. Theory of Operation
	2.2. FPGA Design
	2.2.1. Main System
	2.2.1.1. Memory Map

	2.2.2. Node System
	2.2.2.1. Node System Memory Map of Node System

	2.3. Ether Control IP
	2.3.1. Features
	2.3.2. EtherControl Main
	2.3.3. Register Description
	2.3.3.1. EtherControl Main (RISC-V)
	2.3.3.2. EtherControl Main (PCIe)

	2.3.4. EtherControl Node

	2.4. FIFO DMA
	2.5. SGMII TSE MAC Wrapper
	2.6. UDP Stack
	2.7. 2.7 Multiport Extension
	2.8. LPDDR4 Controller
	2.9. SPI Flash Controller (QSPI Streamer)
	2.10. CNN Co-Processor Unit (CCU)
	2.11. Motor Control and PDM Data Collector
	2.12. SPI Manager IP Design Details
	2.12.1. Overview
	2.12.2. SPI Manager Register Map
	2.12.3. Programming Flow
	2.12.3.1. Initialization
	2.12.3.2. Transmit/Receive Operation

	2.13. I2C Manager IP Design Details
	2.13.1. Overview
	2.13.2. I2C Manager Register Map
	2.13.3. Programming Flow
	2.13.3.1. Initialization
	2.13.3.2. Writing to the Subordinate Device
	2.13.3.3. Reading from the Subordinate Device

	2.14. UART IP Design Details
	2.14.1. Overview
	2.14.1.1. UART Register Description

	2.14.2. Programming Flow
	2.14.2.1. Initialization
	2.14.2.2. Transmit Operation
	Transmit Operation – Interrupt Mode
	Transmit Operation – Polling Mode

	2.14.2.3. Receive Operation
	Receive Operation – Interrupt Mode
	Receive Operation – Polling Mode

	2.14.2.4. Data Format

	3. Resource Utilization
	4. Software APIs
	4.1. Main System APIs
	4.1.1. Tasks of the Main System
	4.1.2. OPCUA PubSub :
	4.1.3. Create_UADP_NetworkMessage:
	4.1.3.1. NetworkMessage Header:

	4.1.4. GroupHeader:
	4.1.5. Extended NetworkMessage Header:
	4.1.5.1. Payload
	UADP_NetworkMessage_parse:
	udp_response_func:
	method_callbacks:
	rfl_Update_config:
	Start_motor:
	Stop_motor:
	poweroff_motor:
	get_background:
	run_Pdm:

	4.2. Node System APIs
	4.2.1. Tasks of the Node System
	4.2.2. Key Functions

	5. Communications
	5.1. Communication between Host and Main System
	5.1.1. Messages from Host to Main System
	5.1.2. Messages from Main System to Host

	5.2. Communication between Main System and Node System(s)
	5.2.1. Messages from Main System to Node System
	5.2.2. Messages from Node System to Main System

	Appendix A: Predictive Maintenance with TensorFlow Lite
	A.1 Introduction
	A.1. Setting Up the Linux Environment for Neural Network Training
	A.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU
	A.1.1.1. Installing the CUDA Toolkit
	A.1.1.2. Installing the cuDNN

	A.1.2. Setting Up the Environment for Training and Model Freezing Scripts
	A.1.2.1. Installing the Anaconda Python

	A.1.3. Installing the TensorFlow version 1.15
	A.1.4. Installing the Python Package

	A.2. Creating the TensorFlow Lite Conversion Environment
	A.3. Preparing the Dataset
	A.3.1. Dataset Information

	A.4. Preparing the Training Code
	A.4.1. Training Code Structure
	A.4.2. Generating tfrecords from Augmented Dataset
	A.4.3 Neural Network Architecture
	A.4.4. Training Code Overview
	A.4.4.1. Configuring Hyper-Parameters
	A.4.4.2. Creating Training Data Input Pipeline
	Read tfrecords
	Converting Image to Grayscale and Scaling the Image
	Creating Input Queue

	A.4.4.3. Model Building
	CNN Architecture
	Feature Depth of Fire Layer
	Loss Function and Optimizers

	A.4.4.4. Restore Checkpoints
	A.4.4.5. Saving .pbtxt
	A.4.4.6. Training Loop

	A.4.5. Training from Scratch and/or Transfer Learning
	A.4.5.1. Training
	A.4.5.2. Transfer Learning
	A.4.5.3. Training Status

	A.5. Creating Frozen File
	A.5.1. Generating .pbtxt File for Inference
	A.5.2. Generating the Frozen (.pb) File

	A.6. TensorFlow Lite Conversion and Evaluation
	A.6.1. Converting Frozen Model to TensorFlow Lite
	A.6.2. Evaluating TensorFlow Lite model
	A.6.3. Converting TensorFlow Lite To C-Array

	Appendix B: Setting up the Wireshark tool
	Appendix C: Automate Stack 3.0 Bitfile and Binary Generation
	C.1 Steps for Bit File Generation
	C.1.1 MAIN SYSTEM
	C.1.2 NODE SYSTEM

	C.2 Steps for Binary Generation
	C.2.1 Main System
	C.2.2 Node system

	Technical Support Assistance
	Revision History
	Revision 1.0, March 2023

