

I3C Controller IP

IP Version: v3.6.0

User Guide

FPGA-IPUG-02228-1.5

July 2025

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

	`S	
Abbrevia	ations in This Document	7
1. Intr	roduction	8
1.1.	Overview of the IP	8
1.2.	Quick Facts	
1.3.	IP Support Summary	
1.4.	Features	
1.5.	Licensing and Ordering Information	10
1.5	5.1. Ordering Part Number	11
1.6.	Hardware Support	
1.7.	Minimum Device Requirements	11
1.8.	Naming Conventions	11
1.8	3.1. Nomenclature	11
1.8	3.2. Signal Names	11
2. Fun	nctional Description	12
2.1.	IP Architecture Overview	12
2.2.	Clocking	13
2.2	1.1. Clocking Overview	14
2.3.	Reset	14
2.4.	User Interfaces	15
2.5.	User Packet Frame Structure	15
2.6.	Performing Various I3C Transfers (SDR)	17
2.6	i.1. I3C Private Write	17
2.6	i.2. I3C Private Read	17
2.6	i.3. I3C Consecutive Private Write	18
2.6	i.4. I3C Consecutive Private Write + Private Read	19
2.6	5.5. Enter Dynamic Address Assignment (DAA) CCC	20
2.6	i.6. Reset Dynamic Address (RSTDAA) CCC	21
2.6	5.7. Generic Broadcast CCC Format	22
2.6	5.8. Generic Direct CCC Format	22
2.6	5.9. Common Command Codes	23
2.7.	Performing Various I2C Transfers	24
2.7	7.1. I2C Private Write	24
2.7	'.2. I2C Private Read	24
2.7	'.3. I2C Consecutive Private Write + Private Read	25
2.8.	Performing HDR-DDR Mode Transfers	26
2.8	3.1. HDR-DDR Write	27
2.8	3.2. HDR-DDR Read	28
2.8		
2.8	3.4. Permitted CCCs in HDR-DDR Mode	30
2.9.	Hot-Join and In-Band Interrupt (IBI) Handling	37
2.10.	Controller to Controller Handoff	
2.11.	Mixed Bus Mode	39
3. IP P	Parameter Description	40
3.1.	General	
3.2.	Secondary Controller	
3.3.	IP Parameter Settings for Example Use Cases	
	nal Description	
_	gister Description	
5.1.	System Clock Divider Register 0x01	
5.2.	Controller Configuration 0 Register 0x02	

5.3.	Open Drain Timer Register 0x03	48
5.4.	I2C Clock Divider Register 0x04	49
5.5.	Pull Up Resistor Disable Register 0x05	49
5.6.	HDR-DDR Configuration 0 Register 0x06	50
5.7.	Soft Reset Register 0x08	50
5.8.	Transmit Start Register 0x11	51
5.9.	Secondary Controller Status Info Register 0x15	
5.10.	Set Device Role Register 0x16	
5.11.	Secondary Controller Timeout Register 0x17–0x19	
5.12.	Dynamic Address ACKed Counter Register 0x1C	53
5.13.	IBI Read Count Register 0x1D	53
5.14.	IBI Response Register 0x1E	53
5.15.	IBI Address Register 0x1F	53
5.16.	Interrupt Status 0 Register 0x20	53
5.17.	Interrupt Set 0 Register 0x21	54
5.18.	Interrupt Enable O Register 0x22	54
5.19.	Interrupt Status 1 Register 0x24	55
5.20.	Interrupt Set 1 Register 0x25	56
5.21.	Interrupt Enable 1 Register 0x26	56
5.22.	Bus Condition Debug Register 0x28	56
5.23.	Last NAK Address Debug Register 0x29	57
5.24.	Last ACK Address Debug Register 0x2A	57
5.25.	Interrupt Status 2 Register 0x2C	58
5.26.	Interrupt Set 2 Register 0x2D	59
5.27.	Interrupt Enable 2 Register 0x2E	59
5.28.	Tx FIFO Register 0x30	59
5.29.	Rx FIFO Register 0x40	59
6. Exam	ple Design	61
6.1.	Example Design Supported Configuration	61
6.2.	Overview of the Example Design and Features	62
6.3.	Design Components Example	63
6.4.	Generating the Example Design	64
6.5.	Hardware Testing	67
6.5.1	. Hardware Testing Setup	67
6.5.2	. Expected Output	67
7. Desig	gning with the IP	68
7.1.	Generating and Instantiating the IP	
7.1.1	. Generated Files and File Structure	70
7.2.	Design Implementation	71
7.3.	Timing Constraints	71
7.4.	Physical Constraints	71
7.5.	Running Functional Simulation	
Appendix	A. Resource Utilization	75
	2S	
	Support Assistance	
Revision H	listory	79

Figures

Figure 2.1.	I3C Controller IP Core Functional Diagram (Controller Only)	12
Figure 2.2.	13C Controller IP Core Functional Diagram (with Secondary Controller Capability)	13
	13C Controller IP Clock Domain Block Diagram (Internal Clock Divider Enabled)	
Figure 2.4.	13C Controller IP Clock Domain Block Diagram (Internal Clock Divider Disabled)	14
Figure 2.5.	User Packet Frame Structure	15
Figure 2.6.	HDR-DDR mode frame	26
Figure 2.7.	I3C Controller Handling of IBI/Hot-Join	37
Figure 2.8.	Sample Sequence	38
Figure 6.1.	13C Controller IP in Propel SoC Project	62
Figure 6.2.	Sample C-Code Test Routine	63
Figure 6.3.	I3C Controller Example Design Block Diagram	63
Figure 6.4.	Create SoC Project	64
Figure 6.5.	Define Instance	65
Figure 6.6.	Build SoC Project Result	65
Figure 6.7.	Lattice C/C++ Design Project	66
Figure 6.8.	Build C/C++ Project Result	66
Figure 6.9.	Sample ENTDAA sequence sent by I3C Controller	67
Figure 7.1.	Module/IP Block Wizard	68
Figure 7.2.	IP Configuration	69
Figure 7.3.	Check Generated Result	70
Figure 7.4.	Simulation Wizard	72
	Add and Reorder Source	
Figure 7.6.	Parse HDL Files for Simulation	73
Figure 7.7.	Summary	73
Figure 7.8	Simulation Waveform	74

Tables

Table 1.1. Summary of the I3C Controller IP	8
Table 1.2. I3C Controller IP Support Readiness	8
Table 1.3. Ordering Part Number	
Table 2.1. User Interfaces and Supported Protocols	15
Table 2.2. User Packet Frame Structure	
Table 2.3. Write 4 Bytes to I3C Target with Address 7'h10 Example	17
Table 2.4. Read 4 Bytes from I3C Target with Address 7'h10 Example	17
Table 2.5. Write 4 Bytes to I3C Target with Address 7'h10 then Write 8 Bytes to I3C Target with Address 7'h20 Example .	18
Table 2.6. Write 4 Bytes to I3C Target with Address 7'h10 then Read 4 Bytes from I3C Target with Address 7'h10 Example	e.19
Table 2.7. Example 1: Assign DA to 1 I3C Target (DA = 0x10)	
Table 2.8. Example 2: Assign DA to 3 I3C Targets (DA_0 = 0x10, DA_1 = 0x11, DA_2 = 0x12)	21
Table 2.9. Reset Dynamic Address (RSTDAA) CCC	21
Table 2.10. Generic Broadcast CCC Format	22
Table 2.11. Generic Direct CCC Format	22
Table 2.12. I3C Controller IP Core Supported CCCs	23
Table 2.13. Write 4 Bytes to I2C Target with Address 7'h20 Example	24
Table 2.14. Read 4 Bytes from I2C Target with Address 7'h20 Example	
Table 2.15. Write 4 Bytes to I2C Target with Address 7'h10 then Read 4 Bytes from I2C Target with Address 7'h10 Examp	ole
	_
Table 2.16. Write 4 Bytes to I3C Target with Address 7'h10 Using HDR-DDR Mode Example	27
Table 2.17. Read 4 Bytes from I3C Target with Address 7'h10 Using HDR-DDR Mode Example	28
Table 2.18. HDR-DDR Consecutive Write and Read	29
Table 2.19. Allowed CCCs During HDR-DDR Mode and Limitations	30
Table 2.20. Generic Broadcast CCC Format	31
Table 2.21. Broadcast ENTASO CCC in HDR-DDR Mode Example	32
Table 2.22. Broadcast SET MWL CCC in HDR-DDR Mode Example	32
Table 2.23. Generic Direct Set CCC Format	33
Table 2.24. Direct ENTASO CCC in HDR-DDR Mode Example	34
Table 2.25. Direct SET MWL CCC in HDR-DDR Mode Example	34
Table 2.26. Generic Direct Get CCC Format	35
Table 2.27. Direct GET MWL CCC in HDR-DDR Mode Example	36
Table 3.1. General Attributes	40
Table 3.2. Secondary Controller (Available only if Secondary Controller Capable is Enabled)	42
Table 3.3. IP Parameter Settings for Example Test Cases	43
Table 4.1. Ports Description	45
Table 6.1. I3C Controller IP Configuration Supported by the Example Design	61
Table 7.1. Generated File List	70
Table A.1. LFCPNX-100-7ASG256C Device Resource Utilization	
Table A.2. LIFCL-40-7BG256I Device Resource Utilization	75
Table A.3. LAV-AT-E70-1LFG676I Device Resource Utilization	76
Table A 4 I N2-CT-20-1CBG484I Device Resource Utilization	76

Abbreviations in This Document

A list of abbreviations used in this document.

Abbreviation	Definition
ACK	Acknowledgement
AHB	Advanced High-performance Bus
APB	Advanced Peripheral Bus
BCR	Bus Characteristics Register
CCC	Common Command Code
CRC	Cyclic Redundancy Check
CSR	Control and Status Registers
D2D	Device-to-Device
DA	Dynamic Address
DAA	Dynamic Address Assignment
DCR	Device Characteristics Register
DDR	Double Data Rate
EBR	Embedded Block RAM
FIFO	First In First Out
FPGA	Field Programmable Gate Array
GUI	Graphical User Interface
HDL	Hardware Description Language
HDR	High Data Rate
HJ	Hot-Join
1/0	Input/Output
I2C	Inter-Integrated Circuit
I3C	Improved Inter-Integrated Circuit
IBI	In-Band Interrupt
IP	Intellectual Property
LMMI	Lattice Memory Mapped Interface
LSE	Lattice Synthesis Engine
MC	Microcontroller
MIPI	Mobile Industry Processor Interface
MDB	Maximum Data Speed
NAK	Negative Acknowledgement
PIC	Programmable Interrupt Controller
PLL	Phase-Locked Loop
RAM	Random Access Memory
RISC-V	Reduced Instruction Set Computer Five
SCL	Serial Clock
SDA	Serial Data
SDK	Software Development Kit
SDR	Single Data Rate
SoC	System on Chip

1. Introduction

1.1. Overview of the IP

The Lattice I3C IP is designed to comply with the MIPI I3C specification.

The MIPI I3C interface eases sensor system design architectures in mobile wireless products by providing a fast, low-cost, low-power and two-wire digital interface for sensors. I3C protocol is a single scalable, cost effective, and a power efficient protocol. Implementing the I3C specification increases the implementation flexibility for an ever-expanding sensor subsystem as efficiently and at the lowest cost possible.

The I3C protocol is backward compatible with many legacy I2C devices. The I3C protocol offers greater than 10× speed improvements, more efficient bus power management, new communication modes, and new device roles which includes an ability to change device roles over time. For example, the initial Controller can cooperatively pass the Controller role to another I3C device on the Bus, if the requesting I3C device supports Secondary Controller feature.

1.2. Quick Facts

Table 1.1. Summary of the I3C Controller IP

Table 1.1. Summary of the	ise controller in		
IP Requirements	Supported Devices	iCE40 UltraPlus™, MachXO3D™, CrossLink™-NX, Certus™-NX, Certus-NX-RT, CertusPro™-NX, CertusPro-NX-RT, Mach™-NX, MachXO5™-NX, Lattice Avant™, and Certus-N2.	
	IP Changes	For a list of changes to the IP, refer to the I3C Controller IP Release Notes (FPGA-RN-02017).	
Resource Utilization	Supported User Interface	Lattice Memory Mapped Interface (LMMI), Advanced Peripheral Bus (APB), and Advanced High-Performance Bus-Lite (AHB-Lite)	
	Resources	Refer to Appendix A. Resource Utilization	
	Lattice Implementation	IP Core v3.6.0 – Lattice Radiant™ Software 2025.1 and Lattice Propel™ Builder Software 2025.1	
Design Tool Support	Synthesis	Lattice Synthesis Engine (LSE) Synopsys Synplify Pro® for Lattice	
	Simulation	For the list of supported simulators, see the Lattice Radiant Software User Guide.	

1.3. IP Support Summary

Table 1.2. I3C Controller IP Support Readiness

Device Family	IP	System Clock Frequency (MHz)	Supported Feature	Radiant Timing Model	Hardware Validated
Crosslink-NX	I3C Controller	25	Dynamic Address Assignment	Final	Yes
			IBI	Final	Yes
			Hot-Join	Final	Yes
			HDR-DDR	Final	No
			Secondary Controller	Final	No
			I3C Write/Read	Final	Yes
			I2C Write/Read	Final	Yes

Device Family	IP	System Clock Frequency (MHz)	Supported Feature	Radiant Timing Model	Hardware Validated
Certus-NX	I3C Controller	25	Dynamic Address Assignment	Final	No
			IBI	Final	No
			Hot-Join	Final	No
			HDR-DDR	Final	No
			Secondary Controller	Final	No
			I3C Write/Read	Final	No
			I2C Write/Read	Final	No
Certus-NX-RT	I3C Controller	25	Dynamic Address Assignment	Final	No
			IBI	Final	No
			Hot-Join	Final	No
			HDR-DDR	Final	No
			Secondary Controller	Final	No
			I3C Write/Read	Final	No
			I2C Write/Read	Final	No
CertusPro-NX	I3C Controller	25	Dynamic Address Assignment	Final	Yes
			IBI	Final	Yes
			Hot-Join	Final	Yes
			HDR-DDR	Final	Yes
			Secondary Controller	Final	Yes
			I3C Write/Read	Final	Yes
			I2C Write/Read	Final	Yes
CertusPro-NX-RT	I3C Controller	25	Dynamic Address Assignment	Final	No
certasi io iva iti	15c controller	25	IBI	Final	No
			Hot-Join	Final	No
			HDR-DDR	Final	No
			Secondary Controller	Final	No
			I3C Write/Read	Final	No
			I2C Write/Read	Final	No
iCE40 UltraPlus	I3C Controller	25	Dynamic Address Assignment	Final	No
ICL40 Olliarius	13C CONTIONE	23	IBI	Final	No
					No
			Hot-Join HDR-DDR	Final Final	No
			Secondary Controller		No
				Final	
			I3C Write/Read	Final	No
NA-abyor Niv	12C Combreller	25	I2C Write/Read	Final	No
MachXO5-NX	I3C Controller	25	Dynamic Address Assignment	Final	No
			IBI	Final	No
			Hot-Join	Final	No
			HDR-DDR	Final	No
			Secondary Controller	Final	No
			I3C Write/Read	Final	No
			I2C Write/Read	Final	No
Avant	I3C Controller	25	Dynamic Address Assignment	Preliminary	Yes
			IBI	Preliminary	Yes
			Hot-Join	Preliminary	Yes
			HDR-DDR	Preliminary	Yes
			Secondary Controller	Preliminary	Yes

10

Device Family	IP	System Clock Frequency (MHz)	Supported Feature	Radiant Timing Model	Hardware Validated
			I3C Write/Read	Preliminary	Yes
			I2C Write/Read	Preliminary	Yes
Certus-N2	I3C Controller	25	Dynamic Address Assignment	Preliminary	No
			IBI	Preliminary	No
			Hot-Join	Preliminary	No
			HDR-DDR	Preliminary	No
			Secondary Controller	Preliminary	No
			I3C Write/Read	Preliminary	No
			I2C Write/Read	Preliminary	No

1.4. Features

An I3C bus requires exactly one I3C device at a time functioning as an I3C Controller device. In I3C terms, this I3C Controller device is the active Controller at that time. In typical applications, the active Controller is the I3C device on the bus that sends majority of the I3C commands, addressing either all targets (Broadcast CCCs) or specific individual target (Directed CCCs). The active Controller is also the only device on the I3C bus allowed to send I2C Messages.

The Lattice I3C Controller supports the following features:

- Compatible with MIPI I3C Specification v1.1.1
- Two-wire serial interface up to 12.5 MHz using Push-Pull
- Legacy I2C device coexist on the same bus (with some limitations)
- Dynamic Addressing while supporting Static Addressing for legacy I2C devices
- I2C-like SDR messaging
- HDR-DDR mode support
- In-Band Interrupt support
- Hot-Join support
- Primary Controller
- Secondary Controller
- Receive and Transmit Internal FIFO size (8b × 256 each)

The Lattice I3C Controller IP does not support the following features:

- HDR-TSL for Ternary Symbol Legacy-inclusive-Bus (I2C Devices allowed)
- HDR-TSP for Ternary Symbol for Pure Bus (no I2C Devices allowed)
- HDR-BT for Bulk Transport
- Synchronous Timing and Asynchronous Time Stamping (Expect Mode 0)
- Monitoring Device Early Termination
- D2D Tunneling
- Multi-Lane Data Transfer

1.5. Licensing and Ordering Information

An IP specific license string is required to enable full use of the I3C Controller IP in a complete top-level design.

The IP can be fully evaluated through functional simulation and implementation (synthesis, map, place and route) without an IP license string. This IP supports Lattice's IP hardware evaluation capabilities. You can create versions of the IP to operate in hardware for a limited time (approximately four hours) without requiring an IP license string. A license string is required to enable timing simulation and to generate a bitstream file that does not include the hardware evaluation timeout limitation.

For more information about pricing and availability of the I3C Controller IP, contact your local Lattice Sales Office.

1.5.1. Ordering Part Number

Table 1.3. Ordering Part Number

Davies Family	Part Number			
Device Family	Single Seat Annual	Single Seat Perpetual		
MachXO5-NX	I3C-M-XO5-US	I3C-M-XO5-UT		
iCE40 UltraPlus	I3C-M-UP-US	I3C-M-UP-UT		
CrossLink-NX	I3C-M-CNX-US	I3C-M-CNX-UT		
CertusPro-NX	I3C-M-CPNX-US	I3C-M-CPNX-UT		
Certus-NX	I3C-M-CTNX-US	I3C-M-CTNX-UT		
Avant-AT-E	I3C-M-AVE-US	I3C-M-AVE-UT		
Avant-AT-G	I3C-M-AVG-US	I3C-M-AVG-UT		
Avant-AT-X	I3C-M-AVX-US	I3C-M-AVX-UT		
Certus-N2	I3C-M-CN2-US	I3C-M-CN2-UT		
Bundled	MIPI-BNDL-US	MIPI-BNDL-UT		

1.6. Hardware Support

Refer to the Example Design section for more information on the boards used.

1.7. Minimum Device Requirements

There is no limitation in device speed grade for I3C Controller IP. See Appendix A. Resource Utilization for minimum required resources to instantiate this IP and maximum clock frequency supported.

1.8. Naming Conventions

1.8.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.8.2. Signal Names

- _n are active low (asserted when value is logic 0)
- _*i* are input signals
- _o are output signals
- _io are bidirectional signals

2. Functional Description

2.1. IP Architecture Overview

I3C Controller IP supports several communication formats, all sharing a two-wire interface: SDA bidirectional data line and SCL bidirectional clock.

The Lattice I3C Controller supports the following modes:

- SDR mode
- HDR-DDR mode

SDR Mode is the default mode of the I3C bus and is primarily used for private messaging from the Current Controller device to Secondary devices. SDR Mode is also used to enter other modes and for built-in features, such as Common Command Codes (CCCs), In-Band Interrupts, and transition from I2C to I3C by assignment of a Dynamic Address.

I3C SDR Mode is significantly like the I2C protocol in terms of procedures and conditions. As a result, I3C devices and many legacy I2C Secondary devices (but not I2C Controller devices) can coexist on the same I3C bus.

Both SDR and HDR-DDR Mode use SCL as a clock. However, in HDR-DDR Mode, SDA is changed on both SCL edges (when High and Low), effectively doubling the data rate. By contrast, in SDR Mode, SDA is changed only when SCL is Low. SDR Mode defines it as a START or a STOP when SDA changes while SCL remains High.

Throughout this document, *HDR-DDR-Capable* indicates that the IP is capable to support both SDR Mode and HDR-DDR Mode.

HDR-DDR moves data by Words. Each Word contains the following bits:

- 16 payload bits as two bytes in a byte stream + 2 parity bits, which gives an 18-bit Word;
- The HDR-DDR Protocol precedes the 18-bit Word with a 2-bit Preamble, which gives a 20-bit Word.

There are four HDR-DDR Word Types which are defined as follows:

- Command Word
- Data Word
- CRC Word
- Reserved Word

The I3C Controller accepts commands from a LMMI interface or APB/AHB-Lite when you select the optional standard interface. These commands are translated into I3C signals and forwarded to I3C Target Device.

The I3C Controller can operate in interrupt or polling mode. This means that you can choose to poll the I3C Controller for a change in status at periodic intervals or wait to be interrupted by the I3C Controller when data needs to be read or written.

13C Controller IP Core functional diagram is shown in Figure 2.1.

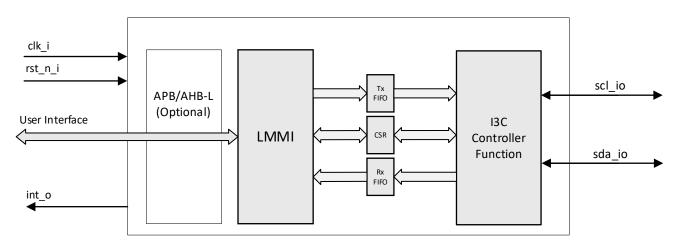


Figure 2.1. I3C Controller IP Core Functional Diagram (Controller Only)

The I3C Controller IP Core has an option to act as a Target when Secondary Controller Capable attribute is checked in the IP configuration GUI.

Figure 2.2 shows the functional diagram of the IP Core with Secondary Controller Capability.

The device role can switch from Controller to Target or Target to Controller using the controller handoff procedure defined in the MIPI I3C Specification.

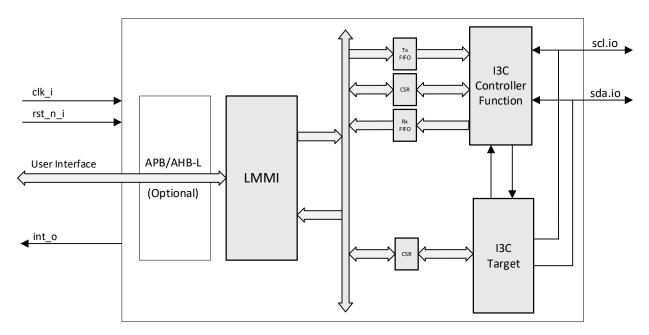


Figure 2.2. I3C Controller IP Core Functional Diagram (with Secondary Controller Capability)

2.2. Clocking

Figure 2.3 shows the clock diagram when Use Internal Clock Divider attribute is checked in the IP configuration GUI. There is one input clock clk i and one output clock scl io. Each clock is discussed in detail in the Clocking Overview section.

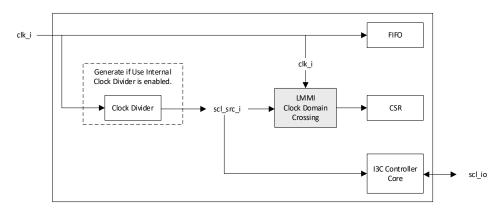


Figure 2.3. I3C Controller IP Clock Domain Block Diagram (Internal Clock Divider Enabled)

Figure 2.4 shows the clock diagram when Use Internal Clock Divider attribute is unchecked in the IP configuration GUI. There are two input clocks, (1) clk_i and (2) src_clk_scl_i, and one output clock scl_io. Each clock is discussed in detail in the Clocking Overview section.

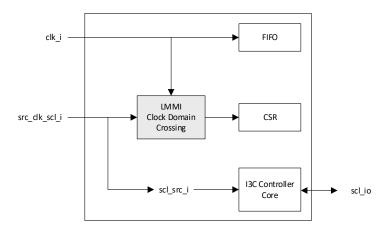


Figure 2.4. I3C Controller IP Clock Domain Block Diagram (Internal Clock Divider Disabled)

2.2.1. Clocking Overview

When internal clock divider is enabled, the I3C Controller IP has the following clocks:

- clk i
 - System clock Can be set in the range of 0.8 MHz 50 MHz.
- scl_src_i
 - Core Clock This is a generated clock. When the system clock frequency is set to greater than 25 MHz, the core clock frequency is equal to half of the system clock frequency. Otherwise, the core clock frequency is equal to the system clock frequency.
- scl_io
 - Serial clock Maximum frequency is equal to half of internal clock frequency. Initial frequency depends on SCL Pulse width setting in IP configuration GUI and can be reprogrammed by writing to sys clk div register.

When internal clock divider is disabled, the I3C Controller IP has the following clocks:

- clk
 - System clock Can be set in the range of 0.8 MHz 50 MHz.
- src clk scl i
 - Core Clock Can be set in the range of 0.02 MHz 25 MHz. Equal to internal scl src i.
- scl io
 - Serial clock Maximum frequency is equal to half of core clock frequency. Initial frequency is equal to half of core clock frequency and can be reprogrammed by writing to sys_clk_div register.

2.3. Reset

This IP has one asynchronous active low reset rst n i.

To ensure that reset has been properly propagated inside the IP, wait for at least 20 system clock (clk_i) cycles after system reset (rst_n_i) de-assertion before doing any IP operation.

2.4. User Interfaces

Table 2.1 shows the user interfaces and supported protocols. The memory-mapped interface of I3C Controller IP Core is selected by the Interface attribute. It can be LMMI interface, AHB-Lite interface, or APB interface.

Table 2.1. User Interfaces and Supported Protocols

User Interface	Supported Protocols	Description
Selectable Memory-Mapped Interface	LMMI	For LMMI interface, refer to the Lattice Memory Mapped Interface and Lattice Interrupt Interface (FPGA-UG-02039) document for information and timing diagram of the LMMI. Immi_ready_o is always asserted, thus write and read transactions have no wait state; Read latency is one clock cycle.¹
	AHB-Lite	For AHB-Lite interface, refer to the AMBA 3 AHB-Lite Protocol v1.0 Specification for information and timing diagram of the APB interface. • Write transaction has no wait state; • Read transaction has one wait state.
	APB	For APB interface, refer to the AMBA 3 APB Protocol v1.0 Specification for information and timing diagram of the APB interface. • Write transaction has one wait state; • Read transaction has two wait states. 1
Device Receiver/Transmitter Interface	I3C	The I3C Interface can complete the communication between Lattice I3C Controller IP core and external I3C Target devices. Refer to the MIPI I3C Specification for more information on the I3C protocol.

Note:

1. Take note of these details when checking the corresponding timing diagram in the said document.

2.5. User Packet Frame Structure

The user command for sending CCC or private write and read access to I3C target shall follow the defined user packet frame structure. These user packets will be translated by the I3C controller to I3C signaling format defined in the MIPI I3C Specification. The user packet will be written to Tx FIFO through LMMI or other user selected bus interface. Read data response from target device will be stored in Rx FIFO and can be read by though LMMI or other user selected bus interface.

Control
Address
Length (n)
Payload 1
Payload 2
Payload n

Figure 2.5. User Packet Frame Structure

Table 2.2. User Packet Frame Structure

Name	Bits	Description
Control	[0]	Set to 0 when sending Private Write or Private Read access.
		Set to 1 when sending CCC.
	[1]	Set to 0 when the frame will start with Start symbol (S).
		Set to 1 when the frame is a continuation of the previous packet and will start
		with Repeated Start symbol (Sr).
	[2]	Set to 0 when the next frame will continue with Repeated Start (Sr).
		Set to 1 when the frame will end with Stop symbol (P).
	[3]	Set to 0 when the frame is not a start of CCC.
		Set to 1 when the frame is a CCC and will start with Start symbol (S).
	[4]	Set to 0 when the frame is to be sent using I3C protocol.
		Set to 1 when the frame is to be sent using I2C protocol.
		Note: If the packet is to be sent in I2C mode, you must also set the configuration
		register (i2c_mode_allowed) to enable I2C frames.
	[5]	0 – no wait
		1 – wait for next packet
		This is used to make sure that the succeeding I3C frames will continue with
		Repeated Start. There are times when you cannot give the next packet
		immediately, but it is expected to continue with Repeated Start. Normally, when
		Tx FIFO becomes empty, the I3C controller will end the transaction with Stop.
		However, if this control bit is set, the I3C controller will pause the SCL and wait for the next user packet.
		In HDR-DDR mode, it is recommended to set this to 1 when there are multiple
		I3C frames in one packet to ensure that HDR-DDR mode will not be exited in case
		of the following:
		The preceding frame is NAK-ed, or
		User read/write command is terminated early, or
		HDR-DDR framing error is detected. If this is set to 0, reset the IP core and
		cleanup the contents of FIFO when the mentioned conditions occur to avoid
		incorrect packet framing and an unknown internal state the of IP core.
	[6]	Unused – set to 0.
	[7]	Set to 0 when sending frames in SDR mode.
	1 ' '	Set to 1 when sending frames in HDR-DDR mode.
Address	[0]	This indicates the access type, either Write (1'b0) or Read (1'b1).
	[7:1]	This is the 7-bit address of the target device or the I3C broadcast address 0x7E.
Length	[7:0]	0 – no payload
8	[,]	1 – 1 byte
		2 – 2 bytes
		255 – 255 bytes
		This indicates the number of data bytes that follow.
		In write request, this determines the number of bytes of payload that follows.
		For read request, this is the number of bytes expected to be returned by the
		target device.
Payload 1n	[7:0]	The data bytes are sent for write access.

2.6. Performing Various I3C Transfers (SDR)

The following examples show how to create the packet and send it to LMMI or a selected bus to generate I3C transactions.

2.6.1. I3C Private Write

Table 2.3. Write 4 Bytes to I3C Target with Address 7'h10 Example

LMMI Address	LMMI Write Data	Comment
		// Control
020	0.04	// [0] = 0 -> Private Write
0x30	0x04	// [1] = 0 -> not repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [7:3] = 0
0x30	{7'h10,1'b0}	// 7b Target Address, Write
0x30	0x04	// Length = 4 bytes
0x30	0x55	// Payload 1
0x30	0xAA	// Payload 2
0x30	0xCC	// Payload 3
0x30	0x33	// Payload 4
0x11	0x01	// start

2.6.2. I3C Private Read

S	0x7E,W	ACK	Sr	SLV_ADR,R	ACK	RDATA 0	Т	RDATA	Т	Р	
---	--------	-----	----	-----------	-----	---------	---	-------	---	---	--

Table 2.4. Read 4 Bytes from I3C Target with Address 7'h10 Example

LMMI Address	LMMI Write Data	Comment
0x30	0x04	// Control
		// [0] = 0 -> Private Read
		// [1] = 0 -> not repeated start
		<pre>// [2] = 1 -> terminate frame with Stop (P)</pre>
		// [7:3] = 0
0x30	{7'h10,1'b1}	// 7b Target Address, Read
0x30	0x04	// Length = 4 bytes
0x11	0x01	// start

When Read data is available, interrupt (int_o) will assert (if interrupt status rx_fifo_not_empty is enabled) and you can get the read data by sending LMMI read request at address offset 0x40.

2.6.3. I3C Consecutive Private Write

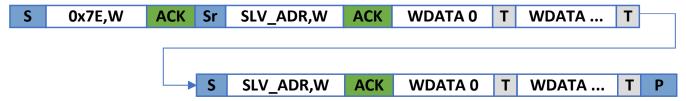


Table 2.5. Write 4 Bytes to I3C Target with Address 7'h10 then Write 8 Bytes to I3C Target with Address 7'h20 Example

LMMI Address	LMMI Write Data	Comment
0x30	0x00	// Control
		// [0] = 0 -> Private Write
		// [1] = 0 -> not repeated start
		// [2] = 0 -> do not terminate frame with Stop (P)
		// [7:3] = 0
0x30	{7'h10,1'b0}	// 7b Target Address, Write
0x30	0x04	// Length = 4 bytes
0x30	0x01	// Payload 1
0x30	0x23	// Payload 2
0x30	0x45	// Payload 3
0x30	0x67	// Payload 4
0x30	0x06	// Control
		// [0] = 0 -> Private Write
		// [1] = 1 -> repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [7:3] = 0
0x30	{7'h20,1'b0}	// 7b Target Address, Write
0x30	0x08	// Length = 8 bytes
0x30	0x89	// Payload 1
0x30	0xAB	// Payload 2
0x30	0xCD	// Payload 3
0x30	0xEF	// Payload 4
0x30	0x00	// Payload 5
0x30	0x11	// Payload 6
0x30	0x22	// Payload 7
0x30	0x33	// Payload 8
0x11	0x01	// start

2.6.4. I3C Consecutive Private Write + Private Read

Table 2.6. Write 4 Bytes to I3C Target with Address 7'h10 then Read 4 Bytes from I3C Target with Address 7'h10 Example

LMMI Address	LMMI Write Data	Comment
0x30	0x00	// Control
		// [0] = 0 -> Private Write
		// [1] = 0 -> not repeated start
		// [2] = 0 -> do not terminate frame with Stop (P)
		// [7:3] = 0
0x30	{7'h10,1'b0}	// 7b Target Address, Write
0x30	0x04	// Length = 4 bytes
0x30	0x01	// Payload 1
0x30	0x23	// Payload 2
0x30	0x45	// Payload 3
0x30	0x67	// Payload 4
0x30	0x06	// Control
		// [0] = 0 -> Private Read
		// [1] = 1 -> repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [7:3] = 0
0x30	{7'h10,1'b1}	// 7b Target Address, Read
0x30	0x04	// Length = 4 bytes
0x11	0x01	// start

When Read data is available, interrupt (int_o) will assert (if interrupt status rx_fifo_not_empty is enabled) and you can get the read data by sending LMMI read request at address offset 0×40.

2.6.5. Enter Dynamic Address Assignment (DAA) CCC



Table 2.7. Example 1: Assign DA to 1 I3C Target (DA = 0x10)

LMMI Address	LMMI Write Data	Comment
0x30	0x0D	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		$//[2] = 1 \rightarrow terminate frame with Stop (P)$
		// [3] = 1 -> CCC start
		// [7:4] = 0
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x02	// Length = 1 + number of target address (1)
0x30	0x07	// ENTDAA CCC = 0x07
0x30	{7'h10,1'b0}	// {DA, Odd Parity of DA}
		// Parity will be auto generated by I3C controller
0x11	0x01	// start

Table 2.8. Example 2: Assign DA to 3 I3C Targets (DA_0 = 0x10, DA_1 = 0x11, DA_2 = 0x12)

LMMI Address	LMMI Write Data	Comment
0x30	0x0D	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [3] = 1 -> CCC start
		// [7:4] = 0
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x04	// Length = 1 + number of target address (3)
0x30	0x07	// ENTDAA CCC = 0x07
0x30	{7'h10,1'b0}	// {DA, Odd Parity of DA} // Parity will be auto generated by I3C controller
0x30	{7'h11,1'b1}	// {DA, Odd Parity of DA} // Parity will be auto generated by I3C controller
0x30	{7'h12,1'b1}	// {DA, Odd Parity of DA} // Parity will be auto generated by I3C controller
0x11	0x01	// start

2.6.6. Reset Dynamic Address (RSTDAA) CCC

Table 2.9. Reset Dynamic Address (RSTDAA) CCC

LMMI Address	LMMI Write Data	Comment
0x30	0x0D	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [3] = 1 -> CCC start
		// [7:4] = 0
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x06	// RSTDAA CCC = 0x06
0x11	0x01	// start

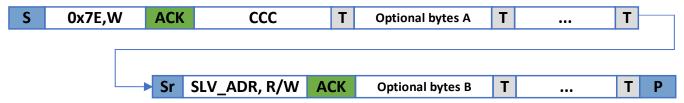

2.6.7. Generic Broadcast CCC Format

Table 2.10. Generic Broadcast CCC Format

LMMI Address	LMMI Write Data	Comment
0x30	0x0D	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [3] = 1 -> CCC start
		// [7:4] = 0
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01+0xNN	// Length = 1+ number of optional bytes
0x30	<ccc>,, <n bytes=""></n></ccc>	// CCC and Optional bytes
0x11	0x01	// start

2.6.8. Generic Direct CCC Format

Table 2.11. Generic Direct CCC Format

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		// [2] = 0 -> terminate frame with Stop (P)
		// [3] = 1 -> CCC start
		// [7:4] = 0
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01+0xNN	// Length = 1+ number of optional bytes (A)
0x30	<ccc>,, <n bytes=""></n></ccc>	// CCC and Optional bytes
0x30	0x07	// Control
		// [0] = 1 -> CCC
		// [1] = 1 -> repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [3] = 0 -> not CCC start
		// [7:4] = 0
0x30	{ <tgt_adr>, <r w="">}</r></tgt_adr>	// 7b Target Address, Read/Write
0x30	0xMM	// Length = number of optional bytes (B)
0x30	<m bytes=""></m>	// Optional bytes (B)
0x11	0x01	// start

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2.6.9. Common Command Codes

Table 2.12 lists the supported CCCs of this IP.

Table 2.12. I3C Controller IP Core Supported CCCs

CCC	Туре	Required ¹	Command Name
0x00	Broadcast	R	ENEC
0x01	Broadcast	R	DISEC
0x02	Broadcast	С	ENTAS0
0x03	Broadcast	О	ENTAS1
0x04	Broadcast	О	ENTAS2
0x05	Broadcast	О	ENTAS3
0x06	Broadcast	R	RSTDAA
0x07	Broadcast	R	ENTDAA
0x08	Broadcast	С	DEFTGTS
0x09	Broadcast	R	SETMWL
0x0A	Broadcast	R	SETMRL
0x12	Broadcast	С	ENDXFER
0x20	Broadcast	С	ENTHDR0
0x28	Broadcast	С	SETXTIME
0x29	Broadcast	0	SETAASA
0x2A	Broadcast	R	RSTACT
0x80	Direct	R	ENEC
0x81	Direct	R	DISEC
0x82	Direct	С	ENTAS0
0x83	Direct	0	ENTAS1
0x84	Direct	0	ENTAS2
0x85	Direct	0	ENTAS3
0x87	Direct	0	SETDASA
0x88	Direct	С	SETNEWDA
0x89	Direct	R	SETMWL
0x8A	Direct	R	SETMRL
0x8B	Direct	R	GETMWL
0x8C	Direct	R	GETMRL
0x8D	Direct	С	GETPID
0x8E	Direct	С	GETBCR
0x8F	Direct	С	GETDCR
0x90	Direct	R	GETSTATUS
0x91	Direct	С	GETACCCR
0x92	Direct	С	ENDXFER
0x94	Direct	С	GETMXDS
0x95	Direct	С	GETCAPS
0x98	Direct	С	SETXTIME
0x99	Direct	С	GETXTIME
0x9A	Direct	R	RSTACT

Note:

1. R – Required, O – Optional, and C – Conditional.

2.7. Performing Various I2C Transfers

To send I2C frames, the configuration register must be set to enable I2C transfer. This is done by setting the register i2c_mode_allowed to 1.

2.7.1. I2C Private Write

S	SLV_ADR,W	ACK	WDATA 0	ACK	WDATA 1	ACK	WDATA	ACK	Р	
---	-----------	-----	---------	-----	---------	-----	-------	-----	---	--

Table 2.13. Write 4 Bytes to I2C Target with Address 7'h20 Example

LMMI Address	LMMI Write Data	Comment
0x30	0x14	// Control
		// [0] = 0 -> Private Write
		// [1] = 0 -> not repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		//[3] = 0
		// [4] = 1 -> send frame in I2C mode
		// [7:5] = 0
0x30	{7'h20,1'b0}	// 7b Target Address, Write
0x30	0x04	// Length = 4 bytes
0x30	0x11	// Payload 1
0x30	0x22	// Payload 2
0x30	0x33	// Payload 3
0x30	0x44	// Payload 4
0x11	0x01	// start

2.7.2. I2C Private Read

	S	SLV ADR,R	ACK	RDATA 0	ACK	RDATA 1	ACK	RDATA	ACK	Р
--	---	-----------	-----	---------	-----	---------	-----	-------	-----	---

Table 2.14. Read 4 Bytes from I2C Target with Address 7'h20 Example

LMMI Address	LMMI Write Data	Comment
0x30	0x14	// Control
		// [0] = 0 -> Private Read
		// [1] = 0 -> not repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		//[3]=0
		// [4] = 1 -> send frame in I2C mode
		// [7:5] = 0
0x30	{7'h20,1'b1}	// 7b Target Address, Read
0x30	0x04	// Length = 4 bytes
0x11	0x01	// start

2.7.3. I2C Consecutive Private Write + Private Read

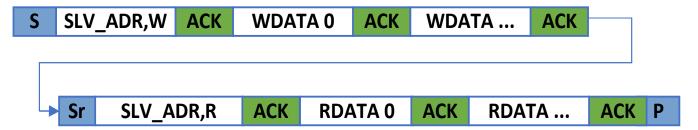


Table 2.15. Write 4 Bytes to I2C Target with Address 7'h10 then Read 4 Bytes from I2C Target with Address 7'h10 Example

LMMI Address	LMMI Write Data	Comment
0x30	0x10	// Control
		// [0] = 0 -> Private Write
		// [1] = 0 -> not repeated start
		// [2] = 0 -> do not terminate frame with Stop (P)
		// [3] = 0
		// [4] = 1 -> sent frame in I2C mode
		// [7:5] = 0
0x30	{7'h10,1'b0}	// 7b Target Address, Write
0x30	0x04	// Length = 4 bytes
0x30	0x01	// Payload 0
0x30	0x23	// Payload 1
0x30	0x45	// Payload 2
0x30	0x67	// Payload 3
0x30	0x16	// Control
		// [0] = 0 -> Private Read
		// [1] = 1 -> repeated start
		$//[2] = 1 \rightarrow terminate frame with Stop (P)$
		//[3] = 0
		// [4] = 1 -> sent frame in I2C mode
		// [7:5] = 0
0x30	{7'h10,1'b1}	// 7b Target Address, Read
0x30	0x04	// Length = 4 bytes
0x11	0x01	// start

When Read data is available, interrupt (int_o) will assert (if interrupt status rx_fifo_not_empty is enabled) and you can get the read data by sending LMMI read request at address offset 0x40.

2.8. Performing HDR-DDR Mode Transfers

This is only applicable if the Data Rate Mode attribute is set to HDR-DDR-capable in the IP configuration GUI.

Figure 2.6 illustrates a typical HDR-DDR Mode Frame with two HDR Commands and their associated data:

- I3C START or Repeated START
- I3C CCC to Enter HDR-DDR Mode
- After entering HDR-DDR Mode, there is one HDR-DDR Command Word followed by one or more HDR-DDR Data Words, and then an HDR-DDR CRC Word.
- Then, a HDR Restart Pattern
- Then, another HDR-DDR Command Word, HDR-DDR Data Word, and HDR-DDR CRC Word.
- Finally, HDR-DDR Mode is ended via the HDR Exit Pattern followed by I3C STOP.

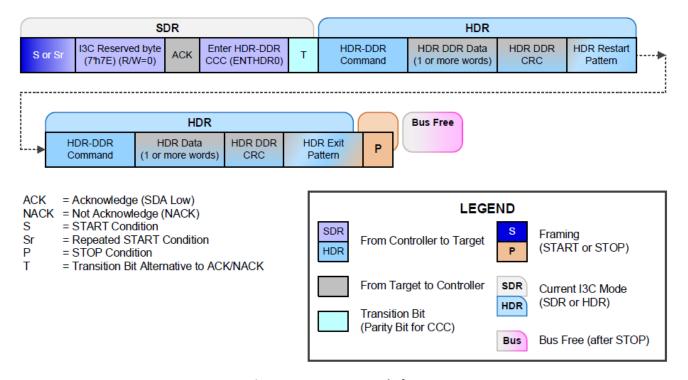


Figure 2.6. HDR-DDR mode frame

The HDR frame is encapsulated inside the SDR frame. The framing is like generic Direct CCC format.

However, be aware that in HDR-DDR mode, the data is transmitted or received in words (2 bytes).

2.8.1. HDR-DDR Write

Table 2.16. Write 4 Bytes to I3C Target with Address 7'h10 Using HDR-DDR Mode Example

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		// [2] = 0 -> do not terminate frame with
		Stop (P)
		// [3] = 1 -> CCC start
		// [6:4] = 0
		// [7] = 0 -> SDR mode
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDR0 CCC = 0x20
0x30	0xA6	// Control
		// [0] = 0 -> User command
		// [1] = 1 -> repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [3] = 0 -> not CCC start
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{7'h10,1'b0}	// 7b Target Address, Write
0x30	0x05	// Length = 1 byte command code + 4
		bytes write data
		// Write data is always multiple of 2 bytes
0x30	{1'b0,<7b user_code>}	// {Write, 7b User command code}
0x30	0xA1	// Payload 1
0x30	0xB2	// Payload 2
0x30	0xC3	// Payload 3
0x30	0xD4	// Payload 4
0x11	0x01	// start

2.8.2. HDR-DDR Read

Table 2.17. Read 4 Bytes from I3C Target with Address 7'h10 Using HDR-DDR Mode Example

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		// [2] = 0 -> do not terminate frame with
		Stop (P)
		// [3] = 1 -> CCC start
		// [6:4] = 0
		// [7] = 0 -> SDR mode
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDRO CCC = 0x20
0x30	0xA2	// Control
		// [0] = 0 -> User command
		// [1] = 1 -> repeated start
		$//[2] = 0 \rightarrow do not terminate frame with$
		Stop (P)
		// [3] = 0 -> not CCC start
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{7'h10,1'b0}	// 7b Target Address, Write
0x30	0x01	// Length = 1-byte command code
0x30	{1'b1,<7b user_code>}	// {Read, 7b User command code}
0x30	0xA6	// Control
		// [0] = 0 -> User command
		// [1] = 1 -> repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [3] = 0 -> not CCC start
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{7'h10,1'b1}	// 7b Target Address, Read
0x30	0x04	// Length = 4 bytes read data
		// Read data is always multiple of 2 bytes
0x11	0x01	// start

2.8.3. HDR-DDR Consecutive Write and Read

Example of writing 4 bytes to I3C target with address 7'h10 followed by read using HDR-DDR mode.

Table 2.18. HDR-DDR Consecutive Write and Read

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		// [2] = 0 -> do not terminate frame with
		Stop (P)
		// [3] = 1 -> CCC start
		// [6:4] = 0
		// [7] = 0 -> HDR-DDR mode
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDR0 CCC = 0x20
0x30	0xA2	// Control
		// [0] = 0 -> User command
		// [1] = 1 -> repeated start
		// [2] = 0 -> do not terminate frame with
		Stop (P)
		// [3] = 0 -> not CCC start
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{7'h10,1'b0}	// 7b Target Address, Write
0x30	0x04	// Length = 4 bytes
0x30	0xA1	// Payload 1
0x30	0xB2	// Payload 2
0x30	0xC3	// Payload 3
0x30	0xD4	// Payload 4
0x30	0xA2	// Control
		// [0] = 0 -> User command
		// [1] = 1 -> repeated start
		// [2] = 0 -> do not terminate frame with
		Stop (P)
		// [3] = 0 -> not CCC start
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{7'h10,1'b0}	// 7b Target Address, Write
0x30	0x01	// Length = 1-byte command code
0x30	{1'b1,<7b user_code>}	// {Read, 7b user command code}
0x30	0xA6	// Control
		// [0] = 0 -> User command
		// [1] = 1 -> repeated start
		$//[2] = 1 \rightarrow terminate frame with Stop (P)$

LMMI Address	LMMI Write Data	Comment
		// [3] = 0 -> not CCC start
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{7'h10,1'b1}	// 7b Target Address, Read
0x30	0x04	// Length = 4 bytes
0x11	0x01	// start

2.8.4. Permitted CCCs in HDR-DDR Mode

There are several CCCs that are allowed during HDR-DDR mode. Table 2.19 shows the allowed CCCs and those with limitations.

Table 2.19. Allowed CCCs During HDR-DDR Mode and Limitations

ccc	Туре	Command Name	Notes and Limitations	
0x00	Broadcast	ENEC	May not generally be useful in HDR-DDR Mode, as the Controller would need to exit HDR and return to SDR Mode for the Target to be able to raise any of the request	
0x01	Broadcast	DISEC	types that are affected by these CCCs; See Section 5.2.1.2.4 of MIPI I3C Specification.	
0x02	Broadcast	ENTAS0	See Section 5.2.1.2.4 of MIPI I3C Specification.	
0x03	Broadcast	ENTAS1		
0x04	Broadcast	ENTAS2		
0x05	Broadcast	ENTAS3		
0x06	Broadcast	RSTDAA	Not permitted in HDR-DDR mode.	
0x07	Broadcast	ENTDAA	Not permitted in HDR-DDR mode.	
0x08	Broadcast	DEFTGTS	Not recommended for use in HDR-DDR Mode.	
0x09	Broadcast	SETMWL	See Section 5.2.1.2.4 of MIPI I3C Specification.	
0x0A	Broadcast	SETMRL	7	
0x12	Broadcast	ENDXFER	Not recommended for use in HDR-DDR Mode.	
0x20	Broadcast	ENTHDR0	Not permitted in HDR-DDR mode.	
0x28	Broadcast	SETXTIME	No limitations.	
0x29	Broadcast	SETAASA	Not permitted in HDR-DDR mode.	
0x2A	Broadcast	RSTACT	Not recommended for use in HDR-DDR Mode.	
0x80	Direct	ENEC	May not generally be useful in HDR-DDR Mode, as the Controller would need to exit HDR and return to SDR Mode for the Target to be able to raise any of the request	
0x81	Direct	DISEC	types that are affected by these CCCs; See Section 5.2.1.2.4 of MIPI I3C Specification.	
0x82	Direct	ENTAS0	See Section 5.2.1.2.4 of MIPI I3C Specification.	
0x83	Direct	ENTAS1]	
0x84	Direct	ENTAS2]	
0x85	Direct	ENTAS3	7	
0x87	Direct	SETDASA	Not permitted in HDR-DDR mode.	
0x88	Direct	SETNEWDA	Not permitted in HDR-DDR mode.	
0x89	Direct	SETMWL	See Section 5.2.1.2.4 of MIPI I3C Specification.	
0x8A	Direct	SETMRL	1	

ссс	Туре	Command Name	Notes and Limitations
0x8B	Direct	GETMWL	No limitations.
0x8C	Direct	GETMRL	
0x8D	Direct	GETPID	Not permitted in HDR-DDR mode.
0x8E	Direct	GETBCR	Not recommended for use in HDR-DDR Mode.
0x8F	Direct	GETDCR	
0x90	Direct	GETSTATUS	No limitations.
0x91	Direct	GETACCCR	Not permitted in HDR-DDR mode.
0x92	Direct	ENDXFER	Not recommended for use in HDR-DDR Mode.
0x94	Direct	GETMXDS	No limitations.
0x95	Direct	GETCAPS	No limitations.
0x98	Direct	SETXTIME	No limitations.
0x99	Direct	GETXTIME	
0x9A	Direct	RSTACT	Not recommended for use in HDR-DDR Mode.

2.8.4.1. Generic Broadcast CCC Format

Table 2.20. Generic Broadcast CCC Format

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		<pre>// [2] = 0 -> do not terminate frame with Stop (P)</pre>
		// [3] = 1 -> CCC start
		// [6:4] = 0
		// [7] = 0 -> SDR mode
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDR0 CCC = 0x20
0x30	0xAF	// Control
		// [0] = 1 -> CCC
		// [1] = 1 -> repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [3] = 1 -> CCC start
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x03+0xNN	// Length = 1+2+ number of optional bytes
		// If the optional bytes are not multiple of2 bytes, then you must provide thenecessary padding.
0x30	0x00, <ccc, 0x00="">,, <n bytes=""></n></ccc,>	// 0x00, <ccc, 0x00="">, and Optional bytes</ccc,>
0x11	0x01	// start

Table 2.21. Broadcast ENTASO CCC in HDR-DDR Mode Example

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDR0 CCC = 0x20
0x30	0xAF	// Control
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x03	// Length
0x30	0x00	// {Write, user command code[6:0]==0}
0x30	0x02	// ENTASO CCC = 0x02
0x30	0x00	// 0 Padding (since no defining byte)
0x11	0x01	// start

Table 2.22. Broadcast SET MWL CCC in HDR-DDR Mode Example

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDRO CCC = 0x20
0x30	0xAF	// Control
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x05	// Length
0x30	0x00	// {Write, user command code[6:0]==0}
0x30	0x09	// SETMWL CCC = 0x09
0x30	0x00	// O Padding (since no defining byte)
0x30	<mwl msb=""></mwl>	// MWL MSB
0x30	<mwl lsb=""></mwl>	// MWL LSB
0x11	0x01	// start

2.8.4.2. Generic Direct Set CCC Format

Table 2.23. Generic Direct Set CCC Format

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		// [2] = 0 -> do not terminate frame with
		Stop (P)
		// [3] = 1 -> CCC start
		// [6:4] = 0
		// [7] = 0 -> SDR mode
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDR0 CCC = 0x20
0x30	0xAB	// Control
		// [0] = 1 -> CCC
		// [1] = 1 -> repeated start
		// [2] = 0 -> terminate frame with Stop (P)
		// [3] = 1 -> CCC start
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x03+0xNN	// Length = 1+2+ number of optional bytes
0.00	OXOS (OXIVI	// If the optional bytes are not multiple of
		2 bytes, then you must provide the
		necessary padding.
0x30	0x00, <ccc, 0x00="">,, <n bytes=""></n></ccc,>	// 0x00, <ccc, 0x00="">, and Optional bytes</ccc,>
0x30	0xA7	// Control
		// [0] = 1 -> CCC
		// [1] = 1 -> repeated start
		// [2] = 1 -> terminate frame with Stop (P)
		// [3] = 0 -> CCC start
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{ <tgt adr="">, <w>}</w></tgt>	// 7b Target Address, Write
0x30	0x01+0xMM	// Length = 1+number of optional bytes (B)
•		// If the optional bytes are not multiple of
		2 bytes, then you must provide the
		necessary padding.
0x30	<m bytes=""></m>	// Optional bytes (B)
0x11	0x01	// start

Table 2.24. Direct ENTASO CCC in HDR-DDR Mode Example

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDR0 CCC = 0x20
0x30	0xAB	// Control
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x03	// Length
0x30	0x00	// {Write, user command code[6:0]==0}
0x30	0x02	// ENTASO CCC = 0x02
0x30	0x00	// O Padding (since no defining byte)
0x30	0xA7	// Control
0x30	{ <tgt_adr>, 1'b0}</tgt_adr>	// 7b Target Address, Write
0x30	0x03	// Length
0x30	0x00	// {Write, user command code[6:0]==0}
0x30	0x00	// dummy bytes since ENTASx have no data
0x30	0x00	// dummy bytes since ENTASx have no data
0x11	0x01	// start

Table 2.25. Direct SET MWL CCC in HDR-DDR Mode Example

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDR0 CCC = 0x20
0x30	0xAF	// Control
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x03	// Length
0x30	0x00	// {Write, user command code[6:0]==0}
0x30	0x89	// SETMWL CCC = 0x89
0x30	0x00	// O Padding (since no defining byte)
0x30	0xA7	// Control
0x30	{ <tgt_adr>, 1'b0}</tgt_adr>	// 7b Target Address, Write
0x30	0x03	// Length
0x30	0x00	// {Write, user command code[6:0]==0}
0x30	<mwl msb=""></mwl>	// MWL MSB
0x30	< mwl lsb >	// MWL LSB
0x11	0x01	// start

2.8.4.3. Generic Direct Get CCC Format

Table 2.26. Generic Direct Get CCC Format

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
		// [0] = 1 -> CCC
		// [1] = 0 -> not repeated start
		// [2] = 0 -> do not terminate frame with
		Stop (P)
		// [3] = 1 -> CCC start
		// [6:4] = 0
		// [7] = 0 -> SDR mode
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDR0 CCC = 0x20
0x30	0xAB	// Control
		// [0] = 1 -> CCC
		// [1] = 1 -> repeated start
		// [2] = 0 -> terminate frame with Stop (P)
		// [3] = 1 -> CCC start
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x03+0xNN	// Length = 1+2+ number of optional bytes
0.00	OXOS I OXIVIV	// If the optional bytes are not multiple of
		2 bytes, then you must provide the
		necessary padding.
0x30	0x00,	// 0x00, <ccc, 0x00="">, and Optional bytes</ccc,>
	<ccc, 0x00="">,,</ccc,>	
	<n bytes=""></n>	
0x30	0xA3	// Control
		// [0] = 1 -> CCC
		// [1] = 1 -> repeated start
		//[2] = 0 -> do not terminate frame with
		Stop (P)
		//[3] = 0 -> CCC start
		//[4] = 0 -> I3C
		//[5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		//[7] = 1 -> HDR-DDR mode
0x30	{ <tgt_adr>, <w>}</w></tgt_adr>	// 7b Target Address, Write
0x30	0x01	// Length = 1
0x30	0x80	// 0x80 – read command
0x30	0xA7	// Control
		// [0] = 1 -> CCC
		// [1] = 1 -> repeated start
		$//[2] = 1 \rightarrow terminate frame with Stop (P)$
		// [3] = 0 -> CCC start

LMMI Address	LMMI Write Data	Comment
		// [4] = 0 -> I3C
		// [5] = 1 -> Wait next packet
		// [6] = 0 -> unused
		// [7] = 1 -> HDR-DDR mode
0x30	{ <tgt_adr>, <r>}</r></tgt_adr>	// 7b Target Address, Read
0x30	0xMM	// Length = number of read bytes
0x11	0x01	// start

Table 2.27. Direct GET MWL CCC in HDR-DDR Mode Example

LMMI Address	LMMI Write Data	Comment
0x30	0x09	// Control
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x01	// Length = 1
0x30	0x20	// ENTHDRO CCC = 0x20
0x30	0xAB	// Control
0x30	{7'h7E,1'b0}	// Reserved Address 0x7E, Write
0x30	0x03	// Length
0x30	0x00	// {Write, user command code[6:0]==0}
0x30	0x8B	// GETMWL CCC = 0x8B
0x30	0x00	// 0 Padding (since no defining byte)
0x30	0xA3	// Control
0x30	{ <tgt_adr>, 1'b0}</tgt_adr>	// 7b Target Address, Write
0x30	0x01	// Length = 1
0x30	0x80	// {Read, user command code[6:0]==0}
0x30	0xA7	// Control
0x30	{ <tgt_adr>, 1'b1}</tgt_adr>	// 7b Target Address, Read
0x30	0x02	// Length
0x11	0x01	// start

2.9. Hot-Join and In-Band Interrupt (IBI) Handling

I3C Controller provides an interrupt status for Hot-Join and IBI. If the corresponding interrupt bits are enabled, then the reception of Hot-Join or IBI would cause the assertion of interrupt signal int_o. The target address of interrupt requester can be retrieved by reading IBI address register (0x1F). Figure 2.7 illustrates the process flow of IBI and Hot-Join handling of the I3C Controller.

The response of the I3C controller will depend on the configuration setting ibi_auto_resp. The ibi_auto_resp register can be set to high to prioritize the completion of ongoing transactions. The I3C controller will always NAK the IBI or Hot-Join while the Tx FIFO is not empty. When the Tx FIFO is empty, waiting_ibi_resp interrupt will be asserted. You should program or set the IBI read count register (0x1D), and the IBI response register (0x1E).

When ibi_auto_resp register is set to low or when Tx FIFO is empty, the I3C controller will pause the SCL (hold low) during ACK phase and wait for your response. You should program or set the IBI read count register (0x1D) and the IBI response register (0x1E) when waiting_ibi_resp is asserted. For Hot-Join interrupt, IBI read count (0x1D) should be set to 0. Write access on IBI response register (0x1E) will trigger the I3C controller to resume the SCL clock and forward the indicated response (ACK or NAK). For IBI, the I3C controller will read the mandatory byte and optional bytes depending on the setting of IBI read count (0x1D) and will be stored in the Rx FIFO.

If the ibi_auto_resp register is set to low and there is ongoing transaction (Tx FIFO is not empty), I3C controller will stop the ongoing transaction to prioritize the interrupt. Once the handling of interrupt is done, the I3C controller will retry the previous transaction.

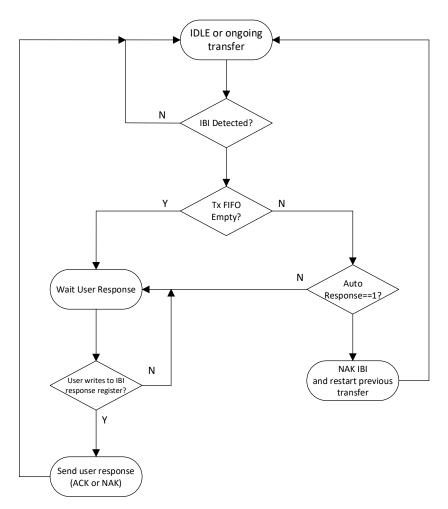


Figure 2.7. I3C Controller Handling of IBI/Hot-Join

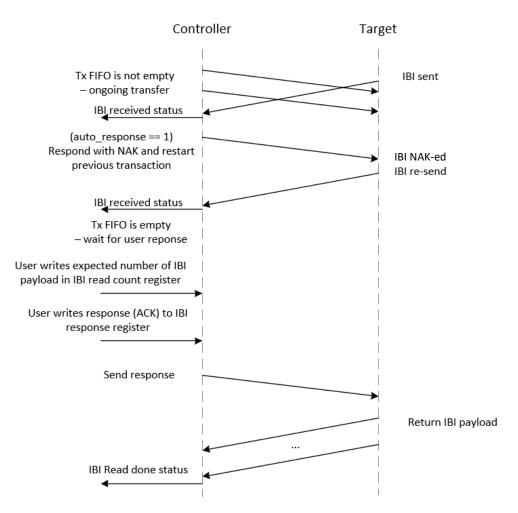


Figure 2.8. Sample Sequence

2.10. Controller to Controller Handoff

This is only applicable if the Secondary Controller Capable attribute is checked in the IP configuration GUI.

The Active controller role can be transferred to another controller as described in the MIPI I3C Specification.

- After the Active Controller has prepared for handoff, the Active Controller shall then issue a GETACCCR CCC (section 5.1.9.3.16) followed by a STOP if the handoff was successful, whereupon it shall release control of the SCL line, and therefore also releasing control of the I3C bus (i.e., passing the Controller Role) to the selected Secondary Controller.
- Following the STOP and Bus Available Condition, the selected Secondary Controller assumes the role of the Active
 Controller and takes control of the I3C bus. The former Active Controller should monitor the I3C bus to make sure that
 the new Active Controller asserts its Controller Role, according to the flow described in section 5.1.10.2.4 regarding
 Error Type CE3.

Before sending the GETACCCR CCC, you must configure the Secondary Controller Timeout register (0x19-0x17) with the appropriate timeout value. This timeout will be used when checking the new Active Controller if it will assert its role. If the timeout expires before the new Active Controller assert its role (i.e. failing to drive SCL after SDA goes low), then the handoff has failed, and the former Active Controller will remain as the Active Controller.

You may read the interrupt status 1 register (0x24) to get the result of the handoff process. Additional information is also available in the Secondary Controller Status Info register.

2.11. Mixed Bus Mode

When it is expected that there are both I3C and I2C devices on the same bus, you can configure the Lattice I3C Controller IP in two different ways:

- Set the SCL pulse width in the system clock divider register (0x01) to produce the SCL frequency that can support the slowest I2C device.
- Enable the dynamic I3C-I2C clock switching in IP configuration GUI and set the appropriate I2C SCL pulse width based on the slowest device.

3. IP Parameter Description

The configurable attributes of the I3C Controller IP are shown in the following tables. You can configure the IP by setting the attributes accordingly in the IP Catalog's Module/IP wizard of the Lattice Radiant software.

Wherever applicable, default values are in **bold**.

3.1. General

Table 3.1. General Attributes

Attribute	Selectable Values	Description
Bus Characteristics		
Device Role	Primary Controller,	Select the device role.
	Secondary Controller	Secondary Controller option selectable only when Secondary Controller
		Capability is enabled.
Secondary Controller Capable	Checked, Unchecked	Determines whether IP can support Secondary Controller Capability.
IBI Capable	Checked, Unchecked	Determines whether IP can support IBI Capability.
		Automatically checked when Secondary Controller Capability is enabled.
Hot-Join Capable	Checked, Unchecked	Determines whether IP can support Hot-Join Capability.
		Automatically checked when Secondary Controller Capability is enabled.
Data Rate Mode	SDR only,	Determines whether IP can support HDR-DDR mode or SDR only.
	HDR-DDR-capable	
Register Interface		
Interface	LMMI, APB , AHBL	Select the bus interface for accessing registers and FIFO.
Register Offset	Address offset in	Select the addressing mode of the registers.
	Bytes,	Selectable only for APB and AHB-Lite. LMMI will always use byte addressing.
	Address offset in	
	DWORD	
Optional Interface		
Enable Direct FIFO Interface	Checked, Unchecked	Select to provide a separate interface for (FIFO) data path.
Tx Data Width	_	Display only when Direct FIFO Interface is enabled. Default value is 8.
Rx Data Width	_	Display only when Direct FIFO Interface is enabled. Default value is 8.
SCL Clocking		
Bus Clock Domain	_	Display only. Default value is ASYNC.
Use internal Clock Divider	Checked, Unchecked	Select to enable the use of internal clock divider.
System Clock Frequency (MHz)	0.8–50	Set the system clock (clk_i) frequency.
		The recommended and default value is 25.
		Refer to the Clocking Overview section for more details.
Core Clock Frequency (MHz)	0.02-25	Set the core clock (src_clk_scl_i) frequency. Selectable only when Use Internal
		Clock Divider is Unchecked. Default value is 25.
		Refer to Clocking Overview section for more details.
SCL Pulse width	1–256	Set the SCL pulse width in terms of number of cycles of system clock (clk_i).
		Applicable only if the Use Internal Clock Divider attribute is enabled. Default
		value is 1.
		Refer to Clocking Overview section for more details.
SCL Clock Frequency (MHz)	_	Display only. Default value is 12.5.
		Refer to the Clocking Overview section for more details.
SCL Clock Period (ns)	_	Display only. Default value is 80.

Attribute	Selectable Values	Description		
Open Drain Pulse Width (Number of SCL cycles)	0–16	Set the open drain clock pulse width in terms of number of cycles of normal SCL. Default value is 3.		
		During open drain mode, the clock pulse will be extended. Setting this to 1 will not cause pulse width extension.		
		The I3C Specification sets the minimum Open Drain pulse width to 200 ns. This means that if the normal SCL clock is 80 ns, the Open Drain pulse width must be at least 3 SCL clocks.		
		If the SCL Clock frequency is low such that it can meet the minimum 200 ns pulse width, then this parameter can be set to 0.		
Open Drain Clock Frequency (MHz)	_	Display only. Equal to 1 / (Open Drain Pulse width * 2). Default value is 2.0833.		
Open Drain Pulse width (ns)	_	Display only. Equal to SCL Clock Period * Open Drain Pulse Width. Default value is 240.		
Enable Dynamic I3C – I2C clock switching	Checked, Unchecked	Select to enable dynamic clock switching between I3C and I2C. This is used when you want to use a different SCL clock frequency for I2C.		
I2C SCL Pulse width	1–256	Set the SCL pulse width in terms of number of cycles of the system clock (clk_i). Applicable only if dynamic I3C – I2C clock switching is enabled. Default value is 13.		
I2C SCL Clock Frequency (MHz)	_	Display only when Dynamic I3C – I2C clock switching is enabled. Default value is 0.961538.		
I2C SCL Clock Period (ns)	_	Display only when Dynamic I3C – I2C clock switching is enabled. Default value is 520.		
I/O Primitive				
Include IO Primitive	Checked, Unchecked	Option to include or remove the I/O primitive instance inside the IP. This means that SDA and SCL are seen as bidirectional I/O ports at the top level. This option is enabled by default.		
		Some FPGA devices might not have an I/O that supports I3C. In that case, you must disable this option and provide a custom I/O.		
		When this option is disabled, the SDA and SCL I/O control signals (including pull up resistor controls) are exposed at the top level as ports.		

3.2. Secondary Controller

Refer to the I3C Target IP User Guide (FPGA-IPUG-02227) for more information on the attributes below.

Table 3.2. Secondary Controller (Available only if Secondary Controller Capable is Enabled)

Attribute	Selectable Values	Description
IBI Payload Size (including MDB)	0–255	Payload size (including MDB) following an IBI. If set to 0, no payload
		follows the IBI. Default value is 1.
		Applicable only when IBI Capable = True.
Maximum Data Speed Limitation	Checked, Unchecked	Sets Bit 0 of BCR. When set to 1, Target device supports GETMXDS CCC
		to relay timing information to the Controller.
DCR (HEX)	00-FF	Device Characteristics Register. It is recommended to assign a value to
		this register according to the list of the devices, which can be found at
		I3C Device Characteristics Register. Default value is 00.
Manufacturer ID	0–32767	Defines Provisional ID[47:33] bits. Default value is 414.
Part ID	0–65535	Defines Provisional ID[31:16] bits. Default value is 1.
Instance ID	0–15	Defines Provisional ID[15:12] bits. Default value is 1.
Additional ID	0–4095	Defines Provisional ID[11:0] bits. Default value is 0.
Static Address Enable	Checked, Un- checked	Indicates that the Target device may be assigned a Static Address.
Static Address (HEX) ¹	00-7F	Sets device static address. Default value is 08.
		Applicable only when Static Address enable = True.
Dynamic Address (HEX) ¹	00-7F	Sets initial device dynamic address. Default value is 08.
		Applicable only when Secondary Controller Capable = True and Device
		Role = Primary Controller.
Timing Characteristics		
Write Maximum Data Rate (MHz)	_	Display only when Maximum Data Speed Limitation = True.
		Indicates maximum sustained data rate for non-CCC Messages
		sent by Controller Device to Target Device. Default value is 12.5.
Clock-to-data Turnaround Delay	_	Display only when Maximum Data Speed Limitation = True.
(ns) (t _{sco})		Clock-to-Data Turnaround Time. Default value is ≤8.
Read Maximum Data Rate (MHz)	_	Display only when Maximum Data Speed Limitation = True.
		Indicates maximum sustained data rate for non-CCC Messages
		sent by Target Device to Controller Device. Default value is 12.5.
Maximum Read Turnaround	_	Display only when Maximum Data Speed Limitation = True.
Time (μs)		Indicates how long the Controller needs to wait before reading the data
		it requested. Default value is 0.

Note:

1. Static and dynamic address must not use reserved I2C addresses.

3.3. IP Parameter Settings for Example Use Cases

Table 3.3 shows the parameter settings for example test cases. Wherever applicable, parameters equal to "—" are automatically set in IP configuration GUI.

Table 3.3. IP Parameter Settings for Example Test Cases

Target Use Case	I3C Controller Only	Secondary Controller Capable	Secondary Controller Capable (External clock source for SCL)
Bus Characteristics	-		
Device Role	Primary Controller	 Primary Controller (initialize as Controller) Secondary Controller (initialize as Target) 	 Primary Controller (initialize as Controller) Secondary Controller (initialize as Target)
Secondary Controller Capable	Unchecked	Checked	Checked
IBI Capable	Checked	_	_
Hot-Join Capable	Checked	_	_
Data Rate Mode	SDR only OR HDR-DDR-capable	SDR only OR HDR-DDR-capable	SDR only OR HDR-DDR-capable
Register Interface			
Interface	LMMI or APB or AHBL	LMMI or APB or AHBL	LMMI or APB or AHBL
Register Offset	Address offset in DWORD	Address offset in DWORD	Address offset in DWORD
Optional Interface			
Enable Direct FIFO Interface	Unchecked	Unchecked	Unchecked
Tx Data Width	_	_	_
Rx Data Width	_	_	-
SCL Clocking			
Bus Clock Domain	_	_	_
Use Internal Clock Divider	Checked	Checked	Unchecked
System Clock Frequency (MHz)	25	25	50
Internal Clock Frequency (MHz)	_	_	N/A
Core Clock Frequency	N/A	N/A	25
SCL Pulse width	1	1	N/A
SCL Clock Frequency (MHz)		_	-
SCL Clock Period (ns)		_	N/A
Open Drain Pulse Width (Number of SCL cycles)	3	3	3
Open Drain Clock Frequency (MHz)	_	_	_
Open Drain Pulse width (ns)	_	_	-
Enable Dynamic I3C – I2C clock switching	Checked	Checked	Checked
I2C SCL Pulse width	13	13	13
I2C SCL Clock Frequency (MHz)	_	_	_
I2C SCL Clock Period (ns)	_	_	_
I/O Primitive			
Include IO Primitive	Checked	Checked	Checked
Attribute			
IBI Payload Size (including MDB)	N/A	2	2
Maximum Data Speed Limitation	N/A	Checked	Checked
DCR (HEX)	N/A	0	0
Manufacturer ID	N/A	414	414

Target Use Case	I3C Controller Only	Secondary Controller Capable	Secondary Controller Capable (External clock source for SCL)
Part ID	N/A	1	1
Instance ID	N/A	1	1
Additional ID	N/A	0	0
Static Address Enable	N/A	Checked	Checked
Static Address (HEX) ¹	N/A	08	08
Dynamic Address (HEX) ¹	N/A	08	08

Note:

1. Static and dynamic address must not use reserved I2C addresses.

4. Signal Description

Table 4.1 lists the input and output signals for I3C Controller IP along with their descriptions.

Table 4.1. Ports Description

Port	Туре	Description
System Clock and Res		
clk_i	Input	System clock.
_		Refer to Clocking Overview section for more details.
src_clk_scl_i	Input	Core clock. Applicable only when Use Internal Clock Divider is disabled.
		Refer to Clocking Overview section for more details.
rst_n_i	Input	Asynchronous active low reset.
		Refer to Reset section for more details.
sc_rst_o	Output	Applicable only when Secondary Controller capability is enabled.
		Active High flag for Full Chip Reset by Target Reset escalation. For more details about targe
ISC late of the Allets on a	LL(O Duineitine)	reset action see Section 5.1.11 of the MIPI I3C Basic v1.1.1 Specification.
I3C Interface (Interna	-	
scl_io	Input/Output	Bidirectional I3C Serial Clock
sda_io	Input/Output	Bidirectional I3C Serial Data
I3C Interface (Externa		
ext_io_scl_i	Input	I3C Serial Clock Input
ext_io_scl_o	Output	I3C Serial Clock Output
ext_io_scl_oe	Output	Active High I3C Serial Clock Output Enable
ext_io_scl_spu_n	Output	Active Low I3C Serial Clock Strong Pull-Up Enable
ext_io_scl_wpu_n	Output	Active Low I3C Serial Clock Weak Pull-Up Enable
ext_io_sda_i	Input	I3C Serial Data Input
ext_io_sda_o	Output	I3C Serial Data Output
ext_io_sda_oe	Output	Active High I3C Serial Data Output Enable
ext_io_sda_spu_n	Output	Active Low I3C Serial Data Strong Pull-Up Enable
ext_io_sda_wpu_n	Output	Active Low I3C Serial Data Weak Pull-Up Enable
LMMI Interface ³	1	
lmmi_request_i	Input	Start transaction
lmmi_wr_rdn_i	Input	Write = HIGH, Read = LOW
lmmi_offset_i[7:0]	Input	Register byte offset
lmmi_wdata_i[7:0]	Input	Write data
lmmi_rdata_o[7:0]	Output	Read data
lmmi_rdata_valid_o	Output	The read transaction is complete and lmmi_rdata_o contains valid data.
Immi_ready_o	Output	The secondary is ready to start a new transaction. Secondary can insert wait states by
		holding this signal low.
Interrupt Interface	1	
int_o	Output	Level sensitive active high interrupt signal. This signal will assert when any of the enabled interrupt status is asserted.
AHB-Lite Interface ⁴		
ahbl_hsel_i	Input	AHB-Lite Select signal
ahbl_hready_i	Input	AHB-Lite Ready Input signal
ahbl_haddr_i[31:0]	Input	AHB-Lite Address signal. Refer to the Register Description section for usage depending on the Register Offset parameter.
ahbl_hburst_i[2:0]	Input	AHB-Lite Burst Type signal. Only burst type 0 is supported.
ahbl_hsize_i[2:0]	Input	AHB-Lite Transfer Size signal. 1-byte RW is supported (SIZE = 3'd0).
ahbl_htrans_i[1:0]	Input	AHB-Lite Transfer Type signal
ahbl_hwrite_i	Input	AHB-Lite Direction signal. Write = High, Read = Low

Port	Туре	Description
ahbl_hwdata_i[31:0]	Input	AHB-Lite Write Data signal. Tie Bits[31:24] to 0. Refer to the Register Description section for more details.
ahbl_hreadyout_o	Output	AHB-Lite Ready Output signal
ahbl_hrdata_o[31:0]	Output	AHB-Lite Read Data signal. Bits[31:24] are tied to 0. Refer to the Register Description section for more details.
ahbl_hresp_o	Output	AHB-Lite Transfer Response signal
ahbl_hmastlock_i	Input	Not supported. Tie to 0.
ahbl_hprot_i[3:0]	Input	Not supported. Tie to 0.
APB Interface ⁵		
apb_paddr_i[31:0]	Input	APB Address signal. Refer to the Register Description section for usage depending on the Register Offset parameter.
apb_psel_i	Input	APB Select signal
apb_penable_i	Input	APB Enable signal
apb_pwrite_i	Input	APB Direction signal
apb_pwdata_i[31:0]	Input	APB Write Data signal. Tie Bits[31:24] to 0. Refer to the Register Description section for more details.
apb_pready_o	Output	APB Ready signal
apb_prdata_o[31:0]	Output	APB Read Data signal. Bits[31:24] are tied to 0. Refer to the Register Description section for more details.
apb_pslverr_o	Output	APB Error signal
Direct FIFO Interface	1	
tx_valid_i	Input	Tx data valid signal. Set this to high when sending data (tx_data_i) to Tx FIFO.
tx_ready_o	Output	Tx FIFO ready signal. When high, it means Tx FIFO can accept incoming data. Tx_data_i will be written to Tx FIFO when tx_valid_i and tx_ready_o == 1.
tx_data_i [7:0]	Input	Tx Data
rx_valid_o	Output	Rx data valid signal. When high, it means Rx FIFO is not empty and rx_data_o contains valid data.
rx_ready_i	Input	Rx ready signal. Set this to high when it is ready to accept the Rx data. Rx_data_o will take the next Rx FIFO entry when rx_valid_o and rx_ready_i == 1.
rx_data_o	Output	Rx data

Notes:

- 1. Bidirectional I3C interface is only available when internal I/O primitives is checked in the IP configuration GUI.
- 2. External I/O I3C interface is only available when internal I/O primitives is unchecked in IP configuration GUI.
- 3. LMMI Interface is only available when selected from the Register Interface in IP configuration GUI.
- 4. AHB-Lite Interface is only available when selected from the Register Interface in IP configuration GUI. Refer to AMBA 3 AHB-Lite Protocol v1.0 Specification for details of the protocol.
- 5. APB Interface is only available when selected from the Register Interface in IP configuration GUI. Refer to AMBA 3 APB Protocol v1.0 Specification for details of the protocol.
- 6. Direct FIFO interface is only available when enabled in IP configuration GUI.

5. Register Description

This section defines the configuration, control, and status registers of the I3C Controller IP. These registers are accessible through the LMMI interface or through optional standard interface such as APB and AHB-Lite. The address map is using byte address by default. You have the option to convert the addressing to DWORD if the interface selected is APB or AHB-Lite. When DWORD addressing is selected, the register address is shifted to the left by 2.

Example: LMMI offset 8'h01 -> APB/AHB-L DWORD offset = {8'h01, 2'b00} or 10'h004

If the interface selected is APB or AHB-Lite, the data and address ports are both 32 bits. For input data ahbl_hwdata_i and apb_pwdata_i, the upper 24 bits are unused. For output data ahbl_hrdata_o and apb_prdata_o, the upper 24 bits are set to 0. For address ahbl_haddr_i and apb_paddr_i, the upper 24 bits (byte addressing) or 22 bits (DWORD addressing) are unused.

Note: Reserved fields are don't care values.

When Secondary Controller capability is enabled, the I3C Controller IP will have I3C Target functionality.

Registers related to I3C Target are defined in the I3C Target IP User Guide (FPGA-IPUG-02227). The I3C Target registers are mapped with an address offset 0x80 (add 0x80 to the register address).

5.1. System Clock Divider Register 0x01

System Clock Divider. Applicable only when Use Internal Clock Divider attribute is checked in IP configuration GUI.

Field	Name	Access	Width	Reset
[7:0]	sys_clk_div	read-write	8	Takes the SCL Pulse width
				parameter value – 1.

sys_clk_div

Used for generation of SCL clock. This setting indicates the clock pulse width of the generated SCL in terms of number of system clock (clk_i) cycles.

0-1 clk_i clock cycle

1 – 2 clk i clock cycles

...

255 - 256 clk_i clock cycles

Example: if clk i frequency is 25 MHz and sys clk div == 0 (Actual Divider = sys clk div + 1).

Then, the SCL frequency is 12.5 MHz since the pulse width of the generated SCL is 1 cycle of clk i.

5.2. Controller Configuration 0 Register 0x02

Controller Configuration.

Field	Name	Access	Width	Reset
[7]	en_ack_handoff	read-write	1	0x0
[6]	auto_assert_role	read-write	1	0x0
[5]	ibi_auto_resp	read-write	1	0x1
[4]	ignore_cmd_done	read-write	1	0x0 0x1 – if the Optional FIFO interface is enabled.
[3]	i2c_mode_allowed	read-write	1	0x0
[2]	ignore_rcvd_nak	read-write	1	0x0 0x1 – if Optional FIFO interface is enabled.
[1]	en_daa_uid_in_rxfifo	read-write	1	0x0

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Field	Name	Access	Width	Reset
[0]	i3c_priv_rw_no_7e	read-write	1	0x0

en_ack_handoff

Applicable only when In-Band interrupt capability is enabled.

- 1 Controller releases SDA at SCL rising edge during ACK phase of IBI.
- 0 Controller releases SDA at the next SCL falling edge of ACK phase during IBI.
- auto_assert_role

Applicable only when Secondary Controller capability is enabled.

- 1 Enable auto assert role. Automatically assert role when taking over as the new Active Controller after GETACCCR CCC. The device will send the broadcast address {0x7E, W} to assert its role.
- 0 Disable auto assert role. The device will wait until another device pulls the SDA down or if you write to Tx FIFO and then writes 1 to the tx start register.
- ibi auto resp

Applicable only when In-Band interrupt capability is enabled.

- 1 Always NAK the IBI request and continue the current transfer until Tx FIFO is empty.
- 0 Pause the SCL on low during ACK phase and wait for you to program the appropriate response. See registers ibi_rcnt and ibi_resp.
- ignore cmd done
 - 1 The I3C controller will continue to process the contents of the Tx FIFO until it is empty.
 - 0 The I3C controller will stop after transferring 1 packet and you will have to set/program the start register again to resume the transfer.
- i2c mode allowed
 - 1 Allows transferring I2C frames.
 - 0 Only I3C frames can be transferred.
- ignore_rcvd_nak
 - 1 The IP will continue to process the contents of the Tx FIFO (until empty) even if a NAK was received.
 - 0 The I3C controller will stop after receiving a NAK and you will have to set/program the start register again to resume the transfer.
- en_daa_uid_in_rxfifo

During dynamic address assignment, the I3C targets will broadcast their unique IDs (48 bits) including BCR and DCR as part of the arbitration process.

- 1 The unique IDs, BCR, and DCR will be stored in Rx FIFO, which you can read.
- 0 It will be discarded.
- i3c_priv_rw_no_7e
 - 1 Starts the private write/read access with dynamic address instead of I3C broadcast address 0x7E.
 - 0 The private access will start with 0x7E address followed by repeated start (Sr) then the target's dynamic address.

5.3. Open Drain Timer Register 0x03

Open-Drain Timer.

· F = · · = · · · · · · · · · · · · · ·					
Field	Name	Access	Width	Reset	
[7:4]	reserved	read-only	4	0x0	
[3:0]	od_timer	read-write	4	Takes the Open Drain Pulse width parameter value	

od timer

Used for generation of SCL clock in open drain mode of I3C transaction. This setting indicates the clock pulse width of open drain SCL clock in terms of number of normal SCL clock cycles as generated using the sys_clk_div setting.

0 – 1 SCL clock cycle. Use normal SCL clock generated using the System Clock divider.

1 - 2 SCL clock cycles

..

15 – 16 SCL clock cycles

Example: if normal SCL frequency is 12.5 MHz and od timer == 3

Then open drain SCL frequency is 2.083 MHz since the pulse width of the generated SCL is 3 cycles of normal SCL.

5.4. I2C Clock Divider Register 0x04

I2C Clock Divider. Applicable only when Use Internal Clock Divider attribute is checked in IP configuration GUI.

Field	Name	Access	Width	Reset
[7:0]	i2c_clkdiv	read-write	8	Takes the I2C SCL Pulse width
				parameter value - 1

• i2c clkdiv

Used for generation of SCL clock in I2C mode. This setting indicates the clock pulse width of SCL in terms of number of system clock (clk_i) cycles.

0 - 1 clk_i clock cycle

1 – 2 clk i clock cycles

...

255 - 256 clk_i clock cycles

Example: If clk i frequency is 50 MHz and i2c clkdiv == 24 (Actual Divider = i2c clkdiv + 1)

Then SCL frequency (in I2C mode) is 1 MHz since the pulse width of the generated SCL is 25 cycles of clk i.

5.5. Pull Up Resistor Disable Register 0x05

Pull Up Resistor Disable. Used to configure the SDA and SCL pull up resistor.

Field	Name	Access	Width	Reset
[7:5]	reserved	read-only	3	0x0
[3]	scl_spu_n	read-write	1	0x1
[2]	scl_wpu_n	read-write	1	0x0 0x1 – if Secondary- Capable but not Active Controller
[1]	sda_spu_n	read-write	1	0x0 0x1 – if Secondary- Capable but not Active Controller
[0]	sda_wpu_n	read-write	1	0x1

scl_spu_n

When set to high, disables the strong pull up resistor in SCL.

scl wpu n

When set to high, disables the weak pull up resistor in SCL.

sda_spu_n

When set to high, disables the strong pull up resistor in SDA.

sda wpu n

When set to high, disables the weak pull up resistor in SDA.

5.6. HDR-DDR Configuration 0 Register 0x06

HDR-DDR Mode Configuration. Applicable only when Data Rate Mode attribute is set to HDR-DDR-capable in IP configuration GUI.

Field	Name	Access	Width	Reset
[7:5]	reserved	read-only	3	0x0
[4]	ddr_ignore_rcvd_nak	read-write	1	0x0
[3]	ddr_ignore_cmd_done	read-write	1	0x1
[2]	no_crc_after_term	read-write	1	0x1
[1]	en_wr_early_term	read-write	1	0x1
[0]	en_wrcmd_acknak_cap	read-write	1	0x1

ddr ignore rcvd nak

Applicable only when HDR-DDR capability is enabled.

- 1 The IP will continue to process the contents of the Tx FIFO (until empty) even if a NAK was received.
- 0 The I3C controller will stop after receiving a NAK and you will have to set/program the tx_start register again to resume the transfer.
- ddr_ignore_cmd_done

Applicable only when HDR-DDR capability is enabled.

- 1 The I3C controller will continue to process the contents of the Tx FIFO until it is empty.
- 0 The I3C controller will stop after transferring 1 packet and you will have to set/program the tx_start register again to resume the transfer.
- no crc after term

Applicable only when HDR-DDR capability is enabled. Configures the data transfer ending procedure.

- 1 No CRC word follows early termination request.
- 0 CRC word follows early termination request.
- en_wr_early_term

Applicable only when HDR-DDR capability is enabled. Configures the data transfer ending procedure.

- 1 Enables write early termination request.
- 0 Disables write early termination request.
- en_wrcmd_acknak_cap

Applicable only when HDR-DDR capability is enabled. Configures the data transfer ending procedure.

- 1 Enables ACK/NAK capability for write command.
- 0 Disables ACK/NAK capability for write command.

5.7. Soft Reset Register 0x08

Soft Reset.

Field	Name	Access	Width	Reset
[7:5]	reserved	read-only	3	0x0
[4]	ip_csr_rst	read-write	1	0x0
[3]	ip_core_rst	read-write	1	0x0

Field	Name	Access	Width	Reset
[2]	tx_fifo_rst	read-write	1	0x0
[1]	rx_fifo_rst	read-write	1	0x0
[0]	ip_main_rst	read-write	1	0x0

ip_csr_rst

When set to high, resets the IP registers only. Auto-clear.

ip_core_rst

When set to high, resets the I3C Controller only. Auto-clear.

Tx_fifo_rst

When set to high, resets the Tx FIFO only. Auto-clear.

rx_fifo_rst

When set to high, resets the Rx FIFO only. Auto-clear.

• ip_main_rst

When set to high, resets the whole IP including registers and FIFO. Auto-clear.

5.8. Transmit Start Register 0x11

Transmit Start.

Field	Name	Access	Width	Reset
[7:1]	reserved	read-only	7	0x0
[0]	tx_start	read-write	1	0x0
				0x1 – if Optional FIFO
				interface is enabled

tx start

When set to high, the IP starts processing the contents of Tx FIFO.

This register auto-clears when a command is done or a NAK is received unless it is bypassed by ignore_cmd_done or ignore_rcvd_nak register setting in controller configuration 0 register. To continue with the transfer, you will have to set this to 1 again when tx start is deasserted when a command is done or a NAK is received.

5.9. Secondary Controller Status Info Register 0x15

Secondary Controller Status Info. Applicable only when Secondary Controller Capable attribute is checked in IP configuration GUI.

Field	Name	Access	Width	Reset
[7:3]	reserved	read-only	5	0x0
[2]	get_acccr_result	read-only	1	0x0
[1]	get_acccr_started	read-only	1	0x0
[0]	active_controller	read-only	1	0x1 – Takes the Device Role parameter value

get acccr result

This status is the result of the GETACCCR command. This information is valid only if the interrupt status register get_acccr_done is asserted. Cleared on write of 1 to interrupt status get_acccr_done.

- 0 Successful controller handoff
- 1 Controller handoff failed
- get acccr started

Indicates that the device has started/sent GETACCCR CCC. Cleared on write of 1 to interrupt status get_acccr_done.

- 1 Started GETACCCR CCC
- 0 No GETACCCR CCC
- active_controller

Indicates the current role of this device. The default value of this register takes the Device Role GUI parameter setting. If Primary Controller is selected, then the default value will be (1) Active Controller, otherwise it will be acting as a Target (0). The value of this register may change if there is a successful controller handoff or if user forced it by programming the Set Device Role register.

- 1 Active Controller
- 0 Target

5.10. Set Device Role Register 0x16

Set Device Role. Applicable only when Secondary Controller Capable attribute is checked in IP configuration GUI.

Field	Name	Access	Width	Reset
[7:1]	reserved	read-only	7	0x0
[0]	set_device_role	read-write	1	0x1 – Takes the Device
				Role parameter value

set device role

Write on this register will change the setting of the active_controller register. User may write to this register to reset the device role which can be used when the system loses information on the device role.

- 0 Set the active controller register to 0. Enables the i3c_target block, disables the i3c_controller block.
- 1 Set the active controller register to 1. Enables the i3c controller block, disables the i3c target block.

When device is acting as Controller and user wants to change the current role to Target, write 0 to set_device_role register. This will initiate the Controller handoff procedure.

When the system loses information on the device role, write 1 to this register and write 0 to device_role register (on Target side) to reset the device role on both the Controller and Target. Refer to Set Device Role register (0x48) in the I3C Target IP User Guide (FPGA-IPUG-02227).

5.11. Secondary Controller Timeout Register 0x17-0x19

Secondary Controller Timeout. Applicable only when Secondary Controller Capable attribute is checked in IP configuration GUI.

Field	Name	Access	Width	Reset	
[7:4]	reserved	read-only	4	0x0	
[3:0]	crh_timeout [19:16]	read-write	4	0x009C4 – Calculated	
[7:0]	crh_timeout [15:8]	read-write	8	based on <i>clk_i</i> period	
[7:0]	crh_timeout [7:0]	read-write	8		

crh_timeout

Controller role handoff timeout value. This is the number of system clock (clk i) cycles.

The default value is equivalent to 100 μ s (40 ns × 2500). This timeout value is used during controller handoff procedure when the former active controller confirms if the new active controller will assert its controller role.

Address 0x17 - crh_timeout[7:0]

Address 0x18 - crh_timeout[15:8]

Address 0x19 - crh_timeout[19:16]

5.12. Dynamic Address ACKed Counter Register 0x1C

Dynamic Address ACKed Counter.

Field	Name	Access	Width	Reset
[7:0]	num_da_acked	read-write	8	0x0

num_da_acked

Running counter that indicates the number of dynamic addresses that was acknowledged during Enter DAA command. This counter will reset to 0 after writing all 1's.

5.13. IBI Read Count Register 0x1D

IBI Read Count. Applicable only when IBI Capable attribute is checked in IP configuration GUI.

Field	Name	Access	Width	Reset
[7:0]	ibi_rcnt	read-write	8	0x0

ibi_rcnt

Indicates the number of bytes to read from target during IBI. This should be set depending on the target's setting. Set this register to 0 when responding to Hot-Join or Secondary Controller interrupt.

5.14. IBI Response Register 0x1E

IBI Response. Applicable only when IBI Capable attribute is checked in IP configuration GUI.

Field	Name	Access	Width	Reset
[7:1]	reserved	read-only	7	0x0
[0]	ibi_resp	read-write	1	0x1

ibi resp

This will be the response of the I3C controller to the IBI or Hot-Join request. Write to this register will trigger the IP to send the indicated response.

- 0 ACK the IBI or Hot-Join
- 1 NAK the IBI or Hot-Join

5.15. IBI Address Register 0x1F

IBI Address. Applicable only when IBI Capable attribute is checked in IP configuration GUI.

Field	Name	Access	Width	Reset
[7:1]	ibi_addr	read-only	7	0x0
[0]	Reserved	read-only	1	0x0

ibi addr

This shows the address of the I3C Target or Secondary Controller that requested the IBI. If the interrupt is Hot-Join, this will show the reserved target address 7'h02.

5.16. Interrupt Status 0 Register 0x20

Interrupt Status. When high, it indicates an event and when the corresponding interrupt enable bit is enabled, it will cause the assertion of interrupt port (int o).

Field	Name	Access	Width	Reset
[7]	rcvd_slv_nak	read-write	1	0x0

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Field	Name	Access	Width	Reset
[6]	command_done	read-write	1	0x0
[5]	rcvd_sec_ibi	read-write	1	0x0
[4]	rcvd_ibi	read-write	1	0x0
[3]	rcvd_hot_join	read-write	1	0x0
[2]	tx_fifo_full	read-write	1	0x0
[1]	rx_fifo_not_empty	read-write	1	0x0
[0]	rd_cmd_done	read-write	1	0x0

rcvd slv nak

When set to high, it indicates that a NAK was received. Clear on write of 1.

command_done

When set to high, it indicates that a command has been sent (Private Write/Read or CCC). Clear on write of 1.

rcvd_ibi

When set, it indicates that In-band interrupt is received. Clear on write of 1.

rcvd_sec_ibi

When set, it indicates that Secondary Controller interrupt is received. Clear on write of 1.

rcvd_hot_join

When set to high, it indicates that Hot-Join interrupt is received. Clear on write of 1.

tx_fifo_full

When set to high, it indicates that Tx FIFO is full. Clear on write of 1.

rx_fifo_not_empty

When set to high, it indicates that Rx FIFO is not empty. Clear on write of 1.

rd_cmd_done

When set to high, it indicates that a private read is done, and all requested data specified by length are available in the Rx FIFO. Clear on write of 1.

5.17. Interrupt Set 0 Register 0x21

Interrupt Set. This is a dummy register that is used to test the assertion of interrupt status. When set to high, it triggers the corresponding interrupt status 0 signal.

Field	Name	Access	Width	Reset
[7]	rcvd_slv_nak_set	write-only	1	0x0
[6]	command_done_set	write-only	1	0x0
[5]	rcvd_sec_ibi_set	write-only	1	0x0
[4]	rcvd_ibi_set	write-only	1	0x0
[3]	rcvd_hot_join_set	write-only	1	0x0
[2]	tx_fifo_full_set	write-only	1	0x0
[1]	rx_fifo_not_empty_set	write-only	1	0x0
[0]	rd_cmd_done_set	write-only	1	0x0

5.18. Interrupt Enable 0 Register 0x22

Interrupt Enable. When set to high, it enables the corresponding interrupt status 0 signal to cause the assertion of interrupt port signal (int_o).

Field	Name	Access	Width	Reset
[7]	rcvd_slv_nak_en	read-write	1	0x0
[6]	command_done_en	read-write	1	0x0

Field	Name	Access	Width	Reset
[5]	rcvd_sec_ibi_en	read-write	1	0x0
[4]	rcvd_ibi_en	read-write	1	0x0
[3]	rcvd_hot_join_en	read-write	1	0x0
[2]	tx_fifo_full_en	read-write	1	0x0
[1]	rx_fifo_not_empty_en	read-write	1	0x0
[0]	rd_cmd_done_en	read-write	1	0x0

5.19. Interrupt Status 1 Register 0x24

Interrupt Status. When high, it indicates an event and when the corresponding interrupt enable bit is enabled, it will cause the assertion of interrupt port (int o).

4555. 1151. 51				
Field	Name	Access	Width	Reset
[7]	reserved	read-only	1	0x0
[6]	waiting_ibi_resp	read-write	1	0x0
[5]	rx_fifo_full	read-write	1	0x0
[4]	crh_timeout_expired	read-write	1	0x0
[3]	get_acccr_done	read-write	1	0x0
[2]	ibi_rd_done	read-write	1	0x0
[1]	wr_cmd_early_term	read-write	1	0x0
[0]	rd_cmd_early_term	read-write	1	0x0

waiting_ibi_resp

When set to high, it indicates that there is a pending IBI that Controller must respond to. User shall write to ibi_resp register whether to ACK or NAK the IBI. Clear on write of 1.

rx_fifo_full

When set to high, it indicates that Rx FIFO is full. Clear on write of 1.

waiting_ibi_resp

When set to high, it indicates that there is a pending IBI that Controller must respond to. User shall write to ibi_resp register whether to ACK or NAK the IBI. Clear on write of 1.

• crh_timeout_expired

Applicable only when Secondary Controller Capability is enabled.

When set to high, it indicates that the controller handoff has failed due to the new controller failing to assert its role within the specified timeout value in Secondary Controller Timeout register. This means that this device will remain as active controller. Clear on write of 1.

get_acccr_done

Applicable only when Secondary Controller Capability is enabled.

When set to high, it indicates that GETACCCR CCC was done, and the result of this command is available in the secondary controller status info register. Clear on write of 1.

ibi_rd_done

When set to high, it indicates IBI payload was received and IBI read transaction has been terminated. Clear on write of 1

wr_cmd_early_term

When set to high, it indicates that private write data was not completely transferred due to the target terminating it with NAK. Clear on write of 1.

rd_cmd_early_term

When set to high, it indicates that a private read is done due to target terminating with T bit==0 and the read data received is less than what was requested. Clear on write of 1.

5.20. Interrupt Set 1 Register 0x25

Interrupt Set. This is a dummy register that is used to test the assertion of interrupt status. When set to high, it triggers the corresponding interrupt status 1 signal.

Field	Name	Access	Width	Reset
[7]	reserved	read-only	1	0x0
[6]	waiting_ibi_resp_set	write-only	1	0x0
[5]	rx_fifo_full_set	write-only	1	0x0
[4]	crh_timeout_expired_set	write-only	1	0x0
[3]	get_acccr_done_set	write-only	1	0x0
[2]	ibi_rd_done_set	write-only	1	0x0
[1]	wr_cmd_early_term_set	write-only	1	0x0
[0]	rd_cmd_early_term_set	write-only	1	0x0

5.21. Interrupt Enable 1 Register 0x26

Interrupt Enable. When set to high, it enables the corresponding interrupt status 1 signal to cause the assertion of interrupt port signal (int o).

Field	Name	Access	Width	Reset
[7]	reserved	read-only	1	0x0
[6]	waiting_ibi_resp_en	read-write	1	0x0
[5]	rx_fifo_full_en	read-write	1	0x0
[4]	crh_timeout_expired_en	read-write	1	0x0
[3]	get_acccr_done_en	read-write	1	0x0
[2]	ibi_rd_done_en	read-write	1	0x0
[1]	wr_cmd_early_term_en	read-write	1	0x0
[0]	rd_cmd_early_term_en	read-write	1	0x0

5.22. Bus Condition Debug Register 0x28

Bus condition debug register.

Field	Name	Access	Width	Reset
[7]	hdr_ddr_mode	read-only	1	0x0
[6]	i3c_line_idle	read-only	1	0x1
[5]	scl_oe	read-only	1	0x0
[4]	scl_o	read-only	1	0x1 0x0 – if Secondary-Capable but not Active Controller
[3]	sda_wpu	read-only	1	0x1
[2]	sda_spu	read-only	1	0x0 0x1 – if Secondary-Capable but not Active Controller
[1]	sda_oe	read-only	1	0x0
[0]	sda_o	read-only	1	0x1

hdr_ddr_mode

When high, indicates that the bus is currently in HDR-DDR mode. Otherwise, it is in SDR mode.

• i3c line idle

When high, indicates that the bus state is in idle. This also implies that bus is free (SCL and SDA are both high).

scl_oe

Shows the current value of the SCL output enable.

- 1 SCL output is driven
- 0 SCL output is not driven
- scl_o

Shows the current value of the SCL output generated by IP.

- 1 SCL output is driven
- 0 SCL output is not driven
- sda_wpu

Shows the current value of the SDA weak pull up control signal.

- 1 weak pull up resistor is disabled
- 0 weak pull up resistor is enabled
- sda_spu

Shows the current value of the SDA strong pull up control signal.

- 1 strong pull up resistor is disabled
- 0 strong pull up resistor is enabled
- sda oe

Shows the current value of the SDA output enable.

- 1 SDA output is driven
- 0 SDA output is not driven
- sda_o

Shows the current value of the SDA output generated by IP.

- 1 SDA output is driven
- 0 SDA output is not driven

5.23. Last NAK Address Debug Register 0x29

Last NAK-ed Target Address.

Field	Name	Access	Width	Reset
[7:1]	tgt_addr	read-write	7	0x0
[0]	read1_write0	read-write	1	0x0

tgt_addr

This shows the latest target address driven by the I3C Controller that receives a NAK response. Writing to this register resets it to 0.

read1_write0

Indicates the transaction type either read (1) or write (0). Writing to this register resets it to 0.

5.24. Last ACK Address Debug Register 0x2A

Last ACKed Target Address.

Field	Name	Access	Width	Reset
[7:1]	tgt_addr	read-write	7	0x0
[0]	read1_write0	read-write	1	0x0

tgt_addr

This shows the latest target address driven by the I3C Controller that receives an ACK response. Writing to this register resets it to 0.

read1_write0

Indicates the transaction type either read (1) or write (0). Writing to this register resets it to 0.

5.25. Interrupt Status 2 Register 0x2C

Interrupt Status. When high, it indicates an event and when the corresponding interrupt enable bit is enabled, it will cause the assertion of interrupt port (int o).

Field	Name	Access	Width	Reset
[7]	hdr_rcvd_nak	read-write	1	0x0
[6]	hdr_command_done	read-write	1	0x0
[5]	hdr_frm_error	read-write	1	0x0
[4]	hdr_par_error	read-write	1	0x0
[3]	hdr_crc_error	read-write	1	0x0
[2]	hdr_rd_cmd_early_term	read-write	1	0x0
[1]	hdr_wr_cmd_early_term	read-write	1	0x0
[0]	hdr_rd_cmd_done	read-write	1	0x0

hdr_rcvd_nak

Applicable only if HDR-DDR capable.

When set to high, it indicates that a NAK was received. Clear on write of 1.

hdr command done

Applicable only if HDR-DDR capable.

When set to high, it indicates that a command has been sent (HDR Write/Read or CCC). Clear on write of 1.

hdr_frm_error

Applicable only when HDR-DDR capable.

When set, it indicates that Framing error (incorrect preamble bits) is detected. Clear on write of 1.

hdr_par_error

Applicable only if HDR-DDR capable.

When set, it indicates that Parity error is detected. Clear on write of 1.

hdr_crc_error

Applicable only if HDR-DDR capable.

When set, it indicates that CRC error is detected. Clear on write of 1.

hdr_rd_cmd_early_term

Applicable only if HDR-DDR capable.

When set to high, it indicates that HDR read is done due to target terminating the transfer and the read data received is less than what was requested. Clear on write of 1.

hdr wr cmd early term

Applicable only if HDR-DDR capable.

When set to high, it indicates that HDR write data was not completely transferred due to the target terminating the transfer. Clear on write of 1.

hdr_rd_cmd_done

Applicable only if HDR-DDR capable.

When set to high, it indicates that HDR read command is done and all requested data specified by length are available in the Rx FIFO. Clear on write of 1.

5.26. Interrupt Set 2 Register 0x2D

Interrupt Set. This is a dummy register that is used to test the assertion of interrupt status. When set to high, it triggers the corresponding interrupt status 0 signal.

Field	Name	Access	Width	Reset
[7]	hdr_rcvd_nak_set	write-only	1	0x0
[6]	hdr_command_done_set	write-only	1	0x0
[5]	hdr_frm_error_set	write-only	1	0x0
[4]	hdr_par_error_set	write-only	1	0x0
[3]	hdr_crc_error_set	write-only	1	0x0
[2]	hdr_rd_cmd_early_term_set	write-only	1	0x0
[1]	hdr_wr_cmd_early_term_set	write-only	1	0x0
[0]	hdr_rd_cmd_done_set	write-only	1	0x0

5.27. Interrupt Enable 2 Register 0x2E

Interrupt Enable. When set to high, it enables the corresponding interrupt status 0 signal to cause the assertion of interrupt port signal (int o).

Field	Name	Access	Width	Reset
[7]	hdr_rcvd_nak_en	read-write	1	0x0
[6]	hdr_command_done_en	read-write	1	0x0
[5]	hdr_frm_error_en	read-write	1	0x0
[4]	hdr_par_error_en	read-write	1	0x0
[3]	hdr_crc_error_en	read-write	1	0x0
[2]	hdr_rd_cmd_early_term_en	read-write	1	0x0
[1]	hdr_wr_cmd_early_term_en	read-write	1	0x0
[0]	hdr_rd_cmd_done_en	read-write	1	0x0

5.28. Tx FIFO Register 0x30

Tx FIFO access.

Field	Name	Access	Width	Reset
[7:0]	tx_fifo_data	read-write	8	0x0

tx_fifo_data

This is a dummy register that is used to fill data to Tx FIFO. You will use this to send the packet frames to Tx FIFO through repeated write access to this dummy register. Reading this register would return the status of Tx FIFO not empty flag.

5.29. Rx FIFO Register 0x40

Rx FIFO access.

Field	Name	Access	Width	Reset
[7:0]	rx_fifo_data	read-only	8	0x0

rx_fifo_data

This is a dummy register that is used to get the read data from Rx FIFO. The read data from read request is stored in the Rx FIFO. You will use this to get the received data from Rx FIFO through repeated read access to this dummy register. You may want to check the interrupt status 0 register (bit[1]) first to determine if Rx FIFO is not empty.

6. Example Design

The I3C Controller example design allows you to compile, simulate, and test the I3C Controller IP on the following Lattice evaluation boards:

- CrossLink-NX PCIe Bridge Board
- CertusPro-NX Evaluation Board
- Avant-E Evaluation Board

6.1. Example Design Supported Configuration

Note: In the table below, ✓ refers to a checked option in the I3C Controller IP example design.

Table 6.1. I3C Controller IP Configuration Supported by the Example Design

Attribute	Primary Controller	Secondary Controller (Target)
Bus Characteristics		
Device Role	Primary Controller	Secondary Controller
Secondary Controller Capable	✓	✓
IBI Capable	✓	✓
Hot-Join Capable	✓	✓
Data Rate Mode	HDR-DDR-capable	HDR-DDR-capable
Register Interface		
Interface	APB	АРВ
Register Offset	Address offset in DWORD	Address offset in DWORD
Optional Interface	•	
Enable Direct FIFO Interface	_	_
SCL Clocking		
Bus Clock Domain	ASYNC (Display only)	ASYNC (Display only)
Use Internal Clock Divider	✓	✓
System Clock Frequency (MHz)	25	25
Internal Clock Frequency (MHz)	25 (Display only)	25 (Display only)
SCL Pulse width	1	1
SCL Clock Frequency (MHz)	12.5 (Display only)	12.5 (Display only)
SCL Clock Period (ns)	80 (Display only)	80 (Display only)
Open Drain Pulse Width (Number of SCL cycles)	3	3
Open Drain Clock Frequency (MHz)	2.083 (Display only)	2.083 (Display only)
Open Drain Pulse width (ns)	239.99 (Display only)	239.99 (Display only)
Enable Dynamic I3C – I2C clock switching	✓	✓
I2C SCL Pulse width	13	13
I2C SCL Clock Frequency (MHz)	0.96 (Display only)	0.96 (Display only)
I2C SCL Clock Period (ns)	520 (Display only)	520 (Display only)
Include IO Primitive	✓	✓
Secondary Controller Tab	•	
Bus Characteristics		
IBI Payload Size (including MDB)	1	1
Maximum Data Speed Limitation	✓	✓
Device Characteristics		
DCR (HEX)	00	00
Manufacturer ID	414	414
Part ID	1	1
Instance ID	1	2

Attribute	Primary Controller	Secondary Controller (Target)
Additional ID	0	0
Static Address Enable	✓	✓
Static Address (HEX) 1	08	09
Dynamic Address (HEX) 1	08	_
Timing Characteristics		
Write Maximum Data Rate (MHz)	12.5 (Display only)	12.5 (Display only)
Clock-to-data Turnaround Delay (ns) (t _{SCO})	≤8 (Display only)	≤8 (Display only)
Read Maximum Data Rate (MHz)	12.5 (Display only)	12.5 (Display only)
Maximum Read Turnaround Time (μs)	0 (Display only)	0 (Display only)

6.2. Overview of the Example Design and Features

The example design discussed in this section is created using the *RISC-V MC SoC Project* template in the Lattice Propel Design Environment. The generated project includes the following components:

- Processor RISC-V (MC w/ PIC/T)
- GPIO
- Asynchronous SRAM
- UART Serial port
- PLL
- Glue Logic

I3C Controller and I3C Target (Secondary Controller) are instantiated and connected in the project as shown in Figure 6.1. In this example, I3C Controller and I3C Target (Secondary Controller) are instantiated in the same system. In actual hardware or use case, you can connect the I3C Controller to external I3C/I2C Target or Secondary Controller devices.

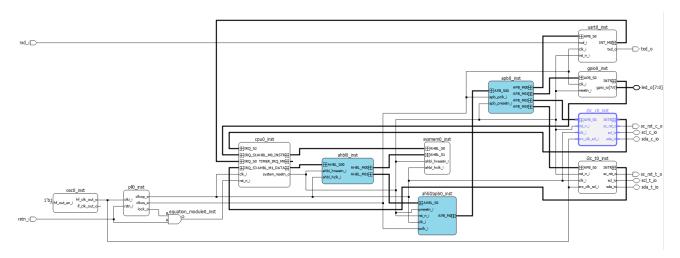


Figure 6.1. I3C Controller IP in Propel SoC Project

An Embedded C/C++ Project is also created in the Propel software to enable developing and debugging application code for different IP features. I3C Controller features can be tested by sending I3C Commands from the I3C Controller to the I3C Target. Runtime configuration of IP and feature testing can be done through C-Code Test Routine. Figure 6.2 shows an example routine to send ENTDAA CCC to multiple I3C Targets.


```
i3c_controller.c X
                                @brief i3c_controller_entdaa_ntargets function for i3c controller.
@param : handle : handle for the controller
       191
      192
      193
                                 Oreturn : status for entdaa config
      195@ unsigned int i3c_controller_entdaa_multitargets(i3c_controller_handle_t *handle){
      196
                                   unsigned int wr length;
                                    unsigned int control;
      198
                                    unsigned int status;
                                    unsigned int index;
      199
                                    if((handle->base_addr != ZERO)&& (handle->target_dyn_addr != ZERO) && (handle->target_nums != ZERO))
      201
      202
                                                 i3c_cntler_reg_t *i3c_contrlr=(i3c_cntler_reg_t *)(handle->base_addr);
                                                 isc_contrlr-vi3c_controller_tx_fifo= kirdex;

i3c_contrlr-vi3c_controller_tx_fifo= kirdex;

i3c_controller_tx_fifo= kirdex;

      204
      205
                                                                                                                                                                                                                                                            //control
                                                                                                                                                                                                                                                        //write length
//ENTDAA CCC
      207
      208
       209
                                                   for(index=ZERO;index<wr_length-SET;index++)</pre>
      210
      211
                                                               i3c_contrlr->i3c_controller_tx_fifo=handle->target_dyn_addr_multi[index] <<SET;
      212
                                                  i3c_contrlr->i3c_controller_start_reg = START;
      213
                                                 status=SUCCESS;
      214
      215
                                   else
      216
                                   {
      218
                                                 status=FAILURE;
      219
       220
                                    return status;
```

Figure 6.2. Sample C-Code Test Routine

6.3. Design Components Example

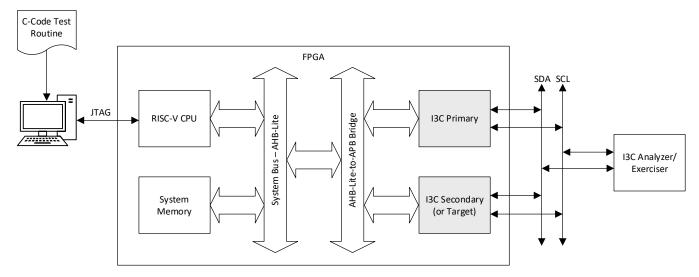


Figure 6.3. I3C Controller Example Design Block Diagram

The I3C Controller example design includes the following blocks:

- RISC-V CPU Passes the C-Code Test Routine from system memory to system bus. Handles interrupts.
- Memory Contains commands for testing.
- System Bus AHB-Lite systems bus for transfers between memory and IP
- I3C Controller IP IP instance connected to I3C bus (SCL and SDA)
- I3C Target Device(s)

6.4. Generating the Example Design

Refer to the Lattice Propel SDK User Guide for more details on the Lattice Propel software.

- 1. Launch Lattice Propel software and set your workspace directory.
- 2. In the Propel software, create a new Lattice SoC Design Project by navigating to File > New > Lattice SoC Design Project.
- 3. The Create SoC Project window will open.
 - In **Device Select** section, indicate the correct details of the device or board that you are using. In Figure 6.4, device is set to LFCPNX-100-8LFG672C since CertusPro-NX Evaluation Board is used in the hardware testing.
 - In Template Design section, choose RISC-V MC SoC Project. Click Finish.

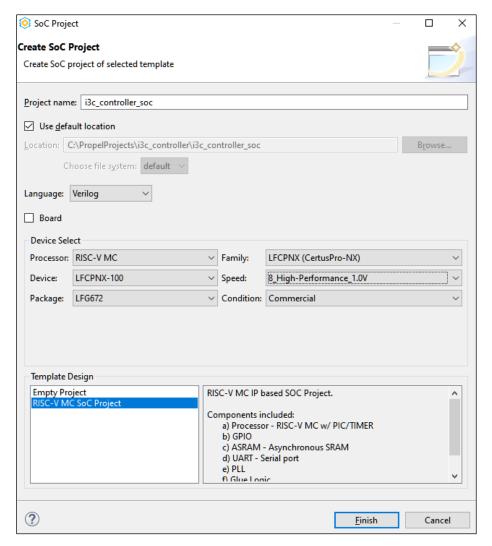


Figure 6.4. Create SoC Project

- 4. Run Propel Builder by clicking the icon or navigate to **LatticeTools** > **Open Design** in Propel Builder. The Propel Builder will open and load the design template.
- 5. In the **IP Catalog** tab, instantiate the I3C Controller IP. Refer to the Generating and Instantiating the IP section for more details. In this example, there are two instances of the I3C Controller IP:
 - Primary Controller
 - Secondary Controller

See the Example Design Supported Configuration section for the corresponding parameter settings.

After generating the IP, the Define Instance window will open. Modify the instance name if needed, then click OK.

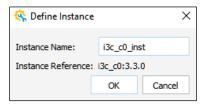


Figure 6.5. Define Instance

- 7. Connect the instantiated IPs to the system. Refer to Figure 6.1 for the connections used in this IP. You will need to update other components of the system for clock and reset sources, interrupt, and bus interface.
- 8. Click the cicon or navigate to **Design > Run Radiant** to launch the Lattice Radiant Software.
- 9. Update your constraints file accordingly and generate the programming file.
- 10. In the Lattice Propel software, build your SoC project to generate the system environment needed for the embedded C/C++ project. Select your SoC project then navigate to **Project** > **Build Project**.
- 11. Check the build result from the **Console** view.



Figure 6.6. Build SoC Project Result

12. Generate a new Lattice C/C++ project by navigating to File > New > Lattice C/C++ Project. Update your Project name, click Next, and then click Finish.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

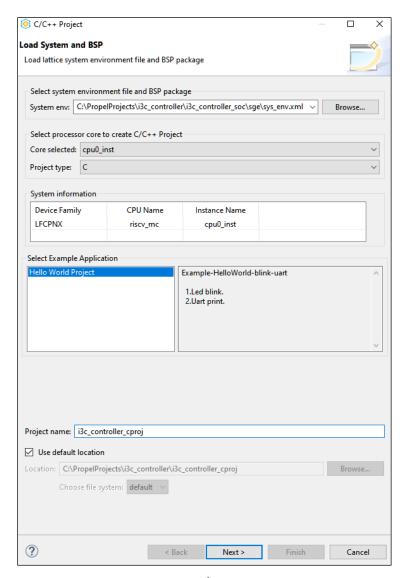


Figure 6.7. Lattice C/C++ Design Project

- 13. Select your C/C++ project then select **Project** > **Build**.
- 14. Check the build result from the Console view.

Figure 6.8. Build C/C++ Project Result

15. This environment is now ready for running your tests on the device. Refer to the *Running Demo on MachXO3D Breakout Board – Hello World* section of the Lattice Propel SDK User Guide for step-by-step guide.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

6.5. Hardware Testing

6.5.1. Hardware Testing Setup

Download the generated bitstream file from the Generating the Example Design section to the CertusPro-NX Evaluation Board through the Lattice Radiant Programmer.

6.5.2. Expected Output

Below is a sample waveform captured via Reveal Inserter and Reveal Analyzer tools. Refer to the relevant sections in the Lattice Radiant Software User Guide for more information on how to use the Reveal Inserter and Reveal Analyzer tools.

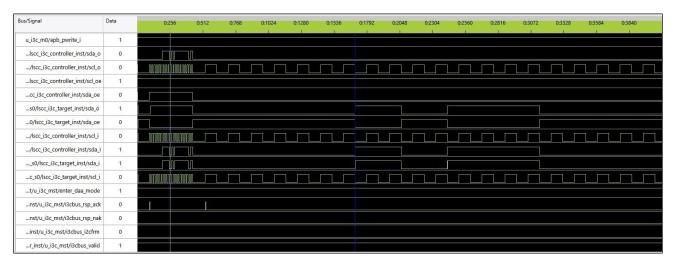


Figure 6.9. Sample ENTDAA sequence sent by I3C Controller

7. Designing with the IP

This section provides information on how to generate the IP Core using the Lattice Radiant software and how to run simulation and synthesis. For more details on the Lattice Radiant software, refer to the Lattice Radiant Software User Guide.

7.1. Generating and Instantiating the IP

You can use the Lattice Radiant software to generate IP modules and integrate them into the device architecture. The steps below describe how to generate the I3C Controller IP in the Lattice Radiant software.

To generate the I3C Controller IP:

- 1. Create a new Lattice Radiant software project or open an existing project.
- In the IP Catalog tab, double-click I3C Controller under IP > Processors_Controllers_and_Peripherals category. The
 Module/IP Block Wizard opens as shown in Figure 7.1. Enter values in the Component name and the Create in fields
 and click Next.

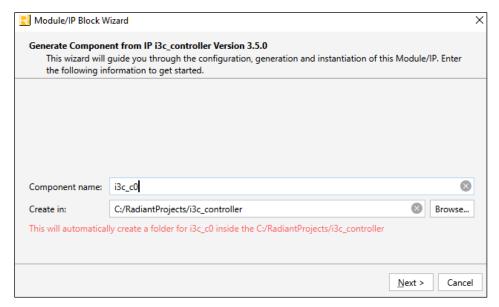


Figure 7.1. Module/IP Block Wizard

3. In the next **Module/IP Block Wizard** window, customize the selected I3C Controller IP using drop-down lists and check boxes. Figure 7.2 shows an example configuration of the I3C Controller IP. For details on the configuration options, refer to the IP Parameter Description section.

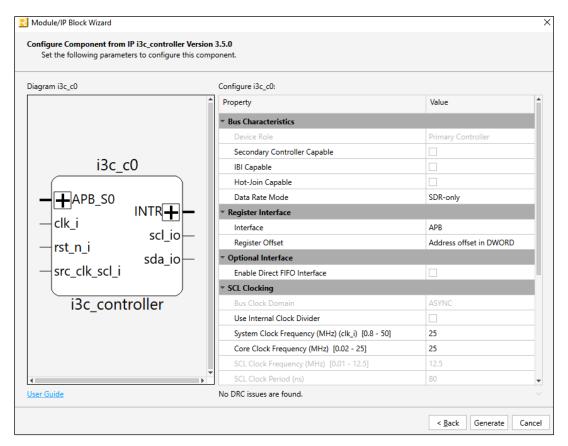


Figure 7.2. IP Configuration

4. Click **Generate**. The **Check Generated Result** dialog box opens, showing design block messages and results as shown in Figure 7.3.

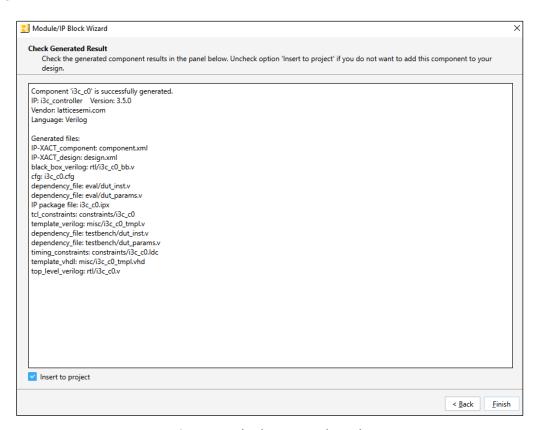


Figure 7.3. Check Generated Result

5. Click **Finish**. All the generated files are placed under the directory paths in the **Create in** and the **Component name** fields shown in Figure 7.1.

7.1.1. Generated Files and File Structure

The generated I3C Controller module package includes the closed-box (<Component name>_bb.v) and instance templates (<Component name>_tmpl.v/vhd) that can be used to instantiate the core in a top-level design. An example RTL top-level reference source file (<Component name>.v) that can be used as an instantiation template for the module is also provided. You may also use this top-level reference as the starting template for the top-level for their complete design. The generated files are listed in Table 7.1.

Table 7.1. Generated File List

Attribute	Description
<component name="">.ipx</component>	This file contains the information on the files associated to the generated IP.
<component name="">.cfg</component>	This file contains the parameter values used in IP configuration.
component.xml	Contains the ipxact: component information of the IP.
design.xml	Documents the configuration parameters of the IP in IP-XACT 2014 format.
rtl/ <component name="">.v</component>	This file provides an example RTL top file that instantiates the module.
rtl/ <component name="">_bb.v</component>	This file provides the synthesis closed-box.
misc/ <component name="">_tmpl.v misc /<component name="">_tmpl.vhd</component></component>	These files provide instance templates for the module.
eval/constraint.pdc	This file provides information on how to constrain this IP in your design. Refer to Timing Constraints section on how to use this file.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

7.2. Design Implementation

Completing your design includes additional steps to specify analog properties, pin assignments, and timing and physical constraints. You can add and edit the constraints using the Device Constraint Editor or by manually creating a PDC File.

Post-Synthesis constraint files (.pdc) contain both timing and non-timing constraint.pdc source files for storing logical timing/physical constraints. Constraints that are added using the Device Constraint Editor are saved to the active .pdc file. The active post-synthesis design constraint file is then used as input for post-synthesis processes.

Refer to the relevant sections in the Lattice Radiant Software User Guide for more information on how to create or edit constraints and how to use the Device Constraint Editor.

7.3. Timing Constraints

You need to provide proper timing and physical design constraints to ensure that your design meets the desired performance goals on the FPGA. Add the content of the following IP constraint file to your design constraints: <IP_Instance_Path>/<IP_Instance_Name>/eval/constraint.pdc.

The constraint file has been verified during IP evaluation with the IP instantiated directly in the top-level module. You can modify the constraints in this file with thorough understanding of the effect of each constraint.

To use this constraint file, copy the content of constraint.pdc to the top-level design constraint for post-synthesis.

Refer to Lattice Radiant Timing Constraints Methodology (FPGA-AN-02059) for details on how to constraint your design.

7.4. Physical Constraints

When Enable I/O primitive option is checked, ensure that PULLMODE of scl_io and sda_io are set to I3C. You can check this in **Tools** > **Device Constraint Editor**. If not yet set, you can change the PULLMODE to I3C in the *Device Constraint Editor* or you can add the following constraints to your constraint file:

```
ldc_set_port -iobuf {PULLMODE=I3C} [get_ports scl_io]
ldc set port -iobuf {PULLMODE=I3C} [get ports sda io]
```

7.5. Running Functional Simulation

You can run functional simulation after the IP is generated.

To run functional simulation:

1. Click the button located on the **Toolbar** to initiate the **Simulation Wizard** shown in Figure 7.4.

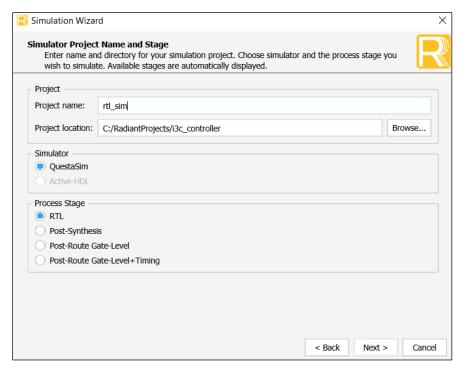


Figure 7.4. Simulation Wizard

2. Click **Next** to open the **Add and Reorder Source** window as shown in Figure 7.5. Ensure that the generated *rtl/<component name>.v* and *testbench/tb top.v* are the only **Source Files**. Remove other files if there are any.

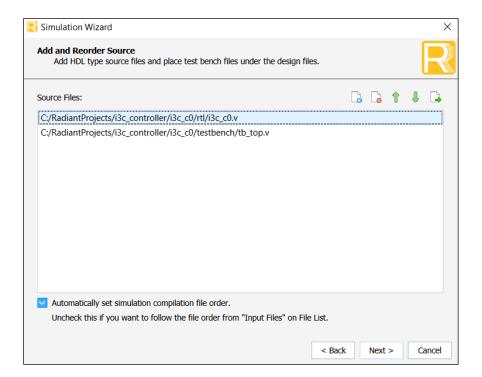


Figure 7.5. Add and Reorder Source

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3. Click **Next**. The **Parse HDL files for simulation** window is shown. Confirm that Simulation Top Module is *tb top*.

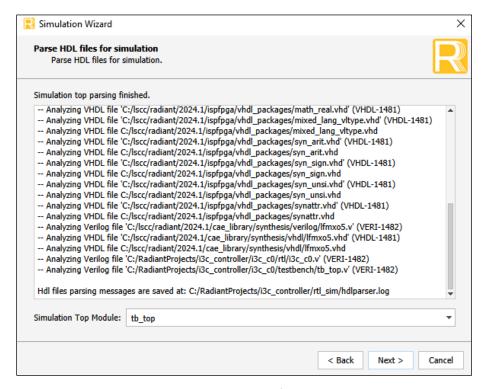


Figure 7.6. Parse HDL Files for Simulation

4. Click Next. The Summary window is shown.

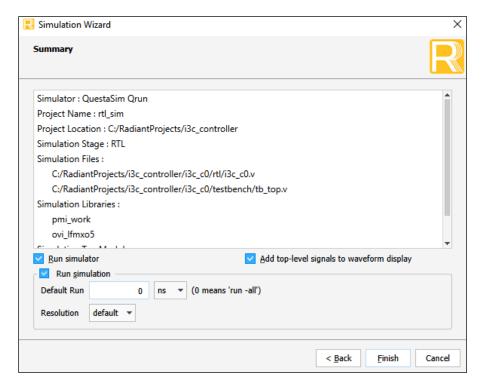


Figure 7.7. Summary

5. Click Finish to run the simulation. The waveform in Figure 7.8 shows an example simulation result.

Figure 7.8. Simulation Waveform

Appendix A. Resource Utilization

Table A.1 shows the resource utilization of the I3C Controller IP using the LFCPNX-100-7ASG256C device using Synplify Pro of Lattice Radiant Software 2023.2. Default configuration is used, and some attributes are changed from default value to show the effect on the resource utilization.

Table A.1. LFCPNX-100-7ASG256C Device Resource Utilization

Configuration	clk Fmax (MHz)	Registers	LUTs	EBRs	DSPs
Default	75.2	468	1035	2	0
IBI Capable = True Hot-Join Capable = True	73.0	529	1220	2	0
Secondary Capable = True IBI Capable = True Hot-Join Capable = True	71.2	1360	3312	2	0
Secondary Capable = True IBI Capable = True Hot-Join Capable = True Data Rate = HDR-DDR capable	73.6	1657	4430	2	0

Notes:

- 1. Fmax is generated when the FPGA design only contains the I3C Controller module, and the target frequency is 25 MHz. These values may be reduced when user logic is added to the FPGA design.
- 2. The distributed RAM utilization is accounted for in the total LUT4s utilization. The actual LUT4 utilization is distribution among logic, distributed RAM, and ripple logic.

Table A.2 shows the resource utilization of the I3C controller IP using the LIFCL-40-7BG256I device using Synplify Pro of Lattice Radiant Software 2023.2. Default configuration is used, and some attributes are changed from default value to show the effect on the resource utilization.

Table A.2. LIFCL-40-7BG256I Device Resource Utilization

Configuration	clk Fmax (MHz)	Registers	LUTs	EBRs	DSPs
Default	69.6	468	1032	2	0
IBI Capable = True Hot-Join Capable = True	73.2	529	1220	2	0
Secondary Capable = True IBI Capable = True Hot-Join Capable = True	67.4	1360	3312	2	0
Secondary Capable = True IBI Capable = True Hot-Join Capable = True Data Rate = HDR-DDR capable	70.1	1657	4430	2	0

Notes:

- 1. Fmax is generated when the FPGA design only contains the I3C Controller module, and the target frequency is 25 MHz. These values may be reduced when user logic is added to the FPGA design.
- 2. The distributed RAM utilization is accounted for in the total LUT4s utilization. The actual LUT4 utilization is distribution among logic, distributed RAM, and ripple logic.

Table A.3 shows the resource utilization of the I3C controller IP using the LAV-AT-E70-1LFG676I device using Synplify Pro of Lattice Radiant Software 2023.2. Default configuration is used, and some attributes are changed from default value to show the effect on the resource utilization.

Table A.3. LAV-AT-E70-1LFG676I Device Resource Utilization

Configuration	clk Fmax (MHz)	Registers	LUTs	EBRs	DSPs
Default	133.00	462	1017	2	0
IBI Capable = True Hot-Join Capable = True	138.70	523	1205	2	0
Secondary Capable = True IBI Capable = True Hot-Join Capable = True	60.05	1382	3256	2	0
Secondary Capable = True IBI Capable = True Hot-Join Capable = True Data Rate = HDR-DDR capable	48.00	1656	4565	2	0

Notes:

- 1. Fmax is generated when the FPGA design only contains the I3C Controller module, and the target frequency is 25 MHz. These values may be reduced when user logic is added to the FPGA design.
- 2. The distributed RAM utilization is accounted for in the total LUT4s utilization. The actual LUT4 utilization is distribution among logic, distributed RAM, and ripple logic.

Table A.4 shows the resource utilization of the I3C controller IP using the LN2-CT-20-1CBG484I device using Synplify Pro of Lattice Radiant Software 2024.2. Default configuration is used, and some attributes are changed from default value to show the effect on the resource utilization.

Table A.4. LN2-CT-20-1CBG484I Device Resource Utilization

Configuration	clk Fmax (MHz)	Registers	LUTs	EBRs	DSPs
Default	201.207	478	1154	2	0
IBI Capable = True Hot-Join Capable = True	211.327	531	1213	2	0
Secondary Capable = True IBI Capable = True Hot-Join Capable = True	181.851	1397	3365	2	0
Secondary Capable = True IBI Capable = True Hot-Join Capable = True Data Rate = HDR-DDR capable	160.411	1673	4371	2	0

Notes:

- 1. Fmax is generated when the FPGA design only contains the I3C Controller module, and the target frequency is 25 MHz. These values may be reduced when user logic is added to the FPGA design.
- 2. The distributed RAM utilization is accounted for in the total LUT4s utilization. The actual LUT4 utilization is distribution among logic, distributed RAM, and ripple logic.

77

References

- Avant-E web page
- Avant-G web page
- Avant-X web page
- Certus-N2 web page
- Certus-NX web page
- CertusPro-NX web page
- CrossLink-NX web page
- iCE40 UltraPlus web page
- MachXO5-NX web page
- Lattice Radiant Software web page
- Lattice Solutions IP Cores web page
- Lattice Propel Design Environment web page
- MIPI I3C Specification web page
- I3C Device Characteristics Register web page
- CrossLink-NX PCIe Bridge Board web page
- Avant-E Evaluation Board web page
- CertusPro-NX Evaluation Board web page
- AMBA 3 AHB-Lite Protocol v1.0 Specification
- AMBA 3 APB Protocol v1.0 Specification
- Lattice Memory Mapped Interface and Lattice Interrupt Interface (FPGA-UG-02039)
- Lattice Radiant Timing Constraints Methodology (FPGA-AN-02059)
- I3C Target IP User Guide (FPGA-IPUG-02227)
- I3C Controller IP Release Notes (FPGA-RN-02017)
- Lattice Insights web page for Lattice Semiconductor training courses and learning plans

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport. For frequently asked questions, please refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

Revision History

Revision 1.5, IP v3.6.0, July 2025

Section	Change Summary
All	Updated the IP version information on the cover page.
Introduction	In Table 1.1. Summary of the I3C Controller IP:
	Updated Supported FPGA Family to Supported Devices and rearranged devices order.
	 Added Mach-NX and MachXO3D device families to Supported Devices.
	Removed <i>Targeted Devices</i> .
	Updated Lattice Implementation.
	In Table 1.3. Ordering Part Number:
	Updated Single Machine Annual to Single Seat Annual.
	Updated Multi-Site Perpetual to Single Seat Perpetual.

Revision 1.4, IP v3.5.0, December 2024

Section	Change Summary
All	Added the IP version information on the cover page.
Introduction	 Updated Table 1.1. Summary of the I3C Controller IP: Added the Certus-NX-RT, CertusPro-NX-RT, and Certus-N2 device families to Supported FPGA Family. Removed IP Version. Added IP Changes and Resources. Updated Targeted Devices and Lattice Implementation. Replaced the IP Validation Summary section with the IP Support Summary section. Added the Certus-N2 OPNs to Table 1.3. Ordering Part Number. Added the Hardware Support section. Made editorial fixes.
Example Design	Added an introductory paragraph to list the evaluation boards used for the example design.
Designing with the IP	Updated Figure 7.1. Module/IP Block Wizard, Figure 7.2. IP Configuration, and Figure 7.3. Check Generated Result.
Resource Utilization	 Added the clk Fmax unit in this section. Added resource utilizations for the Lattice Radiant software version 2024.2. Made editorial fixes.
References	 Added the Certus-N2 web page, CrossLink-NX PCIe Bridge Board web page, Avant-E Evaluation Board web page, CertusPro-NX Evaluation Board web page, and I3C Controller IP Release Notes (FPGA-RN-02017). Removed Lattice Radiant Software 2023.2 User Guide.

Revision 1.3, June 2024

Section	Change Summary		
All	Removed <i>Core</i> from the document title.		
	Made editorial fixes.		
	Replaced HDR mode with HDR-DDR mode.		
	Updated the term CCC command or CCC code to CCC.		
Abbreviations in This	Replaced <i>acronyms</i> with <i>abbreviations</i> in this section.		
Document	Added the following abbreviations:		
	Acknowledgement (ACK)		
	Bus Characteristics Register (BCR)		
	Cyclic Redundancy Check (CRC)		
	Control and Status Registers (CSR)		
	Device-to-Device (D2D)		

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Section	Change Summary
	Dynamic Address (DA)
	Device Characteristics Register (DCR)
	Hot-Join (HJ)
	Input/Output (I/O)
	Microcontroller (MC)
	Negative Acknowledgement (NAK)
	Programmable Interrupt Controller (PIC)
	Phase-Locked Loop (PLL)
	Reduced Instruction Set Computer Five (RISC-V) Single Data Rate (SDR)
	Single Data Rate (SDR) Software Development (it (SDK))
	Software Development Kit (SDK) Software Of the (Soft)
	System on Chip (SoC)
Introduction	Moved introductory paragraph in the 1. Introduction section to the newly added 1.1. Overview of the IP
	section and updated the heading numbers of remaining sections accordingly.
	Updated Table 1.1. Summary of the I3C Controller IP.
	Updated the information on features not supported by the I3C Controller in the 1.3. Features.
	• Moved the content from previous 3.1. Licensing the IP and 3.5. IP Evaluation sections to the newly added 1.4. Licensing and Ordering Information section and updated its content.
	• Moved the content from previous <i>4. Ordering Part Number</i> section to the 1.4.1. Ordering Part Number section and updated its content.
	• Moved the content from previous 3.6. Hardware Validation section to the newly added 1.5. IP Validation Summary section and updated its content.
	 Added the 1.6. Minimum Device Requirements section and updated the heading numbers of remaining sections accordingly.
	Renamed the previous 1.3. Conventions section to 1.7. Naming Conventions and removed the Attribute
	information.
Functional	Renamed the previous 2.1 Overview section to 2.1. IP Architecture Overview and updated its content.
Description	 Updated Figure 2.1. I3C Controller IP Core Functional Diagram (Controller Only) and Figure 2.2. I3C Controller IP Core Functional Diagram (with Secondary Controller Capability).
	Added the 2.2. Clocking section and updated the heading numbers of remaining sections accordingly.
	Renamed the previous 2.2 Reset Propagation section to 2.3. Reset and updated its content.
	Added the 2.4. User Interfaces section and updated the heading numbers of remaining sections
	accordingly.
IP Parameter	Moved the content from previous 2.11. Attributes Summary section to this newly added section.
Description	Updated the following tables:
	Table 3.1. General Attributes
	Table 3.2. Secondary Controller (Available only if Secondary Controller Capable is Enabled
	Table 3.3. IP Parameter Settings for Example Test Cases
Signal Description	Moved the content from previous 2.10. Signal Description section to this section.
Signal Description	 Updated the names or/and descriptions of the following signals in Table 4.1. Ports Description:
	• src_clk_scl_i
	• sc_rst_o
	• ahbl_hsize_i[2:0]
	• ahbl_hprot_i[3:0]
	• tx_ready_o
	• tx_data_i [7:0]
	• rx_valid_o
	• rx_ready_i
	• rx_data_o
	• Immi_ready_o
	ahbl_haddr_i[31:0]
	• ahbl_hwdata_i[31:0]

Section	Change Summary
	ahbl_hrdata_o[31:0]
	• apb_paddr_i[31:0]
	• apb_pwdata_i[31:0]
	• apb_prdata_o[31:0]
	Updated the Notes for Table 4.1. Ports Description.
Register Description	Moved the content from previous 2.12. Register Description section to this section.
	Added a paragraph about APB or AHB-Lite interface.
	Updated the <i>Note</i> section.
Example Design	Added this section and updated the heading numbers of remaining sections accordingly.
Designing with the IP	Moved the content from previous 3.2. Generation and Synthesis section to the 7.1. Generating and
	Instantiating the IP section and updated its content.
	Added the 7.2. Design Implementation section and updated the heading numbers of remaining sections
	accordingly.
	 Moved the content from previous 3.4. Constraining the IP section to the 7.3. Timing Constraints section and updated its content.
	Added the 7.4. Physical Constraints section and updated the heading numbers of remaining sections
	accordingly.
	Updated the contents including all figures in the 7.5. Running Functional Simulation section.
References	Added the following references:
	Lattice Solutions for IP Cores web page
	Lattice Propel Design Environment web page
	MIPI I3C Specification web page
	I3C Device Characteristics Register web page
	Lattice Radiant Software 2023.2 User Guide
	AMBA 3 AHB-Lite Protocol v1.0 Specification
	AMBA 3 APB Protocol v1.0 Specification
	Lattice Memory Mapped Interface and Lattice Interrupt Interface (FPGA-UG-02039)
	Lattice Radiant Timing Constraints Methodology (FPGA-AN-02059)
	13C Target IP User Guide (FPGA-IPUG-02227)

Revision 1.2. December 2023

Section	Change Summary
All	 Changed the document name from I3C Controller IP Core - Lattice Radiant Software to I3C Controller IP Core. Formatted fonts for input signals, output signals, configuration settings, and name of registers to italic. Updated the content to better suit second person point of view. Minor adjustments to ensure the document is consistent with Lattice Semiconductor's inclusive language policy.
Disclaimers	Updated boilerplate.
Functional Description	 Changed the heading name from Permitted Cs in HDR Mode to Permitted CCCs in HDR Mode. Updated paragraph of Hot Join and In-band Interrupt (IBI) Handling section by adding the sentence, When the Tx FIFO is empty, waiting_ibi_resp interrupt will be asserted. You should program or set the IBI read count register (0x1D), and the IBI response register (0x1E). Added register (0x24) to the paragraph in the Controller to Controller Handoff section. Updated auto_assert_role paragraph in the Controller Configuration 0 Register 0x02 section. Added new paragraphs on how to initiate the controllership handoff procedure, and how to reset the device role on both the Controller and Target sides to the Set Device Role Register 0x16 section. Updated the field and width of Interrupt Status reserved, and added new Interrupt Status waiting_ibi_resp in the Interrupt Status 1 Register 0x24 section. Updated the field and width of Interrupt Set reserved and added new Interrupt Set waiting_ibi_resp_set in the Interrupt Set 1 Register 0x25 section.

Section	Change Summary
	 Updated the field and width of Interrupt Enable reserved and added new Interrupt Enable waiting_ibi_resp_en in the Interrupt Enable 1 Register 0x26 section. Changed from not_empty flag to not empty flag in the Tx FIFO Register 0x30 section.
IP Core Generation, Simulation, and Validation	 Added the sentence You can evaluate the IP core through functional simulation and implementation (synthesis, map, place, and route) without an IP license string to the Licensing the IP section. Updated Figure 3.1 and Figure 3.3 in the Generation and Synthesis section. Added Figure 3.2 in the Generation and Synthesis section. Added new attribute eval/constraint.pdc to Table 3.1 in the Generation and Synthesis section. Added Constraining the IP section. Updated the header numbers for IP Evaluation and Hardware Validation sections.
Ordering Part Number	Updated Table 4.1 to add new part numbers, removed obsolete part numbers, and updated the license types.
Resource Utilization	 Added the sentence Table A.1 shows the resource utilization of I3C Controller IP using LFCPNX-100-7ASG256C device using Synplify Pro of Lattice Radiant Software 2023.2, and Table A.2 shows the resource utilization of I3C controller IP using LIFCL-40-7BG256I device using Synplify Pro of Lattice Radiant Software 2023.2 to the Appendix A. Resource Utilization section. Renamed Table A.1 to Resource Utilization for LFCPNX-100-7ASG256C, and Table A.2 to Resource Utilization for LIFCL-40-7BG256I. Added new configurations Secondary Capable = True, and Data Rate = HDR-DDR capable to Table A.1, and Table A.2.
	 Removed configurations SCL Pulse Width, and Open-Drain Pulse Width from Table A.1, and Table A.2. Updated the clk Fmax, Registers, and LUTs values for all configurations in Table A.1, and Table A.2. Updated the table notes to change from SDR module to I3C Controller module, and the target frequency from 200 Mhz to 25 Mhz for Table A.1, and Table A.2. Added Table A.3 to the Appendix A. Resource Utilization section.
References	Added links to Lattice Avant-G, Lattice Avant-X, and Lattice Insights web pages.

Revision 1.1, July 2023

Section	Change Summary
Introduction	 Deleted paragraph I3C is a two-wire bi-directional serial bus, optimized for multiple sensor Secondary devices and controlled by only one I3C Controller device at a time. I3C is backward compatible with many legacy I2C devices, but I3C devices also support significantly higher speeds, new communication modes, and new device roles, including an ability to change device roles over time. For example, the initial Controller can cooperatively pass the Controllership to another I3C device on the bus, if the requesting I3C device supports a Secondary Controller feature in Introduction section. Updated Table 1.1. Quick Facts for below: Added Resources row. Added Lattice Avant™ device to Supported FPGA Families. Replaced Radiant Software version from 2022 to 2022.1.
Functional Description	 Added Reset Propagation section. Added description of Control 5 Bit In HDR mode, it is recommended to set this to 1 when there are multiple I3C frames in one packet to ensure that HDR mode will not be exited in case that (1) the preceding frame is NAK-ed, (2) User read/write command is terminated early, or (3) HDR-DDR framing error is detected. If this is set to 0, User shall reset the IP core and cleanup the contents of FIFO when the mentioned conditions occur to avoid incorrect packet framing and unknown internal state of IP core in Table 2.1. User Packet Frame Structure Definition. Added comment // [4] = 0 -> I3C // [5] = 1 -> Wait next packet // [6] = 0 -> unused in below figures: Table 2.16. Example: Read 4 Bytes from I3C Target with Address 7'h10 using HDR-DDR Mode Table 2.19. Generic Broadcast CCC Format Table 2.22. Generic Direct Set CCC Format Table 2.25. Generic Direct Get CCC Format.

Section	Change Summary	
	Updated Table 2.27. Ports Description for below:	
	 Added port names ext_io_scl_i, ext_io_scl_o, ext_io_scl_oe, ext_io_scl_spu_n, ext_io_scl_wpu_n, ext_io_sda_i, ext_io_sda_o, ext_io_sda_oe, ext_io_sda_spu_n, ext_io_sda_wpu_n. Added footnotes Bidirectional I3C interface is only available when internal IO primitives are enabled in IP generation GUI and External IO I3C interface is only available when internal IO primitives are 	
	 disabled in IP generation GUI. Replaced Clear when interrupt status get get_acccr_done is cleared with Cleared on write of 1 to interrupt status get_acccr_done in Secondary Controller Status Info Register 0x15 section. 	
	Updated Table 2.28. Attributes Table for below changes:	
	Added attributes Internal Clock Frequency (MHz) and Dynamic Address (HEX) ¹	
	Replaced Default values from LMMI and Address Offset in Byte with APB and Address Offset in DWORD.	
	Replaced register name from reserved to en_ack_handoff in Table 2.29. Controller Configuration 0 Register 0x02.	
	Added en_ack_handoff information in Controller Configuration 0 Register 0x02 section.	
	Added ddr_ignore_rcvd_nak and ddr_ignore_cmd_done information and [4] and [5] fields in HDR-DDR Configuration 0 Register 0x06 section.	
	 Added Address 0x17 - crh_timeout[7:0], Address 0x18 - crh_timeout[15:8], Address 0x19 - crh_timeout[19:16] in Secondary Controller Timeout Register 0x19 - 0x17 section. Added hdr_frm_error information in Interrupt Status 2 Register 0x2C section. 	
IP Core Generation,	Added below steps in Running Functional Simulation section:	
Simulation, and	In the File List view, right click on Input Files > Add > Existing File.	
Validation	Select testbench/tb_top.v	
	 Added Figure 3.5. Adding Existing Input File and Figure 3.6. Adding tb_top.v and updated Figure 3.7. Simulation Wizard and Figure 3.8. Adding and Reordering Source. 	
	Added Constraining the IP and Hardware Validation sections.	
Ordering Part Numbers	Part Numbers Added CrossLink-NX, Certus-NX, CertusPro-NX, MachXO5-NX, iCE-40 UltraPlus, Avant-E part numbers Table 4.1. Ordering Part Numbers.	
References	Added links for CrossLink-NX, Certus-NX, CertusPro-NX, MachXO5-NX, iCE-40 UltraPlus, Avant-E, and Lattice Radiant web pages.	

Revision 1.0, April 2023

Section	Change Summary
All	Initial release.

www.latticesemi.com