

I3C Target IP

IP Version: v3.6.0

User Guide

FPGA-IPUG-02227-1.5

July 2025

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

Contents	
Abbreviations in This Document	8
1. Introduction	9
1.1. Overview of the IP	9
1.2. Quick Facts	9
1.3. IP Support Summary	9
1.4. Features	11
1.5. Licensing and Ordering Information	11
1.5.1. Ordering Part Number	11
1.6. Hardware Support	12
1.7. Minimum Device Requirements	12
1.8. Naming Conventions	
1.8.1. Nomenclature	
1.8.2. Signal Names	
2. Functional Description	
2.1. IP Architecture Overview	
2.2. Clocking	
2.2.1. Clocking Overview	
2.3. Reset	
2.4. User Interfaces	
2.5. I3C Transfers in SDR Mode	
2.5.1. Broadcast CCC	
2.5.2. Direct CCC	
2.5.3. Private Write	
2.5.4. Private Read	
2.6. I2C Mode	
2.6.1. I2C Write	
2.6.2. I2C Read	
2.7. Common Command Codes	
2.8. I3C Transfers in HDR-DDR Mode	
2.8.1. Typical HDR-DDR Mode Frame	
2.8.2. HDR-DDR Write	
2.8.3. HDR-DDR Read	
2.8.4. HDR-DDR Broadcast CCC	
2.9. Hot-Join Mechanism	
2.9.1. Generating a Hot-Join Request	
2.10. In-Band Interrupt	
2.10.1. Generating an In-band Interrupt	
2.10.2. Sending the IBI Payload	
2.10.3. Pending Read Notification	
2.10.4. Limitation for IBI and Private Read	
2.11. Target Reset	
2.12. Secondary Controller Support	
2.12.1. Generating the Controller Role Request	
2.12.2. CCC for Secondary Controller Support	
2.13. HDR-DDR Support	
3. IP Parameter Description	
3.1. General	
3.2. IP Parameter Settings for Example Use Cases	26

FPGA-IPUG-02227-1.5

4

4.		nal Description	
5.	Reg	rister Description	30
5	5.1.	Bus Characteristics Register 0x00	30
5	5.2.	Device Characteristics Register 0x01	
5	5.3. Dynamic Address Register 0x02		31
5	5.4.	Events Command Enable Register 0x03	31
5	5.5.	Events Command Device Configuration Register 0x04	32
5	5.6.	Events Command Request Register 0x05	32
5	5.7.	Hot-Join/IBI Retry Register 0x06	32
5	5.8.	Maximum Write Length (MSB) Register 0x07	33
5	5.9.	Maximum Write Length (LSB) Register 0x08	33
5	5.10.	Maximum Read Length (MSB) Register 0x09	
5	5.11.	Maximum Read Length (LSB) Register 0x0A	33
5	5.12.	Maximum IBI Payload Size Register 0x0B	
5	5.13.	Maximum Write Data Speed (MaxWr) Register 0x0C	34
5	5.14.	Maximum Read Data Speed (MaxRd) Register 0x0D	
5	5.15.	Maximum Read Turnaround Time (MSB) Register 0x0E	35
5	5.16.	Maximum Read Turnaround Time Register 0x0F	35
5	5.17.	Maximum Read Turnaround Time (LSB) Register 0x10	35
5	5.18.	Device Provisioned ID Byte6 Register 0x11	35
5	5.19.	Device Provisioned ID Byte5 Register 0x12	35
5	5.20.	Device Provisioned ID Byte4 Register 0x13	36
5	5.21.	Device Provisioned ID Byte3 Register 0x14	36
5	5.22.	Device Provisioned ID Byte2 Register 0x15	36
5	5.23.	Device Provisioned ID Byte1 Register 0x16	
5	5.24.	Static Address Register 0x17	
5	5.25.	Device Capabilities Byte1 Register 0x18	37
5	5.26.	Device Capabilities Byte2 Register 0x19	37
5	5.27.	Device Capabilities Byte3 Register 0x1A	38
5	5.28.	Oscillator Inaccuracy Register 0x1C	39
5	5.29.	Receive FIFO Register 0x20	
5	5.30.	Transmit FIFO Register 0x22	
5	5.31.	Soft Reset Register 0x28	
5	5.32.	Target Response Register 0x29	
5	5.33.	Get Status MSB Register 0x2A	
5	5.34.	Get Status LSB Register 0x2B	
5	5.35.	Bus Activity State Register 0x2C	
5	5.36.	Target Reset Action 1 Register 0x2D	
	5.37.	Target Reset Action 2 Register 0x2E	
	5.38.	Target Reset Action 3 Register 0x2F	
	5.39.	Interrupt Status 1 Register 0x30	
	5.40.	Interrupt Status 1 Enable Register 0x31	
	5.41.	Interrupt Status 1 Set Register 0x32	
	5.42.	Interrupt Status 2 Register 0x33	
	5.43.	Interrupt Status 2 Enable Register 0x34	
	5.44.	Interrupt Status 2 Set Register 0x35	
	.45.	Interrupt Status 3 Register 0x36	
	.46.	Interrupt Status 3 Enable Register 0x37	
	5.47.	Interrupt Status 3 Set Register 0x38	
	5.48.	Interrupt Status 5 Register 0x3C	
	5.49.	Interrupt Status 5 Enable Register 0x3D	
	5.50.	Interrupt Status 5 Set Register 0x3E	
	5.51.	Bus Mode Register 0x50	
5	5.52.	HDR-DDR Target Configuration Register 0x51	47

5.53.	HDR-DDR Abort Configuration Register 0x54	47
5.54.	Secondary Controller Registers	48
5.5	4.1. Dynamic Address Register 0x02	48
5.5	4.2. Bus Characteristics Register 0x00	48
5.5	4.3. Events Command Enable Register 0x03	49
5.5	4.4. Events Command Device Configuration Register 0x04	50
	4.5. Events Command Request Register 0x05	
5.5	4.6. Maximum Write Data Speed (MaxWr) Register 0x0C	50
5.5	4.7. Device Capabilities Byte 3 Register 0x1A	51
5.5	4.8. Interrupt Status 4 Register 0x39	52
5.5	4.9. Interrupt Status 4 Enable Register 0x3A	53
5.5	4.10. Interrupt Status 4 Set Register 0x3B	53
5.5	4.11. DEFTGTS Count Register 0x40	53
5.5	4.12. DEFTGTS Rx FIFO Start Register 0x41	53
	4.13. DEFTGTS Rx FIFO Count Register 0x42	
5.5	4.14. Controller Role Handoff Register 0x43	54
5.5	4.15. GETMXDS Controller Capable Device Register 0x44	54
5.5	4.16. GETSTATUS Controller Capable Device LSB Register 0x45	54
	4.17. GETCAPS Controller Capable Device 1 Register 0x46	
	4.18. GETCAPS Controller Capable Device 2 Register 0x47	
5.5	4.19. Set Device Role Register 0x48	56
6. Exa	ample Design	
6.1.	Example Design Supported Configuration	
6.2.	Overview of the Example Design and Features	
6.3.	Example Design Components	
6.4.	Generating the Example Design	
6.5.	Hardware Testing	
6.5		
6.5	r	
7. Des	signing with the IP	
7.1.	Generating and Instantiating the IP	
7.1		
7.2.	Design Implementation	
7.3.	Timing Constraints	
7.4.	Physical Constraints	
7.5.	Running Functional Simulation	
	ix A. Resource Utilization	
	ces	
	al Support Assistance	
Revision	History	76

Figures

Figure 2.1. I3C Target IP Core Block Diagram	13
Figure 2.2. I3C Target IP Clock Domain Block Diagram	14
Figure 2.3. Broadcast CCC	
Figure 2.4. Direct CCC	
Figure 2.5. I3C Private Write Initiated with START Condition	
Figure 2.6. I3C Private Write Initiated with Repeated START Condition	
Figure 2.7. I3C Private Read Initiated with START Condition	16
Figure 2.8. I3C Private Read Initiated with Repeated START Condition	16
Figure 2.9. I2C Write	17
Figure 2.10. I2C Read	17
Figure 2.11. Typical HDR-DDR Mode Frame	19
Figure 2.12. HDR-DDR Write	19
Figure 2.13. HDR-DDR Read	
Figure 2.14. HDR-DDR Broadcast CCC	
Figure 2.15. HDR-DDR Direct Set CCC	
Figure 2.16. HDR-DDR Direct Get CCC	
Figure 6.1. I3C Target IP in Propel SoC Project	59
Figure 6.2. Sample C Code Test Routine	
Figure 6.3. I3C Target Example Design Block Diagram	60
Figure 6.4. Create SoC Project	
Figure 6.5. Define Instance	
Figure 6.6. Build SOC Project Result	
Figure 6.7. Lattice C/C++ Design Project	63
Figure 6.8. Build C/C++ Project Result	
Figure 6.9. Sample ENTDAA Sequence Response by I3C Target	
Figure 7.1. Module/IP Block Wizard	
Figure 7.2. IP Configuration	
Figure 7.3. Check Generated Result	67
Figure 7.4. Simulation Wizard	
Figure 7.5. Add and Reorder Source	
Figure 7.6. Parse HDL Files for Simulation	70
Figure 7.7. Summary	70
Figure 7.8. Simulation Waveform	71

Tables

Table 1.1. Summary of the I3C Target IP	g
Table 1.2. I3C Target IP Support Readiness	g
Table 1.3. Ordering Part Number	
Table 2.1. User Interfaces and Supported Protocols	
Table 2.2. I3C Controller IP Supported CCCs	18
Table 2.3. Target Reset	
Table 2.4. CCCs for Secondary Controller Support	
Table 2.5. CCCs Supported in HDR-DDR Mode	
Table 3.1. General Attributes	25
Table 3.2. IP Parameter Settings for Example Use Cases	26
Table 4.1. Ports Description	28
Table 6.1. I3C Target IP Configuration Supported by the Example Design	57
Table 6.2. I3C Controller IP Version 3.3.0 Configuration Supported by the Example Design	58
Table 7.1. Generated File List	
Table A.1. Resource Utilization for LFCPNX-100-7ASG256C	72
Table A.2. Resource Utilization for LIFCL-40-7BG256I	72
Table A.3. Resource Utilization for LAV-AT-E70-1LFG676I	73
Table A 4. Resource Utilization for LN2-CT-20-1CRG484I	73

Abbreviations in This Document

A list of abbreviations used in this document.

Abbreviation	Definition		
ACK	Acknowledgement		
AHB	Advanced High-Performance Bus		
APB	Advanced Peripheral Bus		
BCR	Bus Characteristics Register		
CCC	Common Command Code		
CRC	Cyclic Redundancy Check		
D2D	Device to Device		
DA	Dynamic Address		
DAA	Dynamic Address Assignment		
DCR	Device Characteristics Register		
DDR	Double Data Rate		
EBR	Embedded Block RAM		
FIFO	First In First Out		
FPGA	Field Programmable Gate Array		
GUI	Graphical User Interface		
HDL	Hardware Description Language		
HDR	High Data Rate		
HJ	Hot-Join		
1/0	Input/Output		
I2C	Inter-Integrated Circuit		
I3C	Improved Inter Integrated Circuit		
IBI	In-Band Interrupt		
IP	Intellectual Property		
LMMI	Lattice Memory Mapped Interface		
LSE	Lattice Synthesis Engine		
MC	Microcontroller		
MIPI	Mobile Industry Processor Interface		
MDB	Mandatory Data Byte		
NACK/NAK	Negative Acknowledgement		
PIC	Programmable Interrupt Controller		
PLL	Phase-Locked Loop		
RAM	Random Access Memory		
RISC-V	Reduced Instruction Set Computer Five		
SA	Static Address		
SCL	Serial Clock		
SDA	Serial Data		
SDR	Single Data Rate		
SoC	System on Chip		

1. Introduction

1.1. Overview of the IP

The Lattice I3C IP is designed to comply with the MIPI I3C specification.

The MIPI I3C interface eases sensor system design architectures in mobile wireless products by providing a fast, low-cost, low-power, two-wire digital interface for sensors. I3C protocol is a single scalable, cost effective, and a power efficient protocol. Implementing the I3C specification greatly increases the implementation flexibility for an ever-expanding sensor subsystem as efficiently and at as low cost as possible.

The I3C protocol is backward compatible with many Legacy I2C devices. The I3C protocol offers greater than 10× speed improvements, more efficient bus power management, new communication modes, and new device roles which includes an ability to change device roles over time. For example, the initial Controller can cooperatively pass the Controller Role to another I3C Device on the Bus, if the requesting I3C Device supports Secondary Controller feature.

1.2. Quick Facts

Table 1.1. Summary of the I3C Target IP

able 1.1. Summary of the 15e ranger in			
IP Requirements	Supported Devices	iCE40 UltraPlus™, MachXO3D™, CrossLink™-NX, Certus™-NX, Certus-NX-RT, CertusPro™-NX, CertusPro-NX-RT, Mach™-NX, MachXO5™-NX, Lattice Avant™, and Certus-N2.	
	IP Changes	For a list of changes to the IP, refer to the I3C Target IP Release Notes (FPGA-RN-02018).	
Resource Utilization	Supported User Interface	Lattice Memory Mapped Interface (LMMI), Advanced Peripheral Bus (APB), Advanced High-Performance Bus-Lite (AHB-Lite)	
	Resources	Refer to Appendix A. Resource Utilization	
	Lattice Implementation	IP Core v3.6.0 – Lattice Radiant™ Software 2025.1 and Lattice Propel™ Builder Software 2025.1	
Design Tool Support	Synthesis	Lattice Synthesis Engine (LSE) Synopsys Synplify Pro® for Lattice	
	Simulation	For the list of supported simulators, see the Lattice Radiant Software User Guide.	

1.3. IP Support Summary

Table 1.2. I3C Target IP Support Readiness

Device Family	IP	System Clock Frequency (MHz)	Supported Feature	Radiant Timing Model	Hardware Validated
Crosslink	I3C Target	25	Dynamic Address Assignment	Final	Yes
			IBI	Final	Yes
			Hot-Join	Final	Yes
			HDR-DDR	Final	No
			I3C Write/Read	Final	Yes
			I2C Write/Read	Final	Yes
Certus-NX	I3C Target	25	Dynamic Address Assignment	Final	No
			IBI	Final	No
			Hot-Join	Final	No
			HDR-DDR	Final	No
			I3C Write/Read	Final	No
			I2C Write/Read	Final	No

Device Family	IP	System Clock Frequency (MHz)	Supported Feature	Radiant Timing Model	Hardware Validated
Certus-NX-RT	I3C Target	25	Dynamic Address Assignment	Final	No
			IBI	Final	No
			Hot-Join	Final	No
			HDR-DDR	Final	No
			I3C Write/Read	Final	No
			I2C Write/Read	Final	No
CertusPro-NX	I3C Target	25	Dynamic Address Assignment	Final	Yes
			IBI	Final	Yes
			Hot-Join	Final	Yes
			HDR-DDR	Final	Yes
			I3C Write/Read	Final	Yes
			I2C Write/Read	Final	Yes
CertusPro-NX-RT	I3C Target	25	Dynamic Address Assignment	Final	No
			IBI	Final	No
			Hot-Join	Final	No
			HDR-DDR	Final	No
			I3C Write/Read	Final	No
			I2C Write/Read	Final	No
iCE40 UltraPlus	I3C Target	25	Dynamic Address Assignment	Final	No
			IBI	Final	No
			Hot-Join	Final	No
			HDR-DDR	Final	No
			I3C Write/Read	Final	No
			I2C Write/Read	Final	No
MachXO5-NX	I3C Target	25	Dynamic Address Assignment	Final	No
			IBI	Final	No
			Hot-Join	Final	No
			HDR-DDR	Final	No
			I3C Write/Read	Final	No
			I2C Write/Read	Final	No
Avant	I3C Target	25	Dynamic Address Assignment	Preliminary	Yes
			IBI	Preliminary	Yes
			Hot-Join	Preliminary	Yes
			HDR-DDR	Preliminary	Yes
			I3C Write/Read	Preliminary	Yes
			I2C Write/Read	Preliminary	Yes
Certus-N2	I3C Target	25	Dynamic Address Assignment	Preliminary	No
			IBI	Preliminary	No
			Hot-Join	Preliminary	No
			HDR-DDR	Preliminary	No
			I3C Write/Read	Preliminary	No
			I2C Write/Read	Preliminary	No

1.4. Features

The maximum number of devices that an I3C bus supports depends on trace length, capacitive load per device, and the types of devices (I2C versus I3C) present on the bus, because these factors affect clock frequency requirements. The Lattice I3C Target IP supports the following features:

- Compatible with MIPI I3C Specification v1.1.1
- Two-wire serial interface up to 12.5 MHz using Push-Pull
- Legacy I2C device co-existence on the same bus (with some limitations)
- Dynamic Addressing with optional Static Addressing for I3C Target acting as I2C Target
- I2C -like SDR messaging
- HDR-DDR mode support
- In-Band Interrupt support
- Hot-Join support
- Asynchronous Time Stamping (Mode 0)
- Target Reset without additional wires

The Lattice I3C Target IP does not support the following features:

- HDR-TSL for Ternary Symbol Legacy-inclusive-Bus (I2C Devices allowed)
- HDR-TSP for Ternary Symbol for Pure Bus (no I2C Devices allowed)
- HDR-BT for Bulk Transport
- Virtual target
- Synchronous Timing and Asynchronous Time Stamping (Except Mode 0)
- Group Addressing
- Monitoring Device Early Termination
- D2D Tunneling
- Multi-Lane Data Transfer

1.5. Licensing and Ordering Information

An IP specific license string is required to enable full use of the I3C Target IP in a complete, top-level design.

The IP can be fully evaluated through functional simulation and implementation (synthesis, map, place and route) without an IP license string. This IP supports Lattice's IP hardware evaluation capabilities. You can create versions of the IP to operate in hardware for a limited time (approximately four hours) without requiring an IP license string. A license string is required to enable timing simulation and to generate a bitstream file that does not include the hardware evaluation timeout limitation.

For more information about pricing and availability of the I3C Target IP, contact your local Lattice Sales Office.

1.5.1. Ordering Part Number

Table 1.3. Ordering Part Number

Device Femily	Part Number			
Device Family	Single Seat Annual	Single Seat Perpetual		
MachXO5-NX	I3C-S-XO5-US	I3C-S-XO5-UT		
iCE40 UltraPlus	I3C-S-UP-US	I3C-S-UP-UT		
CrossLink-NX	I3C-S-CNX-US	I3C-S-CNX-UT		
CertusPro-NX	I3C-S-CPNX-US	I3C-S-CPNX-UT		
Certus-NX	I3C-S-CTNX-US	I3C-S-CTNX-UT		
Avant-AT-E	I3C-S-AVE-US	I3C-S-AVE-UT		
Avant-AT-G	I3C-S-AVG-US	I3C-S-AVG-UT		
Avant-AT-X	I3C-S-AVX-US	I3C-S-AVX-UT		
Certus-N2	I3C-S-CN2-US	I3C-S-CN2-UT		

Dovice Family	Part Number		
Device Family	Single Seat Annual	Single Seat Perpetual	
Bundled	MIPI-BNDL-US	MIPI-BNDL-UT	

1.6. Hardware Support

Refer to the Example Design section for more information on the boards used.

1.7. Minimum Device Requirements

There is no limitation in device speed grade for I3C Target IP. See Appendix A. Resource Utilization for minimum required resources to instantiate this IP and maximum clock frequency supported.

1.8. Naming Conventions

1.8.1. Nomenclature

The nomenclature used in this document is based on Verilog HDL.

1.8.2. Signal Names

- *n* are active low (asserted when value is logic 0)
- _*i* are input signals
- _o are output signals
- _io are bidirectional signals

2. Functional Description

2.1. IP Architecture Overview

I3C Target IP supports several communication formats, all sharing a two-wire interface: SDA bidirectional data line and SCL bidirectional clock.

The Lattice I3C Target IP supports the following modes:

- SDR mode
- HDR-DDR mode

The I3C Target IP monitors the I3C bus for relevant I3C commands sent by the I3C Controller and responds accordingly. This includes commands that address all targets devices (Broadcast CCCs) and commands addressed specifically to that I3C Target device (Directed CCCs), provided these commands are supported by the I3C Target device.

Optionally, the I3C Target can perform the following operations:

- Request In-Band Interrupts
- Generate Hot-Join events

The I3C Target IP accepts commands from LMMI or from the optional APB/AHB-Lite interface. These commands are decoded into the following:

- Configurations for the I3C Target that may be requested by the Controller
- I3C signals that the Target device may transmit to the I3C bus

Furthermore, the I3C Target can operate in interrupt or polling mode. This means that you can choose to poll the I3C Target for a change in status at periodic intervals or wait to be interrupted by the I3C Target when data needs to be read or written.

Figure 2.1 shows the functional diagram of the IP Core with Secondary Controller Capability.

Figure 2.1. I3C Target IP Core Block Diagram

2.2. Clocking

Figure 2.2. I3C Target IP Clock Domain Block Diagram

2.2.1. Clocking Overview

The I3C Target IP has the following clocks:

- clk i
 - System clock Can be set in the range of 0.8 MHz 50 MHz. Used to clock internal FIFO, register access, and I3C Timing Control and Secondary Controller support logic.
- scl_io
 Serial clock Can support up to 12.5 MHz (based on I3C specification). Clock for I3C Target IP core.

2.3. Reset

This IP has one asynchronous active low reset rst_n_i.

To ensure that reset has been properly propagated inside the IP, wait for at least 20 system clock (clk_i) cycles after system reset (rst_n_i) de-assertion before doing any IP operation.

2.4. User Interfaces

Table 2.1 shows the user interfaces and supported protocols. The memory-mapped interface of I3C Target IP Core is selected by the Interface attribute. It can be LMMI interface, AHB-Lite interface, or APB interface.

Table 2.1. User Interfaces and Supported Protocols

User Interface	Supported Protocols	Description	
Selectable Memory-Mapped Interface	LMMI	For LMMI interface, refer to the Lattice Memory Mapped Interface and Lattice Interrupt Interface (FPGA-UG-02039) document for information and timing diagram of the LMMI.	
		 Immi_ready_o is always asserted, thus write and read transactions have no wait state;¹ 	
		Read latency is one clock cycle. 1	
	AHB-Lite	For AHB-Lite interface, refer to AMBA 3 AHB-Lite Protocol v1.0 Specification for information and timing diagram of the APB interface.	
		Write transaction has no wait state; 1	
		Read transaction has one wait state. 1	
	APB	For APB interface, refer to AMBA 3 APB Protocol v1.0 Specification for information and timing diagram of the APB interface.	
		Write transaction has one wait state; 1	
		Read transaction has two wait states. ¹	
Device Receiver/Transmitter Interface	13C	The I3C Interface can complete the communication between Lattice I3C Target IP core and external I3C Controller and Target devices. Refer to MIPI I3C Specification for more information on the I3C protocol.	

Note:

2.5. I3C Transfers in SDR Mode

The following section describes the I3C Target response for different I3C transactions from the Controller in SDR mode.

2.5.1. Broadcast CCC

Figure 2.3. Broadcast CCC

When I3C Controller sends a broadcast CCC using the above format, the Target will ACK the I3C Broadcast Address 7'h7E/W. Depending on the received CCC and optional defining byte, the Target will process the command and respond accordingly.

2.5.2. Direct CCC

Figure 2.4. Direct CCC

When I3C Controller sends a direct CCC to the Target using the above format, the Target will ACK the I3C Broadcast Address 7'h7E/W. When the Target Address is transmitted in the bus at the address header, it will either:

- ACK if the CCC and the optional defining byte are both supported and the CCC T-bit is correct.
- NACK if CCC is not supported or CCC T-bit is incorrect.

Depending on the received CCC, the Target will process the command and respond accordingly.

^{1.} Take note of these details when checking the corresponding timing diagram in the said document.

2.5.3. Private Write

Figure 2.5. I3C Private Write Initiated with START Condition

Figure 2.6. I3C Private Write Initiated with Repeated START Condition

When I3C Controller initiates a Private Write to Target, the Target will ACK if it receives the I3C Broadcast Address 7'h7E/W or its own Address followed by a Write bit.

Data written by the Controller will be stored in the Rx FIFO of Target. If enabled in Target, interrupt rxfifo_not_empty will be asserted to notify that Rx FIFO has data for reading.

2.5.4. Private Read

Write data to the Tx FIFO of Target first before the I3C Controller initiates a Private Read.

Figure 2.7. I3C Private Read Initiated with START Condition

Figure 2.8. I3C Private Read Initiated with Repeated START Condition

When I3C Controller initiates a Private Read from Target, the Target will ACK if it receives the I3C Broadcast Address 7'h7E/W then its own Address followed by a Read bit. It will then proceed to transmit data that is stored in the Tx FIFO. Target will continue sending the Read data until Read is aborted by one of the following scenarios:

- Controller stops the Read by pulling SDA Low in the T-bit of data
- All content of Tx FIFO has been transmitted. Target will signal end of Message by pulling SDA Low while SCL is Low in the T-bit of the last data then releasing SDA when it sees SCL positive edge. The Controller shall then take over SDA and generate a STOP or a Repeated START.

If Tx FIFO is empty when Controller initiates Private Read, Target will respond depending on txfifo_empty_rd_nak register:

- If txfifo_empty_rd_nak is set to 0 (Default), Target will ACK its Address and return 0xFF Read Data then pull SDA Low at T-bit to signal end-of-message by default. If enabled, read_txfifo_empty interrupt will be set to notify the Private Read attempt by the Controller.
- If txfifo empty rd nak is set to 1, Target will NACK its Address.

2.6. I2C Mode

When Target is not yet assigned a Dynamic Address, it may act as an I2C Target given that it is assigned a Static Address. To assign a Static Address to the I3C Target IP, check the Static Address Enable attribute and input a valid Static Address (must not use reserved I3C addresses).

If Target is already assigned a Dynamic Address, it will no longer ACK when its Static Address is transmitted in the I3C bus.

2.6.1. I2C Write

In I2C Write, Target will ACK when its Static Address is transmitted in the I3C bus. The Controller then proceeds to send the 8-bit write data, then Target will pull down ACK at 9th bit to accept data.

Figure 2.9. I2C Write

2.6.2. I2C Read

In I2C Read, Target will ACK when its Static Address is transmitted in the I3C bus. It will then proceed to transmit read data in Open Drain mode then Controller will either: (1) ACK and continue reading the data or (2) NACK to end reading of data.

Figure 2.10. I2C Read

If Tx FIFO is empty when Controller initiates I2C Read, Target will respond depending on the txfifo_empty_rd_nak register.

- If txfifo_empty_rd_nak is set to 0 (Default), Target will ACK its Address and return 0xFF Read Data then wait for Controller to end I2C read by sending NACK. If enabled, read_txfifo_empty interrupt will be set to notify the Private Read attempt by the Controller.
- If txfifo_empty_rd_nak is set to 1, Target will NACK its Address.

2.7. Common Command Codes

Table 2.2 lists the supported CCCs of this IP.

Table 2.2. I3C Controller IP Supported CCCs

CCC	Туре	Required ¹	Command
0x00	Broadcast	R	ENEC
0x01	Broadcast	R	DISEC
0x06	Broadcast	R	RSTDAA
0x07	Broadcast	R	ENTDAA
0x09	Broadcast	R	SETMWL
0x0A	Broadcast	R	SETMRL
0x2A	Broadcast	R	RSTACT
0x80	Direct	R	ENEC
0x81	Direct	R	DISEC
0x89	Direct	R	SETMWL
0x8A	Direct	R	SETMRL
0x8B	Direct	R	GETMWL
0x8C	Direct	R	GETMRL
0x90	Direct	R	GETSTATUS
0x9A	Direct	R	RSTACT
0x02	Broadcast	С	ENTAS0
0x03	Broadcast	0	ENTAS1
0x04	Broadcast	0	ENTAS2
0x05	Broadcast	0	ENTAS3
0x28	Broadcast	С	SETXTIME ²
0x29	Broadcast	0	SETAASA
0x82	Direct	С	ENTAS0
0x83	Direct	0	ENTAS1
0x84	Direct	0	ENTAS2
0x85	Direct	0	ENTAS3
0x87	Direct	0	SETDASA
0x88	Direct	С	SETNEWDA
0x8D	Direct	С	GETPID
0x8E	Direct	С	GETBCR
0x8F	Direct	С	GETDCR
0x94	Direct	С	GETMXDS
0x95	Direct	С	GETCAPS
0x98	Direct	С	SETXTIME ²
0x99	Direct	С	GETXTIME

Notes:

- 1. R Required, O Optional, and C Conditional.
- 2. Supported Defining Bytes for SETXTIME CCC: 0xDF and 0xFF.

19

2.8. I3C Transfers in HDR-DDR Mode

An HDR-DDR Mode period in the I3C bus involves five steps:

- 1. The Controller sends a Broadcast Enter HDR-DDR Mode Broadcast CCC indicating which HDR-DDR Mode to enter.
- 2. The I3C bus switches from SDR Mode to the requested HDR-DDR Mode.
- 3. The Controller issues the first structured protocol per the HDR-DDR Mode framing, typically a Command or Header followed by optional Data sent by the Controller or the Target.
- 4. The Controller sends an HDR Restart Pattern or Exit Pattern.
- 5. If an HDR Restart Pattern is sent, then the Controller issues another structured protocol element for the New HDR-DDR Mode transfer. The Controller may repeat this process to remain in HDR-DDR Mode or send an HDR Exit Pattern to exit the HDR-DDR Mode.
- 6. If the Controller sends an HDR Exit Pattern, then it is always followed by an I3C STOP, which ends in the Bus Free Condition.

2.8.1. Typical HDR-DDR Mode Frame

Figure 2.11. Typical HDR-DDR Mode Frame

2.8.2. HDR-DDR Write

	HDR-DDR Command			HDR-DDR W	rite Data (N)	HDR-DDR CRC	
Enter HDR or HDR Restart	[15] 1'b0 (Write) [14:8] Reserved	[7:1] Target Address [0] Parity Adj. (P0 = 1'b1)	ACK	[15:8] 1 st Data Byte	[7:0] 2 nd Data Byte	CRC5 for all Data	HDR Restart or Exit Pattern

Figure 2.12. HDR-DDR Write

2.8.3. HDR-DDR Read

	HDR-DDR Command			HDR-DDR Re	ead Data (N)	HDR-DDR CRC	
Enter HDR or HDR Restart	[15] 1'b1 (Read) [14:8] Reserved	[7:1] Target Address [0] Parity Adj. (P0 = 1'b1)	ACK	[15:8] 1 st Data Byte	[7:0] 2 nd Data Byte	CRC5 for all Data	HDR Restart or Exit Pattern

Figure 2.13. HDR-DDR Read

2.8.4. HDR-DDR Broadcast CCC

	HDR-DDR CCC Indicator			HDR-DDR CCC	C Command
Enter HDR or	[15] 1'b0 (Write)	[7:1] Broadcast Address	A CK	[1F,0] Droadcast CCC	[7:0] Defining Byte,
HDR Restart	[14:8] Reserved	[0] Parity Adj. (P0 = 1'b1)	ACK	[15:8] Broadcast CCC	0x0 if unused

HDR-DDR CCC Data (Optional)		HDR-DDR CCC CRC	HDR-DDR CCC End	
[15:8] 1st Data Byte	[7:0] 2 nd Data Byte	CRC for all Data	Procedure	

Figure 2.14. HDR-DDR Broadcast CCC

2.8.5. HDR-DDR Direct Set CCC

	HDR-DDR CCC Indicator			HDR-DDR CCC Command		HDR-DDR CCC CRC
Enter HDR or HDR Restart	[15] 1'b0 (Write) [14:8] Reserved	[7:1] Broadcast Address [0] Parity Adj. (P0 = 1'b1)	ACK	[15:8] Direct CCC	[7:0] Defining Byte, 0x0 if unused	CRC for CCC Command
			1			HDB-DDB CCC

	HDR-DDR CCC Selector			HDR-DDR CCC Se	et Data (N times)	HDR-DDR CCC CRC
HDR Restart	[15] 1'b0 (Write) [14:8] Reserved	[7:1] Target Address [0] Parity Adj. (P0 = 1'b1)	ACK	[15:8] 1 st Data Byte	[7:0] 2 nd Data Byte	CRC for all Data

HDR-DDR CCC End Procedure

Data

Figure 2.15. HDR-DDR Direct Set CCC

2.8.6. HDR-DDR Direct Get CCC

[14:8] Reserved

HDR Restart

			_			
	HDR-DDR CCC Indicator			HDR-DDR CO	CC Command	HDR-DDR CCC CRC
Enter HDR or HDR Restart	[15] 1'b0 (Write) [14:8] Reserved	[7:1] Broadcast Address [0] Parity Adj. (P0 = 1'b1)	ACK	[15:8] Direct CCC	[7:0] Defining Byte, 0x0 if unused	CRC for CCC Command
	HDR-DDR CCC Selector			HDR-DDR CCC G	et Data (N times)	HDR-DDR CCC CRC
LIDD Deetest	[15] 1'b1 (Read)	[7:1] Target Address	4.614	[45.0] 4ct D-t- D-t-	[7.0] 2nd D-t- D-t-	CRC for all

Target to Controller	HDR-DDR CCC
Handoff	End Procedure

[7:0] 2nd Data Byte

Figure 2.16. HDR-DDR Direct Get CCC

[0] Parity Adj. (P0 = 1'b1)

[15:8] 1st Data Byte

2.9. Hot-Join Mechanism

The I3C Target Device may issue a Hot-Join request to join the I3C bus after the bus is already configured. Target initiates Hot-Join Request by sending an IBI using the reserved address 7'h02 with Write bit after a START condition.

The Target may initiate Hot-Join by one of the following methods:

- Passive I3C Target may wait for a START condition transmitted in the I3C bus. It may then proceed to transmit the reserved address 7'h02 in the arbitrable address header.
 - **Note**: I3C Target needs to know first if it is in an I3C bus before initiating Hot-Join passively. An I3C bus is determined by an SDR Frame with START followed by the Broadcast Address. See Errata 01 for MIPI I3C Basic Specification, Specification Version 1.1.1.
- Active If the I3C Target detects Bus Idle condition, it may generate a START by pulling the SDA line Low and waiting
 for the I3C Controller to complete the start condition by pulling SCL low.

The Target will then proceed to send the reserved address 7'h02 in the arbitrable address header after the START condition.

2.9.1. Generating a Hot-Join Request

The I3C Target IP supports Hot-Join when the Hot-Join Capable attribute is checked.

To initiate a Hot-Join request, confirm that Hot-Join is allowed by the Controller by reading the hj_en_ec register. If allowed (hj_en_ec is set to 1'b1), set the hj_req register to 1'b1. I3C Target will attempt to transmit the Hot-Join request in the I3C bus by either active or passive method as described above. If the Target loses address arbitration, it will stop transmitting the Hot-Join address and wait for the next valid opportunity to retransmit the Hot-Join request depending on retry settings. When the Hot-Join request has been generated, hj_req_gen interrupt will be asserted.

If I3C Controller ACKs the request, I3C Target has successfully joined the I3C bus and hj_done interrupt will be asserted to inform that Hot-Join was successful. The Target will then wait for Dynamic Address Assignment.

If the Hot-Join request is NACKed by I3C Controller, hj_acnack interrupt will be asserted and I3C Target will then wait for the next valid condition to retry transmitting the Hot-Join request until the I3C Controller ACKs the request. If the Hot-Join request has been generated and NACKed by the Controller for hj_ibi_retry times, hj_done and hj_acknack interrupts will be asserted to inform that Hot-Join was not successful.

2.10. In-Band Interrupt

In-Band Interrupts may be issued by I3C Targets to signal pending action from the I3C Controller.

The I3C Target issues IBI by sending its own address in the Arbitrated Address Header with a Read bit after a START condition.

The Target may initiate IBI by one of the following methods:

- Passive I3C Target may wait for a START condition transmitted in the I3C bus. It may then proceed to transmit its own dynamic address in the arbitrable address header.
- Active If I3C bus Available condition is detected, I3C Target may generate a START by pulling the SDA line Low and
 waiting for the I3C Controller to complete the start condition by pulling SCL low.

The Target will then proceed to transmit its address in the arbitrable address header after the START condition.

2.10.1. Generating an In-band Interrupt

The I3C Target IP supports IBI when the IBI Capable attribute is checked.

To initiate an In-Band Interrupt, confirm that IBI is allowed by the Controller by reading the ibi_en_ec register. If allowed (ibi_en_ec is set to 1'b1), set the ibi_req register to 1'b1. I3C Target will attempt to transmit its own Dynamic Address in the arbitrable Address Header after a START condition. If the Target loses address arbitration, it will stop sending the IBI and wait for the next valid opportunity to retry sending the IBI. If IBI has been successfully generated, ibi_req_gen interrupt will be asserted.

If IBI is ACKed by the Controller, I3C Controller shall read the payload following IBI depending on BCR[2] of I3C Target.

- If BCR[2] is set to 0: there is no data byte following the IBI. ibi done interrupt will be asserted.
- If BCR[2] is set to 1: the IBI has the following Mandatory Data Byte that shall be read by the Controller. The Target may also optionally send additional IBI data bytes (up to IBI Payload Size Limit by the Controller via the SETMRL CCC command). ibi_done interrupt will be asserted when reading of the IBI payload is stopped either by the Target or the Controller.

If IBI is NACKed by the I3C Controller, ibi_acknack interrupt will be asserted and I3C Target will then wait for the next valid condition to send the IBI until the I3C Controller ACKs the request. If IBI has been generated and NACKed by the Controller for hj ibi retry times, ibi done and ibi acknack interrupts will also be set to 1 to inform that IBI was not successful.

2.10.2. Sending the IBI Payload

To send an IBI with mandatory data byte and optional additional payload (up to maximum IBI payload size), write the data bytes to Tx FIFO with MDB as the first data and the additional IBI payload as the succeeding data. When the IBI is generated by Target and ACKed by the Controller, the Target will proceed to send the MDB and the additional data bytes until the maximum IBI payload size.

When all IBI payload is transmitted, that is, maximum IBI payload size has been reached or Tx FIFO is empty, Target will end the transfer by pulling SDA Low at T-bit. ibi_done interrupt will be asserted to notify that IBI is done, and all payload has been transmitted.

If the Controller chooses to end reading the additional IBI payload by pulling SDA Low during T-bit, ibi_done and ibi_payld_terminated interrupts will be set to 1 to notify that IBI transfer is done but payload transfer is incomplete. When this interrupt is received, you may choose to reset the Tx FIFO by setting the txfifo_rst register.

2.10.3. Pending Read Notification

Pending Read Notification (MDB[7:5] = 3'b101) is supported by this IP.

If the I3C Controller accepts an IBI and reads the Pending Read Notification MDB from the Target, the Target considers Pending Read Notification as Active. Read Data associated with the MDB shall be available at the next Private Read.

For pending read notification, write the data bytes to the Tx FIFO in this order:

- 1. Pending Read Notification MDB
- 2. IBI Payload (equal to maximum IBI payload size)
- 3. Associated read data

Only one Pending Read Notification may be active at a time while the Target is waiting for the Controller to read data. This means that when a Pending Read Notification is active, the Target cannot send another IBI with MDB for Pending Read Notification.

2.10.4. Limitation for IBI and Private Read

IBI Payload and read data are both stored in the Tx FIFO. If IBI Payload or Data for Private Read are written continuously to the Tx FIFO without being transmitted to the Controller (via IBI or Private Read), the intended data may not be sent correctly by the Target.

Ensure that all data corresponding to an intended IBI or Private Read has been transferred before initiating another IBI or Private Read. You may read the status registers ibi_payld_terminated (for IBI) and read_aborted (for Private Read) to confirm if all contents of Tx FIFO have been transmitted. If the status registers are set, transfer of Tx FIFO contents is not completed. When this occurs, you have the option to reset the Tx FIFO before writing new data for the next IBI or Private Read to ensure correctness of data.

2.11. Target Reset

Target Reset Action is configured by the Controller via RSTACT CCC. This will be the action of Target when it receives the Target Reset Pattern following an RSTACT CCC in a single frame. Following are the supported Defining Bytes of this IP:

Table 2.3. Target Reset

Defining Byte	Action	Description
0x0	No Action	No action
0x1	Reset I3C Peripheral only	Reset I3C states and FIFO. Equivalent to ip_core_rst soft reset
0x2	Reset Whole Target	Reset whole Target including DAA and previously configured settings via CCCs and register access. Equivalent to ip_main_rst soft reset.

When the IP receives RSTACT CCC, it informs you by asserting rstact_ccc_rcvd interrupt. The configured reset action is stored in tgt_rst_act_set register. Read this register to determine what action to do when the Target Reset Pattern is received. When Target detects the following Target Reset Pattern, it then asserts tgt_rst_ptrn_rcvd interrupt. When you see this interruption, you may then perform the configured reset action or inaction. You may use the soft reset registers, or the system reset (for whole Target reset) to perform the configured reset action.

The behavior is different when Target receives Target Reset Pattern without RSTACT. When Target receives Target Reset Pattern without RSTACT for the first time, it automatically resets the I3C Peripheral. If this occurs a second time, tgt_rst_o output is asserted. This informs you to reset Whole Chip (Target Reset Escalation).

2.12. Secondary Controller Support

The I3C Target IP is instantiated when Secondary Controller feature is enabled in the I3C Controller IP. All the capabilities of the I3C Target will then be available to the Secondary Controller Capable device.

2.12.1. Generating the Controller Role Request

To initiate a Controller Role request, confirm that Controller Role request is allowed by the Controller by reading the cr_en_ec register. If allowed (cr_en_ec is set to 1'b1), set the cr_req register to 1'b1. I3C Target will attempt to transmit its own Dynamic Address in the arbitrable Address Header after a START condition. If Target loses address arbitration, it will stop sending the Controller Role request and wait for the next valid opportunity to retry sending the request. If the Controller Role request has been successfully generated, cr_req_gen interrupt will be asserted.

If the request is ACKed by the Controller, cr_req_done interrupt will be asserted.

If the request is NACKed by the I3C Controller, I3C Target will then wait for the next valid condition to send the request until the I3C Controller ACKs. If the Controller Role request has been generated and NACKed by the Controller for hj_ibi_retry times, cr_req_done and cr_req_acknack interrupts will also be set to 1 to inform that Controller Role request was not successful.

2.12.2. CCC for Secondary Controller Support

Table 2.4 lists the additional CCCs supported when Secondary Controller feature is enabled.

Table 2.4. CCCs for Secondary Controller Support

ССС	Туре	Command Name
0x08	Broadcast	DEFTGTS
0x91	Direct	GETACCCR

2.13. HDR-DDR Support

Table 2.5 lists CCCs supported by this IP in SDR mode and permitted in HDR-DDR mode, with notes and limitations.

Table 2.5. CCCs Supported in HDR-DDR Mode

0x00 0x01 0x02 0x03 0x04 0x05	Broadcast Broadcast Broadcast	ENEC DISEC	May not generally be useful in HDR-DDR Modes, as the Controller would need to exit HDR and return to SDR Mode for the Target to be	Yes
0x02 0x03 0x04 0x05	Broadcast	DISEC	would need to exit HDR and return to SDR Mode for the Target to be	1
0x03 0x04 0x05			able to raise any of the request types that are affected by these CCCs; see Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification.	Yes
0x04 0x05	Broadcast	ENTAS0	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
0x05		ENTAS1	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
	Broadcast	ENTAS2	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
	Broadcast	ENTAS3	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
0x08	Broadcast	DEFTGTS	Not recommended for use in HDR-DDR Modes; generally only used for Secondary Controllers, to announce lists of known Targets, following changes to Target Dynamic Addresses or Hot-Join events, neither of which are permitted within HDR-DDR Modes.	No
0x09	Broadcast	SETMWL	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
0x0A	Broadcast	SETMRL	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
0x12	Broadcast	ENDXFER	Not recommended for use in HDR-DDR Modes	Yes
0x28	Broadcast	SETXTIME	No limitations	Yes
0x2A	Broadcast	RSTACT	Not recommended for use in HDR-DDR Modes	No
0x80	Direct	ENEC	May not generally be useful in HDR-DDR Modes, as the Controller	Yes
0x81	Direct	DISEC	would need to exit HDR and return to SDR Mode for the Target to be able to raise any of the request types that are affected by these CCCs; see Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification.	Yes
0x82	Direct	ENTAS0	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
0x83	Direct	ENTAS1	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
0x84	Direct	ENTAS2	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
0x85	Direct	ENTAS3	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
0x89	Direct	SETMWL	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
0x8A	Direct	SETMRL	See Section 5.2.1.2.4 of MIPI I3C Basic v1.1.1 specification	Yes
0x8B	Direct	GETMWL	No limitations	Yes
0x8C	Direct	GETMRL	No limitations	Yes
0x8E	Direct	GETBCR	Not recommended for use in HDR-DDR Modes	Yes
0x8F	Direct	GETDCR	Not recommended for use in HDR-DDR Modes	Yes
0x90	Direct	GETSTATUS	No limitations	Yes
0x92	Direct	ENDXFER	Not recommended for use in HDR-DDR Modes	Yes
0x94	Direct	GETMXDS	No limitations	Yes
0x95	Direct	GETCAPS	No limitations	Yes
0x98	Direct	SETXTIME	No limitations	Yes
0x99	Direct	GETXTIME	No limitations	Yes
0x9A	Direct	RSTACT	Not recommended for use in HDR-DDR Modes	No

3. IP Parameter Description

The configurable attributes of the I3C Target IP are shown in the following tables. You can configure the IP by setting the attributes accordingly in the IP Catalog's Module/IP wizard of the Lattice Radiant software.

Wherever applicable, default values are in **bold**.

3.1. General

Table 3.1. General Attributes

Attribute	Selectable Values	Description
General		
User Interface	LMMI, APB , AHBL	Selects memory-mapped interface from the list for register access by the host.
Address Offset	Address Offset in Bytes, Address Offset in DWORD	Selects addressing mode for registers. Applicable only when the User Interface is APB or AHBL. LMMI always uses byte addressing.
Optional Interface		
Enable Direct FIFO Interface	Checked, Unchecked	Select to provide a separate interface for (FIFO) data path.
Tx Data Width	_	Display only when Direct FIFO Interface is enabled. Default value is 8.
Rx Data Width	_	Display only when Direct FIFO Interface is enabled. Default value is 8.
I/O Primitive Enable		
Enable internal IO primitive	Checked, Unchecked	Option to include or remove the I/O primitive instance inside the IP. This means that SDA and SCL are seen as bidirectional I/O ports at the top level. This option is enabled by default. Some FPGA devices might not have an I/O that supports I3C. In that case, you must disable this option and provide a custom I/O. When this option is disabled, the SDA and SCL I/O control signals (including pull up resistor controls) are exposed at the top level as ports.
Bus Characteristics		
Bus Type	SDR only, HDR- capable	Indicates whether IP supports SDR mode only or both SDR and HDR-DDR modes.
HDR Mode	_	Display only when Bus Type = HDR-capable. Indicates which HDR mode is supported. Default value is HDR-DDR.
IBI Capable	Checked, not checked	Determines whether IP can support IBI Capability.
IBI Payload Size (including MDB)	0–255	Payload size (including MDB) following an IBI. If set to 0, no payload follows the IBI. Default value is 1. Applicable only when IBI Capable = True.
Hot-Join Capable	Checked, not checked	Determines whether IP can support Hot-Join Capability.
Maximum Data Speed Limitation	Checked, not checked	Sets Bit 0 of BCR. When set to 1, Target device supports GETMXDS CCC to relay timing information of its speed limitation to the Controller.
Device Characteristics		
DCR (HEX)	00-FF	Device Characteristics Register. It is recommended to assign a value to this register according to the list of the devices, which can be found at MIPI I3C Device Characteristics Register. Default value is 00.
Manufacturer ID	0–32767	Defines Provisional ID[47:33] bits. Default value is 414.
Part ID	0–65535	Defines Provisional ID[31:16] bits. Default value is 1.
Instance ID	0–15	Defines Provisional ID[15:12] bits. Default value is 1.
Additional ID	0–4095	Defines Provisional ID[11:0] bits. Default value is 0.
Static Address Enable	Checked, not checked	Indicates that Target device may be assigned a Static Address.

Attribute	Selectable Values	Description
Static Address (HEX) ¹	00-7F	Sets device static address. Default value is 08.
		Applicable only when Static Address enable = True
Timing Characteristics		
System Clock Frequency (MHz)	0.8–50	Sets the system clock (clk_i) frequency. Default value is 25.
		Refer to Clocking Overview section for more details.
Write Maximum Data Rate (MHz)	_	Display only when Maximum Data Speed Limitation = True.
		Indicates maximum sustained data rate for non-CCC Messages
		sent by Controller Device to Target Device.
		Default value is 12.5.
Clock-to-data Turnaround Delay	_	Display only when Maximum Data Speed Limitation = True.
(ns) (t _{sco})		Indicates clock-to-data turnaround time. Default value is ≤ 8.
Read Maximum Data Rate (MHz)	_	Display only when Maximum Data Speed Limitation = True.
		Indicates maximum sustained data rate for non-CCC Messages
		sent by Target Device to Controller Device. Default value is 12.5.
Maximum Read Turnaround Time	_	Display only when Maximum Data Speed Limitation = True.
(μs)		Indicates how long the Controller needs to wait before reading the
		data it requested. Default value is 0.

Note:

1. Static address must not use reserved I2C addresses.

3.2. IP Parameter Settings for Example Use Cases

Table 3.2 shows the parameter settings for example test cases. Wherever applicable, parameters equal to "—" are not editable or automatically set in IP configuration GUI.

Table 3.2. IP Parameter Settings for Example Use Cases

Target Use Case	SDR-only, I3C device only (No static address)	HDR-DDR, Bidirectional Buffer not instantiated inside IP	
General			
CPU Interface			
User Interface	АРВ	АРВ	
Address Offset	Address Offset in DWORD	Address Offset in DWORD	
Optional Interface			
Enable Direct FIFO Interface	Unchecked	Unchecked	
Tx Data Width	_	_	
Rx Data Width	_	_	
I/O Primitive Enable			
Enable internal IO primitive	Checked	Unchecked	
Bus Characteristics			
Bus Type	SDR only	HDR-capable	
HDR Mode	N/A	_	
IBI Capable	Checked	Checked	
IBI Payload Size (including MDB)	1	1	
Hot-Join Capable	Checked Checked		
Maximum Data Speed Limitation	Checked Checked		

Target Use Case	SDR-only, I3C device only (No static address)	HDR-DDR, Bidirectional Buffer not instantiated inside IP				
Device Characteristics						
DCR (HEX)	00	00				
Manufacturer ID	414	414				
Part ID	1	1				
Instance ID	1	1				
Additional ID	0	0				
Static Address Enable	Unchecked	Checked				
Static Address (HEX) ¹	N/A	08				
Timing Characteristics						
System Clock Frequency (MHz)	25	25				
Write Maximum Data Rate (MHz)	_	_				
Clock-to-data Turnaround Delay (ns) (t _{SCO})	_	_				
Read Maximum Data Rate (MHz)	_	_				
Maximum Read Turnaround Time (μs)	_	_				

Note:

1. Static address must not use reserved I2C addresses.

4. Signal Description

Table 4.1 lists the input and output signals for I3C Target IP along with their descriptions.

Table 4.1. Ports Description

Port Ports Description	Туре	Description	
System Clock and Reset	71-		
clk_i	Input	System Clock.	
		Refer to Clocking Overview section for more details.	
rst_n_i	Input	Asynchronous active low reset. Refer to the Reset section for more	
		details.	
tgt_rst_o	Output	Active High flag for Full Chip Reset by Target Reset escalation ¹	
I3C Interface (Internal I/O Primitiv	e)²		
scl_io	Input/Output	Bidirectional I3C Serial Clock.	
		Refer to Clocking Overview section for more details.	
sda_io	Input/Output	Bidirectional I3C Serial Data	
I3C Interface (External I/O Primitiv	/e) ³		
ext_scl_i	Input	I3C Serial Clock Input	
ext_sda_i	Input	I3C Serial Data Input	
ext_sda_o	Output	I3C Serial Data Output	
ext_sda_oe	Output	Active High I3C Serial Data Output Enable	
LMMI Interface ⁴			
Immi_offset_i[7:0]	Input	Register offset within Target, starting at offset 0.	
Immi_request_i	Input	Start transaction	
lmmi_wdata_i[7:0]	Input	Write data	
lmmi_wr_rdn_i	Input	Write = HIGH, Read = LOW	
lmmi_rdata_o[7:0]	Output	Read data	
lmmi_rdata_valid_o	Output	Read transaction is complete and Immi_rdata_o contains valid data	
lmmi_ready_o	Output	Target is ready to start a new transaction	
Interrupt Interface			
int_o	Output	Level sensitive active high interrupt signal. This signal will assert when an of the enabled interrupt status is asserted.	
AHB-Lite Interface ⁵	·		
ahbl_hsel_i	Input	AHB-Lite Select signal	
ahbl_haddr_i[31:0]	Input	AHB-Lite Address signal. Refer to the Register Description section for usage depending on the Register Offset parameter.	
ahbl_hburst_i[2:0]	Input	AHB-Lite Burst Type signal. Only burst type 0 is supported.	
ahbl_hsize_i[2:0]	Input	AHB-Lite Transfer Size signal. 1-byte RW is supported (SIZE = 3'd0).	
ahbl_htrans_i[1:0]	Input	AHB-Lite Transfer Type signal	
ahbl hwrite i	Input	AHB-Lite Direction signal. Write = High, Read = Low	
ahbl_hwdata_i[31:0]	Input	AHB-Lite Write Data signal. Tie Bits[31:24] to 0. Refer to the Register Description section for more details.	
ahbl hreadyout o	Output	AHB-Lite Ready Output signal	
ahbl_hrdata_o[31:0]	Output	AHB-Lite Read Data signal. Bits[31:24] are tied to 0. Refer to the Register	
		Description section for more details.	
ahbl_hresp_o	Output	AHB-Lite Transfer Response signal	
ahbl_hprot_i[3:0]	Input	Not supported. Tie to 0.	
ahbl_hsel_i	Input	AHB-Lite Select signal	
ahbl_hready_i	Input	AHB-Lite Ready Input signal	

Port	Туре	Description	
APB Interface ⁶			
apb_paddr_i[31:0]	Input	APB Address signal. Refer to the Register Description section for usage depending on the Register Offset parameter.	
apb_psel_i	Input	APB Select signal	
apb_penable_i	Input	APB Enable signal	
apb_pwrite_i	Input	APB Direction signal	
apb_prdata_o[31:0]	Output	APB Read Data signal. Bits[31:24] are tied to 0. Refer to the Register Description section for more details.	
apb_pwdata_i[31:0]	Input	APB Write Data signal. Tie Bits[31:24] to 0. Refer to the Register Description section for more details.	
apb_pready_o	Output	APB Ready signal	
apb_pslverr_o	Output	APB Completer Error signal	
Direct FIFO Interface ⁷			
tx_valid_i	Input	Tx data valid signal. Set this to high when sending data (tx_data_i) to Tx FIFO.	
tx_data_i [7:0]	Input	Tx Data	
tx_ready_o	Output	Tx FIFO ready signal. When high, it means Tx FIFO can accept incoming data.	
rx_valid_o	Output	tx_data_i will be written to Tx FIFO when tx_valid_i and tx_ready_o == 1. Rx data valid signal. When high, it means Rx FIFO is not empty and rx_data_o contains valid data.	
rx_data_o	Output	Rx data	
rx_ready_i	Input	Rx ready signal. Set this to high when it is ready to accept the Rx data. rx_data_o will take the next Rx FIFO entry when rx_valid_o and rx_ready_i == 1.	

Notes:

- 1. For more details on target reset, see Section 5.1.11 of the MIPI I3C Basic v1.1.1 Specification.
- 2. Bidirectional I3C interface is only available when internal I/O primitives are enabled in IP configuration GUI.
- 3. External I/O I3C interface is only available when internal I/O primitives are disabled in IP configuration GUI.
- 4. LMMI Interface is only available when selected from the User Interface.
- 5. AHB-Lite Interface is only available when selected from the User Interface. Refer to AMBA 3 AHB-Lite Protocol v1.0 Specification for details of the protocol.
- APB Interface is only available when selected from the User Interface. Refer to AMBA 3 APB Protocol v1.0 Specification for details of the protocol.
- 7. Direct FIFO interface is only available when enabled in IP configuration GUI.

30

5. Register Description

This section defines the configuration, control, and status registers of the I3C Target IP. These registers are accessible through the LMMI interface or through optional standard interface such as APB and AHB-Lite. The address map is using byte address by default. You have the option to convert the addressing to DWORD if the interface selected is APB or AHB-Lite. When DWORD addressing is selected, the register address is shifted to the left by 2.

Example: LMMI offset 8'h01 -> APB/AHB-L DWORD offset = {8'h01, 2'b00} or 10'h004

If the interface selected is APB or AHB-Lite, the data and address ports are both 32 bits. For input data ahbl_hwdata_i and apb_pwdata_i, the upper 24 bits are unused. For output data ahbl_hrdata_o and apb_prdata_o, the upper 24 bits are set to 0. For address ahbl_haddr_i and apb_paddr_i, the upper 24 bits (byte addressing) or 22 bits (DWORD addressing) are unused.

Note: Reserved fields are *don't care* values.

5.1. Bus Characteristics Register 0x00

Target Bus Characteristics Register.

Bits	Name	Access	Width	Reset
[7:6]	device_role	read-only	2	0x0 (Fixed)
[5]	advanced_caps	read-only	1	0x0
[4]	virtual_tgt_support	read-only	1	0x0 (Fixed)
[3]	offline_capable	read-only	1	0x0 (Fixed)
[2]	ibi_payload	read-only	1	0x1
[1]	ibi_capable	read-only	1	0x1
[0]	max_d_speed_limit	read-only	1	0x1

device role

Fixed to 2'b00.

2'b00 - I3C Target

2'b01 – I3C Controller Capable (Not implemented in this IP)

Others - Reserved for future definition by MIPI Alliance I3C WG (Not supported in this IP)

- advanced caps
 - 0 Does not support optional advanced capabilities.
 - 1 Supports optional advanced capabilities. When Target is configured with IBI capability and IBI payload, this is set to 1 for optional Pending Read MDB support.
- virtual_tgt_support

Fixed to 0.

- 0 Is not a Virtual Target and does not expose other downstream Device(s)
- 1 Is a Virtual Target, or exposes other downstream Device(s) (Not supported in this IP)
- offline capable

Fixed to 0.

- 0 Device will always respond to I3C bus commands
- 1 Device will not always respond to I3C bus Commands (Not supported in this IP)
- ibi_payload

From IBI Payload Size attribute

- 0 If IBI Payload Size attribute is set to 0. No data bytes follow the IBI.
- 1 If IBI Payload Size attribute is set to greater than or equal to 1. One data byte (MDB) shall follow the accepted IBI, and additional data bytes may follow.

ibi_capable

From IBI Capable attribute

0 - Unchecked. Not capable.

1 – Checked. Capable.

max_d_speed_limit

From Maximum Data Speed Limitation attribute

- 0 Unchecked. No maximum data speed limitation.
- 1 Checked. With maximum data speed limitation. Controller shall use GETMXDS CCC to get specific limitation from Target.

5.2. Device Characteristics Register 0x01

Target Device Characteristics Register.

Bits	Name	Access	Width	Reset
[7:0]	dcr	read-only	8	Takes the DCR parameter value

dcr

Device ID set through DCR attribute.

255 available codes for describing the type of sensor or Device (e.g., accelerometer, gyroscope, composite Devices). Default value is 8'b0 for generic Device.

5.3. Dynamic Address Register 0x02

Assigned dynamic address and done flag.

Bits	Name	Access	Width	Reset
[7]	daa_done	read-only	1	0x0
[6:0]	dyn_addr	read-only	7	0x0

- daa done
 - 0 dyn_addr is not yet assigned or is reset by RSTDAA CCC
 - 1 dyn_addr is assigned via ENTDAA, SETNEWDA, SETAASA or SETDASA CCC
- dyn_addr

Dynamic Address Assigned to I3C Target

5.4. Events Command Enable Register 0x03

Hot-Join and IBI enable from Controller via ENEC/DISEC CCC.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	hj_enec	read-only	1	0x1 – If Target is Hot-Join Capable
				0x0 – If Target is not Hot-Join Capable
[2:1]	reserved	read-only	2	0x0
[0]	ibi_enec	read-only	1	0x1 – If Target is IBI Capable
				0x0 – If Target is not IBI Capable

hj_enec

Hot-Join Enable by Controller

- 0 Target-initiated Hot-Join is not allowed on the I3C bus
- 1 Target-initiated Hot-Join is allowed on the I3C bus

ibi enec

IBI Enable by Controller

- 0 Target-initiated interrupts are not allowed on the I3C bus
- 1 Target-initiated interrupts are allowed on the I3C bus

5.5. Events Command Device Configuration Register 0x04

Hot-Join and IBI capability configured using attributes.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	hj_cap	read-only	1	0x1 – If Target is Hot-Join Capable 0x0 – If Target is not Hot-Join Capable
[2:1]	reserved	read-only	2	0x0
[0]	ibi_cap	read-only	1	0x1 – If Target is IBI Capable 0x0 – If Target is not IBI Capable

hj cap

0 - Target device is configured without Hot-Join Capability

1 – Target device is configured with Hot-Join Capability

ibi_cap

0 - Target device is configured without IBI Capability

1 – Target device is configured with IBI Capability

5.6. Events Command Request Register 0x05

Hot-Join and IBI request.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	hj_req	read-write	1	0x0
[2:1]	reserved	read-only	2	0x0
[0]	ibi_req	read-write	1	0x0

hj_req

When set to High, Target will initiate Hot-Join request at the next valid opportunity. Reset to 0 when Hot-Join is done or disabled by the Controller.

ibi_req

When set to High, Target will initiate IBI at the next valid opportunity. Reset to 0 when IBI is done or disabled by the Controller.

5.7. Hot-Join/IBI Retry Register 0x06

Number of retries for Hot-Join and IBI.

Bits	Name	Access	Width	Reset
[7:0]	hj_ibi_retry	read-write	8	0x8

hj ibi retry

Indicates number of times the Target retries Hot-Join or IBI when it is NACKed by the Controller. When set to 0, the number of tries is not limited.

5.8. Maximum Write Length (MSB) Register 0x07

The most significant byte of Maximum Write Length set by the Controller.

Bits	Name	Access	Width	Reset
[7:0]	mwl_msb	read-only	8	0x02

mwl_msb

Most Significant Byte of maximum write length set by I3C Controller via SETMWL CCC. If SETMWL is greater than default value 512 (FIFO size), MWL will be set to 512.

5.9. Maximum Write Length (LSB) Register 0x08

The least significant byte of Maximum Write Length set by the Controller.

Bits	Name	Access	Width	Reset
[7:0]	mwl_lsb	read-only	8	0x00

mwl_lsb

Least Significant Byte of maximum write length set by I3C Controller via SETMWL CCC. If SETMWL is greater than default value 512 (FIFO size), MWL will be set to 512.

5.10. Maximum Read Length (MSB) Register 0x09

The most significant byte of Maximum Read Length set by the Controller.

Bits	Name	Access	Width	Reset
[7:0]	mrl_msb	read-only	8	0x02

mrl msb

Most Significant Byte of maximum write length set by I3C Controller via SETMRL CCC. If SETMRL is greater than default value 512 (FIFO size), MRL will be set to 512.

5.11. Maximum Read Length (LSB) Register 0x0A

The least significant byte of Maximum Read Length set by the Controller.

Bits	Name	Access	Width	Reset
[7:0]	mrl_lsb	read-only	8	0x00

mrl lsb

Least Significant Byte of maximum write length set by I3C Controller via SETMRL CCC. If SETMRL is greater than default value 512 (FIFO size), MRL will be set to 512.

5.12. Maximum IBI Payload Size Register 0x0B

Maximum IBI Payload Size set by the Controller. Applicable only when Target is configured with IBI capability and IBI payload is set to greater than or equal to 1.

Bits	Name	Access	Width	Reset
[7:0]	max_ibi_payld	read-only	8	0x02

max ibi payld

Maximum IBI Payload set by I3C Controller via SETMRL CCC. If the value is greater than FIFO size, the register will be set to FIFO size. Unlimited payload size is not supported in this IP.

5.13. Maximum Write Data Speed (MaxWr) Register 0x0C

Applicable only when Target is configured with Maximum Data Speed Limitation.

FF 1				
Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	mxds2_w_defbyte	read-only	1	0x0 (Fixed)
[2:0]	mxds2_w_rate	read-write	3	0x0

- mxds2 w defbyte
 - 0 Target does not support defining byte for GETMXDS CCC.
 - 1 Target supports defining byte for GETMXDS CCC. (Not supported in this IP)
- mxds2_w_rate

Maximum Sustained Data Rate for non-CCC Messages sent by Controller Device to Target Device

- 0 f_{SCL} Max (default value)
- 1 8 MHz
- 2 6 MHz
- 3-4 MHz
- 4 2 MHz

Others – Reserved for future use by MIPI Alliance

5.14. Maximum Read Data Speed (MaxRd) Register 0x0D

Applicable only when Target is configured with Maximum Data Speed Limitation.

Bits	Name	Access	Width	Reset
[7]	reserved	read-only	1	0x0
[6]	mxds2_r_wr2rd_stop	read-only	1	0x0 (Fixed)
[5:3]	mxds2_r_tsco	read-write	3	0x0
[2:0]	mxds2_r_rate	read-write	3	0x0

mxds2_r_wr2rd_stop

If maximum read turnaround time is not 0, then this field is used to tell the Controller whether the Target permits the Write-to-Read to be split by a STOP.

- 0 STOP would cancel the Read
- 1 The Target permits the Write-to-Read to be split by a STOP (Not supported in this IP)
- mxds2_r_tsco

Clock to Data Turnaround Time (tsco)

- $0 \le 8$ ns (default value)
- $1-\leq 9$ ns
- 2 ≤ 10 ns
- $3-\leq 11$ ns
- $4 \le 12 \text{ ns}$
- 5 6 Reserved for future use by MIPI Alliance
- $7 t_{SCO}$ is > 12 ns, and is reported by private agreement
- mxds2_r_rate

Maximum Sustained Data Rate for non-CCC Messages sent by Target Device to Controller Device

- 0 f_{SCL} Max (default value)
- 1 8 MHz

35

2 - 6 MHz

3 - 4 MHz

4 - 2 MHz

Others - Reserved for future use by MIPI Alliance

5.15. Maximum Read Turnaround Time (MSB) Register 0x0E

Applicable only when Target is configured with Maximum Data Speed Limitation.

Bits	Name	Access	Width	Reset
[7:0]	max_rdturn_b2	read-write	8	0x0

max rdturn b2

Maximum Read Turnaround Time in μs.

Most significant byte of 24-bit field that can encode turnaround times from 0.0 seconds to 16 seconds.

5.16. Maximum Read Turnaround Time Register 0x0F

Applicable only when Target is configured with Maximum Data Speed Limitation.

Bits	Name	Access	Width	Reset
[7:0]	max_rdturn_b1	read-write	8	0x0

max rdturn b1

Maximum Read Turnaround Time in µs.

Middle byte of 24-bit field that can encode turnaround times from 0.0 seconds to 16 seconds.

5.17. Maximum Read Turnaround Time (LSB) Register 0x10

Applicable only when Target is configured with Maximum Data Speed Limitation.

Bits	Name	Access	Width	Reset
[7:0]	max_rdturn_b0	read-write	8	0x0

max_rdturn_b0

Maximum Read Turnaround Time in μs.

Least significant byte of 24-bit field that can encode turnaround times from 0.0 seconds to 16 seconds.

5.18. Device Provisioned ID Byte6 Register 0x11

Byte 6 of Target Device PID.

	1				
Bits	Name	Access	Width	Reset	
[7:0]	pid_manuf[14:7]	read-write	8	0x03	

pid_manuf[14:7]

Bits 14:7 of 15-bit MIPI Manufacturer ID. Reset value may be configured via Manufacturer ID attribute.

5.19. Device Provisioned ID Byte5 Register 0x12

Byte 5 of Target Device PID.

Bits	Name	Access	Width	Reset
[7:1]	pid_manuf[6:0]	read-write	7	0x1E

Bits	Name	Access	Width	Reset
[0]	pid_type_sel	read-only	1	0x0 (Fixed)

pid_manuf[6:0]

Bits 6:0 of 15-bit MIPI Manufacturer ID. Reset value may be configured via Manufacturer ID attribute.

pid_type_sel

Provisioned ID type selector

0 - Vendor Fixed Value

1 - Random value generated by device (Not supported in this IP)

5.20. Device Provisioned ID Byte4 Register 0x13

Byte 4 of Target Device PID.

Bits	Name	Access	Width	Reset
[7:0]	pid_part[15:8]	read-write	8	0x0

pid_part[15:8]

Bits 15:8 of 16-bit Part ID when pid_type_sel is 0. The meaning of this 16-bit field is left to the Device vendor to define. Reset value may be configured via Part ID attribute.

5.21. Device Provisioned ID Byte3 Register 0x14

Byte 3 of Target Device PID.

Bits	Name	Access	Width	Reset
[7:0]	pid_part[7:0]	read-write	8	0x1

pid_part[7:0]

Bits 7:0 of 16-bit Part ID when pid_type_sel is 0. The meaning of this 16-bit field is left to the Device vendor to define. Reset value may be configured via Part ID attribute.

5.22. Device Provisioned ID Byte2 Register 0x15

Byte 2 of Target Device PID.

-1				
Bits	Name	Access	Width	Reset
[7:4]	pid_inst	read-write	4	0x1
[3:0]	pid_add[11:8]	read-write	4	0x0

pid_inst

Instance ID field that should identify the individual Device, using a method selected by the system designer (e.g., straps, fuses, non-volatile memory, or another appropriate method). Reset value may be configured via Instance ID attribute.

pid_add[11:8]

Bits 11:8 of 12-bit Additional ID for definitions with additional meaning (e.g., Deeper device characteristics that may optionally include Device Characteristics Register values). Reset value may be configured via Additional ID attribute.

5.23. Device Provisioned ID Byte1 Register 0x16

Byte 1 of Target Device PID.

Bits	Name	Access	Width	Reset
[7:0]	pid_add[7:0]	read-write	8	0x0

pid add[7:0]

Bits 7:0 of 12-bit Additional ID for definitions with additional meaning (e.g., Deeper device characteristics that may optionally include Device Characteristics Register values). Reset value may be configured via Additional ID attribute.

5.24. Static Address Register 0x17

Applicable only when Static Address Enabled attribute is checked.

Bits	Name	Access	Width	Reset
[7]	reserved	read-only	1	0x0
[6:0]	stat_addr	read-write	7	0x8

stat_addr

Target Static Address assigned by user. Reset value may be configured via Static Address attribute. If static address is disabled, reset value is 0.

5.25. Device Capabilities Byte1 Register 0x18

Device capabilities that Target returns when Controller sends GETCAPS CCC.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	hdr_bt_mode	read-only	1	0x0 (Fixed)
[2]	hdr_tsl_mode	read-only	1	0x0 (Fixed)
[1]	hdr_tsp_mode	read-only	1	0x0 (Fixed)
[0]	hdr_ddr_mode	read-only	1	0x0 – SDR mode only
				0x1 – SDR and HDR-DDR mode is supported

hdr bt mode

Fixed to 0. HDR-BT mode is not supported.

hdr_tsl_mode

Fixed to 0. HDR-BT mode is not supported.

hdr_tsp_mode

Fixed to 0. HDR-BT mode is not supported.

hdr_ddr_mode

Set to 1 when device is configured with HDR capability. Only HDR-DDR mode is supported.

5.26. Device Capabilities Byte2 Register 0x19

Device capabilities that Target returns when Controller sends GETCAPS CCC.

Bits	Name	Access	Width	Reset
[7]	hdr_ddr_abort_crc_caps	read-only	1	0x0 – If only SDR capable
				0x1 – if HDR DDR capable
[6]	hdr_ddr_wr_abort_caps	read-only	1	0x0 – If only SDR capable
				0x1 – if HDR DDR capable
[5:4]	grp_adr_caps	read-only	2	0x0 (Fixed)
[3:0]	i3c_spec_ver	read-only	4	0x1 (Fixed)

hdr ddr abort crc caps

I3C Target capability of emitting the CRC Word when a transaction in HDR-DDR Mode is aborted.

Set to 1 when device is configured with HDR capability.

0: No

1: Yes

hdr_ddr_wr_abort_caps

I3C Target capability of issuing the Write Abort in HDR-DDR Mode.

Set to 1 when device is configured with HDR capability.

0: No

1: Yes

grp_adr_caps

Indicates the Group Address function capabilities of this I3C Device. Fixed to 0.

- 0 Does not support Group Address function
- 1 Can be assigned one Group Address (Not supported in this IP)
- 2 Can be assigned two Group Addresses (Not supported in this IP)
- 3 Can be assigned three or more Group Addresses (Not supported in this IP)
- i3c_spec_ver

Indicates the minor version number of the MIPI I3C Specification with which this I3C v1.x Device complies (i.e., the 'x' in "I3C v1.x"). Setting to 0x0 is illegal.

5.27. Device Capabilities Byte3 Register 0x1A

Device capabilities that Target returns when Controller sends GETCAPS CCC.

Bits	Name	Access	Width	Reset
[7]	reserved	read-only	1	0x0
[6]	pend_rd_mdb	read-only	1	0x0
[5]	hdr_bt_crc32	read-only	1	0x0 (Fixed)
[4]	getstatus_defbyte	read-only	1	0x0 (Fixed)
[3]	getcaps_defbyte	read-only	1	0x0 (Fixed)
[2]	d2dxfer_ibi	read-only	1	0x0 (Fixed)
[1]	d2dxfer	read-only	1	0x0 (Fixed)
[0]	ml_data_xfer	read-only	1	0x0 (Fixed)

pend rd mdb

I3C Target support for IBI with Pending Read Notification MDB, which the Controller shall then follow with a Private Read request to fetch the data.

Set to 1 when device is configured with IBI with MDB capability.

0 - No

1 - Yes

• hdr bt crc32

13C Target support CRC-32 data integrity verification in HDR Bulk Transport Mode

0 - No

1 – Yes (Not supported in this IP)

• getstatus_defbyte

I3C Target support for defining byte in GETSTATUS CCC

0 - No

1 – Yes (Not supported in this IP)

39

getcaps defbyte

13C Target support for defining byte in GETCAPS CCC

0 - No

1 – Yes (Not supported in this IP)

d2dxfer_ibi

I3C Target capability to initiate Device to Device (D2D) Transfer using IBI with MDB 0x37

0 - Nc

1 – Yes (Not supported in this IP)

d2dxfer

I3C Target support for D2D transfers either as a Source or a Subscriber/Receiver

0 - Nc

1 – Yes (Not supported in this IP)

ml_data_xfer

I3C Target support for multi-Lane data transfer

0 - No

1 – Yes (Not supported in this IP)

5.28. Oscillator Inaccuracy Register 0x1C

Inaccuracy of Target's internal oscillator.

Bits	Name	Access	Width	Reset
[7:0]	osc_inaccuracy	read-write	8	0x0

osc inaccuracy

Describes the maximum variation of the Target's internal oscillator in 1/10th percent (0.1%) increments, up to 25.5%.

Example: A value of 8'd25 represents a maximum frequency variation of 2.5%.

5.29. Receive FIFO Register 0x20

Receive FIFO.

Bits	Name	Access	Width	Reset
[7:0]	rx_fifo	read-only	8	0x0

rx fifo

Data bytes received from I3C bus are stored in this FIFO. Get the received data by reading from this address multiple times depending on the number of data bytes to be read. Read rxfifo_not_empty interrupt status register (Interrupt Status 2 Bit 6) first to determine if there is data to be read from rx_fifo.

5.30. Transmit FIFO Register 0x22

Transmit FIFO.

Bits	Name	Access	Width	Reset
[7:0]	tx_fifo	read-write	8	0x0

tx_fifo

Data to be sent to I3C bus is stored in this FIFO. You can do multiple writes to this address depending on the number of data bytes to be written. Reading from this address will indicate $txfifo_empty$ status (0x1 – Empty, 0x0 – Not Empty).

5.31. Soft Reset Register 0x28

Soft Reset.

Bits	Name	Access	Width	Reset
[7:5]	reserved	read-only	3	0x0
[4]	ip_csr_rst	read-write	1	0x0
[3]	ip_core_rst	read-write	1	0x0
[2]	tx_fifo_rst	read-write	1	0x0
[1]	rx_fifo_rst	read-write	1	0x0
[0]	ip_main_rst	read-write	1	0x0

ip_csr_rst

When set to high, resets the IP read-write and write-only registers only. Auto-clear.

ip core rst

When set to high, resets the internal state of I3C Core only (including Tx and Rx FIFO). Dynamic address and configurations via CCCs are not reset. Auto-clear.

tx_fifo_rst

When set to high, resets the Tx FIFO only. Auto-clear.

rx fifo rst

When set to high, resets the Rx FIFO only. Auto-clear.

ip_main_rst

When set to high, resets the whole IP including registers, FIFO, dynamic address, and CCC configurations. Auto-clear.

5.32. Target Response Register 0x29

Target Response.

Bits	Name	Access	Width	Reset
[7:5]	reserved	read-only	3	0x0
[4]	fifo_loopback_en	read-write	1	0x0
[3:1]	reserved	read-only	3	0x0
[0]	txfifo_empty_rd_nak	read-write	1	0x0

- fifo loopback en
 - 0 Data written through Private Write will be read from Rx FIFO. Data written to Tx FIFO will be read through Private Read.
 - 1 Data written through Private Write will be stored in Rx FIFO and transferred to Tx FIFO to be read through Private Read. Data written to the Tx FIFO can still be read through Private Read.
- txfifo_empty_rd_nak

Target response when Controller reads but Tx FIFO is empty.

0 – In SDR mode, Target will ACK its Address and return 0xFF read data then End-of-Message by pulling SDA Low at T-bit. If I3C bus is in HDR-DDR mode and Target is configured with HDR capability, Target will ACK its address and return 0x0 data then end Read.

1 - Target will NACK its Address

5.33. Get Status MSB Register 0x2A

Most significant byte that Target returns when Controller sends GETSTATUS CCC.

Bits	Name	Access	Width	Reset
[7:0]	get_status_msb	read-write	8	0x0

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

get_status_msb

Reserved for vendor-specific meaning.

5.34. Get Status LSB Register 0x2B

Least significant byte that Target returns when Controller sends GETSTATUS CCC.

Bits	Name	Access	Width	Reset
[7:6]	activity_mode	read-write	2	0x0
[5:4]	reserved	read-only	2	0x0
[3:0]	pending_interrupt	read-write	4	0x0

activity_mode

Contains the 2-bit ID of the Target Device's current activity mode. For Target devices without Secondary Controller Capability, the meaning of this value will depend upon a private contract between the Target and the Controller.

pending interrupt

Contains the interrupt number of any pending interrupt, or 0 if no interrupts are pending.

5.35. Bus Activity State Register 0x2C

Bus Activity State.

Bits	Name	Access	Width	Reset
[7:2]	reserved	read-only	6	0x0
[1:0]	bus_act	read-only	2	0x0

bus act

When bus_act_rcvd is set to 1, this register indicates the activity state received. Write 1 to clear.

0 – 1 μs (Latency-free operation)

 $1 - 100 \mu s$

2 - 2ms

3 – 50ms (Lowest-activity operation)

5.36. Target Reset Action 1 Register 0x2D

Target Reset Action Information 1.

Bits	Name	Access	Width	Reset
[7:0]	rst_act	read-only	8	0x0

rst_act

Target Reset Action configured by the Controller via Defining Byte of RSTACT CCC. When Target Reset Pattern is received after RSTACT CCC, perform the configured reset action.

5.37. Target Reset Action 2 Register 0x2E

Target Reset Action Information 2.

Bits	Name	Access	Width	Reset
[7:2]	reserved	read-only	6	0x0
[1]	rst_act_set0_get1	read-only	1	0x0
[0]	rst_act_broad0_dir1	read-only	1	0x0

42

rst_act_set0_get1

Information on the Target Reset Action configured by Controller.

- 0 Controller configured Target Reset Action by Direct SET RSTACT CCC
- 1 Controller configured Target Reset Action by Direct GET RSTACT CCC
- rst_act_broad0_dir1

Information on the Target Reset Action configured by Controller.

- 0 Controller configured Target Reset Action by Broadcast RSTACT CCC
- 1 Controller configured Target Reset Action by Direct Set/Get RSTACT CCC

5.38. Target Reset Action 3 Register 0x2F

Target Reset Action Information 3.

Bits	Name	Access	Width	Reset
[7:0]	rst_act_set	read-only	8	0x80

rst_act_set

Target Reset Action configured by the Controller via Defining Byte of Direct SET RSTACT CCC. This is the value returned by Target when Controller sends Direct GET CCC.

5.39. Interrupt Status 1 Register 0x30

Interrupt Status Information 1.

Bits	Name	Access	Width	Reset
[7]	hj_req_gen	read-write	1	0x0
[6]	hj_done	read-write	1	0x0
[5]	hj_acknack	read-write	1	0x0
[4]	reserved	read-write	1	0x0
[3]	ibi_req_gen	read-write	1	0x0
[2]	ibi_done	read-write	1	0x0
[1]	ibi_acknack	read-write	1	0x0
[0]	ibi_payld_terminated	read-write	1	0x0

hj_req_gen

When set to 1, Hot-Join request is generated by Target. Write 1 to clear.

hj_done

When set to 1, Hot-Join address with Write bit is transmitted by Target and Controller has either ACKed or NACKed for HJ IBI RETRY times. Write 1 to clear.

hj_acknack

When set to 1, Hot-Join is NACKed by Controller after HJ IBI RETRY times. Write 1 to clear.

• ibi_req_gen

When set to 1, IBI request is generated by Target. Write 1 to clear.

ibi_done

When set to 1, Target Address with Read bit has been transmitted by Target and Controller has either ACKED or NACKed the request for HJ_IBI_RETRY times. If with payload, IBI payload has been transmitted and finished either by End-of-Data (from Target) or STOP (from Controller). Write 1 to clear.

ibi acknack

When set to 1, IBI is NACKed by Controller after HJ_IBI_RETRY times. Write 1 to clear.

ibi_payld_terminated

When set to 1, Controller aborted reading complete IBI payload. Write 1 to clear.

5.40. Interrupt Status 1 Enable Register 0x31

Interrupt Enable. When set to high, it enables the corresponding interrupt status 1 signal to cause the assertion of interrupt port signal (int o).

Bits	Name	Access	Width	Reset
[7]	hj_req_gen_en	read-write	1	0x0
[6]	hj_done_en	read-write	1	0x0
[5]	hj_acknack_en	read-write	1	0x0
[4]	reserved	read-write	1	0x0
[3]	ibi_req_gen_en	read-write	1	0x0
[2]	ibi_done_en	read-write	1	0x0
[1]	ibi_acknack_en	read-write	1	0x0
[0]	ibi_payld_terminated_en	read-write	1	0x0

5.41. Interrupt Status 1 Set Register 0x32

Interrupt Set. This is a dummy register that is used to test the assertion of interrupt status. When set to high, it triggers the corresponding interrupt status 1 signal.

Bits	Name	Access	Width	Reset
[7]	hj_req_gen_set	write-only	1	0x0
[6]	hj_done_set	write-only	1	0x0
[5]	hj_acknack_set	write-only	1	0x0
[4]	reserved	read-only	1	0x0
[3]	ibi_req_gen_set	write-only	1	0x0
[2]	ibi_done_set	write-only	1	0x0
[1]	ibi_acknack_set	write-only	1	0x0
[0]	ibi_payld_terminated_set	write-only	1	0x0

5.42. Interrupt Status 2 Register 0x33

Interrupt Status 2.

Bits	Name	Access	Width	Reset
[7]	txfifo_full	read-write	1	0x0
[6]	rxfifo_not_empty	read-write	1	0x0
[5]	rxfifo_full	read-write	1	0x0
[4]	reserved	read-only	1	0x0
[3]	read_txfifo_empty	read-write	1	0x0
[2]	read_aborted	read-write	1	0x0
[1]	da_par_err	read-write	1	0x0
[0]	tbit_err	read-write	1	0x0

txfifo_full

When set to 1, it indicates Tx FIFO is full. Write 1 to clear.

rxfifo_not_empty

When set to 1, it indicates that Rx FIFO is not empty. Write 1 to clear.

rxfifo_full

When set to 1, it indicates Rx FIFO is full. Write 1 to clear.

read_txfifo_empty

When set to 1, Controller initiated Read but Tx FIFO is empty. Write 1 to clear.

read_aborted

When set to 1, Read is aborted early by Controller. Write 1 to clear.

da_par_err

When set to 1, parity bit error in dynamic address assignment occurred. Write 1 to clear.

tbit err

When set to 1, data T-bit Error occurred. Write 1 to clear.

5.43. Interrupt Status 2 Enable Register 0x34

Interrupt Enable. When set to high, it enables the corresponding interrupt status 2 signal to cause the assertion of interrupt port signal (int o).

F				
Bits	Name	Access	Width	Reset
[7]	txfifo_full_en	read-write	1	0x0
[6]	rxfifo_not_empty_en	read-write	1	0x0
[5]	rxfifo_full_en	read-write	1	0x0
[4]	reserved	read-only	1	0x0
[3]	read_txfifo_empty_en	read-write	1	0x0
[2]	read_aborted_en	read-write	1	0x0
[1]	da_par_err_en	read-write	1	0x0
[0]	tbit_err_en	read-write	1	0x0

5.44. Interrupt Status 2 Set Register 0x35

Interrupt Set. This is a dummy register that is used to test the assertion of interrupt status. When set to high, it triggers the corresponding interrupt status 2 signal.

Bits	Name	Access	Width	Reset
[7]	txfifo_full_set	write-only	1	0x0
[6]	rxfifo_not_empty_set	write-only	1	0x0
[5]	rxfifo_full_set	write-only	1	0x0
[4]	reserved	read-only	1	0x0
[3]	read_txfifo_empty_set	write-only	1	0x0
[2]	read_aborted_set	write-only	1	0x0
[1]	da_par_err_set	write-only	1	0x0
[0]	tbit_err_set	write-only	1	0x0

5.45. Interrupt Status 3 Register 0x36

Interrupt Status 3.

Bits	Name	Access	Width	Reset
[7]	enec_rcvd	read-write	1	0x0
[6]	tgt_rst_ptrn_rcvd	read-write	1	0x0

Bits	Name	Access	Width	Reset
[5]	rstact_ccc_rcvd	read-write	1	0x0
[4]	bus_act_rcvd	read-write	1	0x0
[3]	setxtime_rcvd	read-write	1	0x0
[2]	reserved	read-only	1	0x0
[1]	bus_aval	read-write	1	0x0
[0]	bus_idle	read-write	1	0x0

enec rcvd

When set to 1, Target received Broadcast/Direct ENEC/DISEC CCC from Controller. Write 1 to clear.

tgt_rst_ptrn_rcvd

When set to 1, Target received Target Reset Pattern from Controller. Write 1 to clear.

rstact_ccc_rcvd

When set to 1, Target received RSTACT CCC from Controller. Write 1 to clear.

bus_act_rcvd

When set to 1, Target received ENTASx CCC from Controller Write 1 to clear.

setxtime rcvd

When set to 1, Target received SETXTIME with supported sub-command byte from Controller. Write 1 to clear.

bus aval

When set to 1, I3C bus is in Bus Available condition. Write 1 to clear.

bus_idle

When set to 1, I3C bus is in Bus Idle condition. Write 1 to clear.

5.46. Interrupt Status 3 Enable Register 0x37

Interrupt Enable. When set to high, it enables the corresponding interrupt status 3 signal to cause the assertion of interrupt port signal (int_o).

Bits	Name	Access	Width	Reset
[7]	enec_rcvd_en	read-write	1	0x0
[6]	tgt_rst_ptrn_rcvd_en	read-write	1	0x0
[5]	rstact_ccc_rcvd_en	read-write	1	0x0
[4]	bus_act_rcvd_en	read-write	1	0x0
[3]	setxtime_rcvd_en	read-write	1	0x0
[2]	reserved	read-only	1	0x0
[1]	bus_aval_en	read-write	1	0x0
[0]	bus_idle_en	read-write	1	0x0

5.47. Interrupt Status 3 Set Register 0x38

Interrupt Set. This is a dummy register that is used to test the assertion of interrupt status. When set to high, it triggers the corresponding interrupt status 3 signal.

Bits	Name	Access	Width	Reset
[7]	enec_rcvd_set	write-only	1	0x0
[6]	tgt_rst_ptrn_rcvd_set	write-only	1	0x0
[5]	rstact_ccc_rcvd_set	write-only	1	0x0
[4]	bus_act_rcvd_set	write-only	1	0x0
[3]	setxtime_rcvd	write-only	1	0x0
[2]	reserved	read-only	1	0x0

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Bits	Name	Access	Width	Reset
[1]	bus_aval_set	write-only	1	0x0
[0]	bus_idle_set	write-only	1	0x0

5.48. Interrupt Status 5 Register 0x3C

Interrupt Status 5.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	hdr_ddr_frm_err	read-write	1	0x0
[3]	hdr_ddr_par_err	read-write	1	0x0
[3]	hdr_ddr_crc_err	read-write	1	0x0
[3]	hdr_ddr_mon_err	read-write	1	0x0

hdr_ddr_frm_err

When set to 1, HDR-DDR framing error is detected. Write 1 to clear.

hdr_ddr_par_err

When set to 1, HDR-DDR parity error is detected. Write 1 to clear.

hdr_ddr_crc_err

When set to 1, HDR-DDR CRC error is detected. Write 1 to clear.

hdr_ddr_mon_err

When set to 1, data transferred on the I3C bus is different from what Target intended to send. Write 1 to clear.

5.49. Interrupt Status 5 Enable Register 0x3D

Interrupt Enable. When set to high, it enables the corresponding interrupt status 5 signal to cause the assertion of interrupt port signal (int_o).

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	hdr_ddr_frm_err_en	read-write	1	0x0
[3]	hdr_ddr_par_err_en	read-write	1	0x0
[3]	hdr_ddr_crc_err_en	read-write	1	0x0
[3]	hdr_ddr_mon_err_en	read-write	1	0x0

5.50. Interrupt Status 5 Set Register 0x3E

Interrupt Set. This is a dummy register that is used to test the assertion of interrupt status. When set to high, it triggers the corresponding interrupt status 5 signal.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	hdr_ddr_frm_err_set	write-only	1	0x0
[3]	hdr_ddr_par_err_set	write-only	1	0x0
[3]	hdr_ddr_crc_err_set	write-only	1	0x0
[3]	hdr_ddr_mon_err_set	write-only	1	0x0

5.51. Bus Mode Register 0x50

I3C Bus Mode.

Bits	Name	Access	Width	Reset
[7:1]	reserved	read-only	7	0x0
[0]	bus_hdr_mode	read-only	1	0x0

bus_hdr_mode

When equal to High, I3C bus is in HDR-DDR mode.

5.52. HDR-DDR Target Configuration Register 0x51

HDR-DDR Target Configuration for received HDR data.

Bits	Name	Access	Width	Reset
[7:2]	reserved	read-only	4	0x0
[1]	hdr_ddr_wr_cmd_to_fifo	read-write	1	0x0
[0]	hdr_ddr_rd_cmd_to_fifo	read-write	1	0x0

hdr_ddr_wr_cmd_to_fifo

Applicable only when Target is configured with HDR capability.

When set to High, HDR-DDR Write Command is stored to Rx FIFO.

hdr_ddr_rd_cmd_to_fifo

Applicable only when Target is configured with HDR capability.

When set to High, HDR-DDR Read Command is stored to Rx FIFO.

5.53. HDR-DDR Abort Configuration Register 0x54

HDR-DDR Abort Configuration set by Controller via ENDXFER CCC.

Bits	Name	Access	Width	Reset
[7:6]	hdr_ddr_abort_crc	read-only	2	0x1
[5]	hdr_ddr_write_abort	read-only	1	0x0
[4]	hdr_ddr_write_nack	read-only	1	0x0
[3:0]	reserved	read-only	4	0x0

hdr_ddr_abort_crc

Applicable only when Target is configured with HDR capability.

2'b11 - No CRC Word follows Early Termination request

2'b01 – CRC Word follows Early Termination request

Other – reserved for future definition by MIPI alliance

hdr_ddr_write_abort

Applicable only when Target is configured with HDR capability.

When set to Low, Target can issue the Write Abort in HDR-DDR Mode.

This IP will issue Write Abort in HDR-DDR Mode if the Rx FIFO is full.

hdr_ddr_write_nack

Applicable only when Target is configured with HDR capability.

When set to Low, Target can issue a NACK to an HDR-DDR Write Command.

This IP will issue NACK an HDR-DDR Write Command if the Rx FIFO is full.

5.54. Secondary Controller Registers

I3C Target registers are accessible when I3C Controller IP is configured with Secondary Controller Capability. The address space of I3C Target is moved when Secondary Controller is supported. When the device is configured as Target-only, MSB of address space is 0. When the device is used for Secondary Controller support, MSB of address space is 1.

Example: 0x00 (Target-only) → 0x80 (Secondary Controller support)

0x01 (Target-only) → 0x81 (Secondary Controller support)

The following section describes I3C Target registers that have changes in reset value and/or definition when used for Secondary Controller. Registers not included in this section retain the definitions as when device is configured as I3C Target-only. Refer to the I3C Controller IP User Guide (FPGA-IPUG-02228) for more information on this usage.

5.54.1. Dynamic Address Register 0x02

Assigned dynamic address and done flag.

Bits	Name	Access	Width	Reset
[7]	daa_done	read-only	1	0x1 – If Target is Secondary-Controller Capable
				0x0 – If Target is not Secondary-Controller Capable
[6:0]	dyn_addr	read-only	7	Takes Dynamic Address parameter value

- daa done
 - 0 dyn addr is not yet assigned or is reset by RSTDAA CCC
 - 1 dyn_addr is assigned via ENTDAA, SETNEWDA, SETAASA or SETDASA CCC

This is set to 1 if Target is configured with Secondary Controller Capability.

dyn_addr

Dynamic Address Assigned to I3C Target.

If Target is configured with Secondary Controller Capability and IP is set to be the Primary Controller, this register indicates the Dynamic Address that Controller will use when sending DEFTGTS CCC.

5.54.2. Bus Characteristics Register 0x00

Target Bus Characteristics Register.

Bits	Name	Access	Width	Reset
[7:6]	device_role	read-only	2	0x0 – Device is Target only
				0x1 – Device is Controller Capable
[5]	advanced_caps	read-only	1	0x1 (Fixed)
[4]	virtual_tgt_support	read-only	1	0x0 (Fixed)
[3]	offline_capable	read-only	1	0x0 (Fixed)
[2]	ibi_payload	read-only	1	0x1
[1]	ibi_capable	read-only	1	0x1
[0]	max_d_speed_limit	read-only	1	0x0

device_role

2'b00 - I3C Target.

2'b01 - I3C Controller Capable.

Others - Reserved for future definition by MIPI Alliance I3C WG (Not supported in this IP).

advanced_caps

Fixed to 1 when device is configured with Secondary Controller Capability.

- 0 Does not support optional advanced capabilities.
- 1 Supports optional advanced capabilities. When Target is configured with IBI capability and IBI payload, this is set to 1 for optional Pending Read MDB support.

virtual_tgt_support

Fixed to 0.

- 0 Is not a Virtual Target and does not expose other downstream Device(s).
- 1 Is a Virtual Target or exposes other downstream Device(s) (Not supported in this IP).
- offline capable

Fixed to 0.

- 0 Device will always respond to I3C bus commands.
- 1 Device will not always respond to I3C bus Commands (Not supported in this IP).
- ibi_payload

From IBI Payload Size attribute.

- 0 If IBI Payload Size attribute is set to 0. No data bytes follow the IBI.
- 1 If IBI Payload Size attribute is set to greater than or equal to 1. One data byte (MDB) shall follow the accepted IBI, and additional data bytes may follow.
- ibi capable

From IBI Capable attribute.

- 0 Unchecked. Not capable.
- 1 Checked. Capable.
- max_d_speed_limit

From Maximum Data Speed Limitation attribute.

- 0 Unchecked. No limitation.
- 1 Checked. With limitation. Controller shall use GETMXDS CCC to get specific limitation from Target.

5.54.3. Events Command Enable Register 0x03

Hot-Join and IBI enable from Controller via ENEC/DISEC CCC.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	hj_enec	read-only	1	0x1 – If Target is Hot-Join capable
				0x0 – If Target is not Hot-Join capable
[2]	reserved	read-only	1	0x0
[1]	cr_enec	read-only	1	0x1
[0]	ibi_enec	read-only	1	0x1 – If Target is IBI capable
				0x0 – If Target is not IBI capable

hj enec

Hot-Join Enable by Controller

- 0 Target-initiated Hot-Join is not allowed on the I3C bus
- 1 Target-initiated Hot-Join is allowed on the I3C bus
- cr enec

Controller Role Request Enable by Controller

- $\rm 0-Target$ -initiated Controller Role request is not allowed on the I3C bus
- 1 Target-initiated Controller Role request is allowed on the I3C bus
- ibi_enec
 - IBI Enable by Controller
 - 0 Target-initiated interrupts are not allowed on the I3C bus
 - 1 Target-initiated interrupts are allowed on the I3C bus

Note: Reset value is 1 if Target is configured with IBI capability, 0 otherwise.

50

5.54.4. Events Command Device Configuration Register 0x04

Hot-Join and IBI capability configured using attributes.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	hj_cap	read-only	1	0x1 – If Target is Hot-Join capable
				0x0 – If Target is not Hot-Join capable
[2]	reserved	read-only	1	0x0
[1]	cr_cap	read-only	1	0x1 – If Target is Secondary Controller Capable
				0x0 – If Target is not Secondary Controller Capable
[0]	ibi_cap	read-only	1	0x1 – If Target is IBI capable
				0x0 – If Target is not IBI capable

- hj_cap
 - 0 Target device is configured without Hot-Join Capability
 - 1 Target device is configured with Hot-Join Capability
- cr_cap
 - 0 Target device is configured without Secondary Controller Capability
 - 1 Target device is configured with Secondary Controller Capability
- ibi_cap
 - 0 Target device is configured without IBI Capability
 - 1 Target device is configured with IBI Capability

5.54.5. Events Command Request Register 0x05

Hot-Join and IBI capability configured using attributes.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	hj_req	read-write	1	0x0
[2]	reserved	read-only	1	0x0
[1]	cr_req	read-write	1	0x0
[0]	ibi_req	read-write	1	0x0

hj_req

When set to High, Target will initiate Hot-Join request at the next valid opportunity. Reset to 0 when Hot-Join is done or disabled by the Controller.

cr_req

When set to High, Target will initiate Controller Role request at the next valid opportunity. Reset to 0 when Controller Role request is done or disabled by the Controller.

ibi req

When set to High, Target will initiate IBI at the next valid opportunity. Reset to 0 when IBI is done or disabled by the Controller.

5.54.6. Maximum Write Data Speed (MaxWr) Register 0x0C

Applicable only when Target is configured with Maximum Data Speed Limitation.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	4	0x0
[3]	mxds2_w_defbyte	read-only	1	0x1 (Fixed)
[2:0]	mxds2_w_rate	read-write	3	0x0

mxds2 w defbyte

Fixed to 1 when device is configured with Secondary Controller Capability.

- 0 Target does not support defining byte for GETMXDS CCC.
- 1 Target supports defining byte for GETMXDS CCC.
- mxds2_w_rate

Maximum Sustained Data Rate for non-CCC Messages sent by Controller Device to Target Device

- 0 fSCL Max (default value)
- 1 8 MHz
- 2 6 MHz
- 3 4 MHz
- 4 2 MHz

Others -Reserved for future use by MIPI Alliance

5.54.7. Device Capabilities Byte 3 Register 0x1A

Device capabilities that Target returns when Controller sends GETCAPS CCC.

Bits	Name	Access	Width	Reset
[7]	reserved	read-only	1	0x0
[6]	pend_rd_mdb	read-only	1	0x0
[5]	hdr_bt_crc32	read-only	1	0x0 (Fixed)
[4]	getstatus_defbyte	read-only	1	0x1 (Fixed)
[3]	getcaps_defbyte	read-only	1	0x1 (Fixed)
[2]	d2dxfer_ibi	read-only	1	0x1 (Fixed)
[1]	d2dxfer	read-only	1	0x0 (Fixed)
[0]	ml_data_xfer	read-only	1	0x0 (Fixed)

pend_rd_mdb

I3C Target support for IBI with Pending Read Notification MDB, which the Controller shall then follow with a Private Read request to fetch the data.

Set to 1 when device is configured with IBI with MDB capability.

- 0 No
- 1 Yes
- hdr_bt_crc32

I3C Target support CRC-32 data integrity verification in HDR Bulk Transport Mode

- 0 No
- 1 Yes (Not supported in this IP)
- getstatus_defbyte

I3C Target support for defining byte in GETSTATUS CCC. Set to 1 when Secondary Controller Capable.

- 0 No
- 1 Yes
- getcaps_defbyte

I3C Target support for defining byte in GETCAPS CCC. Set to 1 when Secondary Controller Capable.

- 0 No
- 1 Yes
- d2dxfer_ibi

13C Target capability to initiate Device to Device (D2D) Transfer using IBI with MDB 0x37.

- 0 No
- 1 Yes (Not supported in this IP)

d2dxfer

I3C Target support for D2D transfers either as a Source or a Subscriber/Receiver.

0 - No

1 – Yes (Not supported in this IP)

ml data xfer

13C Target support for Multi-Lane data transfer.

0 - No

1 – Yes (Not supported in this IP)

5.54.8. Interrupt Status 4 Register 0x39

Interrupt Status 4.

Bits	Name	Access	Width	Reset
[7]	get_acccr_rcvd	read-write	1	0x0
[6]	get_acccr_acknak	read-write	1	0x0
[5]	deftgts_rcvd	read-write	1	0x0
[4]	reserved	read-only	1	0x0
[3]	cr_req_gen	read-write	1	0x0
[2]	cr_req_done	read-write	1	0x0
[1]	cr_req_acknack	read-write	1	0x0
[0]	device_role_changed	read-write	1	0x0

get acccr rcvd

When set to 1, Target received GET ACCCR CCC from Controller. Write 1 to clear.

get_acccr_acknak

When set to 1, Target NACKed GET ACCCR CCC received from Controller. Write 1 to clear.

deftgts rcvd

When set to 1, Target received DEFTGTS CCC from Controller (including data bytes describing each device in the bus). Write 1 to clear.

cr_req_gen

When set to 1, Controller Role request is generated by Target. Write 1 to clear.

cr_req_done

When set to 1, Target Address with Write bit has been transmitted by Target and Controller has either ACKed or NACKed the request for HJ IBI RETRY times. Write 1 to clear.

cr req acknak

When set to 1, Controller Role request is NACKed by Controller after HJ IBI RETRY times. Write 1 to clear.

device_role_changed

When set to 1, device role is changed either from Controller to Target or Target to Controller. Read the actual role from the device_role register. Write 1 to clear.

When device_role_changed interrupt is asserted and device_role is 1'b0, IP has successfully sent GETACCCR CCC and Controller Role will be transferred to the New Controller. IP will then monitor if the New Controller has asserted its role. If the New Controller did not assert its role, Controller Role Handoff will be cancelled and device_role will be set to 1'b1 again.

When device_role_changed interrupt is asserted and device_role is 1'b1, IP has successfully received GETACCCR CCC and Controller Role will be transferred to the IP. IP will then assert its role as Controller depending on the auto_assert_role register in I3C Controller IP.

5.54.9. Interrupt Status 4 Enable Register 0x3A

Interrupt Enable. When set to high, it enables the corresponding interrupt status 5 signal to cause the assertion of interrupt port signal (int_o).

Bits	Name	Access	Width	Reset
[7]	get_acccr_rcvd_en	read-write	1	0x0
[6]	get_acccr_acknak_en	read-write	1	0x0
[5]	deftgts_rcvd_en	read-write	1	0x0
[4]	reserved	read-only	1	0x0
[3]	cr_req_gen_en	read-write	1	0x0
[2]	cr_req_done_en	read-write	1	0x0
[1]	cr_req_acknack_en	read-write	1	0x0
[0]	device_role_changed_en	read-write	1	0x0

5.54.10. Interrupt Status 4 Set Register 0x3B

Interrupt Set. This is a dummy register that is used to test the assertion of interrupt status. When set to high, it triggers the corresponding interrupt status 4 signal.

Bits	Name	Access	Width	Reset
[7]	get_acccr_rcvd_set	write-only	1	0x0
[6]	get_acccr_acknak_set	write-only	1	0x0
[5]	deftgts_rcvd_set	write-only	1	0x0
[4]	reserved	read-only	1	0x0
[3]	cr_req_gen_set	write-only	1	0x0
[2]	cr_req_done_set	write-only	1	0x0
[1]	cr_req_acknack_set	write-only	1	0x0
[0]	device_role_changed_set	write-only	1	0x0

5.54.11. DEFTGTS Count Register 0x40

Count information sent by the Active Controller via DEFTGTS CCC.

Bits	Name	Access	Width	Reset
[7:0]	deftgts_count	read-only	8	0x0

deftgts_count

Describes the number of Targets and Groups present in the I3C bus.

5.54.12. DEFTGTS Rx FIFO Start Register 0x41

Pointer for start address of DEFTGTS data in Rx FIFO.

Bits	Name	Access	Width	Reset
[7:0]	rxfifo_deftgts_start	read-only	8	0x0

rxfifo deftgts start

Count N indicates the number of times user needs to read from Rx FIFO before DEFTGTS data is read. When equal to 0, next read data is start of DEFTGTS data.

5.54.13. DEFTGTS Rx FIFO Count Register 0x42

Number of DEFTGTS data bytes stored in Rx FIFO.

54

Bits	Name	Access	Width	Reset
[7:0]	rxfifo_deftgts_count	read-only	8	0x0

rxfifo_deftgts_count

Indicates number of DEFTGTS data bytes stored in Rx FIFO. When reading of DEFTGTS data is started (rxfifo_deftgts_start is equal to 8'h0), this count decreases by one every Rx FIFO read. When 0 count is reached, all DEFTGTS data has been read from Rx FIFO.

5.54.14. Controller Role Handoff Register 0x43

Target configuration for Controller Role Handoff.

Bits	Name	Access	Width	Reset
[7]	get_acccr_auto_resp	read-write	1	0x1
[6:0]	reserved	read-only	7	0x0

get_acccr_auto_resp

Target auto-response when receiving GETACCCR CCC. Default response is NACK.

- 0 Target will ACK the GETACCCR CCC
- 1 Target will NACK the GETACCCR CCC

5.54.15. GETMXDS Controller Capable Device Register 0x44

Return value for GETMXDS when defining byte is 0x91.

Bits	Name	Access	Width	Reset
[7:3]	reserved	read-only	5	0x0
[2]	crh_set_act_state	read-write	1	0x0
[1:0]	crh_act_state	read-write	2	0x0

crh_set_act_state

Indicates whether the Active Controller should set the Bus to a certain Activity State before passing the Controller Role to this device.

- 0 Active Controller should not set the bus to any Activity State before passing the Controller Role to this Device
- 1 Active Controller should set the bus to the Activity State set in bits 1:0 before passing the Controller Role to this Device
- crh_act_state

When crh_set_act_state is set to 1, this indicates whether the device initially acts with a given Activity State after becoming the Active Controller on the Bus. The indicated Activity State implies that the Device may have a delayed response to Bus activity, and so the former Controller should wait the specified delay time for the

indicated Activity State before testing this Device, to confirm that it is controlling the Bus before initiating the CE3 error recovery flow.

- 0 Acts according to Activity State 0
- 1 Acts according to Activity State 1
- 2 Acts according to Activity State 2
- 3 Acts according to Activity State 3

5.54.16. GETSTATUS Controller Capable Device LSB Register 0x45

Return value for GETSTATUS when defining byte is 0x91. MSB of return value is from get_status_msb register at Addr 0x2A.

Bits	Name	Access	Width	Reset
[7:2]	reserved	read-only	6	0x0

Bits	Name	Access	Width	Reset
[1]	handoff_delay_nack	read-write	1	0x0
[0]	deep_sleep_det	read-write	1	0x0

handoff delay nack

Indicates whether this Device is currently processing any DEFTGTS CCC Broadcasts that may have been sent by the Active Controller.

- 0 The Device is not currently processing Broadcast data and can safely accept the Controller Role.
- 1 The Device is currently processing DEFTGTS and may be updating its internal state. Active Controller may wait to send GETACCCR CCC to this Device or should at least be aware that any attempts to send GETACCCR CCC to this Device will be met with a NACK response until this bit is read again later with a value of 1'b0.
- deep_sleep_det

Indicates whether the device has entered a deep sleep state in which it may have missed any DEFTGTS CCC sent by the Active controller. Consequently, this device's internal state of known Target devices should be considered outdated.

- 0 The device has not entered a deep sleep state.
- 1 The device has entered a deep sleep state. The Active Controller shall send another DEFTGTS CCC to update the device's internal state before sending GETACCCR CCC.

5.54.17. GETCAPS Controller Capable Device 1 Register 0x46

Return value for GETCAPS when defining byte is 0x91.

Bits	Name	Access	Width	Reset
[7:3]	reserved	read-only	5	0x0
[2]	multi_lane_support	read-only	1	0x0 (Fixed)
[1]	grp_mgmt_support	read-only	1	0x0 (Fixed)
[0]	hot_join_support	read-only	1	0x1 (Fixed)

multi_lane_support

- 0 The device shall not use MLANE CCC to change ML configuration of other I3C Targets.
- 1 The device may use the MLANE CCC to change ML configuration of other I3C Targets. (Not supported in this IP)
- grp_mgmt_support
 - 0 The device does not support Group Address capabilities.
 - 1 The device supports Group Address handoff or management capabilities. (Not supported in this IP)
- hot join support
 - 0 The device does not support Hot-Join and will NACK any I3C Target Hot-Join requests. (This setting is not supported in this IP when device is configured with secondary controller Capability)
 - 1 The device may support Hot-Join and will ACK an I3C Target Hot-Join request while it is the Active Controller on the Bus.

5.54.18. GETCAPS Controller Capable Device 2 Register 0x47

GETCAPS Controller Capable Device 2.

Bits	Name	Access	Width	Reset
[7:4]	reserved	read-only	6	0x0
[3]	dly_ctrl_handoff	read-only	1	0x1
[2]	deep_sleep_capable	read-write	1	0x0
[1]	ctrl_pass_back	read-write	1	0x0
[0]	ibi_support	read-only	1	0x1 (Fixed)

dly_ctrl_handoff

56

Tied to get acccr auto resp register.

- 0 The device does not need additional time to process Broadcast CCC data from the Active Controller. The Active Controller may expect it to ACK the GETACCCR CCC as part of the Controller Role Handoff procedure even if the device did not initially send a Controller Role Request.
- 1 The device may need additional time processing data from the Controller. The Active Controller shall periodically check the value returned by GETSTATUS with 0x91 to determine if the device is ready to accept the Controller Role.
- deep sleep capable
 - 0 The device shall remain active and continue to monitor the I3C bus to listen for Broadcast CCCs sent by the Active Controller and shall not enter a deep sleep state from which it must be resynchronized by the Active Controller before it can accept the Controller role.
 - 1 The device may enter a deep sleep state during which it may miss some Broadcast DEFTGTS sent by the Active Controller. This will require resynchronization upon re-entering a normal operating state before it can accept the Controller Role.
- ctrl_pass_back
 - 0 The device shall not automatically pass the Controller Role back to the former Active Controller and shall support a Controller Role request from any Controller-Capable device.
 - 1 The device shall automatically pass the Controller Role back to the former Active Controller from which it received its Controller Role. This is done via GETACCCR CCC once it has finished performing any tasks that require it to request and gain the Controller Role. This device shall support a Controller Role request from any Controller-Capable device.
- ibi_support
 - 0 The device does not support IBI and will NACK any I3C Target IBI. This setting is not supported in this IP when device is configured with Secondary Controller Capability.
 - 1 The device may support IBI and will ACK an I3C Target IBI while it is the Active Controller on the Bus.

5.54.19. Set Device Role Register 0x48

Set device role.

Bits	Name	Access	Width	Reset
[7:2]	reserved	read-only	6	0x0
[1]	set_device_role	read-write	1	0x0
[0]	device_role	read-only	1	0x0

set_device_role

Set device role register. Write to this register to reset the device role which can be used when the system loses information on the device role.

- 0 Set device as Target
- 1 Set device as Controller

When device is acting as Target and you want to change the current role to Controller, write 1 to this register. This will initiate Controllership handoff procedure.

When the system loses information on the device role, write 0 to this register and write 1 to set_device_role register (on Controller side) to reset the device role on both the Target and Controller. Refer to Set Device Role register (0x16) in the I3C Controller IP User Guide (FPGA-IPUG-02228).

device_role

Current device role

- 0 Device is acting as Target
- 1 Device is acting as Controller

Example Design

The I3C Target example design allows you to compile, simulate, and test the I3C Target IP on the following Lattice evaluation boards:

- CrossLink-NX PCIe Bridge Board
- CertusPro-NX Evaluation Board
- Avant-E Evaluation Board

6.1. Example Design Supported Configuration

Note: In the tables below, ✓ refers to a checked option in the I3C Target IP example design.

Table 6.1 shows the configuration of the I3C Target IP.

Table 6.2 shows the configuration of the I3C Controller IP version 3.3.0 since it is used as the Controller in this Example Design. Refer to the I3C Controller IP User Guide (FPGA-IPUG-02228) for more information.

Table 6.1. I3C Target IP Configuration Supported by the Example Design

Attribute	I3C Target
General	
User Interface	APB
Address Offset	Address Offset in DWORD
Optional Interface	
Enable Direct FIFO Interface	_
Tx Data Width	8 (Display only)
Rx Data Width	8 (Display only)
I/O Primitive Enable	
Enable internal I/O primitive	✓
Bus Characteristics	
Bus Type	HDR-capable
HDR Mode	HDR-DDR (Display only)
IBI Capable	✓
IBI Payload Size (including MDB)	1
Hot-Join Capable	✓
Maximum Data Speed Limitation	✓
Device Characteristics	
DCR (HEX)	00
Manufacturer ID	414
Part ID	1
Instance ID	1
Additional ID	0
Static Address Enable	✓
Static Address (HEX) ¹	08
Timing Characteristics	
System Clock Frequency (MHz)	25
Write Maximum Data Rate (MHz)	12.5 (Display only)
Clock-to-data Turnaround Delay (ns) (t _{SCO})	0 (Display only)
Read Maximum Data Rate (MHz)	12.5 (Display only)
Maximum Read Turnaround Time (μs)	0 (Display only)

Table 6.2. I3C Controller IP Version 3.3.0 Configuration Supported by the Example Design

Attribute	onfiguration Supported by the Example Design Primary Controller
General	
Device Role	Primary Controller
Secondary Controller Capable	√
IBI Capable	→
Hot-Join Capable	→
Data Rate Mode	HDR-DDR-capable
Register Interface	TIBN DDN capable
Interface	APB
Register Offset	Address offset in DWORD
Optional Interface	
Enable Direct FIFO Interface	_
SCL Clocking	
Bus Clock Domain	ASYNC (Display only)
Use internal clock divider	√
System Clock Frequency (MHz)	25
Internal Clock Frequency (MHz)	25 (Display only)
SCL Pulse width	1
SCL Clock Frequency (MHz)	12.5(Display only)
SCL Clock Period (ns)	80 (Display only)
Open Drain Pulse Width (Number of SCL	3
cycles)	
Open Drain Clock Frequency (MHz)	2.083 (Display only)
Open Drain Pulse width (ns)	239.99 (Display only)
Enable Dynamic I3C – I2C clock switching	✓
I2C SCL Pulse width	13
I2C SCL Clock Frequency (MHz)	0.96 (Display only)
I2C SCL Clock Period (ns)	520 (Display only)
Include IO Primitive	✓
Secondary Controller Tab	
Bus Characteristics	
IBI Payload Size (including MDB)	1
Maximum Data Speed Limitation	✓
Device Characteristics	
DCR (HEX)	00
Manufacturer ID	414
Part ID	1
Instance ID	1
Additional ID	0
Static Address Enable	✓
Static Address (HEX) 1	09
Dynamic Address (HEX) 1	09
Timing Characteristics	
Write Maximum Data Rate (MHz)	12.5 (Display only)
Clock-to-data Turnaround Delay (ns) (t _{SCO})	≤8 (Display only)
Read Maximum Data Rate (MHz)	12.5 (Display only)
Maximum Read Turnaround Time (μs)	0 (Display only)

6.2. Overview of the Example Design and Features

The example design discussed in this section is created using the *RISC-V MC SoC Project* template in the Lattice Propel Design Environment. The generated project includes the following components:

- Processor RISC-V MC w/ PIC/TIMER
- GPIO
- Asynchronous SRAM
- UART Serial port
- PLL
- Glue Logic

I3C Controller and I3C Target are instantiated and connected in the project as shown in Figure 6.1. In this example, I3C Controller and I3C Target are instantiated in the same system. Refer to the I3C Controller IP User Guide (FPGA-IPUG-02228) when generating the I3C Controller IP. In actual hardware or use case, you can connect the I3C Target to external I3C/I2C Controller and Target devices.

Figure 6.1. I3C Target IP in Propel SoC Project

An Embedded C/C++ Project is also created in the Propel software to enable developing and debugging application code for different IP features. I3C Target features can be tested by sending I3C Commands from the I3C Controller to the I3C Target. Runtime configuration of IP and feature testing can be done through C-Code Test Routine. Figure 6.2 shows an example routine for I3C Target Private Write.


```
i3c_target.c X
                                         This function is used for I3C write.
                                        Inis function is used for 12 write.
Passing structure handle: base_addr, buf and len
base_addr: This parameter specify the I3C target IP base address.
buf: This parameter specify the buffer where data is stored.
len: This parameter specify the length of the buffer.
Success or Failure
i3c_target_private_write(handle)
                 @param[in]
            unsigned int i3c target private write(struct i3c target handle t *handle)
                  unsigned int status;
                  unsigned int max_wr_len;
unsigned int wr_len;
unsigned char wr_len_msb;
unsigned char wr_len_lsb;
 92
93
94
95
96
97
98
99
100
101
102
103
104
107
108
109
110
111
112
113
114
115
116
117
                   if((handle->base_addr != ZERO) && (handle->buf != ZERO) && (handle->len != ZERO))
                         i3c_tgt_reg_type_t *target = (i3c_tgt_reg_type_t *) (handle->base_addr);
wr_len_msb =target->max_wr_legth_msb;
wr_len_lsb-target->max_wr_legth_lsb;
max_wr_len=\(wr_len_msb<<EIGHT_BIT)\|wr_len_lsb;
wr_len=handle->len;
if (wr_len>max_wr_len)
{

                                  for( int count=ZERO; count<handle->len;++count)
                                                                                                                                              // loop wr_length times to send wr_length byte of data
                                          target->tx_fifo=handle->buf[count];
                                 ftarget->interrupt_2=TX_FIF0_FULL_TGT;
status = SUCCESS;
                   else
118
119
120
121
                          status = FAILURE:
```

Figure 6.2. Sample C Code Test Routine

6.3. Example Design Components

Figure 6.3. I3C Target Example Design Block Diagram

The I3C Target example design includes the following blocks:

- RISC-V CPU Passes the C Code Test Routine from system memory to system bus. Handles interrupts.
- Memory Contains commands to be done for testing.
- System Bus AHB-Lite systems bus for transfers between memory and IP.
- I3C Target IP IP instance connected to I3C bus (SCL and SDA).
- I3C Controller Device, and other I3C Target Device/s.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

6.4. Generating the Example Design

Refer to the Lattice Propel SDK User Guide for more details in using Propel.

- 1. Launch Lattice Propel Software and set your workspace directory.
- 2. In Propel Software, create a new Lattice SOC Design Project. Click File > New > Lattice SOC Design Project.
- 3. The Create SOC Project window will open.
 - In **Device Select** section, indicate the correct details of the device or board that you are using. In Figure 6.4, device is set to LFCPNX-100-8LFG672C since CertusPro-NX Evaluation Board is used in the hardware testing.
 - In Template Design section, choose RISC-V MC SoC Project. Click Finish.

Figure 6.4. Create SoC Project

- 4. Run Propel Builder by clicking the icon or navigate to **LatticeTools** > **Open Design** in Propel Builder. The Propel Builder will open and load the design template.
- 5. In the **IP Catalog** tab, instantiate the I3C Target IP and the I3C Controller IP. Refer to the Generating and Instantiating the IP section for more details.

6. After generating the IP, the Define Instance window will open. Modify the instance name if needed, then click OK.

Figure 6.5. Define Instance

- 7. Connect the instantiated IPs to the system. Refer to Figure 6.1 for the connections used in this IP. You will need to update other components of the system for clock and reset sources, interrupt, and bus interface.
- 8. Click the cicon or navigate to **Design > Run Radiant** to launch the Lattice Radiant Software.
- 9. Update your constraints file accordingly and generate the programming file.
- 10. In the Lattice Propel software, build your SOC project to generate the system environment needed for the embedded C/C++ project. Select your SOC project then navigate to **Project** > **Build Project**.
- 11. Check the build result from the **Console** view.

Figure 6.6. Build SOC Project Result

12. Generate a new Lattice C/C++ project by navigating to File > New > Lattice C/C++ Project. Update your Project name, click Next. and then click Finish.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Figure 6.7. Lattice C/C++ Design Project

- 13. Select your C/C++ project then click **Project** > **Build**.
- 14. Check the build result from the Console view.

Figure 6.8. Build C/C++ Project Result

15. This environment is now ready for running your tests on the device. Refer to the *Propel Tutorial – Hello World* section of the Lattice Propel SDK User Guide for step-by-step guide.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6.5. Hardware Testing

6.5.1. Hardware Testing Setup

Download the generated bitstream file from the Generating the Example Design section to the CertusPro-NX Evaluation Board through the Lattice Radiant Programmer.

6.5.2. Expected Output

Below is a sample waveform captured via Reveal Inserter and Reveal Analyzer tools. Refer to the relevant sections in the Lattice Radiant Software User Guide for more information on how to use the Reveal Inserter and Reveal Analyzer tools.

Figure 6.9. Sample ENTDAA Sequence Response by I3C Target

7. Designing with the IP

This section provides information on how to generate the IP Core using the Lattice Radiant software and how to run simulation and synthesis. For more details on the Lattice Radiant software, refer to the Lattice Radiant Software User Guide.

7.1. Generating and Instantiating the IP

You can use the Lattice Radiant software to generate IP modules and integrate them into the device architecture. The steps below describe how to generate the I3C Target IP in the Lattice Radiant software.

To generate the I3C Target IP:

- 1. Create a new Lattice Radiant software project or open an existing project.

Figure 7.1. Module/IP Block Wizard

3. In the next **Module/IP Block Wizard** window, customize the selected I3C Target IP using drop-down lists and check boxes. Figure 7.2 shows an example configuration of the I3C Target IP. For details on the configuration options, refer to the IP Parameter Description section.

Figure 7.2. IP Configuration

4. Click Generate. The Check Generated Result dialog box opens, showing design block messages and results as shown in Figure 7.3.

Figure 7.3. Check Generated Result

5. Click **Finish**. All the generated files are placed under the directory paths in the **Create in** and the **Component name** fields shown in Figure 7.1.

7.1.1. Generated Files and File Structure

The generated I3C Target module package includes the closed-box (<Component name>_bb.v) and instance templates (<Component name>_tmpl.v/vhd) that can be used to instantiate the core in a top-level design. An example RTL top-level reference source file (<Component name>.v) that can be used as an instantiation template for the module is also provided. You may also use this top-level reference as the starting template for the top-level for their complete design. The generated files are listed in Table 7.1.

Table 7.1. Generated File List

Attribute	Description
<component name="">.ipx</component>	This file contains the information on the files associated to the generated IP.
<component name="">.cfg</component>	This file contains the parameter values used in IP configuration.
component.xml	Contains the ipxact: component information of the IP.
design.xml	Documents the configuration parameters of the IP in IP-XACT 2014 format.
rtl/ <component name="">.v</component>	This file provides an example RTL top file that instantiates the module.
rtl/ <component name="">_bb.v</component>	This file provides the synthesis closed-box.
misc/ <component name="">_tmpl.v misc /<component name="">_tmpl.vhd</component></component>	These files provide instance templates for the module.
eval/constraint.pdc	This file provides information on how to constrain this IP in your design. Refer to Timing Constraints section on how to use this file.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

7.2. Design Implementation

Completing your design includes additional steps to specify analog properties, pin assignments, and timing and physical constraints. You can add and edit the constraints using the Device Constraint Editor or by manually creating a PDC File.

Post-Synthesis constraint files (.pdc) contain both timing and non-timing constraint.pdc source files for storing logical timing/physical constraints. Constraints that are added using the Device Constraint Editor are saved to the active .pdc file. The active post-synthesis design constraint file is then used as input for post-synthesis processes.

Refer to the relevant sections in the Lattice Radiant Software User Guide for more information on how to create or edit constraints and how to use the Device Constraint Editor.

7.3. Timing Constraints

You need to provide proper timing and physical design constraints to ensure that your design meets the desired performance goals on the FPGA. Add the content of the following IP constraint file to your design constraints: <IP_Instance_Path>/<IP_Instance_Name>/eval/constraint.pdc.

The constraint file has been verified during IP evaluation with the IP instantiated directly in the top-level module. You can modify the constraints in this file with thorough understanding of the effect of each constraint.

To use this constraint file, copy the content of constraint.pdc to the top-level design constraint for post-synthesis.

Refer to Lattice Radiant Timing Constraints Methodology (FPGA-AN-02059) for details on how to constraint your design.

7.4. Physical Constraints

When Enable I/O primitive option is checked, ensure that PULLMODE of scl_io and sda_io are set to I3C. You can check this in **Tools** > **Device Constraint Editor**. If not yet set, you can change the PULLMODE to I3C in the *Device Constraint Editor* or you can add the following constraints to your constraint file:

```
ldc_set_port -iobuf {PULLMODE=I3C} [get_ports scl_io]
ldc set port -iobuf {PULLMODE=I3C} [get ports sda io]
```

7.5. Running Functional Simulation

You can run functional simulation after the IP is generated.

To run functional simulation:

1. Click the button located on the **Toolbar** to initiate the **Simulation Wizard** shown in Figure 7.4.

Figure 7.4. Simulation Wizard

2. Click **Next** to open the **Add and Reorder Source** window as shown in Figure 7.5.

Figure 7.5. Add and Reorder Source

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3. Click **Next**. The **Parse HDL files for simulation** window is shown. Confirm that Simulation Top Module is *tb top*.

Figure 7.6. Parse HDL Files for Simulation

Click Next. The Summary window is shown.

Figure 7.7. Summary

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

5. Click **Finish** to run the simulation. The waveform in Figure 7.8 shows an example simulation result.

Figure 7.8. Simulation Waveform

Appendix A. Resource Utilization

Table A.1 shows the I3C Target resource utilization using the LFCPNX-100-7ASG256C device using Synplify Pro of Lattice Radiant Software 2023.2. Default configuration is used, and some attributes are changed from default value to show the effect on the resource utilization.

Table A.1. Resource Utilization for LFCPNX-100-7ASG256C

Configuration	clk Fmax (MHz)	Registers	LUTs	EBRs	DSPs
Default	100.03	766	1829	2	0
IBI Capable = False, Hot-Join Capable = False, Others = Default	141.30	789	1927	2	0
Bus Type = HDR Capable, Others = Default	119.80	924	2489	2	0
Bus Type = HDR Capable, IBI Capable = False, Hot-Join Capable = False, Others = Default	144.70	829	1907	2	0

Notes:

- 1. Fmax is generated when the FPGA design only contains the I3C Target module, and the target frequency is 25 MHz. These values may be reduced when user logic is added to the FPGA design.
- The distributed RAM utilization is accounted for in the total LUT4s utilization. The actual LUT4 utilization is distribution among logic, distributed RAM, and ripple logic.

Table A.2 shows the I3C Target resource utilization using the LIFCL-40-7BG256I device using Synplify Pro of Lattice Radiant Software 2023.2. Default configuration is used, and some attributes are changed from default value to show the effect on the resource utilization.

Table A.2. Resource Utilization for LIFCL-40-7BG256I

Configuration	clk Fmax (MHz)	Registers	LUTs	EBRs	DSPs
Default	133.7	767	1817	2	0
IBI Capable = False, Hot-Join Capable = False, Others = Default	147.0	697	1470	2	0
Bus Type = HDR Capable, Others = Default	133.4	924	2489	2	0
Bus Type = HDR Capable, IBI Capable = False, Hot-Join Capable = False, Others = Default	156.5	829	1907	2	0

Notes:

- 1. Fmax is generated when the FPGA design only contains the I3C Target module, and the target frequency is 25 MHz. These values may be reduced when user logic is added to the FPGA design.
- 2. The distributed RAM utilization is accounted for in the total LUT4s utilization. The actual LUT4 utilization is distribution among logic, distributed RAM, and ripple logic.

Table A.3 shows the I3C Target utilization using the LAV-AT-E70-1LFG676I device using Synplify Pro of Lattice Radiant Software 2023.2. Default configuration is used, and some attributes are changed from default value to show the effect on the resource utilization.

Table A.3. Resource Utilization for LAV-AT-E70-1LFG676I

Configuration	clk Fmax (MHz)	Registers	LUTs	EBRs	DSPs
Default	249.5	793	1861	2	0
IBI Capable = False, Hot-Join Capable = False, Others = Default	215.5	696	1463	2	0
Bus Type = HDR Capable, Others = Default	162.9	939	2492	2	0
Bus Type = HDR Capable, IBI Capable = False, Hot-Join Capable = False, Others = Default	173.7	817	1856	2	0

Notes:

- 1. Fmax is generated when the FPGA design only contains the I3C Target module, and the target frequency is 25 MHz. These values may be reduced when user logic is added to the FPGA design.
- 2. The distributed RAM utilization is accounted for in the total LUT4s utilization. The actual LUT4 utilization is distribution among logic, distributed RAM, and ripple logic.

Table A.4 shows the I3C Target utilization using the LN2-CT-20-1CBG484I device using Synplify Pro of Lattice Radiant Software 2024.2. Default configuration is used, and some attributes are changed from default value to show the effect on the resource utilization.

Table A.4. Resource Utilization for LN2-CT-20-1CBG484I

Configuration	clk Fmax (MHz)	Registers	LUTs	EBRs	DSPs
Default	200.00	937	1997	2	0
IBI Capable = False, Hot-Join Capable = False, Others = Default	183.79	839	1699	2	0
Bus Type = HDR Capable, Others = Default	192.35	1101	2669	2	0
Bus Type = HDR Capable, IBI Capable = False, Hot-Join Capable = False, Others = Default	172.38	1050	2349	2	0

Notes:

- 1. Fmax is generated when the FPGA design only contains the I3C Target module, and the target frequency is 25 MHz. These values may be reduced when user logic is added to the FPGA design.
- 2. The distributed RAM utilization is accounted for in the total LUT4s utilization. The actual LUT4 utilization is distribution among logic, distributed RAM, and ripple logic.

References

- Avant-E web page
- Avant-G web page
- Avant-X web page
- Certus-N2 web page
- Certus-NX web page
- CertusPro-NX web page
- CrossLink-NX web page
- iCE40 UltraPlus web page
- MachXO5-NX web page
- Lattice Radiant Software web page
- Lattice Solutions IP Cores web page
- Lattice Propel Design Environment web page
- MIPI I3C Specification web page
- I3C Device Characteristics Register web page
- CrossLink-NX PCIe Bridge Board web page
- Avant-E Evaluation Board web page
- CertusPro-NX Evaluation Board web page
- AMBA 3 AHB-Lite Protocol v1.0 Specification
- AMBA 3 APB Protocol v1.0 Specification
- Lattice Memory Mapped Interface and Lattice Interrupt Interface (FPGA-UG-02039)
- Lattice Radiant Timing Constraints Methodology (FPGA-AN-02059)
- I3C Controller IP User Guide (FPGA-IPUG-02228)
- I3C Target IP Release Notes (FPGA-RN-02018)
- Lattice Insights web page for Lattice Semiconductor training courses and learning plans

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport. For frequently asked questions, please refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

Revision History

Revision 1.5, IP v.3.6.0, July 2025

Section	Change Summary
All	Updated the IP version information on the cover page.
Introduction	In Table 1.1. Summary of the I3C Target IP:
	Updated Supported FPGA Family to Supported Devices and rearranged devices order.
	 Added Mach-NX and MachXO3D device families to Supported Devices.
	Removed <i>Targeted Devices</i> .
	Updated Lattice Implementation.
	In Table 1.3. Ordering Part Number:
	Updated Single Machine Annual to Single Seat Annual.
	Updated Multi-Site Perpetual to Single Seat Perpetual.

Revision 1.4, IP v.3.5.0, December 2024

Section	Change Summary
All	Added the IP version information on the cover page.
Introduction	 Updated Table 1.1. Summary of the I3C Target IP: Added the Certus-NX-RT, CertusPro-NX-RT, Certus-N2 device family to Supported FPGA Family. Removed IP Version. Added IP Changes and Resources. Updated Targeted Devices and Lattice Implementation. Replaced the IP Validation Summary section with the IP Support Summary section. Added the Certus-N2 OPNs to Table 1.3. Ordering Part Number. Added the Hardware Support section. Made editorial fixes.
Example Design	Added an introductory paragraph to list the evaluation boards used for the example design.
Designing with the IP	Updated Figure 7.1. Module/IP Block Wizard, Figure 7.2. IP Configuration, and Figure 7.3. Check Generated Result.
Resource Utilization	 Added resource utilizations for the Lattice Radiant software version 2024.2. Made editorial fixes.
References	 Added the Certus-N2 web page, CrossLink-NX PCIe Bridge Board web page, Avant-E Evaluation Board web page, CertusPro-NX Evaluation Board web page, and I3C Target IP Release Notes (FPGA-RN-02018). Removed Lattice Radiant Software 2023.2 User Guide.

Revision 1.3, June 2024

Section	Change Summary
All	 Removed <i>Core</i> from the document title. Made editorial fixes. Replaced <i>HDR mode</i> with <i>HDR-DDR</i> mode. Updated the term <i>CCC command</i> or <i>CCC code</i> to <i>CCC</i>.
Abbreviations in This Document	 Replaced acronyms with abbreviations in this section. Added the following abbreviations: Bus Characteristics Register (BCR) Cyclic Redundancy Check (CRC) Device Characteristics Register (DCR) Input/Output (I/O) Microcontroller (MC) Mobile Industry Processor Interface (MIPI)

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Section	Change Summary
	Negative Acknowledgement (NACK)
	Programmable Interrupt Controller (PIC)
	Phase-Locked Loop (PLL)
	Reduced Instruction Set Computer Five (RISC-V)
	Single Data Rate (SDR)
	System on Chip (SoC)
Introduction	Moved introductory paragraph in the 1. Introduction section to the newly added 1.1. Overview of the
	IP section and updated the heading numbers of remaining sections accordingly.
	Updated Table 1.1. Summary of the I3C Target IP.
	Updated the information in the 1.3. Features section.
	Moved the content from previous 3.1. Licensing the IP and 3.6. IP Evaluation sections to the newly
	added 1.4. Licensing and Ordering Information section and updated its content.
	Moved the content from previous 4. Ordering Part Number section to the 1.4.1. Ordering Part
	Number section and updated its content.
	 Moved the content from previous 3.5. Hardware Validation section to the newly added 1.5. IP Validation Summary section and updated its content.
	Added the 1.6. Minimum Device Requirements section and updated the heading numbers of remaining sections accordingly.
	Renamed the previous 1.3. Conventions section to 1.7. Naming Conventions and removed the Attribute information.
Functional Description	Renamed the previous 2.1 Overview section to 2.1. IP Architecture Overview and updated its content.
	Added the 2.2. Clocking section and updated the heading numbers of remaining sections accordingly.
	Renamed the previous 2.2 Reset Propagation section to 2.3. Reset and updated its content.
	Added the 2.4. User Interfaces section and updated the heading numbers of remaining sections
	accordingly.
	Removed the introductory paragraph and previous <i>CCCs Permitted in HDR Mode</i> subsection title in the 2.13. HDR-DDR Support section.
IP Parameter Description	Moved the content from previous 2.13. Attributes Summary section to this newly added section.
	Updated the following tables:
	Table 3.1. General Attributes
	Table 3.2. IP Parameter Settings for Example Use Cases
Signal Description	Moved the content from previous 2.10. Signal Description section to this section.
	Updated the descriptions of the following signals in Table 4.1. Ports Description:
	• clk_i
	• rst_n_i
	Updated the <i>Notes</i> for Table 4.1. Ports Description.
Register Description	Moved the content from previous 2.12. Register Description section to this section.
	Added a paragraph about APB or AHB-Lite interface.
Example Design	Added this section and updated the heading numbers of remaining sections accordingly.
Designing with the IP	Moved the content from previous 3.2. Generation and Synthesis section to the 7.1. Generating and
Designing with the ii	Instantiating the IP section and updated its content.
	Added the 7.2. Design Implementation section and updated the heading numbers of remaining
	sections accordingly.
	Moved the content from previous 3.4. Constraining the IP section to the 7.3. Timing Constraints section and updated its content.
	Added the 7.4. Physical Constraints section and updated the heading numbers of remaining sections
	accordingly.
	Updated the contents including all figures in the 7.5. Running Functional Simulation section.
References	Added the following references:
- =:=::===	
	Lattice Solutions for IP Cores web page
	 Lattice Solutions for IP Cores web page Lattice Propel Design Environment web page

Section	Change Summary
	I3C Device Characteristics Register web page
	Lattice Radiant Software 2023.2 User Guide
	AMBA 3 AHB-Lite Protocol v1.0 Specification
	AMBA 3 APB Protocol v1.0 Specification
	Lattice Memory Mapped Interface and Lattice Interrupt Interface (FPGA-UG-02039)
	Lattice Radiant Timing Constraints Methodology (FPGA-AN-02059)
	I3C Controller IP User Guide (FPGA-IPUG-02228)

Revision 1.2, December 2023

Section	Change Summary
All	 Changed the document name from I3C Target IP Core - Lattice Radiant Software to I3C Target IP Core. Updated the content to better suit second person point of view. Minor adjustments to ensure the document is consistent with Lattice Semiconductor's inclusive
D: 1:	language policy.
Disclaimers	Updated boilerplate.
Functional Description	 Added additional in paragraph of 2.10.2 CCC for Secondary Controller Support. Corrected the spelling for Target Reset Action in 2.14.37 Target Reset Action 2 0x2E. Updated the content for 2.14.53 HDR-DDR Abort Configuration 0x54. Removed device_role in paragraph of 2.14.54.14 Controller Role Handoff 0x43, and in Table 2.73. Changed the bit and width for reserved in Table 2.73.
	Added 2.14.54.19 Set Device Role 0x48 section, and Table 2.78.
IP Core Generation, Simulation, and Validation	 Removed the sentence When the IP Core used in Lattice FPGA devices built on the Lattice Nexus™ platform from the 3.1 Licensing the IP section. Updated Figure 3.1. Added new attribute eval/constraint.pdc to Table 3.1. Added 3.4 Constraining the IP section. Updated the header number for 3.5 Hardware Validation, and 3.6 IP Evaluation sections.
Ordering Part Number	Updated Table 4.1 to add new part numbers, removed obsolete part numbers, and updated the license types.
Resource Utilization	 Specified the device name in captions of Table A.1, and Table A.2. Added sentences Table A.1 shows the I3C Target resource utilization using LFCPNX-100-7ASG256C device using Synplify Pro of Lattice Radiant Software 2023.2, and Table A.2 shows the I3C Target resource utilization using LIFCL-40-7BG256I device using Synplify Pro of Lattice Radiant Software 2023.2 to the Appendix A. Resource Utilization section. Updated the configurations and its corresponding clk Fmax, Registers, and LUTs values in Table A.1, and Table A.2. Updated the table notes to change from SDR module to I3C Controller module, and the target frequency from 200 Mhz to 25 Mhz for Table A.1, and Table A.2. Added Table A.3 to the Appendix A. Resource Utilization section.
References	 Updated the hyperlink to CrossLink-NX web page. Added links to Lattice Avant-G, Lattice Avant-X, and Lattice Insights web pages.

Revision 1.1, July 2023

Section	Change Summary
Acronyms in This Document	Added AHB, APB, GUI, HDL, and LSE and their definitions.
Introduction	 Added sentence The Lattice I3C IP Core is designed to comply with the MIPI I3C specification in Introduction section. Added Resource column in Table 1.1. Quick Facts.
	Added bullet information _io are bidirectional signals in Signal Names section.

Section	Change Summary
	Added Attribute section.
Functional Description	Updated Figure 2.1. I3C Target IP Core Functional Diagram.
	 Added Reset Propagation section and moved Common Command Codes section before I3C Transfers in SDR Mode section.
	 Replaced Broadcast with Target in Figure 2.14. HDR-DDR Direct Set CCC and Figure 2.15. HDR-DDR Direct Get CCC.
	Updated Table 2.5 Ports Description for below:
	• Added signal names tgt_rst_o, ext_scl_i, ext_sda_i, ext_sda_o, ext_sda_oe, Direct FIFO Interface8, tx_valid_i, tx_ready_o, tx_data_i [7:0], rx_valid_o, rx_ready_i, and rx_data_o.
	• Deleted signal names <i>Immi_error_o</i> and <i>tgt_rst_o</i> .
	• Added table notes For more details on target reset, see Section 5.1.11 of the MIPI Specification for I3C. Bidirectional I3C interface is only available when internal I/O primitives are enabled in IP
	configuration GUI. External I/O I3C interface is only available when internal I/O primitives are disabled in IP configuration GUI. Direct FIFO interface is only available when enabled in IP configuration GUI.
	Updated Table 2.6 Attributes Summary for below:
	 Replaced default values of User Interface and Address Offset from LMMI and Bytes to APB and DWORD.
	 Added attributes Optional Interface, Enable Direct FIFO Interface, Tx Data Width, Rx Data Width, I/O Primitive Enable, and Enable internal I/O primitive.
	 Replaced Selectable values of System Clock Frequency (MHz) from 125 to 50.
	 Deleted Selectable values of Write Maximum Data Rate (MHz), Clock-to-data Turnaround Delay (ns) (tSCO), Read Maximum Data Rate (MHz), Maximum Read Turnaround Time (us).
	 Replaced Reset information of [3] Bits from 0x1 to 0x1 – If Target is Hot-Join capable 0x0 – If Target is not Hot-Join capable and Reset information of [0] Bits from 0x1 to 0x1 – If Target is IBI capable 0x0 – If Target is not IBI capable, and deleted table note in Table 2.10. Events Command Enable.
	• Replaced Reset information of [3] Bits from 0x1 to 0x1 – If Target is Hot-Join capable 0x0 – If Target is not Hot-Join capable, and Reset information of [0] from 0x1 to 0x1 – If Target is IBI capable 0x0 – If Target is not IBI capable in Table 2.11. Events Command Device Configuration.
	• Added Reset information of [0] Bits as – SDR mode only 0x1 – SDR and HDR-DDR mode is supported in Table 2.31. Device Capabilities Byte1.
	Replaced Names from hdr_ddr_abort_crc, hdr_ddr_wr_abort to hdr_ddr_abort_crc_caps, hdr_ddr_wr_abort_caps and replaced Reset information with 0x0 – If only SDR capable, 0x1 – if HDR DDR capable and 0x0 – If only SDR capable, 0x1 – if HDR DDR capable.
	Added
	 Interrupt Status 5 0x3C, Interrupt Status 5 Enable 0x3D, and Interrupt Status 5 Set 0x3E sections. Updated the title of HDR-DDR Abort Configuration 0x54 section from HDR-DDR Abort Configuration 0x54 set by Controller via ENDXFER CCC and added sentence HDR-DDR Abort Configuration set by Controller via ENDXFER CCC.
	Added sentences I3C Target registers are accessible when I3C Controller IP is configured with Secondary-Controller Capability, and The following section describes I3C Target registers that have changes in reset value and/or definition when used for Secondary Controller. Registers not included in this section retain the definitions as when device is configured as I3C Target-only in Secondary Controller Registers section.
	Added Dynamic Address 0x02 and Maximum Write Data Speed (MaxWr) 0x0C section.
	 Replaced Reset information of device_role from 0x0 with 0x0 – Device is Target-only 0x1 – Device is Controller Capable and Reset information of advanced_caps from 0x0 to 0x1 (Fixed) in Table 2.61. Bus Characteristics Register.
	Added sentence Fixed to 1 when device is configured with Secondary-Controller capability in Bus Characteristics Register 0x00 section.
	• Replaced Reset information of hj_enec from 0x1 with 0x1 – If Target is Hot-Join capable 0x0 – If Target is not Hot-Join capable and Reset information of advanced_caps from 0x1 to 0x1 – If Target
	is IBI capable 0x0 – If Target is not IBI capable in Table 2.62. Events Command Enable.
	 Deleted sentences Reset value is 1 if Target is configured with Hot-Join capability, 0 otherwise and Reset value is 1 if Target is configured with IBI capability, 0 otherwise in Events Command Enable

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Section	Change Summary
	 0x03 section. Deleted sentences Reset value is 1 if Target is configured with Hot-Join capability, 0 otherwise. Reset value is 1 if Target is configured with Secondary-Controller Capability, 0 otherwise and Reset value is 1 if Target is configured with IBI capability, 0 otherwise in Events Command Device Configuration 0x04 section.
	• Replaced Reset information of hj_cap, cr_cap, ibi_cap with 0x1 – If Target is Hot-Join capable 0x0 – If Target is not Hot-Join capable, 0x1 – If Target is Secondary Controller Capable 0x0 – If Target is not Secondary Controller Capable, 0x1 – If Target is IBI capable 0x0 – If Target is not IBI capable in Table 2.63. Events Command Device Configuration.
	Replaced name from reserved to device_role_changed and access from read-only to read-write in Table 2.67. Interrupt Status 4
	Replaced name from reserved to device_role_changed_en and access from read-only to read-write in Table 2.68. Interrupt Status 4 Enable.
	Added device_role_changed information in Interrupt Status 4 0x39 section.
	Replaced Access from read-write to write-only in Table 2.69. Interrupt Status 4 Set.
	Added LSB to title of GETSTATUS Controller-Capable Device LSB 0x45 section.
IP Core Generation, Simulation, and Validation	Added Constraining the IP and IP Evaluation sections.
Ordering Part Number	Added Avant-E part numbers in Table 4.1. Ordering Part Numbers.
Reference	Added links for CrossLink-NX, Certus-NX, CertusPro-NX, MachXO5-NX, iCE-40 UltraPlus, Avant-E web pages.

Revision 1.0, April 2023

Section	Change Summary
All	Initial release.

www.latticesemi.com