
 

Object Classification: Video Stream Analysis 
Reference Design 

 

Reference Design 

FPGA-RD-02265-1.2 

November 2024 

 



Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             2 

Disclaimers 
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products 
for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The 
information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered 
inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information.  Products sold by Lattice have 
been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the 
same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS 
ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE 
PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK 
USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE 
REDUDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF 
FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and 
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice. 
 
 
  

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             3 

Contents 
Contents ................................................................................................................................................................................ 3 
Acronyms in This Document ................................................................................................................................................. 6 
1. Introduction .................................................................................................................................................................. 7 

1.1. Design Process Overview .................................................................................................................................... 7 
2. Hardware and Software Requirements ........................................................................................................................ 8 

2.1. Hardware Requirements ..................................................................................................................................... 8 
2.2. Software Requirements ....................................................................................................................................... 8 

3. Setting Up the Basic Environment ................................................................................................................................ 9 
3.1. Setting Up the Linux Environment for Machine Training .................................................................................... 9 

3.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU ............................... 9 
3.1.2. Setting Up the Environment for Training and Model Freezing Scripts ......................................................... 11 
3.1.3. Creating a New Environment with Python 3.6 ............................................................................................. 12 
3.1.4. Installing the TensorFlow v1.15 .................................................................................................................... 12 
3.1.5. Installing the Python Package ....................................................................................................................... 13 

4. Code Directory Structure ............................................................................................................................................ 15 
5. Preparing the Training Code ....................................................................................................................................... 16 

5.1. Neural Network Architecture ............................................................................................................................ 16 
5.1.1. Convolutional Layer ...................................................................................................................................... 17 
5.1.2. Activation Layer (Relu) ................................................................................................................................. 18 
5.1.3. Pooling Layer ................................................................................................................................................ 18 
5.1.4. Batch Normalization Layer ........................................................................................................................... 18 
5.1.5. Dropout Layer ............................................................................................................................................... 18 
5.1.6. Fully-connected layer ................................................................................................................................... 19 
5.1.7. Quantization ................................................................................................................................................. 19 

5.2. Object Classification: Video Stream Analysis Network Output ......................................................................... 19 
5.2.1. Training Code Overview ............................................................................................................................... 20 
5.2.2. Model Configuration .................................................................................................................................... 20 
5.2.3. Model Building ............................................................................................................................................. 22 
5.2.4. Training ......................................................................................................................................................... 26 

5.3. Training from Scratch and/or Transfer Learning ............................................................................................... 27 
6. Creating Frozen File .................................................................................................................................................... 30 

6.1. Generating the Frozen .pb File .......................................................................................................................... 30 
7. Creating Binary File with sensAI ................................................................................................................................. 31 
8. Hardware (RTL) Implementation ................................................................................................................................ 37 

8.1. Top Level Information ....................................................................................................................................... 37 
8.1.1. Block Diagram ............................................................................................................................................... 37 
8.1.2. Architecture .................................................................................................................................................. 37 
8.1.3. System Address Map .................................................................................................................................... 38 
8.1.4. Operational Flow .......................................................................................................................................... 38 

9. Creating FPGA Bitstream file ...................................................................................................................................... 39 
References .......................................................................................................................................................................... 41 
Technical Support Assistance ............................................................................................................................................. 42 
Revision History .................................................................................................................................................................. 43 
 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             4 

Figures 
Figure 1.1. Lattice Machine Learning Design Flow ...................................................................................................................... 7 
Figure 2.1. Top View of Lattice Avant-AT-E Evaluation Board ..................................................................................................... 8 
Figure 3.1. Download CUDA Repo ............................................................................................................................................... 9 
Figure 3.2. Install CUDA Repo ...................................................................................................................................................... 9 
Figure 3.3. Fetch Keys .................................................................................................................................................................. 9 
Figure 3.4. Update Ubuntu Packages Repositories .................................................................................................................... 10 
Figure 3.5. CUDA Installation ..................................................................................................................................................... 10 
Figure 3.6. cuDNN Library Installation ....................................................................................................................................... 10 
Figure 3.7. Anaconda Installation .............................................................................................................................................. 11 
Figure 3.8. Accept License Terms ............................................................................................................................................... 11 
Figure 3.9. Confirm/Edit Installation Location ........................................................................................................................... 11 
Figure 3.10. Launch/Initialize Anaconda Environment on Installation Completion .................................................................. 11 
Figure 3.11. TensorFlow Installation .......................................................................................................................................... 12 
Figure 3.12. TensorFlow Installation Confirmation ................................................................................................................... 12 
Figure 4.1. Training Code Directory Structure ........................................................................................................................... 15 
Figure 5.1. Basic Building Block .................................................................................................................................................. 16 
Figure 5.2. Training Code Flow Diagram .................................................................................................................................... 20 
Figure 5.3. Code Snippet – Input Image Size Configuration....................................................................................................... 20 
Figure 5.4. Code Snippet – Anchors per Grid Config #1 (Grid Sizes) .......................................................................................... 21 
Figure 5.5. Code Snippet – Anchors per Grid Config #2 ............................................................................................................. 21 
Figure 5.6. Code Snippet – Training Parameters ....................................................................................................................... 22 
Figure 5.7. Code Snippet – Filter Values .................................................................................................................................... 22 
Figure 5.8. Code Snippet – Forward Graph of model ................................................................................................................ 23 
Figure 5.9. Grid Output Visualization ......................................................................................................................................... 23 
Figure 5.10. Code Snippet – Interpret Output Graph ................................................................................................................ 24 
Figure 5.11. Code Snippet – Bbox Loss ...................................................................................................................................... 25 
Figure 5.12. Code Snippet – Confidence Loss ............................................................................................................................ 25 
Figure 5.13. Code Snippet – Class Loss ...................................................................................................................................... 26 
Figure 5.14. Code Snippet – Training ......................................................................................................................................... 26 
Figure 5.15. Training Code Snippet for Mean and Scale ............................................................................................................ 27 
Figure 5.16. Training Code Snippet for Dataset Path ................................................................................................................. 27 
Figure 5.17. Training Input Parameter ....................................................................................................................................... 28 
Figure 5.18. TensorBoard ........................................................................................................................................................... 29 
Figure 5.19. Example of Checkpoint Data Files in Log Folder .................................................................................................... 29 
Figure 6.1. Frozen .pb File .......................................................................................................................................................... 30 
Figure 7.1. sensAI – Home Screen.............................................................................................................................................. 31 
Figure 7.2. sensAI – Select Framework, Device, and Network File ............................................................................................ 32 
Figure 7.3. sensAI – Select Image Data File ................................................................................................................................ 32 
Figure 7.4. sensAI – Update Project Settings (1) ........................................................................................................................ 33 
Figure 7.5. sensAI – Update Project Settings (2) ........................................................................................................................ 34 
Figure 7.6. sensAI – Update Project Settings (3) ........................................................................................................................ 34 
Figure 7.7. Analyze Project ........................................................................................................................................................ 35 
Figure 7.8. Compile Project ........................................................................................................................................................ 36 
Figure 7.9. Firmware files for ML Engine 1 and 2 ...................................................................................................................... 36 
Figure 8.1. Top Block Diagram of Avant Traffic Demo with Lattice Avant-AT-E Evaluation Board (Rev D) ............................... 37 
Figure 9.1. Lattice Radiant Software .......................................................................................................................................... 39 
Figure 9.2. Lattice Radiant Software – Open Project ................................................................................................................. 39 
Figure 9.3. Lattice Radiant Software – Bitstream Generation Export Report ............................................................................ 40 
 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             5 

Tables 
Table 5.1. Detection Model ....................................................................................................................................................... 17 
Table 8.1. ML Engine 1 and ML Engine 2 Address Map ............................................................................................................. 38 
Table 8.2. RISC-V Core Address Map ......................................................................................................................................... 38 
 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             6 

Acronyms in This Document 
A list of acronyms used in this document. 

Acronym Definition 
CNN Convolutional Neural Network 
FPGA Field-Programmable Gate Array 
LED Light-emitting diode 
ML Machine Learning 
NN Neural Network 
NNC Neural Network Compiler 
SD Secure Digital 
USB Universal Serial Bus 

 

 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             7 

1. Introduction 
This document describes how to set up and run the Object Classification: Video Stream Analysis Reference Design, which 
uses the Lattice Avant™-AT-E Evaluation Board Rev. D. 

1.1. Design Process Overview 
The design process involves the following steps: 
1. Training the model 

• Setting up the basic environment 
• Preparing the dataset 
• Training the machine 

• Training the machine and creating the checkpoint data  
• Creating the frozen file (*.pb) 

2. Compiling Neural Network: Creating the filter and firmware binary files using Lattice sensAI 6.0  
3. FPGA Design: Creating the FPGA bitstream file. 
4. FPGA bitstream and quantized weights and instructions: Flashing the binary and bitstream files to the Lattice Avant-AT-E 

Evaluation Board. 

NN Models

Training 
Dataset

Training 
Scripts

NN IP

System 
Interface

Lattice FPGA

NN Compiler

Quantized Weights 
and InstructionsTrained 

Model

FPGA 
Bitstream

FPGA ToolsFPGA 
Design

Training Model

ML Frameworks

 
Figure 1.1. Lattice Machine Learning Design Flow 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             8 

2. Hardware and Software Requirements  

2.1. Hardware Requirements 
Figure 2.1 shows the hardware requirement for the Lattice Avant-AT-E Evaluation Board Rev. D. 
 

SPI Flash
8-Segment 

LEDs
PMOD 

Connectors

Power LEDs

LPDDR4 Memory

Platform Manager 2

Main Power Switch

12 V DC Power Jack

FMC2 ConnectorPush Buttons

I/O Extended Area

DIP Switch

Avant FPGA

FMC1 Connector

FTDI Chip

Mini USB

 
Figure 2.1. Top View of Lattice Avant-AT-E Evaluation Board 

2.2. Software Requirements 
• Lattice Radiant™ software version 2024.1. Refer to http://www.latticesemi.com/latticeradiant. 
• Lattice Radiant Programmer version 2024.1. Refer to http://www.latticesemi.com/latticeradiant. 
• Lattice sensAI Compiler v 7.0 – Refer to 

https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler. 

http://www.latticesemi.com/legal
http://www.latticesemi.com/latticeradiant
http://www.latticesemi.com/latticeradiant
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             9 

3. Setting Up the Basic Environment 

3.1. Setting Up the Linux Environment for Machine Training 
This section describes the steps for NVIDIA GPU drivers and/or libraries for the 64-bit Ubuntu 16.04 operating system. 
NVIDIA library and TensorFlow version are dependent on the PC and Ubuntu/Windows version. 

3.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU 

3.1.1.1. Installing the CUDA Toolkit 
To install the CUDA toolkit, run the following commands in the order specified below: 

$ curl -O 
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-
repo-ubuntu1604_10.1.105-1_amd64.deb 

 
Figure 3.1. Download CUDA Repo 

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb 

 
Figure 3.2. Install CUDA Repo 

$ sudo apt-key adv --fetch-keys 
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.
pub 

 

Figure 3.3. Fetch Keys 

$sudo apt-get update 

http://www.latticesemi.com/legal
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             10 

 
Figure 3.4. Update Ubuntu Packages Repositories 

$ sudo apt-get install cuda-9-0 

 

Figure 3.5. CUDA Installation 

3.1.1.2. Installing the cuDNN 
To install the cuDNN: 
1. Create Nvidia developer account: https://developer.nvidia.com. 
2. Download cuDNN lib: https://developer.nvidia.com/compute/machine-

learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1 
3. Execute below commands to install cuDNN 

$ tar xvfcudnn-9.0-linux-x64-v7.1.tgz  
$ sudo cp cuda/include/cudnn.h/usr/local/cuda/include 
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 

4. $ sudochmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn* 

 
Figure 3.6. cuDNN Library Installation 

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             11 

3.1.2. Setting Up the Environment for Training and Model Freezing Scripts 
This section describes the environment setup information for training and model freezing scripts for 64-bit Ubuntu 16.04. 
Anaconda provides one of the easiest ways to perform machine learning development and training on Linux. 

3.1.2.1. Installing the Anaconda Python 
To install the Anaconda and Python 3: 
1. Go to https://www.anaconda.com/products/individual#download-section 
2. Download Python3 version of Anaconda for Linux. 
3. Run the command below to install the Anaconda environment: 

$  sh  Anaconda3-2019.03-Linux-x86_64.sh 

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release 

 

Figure 3.7. Anaconda Installation 

4. Accept the license. 

 

Figure 3.8. Accept License Terms 

5. Confirm the installation path. Follow the instructions on the screen to change the default path. 

 

Figure 3.9. Confirm/Edit Installation Location 

6. After installation, enter No as shown in Figure 3.10.  

 
Figure 3.10. Launch/Initialize Anaconda Environment on Installation Completion 

http://www.latticesemi.com/legal
https://www.anaconda.com/products/individual%23download-section


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             12 

3.1.3. Creating a New Environment with Python 3.6 
1. Activate the base conda environment using the below command. 

$ source <conda directory>/bin/activate 

2. To create a new environment run the below command. 
$ conda create -n <Name of New environment> python=3.6 

3. Activate the newly created environment. 
$ conda activate <Name of New environment> 

3.1.4. Installing the TensorFlow v1.15 
1. Install the TensorFlow by running the command below: 

$ conda install tensorflow-gpu==1.15 

 

Figure 3.11. TensorFlow Installation 

2. After installation, enter Y as shown in Figure 3.12. 

 
Figure 3.12. TensorFlow Installation Confirmation 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             13 

3.1.5. Installing the Python Package 
To install the Python package: 
1. Install Easydict by running the command below: 

$ conda install –c conda-forge easydict 

 
Figure 3.14. Easydict Installation 

2. Install Joblib by running the command below: 
$ conda install joblib 

 
Figure 3.15. Joblib Installation 

3. Install Keras by running the command below: 
$ conda install keras 

 
Figure 3.16. Keras Installation 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             14 

4. Install OpenCV by running the command below: 
$ conda install opencv 

 
Figure 3.17. OpenCV Installation 

5. Install Pillow by running the command below: 
$ conda install pillow 

 
Figure 3.18. Pillow Installation 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             15 

4. Code Directory Structure 
Download the Object Classification: Video Stream Analysis training code. Figure 4.1 shows the directory structure. 

 
Figure 4.1. Training Code Directory Structure 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             16 

5. Preparing the Training Code 

5.1. Neural Network Architecture 
This section provides information on the Convolution Neural Network (CNN) configuration of this reference design. 
Figure 5.1 shows the basic building block of the model architecture. Table 5.1 shows the entire detection model using the 
basic building block. 

Conv 1×1

BatchNorm
+

Scale

QuantRelu
+

Relu

DepthWise
Conv 3×3 

BatchNorm
+

Scale

QuantRelu
+

Relu
 

Figure 5.1. Basic Building Block 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             17 

Table 5.1. Detection Model 
Layer Name Layer Content Layer Output Dimensions 

Input Input layer 228 × 480 × 1 
Fire1 Convolution3×3 

+ 
BatchNormalization 

+ 
QuantRelu 

+ 
Relu 

+ 
MaxPool(k=2,s=2) 

144 × 240 × 8 

Fire2 Basic Building Block 144 × 240 × 8 
Fire3 Basic Building Block 144 × 240 × 8 
Fire4 Basic Building Block 

+ 
MaxPool(k=2,s=2) 

 
72 × 120 × 8 

Fire5 Basic Building Block 72 × 120 × 32 
Fire6 Basic Building Block 72 × 120 × 32 
Fire7 Basic Building Block 72 × 120 × 32 
Fire8 Basic Building Block 

+ 
MaxPool(k=2,s=2) 

 
36 × 60 × 32 

Fire9 Basic Building Block 36 × 60 × 64 
Fire10 Basic Building Block 36 × 60 × 64 
Fire11 Basic Building Block 36 × 60 × 64 
Fire12 Basic Building Block 

+ 
MaxPool(k=2,s=2) 

18 × 30 × 64 

Fire13 Basic Building Block 18 × 30 × 128 
Fire14 Basic Building Block 18 × 30 × 128 
Fire15 Basic Building Block 18 × 30 × 128 
Fire16 Basic Building Block 

+ 
MaxPool(k=2,s=2) 

9 × 15 × 128 

Fire17 Basic Building Block 9 × 15 × 192 
Fire18 Basic Building Block 9 × 15 × 192 
Fire19 Basic Building Block 9 × 15 × 256 
Fire_o Convolution3×3 9 × 15 × 168 

 

The diagram model contains Convolution (Conv), BatchNormalization (bn), Relu, and MaxPool layers. 

5.1.1. Convolutional Layer 
In general, the first layer in a CNN is always a convolution layer. Each layer consists of a number of filters (sometimes 
referred to as kernels) which convolve with the input layer/image and generates activation map (or a feature map). This 
filter is an array of numbers (the numbers are called weights or parameters). Each of these filters can be thought of as 
feature identifiers, such as straight edges, simple colors, curves, and other high-level features. For example, the filters on 
the first layer convolve around the input image and activate (or compute high values) when the specific feature it is looking 
for (such as curve for example) is in the input volume. 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             18 

5.1.2. Activation Layer (Relu) 
Immediately after each convolution layer, it is convention to apply a nonlinear layer (or activation layer). This layer 
introduces nonlinearity to a system that has just been computing linear operations during the convolution layers. These 
operations may just be element-wise multiplications and summations. In the past, nonlinear functions such as tanh and 
sigmoid are used. Researchers, however, found out that Relu layers work far better because the network can train a lot 
faster, because of the computational efficiency, without making a significant difference to the accuracy. The Relu layer 
applies the function f(x) = max (0, x) to all of the values in the input volume. In basic terms, this layer just changes all the 
negative activations to 0. It increases the nonlinear properties of the model and the overall network without affecting the 
receptive fields of the convolution layer. 

5.1.3. Pooling Layer 
After some Relu layers, programmers may choose to apply a pooling layer. It is also referred to as a down-sampling layer. In 
this category, there are also several layer options, with Maxpooling being the most popular. This takes a filter (normally of 
size 2 × 2) and a stride of the same length. It then applies it to the input volume and outputs the maximum number in every 
subregion that the filter convolves around.  
The intuitive reasoning behind this layer is that once it is known that a specific feature is in the original input volume (there 
is a high activation value), its exact location is not as important as its relative location to the other features. This layer 
drastically reduces the spatial dimension (the length and the width change but not the depth) of the input volume. This 
serves two main purposes: 
• Lessens the computation cost since the parameters or weights are reduced by 75% 
• Controls overfitting 
The term overfitting is used when a model is so tuned to the training examples that it is not able to generalize well for the 
validation and test sets. A symptom of overfitting is having a model that gets 100% or 99% on the training set, but only 50% 
on the test data. 

5.1.4. Batch Normalization Layer 
The batch normalization or BatchNorm layer reduces the internal covariance shift. To train a neural network, some 
preprocessing is applied to the input data. For example, normalizing all data so that it resembles a normal distribution (that 
means, zero mean and a unitary variance). This prevents the early saturation of non-linear activation functions such as the 
sigmoid function, assuring that all input data is in the same range of values, and so on. 
The problem, however, appears in the intermediate layers because the distribution of the activations is constantly changing 
during training. This slows down the training process because each layer must learn to adapt to a new distribution in every 
training step. This problem is known as internal covariate shift. 
The batch normalization layer forces the input of every layer to have approximately the same distribution in every training 
step by following the steps below during training time: 
1. Calculate the mean and variance of the layer inputs. 
2. Normalize the layer inputs using the previously calculated batch statistics. 
3. Arrange scales and shifts to obtain the output of the layer. 
This makes the learning of layers in the network more independent of each other and allows the user to be carefree about 
weight initialization. It works as regularization in place of dropout and other regularization techniques. 

5.1.5. Dropout Layer 
Dropout layers have a specific function in neural networks. After training, the weights of the network are so tuned to the 
training examples they are given that the network does not perform well when given new examples. The idea of dropout is 
simplistic. This layer drops out a random set of activations in that layer by setting them to zero. It forces the network to be 
redundant. That means the network should be able to provide the right classification or output for a specific example even 
if some of the activations are dropped out. It makes sure that the network is not getting too fitted to the training data and 
thus helps alleviate the overfitting problem. An important note is that this layer is only used during training, and not during 
testing. 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             19 

5.1.6. Fully-connected layer 
The fully-connected layer takes an input volume (whatever is the output of the convolution, Relu, or pool layer preceding it) 
and outputs an N dimensional vector where N is the number of classes that the program must choose from. 

5.1.7. Quantization 
Quantization is a method that brings the neural network to a reasonable size, while also achieving high performance 
accuracy. This is especially important for on-device applications wherein the memory size and number of computations are 
necessarily limited. Quantization for deep learning is the process of approximating a neural network that uses floating-point 
numbers by a neural network of low-bit width numbers. This dramatically reduces both the memory requirement and 
computational cost of using neural networks. 
The above architecture provides nonlinearities and preservation of dimension that help to improve the robustness of the 
network and control overfitting. 

5.2. Object Classification: Video Stream Analysis Network Output 
From the input image model, the feature maps are first extracted and overlaid with a W × H grid. Each cell then computes K 
pre-computed bounding boxes called anchors. Each bounding box has the following:  
• Four scalars (x, y, w, h)  
• A confidence score (Pr(Object)*IOU)  
• C° conditional class probability  
The current model architecture has a fixed output of W×H×K(4+1+C) where:  
• W, H = Grid Size  
• K = Number of Anchor boxes  
• C = Number of classes for detection  
The model has a total of 22680 output values, which are derived from the following:  
• 9 × 15 grid  
• Twenty-four anchor boxes per grid  
• Seven values per anchor box. It consists of:  

• Four bounding box coordinates (x, y, w, h)  
• Two class probability (The model is trained for Person and Car classes) 
• One confidence score  

 
As a result, there is a total of 9 × 15 × 24 × 7 = 22680 output values.  

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             20 

5.2.1. Training Code Overview 

Placeholders

Start

Model Building

CNN Architecture

Loss Functions

Data Preparation

Start Data Fetch 
Threads

Train Model

End

 
Figure 5.2. Training Code Flow Diagram 

The training code can be divided into the following parts: 
• Model Configuration 
• Model Building 
• Model Freezing 
• Data Preparation 
• Training for Overall Execution Flow 

5.2.2. Model Configuration 
This model is trained for two classes: person and car. The design uses KITTI dataset format and SqueezeDet model architecture. 
To run this Reference Design, the user is expected to bring a dataset in KITTI format. 
 kitti_squeezeDet_config() maintains all the configurable parameters for the model. Below is the summary of configurable 
parameters. 

5.2.2.1. Image Size 
Change mc.IMAGE_WIDTH and mc.IMAGE_HEIGHT to configure image size (width and height) in 
src/config/kitti_squeezeDet_config.py. 

 
Figure 5.3. Code Snippet – Input Image Size Configuration 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             21 

Since there are four pooling layers, grid dimension is H = 9 and W = 15. anchor_shapes variable of set_anchors() in 
src/config/kitti_squeezeDet_config.py indicates anchors width and heights. Update it based on anchors per gird size 
changes. 

 
Figure 5.4. Code Snippet – Anchors per Grid Config #1 (Grid Sizes) 

5.2.2.2. Batch size 
Change mc.BATCH_SIZE in src/config/kitti_squeezeDet_config.py to configure batch size. 

5.2.2.3. Anchors per Grid 
Change mc.ANCHOR_PER_GRID in src/config/kitti_squeezeDet_config.py to configure anchors per grid. 

 
Figure 5.5. Code Snippet – Anchors per Grid Config #2 

Change hard coded anchors per grid in set_anchors() in src/config/kitti_squeezeDet_config.py. Here, B (value 24) indicates 
anchors per grid. 

 
Figure 4.6. Code Snippet – Anchors per Grid Config #3 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             22 

5.2.2.4. Training Parameters 
Other training-related parameters such as learning rate, loss parameters, and different thresholds can be configured from 
src/config/kitti_squeezeDet_config.py. 

 
Figure 5.6. Code Snippet – Training Parameters 

5.2.3. Model Building 
SqueezeDet class can be configured from src/nets/squeezeDet.py. SqueezeDet class constructor builds the model, which is 
divided into the following sections: 
• Forward Graph 
• Interpretation Graph 
• Loss Graph 
• Train Graph 
• Visualization Graph 

5.2.3.1. Forward Graph 
• The CNN architecture consists of Convolution, Batch Normalization, Relu, and Maxpool. 
• The forward graph consists of 19 fire layers as indicated in Table 5.1. 

 
Figure 5.7. Code Snippet – Filter Values 

• Filter sizes of each convolutional block are shown in Table 5.1, which can be configured by changing the values of depth 
from SqueezeDet class in src/nets/squeezeDet.py, as shown in Figure 5.8.  

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             23 

 
Figure 5.8. Code Snippet – Forward Graph of model 

5.2.3.2. Interpretation Graph 
The Interpretation Graph consists of the following sub-blocks: 
• interpret_output 

This block interprets output from the network and extracts predicted class probability, predicated confidence scores, 
and bounding box values. 
The output of the convnet is a 9 × 15 × 168 tensor – there are 168 channels of data for each of the cells in the grid that 
is overlaid on the image and contains the bounding boxes and class predictions. This means the 168 channels are not 
stored consecutively but are scattered all over and need to be sorted. Figure 4.10 show the details. For each grid, cell 
values are aligned as shown in Figure 4.10. 

 
Figure 5.9. Grid Output Visualization 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             24 

 
Figure 5.10. Code Snippet – Interpret Output Graph  

Output from the fire_o layer is a 4D array of batch size × 9 × 15 × 168 that needs to be sliced with the proper index 
to get all values of probability, confidence, and coordinates. 
For the confidence score, this must be a number between 0 and 1, as such, sigmoid is used. 
For predicting the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Apply a softmax 
to make it probability distribution. 

• bbox 
This block calculates bounding boxes based on the anchor box and the predicated bounding boxes. 

• IOU 
This block calculates Intersection over Union for detected bounding boxes and actual bounding boxes. 

• Probability 
This block calculates detection probability and object class. 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             25 

5.2.3.3. Loss Graph 
This block calculates different types of losses, which needs to be minimized. To learn detection, localization, and 
classification, model defines a multi-task loss function. There are three types of losses which are considered for calculation: 
• Bounding Box 

This loss is regression of the scalars for the anchors. 

 
Figure 5.11. Code Snippet – Bbox Loss 

• Confidence Score 
• To obtain meaningful confidence score, the predicted value of each box is regressed against the real and predicted 

box. During training, compare the ground truth bounding boxes with all anchors and assign them to the anchors 
with the largest overlap (IOU).  

• Select the closest anchor to match the ground truth box such that the transformation needed is reduced to 
minimum. Equation evaluates to 1 if the k-th anchor at position-(i, j) has the largest overlap with a ground truth 
box, and to 0 if no ground truth is assigned to it. This way, the user only includes the loss generated by the 
responsible anchors.  

• As there can be multiple objects per image, normalize the loss by dividing it by the number of objects 
(self.num_objects). 

 
Figure 5.12. Code Snippet – Confidence Loss 

• Class 
• The last part of the loss function is cross-entropy loss for each box to do classification, as the user would for image 

classification. 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             26 

 
Figure 5.13. Code Snippet – Class Loss 

In one model architecture, the user obtains the bounding box prediction, the classification, as well as the confidence 
score. 

5.2.3.4. Train Graph 
This block is responsible for training the model with momentum optimizer to reduce all losses. 

5.2.3.5. Visualization Graph 
This block provides visitations of detected results. 

5.2.4. Training 

 
Figure 5.14. Code Snippet – Training 

sess.run feeds the data, labels batches to network, and optimizes the weights and biases. The code above handles the 
input data method in case of multiple threads preparing batches, or data preparation in the main thread. 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             27 

5.3. Training from Scratch and/or Transfer Learning 
To train the machine: 
1. Go to the top/root directory of the Lattice training code from the command prompt. 

The model works on 288×480 images. 
Current training code uses mean = 0 and scale = 1/128 (0.0078125) in pre-processing step. Scale can be changed in 
training code @src/dataset/imdb.py as shown in highlight below. 

 
Figure 5.15. Training Code Snippet for Mean and Scale 

The dataset path can be set in the training code @src/dataset/kitti.py and can be used in combination with the --
data_path option while triggering training using train.py to get the desired path. For example, the user can have 
<data_path>/training/images and <data_path>/training/labels. 

 
Figure 5.16. Training Code Snippet for Dataset Path 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             28 

2. Modify the training script. @scripts/train.sh is used to trigger training.  
Figure 4.18 shows the input parameters, which can be configured. 

 
Figure 5.17. Training Input Parameter  

• $TRAIN_DATA_DIR – dataset directory path. 
• $TRAIN_DIR – log directory where checkpoint files are generated while model is training. 
• $GPUID – gpu id. If the system has more than one gpu, it indicates the one to use. 
• --summary_step – indicates at which interval loss summary should be dumped. 
• --checkpoint_step – indicates at which interval checkpoints are created. 
• --max_steps – indicates the maximum number of steps for which the model is trained. 

3. Execute the run command script (by modifying if required) which in turn triggers train.sh script and starts the training. 
$ ./run                                                                                                                                                                                                  

4. Start TensorBoard. 
$ tensorboard –logdir=<log directory of training> 

For example: tensorboard –logdir=’./logs/’ 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             29 

5. Open the local host port on the web browser by giving path to the log directory. 
6. Check the training status on TensorBoard. 

 
Figure 5.18. TensorBoard 

7. Check if the checkpoint, data, meta, index, and events (if using TensorBoard) files are created in the log directory. These 
files are used for creating the frozen file (*.pb). 

 
Figure 5.19. Example of Checkpoint Data Files in Log Folder 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             30 

6. Creating Frozen File 
This section describes the procedure for freezing the model, which is aligned with the Lattice sensAI tool. Perform the steps 
below to generate the frozen protobuf file. 

6.1. Generating the Frozen .pb File 
Generate .pb file from latest checkpoint using the command below from the root directory of the training code. 
$ python src/genpb.py –ckpt_dir <log directory> --freeze 

For example, python src/genpb.py –ckpt_dir logs/demo/train –freeze. 
This command generates model.pbtxt in inference mode which is then internally used by genpb.py to create frozen pb file. 
Figure 5.1 shows the generated .pb file in the log directory 

 
Figure 6.1. Frozen .pb File 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             31 

7. Creating Binary File with sensAI 
This section describes how to generate binary files using the Lattice sensAI version 7.0 program. 

 
Figure 7.1. sensAI – Home Screen 

To create the project in the sensAI tool: 
1. Click File > New. 
2. Enter the following settings: 

• Project name 
• Framework – TensorFlow 
• Class – CNN  
• Device – AVANT 
• IP – Advanced_CNN 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             32 

3. Click Network File and select the network (.pb) file. 

 
Figure 7.2. sensAI – Select Framework, Device, and Network File 

4. Click the Image/Video/Audio Data button and select the image input file. 

 
Figure 7.3. sensAI – Select Image Data File 

5. Click Next. 
6. Uncheck the Store Input, Store Output and Result Readout box, and click Next. 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             33 

7. Change default values of following attributes to: 
a. Number of Segments – 8 
b. Number of Convolution Engines - 1 

 

Figure 7.4. sensAI – Update Project Settings (1) 

Note: Please ensure that ‘Store Input’, ‘Store Output’ & ‘Result Readout’ check boxes are un-checked. 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             34 

 
Figure 7.5. sensAI – Update Project Settings (2) 

 
Figure 7.6. sensAI – Update Project Settings (3) 

8. Click OK to create the project. 
9. Double-click Analyze. 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             35 

 
Figure 7.7. Analyze Project 

10. Double-click Compile to generate the firmware and filter binary file. 

 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             36 

 
Figure 7.8. Compile Project 

11. Two firmware .bin files are displayed in the compilation log. Use the generated firmware .bin files on hardware for the 
respective ML engine testing. 

 
Figure 7.9. Firmware files for ML Engine 1 and 2 

 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             37 

8. Hardware (RTL) Implementation 

8.1. Top Level Information 

8.1.1. Block Diagram 

LPDDR
4 mem

ctrlAXI
Inter

connect
ML Engine 2

64b

HDMI 
out

HDMI I2C
initialization

Crop/Downscale

Non Maximum
Supression

Bounding box
latchOn Screen Display

1920 x 1080 480x288

x,y,w,h,conf,class

Upto 30 bounding
boxes

Lattice Avant-AT-E70

1920 x 1080

HDMI in

RISCV
RX Core

AXI Inter
connect

M0
LPDDR4
DRAM

ML Engine 1
64b

QSPI
Controller

System
Memory
(128 KB)

AXI2 APB

APB
UART

APB
GPIO

Output processing
(traffic_post_nn5)

UART

QSPI
Flash

LMMI
write

LMMI
read

LMMI write

APB
Inter

connect

Propel Builder Design

lpddr4 config

M0

M1

M2

S0

M0

M1

M2

M3

S0

 
Figure 8.1. Top Block Diagram of Avant Traffic Demo with Lattice Avant-AT-E Evaluation Board (Rev D) 

8.1.2. Architecture 
• The FPGA design interfaces with Alinx HDMI I/O module (LPC FMC card) to capture frames from a 1080p HDMI video 

input source, perform object classification ML processing on it, and finally overlays the resultant bounding boxes on the 
input video, which is output through HDMI out of Alinx card. 

• There are two Advanced CNN Accelerator v2.0.1 ML Engines. . They operate in 64b data path mode for higher 
performance. They have one AXI manager interface to fetch firmware instructions and data and an LMMI subordinate 
interface for external modules to read data from or write data into the ML engine’s internal memory.  

• The design uses the LPDDR4 DRAM on the Lattice Avant-AT-E Eval board as the external memory for storing the 
firmware instructions necessary for the ML Engine to execute the ML model, as well as to store and load intermediate 
layer outputs during ML processing. 

• The LPDDR4 memory is exposed as an AXI subordinate for the rest of the design through the Avant memory controller 
and AXI interconnect. The AXI interconnect manages this subordinate interface. The interconnect itself has the ML 
engines and the RISC-V RX v2.4.0 core as the three managers working with external memory. 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             38 

• The ML firmware compiled from the neural network model using the sensAI compiler is programmed in QSPI Flash at a 
known address, to preserve firmware across power cycles. During system initialization after power on and bitstream 
configuration, this firmware from QSPI flash is read by the RISC-V Core using QSPI Controller  and written to LPDDR4 
memory  at a predefined address. ML Engine 1 firmware is loaded at address 0x80000000 in the system address map, 
which is address 0x0 of LPDDR4 memory. ML engine 2’ firmware is loaded at address 0x81000000 in the system 
address map, which is address 0x01000000 of the LPDDR4 memory. 

• The RISC-V core is initializing the LPDDR4 and SPI memory modules during boot up. After successfully loading the 
firmware of both the ML IPs, The RISC-V core indicates the successful loading to rest of the logic using memory mapped 
GPIO pin [0]. The RISC-V core firmware resides in 128 KB system memory implemented inside the FPGA using EBR 
resources. 

• During system initialization, the HDMI encoder and decoder chips on the Alinx FMC card, are programmed over I2C 
interface to enable the 1080p streaming video pipeline. 

• The AXI bus interfaces are clocked at 100 MHz, while the ML Engines perform processing at 170 MHz. The RISC-V core 
runs at 25 MHz 

• The on-screen display module combines the input video stream with the results of ML processing (bounding boxes) to 
provide a single output video stream for HDMI out.  

8.1.3. System Address Map 
Table 8.1. ML Engine 1 and ML Engine 2 Address Map 

Target Start Address End Address Size 
LPDDR4 Memory 0x8000_0000 0xBFFF_FFFF 1 GB 

Table 8.2. RISC-V Core Address Map 
Target Start Address End Address Size 
System Memory 0x0000_0000 0x0001_FFFF 128 KB 
APB GPIO 0x4000_0000 0x4000_0FFF 4 KB 
APB UART 0x4009_0000 0x4090_0FFF 4 KB 
LPPDDR4 ctrl APB 0x4009_2000 0x4009_2FFF 4 KB 
QSPI Controller 0x4030_0000 0x4030_0FFF 4 KB 
LPDDR4 Memory 0x8000_0000 0xBFFF_FFFF 1 GB 

8.1.4. Operational Flow 
• The real-time input image data is streamed in from Alinx card as parallel 24-bit RGB per clock, at 1080p resolution. This 

is then sent to the crop/downscale module which will downscale the 1080p(1920x1080) image data received from 
camera to 480x288(with bottom padding). The downscaler uses a frame buffer to improve the performance.  

• This downscaled image is provided as input for the NN model. The downscaled image is written directly into the 
internal memories of the ML Engine 1 over the LMMI interface. The ML Engine has a single LMMI subordinate 
interface, which interfaces with the manager interface in traffic_post_nn5.v module. The crop downscale data is 
written to ML engine through this traffic_post_nn5 module.  

• Once input is fully written, the ML Engine is ready to start execution of the ML Model. It does so by fetching firmware 
instruction codes from the external memory and executing layers according to it. 

• Once the ML engine processing is completed, the output processing module reads the neural network output over 
LMMI interface of ML engine 2 and formats it into x,y,w,h, confidence, and class scores that characterize the bounding 
boxes. 

• As part of the post-processing, non-maximum suppression is performed to filter the bounding boxes based on 
threshold.  

• The final bounding boxes from this module are latched (up to 30) and sent to the on-screen display module for drawing 
these bounding boxes on the input video stream.   

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             39 

9. Creating FPGA Bitstream file 
This section provides the procedure for creating the FPGA bitstream file using the Lattice Radiant software. 

To create the FPGA bitstream file: 
1. Open the Lattice Radiant software tool, as shown in Figure 9.1. 

 
Figure 9.1. Lattice Radiant Software 

2. Click File > Open Project. 
3. From the project database, open the Lattice Radiant project file (.rdf), as shown in Figure 7.2. 

 
Figure 9.2. Lattice Radiant Software – Open Project 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             40 

4. Click Export Files to generate the .bit file.  
5. Click Export Files to generate the .bit file. The user can see that this process is completed in the output window, as shown 

in Figure 9.3. Find the generated .bit file at location /project_folder/impl_1. 

 
Figure 9.3. Lattice Radiant Software – Bitstream Generation Export Report 

http://www.latticesemi.com/legal


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             41 

References 
For complete information on the Lattice Radiant Project-Based Environment, Design Flow, Implementation Flow, and Tasks, 
as well as on the Simulation Flow, refer to the Lattice Radiant software user guide. 
• Avant-E web page 
• Lattice sensAI Stack web page 
• Lattice Radiant Software web page 
• Lattice Insights for Lattice Semiconductor training courses and learning plan. 

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53874
https://www.latticesemi.com/en/Products/FPGAandCPLD/Avant-E
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/sensAI
https://www.latticesemi.com/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
https://www.latticesemi-insights.com/


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             42 

Technical Support Assistance 
Submit a technical support case through www.latticesemi.com/techsupport. 
For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase. 

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase


Object Classification: Video Stream Analysis Reference Design   
Reference Design    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-RD-02265-1.2             43 

Revision History 
Revision 1.2, November 2024 

Section Change Summary 
All • Made editorial fixes. 

• Updated Lattice Avant-AT-E Evaluation Board Rev B to Lattice Avant-AT-E Evaluation Board Rev D. 
Disclaimers Updated the boilerplate. 
Hardware and Software 
Requirements 

• Updated Figure 2.1. Top View of Lattice Avant-AT-E Evaluation Board. 
• Updated section 2.2 Software Requirements. 

Creating Binary File with 
sensAI 

• Updated Figure 7.2. sensAI – Select Framework, Device, and Network File, Figure 7.3. sensAI – Select 
Image Data File, Figure 7.4. sensAI – Update Project Settings (1), Figure 7.7. Analyze Project and 
Figure 7.8. Compile Project. 

• Added Figure 7.5. sensAI – Update Project Settings (2), Figure 7.6. sensAI – Update Project Settings 
(3) and Figure 7.9. Firmware files for ML Engine 1 and 2. 

• Updated the procedure sections of creating binary file with sensAI. 
Hardware (RTL) 
Implementation 

• Updated Figure 8.1. Top Block Diagram of Avant Traffic Demo with Lattice Avant-AT-E Evaluation 
Board (Rev D). 

• Added section 8.1.3 System Address Map. 
• Updated sections Architecture and Operational Flow. 

 

Revision 1.1, December 2023 
Section Change Summary 
Disclaimers Updated with the latest disclaimers. 
Hardware and Software 
Requirements 

• Removed Lattice Avant evaluation FMC HyperRAM card, Alinx FMC board, WD TV live media player, 
microSD card, and AiTrip MicroSD card module from the Hardware Requirements section. 

• Updated the Lattice Radiant software version from 2022.1 to 2023.1 in the Software Requirements 
section. 

• Removed the Win32 Disk Imager tool from the Software Requirements section. 
Creating Binary File with 
sensAI 

• Updated Lattice sensAI version from 6.0 to 6.1. 
• Updated procedure for creating a project in the sensAI tool. 

Hardware (RTL) 
Implementation 

Newly added section. 

References Newly added section. 
 

Revision 1.0, March 2023 
Section Change Summary 
All Initial release. 

 
 

http://www.latticesemi.com/legal


 

  
 
 
 
 

www.latticesemi.com 

http://www.latticesemi.com/

	Object Classification: Video Stream Analysis Reference Design
	Contents
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Hardware and Software Requirements
	2.1. Hardware Requirements
	2.2. Software Requirements

	3. Setting Up the Basic Environment
	3.1. Setting Up the Linux Environment for Machine Training
	3.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU
	3.1.1.1. Installing the CUDA Toolkit
	3.1.1.2. Installing the cuDNN

	3.1.2. Setting Up the Environment for Training and Model Freezing Scripts
	3.1.2.1. Installing the Anaconda Python

	3.1.3. Creating a New Environment with Python 3.6
	3.1.4. Installing the TensorFlow v1.15
	3.1.5. Installing the Python Package


	4. Code Directory Structure
	5. Preparing the Training Code
	5.1. Neural Network Architecture
	5.1.1. Convolutional Layer
	5.1.2. Activation Layer (Relu)
	5.1.3. Pooling Layer
	5.1.4. Batch Normalization Layer
	5.1.5. Dropout Layer
	5.1.6. Fully-connected layer
	5.1.7. Quantization

	5.2. Object Classification: Video Stream Analysis Network Output
	5.2.1. Training Code Overview
	5.2.2. Model Configuration
	5.2.2.1. Image Size
	5.2.2.2. Batch size
	5.2.2.3. Anchors per Grid
	5.2.2.4. Training Parameters

	5.2.3. Model Building
	5.2.3.1. Forward Graph
	5.2.3.2. Interpretation Graph
	5.2.3.3. Loss Graph
	5.2.3.4. Train Graph
	5.2.3.5. Visualization Graph

	5.2.4. Training

	5.3. Training from Scratch and/or Transfer Learning

	6. Creating Frozen File
	6.1. Generating the Frozen .pb File

	7. Creating Binary File with sensAI
	8. Hardware (RTL) Implementation
	8.1. Top Level Information
	8.1.1. Block Diagram
	8.1.2. Architecture
	8.1.3. System Address Map
	8.1.4. Operational Flow


	9. Creating FPGA Bitstream file
	References
	Technical Support Assistance
	Revision History
	Revision 1.2, November 2024
	Revision 1.1, December 2023
	Revision 1.0, March 2023



