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Disclaimers 
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products 
for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The 
information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered 
inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have 
been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the 
same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS 
ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE 
PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK 
USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE 
REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF 
FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and 
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.. 
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Acronyms in This Document 
A list of acronyms used in this document. 

Acronym Definition 

DRC Design Rule Check 

DUT Design Under Test 

EBR Embedded Block RAM 

FPGA Field Programmable Gate Array 

ILA Integrated Logic Analysis 

JTAG Joint Test Action Group 

LMMI Lattice Memory Mapped Interface 

LUT Look-up Table 

POR Power-On Reset 

RAM Random Access Memory 
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1. Introduction 
Reveal is an integrated tool in the Lattice Radiant™ and Lattice Diamond® software used for debugging Lattice FPGAs. On 
the software side, Reveal consists of two main tools: Reveal Inserter and Reveal Analyzer/Controller. At a high-level, Reveal 
Inserter is used to insert debug cores into a design, while Reveal Analyzer/Controller is used to detect a debug device and 
perform debugging.  

There are two main types of debug cores, which can be added to Lattice FPGA projects using Reveal Inserter. These are 
known as Analyzer and Controller cores. Controller cores are typically used to control and manage certain parts of a design, 
while Analyzer cores are used to tap into signals and perform logic analysis. Some common usages of Analyzer cores include 
power-on-reset debugging, condition monitoring, and capturing signals. For Controller cores, the main possible usages 
include virtual switches and LEDs, user memory access, user register control and monitoring, and interfacing with Hard IP.  

1.1. Reveal Usage Flow 
Although, there are some differences between the Lattice Radiant and the Diamond versions of Reveal in terms of feature 
support, their general usage is fairly similar.  

Once a design is ready to be debugged, the first step is to configure a logic analyzer or controller core using Reveal Inserter.  

Next, the debug cores are inserted to the project using Reveal inserter. This requires a new bitstream to be generated. The 
user needs to rerun the project implementation flow through synthesis, MAP, PAR, and bitgen to generate a new bitstream. 
Once the new bitstream is generated, the next step is to program the target device using the Lattice Programmer tool.  

Lastly, once the project’s target device is programmed with the updated bitstream, the Reveal Analyzer/Controller is used 
to detect the device with Reveal debug cores inserted. With the debug device detected by Reveal Analyzer/Controller, 
Reveal can then be used to perform various debugging actions depending on the type of debug core(s) that are inserted.  

1.1.1. General Reveal Flow Summary 

The following is the summary of the Reveal flow: 

• Add and configure debug cores using Reveal Inserter 

• Perform DRC (design rule check) and insert Reveal to project 

• Synthesis, MAP, PAR, and bitstream generation 

• Program FPGA using Programmer 

• Detect device using Reveal Analyzer/Controller 

• Begin debugging 
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1.2. General Information 

1.2.1. Design Rule Checking 

A useful feature of Reveal Inserter is its DRC function, which can be used to check certain parts of a Reveal project to ensure 
that the setup is correct. Before inserting a debug core to a design, always perform a Reveal DRC to avoid mistakes related 
to the setup of Reveal’s debug cores. 

Important: 

Performing a DRC does not ensure that a design is functional, or that it detects errors outside of Reveal. Reveal DRC only 
checks a few Reveal-related areas, such as whether a signal has multiple drivers or if a debug clock is selected or not.  

Other areas covered by Reveal Inserter’s DRC include: device resource availability, number of signals, amount of debug 
cores, trigger units and expressions syntax, and trigger expression syntax. 

1.2.1.1. Performing a Design Rule Check 

To perform a DRC using Reveal Inserter, click the  icon as shown in Figure 1.1.  

 

Figure 1.1. Reveal Inserter DRC Icon 

If the DRC is successful, the Design Rule Check PASSED message is displayed in the Lattice Radiant’s console as shown in 
Figure 1.2. If the design rule check fails, an ERROR message is displayed instead, followed by more error messages indicating 
what specifically failed the DRC. 

 

Figure 1.2. Reveal Successful DRC Console Output 

It is important to note that Reveal Inserter’s DRC function also reports a high-level estimate of the additional memory 
resources (EBRs and distributed RAM blocks) required with Reveal inserted to a design. 
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1.2.2. JTAG Interface Usage 

Reveal uses JTAG to connect and debug Lattice FPGA devices, typically utilizing a micro-USB, mini-USB, HW-USBN-2A, or 
HW-USBN-2B cable connection. By default, Reveal’s debug cores are configured to use a hard JTAG connection for 
debugging. A soft JTAG, however, can also be selected.  

For every debug core in a project, either a soft or hard JTAG connection can be selected when setting up debug cores with 
Reveal Inserter. Reveal debug cores are not limited to using only hard JTAG or only soft JTAG, meaning that a different JTAG 
connection type can be selected for each debug core. A JTAG hub primitive can also be instantiated for use in the user 
design. Refer to the Using the JTAG Hub Primitive section for more information. 

One last thing to consider when selecting a JTAG connection type for Reveal’s debug cores is that the overall debug core 
limit is different for each JTAG connection. A single JTAG connection (soft or hard) can support up to 23 analyzer cores and 
one controller cores for Lattice Avant™ devices. For all other devices, up to 15 analyzer cores and a single controller core 
can be added. 

1.2.2.1. Selecting a JTAG Type 

To select a different JTAG type, right-click the debug core to modify. From the drop-down menu that appears, select JTAG 
Interface, followed by Hard JTAG or Soft JTAG depending on the preferred JTAG connection type for that core. 

 

Figure 1.3. JTAG Interface Type Selection in Reveal Inserter 
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1.2.3. Managing Debug Cores 

By default, new Reveal Inserter projects do not contain any cores. To create a new debug core for a Reveal project, click the 
Add core… text below the Datasets section of Reveal Inserter. As shown in Figure 1.4, this opens the drop-down list of 
options allowing the user to select the type of core to create.   

 

Figure 1.4. Adding Debug Cores in Reveal Inserter 

As shown in Figure 1.5, the Reveal debug core appears under the Datasets section once added. When adding debug cores 
to a Reveal project, it is important to consider that up to fifteen analyzer cores and one controller core can be added per 
JTAG connection type.  

 

Figure 1.5. Reveal Debug Cores Added to a Project 
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1.2.4. Detecting a Debug Device 

Once the target device for the project is programmed with the updated Reveal bitstream, the next step in the usage flow 
for Reveal Controller and Reveal Analyzer is to generate the .rva project file. This is the Reveal Analyzer/Controller project 
file that is associated with the active Reveal Inserter debug core. It’s important to ensure that these two files are up to date 
and in sync with each other to prevent issues detecting a debug device. 

 

Figure 1.6. Reveal Analyzer/Controller Project Setup Window 

To detect a debug device: 

1. Load Reveal Analyzer/Controller by selecting Tools > Reveal Analyzer/Controller. 

2. Enter a name for the Reveal Analyzer/Controller project. There are no naming requirements, except that it cannot begin 
with an integer. 

3. Select the USB Port to which the device with Reveal inserted is connected. 

4. Click Detect to allow Reveal to scan for devices connected through JTAG. If a device is not detectable, try lowering the 
TCK Low Pulse Width Delay. This corresponds to a divider value that slows down the JTAG clock. 

• Ensure that the correct cable type is selected in the top right drop down 

• If there are multiple devices in a JTAG chain, only one can be debugged with Reveal Analyzer/Controller at a time. 
To do this, ensure that the target device is programmed with Reveal debug cores inserted with other devices not 
containing any Reveal cores. 

5. Select a Debug device. Click Scan to allow Reveal to search for connected devices with Reveal inserted. Ensure the 
correct device is selected if there are multiple devices in the JTAG chain. 

6. Click OK. 

If a Reveal Analyzer project already exists but the user is unable to detect the device or encountering other debugging 
issues, select Design > Cable Connection Manager from the toolbar with the Analyzer/Controller project open. This opens 
the cable connection manager for the Reveal Analyzer project, which can be used to redetect a device to ensure that Reveal 
Analyzer/Controller can at least detect the debug device. 
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1.2.5. Other Important Considerations 

What is important to note about Reveal is that it adds some additional RTL to a design and increases the overall resource 
utilization. This is because Reveal generates a new top-level module for the existing design to interface with Reveal’s debug 
logic. With this, it is important to ensure that the critical paths in a design meet timing before using Reveal, and that the 
project’s target device also has enough resources to support Reveal’s additional debug logic. 

Aside from increased resource utilization, another important thing to note about Reveal are the debug core and signal limits 
that are supported. As was mentioned in the previous section, up to fifteen analyzer cores and a single controller core can 
be added per JTAG interface connection. For each analyzer core, up to 512 signals can be traced. 

In many cases only a single analyzer core is required to debug a project, however, additional analyzer cores may be required 
depending on the project. For projects containing multiple clock regions, use a separate analyzer core for each clock region 
in the design. Another potential reason to add more analyzer cores to a debug project is to trace additional signals in a 
design if the core signal limit is exceeded for a single analyzer core.  

When implementing Reveal to debug a design, consider the GSR. Because Reveal Analyzer disables GSR using a synthesis 
attribute, it is not recommended that GSR is instantiated or used in user logic. 
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2. Reveal Analyzer  
This section covers the steps for setting up and inserting logic analyzer cores in a Lattice FPGA project using Reveal. 
Although the screenshots in this section are taken from Lattice Radiant, most of the settings and supported features are the 
same for Diamond.  

2.1. Creating and Inserting Logic Analyzer Cores 

2.1.1. Adding Logic Analyzer Cores 

To add logic analyzer cores: 

1. Open Reveal Inserter. Click Tools > Reveal Inserter or the  icon. 

2. Select Add Core > Add Logic Analyzer. 

 

Figure 2.1. Adding Logic Analyzer Core 

3. Continue to add cores as desired. Up to 15 logic analyzer cores for each type of JTAG interface may be added. 

2.1.2. Setting Up Trace Signals 

To set up trace signals: 

1. Select the signals to trace. Drag and drop signals from the left side of the Reveal Inserter window to the Trace Signals 
area as shown in Figure 2.2. Trace signals are annotated using @Tc. 

 

Figure 2.2. Configuring Trace Signals 

http://www.latticesemi.com/legal


Debugging with Reveal Usage Guidelines and Tips   
Application Note    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-AN-02060-1.1             13 

2. Select the Sample Clock for the design. Drag and drop the clock signal from the left side of the Reveal Inserter window 
to the Sample Clock field. This should be the primary clock used in the design. If a design contains multiple clock 
regions, it is recommended that each clock region have its own logic analyzer core for each respective clock. Clock 
signals are denoted using @C. 

3. Select the Buffer Depth corresponding to the amount of data to store each time Reveal Analyzer captures signals. The 
buffer depth directly corresponds to the number of samples Reveal Analyzer takes. For example, a buffer depth of 256 
samples each trace signal 256 times. 

4. Select an Implementation mode. This controls what memory Reveal Inserter instantiates. Choose between EBR or 
Distributed RAM. The resource utilization preview for each mode is displayed on the side. 

5. Select the Data Capture Mode corresponding to the number of times Reveal Analyzer should look for trigger 
conditions. Single trigger capture mode only samples data the first time a trigger condition is met. Multiple trigger 
capture mode samples signals multiple times, depending on the Buffer Depth and Minimum Samples per trigger 
settings. For example, selecting a buffer depth of 512 and a minimum samples per trigger of 16 captures the signals 32 
times (512/16 = 32). 

If POR debugging is enabled, the Number of Triggers for POR can be used to capture signals multiple times. This setting 
is also limited by Buffer Depth and Minimum Samples per trigger. For example, with a buffer depth of 512 and minimum 
samples per trigger of 32, 1 to 16 POR triggers may be selected. The POR signal capturing uses the same buffer used to 
capture other trace signals  

6. Configure additional trace signal settings as desired. Timestamp is used to break the captured samples into subsections. 
If no timestamp is selected, the simulation timescale corresponds to the sample number (for example, 0:142 is the 
142nd sample taken by Reveal Analyzer). 

The POR Debug is used to monitor a startup signal. Typically, this is used to capture signals soon after a device is reset. 

7. Enable Trigger Enable to select a signal to monitor as the startup signal. 

8. Select the sensitivity of the signal as either Active High or Active Low depending on your design’s logic. 

9. Drag and drop the POR debug signal from the left side of the Reveal Inserter window to the box at the bottom of the 
POR Debug field. This signal is also denoted using @C. Enabling Include trigger signals in trace data includes the signals 
in the Trigger Signal tab in the list of signals captured by the Reveal Analyzer. The default behavior of Reveal is to 
capture only trace signals. 

2.1.3. Setting up Trigger Conditions 

To set up trigger conditions: 

1. Switch to the Trigger Signal Setup tab.  

 

Figure 2.3. Reveal Inserter Setup for Trigger Conditions of Analyzer Cores 
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2. Add Trigger Units as desired. Drag signals from the signal pane to the Signals column. 

3. Select conditions for trigger unit using the Operator, Radix, and Value fields. These can also be changed later on during 
debugging with Reveal Analyzer 

4. Click the Add button to add additional trigger units. Up to 16 different trigger units can be added.  

5. Define the Trigger Expressions for when to capture signals. Trigger expressions are logical equations featuring one or 
more trigger units. Up to 16 different trigger expressions can be added per analyzer core. 

Valid operators: & (AND), | (OR), ^(XOR), !(NOT), THEN, NEXT, #(count), ##(consecutive count) 

• TU1 #3 means TU1 must occur three times before this expression is true. 

• TU1 ##3 means TU1 must occur three clock cycles consecutively for this expression to be true. 

6. Select the Max Sequence Depth. To minimize the amount of resources used when Reveal is inserted, minimize this 
value. This value should be greater than or equal to value in the Sequence Depth column. 

7. Select the Max Event Counter. This value must be greater than the largest count value if # or ## are used in any trigger 
expressions. 

8. Select the additional optional settings. The Event counter is used to change the number of times an event (including all 
trigger expressions) must occur before capturing signals. Trigger out is used to drive a signal once an event occurs. 

9. Select the type of signal to drive using the Net field. 

10. Select the Polarity and Minimum pulse width, which corresponds to the number of clock cycles of the sample clock. 

2.2. Debugging with Reveal Analyzer 
With the project’s target device programmed with the updated bitstream containing Reveal analyzer debug cores, the next 
step is to begin capturing signals. Depending on how the analyzer core is setup in Reveal Inserter, how signals are captured 
at this point may vary slightly. 

If Reveal Analyzer is configured for POR debugging, then Analyzer starts capturing signals as soon as the POR trigger signal is 
active. Typically, this is a signal that becomes active shortly after a design is reset. 

If trigger units and expressions are used to set up an Analyzer core, then there are two main ways to begin capturing 
signals. The first way is to click the … icon in the top right of the Analyzer user interface to begin debugging. Doing this 
causes the Reveal Analyzer to monitor the trigger signals in a Reveal project until a trigger expression is enabled.  

Aside from that Reveal analyzer can also be forced to capture signals. To do this, click the … icon towards the top of the 
Reveal Analyzer user interface. This Analyzer functionality is especially useful in cases where trigger expressions are not 
being enabled, as it allows users to force signal capture. 

 

Figure 2.4. Reveal Analyzer Waveform Display 

Once signals are captured, the Reveal Analyzer switches to the Waveform Display tab to show the captured signals. 
Depending on how the Analyzer debug core is configured, different number of samples are captured. However, one 
takeaway is that each unit in the display corresponds to a sample. For example, Figure 2.4 shows the sample at 0:234 was 
the 234th sample captured by the Reveal Analyzer. This is useful to know when setting a trigger position for Reveal Analyzer. 
The user can specify the specific sample for the waveform display cursor to appear under. 
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In addition, the drop-down next to each signal name in the Data column can be used to change the radices displayed for a 
signal in the waveform. 

2.3. Modifying Trigger Conditions 
Reveal Analyzer supports some level of customization for trigger expressions and units while debugging. As shown in  
Figure 2.5, some settings that can be changed for trigger units include the comparison operator and radix for the 
comparison value. Certain trigger expressions can also be enabled or disabled using the checkbox next to each expression in 
the Trigger Expression field. 

The trigger conditions for Reveal Analyzer can also be customized using the settings in the trigger options field in the 
bottom left of the tab. The first setting, Enable TE, is used to either OR ALL or AND ALL the trigger expressions to capture 
signals. The default behavior for Reveal Analyzer is to capture signals with OR ALL, so any trigger expression being enabled 
triggers this. Next, the samples per trigger and number of trigger settings can also be modified depending on the buffer 
depth. Both these setting are codependent, which means that lowering one allows a higher value for the other. 

 

Figure 2.5. Reveal Analyzer Trigger Expression and Unit Settings 

Lastly, the location of the waveform display cursor can be selected using the settings in the Trigger Position section.  
For pre-selected, either pre-trigger (cursor centered at 1/16th point of samples), center-trigger (cursor centered at ½ point 
of sample), or post-trigger (cursor centered at 15/16th point of samples. The User-selected option can also be used to select 
a specific sample number for the cursor to be centered on when the waveform display window opens. 
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3. Reveal Controller 
This section covers the usage guidelines for setting up and debugging Lattice Radiant projects using the Reveal Controller. 
This section assumes that a Reveal inserter project has already been created, and that a controller debug core is added. For 
more information about these two processes, refer to Managing Debug Cores and Detecting a Debug Device sections. 

3.1. Virtual Switches and LEDs 
The Reveal Controller’s virtual switches and LEDs are other useful features for debugging Lattice FPGA projects. Virtual 
switches can be used to toggle user logic, while virtual LEDs can be used to monitor signals in a design. Both virtual switches 
and LEDs support up to 32-bits of signals. The main design consideration to make when using this controller function, is that 
the signals used must be wire types.  

One last thing to consider when using virtual switches to drive user logic is that they should be treated as asynchronous 
switches since they are synchronous with the JTAG clock, which typically runs between 1 to 5 MHz. Because of this, it is 
recommended that a handshake is implemented in the user logic to account for this lower frequency clock, especially if the 
rest of the design is running at a significantly higher frequency. 

3.1.1. Adding Virtual Switches and LEDs 

The process for adding virtual switches and LEDs is essentially the same. As mentioned in the Virtual Switches and LEDs 
section, the main thing to consider when implementing these is to only use wire type signals. Additionally, ensure that the 
signals being used as virtual switches and LEDs are not being driven elsewhere in the design to prevent errors in the 
implementation flow due to multiple drivers.   

To add virtual switches and LEDs: 

1. Enable Virtual Switch Setting or Virtual LED Setting depending on what is to be used. 

2. Select the Width corresponding to the number of signals to be assigned to the virtual switches and LEDs. 

3. Drag and drop the signals from the Signal Pane. Once added, the signals should appear in their assigned cell as shown 
in Figure 3.1. A group of signals can also be added by pressing SHIFT or CTRL, and then clicking multiple signals and 
dragging them to the Switch List or LED List. 

 

Figure 3.1. Virtual Switches and LED Setup in Reveal Inserter 
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4. Rename signals as desired to improve readability when debugging with Reveal Controller. To rename a signal, click the 
cell next to it in the Name column. The signal names provided here are the same signal names to be displayed when 
using Reveal Controller. 

5. Perform a Design Rule Check by clicking the  icon. Insert the controller debug core using the  icon, underneath 
DRC. Ensure top_controller is active and that the Activate Reveal file in project is enabled. 

6. Generate a new bitstream and program device. 

7. Once a bitstream is generated with the Reveal Controller debug core inserted and the target device is programmed, the 
next step is to create a new Reveal Controller project. For more information on how to do this, refer to Detecting a 
Debug Device section.  

3.1.2. Debugging with Virtual Switches  

As mentioned previously, Reveal Controller’s virtual switches are synchronous with respect to the FPGA’s JTAG clock, and 
should be treated as asynchronous switches in user design logic. With that in mind, the two main modes for virtual switches 
are direct and indirect mode, which can be toggled using the Direct Mode checkbox as shown in Figure 3.2. 

 

Figure 3.2. Virtual Switches Controller User Interface 

In direct mode, the Reveal Controller writes data to the virtual switches as soon as a switch is toggled in the controller user 
interface. For indirect mode, switches are toggled once the Apply button in the top right of the user interface is clicked. To 
toggle a virtual switch, click the switch to toggle, which updates the Data field in the top left of the user interface to reflect 
the data being written out. Similarly, the Data field also accepts user entry, and can be used to directly input the data to 
write out in hex format. 

To reset all user inputs in the controller user interface back to the default state (all 0’s), click the Reset button located 
towards the top right. 
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3.1.3. Debugging with Virtual LEDs 

Similar to virtual switches, the Reveal Controller’s virtual LEDs also have two main modes: continuous and single polling.  

 

Figure 3.3. Virtual LEDs Controller User Interface 

When in continuous polling mode, the virtual LEDs continually update depending on the selected polling speed. To use 
virtual switches in continuous polling mode, select a Polling Speed by dragging the slider bar (left is slower, right is faster). 
Once a polling speed is selected, click the Start Polling button to begin polling continuously. It is important that about 
continuous polling also occupies the JTAG to read signals. 

In single polling mode, the virtual LEDs update only when the Polling Once button on the top right of the controller user 
interface is clicked. Since the button operates with respect to the JTAG clock, it may need to be pressed multiple times to 
capture the desired data. 

3.2. User Memory Access 
The Reveal Controller’s user memory access function is another useful feature for debugging Lattice FPGA projects. The 
primary use for user memory access is to provide an interface to a memory component, which can be used to read or write 
data. Before user memory access can be used, a project must already contain a memory block (EBR, distributed memory, or 
PMI). 

Something to consider when using user memory access is that if a single port memory component is used, the signals 
assigned in Reveal Controller cannot be used to drive user logic elsewhere in the design. Because of this, it is recommended 
that dual port memory components are used when debugging with user memory access. This way, one interface can be 
used to read or write to the memory with the Reveal Controller, while the other can be used for memory access by user 
logic.  

To configure the memory block for user memory access: 

1. Select the User Memory Setup tab. 

2. Enable User Memory Setting. 

3. Assign the mandatory signals from the signal pane to the setting list. 

• Clock – input clock 

• Clock_enable – clock enable signal 

• Wr_Rdn – active high write enable signal (low is read enable) 

• Address – memory address (16-bit max) 

• WData – data to write to memory (32-bit max) 

• RData – data to read from memory (32-bit max) 

4. To avoid incorrect signal selection, directly assign the signals from the user memory component in the design as shown 
in Figure 3.4. 
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Figure 3.4. Reveal Inserter User Interface Setup for User Memory Access 

5. Insert the controller debug core using the  icon, underneath DRC. 

6. Ensure top_controller is active and that Activate Reveal file in project is enabled. 

7. Generate a new bitstream and program device. Once a bitstream is generated with the Reveal Controller debug core 
inserted and the target device is programmed, the next step is to create a new Reveal Controller project. For detailed 
information on how to do this, refer to Detecting a Debug Device section. 

3.2.1. Debugging with User Memory Access 

Once a new bitstream with the Reveal debug cores is generated and programmed to the target device, the Reveal 
Controller can be used to debug a project. The user interface of the Reveal Controller’s user memory access function is 
shown in Figure 3.5. 

 

Figure 3.5. Reveal Controller User Memory Access User Interface 

The Default Data field is used to initialize an entire memory to the same value. Once the initial value is selected, click 
Initialize to initialize the memory component. 
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To read from a specific address in a memory component, select the target address using the Read Address field. Once the 
address is selected, click the Read button to read from that address space. The Read Data field updates to reflect the value 
that was read. 

Aside from initializing an entire memory to the same value, there are two other ways to write to the memory spaces in a 
Hard IP. The first way is to select the address to write to using the Write Address field. The base address that appears here 
is offset, so it is important to check the memory range for each component at the top of the user interface. This ensures 
writing to the correct memory space. Once a target address is selected, input the data in hex format using the Write Data 
field and click Write to write that data to the memory component. 

The second way to write to a memory component using user memory access is initialize it using a memory initialization file. 
To do this, select the Load button to select an initialization file. The only requirements for this file are that it uses a .mem 
extension and lists each register assignment as a separate line using the <memory address>:<memory data> format. Once a 
file is selected, click Load again to load the memory initialization file and finish initializing the Hard IP’s registers. 

Lastly, user memory access features dump memory, which is used to generate a memory initialization file. Select the 
address range to dump values from using the Dump from and Range fields. If no range is selected, then all data from a 
memory component are exported. Next, click the Dump button. This opens the file explorer window, which requires the 
user to select a name for the memory initialization file to generate. Select a name and click Save to generate a memory 
initialization file.  

3.3. User Status and Control Registers 
Similar to Virtual Switches and LEDs, the Reveal Controller’s user status (read-only) and control registers (read-write) can be 
used to read and write to some signals in a design. These two controller functions work similarly and require all signals 
interfaced with control and status registers to be of the wire type.  

 

Figure 3.6. Reveal Inserter User Status Register Setup 

The main function of the user status and control registers is that they support up to eight 8-bit signals as shown in  
Figure 3.6 and Figure 3.7, which is enhanced to support 32 8-bit signals in a future release of Lattice Radiant. 
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Figure 3.7. Reveal Inserter User Control Register Setup 

To use user status and control registers, enable either the Status Register and/or Control Register settings in each of the 
respective tabs in Reveal inserter. With either controller function enabled, drag and drop up to eight 8-bit signals from the 
signal list on the left side of the Reveal Inserter user interface into the Status Signals and Control Signal fields. To rename a 
status or control register, double-click the Name column next to the register the user wants to configure. 

3.3.1. Debugging with User Status Registers 

Once a device is programmed with the updated Reveal bitstream containing the controller debug cores, the user status 
register user interface is displayed as shown in Figure 3.8. 

The main usage of the Reveal Controller function is to read from the status registers. To do this, click the Rd button next to 
the status register to read from.  

 

Figure 3.8. Reveal Controller User Status Register User Interface 

Similarly, the Read All button in the bottom left of the user interface can be used to concurrently read from all the status 
registers in the Reveal Controller. Once a register is read from, the Value field updates to reflect the contents of that 
register. 

When at least one register is read from, the Dump button can be used to generate a memory initialization file, which can be 
used to initialize a memory component or control registers. To do this, click the Dump button. This opens the file manager 
on Linux window requiring the user to select a name for the memory initialization file. Once the name is selected, click Save 
to generate a memory initialization file. 
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3.3.2. Debugging with User Control Registers 

Once the device is programmed with the updated Reveal bitstream containing the controller debug cores, the user control 
register user interface is displayed as shown in Figure 3.9. 

 

Figure 3.9. Reveal Controller User Controller Register User Interface 

As mentioned previously, one of the main differences of the user control registers is that it can be used to read and write to 
signals in a design. To read from a signal, click the Rd button next to the signal’s name, or click the Read All button to read 
from all the signals in this tab. Once a signal has been read from, its value is updated in the Rd Value field. 

Similarly, the Wr Value field is used to specify an 8-bit hex value to write to the selected control register. Once an 8-bit 
value is entered, click the Wr icon in order to apply that value to the selected signal. Once the value is applied, read from 
the same control register to ensure that the value is correctly applied. Aside from that, the Apply All button can be used to 
apply all values in the Wr value field to every control register. 

Lastly, the Dump button can be used to generate a memory initialization file, which can be used to initialize a memory 
component or control registers. To do this, click the Dump button. This opens the file explorer window which requires the 
user to select a name for the memory initialization file to generate. Select a name and click Save to generate a memory 
initialization file. This file can be used to initialize control registers later on using the Load button.  
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3.4. Configuring Hard IP 
The Reveal Controller’s Hard IP function is used to interface with the Hard IP on a device by providing an interface to its 
LMMI ports to dynamically change its functionality. Note that in order to prevent multiple drivers, any existing user logic 
interfaced with a Hard IP’s LMMI ports is disconnected when Reveal is inserted to a design with this enabled.  An exception 
is when a PCIELL Hard IP is used in the design. In this scenario, Reveal inserts a MUX which handles the arbitration between 
LMMI signals in the user design and the generated LMMI bus from the Reveal controller as shown in Figure 3.10. This 
arbitration method allows user logic to function as normal. Reveal only accesses the LMMI interface when it needs to 
perform read or write operations by asserting then de-asserting the usr_lmmi_ready_o signal. 
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Figure 3.10. Reveal Controller LMMI Arbitration Scheme for PCIELL 

Another important thing to know about the Hard IP function is that the IPs that are controllable depend on the specific 
target device. For Crosslink™-NX, Certus™-NX, and CertusPro™-NX devices, the Hard IPs are: PLL, DPHY, I2CFIFO, SGMIICDR, 
PCIELL, PCSX1, PCSX2, and PCSX4. For Lattice Avant™, the configurable Hard IP is PLL. 

Before using the Reveal Controller’s Hard IP function, the Hard IP to configure must already be in the active design. As 
mentioned before, ensure that no important user design logic is hooked up with the target device’s LMMI interface.  

 

Figure 3.11. Hard IP Setup Tab in Reveal Inserter 
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Once the project is ready for debugging with Reveal Controller, add a new Controller debug core. For more information on 
how to add a Controller debug core, refer to Managing Debug Cores section. Once the controller core is added, select the 
Hard IP Setup tab shown in Figure 3.11. 

In this section of the Reveal Controller user interface, the list of configurable Hard IPs that are detected in the current 
project appears. For each Hard IP block in a design, a separate entry appears in this section. For example, in a two-channel 
PCIe design, two separate PCS channels are shown.  

To enable an IP for configuration using Reveal Controller, select the box next to the Hard IP’s name.  

The address range for each enabled Hard IP is displayed under the Address column, as shown in Figure 3.12. It is important 
to note this address range as the Hard IP function also provides an interface for writing to any of the address spaces in this 
range when debugging later on.  

 

Figure 3.12. Address Ranges for the Enabled Hard IP in Reveal Inserter 

Once the Hard IP to configure is selected, perform the DRC using the Design Rule Check icon on the left side of the user 
interface. If the DRC is successful, insert the controller debug core and generate a new bitstream. 
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3.4.1. Dynamically Updating Hard IP 

Depending on the IP that is enabled for the Hard IP configuration with the Reveal Controller, the exact appearance of the 
Hard IP tab varies. Figure 3.13 shows the user interface of the MPCS IP for CertusPro-NX and Figure 3.14 shows the tab for 
the PLL IP.  

 

Figure 3.13. Reveal Controller Hard IP Settings for MPCS 

Every Hard IP configurable by Reveal Controller has a user memory access section, which allows users to directly write and 
read from the registers in a Hard IP and functions similar to the user memory access function discussed in the User Memory 
Access section. For specific information about the properties or addresses of the registers for a Hard IP, refer to the 
component’s IP user guide. 
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Figure 3.14. Reveal Controller Hard IP Memory Access User Interface 

The Default Data setting is used to initialize all registers to the same initial value. Once an initial value is specified by 
inputting a hex value, click the Initialize button to initialize all registers to that value. 

To read from a register, select the target register’s address using the Read Address field. Once a register address is selected, 
click the Read button to read from that register. The Read Data field updates to reflect the value of the register that was 
read from. 

There are two ways to write to the registers in a Hard IP. The first way is to select the register address the user wants to 
write to using the Write Address field. The base address for the registers in a Hard IP are offset in the Reveal Controller, so 
it is important to check the memory range for each component and cross reference it with the IP user guide to ensure the 
user writes to the correct register. Once the target address is selected, input the data in hex format that the user wants to 
write using the Write Data field, and click Write to write to that register. 

Another way to write to the registers in a Hard IP is to use a memory initialization file. To do this, select the Load button to 
select the memory initialization file. The only requirements for this file are that it uses a .mem extension and lists each 
register assignment as a separate line using the <register address>:<register data> format. Once a file is selected, click Load 
again to load the memory initialization file and finish initializing the Hard IP’s registers. 

Aside from that, certain Hard IP contains user interface settings that can be used to easily change the settings written to 
various registers. As shown in Figure 3.13, the Hard IP user interface for MPCS contains a few additional settings before the 
user memory access section, allowing users to modify things like differential output, RX equalizer, and loopback mode.  

A useful feature of the Reveal Controller’s Hard IP configuration function is that a memory initialization file can easily be 
generated after some registers were modified. To do this, select the address range first to dump values from using the 
Dump from and Range fields. If no range is selected, then the values from all the registers in a Hard IP are included in the 
generated memory initialization file. Click the Dump button next, which opens the file explorer window requiring the user 
to select the name for the memory initialization file to generate. Select a name and click Save to generate a memory 
initialization file. This file can be used later on to reinitialize the registers in a Hard IP using the Load function that was 
previously discussed. 
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3.4.2. Eye-Opening Monitor 

For designs containing one, two, or four PCS channels in PCIe mode Gen1, Gen2, or Gen3, the performance for each channel 
can be analyzed using Reveal Controller’s Eye-Opening Monitor function. The purpose of this function is to measure the 
relative performance of a SerDes through comparison, analyzing data regarding the height and width of the eye diagram, 
and where the passing eye begins and ends. The main thing to know about the functionality of Eye-Opening monitor is that 
data is collected on the RX side of the PCS block. 

To use the Reveal Eye-Open monitor, user must enable the PCS channel to analyze in the Reveal Inserter for any IP 
containing PCS channels. As discussed in the Configuring Hard IP section. Once the device is programmed with the updated 
Reveal bitstream, the next step is to load the Reveal Controller and start capturing data for the eye diagram. To do this, click 
the Eye-Opening Monitor button as shown in Figure 3.15. 

 

Figure 3.15. PCS Channel Hard IP Eye-Opening Monitor Setting Location 

Doing this opens the Eye-Opening Monitor Configuration dialog box as shown in Figure 3.16, where the quality and detail of 
the desired eye diagram can be selected. To generate the eye diagram, it is recommended that either low or normal quality 
are initially selected, as a high-quality eye diagram can significantly increase the required runtime. Once the correct eye 
diagram quality is selected, click Run to start capturing data for the eye diagram. 

 

Figure 3.16. Eye Diagram Quality Selection Window 
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Once Eye-Opening Monitor finishes generating the eye diagram, the Eye Diagram appears as shown in Figure 3.17. The 
window displays the actual eye diagram and can be used to visually determine the quality of the captured eye. 

 

Figure 3.17. Generated Eye Diagram by Reveal Eye Open Monitor 

At the bottom of the eye-diagram window is the View Raw Data button. Clicking this opens the new window containing the 
data used to generate the eye diagram as shown in Figure 3.18. 
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Figure 3.18. Raw Data Used to Calculate and Generate the Eye Diagram 
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Appendix A. Using the JTAG Hub Primitive 
Similar to other Lattice primitives, the JTAGhub primitive used by Reveal is instantiated in custom user logic. To use a soft 
JTAG hub, choose the JTAGH25SOFT primitive. To use a hard JTAG, choose the JTAGH25 primitive. The usage for both 
primitives is essentially the same. The main difference is the way each JTAGhub is implemented. The hard JTAG uses the 
hardened JTAG block on an FPGA, while the soft JTAG is implemented in RTL. 

When using JTAGhub, JTAG primitive cannot be used if JTAGH25 primitive is already included in the design. JTAGH25 
already contains a JTAG primitive and the synthesis tool produces an error if more than one JTAG primitive is detected. 

Figure A.1 depicts the block based diagram of input and output ports for the JTAGhub primitive. This diagram is the same 
for both JTAGH25 and JTAGH25SOFT. 
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Figure A.1. JTAGhub Primitive Block Based Diagram 

When implementing the JTAGhub primitive in user logic, the TCK, TMS, TDI and TDO ports should be connected to external 
ports on the FPGA, while all other ports should be connected internally within the user logic. Refer to Table A.1 for more 
information on the input and output ports of the JTAGhub primitive. 

Table A.1. JTAGH19 and JTAGH25SOFT Lattice Primitives Signal Descriptions 

Signal Description 

JTCK The same signal as TCK. 

JTDI Registered version of the TDI signal. 

JSHIFT Indicates if valid data is available in JTDI. Is asserted and de-asserted on the positive edge of JTCK. 

JUPDATE Used to capture shifted data by JTDI. A positive pulse is output one-cycle after JSHIFT is de-
asserted. Signal is asserted and de-asserted on the positive edge of JTCK. 

JRSTN Active low reset signal. Set low initially and then remains high after initialization. 

JCE2 Signal indicating valid data is available in JTDI for the selected core. Remains high as long as data is 
valid. Signal is asserted one clock before JSHIFT and is de-asserted at the same time as JSHIFT. 

CDN Unused signal. 

IP_ENABLE[18:0] Signal enabling one bit from each debug core. For Avant, this signal is 25-bits instead of 19-bits. 

ER2_TDO[18:0] Input data signal to be shifted out of TDO. Each respective bit corresponds to the same bit of 
IP_ENABLE. For Avant, this signal is 25-bits instead of 19-bits.  
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Figure A.2 and Figure A.3 depict valid timing diagrams for these signals in the JTAGhub primitive. 

 

Figure A.2. JTAGhub Primitive Timing Diagram  

 

Figure A.3. Additional JTAGhub Primitive Timing Diagram  

Whenever a bit of the IP_ENABLE signal is active high at the same time as JCE2 and JSHIFT, valid data from JTDI is shifted-
out with its corresponding bit from ER2_TDO.  

Some additional considerations to keep in mind when using the JTAGhub primitive is that TCK does not work like a typical 
clock. Instead, the TCK signal is pulsed whenever data is transmitted and received.   

Aside from the signals mentioned above, the JTAGhub component also has several parameters corresponding to each of the 
debug cores within the JTAG hub. For Avant devices, up to 25 debug cores are supported, while for all other devices, up to 
19 debug cores are supported. However, it is recommended that cores 17 and 18 are used in custom user RTL. The reason 
for this is because the first few debug cores are typically reserved for other types of debugging, such as Reveal Analyzer and 
GDB. For portability from other device families, it is also recommended to use core 17 and core 18 for Avant devices so that 
the only thing that needs to be updated is the primitive itself. 

To enable a debug core for use with a primitive, change the corresponding parameter for the debug core from 0. All cores 
for use with Reveal Analyzer are initialized with the parameter value of 0x43. All other cores intended for custom use 
should be parameterized with 0x1. 

For example, to use core 17 of the JTAGhub primitive, initialize the parameter “HUB_17” to 0x1, and connect the 
IP_ENABLE[17] and ER2_TDO[17] signals accordingly. 
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The following are examples of JTAG commands: 

• Reading the ID of debug cores 
! enable ER1 

SIR 8 TDI (32); //8-bit data with hex value of 32 

! set reveal core 

SDR 24 TDI (800006); //24-bit data with hex value of 800006  

• Enabling CORE0 
! enable ER1 

SIR 8 TDI (32); 

SDR 24 TDI (000016); 

• Enabling CORE2 
! enable ER1 

SIR 8 TDI (32); 

SDR 24 TDI (000046); 

 

http://www.latticesemi.com/legal


Debugging with Reveal Usage Guidelines and Tips   
Application Note    
 

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.  
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 

FPGA-AN-02060-1.1             33 

Technical Support Assistance 
Submit a technical support case through www.latticesemi.com/techsupport. 

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase. 
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Revision History 

Revision 1.1, April 2024 

Section Change Summary 

Disclaimers Updated disclaimers. 

Reveal Analyzer Minor editorial fixes. 

Introduction • In the JTAG Interface Usage section: 

• Added discussion on instantiating a JTAG hub primitive and cross reference to appendix. 

• Removed discussion on using only a hard JTAG for debugging with Reveal. 

• Moved the Using the JTAG Hub Primitive section into the appendix. 

Reveal Controller • In the Configuring Hard IP section: 

• Added discussion on PCIELL Hard IP exception in relation to LMMI ports when using the Reveal 
Controller’s Hard IP function. 

• Added Figure 3.10. Reveal Controller LMMI Arbitration Scheme for PCIELL. 

• Updated discussion on the purpose of the Reveal Controller’s Eye-Opening Monitor function in the 
Eye-Opening Monitor section. 

Appendix A Created appendix section. 

 

Revision 1.0, January 2023 

Section Change Summary 

All Initial release. 
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