= LATTICE

Debugging with Reveal Usage Guidelines and
Tips

Application Note

FPGA-AN-02060-1.1

April 2024

Debugging with Reveal Usage Guidelines and Tips .I.ILATTICE

Application Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The
information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered
inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have
been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS
ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE
PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK
USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE
REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF
FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice..

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02060-1.1 2

http://www.latticesemi.com/legal

= LATTICE

Contents
(0] 01T 0| £ TS TP PP UPPUPPTP RPN 3
ACroNYMS iN THiS DOCUMIEBNTuiiiiiiie et e ettt e e e e ee et e e e e e e e e s tbaeeeeeeee s ataaeeaaeeesasstasaeaeaaesassssaeaeaassassasaeaeesesannsseaneeas 5
I [V o o [F T e o OSSP SRRTPRSRTRIN 6
1.1 REVEAI USAZE FIOW .. .uiiiiiiiiieeiie ettt ettt e sttt e e ettt e e e eata e e e s bae e e e tbeeeeasbaeeesabaseaanssseeeassaeseaabasaeastaeeenssaaeesnsanaann 6
1.1.1. General REVEal FIOW SUMIMAIYccccciiiiiiiie e ciee e eiee ettt e sttt e e et ee e s ta e e e s tbeeaesstaeesansaeeesasaeeeanssesesnnsaeeesnsnneann 6
1.2 GENETAl INFOMMALION ..ottt st e st e st e s bt e sa b e e sabeesab e e sabeesabeesabeesabeesnseenares 7
O T B T = o T U LI @ 1=l 4 =SSR 7
12,2, JTAG INEEITACE USAZE e uuiiiuiiiiiieeite ettt ettt ettt e st s bt e e b e s bt e s bt e e bt e sabee s bt e sabeesabeesabeesabeenanes 8
1.2.3. ManagiNg DEDUE COTEScuuiiiiiiiiiiiiteetee ettt ettt ettt e sttt e s b e s bt e s bt eeabee st e e s bt e sabeesabeesabeesabeenans 9
1.2.4. Detecting @ DEDUEZ DEVICEoiiiiuiieeeciiieeceieee ettt e ettt e e ettt e e etae e e e tte e e eebteeeeataaesaabaeeeasssasesssaeeesstaeesasseeeannsees 10
1.2.5. Other Important CoNSIAEIATIONSieiiiciiieecciiee et e eete et e e e st e e eertte e e eetbeeeesabeeeeebraeessseeeesateeeeasseeeansees 11
D A T I 1Y o =1 1T SRR 12
2.1. Creating and Inserting LOZIC ANAIYZEN COTEScovuuiieiiiiee ettt e sttee e et e e e eare e e stae e e ette e e sensaeeesasseeesnraeesnnes 12
2.1.1. AddiNg LOZIC ANGIYZEI COTES...eiiiueieeiiiiieeeiieeeectteeesiteeessttee e e eaaeeeesabaeeeessteeesaseaeessseeaansteeesasssesesnsseesansseeennnes 12
2.1.2. Setting UP TraCe SIBNQAIS .eeeeeeieiiiiiee it e ceiee e ette e e sttt e e ettt e e st e e e sbaeesesteee s nseaeesasaeeeesteeeensstaeessaeesansseeenanes 12
2.1.3. Setting Up TriBEI CONTITIONSeiiiuiiiiiiiiite ettt ettt et s bt e e sbee e bt e e sbnesneeesanesnee s 13
2.2. Debugging With REVEAI ANAIYZENccc.eiiieeee ettt et e et te e et e e e e s te e e e e bbee e eetbeeeesabeeeeensaeeeennneas 14
2.3. [V T Yo [y AT oY= == =T G @oT o Vo [T To] o SRR 15
TR SN =T I 0 ol d o | F=T OO PP PR PPN 16
3.1 Virtual SWItCRES @0 LEDSveiivieiiiiiiieiiee ettt sttt st ste e st e st e st e st e s baesbe e s bt e sbaesbaesabaesnbeesabeesnbaesnbeeen 16
3.1.1. Adding Virtual SWIitChes @Nd LEDSccceecuiiiiiiiieeeiiieecesiee e eette e e sttee s et eeseteeeessaeeeessteeesssseaeesnsseesansseeesnnes 16
3.1.2. Debugging With Virtual SWItChES.......c..iii it e e st e e eeate e e sbaeeeesnteeeenes 17
3.1.3. Debugging With VIrtUal LEDScccuiiiiiiiiiiiteiieete ettt ettt et et e sbae s bt e sbne s b e e nnesnee s 18
3.2. USEI IMIEIMOIY ACCESS ...evviiiiiiiiiiititt ettt b et e e e s s e b et e e e s s s e s e s e e e s s s ab s s e eees s sanabasseesssessnnnns 18
3.2.1. Debugging With USEr IMEMOIY ACCESS....ccccuuiieeiuiieeeciieeeeitreeeeetteeesitaeeeestteeeeeissaeesasseaaasstasesassssessssssessstesesnnes 19
3.3. User Status and CONTIOl REZISTEIScciiiuiiiieeiie ettt e ettt e e e ee e et e e e e tre e e s e e e e e ateeeeesreeesnsaeeesteeeeansseeesnnnees 20
3.3.1. Debugging With USEr Status REGISTEIS.....cccuiiiiciiee ettt e ste e e et e e e tr e e e sta e e e e tteeeseasaeeesasseeeesteeesnns 21
3.3.2. Debugging with User CONtrol REGISTEISuuiiiciiee it eeee ettt e e e e e eee e e sae e e e sate e e eenaae e s snsaeeeenteeesnnes 22
3.4. (@0oT oY 17 ={U LT Y= o - o I | PSSR 23
3.4.1. Dynamically Updating Hard IPc.cooeiiiieiie ettt ettt et be e s sbee s be e s sneeenee s 25
3.4.2. EYE-OPENING IMONITON ...ttt e s et e e s e e e s s b et e s e anbe e e smnneessnaeeseanreeesnns 27
Appendix A. USING the JTAG HUD PrimitIVE ..ccceeiie ettt et e e tee e e et e e e et e e e etae e e e abeeeeeanraeeeanneas 30
TECHNICAl SUPPOIT ASSISTANCE ...eeiieuiiiieeeiiee et e eeette e e et e e e ettt eeeetbe e e eetbeeeesetseeeesabeseeassaeeessssaaassasesassaseeaasseeeansbeseeansasaeasaeaaan 33
=Y LY o] T o 1] 0 YN 34

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 1.1. REVEAl INSEITEI DRC ICON....ccuiiieieiiee e ettt e ettt e eette e e e ette e e ettt e e eeatteeesaaeeeasteeeeassseeesasseeaassseeeaansaeeesnsaneeasseneenssseeesnsanenans 7
Figure 1.2. Reveal SuUccessful DRC CONSOIE OULPUL ..o..eeiiiiiiiiieetieiitee st siie et st et e st e st e st e s b e sabeesaseesabeesaseesabeesaseesabeesneenane 7
Figure 1.3. JTAG Interface Type Selection in REVEAI INSEITEIooiiiiiieeeee ettt e et e e et e e et e e e e eate e e eeaaeeeebaeaans 8
Figure 1.4. Adding Debug Cores in REVEAI INSEITEN.......ciiuiiiiiieiee ettt sttt st e st e st e s bt e st e e sbeesabeesneesane 9
Figure 1.5. Reveal Debug Cores AAded t0 @ PrOJECEuiiieiiiii ittt ettt e ettt e e et e e e et e e e e abe e e eeabaeeesbaeeaestaeeeessaeaeeasanaans 9
Figure 1.6. Reveal Analyzer/Controller Project SETUP WINAOWccviiiieiiireiieeeee e cte et e sveeere e sreeeateestveesaseesaveeeaneesabeessneens 10
Figure 2.1. AddiNg LOZIC ANAIYZEI COTE.....uiiiiiiieeecieee e sttt e e ettt e e et e e e st e e e et eeessaaeeeasateeeeassseeeaassaeeasssaeeaanssasesnssaeesssaeesanssesesnnsnens 12
Figure 2.2. CONFIGUIING TraCe SIBNAIS ..eciiuiiieieiiieeeceee sttt e et e et e e st e e e et e e e ssaaeeeesataeeeassseeesssaeeasataeeeanssesesnssaeesssaeesansresesnsnens 12
Figure 2.3. Reveal Inserter Setup for Trigger Conditions of ANGlYZer COMES.......uuiiiiiiiriiiiiieeiieeeesieeeecree e eeaee e sae e e are e e eaaeees 13
Figure 2.4. Reveal Analyzer Waveform DiSPIaYc..uuiiiiiie e cciies e ctee e see e srte s st e e e st e e s saaee e e sataeeeesteeesneeaeesasaeesensreeesnsseens 14
Figure 2.5. Reveal Analyzer Trigger Expression and UNit SETEINGSccueiiieiiiiiiiiiieeieee ettt 15
Figure 3.1. Virtual Switches and LED Setup in REVEAI INSEITENcouiiieeiie ettt e et e e et e e s ba e e e e ebe e e enraeas 16
Figure 3.2. Virtual Switches Controller USEr INTEITACEccccuuiii ettt et eetee e et e e e tte e e et ae e e s bae e eentee e enraeas 17
Figure 3.3. Virtual LEDS CoONTroller USEr INTEITACEciiiuviieeeciie et ettt ettt e sttt e e e e e e e ate e e e sata e e eensteeesansaaeesstaeesensreeesnnsnens 18
Figure 3.4. Reveal Inserter User Interface Setup for USEr MEMOIY ACCESS......ccuuiieicureeeeiieieeeiteeeeiireeeesreeesssseeesssaeesssssesssnnsees 19
Figure 3.5. Reveal Controller User Memory Access USer INtErfaCeouiiciiii ittt see e see e e e e eaaeeas 19
Figure 3.6. Reveal Inserter User Status REGISTEr SELUD ...ccicciiiiiiiiie ettt ee et e e e stee e e s e e e saaeeeesabaeeesnreeesneeens 20
Figure 3.7. Reveal Inserter User Control REGISTEr SETUDcc.uiiiiiiiiiiiiiitece ettt st st e e 21
Figure 3.8. Reveal Controller User Status Register User INTerfacecooueiviiiiiiiiiiiiieeie ettt 21
Figure 3.9. Reveal Controller User Controller Register User INterfaCeuiiicuieiiiiiiie ettt ettt e 22
Figure 3.10. Reveal Controller LMMI Arbitration SCheme fOr PCIELL.......cc..iiiiiiiei ittt ettt eeitee e e vae e et e e e 23
Figure 3.11. Hard IP Setup Tab in REVEAI INSEITENcccueiieeeiie et e ectee et eee e st e e e et e e et e e e e sata e e e easteeesnsaeeesntaeeeensteeesnsnens 23
Figure 3.12. Address Ranges for the Enabled Hard IP in ReVEal INSEILENcccuiiiiiiieeieciei ettt see e e 24
Figure 3.13. Reveal Controller Hard IP SEttings fOr IMIPCScoo i uiiii ettt e e etee s e stee e e s sre e e saaea e e sabaeeeenreeesnnneens 25
Figure 3.14. Reveal Controller Hard IP Memory Access User INterface.........cvoiueeiiiiiieiiiiinieeeee e 26
Figure 3.15. PCS Channel Hard IP Eye-Opening Monitor Setting LOCatioNncoouiiiieiiiiiiieiiieenieesee e 27
Figure 3.16. Eye Diagram Quality SEIECtiON WINAOWcooccuiiiiiiiiie ettt e ettt e et e e e e bt e e eeabe e e eateeeesabaeeeesreeeenreeas 27
Figure 3.17. Generated Eye Diagram by Reveal Eye Open IMONITONccccviiiiiiiie ettt ee e e e et e e e vae e eenre e e enreeas 28
Figure 3.18. Raw Data Used to Calculate and Generate the Eye DIiagramccceceiuieeeeiiiieccieeeeciee e eree e e rvee e e ere e e e 29
Figure A.1. JTAGhub Primitive BIOCK Bas@d Diagramcccccuiiiiiiuieeeiiieeeeiiteeeesreeeestreeeetreeessataesssataeeeasssesesssesessssasessssesesnssens 30
Figure A.2. JTAGhUb Primitive Timing DI@ZIameeiiiiieeeeiiie e ettt e sttt e e estee e st e e e sateeeesaseeesenseeesssseeesansseeesnseeeesssaeesssseeesnnsnes 31
Figure A.3. Additional JTAGhub Primitive Timing DIagram........cccecuiiretiiieiriieiieesee sttt ettt et e e sateesaee e sareesaeeesareesneeens 31

Tables

Table A.1. JTAGH19 and JTAGH25SOFT Lattice Primitives Signal DeSCriptioNnscc.veiieviereiiieeeesiee e 30

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Acronyms in This Document

A list of acronyms used in this document.

= LATTICE

Acronym Definition

DRC Design Rule Check

DUT Design Under Test

EBR Embedded Block RAM

FPGA Field Programmable Gate Array
ILA Integrated Logic Analysis

JTAG Joint Test Action Group

LMMI Lattice Memory Mapped Interface
LUT Look-up Table

POR Power-On Reset

RAM Random Access Memory

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

Reveal is an integrated tool in the Lattice Radiant™ and Lattice Diamond® software used for debugging Lattice FPGAs. On
the software side, Reveal consists of two main tools: Reveal Inserter and Reveal Analyzer/Controller. At a high-level, Reveal
Inserter is used to insert debug cores into a design, while Reveal Analyzer/Controller is used to detect a debug device and
perform debugging.

There are two main types of debug cores, which can be added to Lattice FPGA projects using Reveal Inserter. These are
known as Analyzer and Controller cores. Controller cores are typically used to control and manage certain parts of a design,
while Analyzer cores are used to tap into signals and perform logic analysis. Some common usages of Analyzer cores include
power-on-reset debugging, condition monitoring, and capturing signals. For Controller cores, the main possible usages
include virtual switches and LEDs, user memory access, user register control and monitoring, and interfacing with Hard IP.

1.1. Reveal Usage Flow

Although, there are some differences between the Lattice Radiant and the Diamond versions of Reveal in terms of feature
support, their general usage is fairly similar.

Once a design is ready to be debugged, the first step is to configure a logic analyzer or controller core using Reveal Inserter.

Next, the debug cores are inserted to the project using Reveal inserter. This requires a new bitstream to be generated. The
user needs to rerun the project implementation flow through synthesis, MAP, PAR, and bitgen to generate a new bitstream.
Once the new bitstream is generated, the next step is to program the target device using the Lattice Programmer tool.

Lastly, once the project’s target device is programmed with the updated bitstream, the Reveal Analyzer/Controller is used
to detect the device with Reveal debug cores inserted. With the debug device detected by Reveal Analyzer/Controller,
Reveal can then be used to perform various debugging actions depending on the type of debug core(s) that are inserted.

1.1.1. General Reveal Flow Summary

The following is the summary of the Reveal flow:

e Add and configure debug cores using Reveal Inserter

e Perform DRC (design rule check) and insert Reveal to project
e Synthesis, MAP, PAR, and bitstream generation

e Program FPGA using Programmer

e Detect device using Reveal Analyzer/Controller

e Begin debugging

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Debugging with Reveal Usage Guidelines and Tips [[]
Application Note L) LATTICE

1.2. General Information

1.2.1. Design Rule Checking

A useful feature of Reveal Inserter is its DRC function, which can be used to check certain parts of a Reveal project to ensure

that the setup is correct. Before inserting a debug core to a design, always perform a Reveal DRC to avoid mistakes related
to the setup of Reveal’s debug cores.

Important:

Performing a DRC does not ensure that a design is functional, or that it detects errors outside of Reveal. Reveal DRC only
checks a few Reveal-related areas, such as whether a signal has multiple drivers or if a debug clock is selected or not.

Other areas covered by Reveal Inserter’s DRC include: device resource availability, number of signals, amount of debug
cores, trigger units and expressions syntax, and trigger expression syntax.

1.2.1.1. Performing a Design Rule Check

To perform a DRC using Reveal Inserter, click the = icon as shown in Figure 1.1.

T hd ‘"LE'E] Datasets
= »| top_Controller
E S count_LAO

Add core...

Figure 1.1. Reveal Inserter DRC Icon

If the DRC is successful, the Design Rule Check PASSED message is displayed in the Lattice Radiant’s console as shown in

Figure 1.2. If the design rule check fails, an ERROR message is displayed instead, followed by more error messages indicating
what specifically failed the DRC.

Checking design rules ...
INFO - The number of EBRs needed is 1.

INFO - The number of DistRAM (logic/ROM/RAM) slices needed is 3.
Design Rule Check PASSED.

Figure 1.2. Reveal Successful DRC Console Output

It is important to note that Reveal Inserter’s DRC function also reports a high-level estimate of the additional memory
resources (EBRs and distributed RAM blocks) required with Reveal inserted to a design.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02060-1.1 7

http://www.latticesemi.com/legal

Debugging with Reveal Usage Guidelines and Tips .I.ILATTICE

Application Note

1.2.2. JTAG Interface Usage

Reveal uses JTAG to connect and debug Lattice FPGA devices, typically utilizing a micro-USB, mini-USB, HW-USBN-2A, or
HW-USBN-2B cable connection. By default, Reveal’s debug cores are configured to use a hard JTAG connection for
debugging. A soft JTAG, however, can also be selected.

For every debug core in a project, either a soft or hard JTAG connection can be selected when setting up debug cores with
Reveal Inserter. Reveal debug cores are not limited to using only hard JTAG or only soft JTAG, meaning that a different JTAG
connection type can be selected for each debug core. A JTAG hub primitive can also be instantiated for use in the user
design. Refer to the Using the JTAG Hub Primitive section for more information.

One last thing to consider when selecting a JTAG connection type for Reveal’s debug cores is that the overall debug core
limit is different for each JTAG connection. A single JTAG connection (soft or hard) can support up to 23 analyzer cores and
one controller cores for Lattice Avant™ devices. For all other devices, up to 15 analyzer cores and a single controller core
can be added.

1.2.2.1. Selecting a JTAG Type

To select a different JTAG type, right-click the debug core to modify. From the drop-down menu that appears, select JTAG
Interface, followed by Hard JTAG or Soft JTAG depending on the preferred JTAG connection type for that core.

'?%] Datasets
B count_LAO

m
T t LA
¥| count_ Add New Core »

=5 top_Controller
Add core... Duplicate Core

Remove Core Del

Rename Core

JTAG Interface F " Hard JTAG
Soft JTAG

Figure 1.3. JTAG Interface Type Selection in Reveal Inserter

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02060-1.1 8

http://www.latticesemi.com/legal

Debugging with Reveal Usage Guidelines and Tips .I.ILATTICE

Application Note

1.2.3. Managing Debug Cores
By default, new Reveal Inserter projects do not contain any cores. To create a new debug core for a Reveal project, click the
Add core... text below the Datasets section of Reveal Inserter. As shown in Figure 1.4, this opens the drop-down list of
options allowing the user to select the type of core to create.

'?-%1 Datasets
Add core...
Add Logic Analyzer

Add Controller

. A

*®

Figure 1.4. Adding Debug Cores in Reveal Inserter

As shown in Figure 1.5, the Reveal debug core appears under the Datasets section once added. When adding debug cores
to a Reveal project, it is important to consider that up to fifteen analyzer cores and one controller core can be added per

JTAG connection type.

- 'j'%a [Datasets
apd count_LAO

= ¢| top_Controller
Add core...

&k
Figure 1.5. Reveal Debug Cores Added to a Project

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02060-1.1

http://www.latticesemi.com/legal

= LATTICE

1.2.4. Detecting a Debug Device

Once the target device for the project is programmed with the updated Reveal bitstream, the next step in the usage flow
for Reveal Controller and Reveal Analyzer is to generate the .rva project file. This is the Reveal Analyzer/Controller project
file that is associated with the active Reveal Inserter debug core. It's important to ensure that these two files are up to date
and in sync with each other to prevent issues detecting a debug device.

1 Reveal Analyzer/Controller Startup Wizard x

Getting Started:

@ Create a new file untitlad HW-USBN-24A -

L]

Multiple Device in JTAG Chain TCK Low Pulse Width Delay: 1

USB port: - Detect
XCF source:

Debug device: - Scan
RVL source: 'Projects/rd_SLWS_EC_to_MIPI_CSIZ_L FCPMXslvsec_to_mipi_LFCPRX.rvl Browse...

Open an existing file
File name: -

|:| Import file into current implementation

Cancel

Figure 1.6. Reveal Analyzer/Controller Project Setup Window

To detect a debug device:
1. Load Reveal Analyzer/Controller by selecting Tools > Reveal Analyzer/Controller.

2. Enter a name for the Reveal Analyzer/Controller project. There are no naming requirements, except that it cannot begin
with an integer.
3. Select the USB Port to which the device with Reveal inserted is connected.
4. Click Detect to allow Reveal to scan for devices connected through JTAG. If a device is not detectable, try lowering the
TCK Low Pulse Width Delay. This corresponds to a divider value that slows down the JTAG clock.
e Ensure that the correct cable type is selected in the top right drop down
e If there are multiple devices in a JTAG chain, only one can be debugged with Reveal Analyzer/Controller at a time.
To do this, ensure that the target device is programmed with Reveal debug cores inserted with other devices not
containing any Reveal cores.

5. Select a Debug device. Click Scan to allow Reveal to search for connected devices with Reveal inserted. Ensure the
correct device is selected if there are multiple devices in the JTAG chain.
6. Click OK.

If a Reveal Analyzer project already exists but the user is unable to detect the device or encountering other debugging
issues, select Design > Cable Connection Manager from the toolbar with the Analyzer/Controller project open. This opens
the cable connection manager for the Reveal Analyzer project, which can be used to redetect a device to ensure that Reveal
Analyzer/Controller can at least detect the debug device.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1.2.5. Other Important Considerations

What is important to note about Reveal is that it adds some additional RTL to a design and increases the overall resource
utilization. This is because Reveal generates a new top-level module for the existing design to interface with Reveal’s debug
logic. With this, it is important to ensure that the critical paths in a design meet timing before using Reveal, and that the
project’s target device also has enough resources to support Reveal’s additional debug logic.

Aside from increased resource utilization, another important thing to note about Reveal are the debug core and signal limits
that are supported. As was mentioned in the previous section, up to fifteen analyzer cores and a single controller core can
be added per JTAG interface connection. For each analyzer core, up to 512 signals can be traced.

In many cases only a single analyzer core is required to debug a project, however, additional analyzer cores may be required
depending on the project. For projects containing multiple clock regions, use a separate analyzer core for each clock region
in the design. Another potential reason to add more analyzer cores to a debug project is to trace additional signals in a
design if the core signal limit is exceeded for a single analyzer core.

When implementing Reveal to debug a design, consider the GSR. Because Reveal Analyzer disables GSR using a synthesis
attribute, it is not recommended that GSR is instantiated or used in user logic.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Debugging with Reveal Usage Guidelines and Tips .I.ILATTICE

Application Note

2. Reveal Analyzer

This section covers the steps for setting up and inserting logic analyzer cores in a Lattice FPGA project using Reveal.
Although the screenshots in this section are taken from Lattice Radiant, most of the settings and supported features are the
same for Diamond.

2.1. Creating and Inserting Logic Analyzer Cores

2.1.1. Adding Logic Analyzer Cores

To add logic analyzer cores:

1. Open Reveal Inserter. Click Tools > Reveal Inserter or the “* jcon.
2. Select Add Core > Add Logic Analyzer.

¢7¥ Start Page Reports
‘“:J[JEj Datasets

A

o]
Add Logic Analyzer

Add Controller

=)

A
Figure 2.1. Adding Logic Analyzer Core

3. Continue to add cores as desired. Up to 15 logic analyzer cores for each type of JTAG interface may be added.

2.1.2. Setting Up Trace Signals
To set up trace signals:

1. Select the signals to trace. Drag and drop signals from the left side of the Reveal Inserter window to the Trace Signals
area as shown in Figure 2.2. Trace signals are annotated using @Tc.

’?‘ Start Page Reports ‘3% Reveal Inserter *
= - "}IE] Datasets
23| ip_test LAQ = ([Trace including Trigger Signals
B Add core... Trigger Signals

v {F ahbl0_inst/ahbl_m00_hburst_mstr_o

[cpuO_inst_AHBL_M1_DATA_interconns‘ v O ahbl0_inst/ahbl_m01_hready_mstr_i
¥ "Lla cpul_inst_AHBL_M1_DATA_interconne
1. cpu0_inst_AHBL_M1_DATA_interconne
"L cpul_inst_AHBL_M1_DATA_interconne

» "1, cpu0_inst AHBL_M1_DATA interconne

Sample Clock t_hf_dk_out_o_net = Implementation EBR - 1EBR
¥ "Lla cpu0_inst AHBL_M1_DATA interconne
N N Buffer Depth 256 Ti tal
» "L, cpul_inst_AHBL_M1_DATA_interconne B M LRy M
Sample Enable Data Capture Mode

"L cpul_inst_AHBL_M1_DATA_interconne
Sample Enable :
“l. cpul_inst_system_resetn_o_net g @ Single Trigger Capture

cs.n Multiple Trigger Capture
=
» = data_o[3:0] POR Debug -
1. oscO_inst_hf _clk_out_o_net@C Trigger Enable
[rstni - -
-
4 [3
Signal Search Include trigger signals in trace data
Search Trace Signal Setup Trigger Signal Setup

Figure 2.2. Configuring Trace Signals

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02060-1.1 12

http://www.latticesemi.com/legal

= LATTICE

2. Select the Sample Clock for the design. Drag and drop the clock signal from the left side of the Reveal Inserter window
to the Sample Clock field. This should be the primary clock used in the design. If a design contains multiple clock
regions, it is recommended that each clock region have its own logic analyzer core for each respective clock. Clock
signals are denoted using @C.

3. Select the Buffer Depth corresponding to the amount of data to store each time Reveal Analyzer captures signals. The
buffer depth directly corresponds to the number of samples Reveal Analyzer takes. For example, a buffer depth of 256
samples each trace signal 256 times.

4. Select an Implementation mode. This controls what memory Reveal Inserter instantiates. Choose between EBR or
Distributed RAM. The resource utilization preview for each mode is displayed on the side.

5. Select the Data Capture Mode corresponding to the number of times Reveal Analyzer should look for trigger
conditions. Single trigger capture mode only samples data the first time a trigger condition is met. Multiple trigger
capture mode samples signals multiple times, depending on the Buffer Depth and Minimum Samples per trigger
settings. For example, selecting a buffer depth of 512 and a minimum samples per trigger of 16 captures the signals 32
times (512/16 = 32).

If POR debugging is enabled, the Number of Triggers for POR can be used to capture signals multiple times. This setting
is also limited by Buffer Depth and Minimum Samples per trigger. For example, with a buffer depth of 512 and minimum
samples per trigger of 32, 1 to 16 POR triggers may be selected. The POR signal capturing uses the same buffer used to
capture other trace signals

6. Configure additional trace signal settings as desired. Timestamp is used to break the captured samples into subsections.
If no timestamp is selected, the simulation timescale corresponds to the sample number (for example, 0:142 is the
142nd sample taken by Reveal Analyzer).

The POR Debug is used to monitor a startup signal. Typically, this is used to capture signals soon after a device is reset.
Enable Trigger Enable to select a signal to monitor as the startup signal.
Select the sensitivity of the signal as either Active High or Active Low depending on your design’s logic.

Drag and drop the POR debug signal from the left side of the Reveal Inserter window to the box at the bottom of the
POR Debug field. This signal is also denoted using @C. Enabling Include trigger signals in trace data includes the signals
in the Trigger Signal tab in the list of signals captured by the Reveal Analyzer. The default behavior of Reveal is to
capture only trace signals.

2.1.3. Setting up Trigger Conditions
To set up trigger conditions:

1. Switch to the Trigger Signal Setup tab.

Trigger Unit

Name Signals (MSB:LSB) ‘Operator Radix Value

1 TU1 ant[7:0] == ~ | Hex | EF
2 Tu2 select[2:0] < ~ | Dec ~ 4
Add Remove Default Trigger Radix Hex -
Trigger Expression
Name Expression RAM Sequence Max Sequence Max Event
Type Depth Depth Counter
1 TE1 TUT & TU2 1EBR w1 1 v 4 v

Add Remove

Event Counter

Enable final trigger counter Event Counter Value -

Trigger Out

Enable Trigger Out Net -

Polarity ¥ Minimum pulse width

Trace Signal Setup Trigger Signal Setup

Figure 2.3. Reveal Inserter Setup for Trigger Conditions of Analyzer Cores

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Add Trigger Units as desired. Drag signals from the signal pane to the Signals column.

Select conditions for trigger unit using the Operator, Radix, and Value fields. These can also be changed later on during
debugging with Reveal Analyzer

4. Click the Add button to add additional trigger units. Up to 16 different trigger units can be added.

5. Define the Trigger Expressions for when to capture signals. Trigger expressions are logical equations featuring one or
more trigger units. Up to 16 different trigger expressions can be added per analyzer core.
Valid operators: & (AND), | (OR), A(XOR), !(NOT), THEN, NEXT, #(count), ##(consecutive count)
e TU1 #3 means TU1 must occur three times before this expression is true.
e TU1 ##3 means TU1 must occur three clock cycles consecutively for this expression to be true.

6. Select the Max Sequence Depth. To minimize the amount of resources used when Reveal is inserted, minimize this
value. This value should be greater than or equal to value in the Sequence Depth column.

7. Select the Max Event Counter. This value must be greater than the largest count value if # or ## are used in any trigger
expressions.

8. Select the additional optional settings. The Event counter is used to change the number of times an event (including all
trigger expressions) must occur before capturing signals. Trigger out is used to drive a signal once an event occurs.

9. Select the type of signal to drive using the Net field.

10. Select the Polarity and Minimum pulse width, which corresponds to the number of clock cycles of the sample clock.

2.2. Debugging with Reveal Analyzer

With the project’s target device programmed with the updated bitstream containing Reveal analyzer debug cores, the next
step is to begin capturing signals. Depending on how the analyzer core is setup in Reveal Inserter, how signals are captured
at this point may vary slightly.

If Reveal Analyzer is configured for POR debugging, then Analyzer starts capturing signals as soon as the POR trigger signal is
active. Typically, this is a signal that becomes active shortly after a design is reset.

If trigger units and expressions are used to set up an Analyzer core, then there are two main ways to begin capturing
signals. The first way is to click the ... icon in the top right of the Analyzer user interface to begin debugging. Doing this
causes the Reveal Analyzer to monitor the trigger signals in a Reveal project until a trigger expression is enabled.

Aside from that Reveal analyzer can also be forced to capture signals. To do this, click the ... icon towards the top of the
Reveal Analyzer user interface. This Analyzer functionality is especially useful in cases where trigger expressions are not
being enabled, as it allows users to force signal capture.

L L Tiad ! ! Tl F PREES] PRy PRl PRt

Leddd a0 | Hen G238 [i e e2¥7 G258 el [Fi L] 24 2 Q245

Figure 2.4. Reveal Analyzer Waveform Display

Once signals are captured, the Reveal Analyzer switches to the Waveform Display tab to show the captured signals.
Depending on how the Analyzer debug core is configured, different number of samples are captured. However, one
takeaway is that each unit in the display corresponds to a sample. For example, Figure 2.4 shows the sample at 0:234 was
the 234™ sample captured by the Reveal Analyzer. This is useful to know when setting a trigger position for Reveal Analyzer.
The user can specify the specific sample for the waveform display cursor to appear under.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

In addition, the drop-down next to each signal name in the Data column can be used to change the radices displayed for a
signal in the waveform.

2.3. Modifying Trigger Conditions

Reveal Analyzer supports some level of customization for trigger expressions and units while debugging. As shown in

Figure 2.5, some settings that can be changed for trigger units include the comparison operator and radix for the
comparison value. Certain trigger expressions can also be enabled or disabled using the checkbox next to each expression in
the Trigger Expression field.

The trigger conditions for Reveal Analyzer can also be customized using the settings in the trigger options field in the
bottom left of the tab. The first setting, Enable TE, is used to either OR ALL or AND ALL the trigger expressions to capture
signals. The default behavior for Reveal Analyzer is to capture signals with OR ALL, so any trigger expression being enabled
triggers this. Next, the samples per trigger and number of trigger settings can also be modified depending on the buffer
depth. Both these setting are codependent, which means that lowering one allows a higher value for the other.

Trigges Unit
Marme Signals (MS8:158) Operator Hadix Value
T cnt[7:0) » “ | Hex w EF
Tu2 select[2:0) £ « Dt w 4
Trigger Expression
Mame Expression Sequence Depth Max Sequence Depth Bax Event Counter
1 TEi TUT & TU2 1 1 4
Trigger Optians Trigger Position: 64/ 256
Enable TE: ORM = Pre-sedected: Pre-Trigger -

Samples Per Trigger: 158 @ User-selected: 4 ®

Humbaer of Trigger: 2 (mae)

Figure 2.5. Reveal Analyzer Trigger Expression and Unit Settings

Lastly, the location of the waveform display cursor can be selected using the settings in the Trigger Position section.

For pre-selected, either pre-trigger (cursor centered at 1/16% point of samples), center-trigger (cursor centered at % point
of sample), or post-trigger (cursor centered at 15/16" point of samples. The User-selected option can also be used to select
a specific sample number for the cursor to be centered on when the waveform display window opens.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. Reveal Controller

This section covers the usage guidelines for setting up and debugging Lattice Radiant projects using the Reveal Controller.
This section assumes that a Reveal inserter project has already been created, and that a controller debug core is added. For
more information about these two processes, refer to Managing Debug Cores and Detecting a Debug Device sections.

3.1. Virtual Switches and LEDs

The Reveal Controller’s virtual switches and LEDs are other useful features for debugging Lattice FPGA projects. Virtual
switches can be used to toggle user logic, while virtual LEDs can be used to monitor signals in a design. Both virtual switches
and LEDs support up to 32-bits of signals. The main design consideration to make when using this controller function, is that
the signals used must be wire types.

One last thing to consider when using virtual switches to drive user logic is that they should be treated as asynchronous
switches since they are synchronous with the JTAG clock, which typically runs between 1 to 5 MHz. Because of this, it is
recommended that a handshake is implemented in the user logic to account for this lower frequency clock, especially if the
rest of the design is running at a significantly higher frequency.

3.1.1. Adding Virtual Switches and LEDs

The process for adding virtual switches and LEDs is essentially the same. As mentioned in the Virtual Switches and LEDs
section, the main thing to consider when implementing these is to only use wire type signals. Additionally, ensure that the
signals being used as virtual switches and LEDs are not being driven elsewhere in the design to prevent errors in the
implementation flow due to multiple drivers.

To add virtual switches and LEDs:
1. Enable Virtual Switch Setting or Virtual LED Setting depending on what is to be used.
2. Select the Width corresponding to the number of signals to be assigned to the virtual switches and LEDs.

3. Drag and drop the signals from the Signal Pane. Once added, the signals should appear in their assigned cell as shown
in Figure 3.1. A group of signals can also be added by pressing SHIFT or CTRL, and then clicking multiple signals and
dragging them to the Switch List or LED List.

[virtual Switch Setting [virtual LED Setting

HUGTESS 0xB0000000 Address: 080000001

Width: 25 (1-32) | width: 16 (1-32)
Switch List LED List

Name Signal
Name Signal m
1 data_o:15 data_o:15

7 data_i10 | data_i:10 2 data_o:14 data_o:14
8 datai® datai9 3 datao:13 datao:13
9 data_i:8 data_i:8 4 data_o:12 data_o:12
10 datai7 datai7 5 data_o:11 data_o:11
11 datai® datai6 6 data_o:10 data_o:10
12 data_i:5 data_i:5 7 data_o:9 data_o:9
13 data_ii4 data_ii4 8 data_o:8 data_o:8
14 | datai2 data.i3 9 data_c:7 data_o7
15 | datai2 datai2 10 data_o6 data_c:6
16 data_ii data_i:1 11 data_o:5 data_o:5
17 data_i0 data_i0 12 data_o4 data_o4
18 addri0 addri0 13 data_o3 datao3
19 addrii1 addr_iil 14 data_o2 data_o2
20 addri2 addr_i2 15 data_ol data ol
21 addri3 addri3 16 data o) data_o:0

22 addri4 addri4
23 addr_i5 addr_i:5
24 addr_i6 addr_i6
25 |addri7 | addr_i7

Virtual Switch & LED Setup User Memory Setup User Status Register Setup User Control Register Setup Har 4

Figure 3.1. Virtual Switches and LED Setup in Reveal Inserter

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4. Rename signals as desired to improve readability when debugging with Reveal Controller. To rename a signal, click the
cell next to it in the Name column. The signal names provided here are the same signal names to be displayed when
using Reveal Controller.

5. Perform a Design Rule Check by clicking the = icon. Insert the controller debug core using the = icon, underneath
DRC. Ensure top_controller is active and that the Activate Reveal file in project is enabled.
Generate a new bitstream and program device.

Once a bitstream is generated with the Reveal Controller debug core inserted and the target device is programmed, the
next step is to create a new Reveal Controller project. For more information on how to do this, refer to Detecting a
Debug Device section.

3.1.2. Debugging with Virtual Switches

As mentioned previously, Reveal Controller’s virtual switches are synchronous with respect to the FPGA’s JTAG clock, and
should be treated as asynchronous switches in user design logic. With that in mind, the two main modes for virtual switches
are direct and indirect mode, which can be toggled using the Direct Mode checkbox as shown in Figure 3.2.

Virtual Switch (0x80000000)

Data: Ox 1005268 Direct Mode Reset Apply
A =) &) A =) A i i
(=) U U =) y & =) =)
addr_i:0 addr_i:1 addr_i:2 addr_i:3 addr_i:4 addr_i:5 addr_i:6 addr_i:7

[] (=) [| (=) =)] =)
(=) || =) || | =) (=)
data_i:7 data_i:6 data_i:5 data_i:4 data_i:3 data_i:2 data_i:1 data_i:0
(=) B B =) B B (=) (=)
data_i:15 data_i:14 data_i:13 data_i:12 data_i:11 data_i:10 data_i:9 data_i:8

y

wr_rd_en

Virtual LED Switch Hard IP

2

Figure 3.2. Virtual Switches Controller User Interface

In direct mode, the Reveal Controller writes data to the virtual switches as soon as a switch is toggled in the controller user
interface. For indirect mode, switches are toggled once the Apply button in the top right of the user interface is clicked. To
toggle a virtual switch, click the switch to toggle, which updates the Data field in the top left of the user interface to reflect
the data being written out. Similarly, the Data field also accepts user entry, and can be used to directly input the data to
write out in hex format.

To reset all user inputs in the controller user interface back to the default state (all 0’s), click the Reset button located
towards the top right.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3.1.3. Debugging with Virtual LEDs

Similar to virtual switches, the Reveal Controller’s virtual LEDs also have two main modes: continuous and single polling.

Ready |4 D top_Controller
)) . Start Polling
Data: 0x00000100 Polling Speed: l Polling once
data_o:7 data_o:6 data_o:5 data_o:4 data_0:3 data_0:2 data_o:1 data_o:0
data_o0:15 data_o:14 data_o:13 data_o0:12 data_o:11 data_o:10 data_o0:9 data_o:8

Figure 3.3. Virtual LEDs Controller User Interface

When in continuous polling mode, the virtual LEDs continually update depending on the selected polling speed. To use
virtual switches in continuous polling mode, select a Polling Speed by dragging the slider bar (left is slower, right is faster).
Once a polling speed is selected, click the Start Polling button to begin polling continuously. It is important that about
continuous polling also occupies the JTAG to read signals.

In single polling mode, the virtual LEDs update only when the Polling Once button on the top right of the controller user
interface is clicked. Since the button operates with respect to the JTAG clock, it may need to be pressed multiple times to
capture the desired data.

3.2. User Memory Access

The Reveal Controller’s user memory access function is another useful feature for debugging Lattice FPGA projects. The
primary use for user memory access is to provide an interface to a memory component, which can be used to read or write
data. Before user memory access can be used, a project must already contain a memory block (EBR, distributed memory, or
PMI).

Something to consider when using user memory access is that if a single port memory component is used, the signals
assigned in Reveal Controller cannot be used to drive user logic elsewhere in the design. Because of this, it is recommended
that dual port memory components are used when debugging with user memory access. This way, one interface can be
used to read or write to the memory with the Reveal Controller, while the other can be used for memory access by user
logic.

To configure the memory block for user memory access:
1. Select the User Memory Setup tab.
2. Enable User Memory Setting.

3. Assign the mandatory signals from the signal pane to the setting list.
e Clock —input clock
e Clock_enable — clock enable signal
e Wr_Rdn — active high write enable signal (low is read enable)
e Address — memory address (16-bit max)
e WAData - data to write to memory (32-bit max)
e RData - data to read from memory (32-bit max)

4. To avoid incorrect signal selection, directly assign the signals from the user memory component in the design as shown
in Figure 3.4.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

[User Memory Setting
Address: 0x90000000~0x9000FFFF
Address Width: 8 (4-16)
Data Width: 32 (432)
Setting List
Memory Port

Clock dpramO_inst/wr_clk_i

Clock_enable dpramO_inst/wr_clk_en_i

Wr_Rdn dpramO_inst/wr_en_i

Address[7:0] dpramO_inst/wr_addr_i[7:0]

WnData[31:0] dpram0O_inst/wr_data_i[31:0]

RData[31:0] dpramO_inst/rd_data_o[31:0]
Virtual Switch & LED Setup User Memory Setup User Status Register Setup 1k

Figure 3.4. Reveal Inserter User Interface Setup for User Memory Access

Insert the controller debug core using the T icon, underneath DRC.

Ensure top_controller is active and that Activate Reveal file in project is enabled.

Generate a new bitstream and program device. Once a bitstream is generated with the Reveal Controller debug core
inserted and the target device is programmed, the next step is to create a new Reveal Controller project. For detailed
information on how to do this, refer to Detecting a Debug Device section.

3.2.1. Debugging with User Memory Access

Once a new bitstream with the Reveal debug cores is generated and programmed to the target device, the Reveal
Controller can be used to debug a project. The user interface of the Reveal Controller’s user memory access function is

shown in Figure 3.5.

Default Data:

Write Address:

Write Data:

Read Address:

Read Data:

Dump from:
Dump MemFile:

Load MemFile;

User Memory (0x30000000 ~ 0x9000FFFF)

Virtual LED Switch

0x0 Initialize
0x90000000
0x0 Write
0x90000000
Read
0x0 Range:
Dump
Load
User Memory User Status Register User Control Register

Figure 3.5. Reveal Controller User Memory Access User Interface

The Default Data field is used to initialize an entire memory to the same value. Once the initial value is selected, click
Initialize to initialize the memory component.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

To read from a specific address in a memory component, select the target address using the Read Address field. Once the
address is selected, click the Read button to read from that address space. The Read Data field updates to reflect the value
that was read.

Aside from initializing an entire memory to the same value, there are two other ways to write to the memory spaces in a
Hard IP. The first way is to select the address to write to using the Write Address field. The base address that appears here
is offset, so it is important to check the memory range for each component at the top of the user interface. This ensures
writing to the correct memory space. Once a target address is selected, input the data in hex format using the Write Data
field and click Write to write that data to the memory component.

The second way to write to a memory component using user memory access is initialize it using a memory initialization file.
To do this, select the Load button to select an initialization file. The only requirements for this file are that it uses a .mem
extension and lists each register assignment as a separate line using the <memory address>:<memory data> format. Once a
file is selected, click Load again to load the memory initialization file and finish initializing the Hard IP’s registers.

Lastly, user memory access features dump memory, which is used to generate a memory initialization file. Select the
address range to dump values from using the Dump from and Range fields. If no range is selected, then all data from a
memory component are exported. Next, click the Dump button. This opens the file explorer window, which requires the
user to select a name for the memory initialization file to generate. Select a name and click Save to generate a memory
initialization file.

3.3. User Status and Control Registers

Similar to Virtual Switches and LEDs, the Reveal Controller’s user status (read-only) and control registers (read-write) can be
used to read and write to some signals in a design. These two controller functions work similarly and require all signals
interfaced with control and status registers to be of the wire type.

[Status Register

Name Status Signals (MSB:LSB) Width

1 STATO status0[7:0] 8
2 STAT1 status1[7:0] 8
3 STAT2 status2[7:0] 8
4 STAT3 status3[7:0] 8
5 STAT4 status4[7:0] 8
6 STATS status5[7:0] 8
7 STAT6 status6[7:0] 8
8 STAT7 status7[7:0] 8
Add Remove Address: 0x81000010 ~ 0x81000017
iwitch & LED Setup User Memory Setup User Status Register Setup i

Figure 3.6. Reveal Inserter User Status Register Setup

The main function of the user status and control registers is that they support up to eight 8-bit signals as shown in
Figure 3.6 and Figure 3.7, which is enhanced to support 32 8-bit signals in a future release of Lattice Radiant.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Debugging with Reveal Usage Guidelines and Tips .I.ILATTICE

Application Note

Bl control Regster

Name Control Signals (MSB:LSE) Width

1 COND temp_reg0[7:0] a
2 oM temp_reg1[7:0] a
3 | CONZ temp_reg2[7:0] a
4 CON3 temp_reg3[T:0] 3
5 CONd temp_reg4(7:0] 8
6 CON5S temp_reg5(T:0] a
T CONGE temp_rege[7:.0] g
& CONT temp_reg7[T:0] 3
Add Remave Address: (xB1000000 ~ C1000007

Figure 3.7. Reveal Inserter User Control Register Setup

To use user status and control registers, enable either the Status Register and/or Control Register settings in each of the
respective tabs in Reveal inserter. With either controller function enabled, drag and drop up to eight 8-bit signals from the
signal list on the left side of the Reveal Inserter user interface into the Status Signals and Control Signal fields. To rename a
status or control register, double-click the Name column next to the register the user wants to configure.

3.3.1. Debugging with User Status Registers

Once a device is programmed with the updated Reveal bitstream containing the controller debug cores, the user status
register user interface is displayed as shown in Figure 3.8.

The main usage of the Reveal Controller function is to read from the status registers. To do this, click the Rd button next to
the status register to read from.

[
User Status Register (read-only) Address: 0xE1000010 ~ 0x81000017
Address Name Status Signals (MSBLSB) Width Radix Value
51000010 STATO status0[7:0] a Hex Hd
0x51000011 STAT1 status1[7:0] 8 Hex Rd
DxB1000012 STAT? status2[7:.0] 8 Hex Ad
0xB1000013 STAT3 status3[7:0] 8 Hex Rd
OxBI000014 SIAIA slalusa| /0] 6 Hex Rd
DuB1000015 STATS slatusS[7:0] & Hex rd
0x81000016 STATE status6l7:0] 8 Hex Rd
OxB1000017 STATY status/1701 B Hex Rd
Read All Dump
Virtual LED Switch User Memary User Stotus Register User Control Register

Figure 3.8. Reveal Controller User Status Register User Interface

Similarly, the Read All button in the bottom left of the user interface can be used to concurrently read from all the status
registers in the Reveal Controller. Once a register is read from, the Value field updates to reflect the contents of that
register.

When at least one register is read from, the Dump button can be used to generate a memory initialization file, which can be
used to initialize a memory component or control registers. To do this, click the Dump button. This opens the file manager
on Linux window requiring the user to select a name for the memory initialization file. Once the name is selected, click Save
to generate a memory initialization file.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02060-1.1 21

http://www.latticesemi.com/legal

= LATTICE

3.3.2. Debugging with User Control Registers

Once the device is programmed with the updated Reveal bitstream containing the controller debug cores, the user control
register user interface is displayed as shown in Figure 3.9.

2
User Control Register (writable) Address: 0x81000000 ~ 0x81000007
Address Name Control Signals (MSB:LSB) Width Radix Rd Value Wr Value

0x81000000 CONO temp_reg0[7:0] 8 Hex Rd Wr
0x81000001 CONT1 temp_reg1[7:0] 8 Hex Rd Wr
0x81000002 CON2 temp_reg2(7.0] 8 Hex Rd Wr
0x81000003 CON3 temp_reg3[7:0] 8 Hex Rd Wr
0x81000004 CON4 temp_reg4[7:0] 8 Hex Rd Wr
0x81000005 CONS5 temp_reg5[7:0] 8 Hex Rd Wr
0x81000006 CON6 temp_reg6[7:0] 8 Hex Rd Wr
0x81000007 CON7 temp_reg7[7:0] 8 Hex Rd Wr
Apply All Read All Load Dump
Virtual LED Switch User Memory User Status Register User Control Register

Figure 3.9. Reveal Controller User Controller Register User Interface

As mentioned previously, one of the main differences of the user control registers is that it can be used to read and write to
signals in a design. To read from a signal, click the Rd button next to the signal’s name, or click the Read All button to read
from all the signals in this tab. Once a signal has been read from, its value is updated in the Rd Value field.

Similarly, the Wr Value field is used to specify an 8-bit hex value to write to the selected control register. Once an 8-bit
value is entered, click the Wricon in order to apply that value to the selected signal. Once the value is applied, read from
the same control register to ensure that the value is correctly applied. Aside from that, the Apply All button can be used to
apply all values in the Wr value field to every control register.

Lastly, the Dump button can be used to generate a memory initialization file, which can be used to initialize a memory
component or control registers. To do this, click the Dump button. This opens the file explorer window which requires the
user to select a name for the memory initialization file to generate. Select a name and click Save to generate a memory
initialization file. This file can be used to initialize control registers later on using the Load button.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3.4. Configuring Hard IP

The Reveal Controller’s Hard IP function is used to interface with the Hard IP on a device by providing an interface to its
LMMI ports to dynamically change its functionality. Note that in order to prevent multiple drivers, any existing user logic
interfaced with a Hard IP’s LMMI ports is disconnected when Reveal is inserted to a design with this enabled. An exception
is when a PCIELL Hard IP is used in the design. In this scenario, Reveal inserts a MUX which handles the arbitration between
LMMI signals in the user design and the generated LMMI bus from the Reveal controller as shown in Figure 3.10. This
arbitration method allows user logic to function as normal. Reveal only accesses the LMMI interface when it needs to
perform read or write operations by asserting then de-asserting the usr_Immi_ready_o signal.

PCle IP

RTL Access to

LMMI Interface
<
c
- Immi_bus
[¢]
x
@

Reveal
Controller

Figure 3.10. Reveal Controller LMMI Arbitration Scheme for PCIELL

Another important thing to know about the Hard IP function is that the IPs that are controllable depend on the specific
target device. For Crosslink™-NX, Certus™-NX, and CertusPro™-NX devices, the Hard IPs are: PLL, DPHY, 12CFIFO, SGMIICDR,
PCIELL, PCSX1, PCSX2, and PCSX4. For Lattice Avant™, the configurable Hard IP is PLL.

Before using the Reveal Controller’s Hard IP function, the Hard IP to configure must already be in the active design. As
mentioned before, ensure that no important user design logic is hooked up with the target device’s LMMI interface.

Hard IP Setting
Enabled IP Name Instance Name
1 I:| PLL1 p2m_inst/int_pll/Iscc_pll_inst/gen_no_refclk_mon.u_PLL
2 I:l PCSCH1 n_slvs_ec/Iscc_slvsec_ne_inst/u_mpcs_slvsec_rx_wrap/u_mpcs_slvsec_rn/lscc_mpcs_top_inst/PCSX1 _inst.u_P(
4 3
Virtual Switch & LED Setup User Memory Setup User Status Register Setup User Control Register Setup Hard IP Setup

Figure 3.11. Hard IP Setup Tab in Reveal Inserter

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Once the project is ready for debugging with Reveal Controller, add a new Controller debug core. For more information on
how to add a Controller debug core, refer to Managing Debug Cores section. Once the controller core is added, select the
Hard IP Setup tab shown in Figure 3.11.

In this section of the Reveal Controller user interface, the list of configurable Hard IPs that are detected in the current
project appears. For each Hard IP block in a design, a separate entry appears in this section. For example, in a two-channel
PCle design, two separate PCS channels are shown.

To enable an IP for configuration using Reveal Controller, select the box next to the Hard IP’s name.

The address range for each enabled Hard IP is displayed under the Address column, as shown in Figure 3.12. It is important
to note this address range as the Hard IP function also provides an interface for writing to any of the address spaces in this
range when debugging later on.

Hard IP Setting
:ance Name Address
1 _inst/int_pll/Iscc_pll_inst/gen_no_refclk_mon.u_PLL 10000000~10000035

2 Ivs_ec/Iscc_slvsec_rx_inst/u_mpcs_slvsec_rx_wrap/u_mpcs_slvsec_n¢/lscc_mpcs_top_inst/PCSX1_inst.u_PCSX1 || 30010000~300101FF

Figure 3.12. Address Ranges for the Enabled Hard IP in Reveal Inserter

Once the Hard IP to configure is selected, perform the DRC using the Design Rule Check icon on the left side of the user
interface. If the DRC is successful, insert the controller debug core and generate a new bitstream.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

3.4.1. Dynamically Updating Hard IP

Depending on the IP that is enabled for the Hard IP configuration with the Reveal Controller, the exact appearance of the
Hard IP tab varies. Figure 3.13 shows the user interface of the MPCS IP for CertusPro-NX and Figure 3.14 shows the tab for

the PLLIP.

= LATTICE

Address (30010000 ~ 300101FF)

Instance Hierarchy:

Transmit Settings

Differential Amplitude
Qutput Termination
Tx Post-Cursor Ratio
Tx Pre-Cursor Ratio

Invert Tx Data Polarity

Tx PLL Loss of Lock Status

Receive Settings

Input Termination

Rx EQ

Invert Rx Data Polarity
CDR Loss of Lock Status

Data Loss of Lock Status

Loopback Mode Settings

Loopback Mode

Serdes/PCS Reset

MPCS Tx Reset

MPCS R Reset

r<_shvs_ec/lscc_slvsec_rx_inst/u_mpcs_shvsec_ne_wrap/u_mpcs_sh

100mv

100 ohm

off

unlocked

100 ohm

RL2plus 5GT/s

on
unlocked

unlocked

Disabled

off

off

Figure 3.13. Reveal Controller Hard IP Settings for MPCS

Every Hard IP configurable by Reveal Controller has a user memory access section, which allows users to directly write and
read from the registers in a Hard IP and functions similar to the user memory access function discussed in the User Memory
Access section. For specific information about the properties or addresses of the registers for a Hard IP, refer to the
component’s IP user guide.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1]
User Memory (0x90000000 ~ 0x9000FFFF)

Default Data: 0x0 Initialize

Write Address: = 0x90000000

Write Data: 0x0 Write

Read Address: | 0x90000000

Read Data: Read
Dump from: 0x0 Range:

Dump MemFile: Dump
Load MemfFile: Load

User Memory

Figure 3.14. Reveal Controller Hard IP Memory Access User Interface

The Default Data setting is used to initialize all registers to the same initial value. Once an initial value is specified by
inputting a hex value, click the Initialize button to initialize all registers to that value.

To read from a register, select the target register’s address using the Read Address field. Once a register address is selected,
click the Read button to read from that register. The Read Data field updates to reflect the value of the register that was
read from.

There are two ways to write to the registers in a Hard IP. The first way is to select the register address the user wants to
write to using the Write Address field. The base address for the registers in a Hard IP are offset in the Reveal Controller, so
it is important to check the memory range for each component and cross reference it with the IP user guide to ensure the
user writes to the correct register. Once the target address is selected, input the data in hex format that the user wants to
write using the Write Data field, and click Write to write to that register.

Another way to write to the registers in a Hard IP is to use a memory initialization file. To do this, select the Load button to
select the memory initialization file. The only requirements for this file are that it uses a .mem extension and lists each
register assignment as a separate line using the <register address>:<register data> format. Once a file is selected, click Load
again to load the memory initialization file and finish initializing the Hard IP’s registers.

Aside from that, certain Hard IP contains user interface settings that can be used to easily change the settings written to
various registers. As shown in Figure 3.13, the Hard IP user interface for MPCS contains a few additional settings before the
user memory access section, allowing users to modify things like differential output, RX equalizer, and loopback mode.

A useful feature of the Reveal Controller’s Hard IP configuration function is that a memory initialization file can easily be
generated after some registers were modified. To do this, select the address range first to dump values from using the
Dump from and Range fields. If no range is selected, then the values from all the registers in a Hard IP are included in the
generated memory initialization file. Click the Dump button next, which opens the file explorer window requiring the user
to select the name for the memory initialization file to generate. Select a name and click Save to generate a memory
initialization file. This file can be used later on to reinitialize the registers in a Hard IP using the Load function that was
previously discussed.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3.4.2. Eye-Opening Monitor

For designs containing one, two, or four PCS channels in PCle mode Gen1, Gen2, or Gen3, the performance for each channel
can be analyzed using Reveal Controller’s Eye-Opening Monitor function. The purpose of this function is to measure the
relative performance of a SerDes through comparison, analyzing data regarding the height and width of the eye diagram,
and where the passing eye begins and ends. The main thing to know about the functionality of Eye-Opening monitor is that
data is collected on the RX side of the PCS block.

To use the Reveal Eye-Open monitor, user must enable the PCS channel to analyze in the Reveal Inserter for any IP
containing PCS channels. As discussed in the Configuring Hard IP section. Once the device is programmed with the updated
Reveal bitstream, the next step is to load the Reveal Controller and start capturing data for the eye diagram. To do this, click
the Eye-Opening Monitor button as shown in Figure 3.15.

¥ PCSCH1

Address (30010000 ~ 300101FF)

Instance Hierarchy: Iscc_mpecs_top_inst/PCSX2_1.u_PCSX2_1 Eye-Opening Monitor...

Transmit Settings

Differential Amplitude omy -
Output Termination 100 ohm v
Tx Post-Cursor Ratio 0
Tx Pre-Cursor Ratio 0

Invert Tx Data Polarity off b

Tx PLL Loss of Lock Status = unlocked

Receive Settings
Input Termination 100 ohm -
Rx EQ S5_LMS 2.5GT/s v

Invert Rx Data Polarity off -
CDR Loss of Lock Status unlocked

Data Loss of Lock Status | unlocked

Virtual LED Switch Hard IP

Figure 3.15. PCS Channel Hard IP Eye-Opening Monitor Setting Location

Doing this opens the Eye-Opening Monitor Configuration dialog box as shown in Figure 3.16, where the quality and detail of
the desired eye diagram can be selected. To generate the eye diagram, it is recommended that either low or normal quality
are initially selected, as a high-quality eye diagram can significantly increase the required runtime. Once the correct eye
diagram quality is selected, click Run to start capturing data for the eye diagram.

-

| Quality of Eye Diagram: normal -
(Since high quality will increase the runtime, select normal or low quality

| for faster result.)

Run Cancel

Figure 3.16. Eye Diagram Quality Selection Window

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Debugging with Reveal Usage Guidelines and Tips .I.ILATTICE

Application Note

Once Eye-Opening Monitor finishes generating the eye diagram, the Eye Diagram appears as shown in Figure 3.17. The
window displays the actual eye diagram and can be used to visually determine the quality of the captured eye.

| &5 ¢

L 32
L 24

- 16

View Raw Data Close

Figure 3.17. Generated Eye Diagram by Reveal Eye Open Monitor

At the bottom of the eye-diagram window is the View Raw Data button. Clicking this opens the new window containing the
data used to generate the eye diagram as shown in Figure 3.18.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02060-1.1 28

http://www.latticesemi.com/legal

Debugging with Reveal Usage Guidelines and Tips

Application Note

= LATTICE

“,&3 eom_normal_PCSCH1.csv
X Y
1 0 -63
2 0 -60
3 0 -57
4 0 -54
5 0 -51
6 0 -48
7 0 -45
8 0 -42
9 0 -39
10 0 -36
1 0 -33
12 0 -30
13 0 -27
14 0 -24
15 0 -21
16 0 -18
17 0 -15

nsamples_cur
Ore 120000
0w 10000
Ore 120000
Ore 120000
Ore 120000
Ore 120000
10000
Ore 120000
Ore 120000
Ore 120000
Ore 120000
Ore 120000
Ore 120000
Ore 120000
Ore 120000
Ore 120000

010000

nsamples_pre
0r 10000
010000
0r 10000
0r 10000
0r 10000
0r 10000
120000
0r 10000
0r 10000
0r 10000
0r 10000
0r 10000
0r 10000
0r 10000
0r 10000
0r 10000

(120000

Close

nerrors_cur

(000000

D 000000

(000000

(000000

(000000

(000000

O 0O00000

(000000

(000000

(000000

(000000

(000000

(% 000004

(x000029

(x0000F4

x000712

0x0013cf

x0f3b22

Ox0f3%bc

x0f3ac3

(x0f3a35

x0f3a70

(= 0f35f0

D Of3bf7

x0f3819

(xOf338f

O Of26f7

(x0f0e98

(xOedb7f

(x0e6928

(x0dcd42

(x0d0d33

(x0b&T20

(xDa2daf

NEerrors_pre

Figure 3.18. Raw Data Used to Calculate and Generate the Eye Diagram

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02060-1.1

29

http://www.latticesemi.com/legal

= LATTICE

Appendix A. Using the JTAG Hub Primitive

Similar to other Lattice primitives, the JTAGhub primitive used by Reveal is instantiated in custom user logic. To use a soft
JTAG hub, choose the JTAGH25SOFT primitive. To use a hard JTAG, choose the JTAGH25 primitive. The usage for both
primitives is essentially the same. The main difference is the way each JTAGhub is implemented. The hard JTAG uses the
hardened JTAG block on an FPGA, while the soft JTAG is implemented in RTL.

When using JTAGhub, JTAG primitive cannot be used if JTAGH25 primitive is already included in the design. JTAGH25
already contains a JTAG primitive and the synthesis tool produces an error if more than one JTAG primitive is detected.

Figure A.1 depicts the block based diagram of input and output ports for the JTAGhub primitive. This diagram is the same
for both JTAGH25 and JTAGH25SOFT.

——» JTCK
— » JTDI
—— » JSHIFT
TCK ———— ¥ — » JUPDATE
™S ———»| JTAG —— » JRSTN
—» JCE2
—— » CDN

DI —————————P

TDO <+«

- » IP_ENABLE[24:0]

«—————— ER2_TDOJ[24:0]

JTAGhub

Figure A.1. JTAGhub Primitive Block Based Diagram

When implementing the JTAGhub primitive in user logic, the TCK, TMS, TDI and TDO ports should be connected to external
ports on the FPGA, while all other ports should be connected internally within the user logic. Refer to Table A.1 for more
information on the input and output ports of the JTAGhub primitive.

Table A.1. JTAGH19 and JTAGH25SOFT Lattice Primitives Signal Descriptions

Signal Description

JTCK The same signal as TCK.

JTDI Registered version of the TDI signal.

JSHIFT Indicates if valid data is available in JTDI. Is asserted and de-asserted on the positive edge of JTCK.

JUPDATE Used to capture shifted data by JTDI. A positive pulse is output one-cycle after JSHIFT is de-
asserted. Signal is asserted and de-asserted on the positive edge of JTCK.

JRSTN Active low reset signal. Set low initially and then remains high after initialization.

JCE2 Signal indicating valid data is available in JTDI for the selected core. Remains high as long as data is
valid. Signal is asserted one clock before JSHIFT and is de-asserted at the same time as JSHIFT.

CDN Unused signal.

IP_ENABLE[18:0] Signal enabling one bit from each debug core. For Avant, this signal is 25-bits instead of 19-bits.

ER2_TDO[18:0] Input data signal to be shifted out of TDO. Each respective bit corresponds to the same bit of

IP_ENABLE. For Avant, this signal is 25-bits instead of 19-bits.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figure A.2 and Figure A.3 depict valid timing diagrams for these signals in the JTAGhub primitive.

Ve
s
s
s
s
s
Ve
Ve
Ve
- S
{5
s
s

ps
Cursor 1 [B429 p:

Figure A.3. Additional JTAGhub Primitive Timing Diagram

Whenever a bit of the IP_ENABLE signal is active high at the same time as JCE2 and JSHIFT, valid data from JTDI is shifted-
out with its corresponding bit from ER2_TDO.

Some additional considerations to keep in mind when using the JTAGhub primitive is that TCK does not work like a typical
clock. Instead, the TCK signal is pulsed whenever data is transmitted and received.

Aside from the signals mentioned above, the JTAGhub component also has several parameters corresponding to each of the
debug cores within the JTAG hub. For Avant devices, up to 25 debug cores are supported, while for all other devices, up to
19 debug cores are supported. However, it is recommended that cores 17 and 18 are used in custom user RTL. The reason
for this is because the first few debug cores are typically reserved for other types of debugging, such as Reveal Analyzer and
GDB. For portability from other device families, it is also recommended to use core 17 and core 18 for Avant devices so that
the only thing that needs to be updated is the primitive itself.

To enable a debug core for use with a primitive, change the corresponding parameter for the debug core from 0. All cores
for use with Reveal Analyzer are initialized with the parameter value of 0x43. All other cores intended for custom use
should be parameterized with 0x1.

For example, to use core 17 of the JTAGhub primitive, initialize the parameter “HUB_17" to Ox1, and connect the
IP_ENABLE[17] and ER2_TDO[17] signals accordingly.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Debugging with Reveal Usage Guidelines and Tips .I.ILATTICE

Application Note

The following are examples of JTAG commands:

e Reading the ID of debug cores

! enable ERL

SIR 8 TDI (32); //8-bit data with hex value of 32

! set reveal core

SDR 24 TDI (800006); //24-bit data with hex value of 800006

e Enabling COREO

! enable ER1

SIR 8 TDI (32);

SDR 24 TDI (000016);

e Enabling CORE2

! enable ER1

SIR 8 TDI (32);

SDR 24 TDI (000046) ;

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02060-1.1 32

http://www.latticesemi.com/legal

Debugging with Reveal Usage Guidelines and Tips .I.ILATTICE

Application Note

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.
For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-AN-02060-1.1 33

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
https://www.latticesemi.com/Support/AnswerDatabase

Revision History

Revision 1.1, April 2024

= LATTICE

Section

Change Summary

Disclaimers

Updated disclaimers.

Reveal Analyzer

Minor editorial fixes.

Introduction

In the JTAG Interface Usage section:

e Added discussion on instantiating a JTAG hub primitive and cross reference to appendix.
e Removed discussion on using only a hard JTAG for debugging with Reveal.

Moved the Using the JTAG Hub Primitive section into the appendix.

Reveal Controller

In the Configuring Hard IP section:

e Added discussion on PCIELL Hard IP exception in relation to LMMI ports when using the Reveal
Controller’s Hard IP function.

e Added Figure 3.10. Reveal Controller LMMI Arbitration Scheme for PCIELL.

Updated discussion on the purpose of the Reveal Controller’s Eye-Opening Monitor function in the

Eye-Opening Monitor section.

Appendix A

Created appendix section.

Revision 1.0, January 2023

Section

Change Summary

All

Initial release.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	Debugging with Reveal Usage Guidelines and Tips
	Contents
	Acronyms in This Document
	1. Introduction
	1.1. Reveal Usage Flow
	1.1.1. General Reveal Flow Summary

	1.2. General Information
	1.2.1. Design Rule Checking
	1.2.1.1. Performing a Design Rule Check

	1.2.2. JTAG Interface Usage
	1.2.2.1. Selecting a JTAG Type

	1.2.3. Managing Debug Cores
	1.2.4. Detecting a Debug Device
	1.2.5. Other Important Considerations

	2. Reveal Analyzer
	2.1. Creating and Inserting Logic Analyzer Cores
	2.1.1. Adding Logic Analyzer Cores
	2.1.2. Setting Up Trace Signals
	2.1.3. Setting up Trigger Conditions

	2.2. Debugging with Reveal Analyzer
	2.3. Modifying Trigger Conditions

	3. Reveal Controller
	3.1. Virtual Switches and LEDs
	3.1.1. Adding Virtual Switches and LEDs
	3.1.2. Debugging with Virtual Switches
	3.1.3. Debugging with Virtual LEDs

	3.2. User Memory Access
	3.2.1. Debugging with User Memory Access

	3.3. User Status and Control Registers
	3.3.1. Debugging with User Status Registers
	3.3.2. Debugging with User Control Registers

	3.4. Configuring Hard IP
	3.4.1. Dynamically Updating Hard IP
	3.4.2. Eye-Opening Monitor

	Appendix A. Using the JTAG Hub Primitive
	Technical Support Assistance
	Revision History
	Revision 1.1, April 2024
	Revision 1.0, January 2023

