
Copyright © 2022 Lattice Semiconductor Corporation.

Reveal Troubleshooting for 
Lattice Radiant Software

This document describes the design restrictions for using on-chip debug.

HDL Language Restrictions
The following features are valid in the VHDL, Verilog and System Verilog 
languages but are not supported in Lattice Radiant™ Reveal Inserter when 
you use the RTL flow:

 Array types of two dimensions or more are not available for tracing and 
triggering.

 Undeclared wires attached to instantiated component instances are not 
shown in the hierarchical design tree. You must declare these wires 
explicitly if you want to trace or trigger with them.

 Variables used in generate statements are not available for tracing and 
triggering.

 Variables used in conditional statements like if-then-else statements are 
not available for tracing and triggering.

 Variables used in selection statements like the case statement are not 
available for tracing and triggering.

 If function calls are used in the array declaration, the actual size of the 
array is unknown to Reveal Inserter.

 Entity and architecture of the same design cannot be in different files.

 In Verilog, you must explicitly declare variables at the very beginning of a 
module body to avoid obtaining different results from various synthesis 
tools.

 In VHDL, you must declare synthesis attributes within an entity, not within 
an architecture, to avoid obtaining different results from various synthesis 
tools.



Reveal Inserter and Radiant Software Errors

2 Reveal Troubleshooting for Lattice Radiant Software

 In VHDL, always define the syn_keep and preserve_signal attributes as 
Boolean types when you declare them in your design. Synplify defines 
them as Boolean types, and Reveal Inserter will issue an error message if 
you define them as strings.

 Some signals in a System Verilog design appear in the signal hierarchy 
but are not available for triggering or tracing. These signals include:

 Array types of two dimensions or more are not shown in the port or 
node section

 Signals that are user defined enumerated types, integer type, byte/
shortint/int/longint type

 Signals that belong to typedef, interface, struct and union

Reveal Inserter and Radiant Software Errors
This section discusses errors that can occur when you run Reveal Inserter 
from Radiant software.

Design Parsing Problems in Reveal 
Inserter
When you start Reveal Inserter from Radiant software, it parses and statically 
elaborates the design in order to build the hierarchy representation and signal 
list to make them available for debugging. If the design cannot be parsed and 
elaborated because of syntax errors, Reveal Inserter’s graphical user 
interface will not open. Instead, a message box opens with an error message 
similar to that shown in Figure 1. All warnings and errors while reading the 
design are written to the reveal_error.log file, which is located in the 
implementation directory of the current Radiant software project. This file 
contains all the information, warning, and error messages issued by the 
compiler when it tries to read the design.

Radiant Software Flow Messages
After Reveal Inserter inserts the debug logic, it generates the debug logic 
cores and passes the information to the File List view for building the design. 
Several issues could potentially cause the implementation flow to fail because 
of the debug insertion. Two types of problems could occur:

 Problems with debug design generation

 Problems with design implementation



Signals Unavailable for Tracing and Triggering

Reveal Troubleshooting for Lattice Radiant Software 3

Debug Design Messages
The debug cores are generated in Reveal Inserter. However, the design must 
also be modified to allow the debug cores to be connected to the appropriate 
signals. The modified design is generated during the Synthesis step in the 
Radiant software design flow. The design is modified with the necessary 
connections for the debug cores, a temporary HDL file is generated, and the 
files are synthesized and converted to the Lattice Semiconductor netlist 
format. Errors generated during this stage are displayed in the automake.log 
file.

Design Implementation Messages
During the mapping process, errors can occur, such as running out of 
available resources or tracing or triggering on signals that are not available in 
the FPGA fabric. During debug insertion, Reveal Inserter checks to make sure 
that the debug logic is not using more resources than are available in the 
FPGA. But it does not check to see if the debug logic is using more resources 
than are available after the design is placed in the FPGA. Currently, resource 
use can only be accurately checked during the mapping process. Exceeding 
the available resources results in a mapping error, requiring the debug 
configuration in Reveal Inserter to be reduced in order to fit.

Signals Unavailable for Tracing and Triggering
Some signals in a VHDL design appear in the signal hierarchy but are not 
available for triggering or tracing. The following signals are currently 
unavailable:

 Signals used in “generate” statements are not available for tracing and 
triggering.

 If function calls are used in the array declaration, the actual size of the 
array is unknown to Reveal Inserter.

 Signals that are user-defined enumerated types, integer type, or Boolean 
type are not available for tracing or triggering.

Some signals in a Verilog design appear in the signal hierarchy but are not 
available for triggering or tracing. The following signals are currently 
unavailable:

 Array types of two dimensions or more are not shown in the port or node 
section.

 Undeclared wires attached to instantiated component instances are not 
shown in the hierarchical design tree. You must declare these wires 
explicitly if you want to trace or trigger with them.

 If function calls are used in the array declaration, the actual size of the 
array is unknown to Reveal Inserter.

Some signals that are used in a design but are implemented as hard routes in 
the FPGA instead of using the FPGA routing fabric are not available for 
tracing or triggering. Examples are connections to IB and OB components. 



Incorrect Signature and Sample Clock

4 Reveal Troubleshooting for Lattice Radiant Software

Many common hard routes are automatically shown as unavailable in Reveal 
Inserter, but some are not. If you select a signal for tracing or triggering that is 
implemented as a hard route, an error will occur during the synthesis, 
mapping, placement, or routing steps.

Understanding errors reported because of hard routes can be difficult. Here is 
an example error from the synthesis log file, <cktname>.log:

@E:"f:\cws\bugs\cr37986\reveal_workspace\tmprveal\rx_ddr_rvl.vh
d":648:8:648:12|Port 'serin' on Chip 'RX_DDR' drives 1 PAD 
loads and 1 non PAD loads

In this example error message, the serin signal is a hard route, and serin is 
not the name of the original signal that was traced. The hierarchical path 
shown is for the debug core that was generated. It is not part of the original 
design and is not information displayed during the debug insertion. The error 
message does not specify which user-selected signal used as a trace or 
trigger is causing the problem. To manually determine which signal is causing 
this error, you can use two approaches. 

 Remove signals one by one in Reveal Inserter to see which caused the 
error. If you have only a few signals, this would be the best approach. 

 Manually look through the design to determine the problem. If you have 
many signals, this approach would be the best.

Following is another example of an error generated during mapping. This one 
is caused by forcing a register whose input is being traced to be implemented 
as an input flip-flop because of a constraint, USE DIN.

ERROR - map: IO register/latch FF_inst cannot be implemented in 
PIC.

In this case, allowing the register to be implemented as an internal flip-flop by 
removing the constraint resolves the issue. 

NOTE

Incorrect Signature and Sample Clock
Reveal software uses a signature mechanism to insure that the design loaded 
in the software and the design programmed in the FPGA match. This prevents 
wasted time caused by trying to debug one design configuration while a 
different one is actually loaded. When Reveal Inserter writes out the debug 

The current version of the Radiant software support for UltraPlus devices doest not 
support multi-core debug for Reveal.

Reveal now supports IEEE-P1735 encryption. If this encryption is applied to a design, 
it will no longer error out as it did in previous versions. The design tree will allow only 
the visible ports and signals that are not encrypted to be inserted by the Reveal 
Inserter for triggering purposes.



Incorrect Signature and Sample Clock

Reveal Troubleshooting for Lattice Radiant Software 5

information into its file (.rvl file) a signature is added based on the timestamp. 
This signature is implemented into the debug core which is programmed into 
the FPGA. When Reveal Analyzer creates a new file (.rva file), it reads the 
Reveal Inserter file and also reads the signature from the debug core. If they 
do not match, this causes the incorrect signature error message. There are 
three main causes for this error.

The first cause is that a different design is programmed into the FPGA than is 
represented by the Reveal Inserter file (.rvl file). This can be caused by 
programming an old bit file or by changing the Reveal Inserter file after 
programming the FPGA. Opening Reveal Inserter and then saving the file 
after the design has been programmed will cause this error. In this situation 
the error message will look similar to the message below where the mismatch 
is between two valid numbers.

The second cause is from a sample clock problem.

The sample clock is used by Reveal debug logic to clock data into the trace 
buffer and in the triggering logic. The sample clock is also needed when 
Reveal Analyzer communicates with the debug logic through JTAG. If the 
sample clock is not running or is running too slow, Reveal Analyzer cannot 
detect that the Reveal debug logic is available. This information is especially 
important when you create a new Reveal Analyzer project. Reveal Analyzer 
checks the debug logic for a signature to make sure that the bitstream 
matches the design. If Reveal Analyzer cannot communicate with the debug 
logic because the sample clock is not running, the project creation or the 
Reveal Analyzer run command will fail with an error, and Reveal Analyzer 
issues an error message similar to that shown in Figure 2. For these reasons, 
the sample clock should be a signal with a reasonably regular frequency 
rather than a signal with intermittent pulses. The frequency of the sample 
clock should also be faster than the speed of the JTAG clock that is used.

The third cause for the incorrect signature error message is when the sample 
clock is not correctly connected to the debug logic. This can occur if a 
problem happens in the implementation flow. The signature read from the 
device will be all ones in this situation. To resolve this, the post-map netlist 

Figure 1: Reveal Analyzer Invalid Design Error Message

Figure 2: Reveal Analyzer Sample Clock Error Message



Unexpected Reveal Analyzer Results

6 Reveal Troubleshooting for Lattice Radiant Software

needs to be viewed directly to determine the root cause. Error messages and 
debug information will be saved in the reveal_debug.log file.

 In Radiant Reveal, the reveal_debug.log file is located in the 
implementation directory.

 In Stand-Alone Reveal, the reveal_debug.log file is located in the user's 
home directory.

Please include this reveal_debug.log file when contacting Lattice Technical 
Support.

Unexpected Reveal Analyzer Results
Using a trigger signal that is the output of a very large logic cone may produce 
confusing results in Reveal Analyzer. A glitch on an asynchronous trigger 
signal in rare cases may cause the trigger logic to become active prematurely. 
If you encounter this situation, register your trigger signal with the sample 
clock and use that as the trigger.

Performance
When you open Reveal Inserter for an RTL project, it must first parse the 
entire design in order to build the design hierarchy and signal list. Normally 
this occurs within a few seconds. Very large designs may take significantly 
longer.

When you change trigger settings in Reveal Analyzer, the settings must be 
downloaded to the debug logic on the FPGA when you press the Run button. 
While the debug logic settings are being downloaded, the Configuring ... 
message appears in the upper left corner of the window. 

 The Reveal triggering logic, which is composed of trigger units and trigger 
expressions, offers unique capabilities and flexibility. However, there is a 
latency of five sample clocks to the output of the final trigger condition. Reveal 
Analyzer software automatically handles this latency delay so that the trigger 
point lines up with the correct data when waveforms are displayed in the 
Waveform view. The trigger-out signal also has this five-clock latency delay. 
When you use the trigger-out signal as an input to another core or as an 
external trigger-out signal, the five-sample-clocks delay from the actual trigger 
event must be taken into account. Otherwise, the captured data will not line 
up with the desired event.

Failure Points of Analyzer Function
The following are typical failure points of Reveal Analyzer, along with



Failure Points of Analyzer Function

Reveal Troubleshooting for Lattice Radiant Software 7

proposed solutions.

1. Reveal software client tool which communicates with the cable 
server.Some of the functions are providing the register settings, trigger 
points, downloading trace data, etc. The problem can include not being 
able to communicate with the cable server, which may not be responding, 
or receiving wrong data from the cable server which may be running in 
corrupted state.

Solution: Terminate existing cable server process.

2. The cable server communicates with the device on the board through a 
cable. The cable should be the correct cable with the correct port and 
should be selected in the GUI. The type should match with the actual 
physical cable.

Solution: Select the correct cable port.

3. The JTAG ports (TDI, TCK, TDO, TMS) should be properly located and 
connected on the board so that the cable has the correct connection from 
the Reveal Analyzer client to the device. The JTAG IO pins must not be 
shared with any other wires on the board. 

Solution: Check the JTAG pins located in Radiant software Signal/Pad 
report.

4. The JTAG communicates with the user design using the 
Debuggerinserted pre-synthesis. The trace trigger and data are in sample 
clock domain. The sample clock must be clean and continuous and not 
intermittent. The sample clock frequency also must be more-than or 
equal-to the JTAG clock frequency.

Solution: Run PAR Timing Analysis to check for timing violations.

5. The board must be properly powered-up.

Solution: Connect the board to a power supply with the correct voltage. If 
there is on/off switch on the board, make sure it is turned to ON.

6. The right config file should be used for configuration. Sometimes users 
use wrong or old config file by mistake.

Solution: Select config file by correct name and correct type from rbt, bit, 
jed.

7. The Reveal project files .rvl, .rva files need to be under design directory.

Solution: Select correct rvl to create new rva in Startup Wizard.

8. When SOFT-JTAG is used in some devices, the scan function for device 
id should not be used and correct port is selected and located.

Solution: select correct cable port for debug different from programming 
port.

9. When multiple devices are chained then the correct chain information 
needs to be in the .xcf file.

Solution: Select correct .xcf to create new rva in Startup Wizard.



Using the Reveal Debug Projects

8 Reveal Troubleshooting for Lattice Radiant Software

Using the Reveal Debug Projects
If you are having trouble running Reveal with your design, Lattice provides the
following pre-verified Reveal Debug Project to allow you to verify that Reveal
is working correctly on your computer.
 counter_reveal

The Reveal Debug Project is located in a folder in the examples directory:
<radiant_install_path>\examples\

Your computer must be connected to a board with the appropriate Lattice
device.

The sample design is a 24-bit counter which includes one input reset and 1
output a1 to drive an instantiated RGB primitive.

The counter will be toggling with the LED once the design is programmed.

The clock signal is driven by internal oscillator and the RGB primitive are 
connecting to a1. This reference design has a Reveal module inserted and 
has trace signal TU1 thats monitoring count[3:0] equal to 4b'1001 as trigger 
condition.

To start the Reveal example project:
1. Choose File > Open > Design Example. The Open Example dialog box 

opens.

2. Click counter_reveal, browse to select the location.

3. Click OK.

4. Ensure that the Radiant software project settings match the device on 
your board.

5. Follow the steps outlined in the “Performing Logic Analysis” section of the 
Radiant software online help.

 If you are able to run the Reveal Debug Project successfully in Reveal, 
then the problem may be with your design or in the clock source.

 If you are unable to run the Reveal Debug Project successfully in 
Reveal, contact Lattice Technical Support and send the project with 
the log files.


	HDL Language Restrictions
	Reveal Inserter and Radiant Software Errors
	Design Parsing Problems in Reveal Inserter
	Radiant Software Flow Messages

	Signals Unavailable for Tracing and Triggering
	Incorrect Signature and Sample Clock
	Unexpected Reveal Analyzer Results
	Performance
	Failure Points of Analyzer Function
	Using the Reveal Debug Projects

