= LATTICE

Reveal Troubleshooting for
Lattice Radiant Software

This document describes the design restrictions for using on-chip debug.

HDL Language Restrictions

The following features are valid in the VHDL, Verilog and System Verilog
languages but are not supported in Lattice Radiant™ Reveal Inserter when
you use the RTL flow:

Array types of two dimensions or more are not available for tracing and
triggering.

Undeclared wires attached to instantiated component instances are not
shown in the hierarchical design tree. You must declare these wires
explicitly if you want to trace or trigger with them.

Variables used in generate statements are not available for tracing and
triggering.

Variables used in conditional statements like if-then-else statements are
not available for tracing and triggering.

Variables used in selection statements like the case statement are not
available for tracing and triggering.

If function calls are used in the array declaration, the actual size of the
array is unknown to Reveal Inserter.

Entity and architecture of the same design cannot be in different files.

In Verilog, you must explicitly declare variables at the very beginning of a
module body to avoid obtaining different results from various synthesis
tools.

In VHDL, you must declare synthesis attributes within an entity, not within
an architecture, to avoid obtaining different results from various synthesis
tools.

Copyright © 2022 Lattice Semiconductor Corporation.

Reveal Inserter and Radiant Software Errors

In VHDL, always define the syn_keep and preserve_signal attributes as
Boolean types when you declare them in your design. Synplify defines
them as Boolean types, and Reveal Inserter will issue an error message if
you define them as strings.

Some signals in a System Verilog design appear in the signal hierarchy
but are not available for triggering or tracing. These signals include:

Array types of two dimensions or more are not shown in the port or
node section

Signals that are user defined enumerated types, integer type, byte/
shortint/int/longint type

Signals that belong to typedef, interface, struct and union

Reveal Inserter and Radiant Software Errors

This section discusses errors that can occur when you run Reveal Inserter
from Radiant software.

Design Parsing Problems in Reveal
Inserter

When you start Reveal Inserter from Radiant software, it parses and statically
elaborates the design in order to build the hierarchy representation and signal
list to make them available for debugging. If the design cannot be parsed and
elaborated because of syntax errors, Reveal Inserter’s graphical user
interface will not open. Instead, a message box opens with an error message
similar to that shown in Figure 1. All warnings and errors while reading the
design are written to the reveal_error.log file, which is located in the
implementation directory of the current Radiant software project. This file
contains all the information, warning, and error messages issued by the
compiler when it tries to read the design.

Radiant Software Flow Messages

After Reveal Inserter inserts the debug logic, it generates the debug logic
cores and passes the information to the File List view for building the design.
Several issues could potentially cause the implementation flow to fail because
of the debug insertion. Two types of problems could occur:

Problems with debug design generation

Problems with design implementation

2 Reveal Troubleshooting for Lattice Radiant Software

Signals Unavailable for Tracing and Triggering

Debug Design Messages

The debug cores are generated in Reveal Inserter. However, the design must
also be modified to allow the debug cores to be connected to the appropriate
signals. The modified design is generated during the Synthesis step in the
Radiant software design flow. The design is modified with the necessary
connections for the debug cores, a temporary HDL file is generated, and the
files are synthesized and converted to the Lattice Semiconductor netlist
format. Errors generated during this stage are displayed in the automake.log
file.

Design Implementation Messages

During the mapping process, errors can occur, such as running out of
available resources or tracing or triggering on signals that are not available in
the FPGA fabric. During debug insertion, Reveal Inserter checks to make sure
that the debug logic is not using more resources than are available in the
FPGA. But it does not check to see if the debug logic is using more resources
than are available after the design is placed in the FPGA. Currently, resource
use can only be accurately checked during the mapping process. Exceeding
the available resources results in a mapping error, requiring the debug
configuration in Reveal Inserter to be reduced in order to fit.

Signals Unavailable for Tracing and Triggering

Some signals in a VHDL design appear in the signal hierarchy but are not
available for triggering or tracing. The following signals are currently
unavailable:

Signals used in “generate” statements are not available for tracing and
triggering.

If function calls are used in the array declaration, the actual size of the
array is unknown to Reveal Inserter.

Signals that are user-defined enumerated types, integer type, or Boolean
type are not available for tracing or triggering.

Some signals in a Verilog design appear in the signal hierarchy but are not
available for triggering or tracing. The following signals are currently
unavailable:

Array types of two dimensions or more are not shown in the port or node
section.

Undeclared wires attached to instantiated component instances are not
shown in the hierarchical design tree. You must declare these wires
explicitly if you want to trace or trigger with them.

If function calls are used in the array declaration, the actual size of the
array is unknown to Reveal Inserter.

Some signals that are used in a design but are implemented as hard routes in
the FPGA instead of using the FPGA routing fabric are not available for
tracing or triggering. Examples are connections to IB and OB components.

Reveal Troubleshooting for Lattice Radiant Software 3

Incorrect Signature and Sample Clock

Many common hard routes are automatically shown as unavailable in Reveal
Inserter, but some are not. If you select a signal for tracing or triggering that is
implemented as a hard route, an error will occur during the synthesis,
mapping, placement, or routing steps.

Understanding errors reported because of hard routes can be difficult. Here is
an example error from the synthesis log file, <cktname>.log:

@E:"f:\cws\bugs\cr37986\reveal workspace\tmprveal\rx ddr rvl.vh
d":648:8:648:12|Port 'serin' on Chip 'RX DDR' drives 1 PAD
loads and 1 non PAD loads

In this example error message, the serin signal is a hard route, and serin is
not the name of the original signal that was traced. The hierarchical path
shown is for the debug core that was generated. It is not part of the original
design and is not information displayed during the debug insertion. The error
message does not specify which user-selected signal used as a trace or
trigger is causing the problem. To manually determine which signal is causing
this error, you can use two approaches.

Remove signals one by one in Reveal Inserter to see which caused the
error. If you have only a few signals, this would be the best approach.

Manually look through the design to determine the problem. If you have
many signals, this approach would be the best.

Following is another example of an error generated during mapping. This one
is caused by forcing a register whose input is being traced to be implemented
as an input flip-flop because of a constraint, USE DIN.

ERROR - map: IO register/latch FF_inst cannot be implemented in
PIC.

In this case, allowing the register to be implemented as an internal flip-flop by
removing the constraint resolves the issue.

NOTE

The current version of the Radiant software support for UltraPlus devices doest not
support multi-core debug for Reveal.

Reveal now supports IEEE-P1735 encryption. If this encryption is applied to a design,
it will no longer error out as it did in previous versions. The design tree will allow only
the visible ports and signals that are not encrypted to be inserted by the Reveal
Inserter for triggering purposes.

Incorrect Signature and Sample Clock

Reveal software uses a signature mechanism to insure that the design loaded
in the software and the design programmed in the FPGA match. This prevents
wasted time caused by trying to debug one design configuration while a
different one is actually loaded. When Reveal Inserter writes out the debug

4 Reveal Troubleshooting for Lattice Radiant Software

Incorrect Signature and Sample Clock

information into its file (.rvl file) a signature is added based on the timestamp.
This signature is implemented into the debug core which is programmed into
the FPGA. When Reveal Analyzer creates a new file (.rva file), it reads the
Reveal Inserter file and also reads the signature from the debug core. If they
do not match, this causes the incorrect signature error message. There are
three main causes for this error.

The first cause is that a different design is programmed into the FPGA than is
represented by the Reveal Inserter file (.rvl file). This can be caused by
programming an old bit file or by changing the Reveal Inserter file after
programming the FPGA. Opening Reveal Inserter and then saving the file
after the design has been programmed will cause this error. In this situation
the error message will look similar to the message below where the mismatch
is between two valid numbers.

Figure 1: Reveal Analyzer Invalid Design Error Message
] '{lﬂ Reveal Analyzer =

I.' @ '.I ERROR: corel incorrect signature (RVL File [91421410] does not match Device
[91416194]). See Reveal Troubleshooting Guide for mere details on Failure Points

(6] to 7.

Ok

The second cause is from a sample clock problem.

The sample clock is used by Reveal debug logic to clock data into the trace
buffer and in the triggering logic. The sample clock is also needed when
Reveal Analyzer communicates with the debug logic through JTAG. If the
sample clock is not running or is running too slow, Reveal Analyzer cannot
detect that the Reveal debug logic is available. This information is especially
important when you create a new Reveal Analyzer project. Reveal Analyzer
checks the debug logic for a signature to make sure that the bitstream
matches the design. If Reveal Analyzer cannot communicate with the debug
logic because the sample clock is not running, the project creation or the
Reveal Analyzer run command will fail with an error, and Reveal Analyzer
issues an error message similar to that shown in Figure 2. For these reasons,
the sample clock should be a signal with a reasonably regular frequency
rather than a signal with intermittent pulses. The frequency of the sample
clock should also be faster than the speed of the JTAG clock that is used.

Figure 2: Reveal Analyzer Sample Clock Error Message
U,:'-Eﬁ Reveal Analyzer [—EE-J

.' 7 \ ERROR: corel incorrect pattern readout. See Reveal Troubleshooting Guide for
! maore details on Failure Points (8) and (1] to (6].

o)

The third cause for the incorrect signature error message is when the sample
clock is not correctly connected to the debug logic. This can occur if a
problem happens in the implementation flow. The signature read from the
device will be all ones in this situation. To resolve this, the post-map netlist

Reveal Troubleshooting for Lattice Radiant Software 5

Unexpected Reveal Analyzer Results

needs to be viewed directly to determine the root cause. Error messages and
debug information will be saved in the reveal_debug.log file.

In Radiant Reveal, the reveal_debug.log file is located in the
implementation directory.

In Stand-Alone Reveal, the reveal_debug.log file is located in the user's
home directory.

Please include this reveal_debug.log file when contacting Lattice Technical
Support.

Unexpected Reveal Analyzer Results

Performance

Using a trigger signal that is the output of a very large logic cone may produce
confusing results in Reveal Analyzer. A glitch on an asynchronous trigger
signal in rare cases may cause the trigger logic to become active prematurely.
If you encounter this situation, register your trigger signal with the sample
clock and use that as the trigger.

When you open Reveal Inserter for an RTL project, it must first parse the
entire design in order to build the design hierarchy and signal list. Normally
this occurs within a few seconds. Very large designs may take significantly
longer.

When you change trigger settings in Reveal Analyzer, the settings must be
downloaded to the debug logic on the FPGA when you press the Run button.
While the debug logic settings are being downloaded, the Configuring ...
message appears in the upper left corner of the window.

The Reveal triggering logic, which is composed of trigger units and trigger
expressions, offers unique capabilities and flexibility. However, there is a
latency of five sample clocks to the output of the final trigger condition. Reveal
Analyzer software automatically handles this latency delay so that the trigger
point lines up with the correct data when waveforms are displayed in the
Waveform view. The trigger-out signal also has this five-clock latency delay.
When you use the trigger-out signal as an input to another core or as an
external trigger-out signal, the five-sample-clocks delay from the actual trigger
event must be taken into account. Otherwise, the captured data will not line
up with the desired event.

Failure Points of Analyzer Function

The following are typical failure points of Reveal Analyzer, along with

Reveal Troubleshooting for Lattice Radiant Software

Failure Points of Analyzer Function

proposed solutions.

1. Reveal software client tool which communicates with the cable
server.Some of the functions are providing the register settings, trigger
points, downloading trace data, etc. The problem can include not being
able to communicate with the cable server, which may not be responding,
or receiving wrong data from the cable server which may be running in
corrupted state.

Solution: Terminate existing cable server process.

2. The cable server communicates with the device on the board through a
cable. The cable should be the correct cable with the correct port and
should be selected in the GUI. The type should match with the actual
physical cable.

Solution: Select the correct cable port.

3. The JTAG ports (TDI, TCK, TDO, TMS) should be properly located and
connected on the board so that the cable has the correct connection from
the Reveal Analyzer client to the device. The JTAG 10 pins must not be
shared with any other wires on the board.

Solution: Check the JTAG pins located in Radiant software Signal/Pad
report.

4. The JTAG communicates with the user design using the
Debuggerinserted pre-synthesis. The trace trigger and data are in sample
clock domain. The sample clock must be clean and continuous and not
intermittent. The sample clock frequency also must be more-than or
equal-to the JTAG clock frequency.

Solution: Run PAR Timing Analysis to check for timing violations.
5. The board must be properly powered-up.

Solution: Connect the board to a power supply with the correct voltage. If
there is on/off switch on the board, make sure it is turned to ON.

6. The right config file should be used for configuration. Sometimes users
use wrong or old config file by mistake.

Solution: Select config file by correct name and correct type from rbt, bit,
jed.

7. The Reveal project files .rvl, .rva files need to be under design directory.
Solution: Select correct rvl to create new rva in Startup Wizard.

8. When SOFT-JTAG is used in some devices, the scan function for device
id should not be used and correct port is selected and located.

Solution: select correct cable port for debug different from programming
port.

9. When multiple devices are chained then the correct chain information
needs to be in the .xcf file.

Solution: Select correct .xcf to create new rva in Startup Wizard.

Reveal Troubleshooting for Lattice Radiant Software 7

Using the Reveal Debug Projects

Using the Reveal Debug Projects

If you are having trouble running Reveal with your design, Lattice provides the
following pre-verified Reveal Debug Project to allow you to verify that Reveal
is working correctly on your computer.

counter_reveal

The Reveal Debug Project is located in a folder in the examples directory:
<radiant_install_path>\examples\

Your computer must be connected to a board with the appropriate Lattice
device.

The sample design is a 24-bit counter which includes one input reset and 1
output a1 to drive an instantiated RGB primitive.

The counter will be toggling with the LED once the design is programmed.

The clock signal is driven by internal oscillator and the RGB primitive are
connecting to a1. This reference design has a Reveal module inserted and
has trace signal TU1 thats monitoring count[3:0] equal to 4b'1001 as trigger
condition.

To start the Reveal example project:

1. Choose File > Open > Design Example. The Open Example dialog box
opens.

2. Click counter_reveal, browse to select the location.
Click OK.

4. Ensure that the Radiant software project settings match the device on
your board.

5. Follow the steps outlined in the “Performing Logic Analysis” section of the
Radiant software online help.

If you are able to run the Reveal Debug Project successfully in Reveal,
then the problem may be with your design or in the clock source.

If you are unable to run the Reveal Debug Project successfully in
Reveal, contact Lattice Technical Support and send the project with
the log files.

8 Reveal Troubleshooting for Lattice Radiant Software

	HDL Language Restrictions
	Reveal Inserter and Radiant Software Errors
	Design Parsing Problems in Reveal Inserter
	Radiant Software Flow Messages

	Signals Unavailable for Tracing and Triggering
	Incorrect Signature and Sample Clock
	Unexpected Reveal Analyzer Results
	Performance
	Failure Points of Analyzer Function
	Using the Reveal Debug Projects

