

Lattice Avant sysI/O User Guide

Preliminary Technical Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language FAQ# 6878 for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

Content	S	
Acronyn	ns in This Document	
•	roduction	
2. sys	sI/O Overview	
3. sys	sI/O Banking Scheme	8
3.1.	VCC (0.82 V)	10
3.2.	VCCIO Wide Range (1.2 V/1.8 V/2.5 V/3.3 V)	10
3.3.	VCCIO High Performance (0.9 V/1.0 V/1.1 V/1.2 V/1.35 V/1.8 V)	10
3.4.	VCCAUX (1.8 V)	10
3.5.	Standby	10
3.6.	High-Performance sysI/O Buffer Pairs (On Bottom Side)	10
3.7.	Wide Range sysI/O Buffer Pair (On Top Sides)	
4. Vcc	cio Requirement for I/O Standards	13
5. sys	sI/O Buffer Configurations	
5.1.	Programmable Drive Strength	14
5.2.	Programmable Slew Rate	15
5.3.	Tri-state Control	15
5.4.	Open-Drain Control	
5.5.	Differential Input Termination	15
5.6.	ESD Protection Diode	15
5.7.	Soft MIPI D-PHY Support	16
6. Sof	ftware sysI/O Attributes	17
6.1.	IO_TYPE	17
6.2.	PULLMODE	17
6.3.	HYSTERESIS	18
6.4.	VREF	18
6.5.	OPENDRAIN	18
6.6.	SLEWRATE	18
6.7.	DIFFRESISTOR	
6.8.	TERMINATION	18
6.9.	DRIVE STRENGTH	
6.10.	LOC	
	ix A. HDL Attributes	
	ix B. sysI/O Buffer Design Rules	
	ix C. sysI/O Attributes using the Lattice Radiant Device Constraint Editor User Interface	
	ces	
Technica	al Support Assistance	25
Revision	History	26

Figures

Figure 3.1. LAV-AT-E/G/X30 sysI/O Banking	8
Figure 3.2. LAV-AT-E/G/X50 sysI/O Banking	
Figure 3.3. LAV-AT-E/G/X70 sysI/O Banking	
Figure 3.4. High-Performance sysl/O Buffer Pair for Bottom Side	
Figure 3.5. Wide Range sysI/O Buffer for Top Side	12
Figure 5.1. Off-Chip and On-Chip Solutions	15
Figure 5.2. MIPI Primitive Symbol	16
Figure C.1. Port Sheet of Device Constraint Editor	

Tables

Table 4.1. Input Mixed Mode for Wide Range Input Buffers	13
Table 4.2. Input Mixed Mode for High-Performance Input Buffers	
Table 5.1. Programmable Drive Strength Values at Various V _{CCIO} Voltages for Wide Range Output Driver	
Table 5.2. Programmable Drive Strength Values at Various V _{CCIO} Voltages for High-Performance Output Driver	14
Table 5.3. MIPI Port List	16
Table 6.1. IO_TYPE Attribute Values	17
Table 6.2. Drive Strength Values	19

5

Acronyms in This Document

A list of acronyms used in this document.

Abbreviation	Definition
DDR	Double Data Rate
ESD	Electrostatic Discharge
HDL	Hardware Description Language
HPIO	High-Performance Input/Output
HSUL	High-Speed Unterminated Logic
I3C	MIPI Improved Inter-Integrated Circuit
LVCMOS	Low Voltage Complementary Metal Oxide Semiconductor
LVDS	Low-Voltage Differential Signaling
LVSTL	Low-Voltage Swing Terminated Logic
MIPI	Mobile Industry Processor Interface
ODT	On-Die Termination
PIO	Programmable Input/Output
POD	Pseudo Open Drain
PVT	Process Voltage Temperature
SLVS	Scalable Low-Voltage Signaling
SSO	Simultaneous Switching Output
SSTL	Stub Series Terminated Logic
VHDL	VHSIC Hardware Description Language
VHSIC	Very High Speed Integrated Circuit
WRIO	Wide Range Input/Output

1. Introduction

The sysI/O™ buffers in the Lattice Avant™ FPGAs are designed to support a wide range of interfaces. Two types of I/O are offered, wide range (WR) I/O on the top and high performance (HP) I/O on the bottom. They give the ability to easily interface with other devices using advanced system I/O standards. This technical note describes the sysI/O standards available and how to implement them using Lattice Radiant™ design software. For detailed information about supported sysI/O standards, refer to Lattice Avant Platform – Overview Data Sheet (FPGA-DS-02107).

2. sysI/O Overview

The key features of the sysI/O block are:

- Wide range I/O (WRIO) bank supports single-ended standards only. High-performance I/O banks support differential standards as well as single-ended standards.
- Wide range I/O bank located on the Top of the device operates with VCCIO of 3.3 V down to 1.2 V. High-performance I/O (HPIO) bank located on the Bottom side operates with VCCIO of 1.8 V down to 0.9 V.
- Wide range I/O bank support pull-up (weak), pull-down (weak) and bus-keeper mode, High-performance I/O bank support pull-up (weak), pull-down (weak), bus-keeper, I3C pull-up, and Failsafe (LVDS Receiver only) mode.
- Bottom HPIO banks support on-chip dynamic differential input 100 Ω termination. Single-end termination with a programmable resistor is supported in all banks.
- Always-On inputs Hysteresis on LVCMOS.
- All banks support runt pulse glitch filter.
- Programmable Slew Rate on all outputs.
- Programmable Open Drain on all outputs.
- ESD protection diodes on all GPIO in all banks.
- Support xSPI Interface, for both configuration and user mode on WRIO's.
- High Performance I/O bank support programmable Thevenin input dynamically ODT (30/34/40/48/60/80/120/240 Ω) this is available on every input pin. ODT can be connected to VCCIO, VSSIO, or parallel.
- Per I/O Support configuration earlier than bitstream configuration both on WRIO's and HPIO's, the I/O buffer and IOLOGIC are configured by LMMI registers.

3. sysI/O Banking Scheme

LAV-AT-E/G/X70 devices have fifteen banks, LAV-AT-E/G/X50 devices have thirteen banks, and LAV-AT-E/G/X30 devices have eleven banks. Top side banks are wide range (WR) I/O supporting V_{CCIO} up to 3.3 V. There is a total of 52 I/O distributed into three WR I/O banks. LAV-AT-E/G/X70, LAV-AT-E/G/X50, and LAV-AT-E/G/X30 devices have another three WR I/O banks, amounting to a total of six WR I/O banks (104 I/O). Bottom side banks are high-performance (HP) I/O supporting V_{CCIO} up to 1.8 V, each HP bank has 52 I/O. In addition, high-performance banks support internal trainable VREF signal (VREF_INT) and external VREF (VREF_EXT). External VREF enters the bank through the configurable I/O. Figure 3.1 shows the location of each bank of the LAV-AT-E/G/X30 device, six banks on the top side and five banks on the bottom side. Figure 3.2 shows the location of each bank of the LAV-AT-E/G/X50 device, six banks on the top side and seven banks on the bottom side. Figure 3.3 shows the location of each bank of the LAV-AT-E/G/X70 device, with six banks on the top side and nine banks on the bottom side.

Note: SerDes is supported in Avant-AT-G/X families.

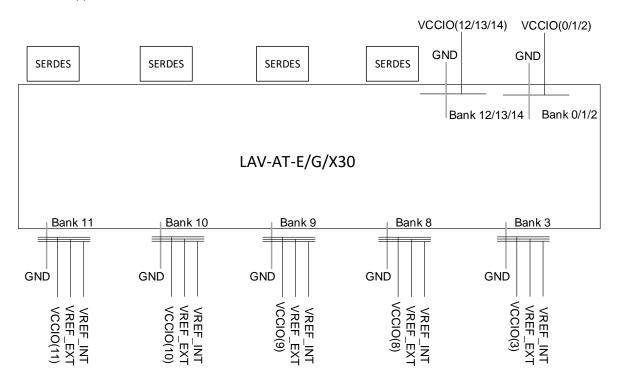


Figure 3.1. LAV-AT-E/G/X30 sysI/O Banking

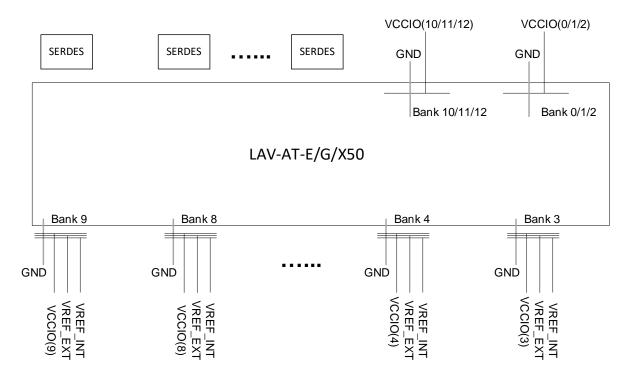


Figure 3.2. LAV-AT-E/G/X50 sysI/O Banking

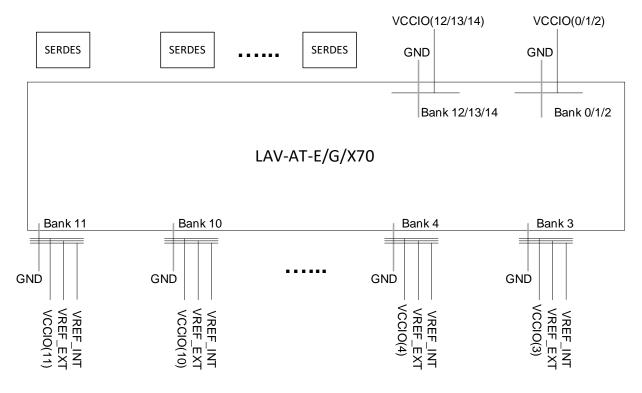


Figure 3.3. LAV-AT-E/G/X70 sysI/O Banking

3.1. VCC (0.82 V)

This is the core supply. This V_{CC} supply is used to power the control logic. The control signals and data signals from the I/O logic are then translated to a higher supply of the I/O buffers.

3.2. VCCIO Wide Range (1.2 V/1.8 V/2.5 V/3.3 V)

Top side banks have a V_{CCIO} supply that operates from 3.3 V down to 1.2 V.

3.3. VCCIO High Performance (0.9 V/1.0 V/1.1 V/1.2 V/1.35 V/1.8 V)

Bottom side banks operate with V_{CCIO} of 1.8 V down to 0.9 V. Standards such as LVDS, SSTL, HSUL, LVSTL, POD, and SLVS are only supported on these banks.

3.4. VCCAUX (1.8 V)

In addition to the bank V_{CCIO} supplies and a Vcc core logic supply, Avant devices have a VCCAUX auxiliary supply that powers the differential and referenced input buffers.

3.5. Standby

Using Standby mode dynamically powers down the bank. It disables the differential/reference receiver, true differential driver, current mirrors, and bias circuits.

In Standby mode, differential drivers and differential input buffers can be powered down to save power. Standby mode is enabled on a bank-by-bank basis. Each bank has user-routed input signals to enable Standby (dynamic power-down) mode.

3.6. High-Performance sysI/O Buffer Pairs (On Bottom Side)

The I/O pair consists of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). The A pad referenced input buffer can also be configured as a differential input. Each I/O has a weak pull-up, pull-down, or bus-keeper feature. These are disabled in output mode. The two pads in the pair are referred to as True and Comp, where the True pad is associated with the positive side of the differential I/O and the Comp or complement pad is associated with the negative side.

Programmable Thevenin input termination (30/34/40/48/60/80/120/240 Ω) is available on every input pin dynamically (ODT). ODT can be connected to VCCIO, VSSIO, or parallel.

Every pair also has a programmable 100 Ω differential input termination resistor. Every pair also has a true LVDS and SLVS200 TX driver. They have an independent tri-state capability.

The single-ended driver associated with the complementary pad can be optionally driven by the complement of the data that drives the single-ended driver associated with the true pad. This allows a pair of single-ended drivers to be used to drive complementary outputs with the lowest possible skew between the signals. Pads A and B form a DIFF I/O pair.

When this option is selected, the tri-state control for the driver associated with the complementary pad is driven by the same signal as the tri-state control for the driver associated with the true pad.

Refer to the High-Performance sysI/O block diagram in Figure 3.4.

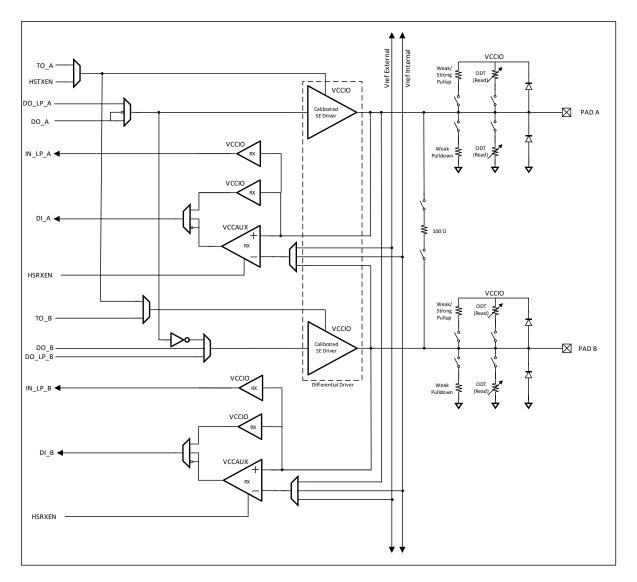


Figure 3.4. High-Performance sysI/O Buffer Pair for Bottom Side

3.7. Wide Range sysl/O Buffer Pair (On Top Sides)

The I/O pair consists of two single-ended output drivers and two sets of single-ended input buffers (ratioed only). Each I/O has a weak pull-up, pull-down, bus-keeper feature. These are disabled in output mode. The two pads in the pair are referred to as True and Comp, where the True pad is associated with the positive side of the Complementary I/O, and the Comp or complement pad is associated with the negative.

The single-ended driver associated with the complementary pad can be optionally driven by the complement of the data that drives the single-ended driver associated with the True pad. This allows a pair of single-ended drivers to be used to drive complementary outputs with the lowest possible skew between the signals. Pads A and B form a Complementary I/O pair. When this option is selected, the tri-state control for the driver associated with the complement pad is driven by the same signal as the tri-state control for the driver associated with the true pad.

Figure 3.5 shows the Wide Range I/O pair block diagram.

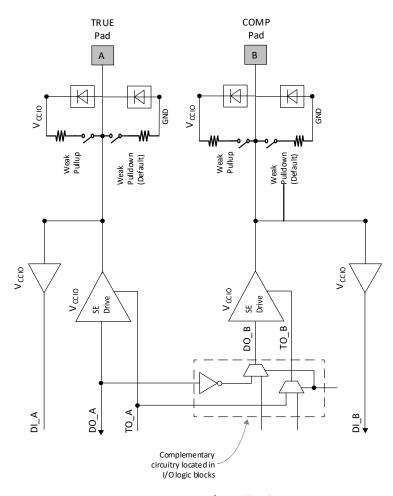


Figure 3.5. Wide Range sysI/O Buffer for Top Side

4. V_{CCIO} Requirement for I/O Standards

Each I/O bank of a device built on the Avant has a separate V_{CCIO} supply pin that can be connected to 0.9 V, 1.0 V, 1.1 V, 1.2 V, 1.35 V, 1.8 V for bottom banks and 1.2 V, 1.8 V, 2.5 V, 3.3 V for the top banks. These voltages are used to power the output I/O standard and source the drive strength for the output. On the input side, each pad is connected to ratioed V_{CCIO} input buffers.

Table 4.1. Input Mixed Mode for Wide Range Input Buffers

v (v)	Input Signaling (V)							
V _{ccio} (V)	LVCMOS12	LVCMOS18	LVCMOS25	LVCMOS33				
1.2	✓	_	_	_				
1.8	_	✓	_	_				
2.5	_	_	✓	_				
3.3	_	_	_	✓				

Table 4.2. Input Mixed Mode for High-Performance Input Buffers

V (V)	Input Signaling (V)							
V _{ccio} (V)	LVCMOS09	LVCMOS10	LVCMOS12	LVCMOS18				
0.9	✓	_	_	_				
1.0	✓	✓	_	_				
1.2	✓	✓	✓	_				
1.8	✓	✓	✓	✓				

14

5. sysI/O Buffer Configurations

This section describes the various sysI/O features available on Avant devices.

5.1. Programmable Drive Strength

All single-ended drivers have programmable drive strength. Table 5.1 and Table 5.2 show the programmable drive strength of all the I/O standards available in devices built on Avant devices. The maximum current allowed per bank as well as the package thermal limit current should be taken into consideration when selecting the drive strength.

Table 5.1. Programmable Drive Strength Values at Various Vccio Voltages for Wide Range Output Driver

І/О Туре	Drive Strength
LVCMOS33	50RS ¹ , 4 mA, 8 mA, 12 mA
LVCMOS25	50RS ¹ , 4 mA, 8 mA, 12 mA
LVCMOS18	50RS ¹ , 4 mA, 8 mA, 12 mA
LVCMOS12	6 mA, 8 mA
SUBLVDSE	50RS ¹
LVDSE	12 mA

Note:

Table 5.2. Programmable Drive Strength Values at Various V_{CCIO} Voltages for High-Performance Output Driver

І/О Туре	Drive Strength
LVCMOS18	50RS ¹ , 4 mA, 8 mA, 12 mA
LVCMOS12	4 mA, 8 mA, 12 mA
LVCMOS10	2 mA, 4 mA, 8 mA
LVCMOS09	2 mA, 4 mA, 8 mA
HSUL12	34 Ω, 40 Ω, 48 Ω
SSTL135	34 Ω, 40 Ω
POD11	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
POD12	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
LVSTL11_I	34 Ω, 40 Ω, 48 Ω, 60 Ω, 8 0 Ω, 120 Ω, 240 Ω
LVSTL11_II	34_{-} Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
LVDS	_
SLVS	_
SUBLVDSE	50RS ¹
LVDSE	12 mA
HSUL12D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
SSTL135D	34 Ω, 40 Ω
LVSTL11D_I	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
LVSTL11D_II	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
POD11D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω
POD12D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω

Note:

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. FPGA-TN-02297-0.83

^{1. 50}RS is an additional drive strength setting to mitigate reflection issues when driving an unterminated open transmission line trace of 50 Ω .

^{1. 50}RS is an additional drive strength setting to mitigate reflection issues when driving an unterminated open transmission line trace of 50 Ω .

15

5.2. Programmable Slew Rate

The single-ended output buffer for each device I/O pin has programmable output slew rate control that can be configured for either low-noise (SLEWRATE=SLOW) or high-speed (SLEWRATE=FAST) performance. Each I/O pin has an individual slew rate control that allows designers to specify slew rate control on a pin-by-pin basis. Slew rate control affects both the rising and falling edges. Slew rates vary as a function of drive and PVT conditions. Slow slew rate reduces SSO noise as well as reflections for WRIO if only WRIO is applicable. The software default for slew rate is SLEWRATE=SLOW. Slow slew rate reduces SSO noise as well as reflections for WRIO and HPIO if both types are applicable.

Differential standards are not impacted by slew rate settings. However, slew rate settings have some impact on emulated differential standards, as they use single-ended output buffers and complementary outputs.

5.3. Tri-state Control

On the output side, each single-ended driver has a separate tri-state control. The differential driver has a tri-state control as well.

5.4. Open-Drain Control

In addition to the tri-state control, the single-ended drivers also support open-drain operation on each I/O independently. Unlike non-open drain output which consists of a source and sink section, an open-drain output is composed of only the sink section of the output driver. You can implement an open-drain output by turning on the OPENDRAIN attribute in the software.

5.5. Differential Input Termination

Lattice Avant devices support a programmable $100~\Omega$ input termination between all pairs on the bottom banks. The input termination of $100~\Omega$ can be programmed between on and off. Figure 5.1 shows the discrete off-chip and on-chip solutions for dedicated differential input termination. The differential termination is implemented using parallel legs that turn on and off to compensate for PVT variation. The termination also applies to input termination and is dynamic (enabled when the output buffer is put in tri-state) or static (always on) to support MIPI and BIDI applications.

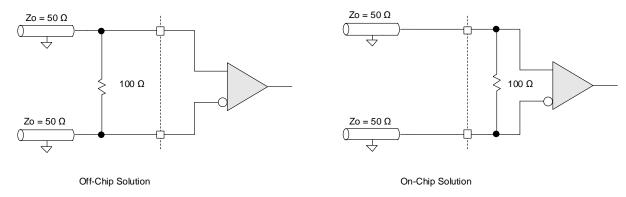


Figure 5.1. Off-Chip and On-Chip Solutions

5.6. ESD Protection Diode

ESD protection Diode to all I/O banks. I/O pins are clamped to VCCIO and GND by the ESD diode.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

5.7. Soft MIPI D-PHY Support

The following primitive should be used when implementing soft MIPI D-PHY I/O in Avant devices for High Speed (HS) as well as Low Power (LP) mode for RX and TX. MIPI primitive is supported in HP banks on the bottom side of the device.

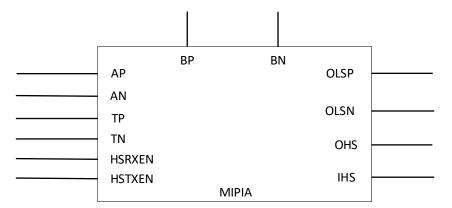


Figure 5.2. MIPI Primitive Symbol

Table 5.3. MIPI Port List

Port	I/O	Description
ВР	I/O	Bidirectional PAD A used for D-PHY Clock/Data in both HS and LP mode
BN	I/O	Bidirectional PAD B used for D-PHY Clock/Data in both HS and LP mode
AP	I	Input from fabric to PAD A – used for LP Tx function only
AN	I	Input from fabric to PAD B – used for LP Tx function only
HSRXEN	I	Enable to receive HS differential signals
HSTXEN	l	Enable to transmit HS differential signals
TP	I	Tri-state for PAD A
TN	I	Tri-state for PAD B
OLSP	0	LP Rx signal from BP
OLSN	0	LP Rx signal from BN
OHS	0	HS Rx signal from BP/BN differential
IHS	I	De-serialized input from DDR output register

When IO_TYPE is MIPI, the MIPI primitive above should be instantiated in the design. Otherwise, the software Design Rule Check (DRC) errors out. The output from the MIPI D-PHY buffer can only be used with the Double Data Rate (DDR) registers. Refer to Lattice High-Speed I/O and External Memory Interface User Guide (FPGA-TN-02300) for details on building MIPI D-PHY interfaces.

6. Software sysI/O Attributes

The sysI/O attributes can be specified in the Hardware Description Language (HDL), using Device Constraint Editor, or in Pre-Synthesis Constraint Editor/Post-Synthesis Timing Constraint Editor (.ldc/.pdc).

6.1. IO_TYPE

This attribute is used to set the sysI/O standard for an I/O. The V_{CCIO} required to set these I/O standards is embedded in the attribute names. Table 6.1 lists the available I/O types.

Table 6.1. IO_TYPE Attribute Values

sysI/O Signaling Standard	IO_TYPE
Default	LVCOMS33/LVCOMS181
LVDS	LVDS
LVDS Emulation	LVDSE
Sub-LVDS	SUBLVDS
Sub-LVDS Emulation	SUBLVDSE
SLVS	SLVS
MIPI_DPHY	MIPI_DPHY
LVSTL 1.1V Class I	LVSTL11_I
LVSTL 1.1V Class II	LVSTL11_II
LVSTL 1.1V Class I Differential	LVSTL11D_I
LVSTL 1.1V Class II Differential	LVSTL11D_II
POD 1.1V	POD11
POD 1.1V Differential	POD11D
POD 1.2V	POD12
POD 1.2V Differential	POD12D
HSUL 1.2V	HSUL12
HSUL 1.2V Differential	HSUL12D
SSTL 1.35V	SSTL135
HSUL 1.2V	HSUL12
LVCMOS 3.3V	LVCMOS33
LVCMOS 2.5V	LVCMOS25
LVCMOS 1.8V	LVCMOS18
LVCMOS 1.2V	LVCMOS12
LVCMOS 1.0V	LVCMOS10
LVCOMS 0.9V	LVCOMS09

Note:

6.2. PULLMODE

The PULLMODE options can be enabled for each I/O pin independently. The PULLMODE settings are not available when I/O pins are programmed as output. It is available for I/O pins in Input mode and Bi-direction mode.

Values: UP, DOWN, NONE, I3C, FAILSAFE¹, KEEPER

Default: DOWN for standards mentioned above. Others defaulted to NONE.

Note:

1. FAILSAFE is only available for LVDS input. PULLMODE in FAILSAFE mode enables the pull-up for the P input and pull-down for the N input in LVDS.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

^{1.} If PIO is placed to WR bank, the default value is LVCOM33. If PIO is placed to HP bank, the default value is LVCOMS18.

6.3. HYSTERESIS

Hysteresis is always enabled when LVCMOS Receive is enabled. There is no built-in hysteresis in the differential receiver.

Values: ON, NA

Default: ON for LVCMOS for input and bidirectional standards. Others defaulted to NA.

6.4. VREF

Each bank supports external VREF and internal VREF. Each I/O pair can be configured to select either one of the available VREF signals. DDR5, LPDDR4, and DDR4 must use internal VREF.

Values: OFF, VREF_EXT, VREF_INT

Default: OFF.

6.5. OPENDRAIN

The OPENDRAIN option is available for all LVCOMS output buffers.

An I/O can be assigned independently to be an open drain when this attribute is turned on.

Values: OFF, ON Default: OFF

6.6. SLEWRATE

Each I/O pin has an individual slew rate control. This allows you to specify slew rate control on a pin-by-pin basis. Slew rate control is not a valid attribute for inputs.

Values: SLOW, FAST, NA

Default: SLOW

Hardware default: SLOW

6.7. DIFFRESISTOR

This attribute is used to provide differential termination. It is available only for differential I/O types.

Values: OFF, 100 Default: OFF

6.8. TERMINATION

The I/O supports single-ended input parallel termination to $V_{\text{CCIO}}/2$. All input parallel terminations use a Thevenin termination scheme.

Values: OFF, 34, 40, 48, 60, 80, 120, 240

Default: OFF

6.9. DRIVE STRENGTH

The DRIVE STRENGTH attribute is available for the output and bidirectional I/O standards. The default drive value depends on the I/O standard used.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02297-0.83

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

Table 6.2. Drive Strength Values

Output Standard	Drive	DiffDrive	V _{CCIO}
Single Ended Interface	es		
LVCMOS33	4 mA, 8 mA, 12 mA, 50RS	_	3.3
LVCMOS25	4 mA, 8 mA, 12 mA, 50RS	_	2.5
LVCMOS18	4 mA, 8 mA, 12 mA, 50RS	_	1.8
LVCMOS12	4 mA, 6 mA, 8 mA , 12mA	_	1.2
LVCOMS10	2 mA, 4 mA, 8 mA	_	1.0
LVCOMS09	2 mA, 4 mA, 8 mA	_	0.9
LVCMOS33 (Open	4 mA, 8 mA , 12 mA	_	3.3
LVCMOS25 (Open	4 mA, 8 mA , 12 mA	_	3.3, 2.5
LVCMOS18 (Open	4 mA, 8 mA , 12 mA	_	3.3, 2.5, 1.8
LVCMOS12 (Open	4 mA, 6 mA, 8 mA , 12 mA	_	3.3, 2.5, 1.8,
LVCOMS10 (Open	2 mA, 4 mA, 8 mA	_	1.8, 1.2, 1.0
LVCOMS09 (Open	2 mA, 4 mA, 8 mA	_	1.8, 1.2, 1.0,
HSUL12	34 Ω, 40 Ω, 48 Ω	_	1.2
SSTL135	34 Ω, 40 Ω	_	1.35
POD11	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω	_	1.1
POD12	34 Ω , 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω	_	1.2
LVSTL11_I	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω	_	1.1
LVSTL11_II	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω	_	1.1
Differential Interfaces			
LVDS	_	3.5 mA	1.8
SLVS	_	2.0 mA	1.2, 1.8
SUBLVDSE	50RS	_	1.8
LVDSE	12 mA	_	2.5
HSUL12D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω	_	1.2
SSTL135D	34 Ω, 40 Ω	_	1.35
LVSTL11D_I	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω	_	1.1
LVSTL11D_II	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω	_	1.1
POD11D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω	_	1.1
POD12D	34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω, 120 Ω, 240 Ω		1.2

Notes:

- 1. 50RS is an additional drive strength setting to mitigate reflection issues when driving an unterminated open transmission line trace of 50 Ω . It is only offered for 3.3 V, 2.5 V, and 1.8 V LVCMOS outputs.
- 2. For output standards that have multiple drive values, the default drive values are in **bolds**.

6.10. LOC

This location attribute can be used to make pin assignments to the I/O ports in the design. This attribute is used when the pin assignments are made in HDL source code or in constraint editor.

Appendix A. HDL Attributes

IO_TYPE

```
VHDL:
ATTRIBUTE IO_TYPE: string;
ATTRIBUTE IO TYPE OF portA: SIGNAL IS "LVCMOS18";
ATTRIBUTE IO_TYPE OF portB: SIGNAL IS "LVCMOS33";
ATTRIBUTE IO_TYPE OF portC: SIGNAL IS "LVCMOS25";
Veriloa:
output [4:0] portA /* synthesis IO_TYPE="LVCMOS33" DRIVE="12" PULLMODE="UP" SLE- WRATE="FAST"*/;
OPENDRAIN
VHDL:
ATTRIBUTE OPENDRAIN: string;
ATTRIBUTE OPENDRAIN OF q lvcoms33 17: SIGNAL IS "ON";
Verilog:
output [4:0] portA /* synthesis attribute OPENDRAIN of q_lvcoms33_17 is ON */;
DRIVE
VHDI:
ATTRIBUTE DRIVE: string;
ATTRIBUTE DRIVE OF portD: SIGNAL IS "8";
output [4:0] portA /* synthesis DRIVE = "8" */;
DIFFDRIVE
VHDL:
ATTRIBUTE DIFFDRIVE: string;
ATTRIBUTE DIFFDRIVE OF portF: SIGNAL IS "3.5";
output [4:0] portF/* synthesis IO_TYPE="LVDS" DIFFDRIVE="3.5" */;
TERMINATION
VHDL:
ATTRIBUTE TERMINATION: string;
ATTRIBUTE TERMINATION OF portF: SIGNAL IS "60";
output [4:0] portA /* synthesis IO_TYPE="LVCOMS18" TERMINATION = "60"*/;
DIFFRESISTOR
ATTRIBUTE DIFFRESISTOR: string;
ATTRIBUTE DIFFERESISTOR OF portF: SIGNAL IS "100";
output [4:0] portA /* synthesis IO_TYPE="LVDS" DIFFRESISTOR = "100"*/;
PULLMODE
VHDL:
ATTRIBUTE PULLMODE: string;
ATTRIBUTE PULLMODE OF portF: SIGNAL IS "UP";
Verilog:
output [4:0] portA /* synthesis IO_TYPE="LVCMOS33" PULLMODE = "UP"*/;
```

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

SLEWRATE

```
VHDL:
ATTRIBUTE SLEWRATE: string;
ATTRIBUTE SLEWRATE OF portF: SIGNAL IS "FAST";

Verilog:
output [4:0] portA /* synthesis IO_TYPE="LVCMOS33" SLEWRATE = "FAST"*/;

HYSTERESIS

VHDL:
ATTRIBUTE HYSTERESIS: string;
ATTRIBUTE HYSTERESIS OF portF: SIGNAL IS "ON";

Verilog:
output [4:0] portA /* synthesis IO_TYPE="LVCMOS25" HYSTERESIS = "ON"*/;

LOC

VHDL:
ATTRIBUTE LOC : string;
ATTRIBUTE LOC of output_vector : SIGNAL IS "H5";

Verilog:
```

VREF

To set User Vref Locate:

- 2. After opening the design project, choose **Tools > Device Constraint Editor**.
- 3. Select the Global tab at the bottom of the view.

Input rst /* synthesis LOC="H5" */;

- 4. Double click the cell beside **Vref Locate**. A dialog opens.
- 5. For each available site, click on the desired row and enter a unique name in the **VREF Name** field.

Syntax

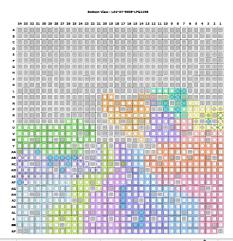
© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Appendix B. sysI/O Buffer Design Rules

- Only one V_{CCIO} level is allowed in a given bank. As such, all IO_TYPES of that bank should be compatible with the V_{CCIO} level.
- Banks at the top side of the device can support single-ended I/O and emulated outputs differential.
- Bottom banks support differential inputs and outputs as well as single-ended I/O.
- When an output is configured as an OPENDRAIN, the PULLMODE is set to NONE.
- When an output is configured as an OPENDRAIN, it can be placed independent of Vccio.
- When a ratioed input buffer is placed in a bank with a different V_{CCIO} (mixed mode), the Pull mode options of Up are no longer available.
 - The IO_TYPE attribute for a differential buffer can only be assigned to the TRUE pad. The Lattice Radiant™ design tool automatically assigns the other I/O of the differential pair to the complementary pad.
- DIFFRESISTOR termination is available on all sysI/O pairs of bottom banks.
- If none of the pins are used for a given bank, the V_{CCIO} of the bank should be tied to VCCAUX except for the JTAG bank.

23


Appendix C. sysl/O Attributes using the Lattice Radiant Device Constraint Editor User Interface

sysI/O buffer attributes can be assigned using Device Constraint Editor in the Lattice Radiant software. The Port Assignments Sheet lists all the ports in a design and all the available sysI/O attributes in multiple columns. Click on each of these cells for a list of all the valid I/O preferences for that port. Each column takes precedence over the next. Therefore, when you choose a particular IO_TYPE, the columns for the PULLMODE, DRIVE, SLEWRATE, and other attributes list only the valid entries for that IO TYPE.

Pin locations can be locked by using the Pin column of the Port Tab Sheet or by using the Pin Tab Sheet. You can right click on a cell and go to **Assign Pins** to see a list of available pins.

In Device Constraint Editor, go to **Design > Constraint DRC** to look for incorrect pin assignments.

All the preferences assigned using the Device Constraint Editor are written into the post-synthesis constraint file (.pdc). Figure C.1 shows the Port Sheet of the Device Constraint Editor.

	Name	Group By	Pin	BANK	IO_TYPE	DIFFDRIVE	DIFF_INVERT	DRIVE	HYSTERESIS	PULLMODE	SLEWRATE	TERMINATION	EARLY_IO	GI
-	- 📴 All Port	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/
	▼ ▶ Input	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/
	▼ 🕝 Clock	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/
	■ TCK	N/A	(T1)	(2)	LVCMOS33(LVCMOS18)	NA(NA)	NA(NA)	NA(NA)	ON(ON)	DOWN(DO	NA(NA)	OFF(OFF)	OFF(OFF)	10
	■ TDI	N/A	(U1)	(2)	LVCMOS33(LVCMOS18)	NA(NA)	NA(NA)	NA(NA)	ON(ON)	DOWN(DO	NA(NA)	OFF(OFF)	OFF(OFF)	10
	■ TMS	N/A	(R1)	(2)	LVCMOS33(LVCMOS18)	NA(NA)	NA(NA)	NA(NA)	ON(ON)	DOWN(DO	NA(NA)	OFF(OFF)	OFF(OFF)	10
	ext_rst_n	N/A	AC17(AC17)	6(6)	LVCMOS18(LVCMOS18)	NA(NA)	NA(NA)	NA(NA)	ON(ON)	DOWN(DO	NA(NA)	OFF(OFF)	OFF(OFF)	10
	▼	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/
	ddr_ca[0]	N/A	AC26(AC26)	10(10)	LVSTL11_I(LVSTL11_I)	NA(NA)	NA(NA)	34_0	NA(NA)	NONE(NO	SLOW(SLOW)	OFF(OFF)	OFF(OFF)	OF
	ddr_ca[1]	N/A	AB27(AB27)	10(10)	LVSTL11_I(LVSTL11_I)	NA(NA)	NA(NA)	34_0	NA(NA)	NONE(NO	SLOW(SLOW)	OFF(OFF)	OFF(OFF)	OF
	ddr_ca[2]	N/A	AB28(AB28)	10(10)	LVSTL11_I(LVSTL11_I)	NA(NA)	NA(NA)	34_0	NA(NA)	NONE(NO	SLOW(SLOW)	OFF(OFF)	OFF(OFF)	OF
	ddr_ca[3]	N/A	AC29(AC29)	10(10)	LVSTL11_I(LVSTL11_I)	NA(NA)	NA(NA)	34_0	NA(NA)	NONE(NO	SLOW(SLOW)	OFF(OFF)	OFF(OFF)	OF

Figure C.1. Port Sheet of Device Constraint Editor

For further information on how to use Device Constraint Editor, refer to the Lattice Radiant Help documentation, available in the Help menu option of the software.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02297-0.83

References

- Avant-E web page
- Avant-G web page
- Avant-X web page
- IP Cores and Reference Designs for Avant Devices
- Kits, Boards, and Demonstrations for Avant Devices

A variety of technical notes for the Lattice Avant platform are available.

- High-Speed PCB Design Considerations (FPGA-TN-02178)
- Lattice Avant Embedded Memory User Guide (FPGA-TN-02289)
- Lattice Avant Hardware Checklist (FPGA-TN-02317)
- Lattice High-Speed I/O and External Memory Interface User Guide (FPGA-TN-02300)
- Lattice Avant Platform Overview Data Sheet (FPGA-DS-02107)
- Lattice Avant Platform Specifications Data Sheet (FPGA-DS-02112)
- Lattice Avant Power User Guide (FPGA-TN-02291)
- Lattice Avant sysCLOCK PLL Design and User Guide (FPGA-TN-02298)
- Lattice Avant sysDSP User Guide (FPGA-TN-02293)
- Lattice Avant sysCONFIG User Guide (FPGA-TN-02299)
- Lattice Avant sysI/O User Guide (FPGA-TN-02297)
- Lattice Memory Mapped Interface and Lattice Interrupt Interface User Guide (FPGA-UG-02039)
- sub-LVDS Signaling Using Lattice Devices (FPGA-TN-02028)
- Thermal Management (FPGA-TN-02044)
- Using TraceID (FPGA-TN-02084)

Other references:

- Lattice Insights for Lattice Semiconductor training courses and learning plans
- Lattice Radiant FPGA design software

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

Revision History

Revision 0.83, September 2024

Section	Change Summary
Acronyms in This Document	Updated this section.
sysI/O Banking Scheme	 Changed LAV-AT-E/G/X30 devices have eight banks to LAV-AT-E/G/X30 devices have eleven banks. Changed LAV-AT-E/G/X70 devices and LAV-AT-E/G/X50 devices have another three WR I/O banks for a total of six WR I/O banks (104 I/O) to LAV-AT-E/G/X70, LAV-AT-E/G/X50, and LAV-AT-E/G/X30 devices have another three WR I/O banks, amounting to a total of six WR I/O banks (104 I/O). Changed Figure 3.1 shows the location of each bank of the LAV-AT-E/G/X30 device, three banks on the top side and five banks on the bottom side to Figure 3.1 shows the location of each bank of the LAV-AT-E/G/X30 device, six banks on the top side and five banks on the bottom side. Updated Figure 3.1. LAV-AT-E/G/X30 sysI/O Banking.
References	Updated this section.

Revision 0.82, April 2024

Section	Change Summary
Software sysI/O Attributes	 Added the note: FAILSAFE is only available for LVDS input. PULLMODE in FAILSAFE mode enables the pull-up for the P input and pull-down for the N input in LVDS in the PULLMODE section. Updated Table 6.2. Drive Strength Values:
	Bolded the default drive values for <i>Output Standards</i> that have multiple drive values.
	Added a table note on the default drive value.

Revision 0.81, November 2023

Section	Change Summary
Disclaimer	Updated this section.
SysI/O Banking Scheme	Updated the below information:
	Replaced LAV-AT-500 with LAV-AT-E/G/X70
	Replaced LAV-AT-300 with LAV-AT-E/G/X50
	Replaced LAV-AT-200 with LAV-AT-E/G/X30
VCCIO Requirements for I/O Standards	Deleted "These three buffers are connected to VCC, VCCIO, and VCCAUX respectively.
sysI/O Buffer Configurations	Removed output standards <i>UVCCIO</i> and <i>UGND</i> in Table 5.2. Programmable Drive Strength Values at Various VCCIO Voltages for High-Performance Output Drive.
Software sysl/O Attributes	Removed output standards <i>UVCCIO</i> and <i>UGND</i> in Table 6.1. IO_TYPE Attribute Values and Table 6.2. Drive Strength Values.
References	Added this section.

Revision 0.80.1, April 2023

Section	Change Summary
All	Minor adjustments in formatting across the document.
Inclusive Language	Added this section.
sysI/O Overview	Added bullet information "Support xSPI Interface, for both configuration and user mode on WRIO's." in sysI/O Overview section.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. FPGA-TN-02297-0.83 26

Section	Change Summary
sysI/O Banking Scheme	Updated the below figures to include Serdes banks:
	Figure 3.1. LAV-AT-200 sysl/O Banking
	Figure 3.2. LAV-AT-300 sysI/O Banking
	Figure 3.3. LAV-AT-500 sysl/O Banking
Appendix C. sysl/O Attributes using the Lattice Radiant Device Constraint Editor User Interface	Added Figure C.1. Port Sheet of the Device Constraint Editor.
Technical Support Assistance	Added Lattice FAQ website link.

Revision 0.80, November 2022

Section	Change Summary
sysI/O Overview	Updated support interface for configuration and user mode on WRIOs.
sysI/O Banking Scheme	Updated Figure 3.1. LAV-AT-200 sysl/O Banking, Figure 3.2. LAV-AT-300 sysl/O Banking, Figure 3.3. LAV-AT-500 sysl/O Banking, Figure 3.4. High-Performance sysl/O Buffer Pair for Bottom Side, and Figure 3.5. Wide Range sysl/O Buffer for Top Side.
VCCIO Requirement for I/O Standards	Deleted 0.6 V value.
sysI/O Buffer Configurations	 Added Slow slew rate reduces SSO noise as well as reduces reflections for WRIO¹. (If only applicable WRIO). The software default for slew rate is SLEWRATE=SLOW. Slow slew rate reduces SSO noise as well as reduces reflections. (If applicable both WRIO and HPIO). in Section 5.2. Programmable Slew Rate. Updated from MIPI to MIPIA in Figure 5.2. MIPI Primitive Symbol.
Software sysl/O Attributes	 Updated IO_TYPE values. Deleted Section 6.11. DIN/DOUT.
Appendix A. HDL Attributes	Updated Termination values in Appendix A – HDL Attributes.
Appendix C. sysl/O Attributes using the Lattice Radiant Device Constraint Editor User Interface	Removed Figure C.1. Port Tab of Device Constraint Editor.

Revision 0.70, May 2022

Revision 07 0, May 2022	
Section	Change Summary
All	Advance release.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com