

5G Lattice ORAN Solution Stack 1.0

Reference Design

FPGA-RD-02257-1.0

June 2022

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 2

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not
rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the
Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in
conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a situation where personal injury,
death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 3

Contents
Acronyms in This Document ... 8
1. Introduction .. 9
2. Design Architecture .. 10

2.1. PCIe Subsystem ... 11
2.1.1. PCIe Endpoint with DMA Enabled .. 11
2.1.2. AHBL Interconnect of PCIe ... 12
2.1.3. Ingress RAM .. 12
2.1.4. Egress RAM ... 14

2.2. Application CPU Subsystem... 17
2.3. Crypto Subsystem .. 17

2.3.1. Crypto-256 Subsystem .. 17
2.3.2. Crypto-384 Subsystem .. 17
2.3.3. Register Interface ... 17

2.4. Programming Model ... 22
3. Memory Map .. 23
4. IPs/RTL Blocks used in the Design ... 25

4.1. ORAN Security Enclave .. 25
4.1.1. AES CBC 256 IP .. 26
4.1.2. AES GCM 256 IP .. 28
4.1.3. Hash Function IP ... 29
4.1.4. Public Key Cryptography (PKC) IP ... 29

4.2. CRE Module IP ... 31
4.3. SMBus Controller .. 34

4.3.1. SMBus Functional Description .. 36
4.3.2. SMBus Program Flow.. 38
4.3.3. SMBus Slave Controller Initialization Flow ... 38
4.3.4. SMBus Master Initialization .. 39
4.3.5. SMBus Slave Controller Operation Flow... 39
4.3.6. SMBus Master Controller Operation Flow ... 39
4.3.7. Write Data to SMBus Slave ... 39
4.3.8. Read Data from SMBus Slave ... 40

4.4. PCIe Subsystem IP ... 41
4.5. Reset Sync ... 44
4.6. OSC for CRE ... 44

5. Detailed Description of Crypto Operations ... 45
5.1. AES-256 CBC Decryption (PCIe to UART) ... 45

5.1.1. DMA Read ... 46
5.1.2. Application CPU Process ... 47
5.1.3. Security CPU Process .. 48

5.2. AES-256 CBC Encryption (UART to PCIe) ... 49
5.2.1. DMA Write .. 50
5.2.2. Application CPU Process ... 50
5.2.3. Security CPU ... 51

5.3. AES-256 GCM Decryption (PCIe to UART) ... 52
5.3.1. DMA Read ... 53
5.3.2. Application CPU Process ... 53
5.3.3. Security CPU Process .. 54

5.4. AES-256 GCM Encryption (UART to PCIe) .. 56
5.4.1. DMA Write .. 57
5.4.2. Application CPU Process ... 57
5.4.3. Security CPU Process .. 58

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 4

5.5. SHA384 Authentication (PCIe to UART) .. 60
5.5.1. PCIe DMA Read ... 61
5.5.2. Application CPU Process ... 61
5.5.3. Security CPU Side Process .. 62

5.6. SHA384 Message Digest Generation (UART to PCIe) .. 63
5.6.1. Application CPU Process ... 64
5.6.2. Security CPU Process .. 65

5.7. SHA384 Authentication (PCIe to UART using GCM Decryption) ... 66
5.7.1. PCIe DMA Read ... 67
5.7.2. Application CPU Process ... 67
5.7.3. Security CPU Process .. 68

5.8. HMAC 384 Authentication (PCIe to UART) .. 70
5.9. HMAC 384 Message Digest Generation (UART to PCIe) .. 71
5.10. ECC 256 Bit Key Pair Generation (using CRE IP) .. 72
5.11. RSA Encryption/Decryption ... 73
5.12. AES Throughput Calculation .. 73

6. PCIe DMA .. 74
6.1. Overview ... 74
6.2. Components of DMA Design ... 75
6.3. FPGA Design .. 75

6.3.2. Descriptor Field Format .. 79
6.3.3. Status Field Format ... 79
6.3.4. How to Trigger the DMA Operation. .. 80
6.3.5. Register Space: BASE ADDRESS -- 0x00180000 .. 80

7. MCTP over SMBus ... 84
7.1. SMBus .. 84
7.2. MCTP ... 84
7.3. SPDM ... 84
7.4. Algorithm Selection ... 85
7.5. AES CBC/GCM Algorithm ... 87
7.6. SHA Algorithm ... 87
7.7. HMAC Algorithm ... 87
7.8. ECDH Algorithm ... 87
7.9. RSA Algorithm ... 89

7.9.1. RSA Signature: .. 89
7.9.2. RSA Verify Signature ... 89

8. User Flow .. 90
8.1. Driver Initialization .. 90
8.2. SMBus Driver ... 92
8.3. PCIe Driver ... 92

8.3.1. Core API supported in PCIe Driver .. 92
8.4. Functions Used .. 93
8.5. Flow Description .. 93
8.6. User Selection for Algorithm ... 94

8.6.1. Directory Structure ... 94
8.7. Application CPU Subsystem... 95

8.7.1. UART ... 96
8.7.2. SMBus ... 96

8.8. Code Flow .. 97
8.8.1. Application CPU Main Flow .. 97
8.8.2. Algorithm APIs .. 101

8.9. Security CPU Main Flow .. 103

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 5

8.10. Security CPU Algorithm APIs ... 104
Appendix A. Resource Utilization.. 106
Technical Support Assistance ... 107
Revision History .. 108

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 6

Figures
Figure 1.1. Block Diagram .. 9
Figure 2.1. Top Level Architecture ... 10
Figure 2.2. PCIe Endpoint with DMA Enabled .. 11
Figure 2.3. Ingress RAM with Mux Selection ... 16
Figure 2.4. Egress RAM with Mux Selection .. 16
Figure 2.5. Register Interface Memory Mapping Space .. 18
Figure 4.1. ORAN Security Enclave Detailed Architecture ... 25
Figure 4.2. CRE Module IP Block Diagram .. 31
Figure 4.3. SMBus Mailbox Write Byte Message ... 34
Figure 4.4. SMBus Mailbox Read Byte Message .. 34
Figure 4.5. MCTP over SMBus Packet Format ... 34
Figure 4.6. SMBus IP Core Functional Block Diagram .. 36
Figure 5.1. AES-256 CBC Decryption (PCIe to UART) ... 45
Figure 5.2. AES-256 CBC Encryption (UART to PCIe) .. 49
Figure 5.3. AES-256 GCM Decryption (PCIe to UART) .. 52
Figure 5.4. AES-256 GCM Encryption (UART to PCIe) .. 56
Figure 5.5. SHA384 Authentication (PCIe to UART) ... 60
Figure 5.6. SHA384 Message Digest Generation (UART to PCIe) ... 63
Figure 5.7. SHA384 Authentication (PCIe to UART using GCM Decryption) .. 66
Figure 5.8. HMAC 384 Authentication (PCIe to UART) .. 70
Figure 5.9. HMAC 384 Message Digest Generation (UART to PCIe) .. 71
Figure 6.1. Top Level Block Diagram .. 74
Figure 6.2. Top Level Architecture of PCIe Design ... 76
Figure 7.1. MCTP over SMBus .. 84
Figure 7.2. Flow of ECDH (Host PC and FPGA) ... 88
Figure 7.3. RSA Sign and Verify Flow ... 89
Figure 8.1. User Flow Diagram ... 90
Figure 8.2. Make .. 91
Figure 8.3. GCC ... 91
Figure 8.4. G++ ... 91
Figure 8.5. Kernel Version .. 91
Figure 8.6. UART to PC ... 93
Figure 8.7. PC to UART ... 93
Figure 8.8. Select Algorithm ... 94
Figure 8.9. Directory .. 94
Figure 8.10. Application CPU Software Module .. 95
Figure 8.11. Authentication Flow ... 98
Figure 8.12. ECDH Flow .. 99
Figure 8.13. Main Code Flow ... 100
Figure 8.14. UART to PCIe .. 102
Figure 8.15. Security CPU Main Flow ... 103

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 7

Tables
Table 2.1. Interrupt Registers Definition in Register Interface .. 19
Table 2.2. Control and Status Registers ... 20
Table 2.3. Mode Registers ... 20
Table 2.4. Scratch Memory Registers .. 21
Table 3.1. Memory Map Details .. 23
Table 4.1. OSE Top Level Signal Description .. 25
Table 4.2. Block-Cipher IP (AES CBC-256) Register Description ... 26
Table 4.3. Block-Cipher IP (AES GCM-256) Register Description ... 28
Table 4.4. Hash Function IP Register Description .. 29
Table 4.5. PKC IP Register Description ... 29
Table 4.6. CRE Module IP Signal Description ... 31
Table 4.7. CRE Module IP Register Description.. 33
Table 4.8. SMBus IP Interface Signal Description .. 35
Table 4.9. SMBus Register Map Details ... 37
Table 4.10. PCIe IP Signal Description .. 41
Table 4.11. Attribute Summary .. 44
Table 4.12. Reset Sync IP Signal Description .. 44
Table 4.13. Attribute Summary .. 44
Table 4.14. OSC for CRE IP Signal Description .. 44
Table 4.15. Attribute Summary .. 44
Table 5.1. ECC Private + Public Key Generation Procedure ... 72
Table 5.2. ECC Public Key (from Private Key) Generation Procedure .. 72
Table 6.1. Descriptor Entry Format .. 79
Table 6.2. Status Entry format ... 79
Table 7.1. Algorithm Selection Structure Tables .. 85
Table A.1. Resource Utilization .. 106

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 8

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

AES Advanced Encryption Standard

AHBL Advanced High-performance Bus-Lite

APB Advanced Peripheral Bus

AXI Advanced eXtensible Interface

CPU Central Processing Unit

DMA Direct Memory Access

ECC Elliptical Curve Cryptography

FIFO First-In-First-Out

HMAC Hash Message Authentication Code

IRQ Interrupt Request

OSE ORAN Security Enclave

PCIe Peripheral Component Interconnect Express

PKC Public Key Cryptography

RISC-V Reduced Instruction Set Computer-V

RSA Rivest–Shamir–Adleman

RTL Register-Transfer Level

SHA384 Secure Hash Algorithm

SMBus System Management Bus

UART Universal Asynchronous Receiver-Transmitter

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 9

1. Introduction
This document provides the overall design flow of the 5G Lattice ORAN™ Solution Stack 1.0 reference design. In this project,
the CertusPro™-NX is used with soft IPs to support fast packet encryption/decryption using either AES-CBC/GCM mode.

Support for packet authentication is provided by ECC384, HMAC384 or RSA 3K/4K over PCIe Interface. Keys and other
required configuration are set up through SMBus as a part of sideband communication.

Host

CPU

CertusPro-NX

Encryption/

Decryption/

Authentication

QSPI

Flash

Memory

USB

Connector

QSPI Interface

SMBus

PCIe Gen1 x1 Lane

USB-UART

Interface

Figure 1.1. Block Diagram

Figure 1.1 shows the system block diagram.

CertusPro-NX is connected to the Host PC using PCIe x1 Endpoint IP. CertusPro-NX boots from the bitstreams stored at an
external QSPI flash. It also connects to external components through SMBus. Furthermore, CertusPro-NX connects to an
external USB through soft IP UART and an external converter UART to USB.

This document discusses the critical functions of various IP’s and individual components. It show the integration with
CertusPro-NX and provides detailed description of all crypto algorithm implementations in the FPGA.

The main functions of the 5G Lattice ORAN Solution Stack are:

 Packet authentication, encryption, and decryption between the Host CPU and CertusPro-NX over PCIe.

 Support of AES-256 CBC, AES-256 GCM, SHA384, HMAC384, RSA 3K/4K, ECDH crypto algorithms.

 Crypto-256 and Crypto-384 services to customers through software APIs.

 Support of SPDM protocol over MCTP.

 Support of secure out-of-band communication over SMBus.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 10

2. Design Architecture
The design architecture consists of three subsystems:

 PCIe

 Application CPU

 Crypto

Host PC

AHBL Interconnect of Application cpu

PCIe+DMA
x1 End Point

Ingress
Data
RAM

S1

S0

Egress
Data
RAM

S0

S1

UART
Controller

SMBus Slave
Controller

S

APB Interconnect

Customer
PLD

AHBL2APB

SS

M M

SHA384
/ECC 384

/AES-256 CBC/
AES-256 GCM

S

Security CPU
RISC-V

Register Interface

Application
CPU

RISC-V

M M

M M

S1 S0

Instruction
RAM

S S

Instruction
RAM

S S

Crypto 384 Block

Interrupt

Interrupt

AXI-4 Stream

AXI-4 Stream

CRE

HSP

AHBL2
LMMI

S

Crypto 256 Block

Figure 2.1. Top Level Architecture

Figure 2.1 shows the top level architecture of the 5G Lattice ORAN Solution Stack 1.0. The three main subsystems are
described below.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 11

2.1. PCIe Subsystem
The PCIe subsystem is built by the following IPs:

 PCIe Endpoint IP – This IP is configured with DMA and two AHBL Master interfaces and one APB interface.

 AHBL Interconnect of PCIe – It supports two AHBL Master and two AHBL Slave interfaces.

 Ingress RAM – It has two AHBL Slave Ports and one AXI stream Master Port. One of the ports, S0, is connected to the
AHBL Interconnect of PCIe. The other port, S1, is connected to the AHBL Interconnect of Application.

 Egress RAM – It has two AHBL Slave Ports and one AXI stream Slave Port. One of the ports, S0, is connected to the AHBL
Interconnect of PCIe. The other port, S1, is connected to the AHBL Interconnect of Application.

The Host PC initiates the transaction over PCIe Endpoint to CertusPro-NX. The PCIe Endpoint IP is configured with DMA and
two AHBL Master and one AHBL slave, The DMA transfers the incoming packets to Ingress RAM from its AHBL Master Port
to Slave Port S0 at Ingress RAM. Furthermore, the DMA transfers outgoing packets from Egress RAM to PCIe Endpoint and
then to the Host CPU. The PCIe IP also has an APB interface, from which the Application CPU firmware can do some
configurations and check its status. Both Ingress RAM and Egress RAM has a second AHBL Slave Port S1, from which the
RISC-V CPU firmware can also control AXI4 Stream data transfer from the Ingress RAM to AES Encrypt/Decrypt IP block and
from AES Encrypt/Decrypt IP block to Egress RAM. The AHBL port S1 can also be used for reading the data/printing the data
on UART terminal in PCIe to UART flow and providing data in UART to PCIe Flow.

The PCIe subsystem is configured by the following modules:

 PCIe Endpoint IP

 AHBL Interconnect of PCIe

 Ingress RAM and Egress RAMs

2.1.1. PCIe Endpoint with DMA Enabled

The design is configured with two AHBL masters(one for reading and another for writing) and one APB slave interface for
register configuration of PCIe IP, PCIe with DMA interface data flow block diagram as shown in Figure 2.2.

Brief description of each block is explained in the PCIe DMA section.

APB Interconnect of PCIe

apb_master_wrapper

Re-config

Memory

Space

Register Space

Memory

Desc Queue

Status Queue

AHB

master0

AHB

master1

AHB

master0

AHB

master1

AHB

master0

AHB

master1

AHB

master0

AHB

master1

APB Interface

AHB Arbiter

PCIe_DMA

PCIe X1 Lane
PCIe Hard IP

PCIe Soft IP Tx TLP

Rx TLP

LMMI

UCFG

AHBL Interconnect of PCIe

Soft IP

Register

Space

DMA

Figure 2.2. PCIe Endpoint with DMA Enabled

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 12

2.1.2. AHBL Interconnect of PCIe

The design supports two AHBL Master interfaces and two AHBL Slave interfaces to write and read from the Ingress RAM
and the Egress RAM.

2.1.3. Ingress RAM

The design has two AHBL Slave Ports. One (S0) is connected to the AHBL interconnect of PCIe through which RX data is
acquired from the PCIe module. The other (S1) is connected to the AHBL interconnect of the Application CPU through which
the CPU can control/configure the ingress data RAM.

In addition, the AXI stream port is available for sending the incoming data to Crypto 384 block for encryption/decryption.

This has one True Dual Port RAM, two AHBL slaves and one AXI master. The base address for AHBL slaves and memory
depth for True Dual Port RAM (for two ports) should be provided in a general manner. Data width for True Dual Port RAM
are 64 width for Port A and 128 width for port B. The Port A of True Dual Port RAM is being accessed by S0_AHB_slave.The
Port B of True Dual Port RAM is being accessed by AXI master and S1_AHB_slave.

S0_AHB Slave

This S0_AHB slave only operates on data.

Here, the slave stores data in True Dual Port RAM by mapping AHB S0 slave address with Port A of True Dual Port RAM
based on AHB transactions.

Based upon ahb_write and ahb_trans, the slave writes data into True Dual Port RAM.

AXI_master

The three AXI signals, TDATA, TVALID, and TREADY are used for AXI transactions.

Here, the master provides data only when there is enough data entered from Port A of True Dual Port RAM and makes
TVALID HIGH.

If TREADY is LOW, the master holds data and TVALID in same position.

If TREADY is HIGH, the transaction gets completed and master provides next data if it has enough data in True Dual Port
RAM.

S1_AHB_slave

The S1_AHB_slave helps to transfer data and also used for control signals based on the address given. Data is being
operated on addresses from (0x0000) - (0xEFFF).Here slave takes data from True Dual Port RAM by mapping AHB S1 slave
address with Port B of True Dual Port RAM based on AHB transactions. This slave can also writes data in Port B of Tue dual
port RAM.

Based upon ahb_write and ahb_trans, the slave writes and reads data in the True Dual Port RAM.

The controls are PRI on address from (0xF000).

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 13

Control Signals
(0xf008)

31:2 1:0

reserved To indicate the AES flow direction and whether decryption or
encryption is taking place.

0x1: for AES Decryption

0x2: for AES Encryption

Default: 0x0

 Write only

(0xf00C)

31:1 0

reserved To enable the AXI master
Default: 0 (AXI master is disabled)

 Write only

(0xf01C)

31:1 0

reserved To select which protocol type should be used for RAM Port B
access.(whether AXI master or s1_AHB_slave)

Default: 1 (AXI protocol)

 Write only

(0xf024)

31:1 0

reserved To decide whether port b is for reading or writing
Default: 0 (Reading)

 Write only

(0xf028)

31:0

Data size given by UART
Default: 0x0

Write only

(0xf004)

31:0

READ ADDRESS of port B

Read only

(0xf010)

31:0

WRITE ADDRESS of port A

Read only

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 14

2.1.4. Egress RAM

The Egress RAM has two AHBL Slave Ports. One (S0) is connected to the AHBL interconnect of PCIe through which PCIe
module reads the data from Egress RAM. The other (S1) is connected to the AHBL interconnect of the Application CPU
through which the CPU controls/configures the Egress RAM.

In addition, the Egress RAM has an AXI stream port through which it receives the data from the Crypto 384 block after
performing encryption/decryption. There is one True Dual Port RAM, two AHBL slaves, and one AXI slave. The base address
for AHBL slaves and memory depth for True Dual Port RAM (for two ports) are provided. Data width for True Dual Port RAM
is 64 for Port A and 128 for Port B. Port A of True Dual Port RAM is accessed by S0_AHBL_slave. Port B of is accessed by AXI
master and S1_AHBL_slave.

S0_AHBL slave

The S0_AHBL slave only operates on data.

Here, the slave takes data from True Dual Port RAM by mapping AHB S0 slave address with Port A of True Dual Port RAM
based on AHBL transactions.

Based upon ahb_write and ahb_trans, the slave takes data from True Dual Port RAM.

AXI_slave

The Three AXI signals, TDATA, TVALID, and TREADY are used for AXI transactions.

Here, slave takes data without any interrupt.

S1_AHBL_slave

The S1_AHBL_slave helps to transfer data and is also used for control signals based on the given address. Data is operated
on addresses from (0x0000) to (0xEFFF). Here, slave stores data in True Dual Port RAM by mapping the AHB S1 slave
address with Port B based on AHBL transactions. This slave can also read data from Port B.

Based upon ahbl_write and ahbl_trans, the slave writes and reads data in True Dual Port RAM.

The controls are given on address from (0xF000).

Control Signals

(0xf008)

31:2 1:0

reserved To indicate the AES flow direction and whether decryption or
encryption is taking place.

 0x1: for AES Decryption

0x2: for AES Encryption

Default: 0x0

 Write only

(0xf00C)

31:1 0

reserved To Enable the AXI Slave
Default: 0 (AXI slave is disabled)

 Write only

(0xf01C)

31:1 0

reserved To select which protocol type should be used RAM Port B access.
(whether AXI slave or s1_AHB_slave)

Default: 1 (AXI protocol)

 Write only

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 15

(0xf020)

31:1 0

reserved SHA data ready
Default: 0 (data not ready)

 Write only

(0xf024)

31:1 0

reserved To decide whether Port-B is for reading or writing.

Default: 0 (Reading)

 Write only

(0xf028)

31:0

Data size given by UART
Default: 0x0

Write only

(0xf004)

31:0

WRITE ADDRESS of port B

Read only

(0xf010)

31:0

READ ADDRESS of Port A

Read only

(0xf014)

31:0

DATA SIZE given by PCIe for AES

Read only

(0xf018)

31:0

Data ready signal which tells data is encrypted/decrypted
Default: 0x0

Read only

(0xf044)

31:0

Performance counter for AES algorithm
Default: 0x0

Read only

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 16

The two blocks, Ingress RAM and Egress RAM, are built from an existing IP. In Dual Port EBR memory, the writing port and
the reading port need to be controlled using AHB Lite and AXI stream interfaces, as shown in Figure 2.3 and Figure 2.4.

INGRESS

RAM

TDPRAM
AHBL_S0

64 Bits

AXI Stream

Out 128 Bits

AHBL_S1

32 Bits

Register Control

W/RW

Figure 2.3. Ingress RAM with Mux Selection

EGRESS

RAM

TDPRAM
AHBL_S0

64 Bits

AXI Stream

In 128 Bits

AHBL_S1

32 Bits

Register Control

W/RR

Figure 2.4. Egress RAM with Mux Selection

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 17

2.2. Application CPU Subsystem
The Application CPU is the main interface that controls the process flow to other submodules. It interacts with submodules
over the AHBL interface. The Application CPU has two AHBL Master Ports. One is tasked to send/receive data from other
interfaces, which are connected through AHBL interconnect. The other is connected to the Instruction RAM.

The Application CPU subsystem has the following sub-interfaces:

 Application CPU – It is a RISC-V processor with two AHBL Master Ports. One fetches instruction and the other fetches
data.

 AHBL Interconnect of Application – It supports one AHBL Master Port and multiple Slave Ports. The Application CPU is
the master. Data RAM, Register Interface module (Port S0), Ingress RAM (port S1), Egress RAM (port S1), AHBL2LMMI
(connected to CRE/HSE), AHBL2APB, SMBus, and Slave Customer PLD are the slaves. The block AHBL2APB is connected
to APB Interconnect, which connects to multiple slaves including SMBus Slave controller, UART controller.

 Instruction RAM – It has one AHBL Slave Port.

 Data RAM – It has one AHBL Slave Port.

 Customer PLD Logic

2.3. Crypto Subsystem
The design is divided into two sub systems one is Crypto-256 subsystem and others one is Crypto-384 subsystem.

2.3.1. Crypto-256 Subsystem

Crypto-256 Block has a CRE module and an AHB Lite to LMMI slave interface. The AHB Lite slave interface is connected to
the AHB Lite Interconnect of Application. The Crypto-256 block also has a block of AHBL2LMMI to convert AHB Lite bus
signals to LMMI signals since HSE uses LMMI interface. Crypto-256 block is used for generating the 256 bit Key Pair (Public
and Private), generating 256 bit Public Key using Private Key for validation.

2.3.2. Crypto-384 Subsystem
 AHBL Interconnect of Security – It supports one AHBL Master Port and three AHBL Slave Ports. One Master Port is

connected to the Security CPU and the Slave Ports are Crypto-Accelerators (SHA2-384/ECC-384/AES-CBC/AES-GCM),
Register Interface (port S1), and Instruction RAM of the Security CPU.

 Instruction RAM – It has one AHBL Slave Port.

 Register Interface – It has two AHBL Slave Ports: one port S0 is connected to the AHBL Interconnect of the Application
CPU, the other port S1 is connected to the AHBL Interconnect of the Security CPU.

 Crypto IPs – It includes accelerator for SHA2-384, PKC IP, and AES-CBC/AES-GCM. It has one AHBL Slave Port and two
AXI4-Stream ports (one for stream in and one for stream out).

 Security RISC-V CPU – It includes one master AHBL interconnect of security interface, Instruction RAM register
interface, crypto IPs.

2.3.3. Register Interface

The Register Interface block has two AHB Lite Slave Ports. One port is connected to the Security CPU AHB Lite Interconnect
and the other one is Security RISC-V CPU base address 0x2C0000 is used. When accessing from the Security CPU through S1
Port of the Register Interface, the base address 0x2E0000 is used.

When the Application CPU requests any service from Crypto-384, it writes certain information to the Register Interface
which then generates an interrupt to the Security CPU. The interrupt service routine at the Security CPU reads the
information from the Register Interface and provides service such as SHA2-384, AES CBC and ECC384 and then clear the
interrupt. Once the service is completed, the Security CPU writes to the interrupt set register at the Register Interface,
which generates an interrupt to Application to inform that the request has been completed. The Application CPU can read
the status register at the Register Interface and then send the next service request.

The design can be improved by allowing pipelined request for Crypto-384 service. Once the Security CPU finishes reading
the data from the Register Interface, it can generate an interrupt to the Application CPU and to inform the Application CPU

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 18

that the data has been read through a status register. The Application CPU can then send a new request while the current
request is being serviced by Crypto-384.

Crypto services are provided through the Register Interface which consists of:

 Interrupt registers

 Control and status registers

 Scratch RAM (0x2D_0000 – 0x2D,3F00)

The Register Interface has interrupt registers, 8 Kbytes (8192 x 32) two-port (2RW) scratch memory and control/status
registers. Its memory space mapping is shown in Figure 2.5.

Interrupt Registers are mapped to the top of the address space from 0x002C_0000 and 0x002C_0014. These registers are
implemented in the FPGA fabric.

The Scratch Memory has 4096 bit depth, 32 bit width, and is implemented with EBRs with two RW ports. The memory
address is from 0x002D_0000 to 0x000D_3FFF. The bottom of this memory space from 0x002D_3FEC to 0x000D_3FFC is
used for control and status registers.

Other spaces such as the gap between (1) and (2) are unmapped.

Control and Status

Registers

4096 x 32

Two Ports (2RW)

Scratch Memory

(16 KB)

Pong Block (1 KB)

Ping Block (1 KB)

Unmapped Space

Interrupt Registers
0x002C_0000

0x002C_0014

0x002D_0000

0x002D_0080

0x002D_0100

0x002D_3FFC

0x002D_3F00

0x002D_3EFF

Figure 2.5. Register Interface Memory Mapping Space

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 19

Table 2.1. Interrupt Registers Definition in Register Interface

Name Address
Offset

Width
(Bits)

Access from
Application CPU

Access from
Security CPU

Default Description

int_status_app 0x2C_0000 1 RW1C RO 0 Interrupt status register.

1’b0: no interrupt to the Application
CPU.

1’b1: interrupt is set for the
Application CPU. If int_enable_app is
set, the interrupt is generated.

The interrupt service routine at the
Application CPU should write 1 to
clear the interrupt after it is be
serviced.

int_enable_app 0x2C_0004 1 RW N/A 0 Interrupt enable register.

1’b0: interrupt to the Application
CPU is disabled.

1’b1: interrupt to the Application
CPU is enabled.

int_set_app 0x2E_0008 1 N/A RW 0 Interrupt set register.

1’b0: no interrupt is set.

1’b1: causes int_status_app to be
set to 1.

Read from this register always
return 0 per Lattice Hard IP Interface
Standard (see ref[7]).

int_status_security 0x2E_000C 1 RO RW1C 0 Interrupt status register.

1’b0: no interrupt to the Security
CPU.

1’b1: interrupt is set for the Security
CPU. If int_enable_security[0] is set,
the interrupt is generated.

The interrupt service routine at the
Security CPU should write 1 to clear
the interrupt after it is be serviced.

int_enable_security 0x2E_0010 1 N/A RW 0 Interrupt enable register.

1’b0: interrupt to the Security CPU is
disabled.

1’b1: interrupt to the Security CPU is
enabled.

int_set_security 0x2C_0014 1 RW N/A 0 Interrupt set register.

1’b0: no interrupt is set.

1’b1: causes int_status_security[0]
to be set to 1.

Read from this register always
return 0 per Lattice Hard IP Interface
Standard (see ref[7]).

The Control and Status registers are defined in Table 2.2. To save fabric resources, these Control and Status registers are
mapped to the scratch memory (instantiating system memory with 2RW ports). It is better to map these registers near the
end address of the scratch memory. If the scratch memory has 16 Kbytes with address offset from (0x0000 to 0x3FFF), the
address offset should map backwards from the end of the space. In this way, the top space can be mapped to SHA and PKC
with the same offset as their IP requires.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 20

Table 2.2. Control and Status Registers

Register Name Address Offset Width (Bits) Access from
Application CPU

Access from
Security CPU

Default Description

Mode 0x0002D_3FFC 32 RW R 0 CPU needs to write to
this register. The Security
CPU can only read it.

AES key length 0x0002D_3FF8 2 RW R 0 Bit 0:

0 means 128-bit key

1 means 256-bit key

SHA source 0x0002D_3FF4 1 RW R 0 Bit 0:

0 means SHA message
source from Register File.

AES source 0x0002D_3FF0 1 RW R 0 Bit 0:

0 means AES message
source from PCIe

Status 0x0002D_3FEC 32 R RW Bit [31:16]

Error Code (To be
defined)

Bit 0

0 means IDLE

1 means DONE

Version 0x0002D_3FE8 32 R RW 0 Bit [31:16] version
number of Crypto-384 IP

Bit [15: 0] version
number of Crypto CPU
Firmware

Table 2.3. Mode Registers

Mode Register Operating Mode

0x35 SHA384

0x36 HMAC-SHA384

0x3A ECDH

0x3F AES-256 CBC encryption

0x40 AES-256 CBC decryption

0x41 AES-256 GCM encryption

0x42 AES-256 GCM decryption

0x43 RSA 3K Authentication

0x44 RSA 4K Authentication

0x50 ECC 256 bit public key generation from a given private key(using CRE I P)

0x57 ECC 256 key pair generation (Qx, Qy, d) (using CRE IP)

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 21

The other memory spaces in the Register Interface are two-port scratch memory with starting address offset at
0x002D_0000. We can define the initial 32 entries as ping region (from 0x002D_0000 to 0x002D_007F) and the next 32
entries as pong region (from 0x002D_0080 to 0x002D_00FF).

To transfer data between the security firmware and the Application CPU firmware, the data regions below are defined.

Table 2.4. Scratch Memory Registers

Region Offset Size(Bytes) Description

Ping buffer 0x2D,0000 128 Used to transfer SHA384 message and ECIES message

Pong buffer 0x2D,0080 128

Output buffer 0x2D,0100 128 Buffer to output data

BUF1 0x2D,0180 48 Writing AES (CBC/GCM) key

BUF2 0x2D,01B0 48 Writing AES (CBC/GCM) initial vector

BUF3 0x2D,01E0 48 Writing AES (GCM) additional data

BUF4 0x2D,0210 48 Writing AES len(A)64 || len(C)64

BUF5 0x2D,0240 48 Reading GCM tag

Ping status 0x2D,0270 4 Bit 0: 1 – ping buffer ready

APP CPU: when ready bit 0, write to buffer, then set 1

SEC CPU: when ready bit 1, read from buffer, then set 0

Always start from ping buffer

Pong status 0x2D,0274 4 Bit 0: 1 – pong buffer ready

APP CPU: when ready bit 0, write to buffer, then set 1

SEC CPU: when ready bit 1, read from buffer, then set 0

Servo Status 0x2D,0278 4 Bit [1:0]:

0x0 – Servo Idle

0x1 – Servo in service

0x2 – Servo busy

APP CPU: when servo idle, change state to servo in service, then issue
interrupt to notify SEC CPU

SEC CPU: when servo in service detected, set to servo busy then
handle the request. After service done, change to servo idle then issue
interrupt to notify APP CPU

Input buffer Size 0x2D,027C 4 Size of SHA input data in bytes

Output buffer Size 0x2D,0280 4 Size of data in output buffer

AES Mode (Read
Only)

0x2D0290 4 1: AES CBC mode
2: AES GCM mode

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 22

2.4. Programming Model
At a high level, follow the steps below to program the registers:

1. From the Application CPU, write to the Register Interface control registers, data in scratch memory, and interrupt
registers to generate an interrupt to the Security CPU.

2. The Security CPU interrupt service routine checks the Register Interface control registers (such as mode) and then reads
the Register Interface scratch memory to ORAN Security Enclave IPs.

3. The Security CPU checks the Security Enclave registers for status and then copies the result back to the Register
Interface scratch memory, and then writes to interrupt registers to generate an interrupt to the Application CPU. At the
same time, the Security CPU should clear its interrupt.

4. The Application CPU checks the status registers at the Register Interface and reads the output back from the Register
Interface scratch memory and then clears its interrupt.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 23

3. Memory Map
The memory map of the three subsystems is defined in Table 3.1. Base Address remains same for every interface. Range
needs to be changed according to memory requirement.

Table 3.1. Memory Map Details

Subsystem Base
Address

End
Address

Range
(Bytes)

Range
(Bytes
in Hex)

Size
(Kbytes)

Block Base
Address

End
Address

Application

00000000 0007FFFF 524288 80000 512
Application CPU
Instruction RAM and
data RAM

0 524287

00080000 000803FF 1024 400 1
Application CPU PIC
TIMER

524288 525311

00080400 000BFFFF 261120 3FC00 255 RESERVED 525312 786431

000C0000 000C1FFF 8192 2000 8 RESERVED 786432 794623

000C2000 000C3FFF 8192 2000 8 UART 794624 802815

000C4000 000C7FFF 16384 4000 16 SMBus Slave 802816 819199

000C8000 000C9FFF 8192 2000 8 RESERVED 819200 827391

000CA000 000CBFFF 8192 2000 8 PCIe EP 827392 835583

000CC000 000CDFFF 8192 2000 8 RESERVED 835584 843775

000CE000 000CEFFF 4096 1000 4 RESERVED 843776 847871

000CF000 000CFFFF 4096 1000 4 RESERVED 847872 851967

000D0000 000FFFFF 196608 30000 192 RESERVED 851968 1048575

00100000 0013FFFF 262144 40000 256 HSE 1048576 1310719

00140000 0017FFFF 262144 40000 256 Customer PLD Logic 1310720 1572863

PCIe

00180000 00180FFF 4096 1000 4
PCIe DMA control
the Register
Interface

1572864 1576959

00181000 00182FFF 8192 2000 8
PCIe DMA descriptor
and status queue

1576960 1585151

00183000 0018FFFF 53428 D000 13 RESERVED 1585152 1638399

00190000 001AFFFF 65536 10000 64

Ingress RAM
 Port S0:
0x0019_0000
 Port S1:
0x001A_0000

1638400 1703935

001B0000 001CFFFF 65536 10000 64

Egress RAM
 Port S0:
0x001B_0000
 Port S1:
0x001C_0000

1703936 1769471

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 24

Subsystem Base
Address

End
Address

Range
(Bytes)

Range
(Bytes
in Hex)

Size
(Kbytes)

Block Base
Address

End
Address

Security

001D0000 001FFFF 65536 10000 64 RESERVED 1769472 1835007

00000000 0001FFFF 131072 20000 128

Security CPU
Instruction
RAM/Data RAM 2097152 2162687

00210000 0023FFFF 196608 30000 192 RESERVED 2162688 2359295

00240000 0027FFFF 262144 40000 256 RESERVED 2359296 2621439

00280000 002803FF 1024 400 1
Security CPU
PIC/Timer 2621440 2622463

00280400 002807FF 1024 400 1
Configuration
Engine 2622464 2623487

00280800 002BFFFF 260096 3F800 254 RESERVED 2623488 2883583

002C0000 002FFFFF 262144 40000 256
Register Interface
 Port S0: 002C_0000
 Port S1: 002E_0000

2883584 3145727

00300000 0033FFFF 262144 40000 256
SHA2-
384/ECC384/AES 3145728 3407871

00340000 0034FFFF 65536 10000 64 RESERVED 3407872 3473407

00350000 0035FFFF 65536 10000 64 RESERVED 3473408 3538943

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 25

4. IPs/RTL Blocks used in the Design
Some of the IPs used in this design, which are directly generated from Lattice Radiant software, are discussed in this
section. Along with them, details about the ORAN Security Enclave (OSE) IP are also explained.

4.1. ORAN Security Enclave
Figure 4.1 shows the detailed architecture of the IP. It mainly involves three Crypto IP’s namely Block Cipher IP,
hash function IP and Public Key Cryptography (PKC) IP.

M

CPU Host
SYSTEM

RAM

32

HOST Fabric

AHB-Lite

Slave IF
AXI-STREAM

IF

32

AHB-Lite Register Interface
AXI-Stream

Controller

Block Cipher

IP

Hash Function

IP
Public Key

Cryptography IP

RA

M1

RA

M2

Figure 4.1. ORAN Security Enclave Detailed Architecture

Figure 4.1 shows that the AXI stream interface, AHB-Lite interface, and Clock reset interface are used in the OSE for inputs
and outputs for the IP.

Table 4.1. OSE Top Level Signal Description

Ports Direction Width Description

Clk Input 1 Main clock signal, duty cycle 50:50

n_rst Input 1 Asynchronous active - low reset signal

oran_security_enclave_irq_o output 1 Interrupt signal raised by an IP done event

oran_security_enclave_ahblite_ahblite_slave_hsel_i Input 1 hsel signal

oran_security_enclave_ahblite_ahblite_slave_hwrite_i Input 1 hwrite Signal

oran_security_enclave_ahblite_ahblite_slave_hsize_i Input 2 hsize signal

oran_security_enclave_ahblite_ahblite_slave_hburst_i Input 3 hburst signal

oran_security_enclave_ahblite_ahblite_slave_hprot_i Input 4 hprot signal

oran_security_enclave_ahblite_ahblite_slave_htrans_i Input 2 htrans signal

oran_security_enclave_ahblite_ahblite_slave_hmastlock_i Input 1 hmastlock signal

oran_security_enclave_ahblite_ahblite_slave_hready_i Input 1 hready signal

oran_security_enclave_ahblite_ahblite_slave_haddr_i Input 32 address signal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 26

Ports Direction Width Description

oran_security_enclave_ahblite_ahblite_slave_hwdata_i Input 32 write data signal

oran_security_enclave_ahblite_ahblite_slave_hreadyout_o Output 1 hreadyout signal

oran_security_enclave_ahblite_ahblite_slave_hresp_o Output 1 hresp signal

oran_security_enclave_ahblite_ahblite_slave_hrdata_o Output 32 read data signal

oran_security_enclave_axistream_slave_tdata_i Input 128 AXI stream data input signal

oran_security_enclave_axistream_slave_tvalid_i Input 1 AXI stream valid input signal

oran_security_enclave_axistream_slave_tready_o Output 1 AXI stream readyout signal

oran_security_enclave_axistream_master_tdata_o Output 128 AXI stream data out signal

oran_security_enclave_axistream_master_tvalid_o Output 1 AXI stream valid out signal

oran_security_enclave_axistream_master_tready_i Input 1 AXI stream ready in signal

4.1.1. AES CBC 256 IP

The Block-Cipher IP Core is a security enhanced hardware implementation of one or several block-cipher algorithms under a
common and comprehensive interface. It also embeds one or several modes of operation with different key sizes on a 128
bits data path. The AES (Advanced Encryption Standard) performs encryption/decryption with 128/256 bits keying material,
which is used in the Block-Cipher IP. The encryption and decryption in the Block-Cipher IP performs in two modes: CBC
Mode (Cipher-Block Chaining) and GCM Mode (Galois Counter Mode). Based upon the requirements, the mode can be
selected in the Block-Cipher IP.

Table 4.2. Block-Cipher IP (AES CBC-256) Register Description

Registers Address Offset Reset Value Access Description

VERSION 0x0000 0x00010005 RO Version register. Provides a constant value relative to the
project.

STATUS 0x0004 0x0 RO Status register. Provides useful information regarding the IP.

Bit[0]: Status

1’b1 : Ready for operation

Bits[8:1] : Error code

0x01 : Unauthorized algorithm

0x02 : Unauthorized key size of algorithm

0x03 : Unauthorized cipher direction

0x04 : Unauthorized mode

0x05 : Unauthorized algorithm for mode

0x06 : Unauthorized direction for mode

0x07 : Unauthorized key size for algorithm and mode

0xff : Unknown setup error

Bit [31:9] Reserved

CONTROL 0x0008 0x0 WO Control register. This register is useful to start an AES
operation and setup the random value to be used by the
counter measure. It also drives the key selection signal as well
as the key register lock signals.

Bits[4:1] : Random data to be used by Block-Cipher IP

Bit[0] : Control

 1’b1 : Starts AES operation

 1’b0 : Nothing

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 27

Registers Address Offset Reset Value Access Description

CONFIG 0x000C 0x0 WO Configuration register. Used to set up the AES operation to be
performed (encryption/decryption/mode).

31 → 27 Reserved (always read as 0b00000).

26 → 24 ALGO "0x00": AES

"0x01": SM4

"0x02": TDEA

"0x03": ARIA

This field is always read as 0b000.

23 → 16 Reserved (always read as 0x00).

15 → 8 MODE

"0x10": CBC_INIT

"0x11": CBC_UPDATE

2 → 1 KSS

 "0x0": The Block Cipher IP is configured to use 128-bit keys.

"0x1": The Block Cipher IP is configured to use 192-bit keys.

"0x2": The Block Cipher IP is configured to use 256-bit keys.

This field is always read as 0b00.

0 CD 0b0: encryption

0b1: decryption

This field is always read as 0b0.

DIN 0x0010 to

0x001C

0x0 WO Data input register. Contains the data to be processed by the
Block Cipher IP. This register is wired to data_i.

Bits[31 : 0] can be accessed at address 16 Bits[127 : 96]
respectively at address 28

DOUT 0x0020 to

0x002C

0x0 RO Data output register. Contains the data processed by the
Block Cipher IP. This register is wired to data_o Bits[127 : 0]

KEY 0x0030 to
0x004C

0x0 WO Key input registers. Contains the key. This register is wired to
key_i[255: 0].

IV 0x0050 to
0x005C

0x0 WO Initialization Vector (IV) input registers. Contains the
Initialization Vector (IV). This register is wired to iv_i[127 : 0].

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 28

4.1.2. AES GCM 256 IP

The Block-Cipher IP Core is a security enhanced hardware implementation of one or several block-cipher algorithms under a
common and comprehensive interface. It also embeds one or several modes of operation with different key sizes on a 128
bits data path. The AES performs encryption/decryption with 128/256 bits keying material, which is used in the Block-Cipher
IP. The encryption and decryption in the Block-Cipher IP performs in two modes: CBC Mode (Cipher-Block Chaining) and
GCM mode (Galois Counter Mode). Based upon the requirements, the mode can be selected in the Block-Cipher IP.

Table 4.3. Block-Cipher IP (AES GCM-256) Register Description

Registers Address Offset Reset Value Access Description

VERSION 0x0000 0x00020005 RO Version register. Provides a constant value relative to the project.

STATUS 0x0004 0x0 RO Status register

CONTROL 0x0008 0x0 WO Control register. This register is useful to start an AES operation and
setup the random value to be used by the counter measure. It also
drives the key selection signal as well as the key register lock signals.

CONFIG 0x000C 0x0 WO Configuration register. This register is useful to setup an AES
operation to be performed (encryption/decryption/mode)

31 → 27 Reserved (always read as 0b00000).

26 → 24 ALGO "0x00": AES

"0x01": SM4

"0x02": TDEA

"0x03": ARIA

This field is always read as 0b000.

23 → 16 optional block size in bits
(CMAC_FINISH,CCM_UPDATE,GCM_update,GCM_FINISH,CCM_FINISH
modes of operation only).

15 → 8 MODE

"0x50": GCM_INIT

"0x51": GCM_GHASH

"0x52": GCM_UPDATE

"0x53": GCM_FINISH_IV

"0x54": GCM_FINISH

7->3 Reserved.

2 → 1 KSS

"0x0": The Block Cipher IP is configured to use 128-bit keys.

"0x1": The Block Cipher IP is configured to use 192-bit keys.

"0x2": The Block Cipher IP is configured to use 256-bit keys.

This field is always read as 0b00.

0 CD 0b0: encryption

0b1: decryption

This field is always read as 0b0.

DIN 0x0010 to

0x001C

0x0 WO Data input register. Contains the data to be processed by the Block
Cipher IP. This register is wired to data_I Bits[127 : 0].

DOUT 0x0020 to

0x002C

0x0 RO Data output register. Contains the data processed by the Block Cipher
IP. This register is wired to data_o Bits[127 : 0].

KEY 0x0030 to

0x004C

0x0 WO Key input registers. Contains the key. This register is wired to
key_i[255 : 0].

IV 0x0050 to

0x005C

0x0 WO Initialization Vector (IV) input registers. Contains the Initialization
Vector (IV). This register is wired to iv_i[127 : 0].

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 29

4.1.3. Hash Function IP

Hash function is any function that can be used to map data of arbitrary size to fixed-size values. Based on that there are 5
classes of secure hash functions. SHA2-384 and SHA2-512 are the hash functions used. The values 384 and 512 represent
the message digest size, which is fixed. The hash function takes the input and produces a hash value for the required
message digest size.

Table 4.4. Hash Function IP Register Description

Registers Address Offset Default Value Access Description

VERSION 0x0000 0x00 RO Version register. Provides information regarding the IP-Core
version

STATUS 0x0004 0x00 RO Status register. Provides information regarding the IP-Core.

Bit[0] : Ready status

 1’b1 : Ready

 1’b0 : Not Ready

CONTROL 0x0008 0x00 RW Control register. Starts an operation in the IP Core.

Bit[0] : Start Operation. The operation begins when the bit is
HIGH.

CONFIG 0x000C 0x00 RW Operation, algorithm and mode selection port.

x"04" : OP_HASH_INIT

x"05" : OP_HASH_UPDATE

x"06" : OP_HASH_FINISH

others: Reserved

MSG_LEN_I(X) 0x0010 - 0x001c 0x0 RW Message length input register for padding

DATA_I 0x0020 0x0 RW Data Input register.

Contains the data to be processed by the IP-Core.

DATA_O(X) 0x0034 - 0x0060 0x0 RO Data Output register.

Contains the data to be processed by the IP-Core.

4.1.4. Public Key Cryptography (PKC) IP

The PKC IP Core is a hardware implementation that supports and accelerates Public-Key Cryptography protocols of
primitives standards. The PKC accelerator IP Core implements modular arithmetic over large numbers. This IP performs RSA
primitives for the Digital Standard Signature and the RSA signature verification and ECC primitives for the Digital Standard
Signature [ECDSA] and signature verification. Mathematically, the elliptic curve digital signature protocols are highly
dependent of the ECSM (Elliptic Curve Scalar Multiplication) operation. The ECSM also relies on “lower-level” elliptic curve
operations, namely the point doubling and point addition operations. Then, the RSA protocols depends on the modular
exponentiation operation (called RSA primitives). Finally, the whole system depends on finite field arithmetic.

ECC module is composed of two ECDSA primitive operations: signature generation (private operation), signature verification
(public operation). The physical counter measures are only used for the signature generation and the elliptic curve scalar
multiplication in order to protect the private key.

Table 4.5. PKC IP Register Description

Registers Address Offset Default Value Access Description

MEMORY_1 0x0000 N.A RW Dedicated memory bank 1 for PKC accelerator

MEMORY_2 0x4000 N.A RW Dedicated memory bank 2 for PKC accelerator

OP0 0x6000 0x00 WO Operand registers access for PKC accelerator.

OP1 0x6004 0x00 WO Operand registers access for PKC accelerator.

OP2 0x6008 0x00 WO Operand registers access for PKC accelerator.

OP3 0x600C 0x00 WO Operand registers access for PKC accelerator.

OP4 0x6010 0x00 WO Operand registers access for PKC accelerator.

OP5 0x6014 0x00 WO Operand registers access for PKC accelerator.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 30

Registers Address Offset Default Value Access Description

OP6 0x6018 0x00 WO Operand registers access for PKC accelerator.

OP7 0x601C 0x00 WO Operand registers access for PKC accelerator.

COUNT_LOAD_3 0x61DC 0x00 WO Counter registers access for PKC accelerator.

COUNT_LOAD_2 0x61E0 0x00 WO Counter registers access for PKC accelerator.

COUNT_LOAD_1 0x61E4 0x00 WO Counter registers access for PKC accelerator.

NUM_WORDS_3 0x61E8 0x00 WO Counter registers access for PKC accelerator.

NUM_WORDS_2 0x61EC 0x00 WO Counter registers access for PKC accelerator.

NUM_WORDS_1 0x61F0 0x00 WO Counter registers access for PKC accelerator.

STATUS 0x61F4 0x00 WO PKC accelerator status register.

CONTROL 0x61F8 0x00 WO PKC accelerator control register.

VERSION 0x61FC 0x00600505 RO PKC accelerator version.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 31

4.2. CRE Module IP
CRE stands for Cryptographic Engine. Figure 4.2 shows the block diagram of the CRE Module IP.

CRE

Module

CLK and

RST from

OSC IP
LMMI

LMMI

LMMI

LMMI Interface

APB Interface

AHB-L Interface
AHB-L

Bridge

APB

Bridge

FIFO

Figure 4.2. CRE Module IP Block Diagram

The FIFO I/O only applies to FIFO control pins; the data pins are shared with the LMMI. The FIFO interface also requires the
information to be sent through the LMMI bus, hence the FIFO pins are only available if the LMMI interface is also selected.

The LMMI Interface is the native interface of the IP, and the most resource-efficient interface of the CRE Module. Using this
interface, the user can directly use all the native IP features without using any fabric or additional control signals.

The LMMI + FIFO interface is similar to the native LMMI interface with the addition of a FIFO control port. The FIFO shares
its input and output data connection with the LMMI’s input and output connection, hence, the user must design additional
circuitry to fully take advantage of this interface. The benefits of the FIFO data path are the increased throughput for
AES/SHA transactions. In this configuration, the user can still utilize all the features of the IP while minimizing resource
utilization.

Important: The LMMI write and read data ports are shared with the FIFO interface. Proper care must be taken when
writing/sampling data to/from the IP using different clocks. This document assumes that the user has properly taken care of
any possible clock crossing issues which could arise from the use of asynchronous clocks.

Table 4.6. CRE Module IP Signal Description

Signals Direction Width (Bits) Description

Core IP Signals

cfg_clk_i INPUT 1 Configuration Clock Signal (from OSC IP)

cre_clk_i INPUT 1 CRE Clock Signal (from OSC IP)

cre_rstn_i INPUT 1 CRE Engine Reset Signal (Active Low)

LMMI Slave Interface

lmmi_clk_i INPUT 1 Clock Signal of the LMMI Interface

lmmi_resetn_i INPUT 1 LMMI Reset Signal. Active Low, LMMI interface is in reset when
asserted.

lmmi_request_i INPUT 1 Active HIGH signal, indicates that the master wants initiate a
transaction when asserted.

lmmi_wr_rdn_i INPUT 1 Active HIGH signal, indicates a write transaction when the
asserted.

lmmi_offset_i INPUT 18 Offset address, the accessed location of the current active
transaction.

lmmi_wdata_i INPUT 32 Input data, the data to be written in the offset address. (This port
is shared with the FIFO data input).

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 32

Signals Direction Width (Bits) Description

lmmi_rdata_o OUTPUT 32 Output data, the data result from the previous transaction. (This
port is shared with the FIFO data output).

lmmi_rdata_valid_o OUTPUT 1 Active HIGH, indicates that the data is valid when asserted.

lmmi_ready_o OUTPUT 1 Active HIGH, indicates that the slave is ready to receive
transactions when asserted.

FIFO Interface

Async_fifo_clk_i INPUT 1 Clock Signal of the FIFO Interface

Async_fifo_rst_i INPUT 1 FIFO Reset Signal, Active HIGH, indicates that the FIFO interface is
reset when asserted

Async_fifo_wr_en_i INPUT 1 Active HIGH, indicates that an input data would be written to the
FIFO if the FIFO is not full.

Async_fifo_rd_en_i INPUT 1 Active HIGH, indicates that an output data would be generated
from the FIFO if the FIFO is not empty.

Async_fifo_full_o OUTPUT 1 Active HIGH, indicates that the FIFO is full.

Async_fifo_empty_0 OUTPUT 1 Active HIGH, indicates that the FIFO is empty.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 33

Table 4.7. CRE Module IP Register Description

Name LMMI [17:0] Size R/W Description

RI_CTRL1 0x2 000C 4B W/O Instruction register, writing to this register defines the
current function of the CRE Engine and automatically starts
the Engine:

0x00: Clears previous instruction

0x02: True Random Generation

0x04: Generates ECC public keys from a private key 0x05:
Starts SHA256

0x06: Starts HMAC-SHA256

0x07: Starts ECIES Encryption 0x08: Starts ECIES Decryption
0x09: Starts AES Engine

0x0C: Starts ECDSA Generation 0x0D: Starts ECDSA
Verification

0x0E: Generates both ECC private and public keys from TRNG
engine

RI_CTRL3 0x2 0014 4B W/O Sets the size of the message to be encrypted / decrypted
(ECIES [1760B max] / HMAC-SHA [1980B max)

AES_SIZE 0x2 0018 4B W/O Sets the size of the key used in the encryption / decryption
process (AES)

0x00: 128-bits (16B)

0x01: 256-bits (32B)

RO_GP0 0x2 0020 4B R/O Shows the current status of the CRE Engine: 0x0B0: Engine is
ready to accept instructions 0x0B1: Engine is busy

0x0B2: Engine has completed performing instructions

DPA_CON 0x2 0030 4B W Writes the information controlling the Differential Power
Analysis features of the IP.

Bit[0] controls “Clock Randomization” Bit[1] controls
“Random Noise Addition”

Bit[3] controls the JML counter operation

DATA_SRC 0x2 003C 4B W/O Sets the data source for the SHA / AES engine: 0x00: Sets the
AES engine data source to the bus 0x02: Sets the SHA engine
data source to the bus 0x03: Sets the SHA engine data source
to the FIFO

0x04: Sets the AES engine data source to the FIFO

AES_CON 0x2 2040 4B W/O AES control register, sets the current function of the AES
engine to either encrypt or decrypt

0x00: Encryption

0x01: Decryption

AES_STAT 0x2 2044 4B R/O Shows the current status of the AES Engine: AES_STAT[0] = 0:
AES is busy expanding the key AES_STAT[0] = 1: AES key
expansion ready AES_STAT[1] = 0: AES is encrypting /
decrypting

AES_STAT[1] = 1: AES process finished

SHA_INIT 0x2 3070 4B W/O Initializes the SHA engine, must be written with 0x01
followed by 0x00

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 34

4.3. SMBus Controller
The System Management Bus (SMBus) is a two-wire interface through which simple system and power management
devices can communicate with the rest of the system. The protocol is compatible with the I2C bus protocol and is often
found in monitoring power conditions, temperature, and other sensors on a board. While SMBus is derived from I2C, there
are several major differences existing between the specifications of the two buses. The device that initiates the
transmission on the SMBus is commonly known as the Master, while the device being addressed is called the Slave.

SMBus protocols support many kinds of formats, such as SMBus write byte, SMBus write word, SMBus read byte, SMBus
read word, SMBus write block, SMBus read block and so on. SMBus write byte and read byte message format is shown in
Figure 4.3 and Figure 4.4.

S RoT Address Wr A RF Address A RF Data A P

7 Bit + 1 Bit Wr
Slave

Resp 8 Bit
Slave

Resp 8 Bit from Master
Slave

Resp

Figure 4.3. SMBus Mailbox Write Byte Message

S RoT Address Wr A RF Address A RF Data Rd A

7 Bit + 1 Bit Wr
Slave

Resp 8 Bit
Slave

Resp 7 Bit + 1 Bit Rd
Slave

Resp

Sr RF Data N P

8 Bit from Slave
Master

Resp

Figure 4.4. SMBus Mailbox Read Byte Message

The MCTP over SMBus/I2C transport binding defines how MCTP packets are delivered over a physical SMBus or I2C medium
using SMBus transactions. All MCTP transactions are based on the SMBus Block Write bus protocol. The first 8 bytes make
up the packet header. The first three fields—Destination Slave Address, Command Code, and Length—map directly to
SMBus functional fields. The remaining header and payload fields map to SMBus Block Write "Data Byte" fields. The
inclusion of the Source Slave Address in the header is specified by MCTP rather than SMBus. This is done to facilitate
addressing required for establishing communications back to the message originator. The MCTP over SMBus packet format
as shown in Figure 4.5.

Destination Slave

Address

MCTP

Reserved

1 6 5 4 3 2 01 7 6 5 4 3 2 01 7 6 5 4 3 2 01 7 6 5 4 3 2 01

Hdr

Version

Source

Endpoint ID

Msg

Tag

T

O

Pkt

Seq

#

E

O

M

S

O

M

Msg TypeIC

PEC

Command Code =

MCTP = 0Fh
Byte Count

Source Slave

Address 10Byte 1 >

Byte 5 >

Byte 9 >

Byte N >

+0 +1 +2 +3

Message

Header

Message

Data
Message Integrity Check

Destination

Endpoint ID

Figure 4.5. MCTP over SMBus Packet Format

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 35

Table 4.8. SMBus IP Interface Signal Description

Signal Name Width Direction Description

Clock and Reset

clk_i 1 input system clock

rst_n_i 1 input System reset. The reset assertion can be asynchronous but
reset negation should be synchronous. When asserted,
output ports and registers are forced to their reset values.

AHB-Lite Bus

ahbl_hsel_slv_i 1 input AHBL Select signal

Indicates that the slave device is selected and a data
transfer is required.

ahbl_haddr_slv_i 32 input The system address bus.

ahbl_hburst_slv_i 3 input 3'b000: SINGLE burst 3'b001: INCR Incrementin gburst of
undefined lengh (NOT supported) 3'b010: WRAP4 4-bit
wrapping burst 3'b011: INCR4 4-bit incrementing burt
4'b100: WRAP8 8-bit wrapping burst 3'b101: INCR8 8-bit
incrementing burst 8'b110: WRAP16 16-bit wrapping burst
3'b111: INCR16 16-bit incrementing burst

ahbl_hprot_slv_i 4 input ahbl_hprot_slv_i [0] :1'b0 - opcode fetch; 1'b1 - data access
ahbl_hprot_slv_i [1]: 1'b0 - user access; 1'b1 - privileged
access ahbl_hprot_slv_i [2]: 1'b0 - non-bufferable, 1'b1 -
bufferable ahbl_hprot_slv_i [3]: 1'b0 - non-cacheable; 1'b1
- cacheable

ahbl_hsize_slv_i 3 input 3'b000: 1 byte 3'b001: 2 bytes 3'b010: 4 bytes

ahbl_htrans_slv_i 2 input Indicates the transfer type of the current transfer. This can
be: 2’b00: IDLE 2’b01: BUSY 2’b10: NONSEQUENTIAL 2’b11:
SEQUENTIAL

ahbl_hwdata_slv_i 32 input The write data bus

ahbl_hwrite_slv_i 1 input When HIGH, this signal indicates a write transfer and when
LOW a read transfer.

ahbl_hready_slv_i 1 input This signal should come from AHBL Interconnect. When set
to 1, this indicates the previous transfer is complete.

ahbl_hrdata_slv_o 32 output The read data bus

ahbl_hreadyout_slv_o 1 output When HIGH, this signal indicates that a transfer has finished
on the bus. This signal can be driven LOW to extend a
transfer.

ahbl_hresp_slv_o 1 output When LOW, this signal indicates that the transfer status is
OKAY. When HIGH, it indicates that the transfer status is
ERROR.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 36

4.3.1. SMBus Functional Description

The SMBus interface is connected to the external bus through SDA/SCL signals. It connects to the Master Controller through
P1 and to the Slave Controller through P0. Because Master Controller and Slave Controller share the same interface, a
switch between these two controllers is required. The switch is implemented in the SMBus interface through the following
method. If the Master Controller does not initiate transfer, P0 is routed to SMBus interface and P1 is switched of.
Otherwise, P1 is routed to the SMBus interface, and P0 is switched off.

The Master Controller can initiate SMBus transfer to access other SMBus Slaves. The MCTP transfer is also controlled by this
Master Controller logic. The Master Controller supports multi-master on one bus simultaneously.

The SMBus IP Core functional block diagram is shown in Figure 4.6.

sda_io

SMBus Interface

P0 P1

Register File
256 x 32 Bits

TX_FIFORX_FIFO

Slave Controller

Register

Master Controller

Register

S00 S01 S02

AHB-Lite Interface

scl_io

smbalert_n_o

rst_n_i

clk_i

AHB-Lite

AHBL

AHBL

AHBL

select
mux

Figure 4.6. SMBus IP Core Functional Block Diagram

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 37

Table 4.9. SMBus Register Map Details

Offset Register Name Access Reset Description

0x0 RD_DATA_REG RO Not guaranteed Read data register

0x4 WR_DATA_REG WO Not guaranteed Write data register

0x8 SLVADR_L_REG RW [7] RSVD

[6:0] I2C Slave Address[6:0]

Slave address lower register, same
as I2C

Slave address attribute

0xC CONTROL_REG RW [7:5] RSVD

[4:1] 0

[0] Addressing Mode in

Control register

7:5: RSVD

4: nack_data

3: nack_addr

2: reset

1: clk_stretch_en

0: addr_10bit_en

0x10 TGT_BYTE_CNT_REG RW 8’h00 Target byte count register

0x14 INT_STATUS1_REG RW1C 8’h00 Interrupt status first register

7: tr_cmp_int

6: stop_det_int

5: tx_fifo_full_int

4: tx_fifo_aempty_int

3: tx_fifo_empty_int

2: rx_fifo_full_int

1: rx_fifo_afull_int

0: rx_fifo_ready_int

0x18 INT_ENABLE1_REG RW 8’h00 Interrupt enable register

7: tr_cmp_int

6: stop_det_int

5: tx_fifo_full_en

4: tx_fifo_aempty_en

3: tx_fifo_empty_en

2: rx_fifo_full_en

1: rx_fifo_afull_en

0: rx_fifo_ready_en

0x1c INT_SET1_REG WO 8’h00 Interrupt set first register

7: tr_cmp_set

6: stop_det_set

5: tx_fifo_full_set

4: tx_fifo_aempty_set

3: tx_fifo_empty_set

2: rx_fifo_full_set

1 :rx_fifo_afull_set

0: rx_fifo_ready_set

0x20 INT_STATUS2_REG RW 8’h00 Interrupt status second register

7:3 reserved

2: external SMBus Master access
slave default address(7’h61)

1: stop_err_int

0: start_err_int

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 38

Offset Register Name Access Reset Description

0x24 INT_ENABLE2_REG RW [7:2] RSVD

[1:0] 2’b00

Interrupt enable second register

7: 2 reserved

1: stop_err_en

0: start_err_en

0x28 INT_SET2_REG WO [7:2] RSVD

[1:0] 2’b00

Interrupt set second register

7: 2 reserved

1: stop_err_set

0: start_err_set

0x2c FIFO_STATUS_REG RO [7:6] RSVD

[5:0] 6’b011001

FIFO status register

7: 6 Reserved

5: tx_fifo_full

4: tx_fifo_aempty

3: tx_fifo_empty

2: rx_fifo_full

1: rx_fifo_afull

0: rx_fifo_empty

0x30 SMB_CONTROL_REG RW [7:1] RSVD

[0] 1’b0

SMBus control and status register

[7:1] RSVD

[0] smb_alert: Transmits the alert
interrupt to SMBus Master

1’b0 – No interrupt to Master

1’b1 – SMBus Slave sends alert
interrupt to Master

0x34 to 0x3c Reserved RSVD RSVD Reserved

Write access is ignored and 0 is
returned on read access.

4.3.2. SMBus Program Flow

The SMBus mailbox IP is used as SMBus Master and SMBus Slave simultaneously. However, the SMBus Master function can
also be disabled by unchecking Enable Master Function attribute box when configuring the IP in the Lattice Propel Builder
software.

If both SMBus Master and SMBus Slave are enabled, when SMBus Master initiates a transfer, SMBus Slave logic halts and it
cannot receive external master’s messages. When SMBus Master logic halts, SMBus Slave logic wakes up and waits for
external master’s messages. The SMBus mailbox IP needs initialization for both SMBus Master and SMBus Slave controller
logics before normal operation.

4.3.3. SMBus Slave Controller Initialization Flow

To perform initialization, load the appropriate registers of the Slave Controller namely:

 SLAVE_ADDRL_REG, SLAVE_ADDRH_REG – This step is optional. In most cases, the initial value set in I2C Slave
Addresses attribute of the user interface does not need to be changed. Read access to the address by the external
SMBus Master is routed to the Register File, while write access to the address is routed to the internal RX_FIFO.

 CONTROL_REG

 TGT_BYTE_CNT_REG – It is recommended to set this if the size of the data is known. Set this to 8'h00 if the number of
bytes to transfer is not known, that is receiving unknown amount of data.

 INT_ENABLE1_REG – It is recommended to enable only the following interrupts when receiving commands from
master.
Transfer Complete Interrupt – If the size of data is known
Receive FIFO Data Interrupt – If the size of data is unknown

 INT_ENABLE2_REG – It is recommended to enable both error interrupts

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 39

4.3.4. SMBus Master Initialization

Write the appropriate data to the prescale register based on the frequency of SCL through the AHB-Lite bus S02.The SCL
frequency meets the equation: 5 × SCL frequency = clk_i / (PRERhi<<8 + PRERlo).

4.3.5. SMBus Slave Controller Operation Flow

This section describes the data transfer process in response to the read request of the external SMBus Master. It is assumed
that the amount of data to send is known.

To perform data transfer in response to read request of SMBus Master:

1. Write data to WR_DATA_REG, amounting to <= FIFO Depth.

2. Enable only Transfer Complete Interrupt if transmit data is > FIFO Depth.

3. Enable TX FIFO Almost Empty interrupt if there are no other data to transfer. Otherwise, proceed to step 8.

4. Wait for TX FIFO Almost Empty Interrupt.

If polling mode is desired, read INT_STATUS1_REG until tx_fifo_aempty_int asserts.

If interrupt mode is desired, wait for the interrupt signal to assert.

Read INT_STATUS1_REG and check that tx_fifo_aempt_int is asserted.

Read INT_STATUS2_REG to make sure that no error occurred.

Clear TX FIFO Almost Empty Interrupt. It is also acceptable to clear all interrupts.

5. Write data byte to WR_DATA_REG, amounting to less than or equal to (FIFO Depth - TX FIFO Almost Empty Setting).

6. If there are remaining data to transfer, go back to Step 3, otherwise, disable TX FIFO Almost Empty Interrupt.

7. Wait for Transfer Complete Interrupt.

If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts.

If interrupt mode is desired, wait for interrupt signal to assert.

Read INT_STATUS1_REG and check if tr_cmp_int is asserted.

Read INT_STATUS2_REG to make sure that no error occurred.

8. Clear all interrupts.

4.3.6. SMBus Master Controller Operation Flow

In the SMBus Master program flow, the Master Controller is used in polling mode. The polling mode is the same as the
interrupt mode. However, the polling mode needs to poll the SR bit 0 instead of interrupted by int_o to check status. In the
polling mode, set the CTR to 0x80.

4.3.7. Write Data to SMBus Slave

To write date to SMBus Slave:
1. Write 0x80 to the control register (CTR) to enable the SMBus Controller through the AHB-Lite bus. For enable interrupt,

the write data is 0xC0.

2. Read the status register (SR) through the AHB-Lite bus until all bits of the status register is 0.

3. Write the SMBus Slave address and write bit to the transmit register (TXR) through the AHB-Lite bus.

4. Write 0x90 to the command register (CR) through the AHB-Lite bus to start the SMBus write operation.

5. When using polling mode, read the status register (SR) until bit 0 of the status register is set and check if other bits
except bit 6 are 0s.

When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are 0s.

Both modes need to write 0x1 to CR to clear bit 0 of SR. If other bits except bit 0 and bit 6 are not 0s, there is an error.
Write 0x5 to CR to clear SR and go back to step 2.

6. Write the byte which is sent to the SMBus Slave to the transmit register (TXR) through the AHB-Lite bus.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 40

7. Write 0x10 to the CR through the AHB-Lite bus to set SMBus write operation.

8. When using polling mode, read the status register (SR) until bit 0 of the status register is set and check if other bits
except bit 6 are 0s.

When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are 0s.

Both modes need to write 0x1 to CR to clear bit 0 of SR. If other bits except bit 0 and bit 6 are not 0s, there is an error.
Write 0x5 to CR to clear SR and go back to step 2. If there is no error, another data needs to be written.

Go back to step 6.

9. When all the bytes are sent, write 0x40 to the command register (CR) through the AHB-Lite bus to stop the SMBus write
operation.

10. When using polling mode, read the status register (SR) until bit 0 of the status register is set and check if other bits
except bit 6 are 0s. Bit6 is set when another master uses the bus at this time. Otherwise it also should be 0.

4.3.8. Read Data from SMBus Slave

To read data from SMBus Slave:

1. Write 0x80 to the control register (CTR) to enable the SMBus Controller through the AHB-Lite bus. If enable interrupt,
the write data is 0xC0.

2. Read the status register (SR) through the AHB-Lite bus until all bits of the status register is 0s.

3. Write the SMBus Slave address and the read bit to the transmit register (TXR) through the AHB-Lite bus.

4. Write 0x90 to the command register (CR) through the AHB-Lite bus to start the SMBus read operation.

5. When using polling mode, read the status register (SR) until bit 0 is set and check if other bits except bit 6 are 0s.

When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are 0s.

Both modes need to write 0x1 to CR to clear bit 0 of SR. If other bits except bit 0 and bit 6 are not 0s, there is an error.
Write 0x5 to CR to clear SR and go back to step 2.

6. Write 0x20 to command register (CR) through the AHB-Lite bus to read data from the slave. If it is the last byte to read,
write 0x28 to command register (CR) to NACK last byte.

7. When using polling mode, read the status register (SR) until bit 0 is set and check if other bits except bit 6 are 0s.

When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are 0s.

Both modes need to write 0x1 to CR to clear bit 0 of SR. If other bits except bit 0 and bit 6 are not 0s, there is an error.
Write 0x5 to CR to clear SR and go back to step 2.

8. Read data from the receive register (RXR) through the AHB-Lite bus. If there is no error and another data needs to be
read, go back to step 6.

9. When the read operation is finished, write 0x40 to the command register (CR) through the AHB-Lite bus to stop the
SMBus read operation.

10. When using polling mode, read the status register (SR) until bit 0 is set and check if other bits, except bit 6, are 0s. Bit 6
is set when other master use the bus at this time, otherwise it also should be 0.

When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are 0s.

Both modes need to write 0x1 to CR to clear bit 0 of SR. If other bits except bit 0 and bit 6 are not 0s, there is an error.
Write 0x5 to CR to clear SR and go back to step 9.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 41

4.4. PCIe Subsystem IP
The PCIe subsystem is built by the PCIe Endpoint IP configured with DMA, two AHBL Master interfaces, and one APB
interface. The IP also has the Ingress RAM and the Egress RAM.

At the top level of this IP, the following set of signals are present.

 PCIe interface signals and status signals

 APB slave interface for controlling the PCIe register interface

 Two AHBL Slave Ports (S1) for the Ingress RAM and Egress RAM data/configuration

 Two AXI Stream Ports (AXI master and AXI slave)

Table 4.10. PCIe IP Signal Description

Signal Name Width Direction Description

rxp_i 1 input Differential receive serial signal, RX+

rxn_i 1 input Differential receive serial signal, RX-

txp_o 1 output Differential transmit serial signal, TX+

txn_o 1 output Differential transmit serial signal, TX-

clk_125 1 input User clock 125 MHz

refclkp_i 1 input Differential reference clock, CLK+ (100 MHz)

refclkn_i 1 input Differential reference clock, CLK- (100 MHz)

perst_n_i 1 input PCI Express fundamental reset active-low asynchronous assert,
synchronous de-assert reset to the Link Layer, PHY, and Soft Logic
blocks.

refret_i 1 input 1’b0

rext_i 1 input 1’b0

usr_rst_n 1 input System reset. The reset assertion can be asynchronous but reset
negation should be synchronous. When asserted, output ports and
registers are forced to their reset values.

pll_lock 1 output Pll_lock output along with reset

clk_sel, 1 output 1'b1; For END_POINT

pcie_sel, 1 output 1'b0; For END_POINT

pcie_sw1_pd 1 output 1’b0

pcie_sw2_pd 1 output 1’b0

linkup_done 1 output PCIe link up

clock_flag 1 output Clock flag reserved

dma_done_o 1 output This signal indicates DMA completion

ahbl_s1_clk_i 1 input Clock for AHB transactions

ahbl_s1_rstn_i 1 input Reset for AHB transactions.

AHB-Lite Bus (Egress)

ahbl_eg_s1_select_i 1 input AHBL Select signal

This signal indicates that the slave device is selected and a data transfer
is required.

ahbl_eg_s1_address_i 32 input The system address bus.

ahbl_eg_s1_burst_i 3 input 3'b000: SINGLE Single burst

3'b001: INCR Incrementing burst of undefined length (NOT supported)
3'b010: WRAP4 4-bit wrapping burst

3'b011: INCR4 4-bit incrementing burst

4'b100: WRAP8 8-bit wrapping burst

3'b101: INCR8 8-bit incrementing burst

8'b110: WRAP16 16-bit wrapping burst

3'b111: INCR16 16-bit incrementing burst

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 42

Signal Name Width Direction Description

ahbl_eg_s1_prot_i 4 input ahbl_hprot_slv_i [0] :1'b0 - opcode fetch; 1'b1 - data access
ahbl_hprot_slv_i [1]: 1'b0 - user access; 1'b1 - privileged access
ahbl_hprot_slv_i [2]: 1'b0 - non-bufferable, 1'b1 - bufferable
ahbl_hprot_slv_i [3]: 1'b0 - non-cacheable; 1'b1 - cacheable

ahbl_eg_s1_size_i 3 input 3'b000: 1 byte

3'b001: 2 bytes

3'b010: 4 bytes

ahbl_eg_s1_mastlock_i 1 input When HIGH, this signal indicates that the current transfer is part of a
locked sequence. It has the same timing as the address and control
signals.

ahbl_eg_s1_trans_i 2 input This signal indicates the transfer type of the current transfer. This can
be:

2’b00: IDLE

2’b01: BUSY

2’b10: NONSEQUENTIAL

2’b11: SEQUENTIAL

ahbl_eg_s1_wdata_i 32 input The write data bus

ahbl_eg_s1_write_i 1 input When HIGH, this signal indicates a write transfer and when LOW a read
transfer.

ahbl_eg_s1_ready_o 1 output This signal indicates whether slave is ready or not. When set to 1, this
indicates slave is ready.

ahbl_eg_s1_rdata_o 32 output The read data bus

ahbl_eg_s1_resp_o 1 output When LOW, this signal indicates that the transfer status is OKAY. When
HIGH, it indicates that the transfer status is ERROR.

AHB-Lite Bus (Ingress)

ahbl_ing_s1_select_i 1 input AHBL select signal

This signal indicates that the slave device is selected and a data transfer
is required.

ahbl_ing_s1_address_i 32 input The system address bus.

ahbl_ing_s1_burst_i 3 input 3'b000: SINGLE Single burst

3'b001: INCR Incrementing burst of undefined length (NOT supported)
3'b010: WRAP4 4-bit wrapping burst

3'b011: INCR4 4-bit incrementing burst

4'b100: WRAP8 8-bit wrapping burst

3'b101: INCR8 8-bit incrementing burst

8'b110: WRAP16 16-bit wrapping burst

3'b111: INCR16 16-bit incrementing burst

ahbl_ing_s1_prot_i 4 input ahbl_hprot_slv_i [0] :1'b0 - opcode fetch; 1'b1 - data access
ahbl_hprot_slv_i [1]: 1'b0 - user access; 1'b1 - privileged access
ahbl_hprot_slv_i [2]: 1'b0 - non-bufferable, 1'b1 - bufferable
ahbl_hprot_slv_i [3]: 1'b0 - non-cacheable; 1'b1 - cacheable

ahbl_ing_s1_size_i 3 input 3'b000: 1 byte

3'b001: 2 bytes

3'b010: 4 bytes

ahbl_ing_s1_mastlock_i 1 input When HIGH, this signal indicates that the current transfer is part of a
locked sequence. It has the same timing as the address and control
signals.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 43

Signal Name Width Direction Description

ahbl_ing_s1_trans_i 2 input This signal indicates the transfer type of the current transfer. This can
be:

2’b00: IDLE

2’b01: BUSY

2’b10: NONSEQUENTIAL

2’b11: SEQUENTIAL

ahbl_ing_s1_wdata_i 32 input The write data bus

ahbl_ing_s1_write_i 1 input When HIGH, this signal indicates a write transfer and when LOW a read
transfer.

ahbl_ing_s1_ready_o 1 output This signal indicates whether slave is ready or not. When set to 1, this
indicates slave is ready.

ahbl_ing_s1_rdata_o 32 output The read data bus

ahbl_ing_s1_resp_o 1 output When LOW, this signal indicates that the transfer status is OKAY. When
HIGH, it indicates that the transfer status is ERROR.

APB-Interface

apb_s_clk_i 1 input Clock for apb transactions

apb_s_rstn_i 1 input Reset for apb transactions.

apb_s_sel_i 1 input AHBL select signal

Indicates that the slave device is selected and a data transfer is
required.

apb_s_addr_i 32 input The system address bus.

apb_s_enable_i 1 input Enable

This signal indicates the second and subsequent cycles of an APB
transfer

apb_s_wdata_i 32 input The write data bus

apb_s_write_i 1 input When HIGH, this signal indicates a write transfer and when LOW a read
transfer.

apb_s_ready_o 1 output This signal indicates whether slave is ready or not. When set to 1, this
indicates slave is ready.

apb_s_rdata_o 32 output The read data bus

apb_s_slverr_o 1 output When LOW, this signal indicates that the transfer status is OKAY. When
HIGH, it indicates that the transfer status is ERROR.

AXI Interface

axi_clk_i 1 input Clock for AXI transactions.

axi_rstn_i 1 input Reset for AXI transactions.

s_axis_tdata_i 128 input Data bus.

s_axis_tvalid_i 1 input When this signal is HIGH, the data is valid.

s_axis_tready_o 1 output Slave is ready if this signal is HIGH.

m_axis_tdata_o 128 output Data bus.

m_axis_tvalid_o 1 output When this signal is HIGH, the data is valid.

m_axis_tready_i 1 input Indicates slave is ready.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 44

Table 4.11. Attribute Summary

Attribute Values Description

PCIe Device Type (not connected internally) End port PCIe acts as end port

SIM 0

1

For synthesis

For simulation

DATA interface with ip (not connected internally) TLP interface PCIe uses TLP interface

TARGET LINK SPEEED (not connected internally) 2.5 G PCIe with Gen 1

Main clock frequency (not connected internally) 125 MHz PCIe with 125 MHz clock

FPGA_VERSION 32 bit value in hex FPGA version should be given

ING_S0_BASE_ADDR 32 bit value in hex Default value = 32'h00190000

ING_S1_BASE_ADDR 32 bit value in hex Default value = 32'h001A0000

EG_S0_BASE_ADDR 32 bit value in hex Default value = 32'h001B0000

EG_S1_BASE_ADDR 32 bit value in hex Default value = 32'h001C0000

4.5. Reset Sync
The Reset Sync module is used to synchronize the external reset coming to the FPGA using the debounce logic. It has one
parameter to select if the module is used in simulation or in synthesis.

Table 4.12. Reset Sync IP Signal Description

Signal Name Width Direction Description

clk 1 input Clock signal

pb_in_n 1 input Signal to be debounced

pb_out 1 output Debounced signal

Table 4.13. Attribute Summary

Attribute Values Description

SIM 0

1

For synthesis

For simulation

4.6. OSC for CRE
The oscillator for CRE is used for generating the design clock (75 MHz) and the CRE clocks, which are connected to CRE IP.

Table 4.14. OSC for CRE IP Signal Description

Signal Name Width Direction Description

hf_out_en_i 1 input Enable port for hf_clock_out_o.

sedc_rst_n_i 1 input Reset port for SEDC.

hf_clk_out_o 1 output High frequency clock output, enabled by HFCLK Enable and
controlled by HFCLK Divider

cre_clk_o 1 output CRE block clock output, controlled by CRECLK Enable.

cfg_clk_o 1 output Configuration clock output, enabled by SEDCLK Enable and
controlled by SEDCLK Divider.

Table 4.15. Attribute Summary

Attribute Values Description

Fixed Frequency 75 MHz Frequency is fixed at 75Mhz for this release

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 45

5. Detailed Description of Crypto Operations
Data flow direction can be from PCIe to UART or UART to PCIe.

5.1. AES-256 CBC Decryption (PCIe to UART)

Host PC

AHBL Interconnect of Application CPU

PCIe+DMA
x1 End Point

Ingress
Data
RAM

S1

S0

Egress
Data
RAM

S0

S1

UART
Controller

SMBus Slave
Controller

S

APB Interconnect

Customer
PLD

AHBL2APB

SS

M M

AES-256 CBC
Decryption

S

Security CPU
RISC-V

Register Interface

Application
CPU

RISC-V

M M

M M

S1 S0

Instruction
RAM

S S

Instruction
RAM

S S

Crypto 384 Block

Interrupt

Interrupt

AXI-4 Stream

AXI-4 Stream

Figure 5.1. AES-256 CBC Decryption (PCIe to UART)

Input values to AES IP are initialization vector (128 bit), key (256 bit), and plain text (length=L). Output value is cipher text
(length=L).

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 46

5.1.1. DMA Read

The following describes the AES-256 CBC Decryption (PCIe to UART) process:

1. Through SMBus, the Application CPU is directed to perform AES-256 CBC Decryption mode. 256 bit key, 128 bit
initialization vector comes through SMBus to the Application CPU.

2. The Application CPU writes the mode register (0x002D_3FFC) with value 0x40 for AES-256 bit CBC Decryption and
register address 0x002D_3FF8 with 0x1 for 256 bit key support.

3. The Application CPU writes the 256 bit key required for the operation in the BUF (starting address 0x2D_0180) and 128
bit initialization vector into BUF (starting address 0x2D_01B0).

4. The Application CPU instructs the Host PC to transfer data required for encryption through PCIe and then raises
interrupt for the Security CPU (writes ‘1’ to address 0x2C_0014).

5. The Security CPU performs checks for the interrupt and starts reading mode register to get the operation that needs to
be performed.

The Host CPU should check register continuously at (@0x00180030). If this is 1, the CPU starts the DMA process.

The DMA_READ process is performed to send data into FPGA.

The following describes the DMA_READ (PC to FPGA) process:
1. Descriptor count is obtained as input from the user.

2. Descriptor data (requestor_id, source address, destination address, descriptor length) is written to the system memory
starting from (@0x00181000).

3. DATA_size is obtained as input from the user (bytes in hex). This DATA_size should not be more than (descriptor_count ×
512 bytes). If the user enters more DATA_size than (descriptor_count × 512 bytes), the CPU considers only
(descriptor_count × 512 bytes) data.

Note: Here, a maximum of 60 kB (120 descriptors) can be written using the DMA Read operation at once. If more data is
required, the DMA Read operation should be performed again.

4. The Host CPU should write descriptor count in register_space at (@0x00180008).

5. (DATA_size divided by 16) is written in register_space at (@0x00180038) by the Host CPU.

Note: Steps 2, 3, and 4 does not matter.

6. After the completion of steps 2, 3, 4, 5 and 6, using Host CPU, write 0x02 to the register_space address (@0x0018000C)
to start DMA_READ.

7. PCIe Endpoint (by itself) starts DMA operation and serves the data.

8. After the data is obtained by the PCIe and sent to application (Ingress RAM), the Host CPU reads at (@0x00180000) if it
comes as 0xC0 (indicates completion of DMA_READ).

9. The process continues or an error is printed. The tenth point should be implemented in the same way as DMA status is
implemented in previous design.

10. AES operation takes place with help of the internal CPU (security and application) and data is written in EGRESS_RAM.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 47

5.1.2. Application CPU Process

The following describes the process on the Application CPU side:

1. Before starting the process, wait for PCIe to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

2. When PCIe provides linkup, the Application CPU writes x01 at (@0x000CA000).

3. Write 0x1 into the register @ 0x1AF008 to indicate the decryption operation.

4. The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00) and sets servo_status to
SERVO_IN_SERVICE (0x01).

5. The Application CPU writes 0x1 to register @0x002C0004 to enable its interrupt.

6. The Application CPU writes key (@0x002D0180), Initial Vector (@0x002D01B0), and mode of encryption
(@0x002D3FFC) to the Register Interface.

Note: These information comes from the SMBus.

7. The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).

8. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

9. If INT_STATUS_APP is 1, the Application CPU instructs the Ingress RAM port to send data to AESIP. Here, Ingress RAM
waits if the data is received from PCIe. If the data is received from PCIe, then until this step happens, the data is not
sent to AES Write 0x1AF00C address with 0x1 value.

10. The Application CPU clears its interrupt by writing 1 to INT_STATUS_APP (@0x002C000).

11. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

12. If INT_STATUS_APP is 1, the Application CPU starts Egress RAM port to take the output decrypted data into it.

13. Write 0x1Cf01C to 0x1 for changing the Port B of RAM from AHB to AXI.

14. Write 0x1Cf024 to 0x1 for making Port B of RAM to be used for writing.

15. Write 0x1CF00C to 0x1 for taking data into Egress RAM.

16. As the Security CPU configured the IP, it continues to operate the data and provide output data.

17. ORAN Security Enclave AES IP decrypts the data and sends output to Egress RAM port.

18. Read 0x1CF014 to get the DMA Read size, that is, ingress of ‘16 bytes (no .of 128 bit blocks)’ sent from the PCIe to FPGA
for Decryption in single iteration.

19. Read 0x1CF018 until it gets the value 0x1. This one is to understand that the complete decrypted data is stored in the
Egress RAM and ready to read out from UART.

20. Now Disable the Ingress RAM for sending data to AES.

21. Write 0x1AF00C address with 0x0 value.

22. Set Interrupt to the Security CPU.

23. To read from Egress RAM through UART, Port B of RAM must be changed to AHBL reading.

24. Write 0x1Cf01C to 0x0 for changing the Port B of RAM from AXI to AHBL.

25. Write 0x1Cf024 to 0x0 for making Port B of RAM to be used for reading

26. Starting from 0x1C0000, read out the data from UART until the complete encrypted data comes out.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 48

5.1.3. Security CPU Process

The following describes the process on the Security CPU side:

1. In the Security CPU side, write int_enable_security (@0x002E0010) to ‘0x01’ and then read for INT_STATUS_SECURITY
(@0x002E00C) to become 1.

2. If INT_STATUS_SECURITY is 1, the Security CPU reads servo status (@0x002F0278) mode of encryption (@0x002F3FFC).

3. The Security CPU clears its interrupt by writing 1 to INT_STATUS_SECURITY (@0x002E00C).

4. The Security CPU reads for mode (@0x2F3FFC) and servo_status (@0x2F0278).

5. If servo_status reads SERVO_IN_SERVICE (0x01) the Security CPU writes servo_status to SERVO_BUSY (0x02).

6. Based on mode of encryption, the Security CPU reads key (@0x002F0180) and initial vector (@0x002F01B0) from the
Register Interface.

7. The Security CPU writes key (@0x00300030), initial vector (@0x00300050) to OSE.

8. The Security CPU configures the OSE with AES_256_DECRYPT by writing 0x00801004 into the register CONFIG (@
0x0000000c).

9. The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

10. The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

11. If there is interrupt for AES, the Security CPU configures the OSE for the second time .

12. Write 0x00801104 into register CONFIG (@ 0x0000000c).

13. The Security CPU also clear AES interrupt by writing 1 to AES_INT_STATUS_CLR (@0x00300060) and it writes 0.

14. The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

15. Decryption continues with the data going from the Ingress RAM to AES through AXI stream.

16. The decrypted data goes to the Egress RAM through AXI stream.

17. The Security CPU waits for the interrupt set by the Application CPU. Once the interrupt is received, it clears the Security
CPU interrupt as well as the AES interrupt. (Registers are previously provided.)

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 49

5.2. AES-256 CBC Encryption (UART to PCIe)

Host PC

AHBL Interconnect of Application CPU

PCIe+DMA
x1 End Point

Ingress
Data
RAM

S1

S0

Egress
Data
RAM

S0

S1

UART
Controller

SMBus Slave
Controller

S

APB Interconnect

Customer
PLD

AHBL2APB

SS

M M

AES-256 CBC
Encryption

S

Security CPU
RISC-V

Register Interface

Application
CPU

RISC-V

M M

M M

S1 S0

Instruction
RAM

S S

Instruction
RAM

S S

Crypto 384 Block

Interrupt

Interrupt

AXI-4 Stream

AXI-4 Stream

CRE

HSP

AHBL2
LMMI

S

Crypto 256 Block

Figure 5.2. AES-256 CBC Encryption (UART to PCIe)

The input plain text is written to the Ingress RAM starting from the base address 0x1A0000.Once written, Port B is switched
to AXI stream reading and the AES is performed similar to the AES-256 CBC Decryption (PCIe to UART) section. Once the
complete data is stored into Egress RAM, PCIe DMA write operation is performed to get the encrypted data out.

The Host CPU should check register continuously at (@0x00180030). If this is 1, the CPU should start DMA process.

The DMA_WRITE process is performed to acquire data from the FPGA.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 50

5.2.1. DMA Write

The following describes the DMA_WRITE (FPGA to PC) process:

1. The Host CPU reads from register_space address (0x00180034) until it becomes 1. This indicates that the AES processed
data is entered into Egress RAM.

2. The Data size is read from register_space address (@0x00180050). The size represents no .of “128 bit” blocks of data.

3. This (Data size ×16) gives the total size in bytes. Based on this descriptor count is calculated and descriptors are formed.

4. Descriptor count = ((Data size ×16)/512) (this should be rounded to upper value.)

5. Descriptors data (requestor_id, source address, destination address, descriptor length) should be written to system
memory starting from (@0x00181000).

Note: Here, a maximum of 60 kB (120 descriptors) can be written using the DMA Read operation at once. If more data is
required, the DMA Write operation should be performed again.

6. The Host CPU writes descriptor count in register_space at (@0x00180008).

7. Write 0x01 to the register_space address (@0x0018000C) to start DMA_WRITE.

8. PCIe Endpoint (by itself) starts DMA operation and serves the data.

9. After the data is obtained by application (Egress RAM), the Host CPU reads at (@0x00180000) if it comes as 0x42
(indicates completion of DMA_WRITE).

10. The process continues or an error is printed. The tenth point should be implemented in the same way as they have
implemented DMA status in previous design.

11. AES operation takes place with the help of the internal CPUs (Security and Application) and data is written in
EGRESS_RAM.

5.2.2. Application CPU Process

The following describes the process on the Application CPU side:

1. Before starting the process, wait for PCIe to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

2. When PCIe provides linkup, the Application CPU writes x01 at (@0x000CA000).

3. Write 0x2 into the register @ 0x1AF008 to indicate the encryption operation.

4. DATA size is taken from UART in the form of ‘no of bytes’.

5. (DATA size/16) is written into Ingress RAM 0x1Af028.

6. (DATA size/16) is written into Egress RAM 0x1Cf028.

7. The input plain text Is written to the Ingress RAM starting from the base address 0x1A0000 based on data size. This data
should be taken from UART.

8. The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00) and sets servo_status to
SERVO_IN_SERVICE (0x01).

9. The Application CPU writes key (@0x002D0180), Initial Vector (@0x002D01B0) and mode of encryption
(@0x002D3FFC) to the Register Interface.

10. The Application CPU writes 0x1 to register @0x002C0004 to enable its interrupt.

Note: These information comes from the SMBus or key should be generated from CRE IP (procedure is given in Table 21
with Base Address 0x00100000 for CRE IP).

11. The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).

12. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

13. If INT_STATUS_APP is 1, the Application CPU instructs the Ingress RAM port to send data to AESIP, that is, start the
Ingress RAM.

14. Write 0x1Af01C to 0x1 for changing the Port B of RAM from AHB to AXI.

15. Write 0x1Af024 to 0x0 for making Port B of RAM to be used for reading.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 51

16. Write 0x1AF00C to 0x1 for taking data from the Ingress RAM.

17. The Application CPU clears its interrupt by writing 1 to INT_STATUS_APP (@0x002C000)

18. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

19. If INT_STATUS_APP is 1, the Application CPU starts Egress RAM port to take the output encrypted data into it.

20. Write 0x1Cf01C to 0x1 for changing the Port B of RAM from AHB to AXI.

21. Write 0x1Cf024 to 0x1 for making Port B of RAM to be used for writing.

22. Write 0x1CF00C to 0x1 for taking data into Egress RAM.

23. While the Security CPU has configured the AES IP in update mode, it continues to encrypt the data and provide the
encrypted output data.

24. ORAN Security Enclave AES IP decrypts the data and sends output to Egress RAM port.

25. Read 0x1CF018 until it gets the value 0x1. This one is to understand that the complete decrypted data is stored in the
Egress RAM and ready to read out from UART.

26. Disable the Ingress RAM for sending data to AES.

27. Write 0x1AF00C address with 0x0 value.

28. Set Interrupt to the Security CPU.

5.2.3. Security CPU

The following describes the process on the Security CPU side:

1. In the Security CPU side, write int_enable_security (@0x002E0010) to ‘0x01’ and then read for INT_STATUS_SECURITY
(@0x002E00C) to become 1.

2. If INT_STATUS_SECURITY is 1, the Security CPU reads servo status (@0x002F0278) mode of encryption (@0x002F3FFC).

3. The Security CPU clears its interrupt by writing 1 to INT_STATUS_SECURITY (@0x002E00C).

4. The Security CPU reads for mode (@0x2F3FFC) and servo_status (@0x2F0278).

5. If servo_status reads SERVO_IN_SERVICE (0x01), the Security CPU writes servo_status to SERVO_BUSY (0x02).

6. Then based on mode of encryption, the Security CPU reads key (@0x002F0180) and initial vector (@0x002F01B0) from
the Register Interface.

7. The Security CPU writes key (@0x00300030), initial vector (@0x00300050) to OSE.

8. The Security CPU configures the OSE with AES_256_DECRYPT by writing 0x00801004 into register CONFIG (@
0x0000000c).

9. The Security CPU sets interrupt for Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

10. The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

11. If there is interrupt for AES, the Security CPU configure the OSE for the second time by writing 0x00801104 into register
CONFIG (@ 0x0000000c).

12. The Security CPU also clear AES interrupt by writing 1 to AES_INT_STATUS_CLR (@0x00300060) and it writes 0 .

13. The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

14. Decryption continues with the data going from the Ingress RAM to AES through AXI stream and the decrypted data goes
to the Egress RAM through AXI stream.

15. The Security CPU waits for the interrupt set by the Application CPU. Once interrupt is received, it clears the Security
CPU interrupt as well as the AES interrupt. (Registers are already given previously.)

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 52

5.3. AES-256 GCM Decryption (PCIe to UART)

Host PC

AHBL Interconnect of Application CPU

PCIe+DMA
x1 End Point

Ingress
Data
RAM

S1

S0

Egress
Data
RAM

S0

S1

UART
Controller

SMBUS Slave
Controller

S

APB Interconnect

Customer
PLD

AHBL2APB

SS

M M

AES-256 GCM
Decryption

S

Security CPU
RISC-V

Register Interface

Application
CPU

RISC-V

M M

M M

S1 S0

Instruction
RAM

S S

Instruction
RAM

S S

Crypto 384 Block

Interrupt

Interrupt

AXI-4 Stream

AXI-4 Stream

Figure 5.3. AES-256 GCM Decryption (PCIe to UART)

The Host CPU should check register continuously at (@0x00180030). If this is 1, the CPU should start DMA process.

The DMA_READ process is performed to send data to the FPGA.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 53

5.3.1. DMA Read

The following describes the DMA_READ (PC to FPGA) process:

1. Descriptor count should be taken as input from user.

2. Descriptor data (requestor_id,source address, destination address,descriptor length) should be written to system
memory starting from (@0x00181000).

3. DATA_size should be taken as input from user (bytes in hex). This DATA_size should not be more than (descriptor_count
× 512 bytes). If the user enters more DATA_size than (descriptor_count × 512bytes), the CPU considers only
(descriptor_count × 512 bytes) data.

4. Host CPU should write descriptor count in register_space at (@0x00180008).

Note: Here, a maximum of 60 kB (120 descriptors) can be written using the DMA Read operation at once. If more data is
required, the DMA Read operation should be performed again.

5. (DATA_size divided by 16) is written in register_space at (@0x00180038) by Host CPU.

6. If cipher text length is not a multiple of 128 bit then we have to write size of cipher text in bits in the register
(@0x00180070).

7. Steps 2, 3, and 4 sequence does not matter.

8. After completion of steps 2, 3, 4, 5, and 6 then by Host CPU write 0x02 to the register_space address (@0x0018000C) to
start DMA_READ.

9. After this PCIe Endpoint (by itself) starts DMA operation and serve the data.

10. After data is taken by PCIe and sent to application (Ingress RAM), Host CPU should read at (@0x00180000) if it comes as
0xC0 (indicates completion of DMA_READ).

11. The process continues or an error is printed. The tenth point should be implemented in the same way as they have
implemented DMA status in previous design.

12. Here, AES operation takes place with help of internal CPUs (Security and Application) and data is written in
EGRESS_RAM.

5.3.2. Application CPU Process

The following describes the process on the Application CPU side:

1. Before starting the process, wait for PCIe to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

2. When PCIe gives linkup, the Application CPU writes x01 at (@0x000CA000).

3. Write 0x1 into the register @ 0x1AF008 to indicate the decryption operation.

4. The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00) and sets servo_status to
SERVO_IN_SERVICE (0x01).

5. The Application CPU writes key (@0x002D0180), Initial Vector (@0x002D01B0)(96 BITS) and mode of encryption
(@0x002D3FFC) to the Register Interface.

6. The Application CPU writes AADITIONAL_DATA (@0x002D01E0) to the Register Interface.

7. The Application CPU writes 0x1 to register @0x002C0004 to enable its interrupt.

8. The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).

9. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

10. If INT_STATUS_APP is 1, the Application CPU tells Ingress RAM port to send data to OSE.

11. Here, Ingress RAM keeps on waiting if the data is not received from PCIe. If the data is received from PCIe already, then
until this step happens, data is not sent to AES Write 0x1AF00C address with 0x1 value.

12. Write 0x1Af01C to 0x1 for changing the Port B of Ingress RAM from AHB to AXI.

13. Write 0x1Af024 to 0x0 for making Port B of Ingress RAM to be used for reading.

14. The Application CPU clears its interrupt by writing 1 to INT_STATUS_APP (@0x002C000).

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 54

15. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

16. If INT_STATUS_APP is 1, the Application CPU start Egress RAM port to take the output data.

17. Write 0x1CF00C address with 0x1 value.

18. Write 0x1Cf01C to 0x1 for changing the Port B of Egress RAM from AHB to AXI.

19. Write 0x1Cf024 to 0x1 for making Port B of Egress RAM to be used for writing.

20. As the Security CPU has configured the IP, it continues to operate the data and give output data.

21. OSE encrypts the data and send output to Egress RAM port.

22. Read 0x1CF014 to get the DMA DATA size, that is, ingress of ‘16 bytes (no .of 128 bit blocks)’ sent from the PCIe to FPGA
for Decryption in single iteration.

23. The Application CPU writes length (AADITIONAL_DATA)||length(CIPHER_TEST) (@0x002D0210) to the Register
Interface.

length (AADITIONAL_DATA) =128 BITS (FIXED FOR NOW)

length (CIPHER_TEST) (@0x002D0210) = (DMA DATA size)*16*8.

Note: If cipher text length is not a multiple of 128 bit then we have to read the register (@0x000CA034) and pass as
length(CIPHER_TEST)

24. Read 0x1CF018 until it gets the value 0x1.This one is to understand that the complete decrypted data is stored in the
Egress RAM.

25. Disable the Ingress RAM from sending data to AES.

26. Write 0x1AF00C address with 0x0 value.

27. The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC(@0x002C0014).

28. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

29. If INT_STATUS_APP is 1, the Application CPU reads READ_TAG from the Register Interface (@0x002D0240).

30. The Application CPU sends READ_TAG to UART.

31. For reading from Egress RAM through UART, Port B of RAM must be changed to AHBL reading.

32. Write 0x1Cf01C to 0x0 for changing the Port B of RAM from AXI to AHBL.

33. Write 0x1Cf024 to 0x0 for making Port B of RAM to be used for reading

34. Starting from 0x1C0000, read out the data from UART until complete encrypted data came out.

35. Write 0x1CF00C address with 0x0 value to stop stream of Egress RAM.

5.3.3. Security CPU Process

The following describes the process on the Security CPU side:

1. In the Security CPU side write int_enable_security (@0x002E0010) to ‘0x01’ and then read for INT_STATUS_SECURITY
(@0x002E00C) to become 1.

2. If INT_STATUS_SECURITY is 1, the Security CPU reads servo status (@0x002F0278) mode of encryption (@0x002F3FFC).

3. The Security CPU clears its interrupt by writing 1 to INT_STATUS_SECURITY (@0x002E00C).

4. The Security CPU reads for mode (@0x2F3FFC) and servo_status (@0x2F0278).

5. If servo_status reads SERVO_IN_SERVICE (0x01), the Security CPU writes servo_status to SERVO_BUSY (0x02).

6. Based on the mode of encryption, the Security CPU reads key (@0x002F0180) and initial vector (@0x002F01B0) from
the Register Interface.

7. The Security CPU writes key (@0x00300030), initial vector (@0x00300050) to OSE.

8. The Security CPU configures the OSE with AES_256_GCM_DECRYPT by writing 0x00805005 into register CONFIG (@
0x0000000C).

9. The Security CPU gives start pulse to the AES GCM IP by writing 0x1 to register @0x00000008 with base address
0X00300000.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 55

10. The Security CPU waits for AES Interrupt rising edge on irq_o.

11. If there is interrupt for AES, the Security CPU configures the OSE for the second time with GCM_GHASH By writing
0x00805105 into register CONFIG (@ 0x0000000c).

12. The Security CPU reads ADDITIONAL_DATA (@0x002F01E0) from the Register Interface.

13. The Security CPU writes ADDITIONAL_DATA (@0x00300010) to OSE.

Note: AES IP is kept under AES GCM_GHASH mode until all the AAD data are sent.

14. The Security CPU gives start pulse to the AES GCM IP by writing 0x1 to register @0x00000008 with base address
0X00300000.

15. The Security CPU waits for AES Interrupt rising edge on irq_o.

16. The Security CPU configures the AES GCM IP with AES_256_GCM_DECRYPT_UPDATE mode by writing 0x00805205 into
CONFIG register (@ 0x0030000c).

17. The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

18. The Security CPU waits for AES Interrupt rising edge on irq_o.

19. The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

20. The Security CPU waits for interrupt by reading INT_STATUS_SEC (@0x002E00C).

21. If INT_STATUS_SEC is 1, the Security CPU configures the AES GCM IP in GCM_GHASH mode by writing 0x00805205 into
CONFIG register (@ 0x0030000c).

22. The Security CPU reads len (AADITIONAL_DATA)||len(CIPHER_TEST) (@0x002F0210) from the Register Interface.

23. The Security CPU writes len (AADITIONAL_DATA)||len(CIPHER_TEST) (@0x00300010) to OSE.

24. The Security CPU gives start pulse to the AES GCM IP by writing 0x1 to register @0x00000008 with base address
0X00300000.

25. The Security CPU waits for AES Interrupt rising edge on irq_o.

26. If there is interrupt for AES, the Security CPU configures the OSE with GCM_FINISH.

27. The Security CPU gives start pulse to the AES GCM IP by writing 0x1 to register @0x00000008 with base address
0X00300000.

28. The Security CPU waits for AES Interrupt rising edge on irq_o.

29. If there is interrupt for AES, the Security CPU reads READ_TAG (@0x00300020) from OSE.

30. The Security CPU writes READ_TAG (@0x002F0240) to the Register Interface.

31. The Security CPU sets interrupt for Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 56

5.4. AES-256 GCM Encryption (UART to PCIe)

Host PC

AHBL Interconnect of Application CPU

PCIe+DMA
x1 End Point

Ingress
Data
RAM

S1

S0

Egress
Data
RAM

S0

S1

UART
Controller

SMBUS Slave
Controller

S

APB Interconnect

Customer
PLD

AHBL2APB

SS

M M

AES-256 GCM
Encryption

S

Security CPU
RISC-V

Register Interface

Application
CPU

RISC-V

M M

M M

S1 S0

Instruction
RAM

S S

Instruction
RAM

S S

Crypto 384 Block

Interrupt

Interrupt

AXI-4 Stream

AXI-4 Stream

CRE

HSP

AHBL2
LMMI

S

Crypto 256 Block

Figure 5.4. AES-256 GCM Encryption (UART to PCIe)

The Host CPU should check register continuously at (@0x00180030). If this is 1, the CPU should start DMA process.

The DMA_WRITE process is performed to obtain data from the FPGA.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 57

5.4.1. DMA Write

The following describes the DMA_WRITE (FPGA to PC) process:
1. The Host CPU reads from the register_space address (0x00180034) until it becomes 1. This indicates that the AES

processed data is entered into the Egress RAM.

2. Data size is read from register_space address (@0x00180050). The size represents the number of 128 bit blocks of data.

3. This (Data size *16) gives the total size in bytes. Based on this, the descriptor count is calculated and descriptors are
formed.

4. Descriptor count = ((Data size *16)/512). This is rounded to the upper value.

5. Descriptor data (requestor_id, source address, destination address, descriptor length) is written to the system memory
starting from (@0x00181000).

6. The Host CPU writes the descriptor count in register_space at (@0x00180008).

Note: Here, a maximum of 60 kB (120 descriptors) can be written using the DMA Read operation at once. If more data is
required, the DMA Write operation should be performed again.

7. Write 0x01 to the register_space address (@0x0018000C) to start DMA_WRITE.

8. PCIe Endpoint (by itself) starts the DMA operation and serves the data.

9. After obtaining data from the application (Egress RAM), the Host CPU reads at (@0x00180000) if it comes as 0x42. This
indicates completion of DMA_WRITE.

10. The process continues or an error is printed. The tenth point should be implemented in the same way as they have
implemented DMA status in previous design.

11. AES operation takes place with help of internal CPUs (Security and Application) and data is written in EGRESS_RAM.

5.4.2. Application CPU Process

The following describes the process on the Application CPU side:

1. Before starting the process, wait for PCIe to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

2. When PCIe provides linkup, the Application CPU writes x01 at (@0x000CA000).

3. Write 0x2 into the register @ 0x1AF008 to indicate the Encryption operation.

4. DATA size is taken from UART in the form of ‘no of bytes’.

Note: Maximum DATA size currently supported in this case is up to 60 kB.

5. (DATA size/16) should be written into Ingress RAM 0x1Af028.

6. (DATA size/16) should be written into Egress RAM 0x1Cf028.

Note: These values should be rounded to upper value.

7. The input plain text is written to the Ingress RAM starting from the base address 0x1A0000 based upon data size. This
data should be taken from UART.

8. The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00) and sets servo_status to
SERVO_IN_SERVICE (0x01).

9. The Application CPU writes key (@0x002D0180), Initial Vector (@0x002D01B0), and mode of encryption
(@0x002D3FFC) to the Register Interface.

10. The Application CPU writes AADITIONAL_DATA (@0x002D01E0), len (AADITIONAL_DATA)||len(CIPHER_TEST)
(@0x002D0210) to the Register Interface.

Note: Additional data length and cipher text length should be in bits.

11. The Application CPU writes 0x1 to register @0x002C0004 to enable its interrupt.

12. The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).

13. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

14. If INT_STATUS_APP is 1, the Application CPU instructs the Ingress RAM port to send data to OSE.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 58

15. Write 0x1AF00C address with 0x1 value.

16. Write 0x1Af01C to 0x1 for changing the Port B of Ingress RAM from AHB to AXI.

17. Write 0x1Af024 to 0x0 for making Port B of Ingress RAM to be used for reading.

18. The Application CPU clears its interrupt by writing 1 to INT_STATUS_APP (@0x002C000)

19. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

20. If INT_STATUS_APP is 1, the Application CPU starts Egress RAM port to take the output data.

21. Write 0x1CF00C address with 0x1 value.

22. Write 0x1Cf01C to 0x1 for changing the Port B of Egress RAM from AHB to AXI.

23. Write 0x1Cf024 to 0x1 for making Port B of Egress RAM to be used for writing.

24. As the Security CPU has configured the AES IP in update mode, it continues to encrypt the data and provide the
encrypted output data.

25. OSE encrypts the data and sends output to Egress RAM port.

26. The Application CPU writes length (AADITIONAL_DATA)||length(CIPHER_TEST) (@0x002D0210) to the Register
Interface.

length (AADITIONAL_DATA) =128 BITS(FIXED FOR NOW)

length (CIPHER_TEST) (@0x002D0210) = (DATA size)*8.

27. Read 0x1CF018 until it gets the value 0x1. The completely decrypted data is stored in the Egress RAM.

28. If the condition is satisfied, the Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC
(@0x002C0014).

29. Disable the Ingress RAM from sending data to AES.

30. Write 0x1AF00C address with 0x0 value.

31. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

32. If INT_STATUS_APP is 1, the Application CPU reads READ_TAG from the Register Interface (@0x002D0240).

33. The Application CPU sends READ_TAG to UART.

34. Write 0x1CF00C address with 0x0 value to stop AXI stream of Egress RAM.

5.4.3. Security CPU Process

The following describes the process on the Security CPU side:

1. In the Security CPU side write int_enable_security (@0x002E0010) to ‘0x01’ and then read for INT_STATUS_SECURITY
(@0x002E00C) to become 1.

2. If INT_STATUS_SECURITY is 1, the Security CPU reads servo status (@0x002F0278) mode of encryption (@0x002F3FFC).

3. The Security CPU clears its interrupt by writing 1 to INT_STATUS_SECURITY (@0x002E00C).

4. The Security CPU reads for mode (@0x2F3FFC) and servo_status (@0x2F0278).

5. If servo_status reads SERVO_IN_SERVICE (0x01) the Security CPU writes servo_status to SERVO_BUSY (0x02).

6. Based on mode of encryption, the Security CPU reads key (@0x002F0180) and initial vector (@0x002F01B0) from the
Register Interface.

7. The Security CPU writes key (@0x00300030), initial vector (@0x00300050) to OSE.

8. The Security CPU configures the OSE with AES_256_GCM_ENCRYPT by writing 0x00805004 into register CONFIG (@
0x0000000C).

9. The Security CPU gives start by writing 0x1 @0x00000008.

10. The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

11. If there is interrupt for AES, the Security CPU configures the OSE for the second time with GCM_GHASH.

12. Write 0x00805104 into register CONFIG (@ 0x0000000c).

13. The Security CPU reads ADDITIONAL_DATA (@0x002F01E0) from the Register Interface.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 59

14. The Security CPU writes ADDITIONAL_DATA (@0x00300010) to OSE.

15. The Security CPU gives start by writing 0x1 @0x00000008.

16. The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

Note: AES IP is kept under AES GCM_GHASH mode until all the AAD data is sent.

17. If there is interrupt for AES, Security CPU also clears AES interrupt by writing 1 to AES_INT_STATUS_CLR (@0x00300060)
and it writes 0.

18. The Security CPU configures the OSE with AES_256_GCM_ENCRYPT_UPDATE by writing 0x00805204 into register
CONFIG (@ 0x0000000c).

19. The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

20. The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

21. If there is interrupt for AES, the Security CPU sets interrupt for Application CPU by writing 1 to INT_SET_APP
(@0x002E0008).

22. The Security CPU waits for interrupt by reading INT_STATUS_SEC (@0x002E00C).

23. If INT_STATUS_SEC is 1, the Security CPU configures the OSE with GCM_GHASH by writing 0x00805204 into register
CONFIG (@ 0x0000000c).

24. The CPU reads len (AADITIONAL_DATA)||len(CIPHER_TEST) (@0x002F0210) from the Register Interface.

25. The Security CPU writes len (AADITIONAL_DATA)||len(CIPHER_TEST) (@0x00300010) to OSE.

26. The Security CPU gives start by writing 0x1 @0x00000008.

27. The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

28. If there is interrupt for AES, the Security CPU configure the OSE with GCM_FINISH.

29. The Security CPU gives start by writing 0x1 @0x00000008.

30. The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

31. If there is interrupt for AES, the Security CPU reads READ_TAG (@0x00300020) from OSE.

32. The Security CPU writes READ_TAG (@0x002F01E0) to the Register Interface.

33. The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

34. The Security CPU also clear AES interrupt by writing 1 to AES_INT_STATUS_CLR (@0x00300060) and it writes 0.

35. The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 60

5.5. SHA384 Authentication (PCIe to UART)

Host PC

AHBL Interconnect of Application CPU

PCIe+DMA
x1 End Point

Ingress
Data
RAM

S1

S0

Egress
Data
RAM

S0

S1

UART
Controller

SMBUS Slave
Controller

S

APB Interconnect

Customer
PLD

AHBL2APB

SS

M M

AES-256 CBC
 Decryption

/SHA384

S

Security CPU
RISC-V

Register Interface

Application
CPU

RISC-V

M M

M M

S1 S0

Instruction
RAM

S S

Instruction
RAM

S S

Crypto 384 Block

Interrupt

Interrupt

AXI-4 Stream

AXI-4 Stream

Figure 5.5. SHA384 Authentication (PCIe to UART)

SHA384 Authentication can be done with the help of the Application CPU, Security CPU, PCIe Endpoint, Ingress RAM, Egress
RAM, Register Interface and SHA2 IP.

For this SHA Authentication, plain text is initially encrypted using AES-256-CBC mode in the Host PC and the encrypted data
is sent over the PCIe using DMA Read to the Ingress RAM. From here, data goes to AES CBC Decryption with the key and IV.
After decryption, the data is written to Egress RAM.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 61

Up to here, the flow is the same as the AES-256 CBC Decryption (PCIe to UART). After that, on this decrypted data SHA384
needs to be performed using the Application CPU, Security CPU, and Register Interface in the following way.

5.5.1. PCIe DMA Read

Similar to AES-256 CBC Decryption (PCIe to UART). In addition to that, SHA Data length(in bits) needs to be written into
0x180028 register along with AES size register(0x180038) which is in terms of 128 bit blocks.

5.5.2. Application CPU Process

The following describes the process on the Application CPU side:

1. Follow steps 1 to 17 in the AES-256 CBC Decryption (PCIe to UART) section. To check whether the data is ready and
Egress Port B must be switched to AHBL reading. It is same as Application CPU’s steps 1 to 17 in the AES-256 CBC
Decryption (PCIe to UART) section.

2. Write 0x1Cf01C to 0x0 for changing the Port B of Egress RAM from AXI to AHBL.

3. Write 0x1Cf024 to 0x0 for making Port B of Egress RAM to be used for reading

4. Application CPU writes to the mode register (address= 0x2D3FFC) of the Register Interface with the value 0x35 for
SHA384 message digest Authentication.

5. Application CPU writes to the SHA SOURCE register (address = 0x2D3FF4) with the value 0x00.

6. Application CPU writes to the int_enable_app (0x2C004) with 0x01.

7. Read 0xCA00C to know the SHA Data Length (in bits).

8. Write SHA Data Length to register 0x2D027C in the Register Interface so that the Security CPU also knows the size of
Plain Text data to be hashed.

9. The Application CPU writes 0x0 in ping and pong buffer ready registers.

10. The Application CPU reads the ping buffer ready from (0x2D0270) to know whether it is in LOW.

11. The Application CPU reads 1K block of data from Egress RAM address (0x1C0000) which is incremented by four offsets
and sends it to ping data of the Register Interface starting from (0x2D0000).

12. The Application CPU sets ping status (0x2D0270) to 1.

13. The Application CPU reads the pong buffer ready from (0x2D0274) to know whether it is in LOW.

14. The Application CPU reads 1K block of data from Egress RAM (0x1C0080) which is incremented by four offsets and
sends it to pong data of the Register Interface (0x2D0080).

15. The Application CPU sets pong status (0x2D0274) to 1.

16. The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SECURITY (@0x002C0014).

17. If the data is more than 2 kB (2048 bits), then it follows the steps for next ping and pong data and change the Egress
RAM data address accordingly.

18. Here check the ping ready bit until 0 and write ping block of data. Same Ready Check for the pong block data

19. After the final data is sent, wait for the Application CPU interrupt status, and once it comes, read the data out from
OUTPUT BUFFER(starting address @0x2D0100) and print through UART.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 62

5.5.3. Security CPU Side Process

The following describes the process on the Security CPU side:

1. In the Security CPU side write int_enable_security (0x2E0010) to ‘0x01’ and then read for int_status_security
(0x2E000C) to become 1.

2. Follow steps 1 to 17 in the AES-256 CBC Decryption (PCIe to UART) section.

3. Then if the value of int_status_register becomes 1, it clear the interrupt and then read for mode (@0x2F3FFC) , SHA
source (@0x2F3FF4) and servo status (@0x2F0278), SHA input message length(0x2F027C).

4. If mode registers reads value 0x35 then configure the value 0x304 (HASH_INITIAL) to the register 0x0031000C
(Configuration register).

5. The Security CPU reads the ping ready buffer (@0x002F0270) until it reaches the value 0x01.

6. If ping ready buffer is HIGH then the data from ping block (@0x2F0000) of the Register Interface to SHA IP
(@0x310020).

7. The Security CPU writes control register (@0x00310008) to 0x1.

8. It sets ping ready buffer (@0x002F0270) to 0x00.

9. The Security CPU waits for the SHA interrupt from sha_int_status_register (@0x310004) .

10. If the data input is more than 1Kbits, configure the value 0x305 (SHA384 update) to the Configuration
register(0x31000C).

11. The Security CPU reads the pong ready buffer (@0x002F0274) until it reaches the value 0x01.

12. If pong ready buffer is HIGH then the data from pong block (@0x2F0080) of the Register Interface to SHA IP
(@0x310020).

13. The Security CPU writes control register (@0x00310008) to 0x1.

14. It sets pong ready buffer (@0x002F0274) to 0x0.

15. The Security CPU waits for the SHA interrupt from sha_int_status_register (@0x310004) .

16. If more data is there, check for ping and pong Ready bits and if they are 1, read data from them and send to the SHA IP

17. For last block of SHA data, HASH FINISH (0x306) has to be written to the configuration register of Hash IP

18. Write the message length in SHA IP register (starting from 0x310010) and the last block of input data to 0x310020
register in Hash IP

19. Give the start command to SHA IP (writes control register (@0x00310008) to 0x1)

20. After complete transaction of data to the SHA IP, the Security CPU waits for the interrupt from the SHA IP, reads the
data from the SHA IP of address (0x310134 to 0x310160) and sends it to output buffer (0X2F0100) of the Register
Interface.

21. The Security CPU sets the interrupt for the Application CPU int_set_application (0x2E0008) to 0x01.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 63

5.6. SHA384 Message Digest Generation (UART to PCIe)

Host PC

AHBL Interconnect of Application CPU

PCIe+DMA
x1 End Point

Ingress
Data
RAM

S1

S0

Egress
Data
RAM

S0

S1

UART
Controller

SMBus Slave
Controller

S

APB Interconnect

Customer
PLD

AHBL2APB

SS

M M

SHA384 S

Security CPU
RISC-V

Register Interface

Application
CPU

RISC-V

M M

M M

S1 S0

Instruction
RAM

S S

Instruction
RAM

S S

Crypto 384 Block

Interrupt

Interrupt

Figure 5.6. SHA384 Message Digest Generation (UART to PCIe)

The input plain text is written to the Ingress RAM starting from the base address 0x1A0000. Once completed, Port B is
switched to AHBL reading and the SHA is performed similar to the SHA384 Authentication (PCIe to UART) section.

 Once complete data is stored in the Egress RAM, PCIe DMA write operation is started to get the Message digest data out
using only one descriptor similar to the AES-256 CBC Encryption (UART to PCIe) section based on 0x180034.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 64

5.6.1. Application CPU Process

The following describes the process on the Application CPU side:

1. Before starting the process, wait for PCIe to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

2. When PCIe provides linkup, the Application CPU writes x01 at (@0x000CA000).

3. DATA size is taken from UART in the form of ‘no of bits’.

4. The input plain text is written to the Ingress RAM starting from the base address 0x1A0000 based upon data size. This
data should be taken from UART.

5. Write 0x1Af01C to 0x0 for changing the Port B of Ingress RAM from AXI to AHBL.

6. Write 0x1Af024 to 0x1 for making Port B of Ingress RAM to be used for writing.

7. Write UART plain text data into Ingress RAM based upon the data size.

8. Write 0x1AF024 to 0x0 for making Port B of Ingress RAM to be used for reading.

9. Write 0x1AF00C to 0x1 for start Ingress RAM read.

10. The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00) and sets servo_status to
SERVO_IN_SERVICE(0x01) and write 0x35 to mode register 0x002D3FFC,data size is written into 0x2D0270.

11. The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).

12. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

13. If INT_STATUS_APP is 1 then clears its interrupt by writing 1 to INT_STATUS_APP (@0x002C000).

14. The Application CPU starts read data from the Ingress RAM starting address 0x1A0000.

15. The Application CPU writes 0x0 to ping and pong buffer ready registers.

16. The Application CPU writes 0x0 in ping and pong buffer ready registers.

17. The ping buffer ready is read from (0x2D0270) to know whether it is in LOW.

18. The Application CPU reads 1K block of data from the Ingress RAM address (0x1A0000), which is incremented by four
offsets and sends it to ping data of the Register Interface starting from (0x2D0000).

19. The Application CPU sets ping status (0x2D0270) to 1.

20. It reads the pong buffer ready from (0x2D0274) to know whether it is in LOW.

21. It reads 1K block of data from the Ingress RAM (0x1A0080), which is incremented by four offsets and sends it to the
pong data of the Register Interface (0x2D0080).

22. The Application CPU sets pong status (0x2D0274) to 1.

23. The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SECURITY (@0x002C0014).

24. If the data is more than 2 kB (2048 bits), it follows the steps for the next ping and pong data and changes the Egress
RAM data address accordingly.

25. Check the ping ready bit until 0 and write ping block of data. Same Ready Check for the pong block data

26. After the final data is sent, wait for the Application CPU interrupt status. Once it arrives, read the data from the OUTPUT
BUFFER (starting address @0x2D0100) and write to Egress RAM (starting with 0x1C0000).

27. For the Host PC to initiate DMA write transaction, write 0x1 followed by 0x0 to 0x1CF020.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 65

5.6.2. Security CPU Process

The following describes the process on the Security CPU side:

1. In the Security CPU side, write int_enable_security (0x2E0010) to ‘0x01’ and then read for int_status_security
(0x2E000C) to become 1.

2. If the value of int_status_register becomes 1, it clears the interrupt and then reads for mode (@0x2F3FFC), SHA source
(@0x2F3FF4), servo status (@0x2F0278), and SHA input data length(0x2F027C).

3. If mode registers read value 0x35, configure the value 0x304 (HASH_INITIAL) to the register 0x0031000C (Configuration
register).

4. The Security CPU reads the ping buffer ready (@0x002F0270) until it reaches the value 0x01.

5. If the ping buffer ready value is 0x1, the data from the ping block (starting address @0x2F0000) of the Register Interface
is read by the Security CPU and given to SHA IP (@0x310020).

6. The Security CPU writes control register (@0x00310008) to 0x1.

7. It sets ping ready buffer (@0x002F0270) to 0x00.

8. The Security CPU waits for the SHA interrupt from sha_int_status_register (@0x310004).

9. If the data input is more than 1 Kbit, configure the value 0x305 (SHA384 update) to the configuration register
(0x31000C).

10. The Security CPU reads the pong ready buffer (@0x002F0274) until it reaches the value 0x01.

11. If pong ready buffer is HIGH, then the data from pong block (@0x2F0080) of the Register Interface to SHA IP
(@0x310020).

12. The Security CPU writes control register (@0x00310008) to 0x1.

13. It sets pong ready buffer (@0x002F0274) to 0x0.

14. The Security CPU waits for the SHA interrupt from sha_int_status_register (@0x310004).

15. If more data is there, check for ping and pong ready bits. If they are 1, read the data and send it to the SHA IP.

16. For last block of SHA data, HASH FINISH (0x306) has to be written to the configuration register of Hash IP.

17. Write the message length in SHA IP register (starting from 0x310010) and the last block of input data to 0x310020
register in Hash IP.

18. Then give the start command to SHA IP (writes control register (@0x00310008) to 0x1).

19. After complete transaction of data to the SHA IP the Security CPU waits for the interrupt from the SHA IP, reads the data
from the SHA IP of address (0x310134 to 0x310160) and sends it to output buffer (0X2F0100) of the Register Interface.

20. The Security CPU sets the interrupt for the Application CPU int_set_application (0x2E0008) to 0x01.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 66

5.7. SHA384 Authentication (PCIe to UART using GCM Decryption)

Host PC

AHBL Interconnect of Application CPU

PCIe+DMA
x1 End Point

Ingress
Data
RAM

S1

S0

Egress
Data
RAM

S0

S1

UART
Controller

SMBus Slave
Controller

S

APB Interconnect

Customer
PLD

AHBL2APB

SS

M M

AES-256 GCM
Decryption
/SHA384

S

Security CPU
RISC-V

Register Interface

Application
CPU

RISC-V

M M

M M

S1 S0

Instruction
RAM

S S

Instruction
RAM

S S

Crypto 384 Block

Interrupt

Interrupt

AXI-4 Stream

AXI-4 Stream

Figure 5.7. SHA384 Authentication (PCIe to UART using GCM Decryption)

SHA384 Authentication can be done with the help of the Application CPU, Security CPU, PCIe Endpoint, Ingress RAM, Egress
RAM, Register Interface, and SHA2 IP.

For this SHA Authentication, plain text is initially encrypted using AES-256-GCM mode in the Host PC and the encrypted data
is sent over the PCIe using DMA Read to the Ingress RAM. From here, data goes to AES GCM Decryption with the key and IV.
After decryption, the data is written to Egress RAM. Up to here, the flow is the same as the AES Decryption explained in the
AES-256 GCM Decryption (PCIe to UART) section.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 67

On the decrypted data, SHA384 needs to be performed using the Application CPU, Security CPU, and Register Interface in
the following way.

5.7.1. PCIe DMA Read

The PCIe DMA Read is similar to AES-256 GCM Decryption (PCIe to UART). In addition, SHA Data length (in bits) needs to be
written into 0x180028 register along with AES size register(0x180038), which is in terms of 128 bit blocks.

5.7.2. Application CPU Process

The following describes the process on the Application CPU side:

1. Before starting the process, wait for PCIe to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

2. When PCIe provides linkup, the Application CPU writes x01 at (@0x000CA000).

3. The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00). It sets servo_status to
SERVO_IN_SERVICE(0x01) and configures MODE_REG (0x002D3FFC) to 0x42 (AES-256GCM_DEC_MODE).

4. The Application CPU writes key (@0x002D0180), Initial Vector (@0x002D01B0), and mode of encryption
(@0x002D3FFC) to the Register Interface.

5. The Application CPU configures interrupt enable register (0x002C0004) by writing 0x01.

6. The Application CPU sets interrupt to the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).

7. The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

8. If INT_STATUS_APP is 1, the Application CPU tells the Ingress RAM port to send data to OSE.

9. The Ingress RAM waits for the data from PCIe in the DMA Read operation.

Note: Even If the data is received from PCIe before step 8, the data is not sent to AES until step 8 is completed.

10. Write 0x1AF00C address with 0x1 value to start the Ingress RAM.

11. Write 0x1Cf01C to 0x1 for changing the Port B of the Egress RAM from AHB to AXI.

12. Write 0x1Cf024 to 0x1 for making Port B of the Egress RAM to be used for writing.

13. Write 0x1CF00C to 0x1 for start egress RAM.

14. To check the DMA size, read the Egress RAM register (0x1CF014).

15. Poll the data ready register (0x1CF018) of the Egress RAM until the valid signal becomes 1.

16. Write 0x001AF00C to 0x0 for stopping AXI stream in the Ingress RAM for more than one iteration.

17. Write 0x001CF00C to 0x0 for stopping AXI stream in the Egress RAM for more than one iteration.

18. Write 0x1Cf01C to 0x0 for changing the Port B of the Egress RAM from AXI to AHBL.

19. Write 0x1Cf024 to 0x0 for making Port B of the Egress RAM to be used for reading.

20. The Application CPU writes to the mode register (address= 0x2D3FFC) of the Register Interface with the value 0x35 for
SHA384 message digest Authentication.

21. The Application CPU writes to the SHA SOURCE register (address = 0x2D3FF4) with the value 0x00.

22. The Application CPU Reads 0xCA00C to know the SHA Data Length(in bits).

23. Write SHA Data Length to register 0x2D027C in the Register Interface so that the Security CPU also knows the size of
plain text data to be hashed

24. The Application CPU initially writes 0x0 in the ping and pong buffer ready registers.

25. The Application CPU reads the ping buffer ready from (0x2D0270) to know whether it is in LOW.

26. The Application CPU reads 1K block of data from the Egress RAM address (0x1C0000), which is incremented by four
offsets and sends it to ping data of the Register Interface starting from (0x2D0000).

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 68

27. The Application CPU sets ping status (0x2D0270) to 1.

28. The Application CPU reads the pong buffer ready from (0x2D0274) to know whether it is in LOW.

29. The Application CPU reads 1K block of data from Egress RAM (0x1C0080), which is incremented by four offsets and
sends it to pong data of the Register Interface (0x2D0080).

30. The Application CPU sets pong status (0x2D0274) to 1.

31. The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SECURITY (@0x002C0014).

32. If the data is more than 2 kB (2048 bits), then it follows the steps for next ping and pong data and changes the Egress
RAM data address accordingly.

33. Check the ping ready bit until 0 and write ping block of data. Same Ready Check for the pong block data.

34. After the final data is sent, wait for the Application CPU interrupt status, and once it comes, read the data out form
OUTPUT BUFFER (starting address @0x2D0100) and print through the UART.

5.7.3. Security CPU Process

The following describes the process on the Security CPU side:

1. In the Security CPU side, write int_enable_security (0x2E0010) to ‘0x01’ and then read for int_status_security
(0x2E000C) to become 1.

2. Follow steps 1 to 10 in the AES-256 GCM Decryption (PCIe to UART) section.

3. The Security CPU waits for ORAN Security Enclave interrupt rising edge on irq_o and configures the AES_CONFIG_REG
(0X0030000C) with AES_GCM_DEC_UPDATE (0x00805205).

4. The Security CPU sets interrupt to the Application CPU by writing 0x01 into the register int_set_app (0x2E0008).

5. The Security CPU waits for ORAN Security Enclave interrupt rising edge on irq_o.

6. The Security CPU sets interrupt to the Application CPU by writing 0x01 into the register int_set_app (0x2E0008).

7. Check the Security CPU interrupt status. If the value of sec_int_status_register becomes 1.

Clear the interrupt and read for mode (@0x2F3FFC), SHA source (@0x2F3FF4), servo status (@0x2F0278), and SHA
input message length (0x2F027C).

8. If mode register reads value 0x35, configure the value 0x304 (HASH_INITIAL) to the register 0x0031000C (configuration
register).

9. The Security CPU reads the ping ready buffer (@0x002F0270) until it reaches the value 0x01.

10. If the ping ready buffer is HIGH, the data from ping block (@0x2F0000) of the Register Interface to SHA IP (@0x310020).

11. The Security CPU writes control register (@0x00310008) to 0x1.

12. The Security CPU sets ping ready buffer (@0x002F0270) to 0x00.

13. The Security CPU waits for OSE interrupt rising edge on irq_o .

14. If the data input is more than 1 kB, write value 0x305 (SHA384 update mode) to the configuration register (0x31000C).

15. The Security CPU reads the pong ready buffer (@0x002F0274) until it reaches the value 0x01.

16. If pong ready buffer is HIGH, the data from pong block (@0x2F0080) of the Register Interface to SHA IP (@0x310020).

17. The Security CPU writes control register (@0x00310008) to 0x1.

18. The Security CPU sets pong ready buffer (@0x002F0274) to 0x0.

19. The Security CPU waits for the ORAN Security Enclave interrupt rising edge on irq_o.

20. If more data is available, check for ping and pong Ready bits and if they are 1.

Read data from the Register Interface ping pong index and send to SHA IP.

21. For the last block of SHA data, HASH FINISH (0x306) is written to the configuration register of Hash IP.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 69

22. Write the message length in SHA IP register (starting from 0x310010) and the last block of input data to 0x310020
register in Hash IP.

23. Execute the start command to SHA IP (writes control register (@0x00310008) to 0x1).

24. After the complete transaction of data to the SHA IP, the Security CPU waits for the OSE interrupt rising edge on irq_o,
reads the data from the SHA IP of address (0x310134 to 0x310160), and sends it to the output buffer (0X2F0100) of the
Register Interface.

25. The Security CPU sets the interrupt for the Application CPU int_set_application (0x2E0008) to 0x01.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 70

5.8. HMAC 384 Authentication (PCIe to UART)

Host PC

AHBL Interconnect of Application CPU

PCIe+DMA
x1 End Point

Ingress
Data
RAM

S1

S0

Egress
Data
RAM

S0

S1

UART
Controller

SMBus Slave
Controller

S

APB Interconnect

Customer
PLD

AHBL2APB

SS

M M

AES-256
 Decryption

/SHA384

S

Security CPU
RISC-V

Register Interface

Application
CPU

RISC-V

M M

M M

S1 S0

Instruction
RAM

S S

Instruction
RAM

S S

Crypto 384 Block

Interrupt

Interrupt

AXI-4 Stream

AXI-4 Stream

Figure 5.8. HMAC 384 Authentication (PCIe to UART)

HMAC 384 Authentication (PCIe to UART) is similar to the SHA384 Authentication (PCIe to UART) section. However, the key
has to be managed and the second hash has to be performed in the Security CPU for the appended data of XOR (key, OPAD)
and the first hash message digest.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 71

5.9. HMAC 384 Message Digest Generation (UART to PCIe)

Host PC

AHBL Interconnect of Application CPU

PCIe+DMA
x1 End Point

Ingress
Data
RAM

S1

S0

Egress
Data
RAM

S0

S1

UART
Controller

SMBus Slave
Controller

S

APB Interconnect

Customer
PLD

AHBL2APB

SS

M M

SHA384 S

Security CPU
RISC-V

Register Interface

Application
CPU

RISC-V

M M

M M

S1 S0

Instruction
RAM

S S

Instruction
RAM

S S

Crypto 384 Block

Interrupt

Interrupt

CRE

HSP

AHBL2
LMMI

S

Crypto 256 Block

Figure 5.9. HMAC 384 Message Digest Generation (UART to PCIe)

HMAC 384 Message Digest Generation (UART to PCIe) is a combination of the AES-256 GCM Decryption (PCIe to UART) and
AES-256 GCM Encryption (UART to PCIe) sections.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 72

5.10. ECC 256 Bit Key Pair Generation (using CRE IP)
ECC 256 bit key pair generation can be performed with the help of the Application CPU, Security CPU, and CRE module.

The Application CPU waits until “servo status” (address = 0x2D0278) equals to “idle”. It then and sets servo status to “servo
in service” and perform the following steps:

1. The Application CPU writes to the mode register (address= 0x2D3FFC) of the Register Interface with the value 0x3E for
ECC key pair generation operation.

2. The Application CPU generates interrupt to the Security CPU by writing into int_set_security (address= 0x2C0014) with
value 1’b1.

3. The Security CPU reads the int_status_security (address= 0x2C000C) and starts performing the service requested by the
Application CPU as per the mode register data.

4. The Security CPU performs the procedure shown in Table 5.1 to generate the ECC key pair. Base address to access
HSE/CRE module is 0x00100000

Table 5.1. ECC Private + Public Key Generation Procedure

Transaction LMMI Data Description

Read 0x2 0020 4B Poll if IP is Ready. [RO_GP0 == 0xB0]

Write 0x2 000C 4B [RI_CTRL1 ← 0x0E]

Starts the ECC key generation process.

Read 0x2 0020 4B Poll if transaction is done. [RO_GP0 == 0xB2]

Read 0x1 F840 32B Public Key X

Read 0x1 F860 32B Public Key Y

Read 0x1 F880 32B Private Key

Write 0x2 000C 4B [RI_CTRL1 ← 0x00]

Clears the previous transaction, and sets the IP ready for the
next.

5. Once keys are generated, Public Key X, Public Key Y, and Private Key are read to BUF1, BUF2, and BUF3 of the scratch
memory. Refer to Table 2.4 for register details of BUF1, BUF2, and BUF3.

6. The Security CPU generates the interrupt to the Application CPU that the operation is completed. The Application CPU
can obtain the generated keys from the BUF1, BUF2, and BUF3 respectively. Base address to access HSE/CRE module is
0x00100000.

Table 5.2. ECC Public Key (from Private Key) Generation Procedure

Transaction LMMI Data Description

Read 0x2 0020 4B Poll if IP is Ready. [RO_GP0 == 0xB0]

Write 0x1 F800 32B Private Key

Write 0x2 000C 4B [RI_CTRL1 ← 0x04] Starts the Public Key generation process.

Read 0x2 0020 4B Poll if transaction is done. [RO_GP0 == 0xB2]

Read 0x1 FC00 32B Public Key X

Read 0x1 FC80 32B Public Key Y

Write 0x2 000C 4B [RI_CTRL1 ← 0x00] Clears the previous

Once the keys are generated, read the Public Key X, Public Key Y to BUF2, BUF3 of the scratch memory.

Once done, the Security CPU generates the interrupt to the Application CPU that the operation is completed. The
Application CPU can obtain the generated public keys from the BUF2 and BUF3 respectively.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 73

5.11. RSA Encryption/Decryption
RSA encryption and decryption is managed by the firmware APIs. All the arithmetic operations required for the RSA
algorithm is handled by the PKC IP.

5.12. AES Throughput Calculation
The FPGA runs one counter internally for calculating AES throughput.

This counter starts when the start pulse of the Egress RAM is given by the Application CPU.

Note: The Egress RAM stores decrypted data in the PCIe to UART flow and encrypted data in the UART to PCIe flow.

The operation stops when the complete data is encrypted/decrypted (according to the length provided by the user). The
counter is placed in the register (0x1CF044).

The Application CPU reads register 0x1CF044 to get the counter value. After running the AES encryption/decryption, this
counter value can be multiplied with 13.333 (using 75 MHz) to obtain the total time in nanoseconds for the given amount of
data to be processed. For AES CBC/GCM mode, the calculated value for up to 60 kB is 1024018.42 ns. Based on this
calculation, throughput is around 468.7 Mbps.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 74

6. PCIe DMA

6.1. Overview
The term Bus Master, used in the context of PCI Express, indicates the ability of a PCIe port to initiate PCIe transactions,
typically Memory Read and Write transactions. The most common application for Bus Mastering Endpoints is for DMA.
DMA is a technique used for efficient transfer of data to and from Host CPU system memory. DMA implementations have
many advantages over standard programmed input/output (PIO) data transfers. PIO data transfers are executed directly by
the CPU and are typically limited to one (or in some cases two) DWORDs at a time. For large data transfers, DMA
implementations result in higher data throughput because the DMA hardware engine is not limited to one or two DWORD
transfers. In addition, the DMA engine offloads the CPU from directly transferring the data, resulting in better overall
system performance through lower CPU utilization. There are two basic types of DMA hardware implementations found in
systems using PCI Express: System DMA implementation and Bus Master DMA (BMD) implementation. System DMA
implementations typically consist of a shared DMA engine that resides in a central location on the bus and can be used by
any device that resides on the bus. System DMA implementations are not commonly found anymore and very few root
complexes and operating systems support their use. A BMD implementation is by far the most common type of DMA found
in systems based on PCI Express. BMD implementations reside within the Endpoint device and are called Bus Masters
because they initiate the movement of data to (Memory Writes) and from (Memory Reads) system memory. Figure 35
shows a typical system architecture that includes a root complex, PCI Express switch device, and an integrated Endpoint
block for PCI Express. A DMA transfer either transfers data from an integrated Endpoint block for PCI Express buffer into
system memory or from system memory into the integrated Endpoint block for PCI Express buffer. Instead of the CPU
having to initiate the transactions needed to move the data, the BMD relieves the processor and allows other processing
activities to occur while the data is moved. The DMA request is always initiated by the integrated Endpoint block for PCI
Express after receiving instructions and buffer location information from the application driver.

PCIe
Endpoint

DMA Memory

Memory
Controller

CPU

Root Port

PCIe
Switch

Main
Memory

FPGA Board

PCIe Lane/Edge
Connector

Host PC

Figure 6.1. Top Level Block Diagram

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 75

In addition to the data-throughput advantages of DMA versus PIO transactions for large data transfers, many other
variables can affect data throughput in PCI Express systems, e.g., link width and speed, receive buffer sizing, return credit
latency, end-to-end latency, and congestion within switches and root complexes. For these reasons, the use of PCI Express
for high data-throughput applications requires a BMD engine.

6.2. Components of DMA Design
A typical design for PCI Express includes the following main components:

 Hardware HDL

 Design Driver

 Design Software Application

The hardware design refers to the Verilog or VHDL application residing on the Lattice FPGA. In this case, it is the bus master
DMA design or BMD. This design contains control engines for the receive and transmit data path along with various
registers and memory interfaces to store and retrieve data. The driver design is normally written in C and is the link
between the higher-level software application and the hardware application. The driver contains various routines that are
called by the software application and are used to communicate with the hardware via the PCI Express link. The driver
resides in the kernel memory on the system. The software application is most apparent to the user and can be written in
any programming language. It can be as simple as a small C program or as complex as a GUI-based application. The user
interfaces with the software application, which invokes routines in the driver to perform the necessary data movements.
The software keeps on checking whether the data movement is completed or not. Once completed, the driver can invoke
routines in the software application to inform the user that the request is completed.

6.3. FPGA Design
Figure 6.2 shows the top-level architecture of FPGA design.

DMA support is an option provided by the Lattice soft IP to enable more efficient data transfer when endpoint is acting as
initiator or master. To transfer data through DMA, the Core requires source address, destination address, and transfer
control, that is, length and direction of transfer. This information is collectively called descriptor.

To store the descriptor, two queues are implemented in a local memory. These are the descriptor queue and the status
queue. When data transfer is completed or aborted, a status, which contains done flag, error flag, length of transfer and
data address offset, is written into the status queue.

The description of each block of FPGA design architecture is given below.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 76

Soft IP

Register

Space

DMA

PCIe

Hard IP

PCIe Soft IP

UCFO

LMMI

RX_TL

P

TX_TL

P

AHB Write

Master0

AHB

Read

Master1

Register Space

Re-config

Memory Space

APB Master

Wrapper APB Interface

Descriptor

Queue

Memory

Status Queue

AHB

Master0

AHB

Master1

AHB

Master0

AHB

Master1

APB Interconnect

of PCIe

APB Interconnect

of PCIe

AHB Master0

AHB Master1

PCIe x1 Lane

PCIe DMA

Figure 6.2. Top Level Architecture of PCIe Design

 AHB Arbiter
This block selects the three blocks: APB master, system memory, and FIFO wrapper depending on the address received
in the TLP. See the memory segregation for address range of the different blocks. The user can select the address range
by modifying the parameter in AHB_arbiter.v file. The AHB master0 port is used for receiving (RX TLP) and AHB master1
port is being used for transmitting (TX TLP).

 APB Master
The APB Slave Port is available to access the registers of soft IP or hard IP. To access these registers through
software/driver, the APB master is needed. This block is used to make the APB master interface. Initial reconfiguration
of soft IP and hard IP is done through the APB master. A configuration space is implemented in the design to store all
the configuration values required for the PCIe IP.

BASE ADDRESS: 0x00CA0000 for accessing from the Application CPU.

6.3.1.1. Register Address (0x00)

31:1 0

reserved
To start DMA

Default: 0

Write

6.3.1.2. Register Address (0x04)

31:1 0

reserved To check PCIe linkup

Read

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 77

6.3.1.3. Register Address (0x08)

31:1 0

reserved To check DMA complete

Read

6.3.1.4. Register Address (0x0C)

31:0

SHA DATA LENGTH

Read

6.3.1.5. Register Address (0x10)

31:0

FIRMWARE VERSION

Write

6.3.1.6. Register Address (0x14)

31:1 0

reserved AES DATA READY IN EGRESS RAM

Read

6.3.1.7. Register Address (0x18)

31:0

PCIe VERSION

Read

6.3.1.8. Register Address (0x1C)

31:0

FPGA VERSION

Read

6.3.1.9. Register Address (0x20)

31: 0

Application CPU can give signal to PCIe(used for handshaking)

Default : 0

Write Read

6.3.1.10. Register Address (0x30)

31: 0

PCIe can give signal to the Application CPU

Read

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 78

6.3.1.11. Register Address (0x34)

31: 0

GCM CIPHER TEST LENGTH IN BITS

Read

 Desc Queue
This DMA implementation is based on the descriptors. To store the descriptors a queue is implemented. The pointer of
the descriptor queue is to be updated by the driver/software after/before writing the descriptors in the descriptors
queue. Descriptors are fetched by the DMA soft IP to serve the descriptors. The corresponding read pointer is updated
by the DMA Core.

 Status Queue
After one descriptor is served by the DMA Engine, its status is stored. To report the status of a transfer, a status queue
is implemented. The status of each descriptor or transfer is stored in this queue.

 Register Space
A register space is implemented in the design to configure the DMA or to get the status of transfer and throughput.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 79

6.3.2. Descriptor Field Format

Table 6.1 shows the descriptor entry format.

Table 6.1. Descriptor Entry Format

DW DW name Field name Bit offset Size Description

0 desc_ctrl

length 0 13 Size of data transfer in bytes. (4096 bytes maximum)

direction
13 1

Direction of transfer. 0 – AHB-Lite to PCIe 1 – PCIe to
AHB-Lite

14 10 reserved

desc_id 24 8
Optional descriptor ID. If the parameter EN_DESC_ID
== “Enable” the Core adds this information in the
Status entry.

1 desc_src addr_offset 0 32 source address/ offset

2 desc_dst addr_offset 0 32 destination address/offset

3 desc_hdr

requester_id 0 16

Requester ID to be used in TLP Header requester_id
[7:0] – bus number[7:0] requester_id [10:8] – function
number[2:0] requester_id [15:11] – device
number[4:0]

traffic_class 16 3 Traffic Class to be used in TLP Header

use_requestor_id
19 1

When set, it indicates that the requester_id field is
valid and should be used in TLP header. Otherwise,
the Core uses the captured configuration ID of
function 0 as the default requester ID.

20 12 Reserved

6.3.3. Status Field Format

Table 6.2 shows the status field format.

Table 6.2. Status Entry format

DW DW Name Field Name Bit Offset Size Description

1 stat_flag

done 0 1
If this bit is asserted, it indicates that the transfer has been
completed

with_error 1 1
If this bit is asserted, it Indicates an error occurred during
transfer.

aborted 2 1
If this bit is asserted, it indicates the transfer was terminated
before it completes the specified length.

direction
3 1 Direction of transfer. 0 – AHB-Lite to PCIe 1 – PCIe to AHB-Lite

4 4 reserved

desc_id 8 8
Optional descriptor ID. Available if the parameter EN_DESC_ID
== “Enable”

length
16 13 Size of data transfer in bytes. (4096 bytes maximum)

29 3 Reserved

2 stat_buff addr 0 32
Data address. This is the local memory address where the data
is stored (direction==1) or fetched (direction==0).

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 80

6.3.4. How to Trigger the DMA Operation.

It is assumed that the user is aware of the descriptor and status queue. Else, the user can go through Memory Map section.

To trigger/start the DMA operation:

1. Write the descriptors starting from address 0x1000. Note that one descriptor needs four DW (32 bit) space. Check the
descriptor field format. If the first descriptor is written at 0x1000, the next descriptor should be written at 0x1010
address.

2. Write the number of descriptors at 0x8.

3. Write 0x1 at address 0x1 to start the DMA operation.

6.3.5. Register Space: BASE ADDRESS -- 0x00180000

6.3.5.1. Register Address (0x0) (Default: 0x60)

31:6 7 6 5 4 3 2 1 0

Reserved
DMA Read
operation

done
Reserved Reserved Reserved

DMA
aborted in

one
iteration

Error in one
iteration

DMA write
Operation

done
Reserved

Read Only

DMA read

operation is
completed

DMA

iteration is
aborted

DMA
iteration is
completed
with error

DMA write
iteration is
completed

6.3.5.2. Register Address (0x4)

31:0

Throughput Counter value

Read Only

Multiply this counter value by 13.33 to get the total time (in ns) of one iteration

6.3.5.3. Register Address (0x8)

31:8
Reserved

7:0

Reserved
Number of descriptors written in one iteration; valid values are

between 1-255

Read Only Write Only

6.3.5.4. Register Address (0xC)

31:2 1 0

Reserved Start DMA read operation Start DMA write operation

Write Only

 Write 1 to start the DMA read operation Write 1 to start the DMA write operation

6.3.5.5. Register Address (0x10)

31:0

reserved

Read Only

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 81

6.3.5.6. Register Address (0x14)

31:0

FPGA Version register; upper 8 bit [31:24] is indicating the date in decimal, next 8 bit [23:16] is indicating month in decimal, next 8 bit
[15:8] is indicating the hour in 24 hour format, next 8 bit [7:0] is indicating the minute;

Read Only

6.3.5.7. Register Address (0x18)

31:0

reserved

Read Only

6.3.5.8. Register Address (0x1C)

31:0

reserved

Read Write

6.3.5.9. Register Address (0x20)

31:0

DMA write size in DW, this indicates how much DWs we have to write in DMA write operation

Read Write

6.3.5.10. Register Address (0x24)

31:0

DMA read size in DW, this indicates how much DWs we have to read in DMA read operation

Read Write

6.3.5.11. Register Address (0x28)

31: 0

SHA Data Length(in bits)

 Write

6.3.5.12. Register Address (0x30)

31:1 0

reserved Start given by the Application CPU

Read

6.3.5.13. Register Address (0x34)

31:1 0

reserved Data ready given by Egress RAM

Read

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 82

6.3.5.14. Register Address (0x38)

31: 0

DMA DATA SIZE

Write

6.3.5.15. Register Address (0x3C)

31: 0

Ingress write port address

Read

6.3.5.16. Register Address (0x40)

31: 0

Ingress read port address

Read

6.3.5.17. Register Address (0x44)

31: 0

Egress write port address

Read

6.3.5.18. Register Address (0x48)

31: 0

Egress read port address

Read

6.3.5.19. Register Address (0x50)

31: 0

DMA SIZE GIVEN BY UART

Read

6.3.5.20. Register Address (0x54)

31: 0

FPGA VERSION

Read

6.3.5.21. Register Address (0x58)

31: 0

FIRMWARE VERSION

Read

6.3.5.22. Register Address (0x5C)

31: 0

PCIe VERSION

Read

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 83

6.3.5.23. Register Address (0x60)

31: 0

Reserved for PCIe

Write and Read

6.3.5.24. Register Address (0x64)

31: 0

Application CPU can give signal

Read

6.3.5.25. Register Address (0x70)

31: 0

GCM CIPHER TEST LENGTH IN BITS

Write

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 84

7. MCTP over SMBus

7.1. SMBus
The System Management Bus (abbreviated to SMBus or SMB) is a single-ended simple two-wire bus for the purpose of
lightweight communication. Most commonly it is found in computer motherboards for communication with the power
source for ON/OFF instructions. It is derived from I²C for communication.

7.2. MCTP
The Management Component Transport Protocol (MCTP) supports the PMCI goals by defining a media-independent
transport protocol that enables communications between different intelligent hardware components that make up a
platform management subsystem that provides monitoring and control functions inside a managed system.

MCTP can be implemented over many physical media, here we are using SMBus. The MCTP over SMBus/I 276 2C transport
binding defines how MCTP packets are delivered over a physical SMBus or I 277 2C medium using SMBus transactions. This
includes how physical addresses are used. Following is the diagram of MCTP over SMBus.

Destination Slave

Address

MCTP

Reserved

1 6 5 4 3 2 01 7 6 5 4 3 2 01 7 6 5 4 3 2 01 7 6 5 4 3 2 01

Hdr

Version

Source

Endpoint ID

Msg

Tag

T

O

Pkt

Seq

#

E

O

M

S

O

M

Msg TypeIC

PEC

Command Code =

MCTP = 0Fh
Byte Count

Source Slave

Address 10Byte 1 >

Byte 5 >

Byte 9 >

Byte N >

+0 +1 +2 +3

Message

Header

Message

Data
Message Integrity Check

Destination

Endpoint ID

Figure 7.1. MCTP over SMBus

7.3. SPDM
The SPDM message exchanges are defined in a generic fashion that allows the messages to be communicated
across different physical mediums and over different transport protocols.

The specification-defined message exchanges enable Requesters to:
 Discover and negotiate the security capabilities of a Responder.

 Authenticate the identity of a Responder.

 Retrieve the measurements of a Responder.

 Securely establish cryptographic session keys to construct a secure communication channel for the transmission or
reception of application data.

There are different kind of messages for specific purpose, following is the description of messages used here:-

 Get-Version - Requester sends this message to know the version of SPDM it is supporting.

 Get Capabilities - Requester sends its capabilities (specifications it supports) to responder and in response it gets
responder’s capabilities.

 Negotiate Algorithm - Through this algorithm requester and responder negotiates and agree over an algorithm which
requester wants to perform.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 85

 Challenge message - This message is used in authentication, where requester verifies signature sent by responder in
challenge response message.

 Vendor Defined Message: This message is used when requester wants to some specific information to responder and it
can be define by users for different purposes.

7.4. Algorithm Selection
As discussed in the above section, algorithm is selected through the negotiate algorithm message.

If both requesters have property to store the version and capability message response, only the negotiate algorithm
massage is exchanged for changing the algorithm. In case the request is not able to store the messages response, then for
changing algorithm again, get-version, get-capabilities, and negotiate algorithm is sent to the responder.

In the negotiate algorithm message, there are four types of algorithm selection tables. The following are the structure
tables.

Table 7.1. Algorithm Selection Structure Tables

Offset Field Size (Bytes Value

0 AlgType 1 0x2=DHE

1 AlgCount 1 Bit [7:4]=2

Offset Field Size (Bytes Value

2 AlgSupported 2 Bit mask listing Requester-supported SPDM enumerated Diffie-
Hellman Ephemeral (DHE) groups. Values in parenthesis specify the
size of the corresponding public values associated with each group.

Byte 0 Bit 0 ffdhe2048 (D=256)

Byte 0 Bit 1 ffdhe3072 (D=384)

Byte 0 Bit 2 ffdhe4096 (D=512)

Byte 0 Bit 3 secp256r1 (D=64, C=32)

Byte 0 Bit 4 secp348r1 (D=96, C=48)

Byte 0 Bit 5 secp521r1 (D=132, C=66)

All other values are reserved.

4 AlgExternal 4*ExtAlgCount2 List of Requester-supported extended DHE groups. The Extended
algorithm field format table described the format of this field.

Offset Field Size (Bytes Value

0 AlgType 1 0x3=AEAD

1 AlgCount 1 Bit [7:4]=2.

Bit [3:0]=Number of Requester supported extended AEAD algorithms
(=ExtAlgCount3).

2 AlgSupported 2 Bit mask listing Requester-supported SPDM enumerated AEAD
algorithms.

Byte 0 Bit 0. AES-128-GCM. 128-bit key; 96-bit IV (Initialization Vector);
tag size is specified by the transport layer.

Byte 0 Bit 1. AES-256-GCM. 128-bit key; 96-bit IV; tag size is specified
by the transport layer.

Byte 0 Bit 2. CHACHA20_POLY1305. 256-bit key; 96-bit IV; 128-bit tag.

All other values are reserved.

4 AlgExternal 4*ExtAlgCount3 List of Requester-supported extended AEAD algorithms. The Extended
algorithm field format table described the format of this field.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 86

Offset Field Size (Bytes Value

0 AlgType 1 0x4=ReqBaseAsymAlg

1 AlgCount 1 Bit [7:4]=2.

Bit [3:0]=Number of Requester supported extended asymmetric key
signature algorithms (=ExtAlgCount4).

2 AlgSupported 2 Bit mask listing Requester-supported SPDM enumerated asymmetric
key signature algorithms for the purpose of signature generation.

Byte 0 Bit 0. TPM_ALG_RSASSA_2048

Byte 0 Bit 1. TPM_ALG_RSAPSS_2048

Byte 0 Bit 2. TPM_ALG_RSASSA_3072

Byte 0 Bit 3. TPM_ALG_RSAPSS_3072

Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5. TPM_ALG_RSASSA_4096

Byte 0 Bit 6. TPM_ALG_RSAPSS_4096

Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

Byte 0 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

All other values are reserved.

4 AlgExternal 4*ExtAlgCount4 List of Requester-supported extended AEAD algorithms. The Extended
algorithm field format table described the format of this field.

Offset Field Size (Bytes Value

0 AlgType 1 0x5=KeySchedule

1 AlgCount 1 Bit [7:4]=2.

Bit [3:0]=Number of Requester supported extended key schedule
algorithms (=ExtAlgCount5).

Offset Field Size (Bytes Value

2 AlgSupported 2 Bit mask listing Requester-supported SPDM enumerated key schedule
algorithms.

Byte 0 Bit 0. SPDM Key Schedule.

All other values are reserved.

4 AlgExternal 4*ExtAlgCount5 List of Requester-supported key schedule algorithms. The Extended
algorithm field format table describes the format of this field.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 87

7.5. AES CBC/GCM Algorithm
The AES Encryption algorithm (also known as the Rijndael algorithm) is a symmetric block cipher algorithm with a
block/chunk size of 128 bits. It converts these individual blocks using keys of 128, 192, and 256 bits. Once it encrypts these
blocks, it joins them together to form the cipher text. Here we are using AES-256, which means it requires 32 bytes (256
bits) key.

It is based on a substitution-permutation network, also known as an SP network. It consists of a series of linked operations,
including replacing inputs with specific outputs (substitutions) and others involving bit shuffling (permutations).

AES-CBC (Cipher Blocker Chaining) is an advanced form of block cipher encryption. With CBC mode encryption, each cipher
text block is dependent on all plain text blocks processed up to that point. This adds an extra level of complexity to the
encrypted data.

AES-GCM (Galois Counter Mode) is a mode of operation for symmetric key cryptographic block ciphers. GCM is ideal for
protecting packets of data because it has low latency and a minimum operation overhead.

7.6. SHA Algorithm
Sha384 is a function of cryptographic algorithm Sha-2, evolution of Sha-1. It is the same encryption than Sha512, except
that the output is truncated at 384 bits. There are also differences in the initialization process. It takes any number of data
with its hash value of 384 bits. SHA384 is mainly used in message authentication.

7.7. HMAC Algorithm
HMAC algorithm stands for Hashed- or Hash-based Message Authentication Code. It is a result of work done on developing
a MAC derived from cryptographic hash functions. HMAC is a great resistance towards crypto analysis attacks as it uses the
hashing concept twice. HMAC consists of twin benefits of hashing and MAC and thus is more secure than any other
authentication code.

HMAC takes data and key as input to produce the hash value of 384 bits.

7.8. ECDH Algorithm
ECDH: Elliptic Curve Diffie Hellman (ECDH) is an Elliptic Curve variant of the standard Diffie Hellman algorithm. See Elliptic
Curve Cryptography for an overview of the basic concepts behind Elliptic Curve algorithms. ECDH is used for key agreement.

Elliptical curve used here is secp256r1, which produces two key pairs of 32Bytes. At both ends, the same arithmetic
operation is done to calculate the shared secret.

PKC IP is used for performing the calculation part of this algorithm.

For example:

Alice private key = a

Bob private key = b

G parameter = G

Alice public key which needs to be shared to bob = G*a = Pa

Bob public key which needs to be shared to Alice = G*b = Pb

Now Shared secret = Pa *b (At Bob’s end) = Pb * a (At Alice’s end) = G*a*b

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 88

HOST PC APPLICATION CPU

SECURITY CPU

#Private key of Host PC (a)
 #Generate generating point(G)

 #Generate public key(A) using G
and a

#Store public key of application
CPU(B)

#Share secret (B+a)

#Private key of App CPU (b)
 #Generate generating point(G)

 #Generate public key(B) using G
and b

#Store public key of Host PC(A)
#Share secret (A+b)

HMAC-384 AES

G*a

G*b

Key+Data

Figure 7.2. Flow of ECDH (Host PC and FPGA)

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 89

7.9. RSA Algorithm
RSA algorithm is asymmetric cryptography algorithm. Asymmetric means that it works on two different keys, such as public
key and private key. PKC IP is used for performing the calculation part of this algorithm.

7.9.1. RSA Signature:

To sign a message msg with the private key exponent d:

1. Calculate the message hash: h = hash (msg)

2. Encrypt h to calculate the signature: s=hd(modn)

3. The hash h should be in the range [0...n). The obtained signature s is an integer in the range [0...n).

7.9.2. RSA Verify Signature

To verifying a signature s for the message msg with the public key exponent e:

1. Calculate the message hash: h = hash(msg)

2. Decrypt the signature: h′=se(modn)

3. Compare h with h' to find whether the signature is valid or not

HOST PC APPLICATION CPU

SECURITY CPU

Generates Public/Private Key.

S1 = Sign Hash [M1]

+ Private Key

Sends Signature + Public Key

(modulus N) +

Public Exponential +

Message Hash

Component (M1, M2)

Identical = Send Success

Message

Not identical = Send Fail

Message

Reads data from the ping pong

region, vrifies signature and sends it

back to the Application CPU.

Verify (S1 + Public Key

= O/p Message Hash [M2]

Authentication Request Message

Authentication Response

Send Data +

Mode Value

MCTP HEADER

MSG TYPE

A1 – (Public Key + Signature)

A2 – (Public Exponential + Msg Hash

Packet Sequence

DATA (Public Key + Signature/Public

Exponential + Msg has [M1]

Figure 7.3. RSA Sign and Verify Flow

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 90

8. User Flow
The host computer connects to the CertusPro-NX board through the SMBus. The host computer then becomes the SMBus
Master device and CertusPro-NX board becomes the SMBus Slave device.

The msg transferred between the host computer and the board is in MCTP format. The MCTP msg contains the SPDM Msg.
SPDM version, capabilities, and algorithm are preformed between Requester and Responder.

User Selection

Third Party Tool
encrypts data based on user selection

User Selection

Application
Layer

SPDM

MCTP

Driver
Layer

SMBus
Driver

PCIe
Driver

FPGA Board

Figure 8.1. User Flow Diagram

8.1. Driver Initialization
The PCIe and the SMBus drivers are initialized and inserted into the kernel.

Supported Boards

 CertusPro-NX

Supported OS

 Distributor ID: Ubuntu.

 Description: Ubuntu 16.04.3/18.04.3 & above LTS, Kernel version 4 and above.

 Release: 18.04.

 OS Type: 64bit.

 Codename: Bionic

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 91

Required Packages

To check whether packages are installed or not, run the commands shown in the figures below. For example, make -v to
check the availability of make packages.

Figure 8.2. Make

Figure 8.3. GCC

Figure 8.4. G++

Figure 8.5. Kernel Version

Pre-Requisites

Follow Package.sh to install required packages.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 92

8.2. SMBus Driver
 SMBus_init – This function is called when the SMBus module is inserted into the kernel through the insmod

command. It creates the SMBus type Adaptor on the I2C line, with its functionality, class, and adaptor name. It also
creates the i2c client given i2c line. Add the device driver for the client.

 SMBus Probe – This function is called when the driver detects the device.

 SMBus Exit – This function is called when the device driver is removed from kernel.

 Cmd to insert/remove the driver into the kernel:
For inserting the driver – Sudo modprobe i2c_i801

For removing the driver – Sudo rmmod i2c_i801

8.3. PCIe Driver
 Pcie_register_driver – This function is called when the module is inserted into the kernel through the insmod

command. It registers the Lattice PCIe driver into the kernel.

 Pcie_probe – This function reads the device vendor, device ID, number of bars, and IRQ. It also enables the PCIe Master
bus and registers the driver for the device.

 CreateCharDevice – This function allocates the memory to the driver, major and minor number for device driver and
mapping of file operations for read, write, ioctl, open and release.

 Pcie_unregister_driver – This function is called when the driver is removed from the kernel by rmmod.

 Cmd to insert/remove the driver into/from the kernel – Go to the driver directory, and run the commands below.
For inserting the driver: Sudo insmod lattice_main.ko

For removing the driver: Sudo rmmod lattice_main.ko

8.3.1. Core API supported in PCIe Driver
 Read (Addr, Data) – This function reads the register values.

 Write (Addr, Value) – This function writes to the register values.

 getDriverVerString (Value) – This function reads the register driver version string.

 ReadFPGAReg (Addr, Data) – This function reads the FPGA registers value.

 WriteFPGAReg (Addr, Value) – This function writes to the FPGA registers.

 PCIeConfigRead (Addr, Data) – This function reads the PCIe Configuration register values.

 PCIeConfigWrite (Addr, Value) – This function writes to the PCIe Configuration register values.

 Read (uint32_t addr, uint8_t *val, size_t le) – Read function is used to read bulk data through IOCTL. addr is Read start
location, val data buffer read and len data length to be read.

 write (uint32_t addr, uint8_t *val, size_t le) – Write function is used to write bulk data through IOCTL. addr is Write
start location, val data buffer write and len data length to be written.

 getPCIConfigRegs (uint8_t *pCfg) – This function returns the 256 bytes of the device's PCI configuration space registers.
These registers must be present on any PCI/PCIexpress device.

 pCfg user location to store 256 bytes – The function returns true if read byte is successful and false if the driver reports
an error.

 getPciDriverInfo (PCIResourceInfo_t **pInfo) – This function returns the extra device driver information structure. This
includes the DMA memory buffer info, PCI bus/dev/func address. Pinfo is user's pointer that indicates the internal
driver structure.

 getPciDriverDMAInfo (const DMAResourceInfo_t **pDMAInfo) – This function returns the extra device driver
information structure in c++ supported format. This includes the DMA memory buffer info, PCI bus/dev/func address.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 93

8.4. Functions Used
 Third party Tool (Openssl) is used for data encryption on PC side.

 Abstraction Layer APIs

 Spdm_client_init – This API forms the send or receive of the SPDM message for version, capabilities, and negotiation
and sends packet to mctp layer.

 Mctp_responsder_init – This API receives the SPDM message and forms the MCTP packet.

 mctpSendMessage – This API sends the SPDM over MCTP packet over the SMBus.

 mctp_responsder_init – This API receives the SMBus packet, which is MCTP format, extracts the SPDM , and sends to
SPDM.

8.5. Flow Description

User input choice
selected

SPDM over MCTP
packet send/receive

between HC and
Application CPU

MCTP packet send/
receive over SMBus

Application CPU sends
plain data to Ingress

RAM

Security CPU reads
encrypted data and

sends to Egress RAM

Host PC reads
encrypted data

Figure 8.6. UART to PC

User input choice
selected

SPDM over MCTP
packet send/receive

between HC and
Application CPU

MCTP packet send/
receive over SMBus

PCIe driver sends
encrypted data

Application CPU reads
data and sends to

Security CPU.
Security CPU decrypts

data and sends to
Application CPU.

Application CPU
displays output on

UART terminal

Figure 8.7. PC to UART

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 94

8.6. User Selection for Algorithm
The user can select the algorithm to be used.

Figure 8.8. Select Algorithm

In the PC to UART flow, the cipher text is sent over PCIe using DMA Read. After decryption, plain text data is sent over the
UART terminal.

In the UART to PC flow, plain text is given from UART terminal. After encryption, the Cipher text data is sent over PCIe using
DMA Write to the host computer.

8.6.1. Directory Structure

Figure 8.9. Directory

 App – Contains middleware API that takes user input and sends request to the SPDM module.

 Build – Contains SPDM binary and library protocols.

 libmctp – Contains MCTP code that sends packet to the SMBus.

 Libspdm – Contains the SPDM source code.

 PCIe_Source_code – Contains PCIe driver code and API that calls the PCIe driver.

 preRequistes – Contains packages to be installed on the Linux host computer.

 RSA – Contains script.sh that generates file with signature and SHA for authentication.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 95

8.7. Application CPU Subsystem
The Application CPU is the main interface that communicates with the Security CPU through different interfaces that are
listed below. The Application CPU manages the firmware level work, that is, it has the BSPs of all interfaces.

When the Application CPU requests any service from Crypto-384, it writes certain information to the Register Interface
which then generates an interrupt to the Security CPU. The interrupt service routine at the Security CPU reads the
information from the Register Interface and provides service such as SHA2-384 and then clear the interrupt. Once the
service is completed, the Security CPU writes to the interrupt set register at the Register Interface, which generates an
interrupt to Application to inform that the request has been completed. The Application CPU can read the status register at
the Register Interface and then send the next service request.

APPLICATION LAYER

ABSTRACTION LAYER

HARDWARE LAYER

App SM
Register
Interface

Config
Manager

SMBusUART

Sends Command R/W/Ini

Calls Interface Dependent
APIs

Figure 8.10. Application CPU Software Module

The Application CPU has the following interfaces:

 UART

 SMBus Slave

The following sections provide the details on the UART and SMBus protocols.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 96

8.7.1. UART

UART stands for Universal Asynchronous Receiver/Transmitter. It is not a communication protocol like SPI and I2C, but a
physical circuit in a micro-controller, or a stand-alone IC.

The main purpose of the UART is to transmit and receive serial data. In UART communication, two UART communicate
directly with each other. Only two wires are needed to transmit data between two UART. Data flows from the TX pin of the
transmitting UART to the RX pin of the receiving UART.

Data is transmitted to the data bus by adding one start bit, one parity bit, and one stop bit to make it a packet. In the
receiving part to retrieve data, start, parity, and stop bit are removed.

And in receiving part to retrieve data start, parity and stop bit is removed.

8.7.1.1. UART Frame Packet

 Start/Stop bit

 Data bits

 Parity bit

8.7.1.2. UART Functions

 Initialization of UART – Initializes the UART.

 Receiving Data – Receives data by removing the start, parity and stop bits.

 Transmitting Data – Sends data in a packet format by adding start, parity and stop bits.

 Setting baud rate – Sets the baud rate for UART as in case we need to change the baud rate this function is called.

 Configure UART – Configures the UART.

8.7.1.3. Functions for UART to PCIe Flow

UART to PCIe flow is used in encryption. In this flow, data packet is created with first byte as 0xcc, second byte as 0x77, and
then next two bytes are used for packet size. This packet is sent over UART to PCIe. Following are the crypto algorithm flow
with UART to PCIe.

8.7.2. SMBus

The SMBus Interface is only used for message exchange and communication between the Host PC and the Application CPU.
Algorithm selection and other processes are performed through the SMBus.

8.7.2.1. Functions in SMBus

 int smbus_mailbox_write_data_register (unsigned char wbyte) – This function writes one-byte wbyte to
WR_DATA_REG. It pushes one byte to Transmit FIFO. If the Transmit FIFO is full, this API returns an error. During SMBus
read transaction, this data is shown from the Transit FIFO.

 int smbus_mailbox_read_data_register (unsigned char *rbyte) – This function reads one byte from the Receive FIFO.
After a data is received from SMBus during write transaction, the received data is pushed to Receive FIFO. Reading
from RD_DATA_REG shows a word from Receive FIFO. If the Receive FIFO is empty, this function returns an error.

 void smbus_mailbox_write_slave_address_register (unsigned short slv_id) – Sets up SMBus Slave ID for the IP block.

 void smbus_mailbox_read_slave_address_register (unsigned short *slv_id) – Reads SMBus Slave ID for the IP block.

 void smbus_mailbox_set_control_register (unsigned char wbyte) – Sets up control register

 void smbus_mailbox_read_control_register (unsigned char *rbyte) – Reads control register.

 void smbus_mailbox_read_interrupt_status1_register (unsigned char *rdata) – Reads interrupt status register
INT_STATUS1_REG.

 void smbus_mailbox_write_rf (unsigned char waddr, unsigned char wbyte) – Writes the data to Register File inside
SMBus Mailbox IP.

 void smbus_mailbox_read_rf (unsigned char waddr, unsigned char *rbyte) – Reads the data from the Register File
inside SMBus Mailbox IP.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 97

8.7.2.2. Register Address Set

 SMBUS_MAILBOX_BASE_ADDR

 SMBUS_MAILBOX_RF_OFFSET 0x2000

 SMBUS_MAILBOX_RF_ADDR

 (SMBUS_MAILBOX_BASE_ADDR + SMBUS_MAILBOX_RF_OFFSET)

 SMBUS_MAILBOX_RD_DATA_REG (SMBUS_MAILBOX_BASE_ADDR + 0x00)

 SMBUS_MAILBOX_WR_DATA_REG (SMBUS_MAILBOX_BASE_ADDR + 0x00)

 SMBUS_MAILBOX_SLVADR_L_REG (SMBUS_MAILBOX_BASE_ADDR + 0x04)

 SMBUS_MAILBOX_SLVADR_H_REG (SMBUS_MAILBOX_BASE_ADDR + 0x08)

 SMBUS_MAILBOX_CONTROL_REG (SMBUS_MAILBOX_BASE_ADDR + 0x0C)

 SMBUS_MAILBOX_TGT_BYTE_CNT_REG (SMBUS_MAILBOX_BASE_ADDR + 0x10)

 SMBUS_MAILBOX_INT_STATUS1_REG (SMBUS_MAILBOX_BASE_ADDR + 0x14)

 SMBUS_MAILBOX_INT_ENABLE1_REG (SMBUS_MAILBOX_BASE_ADDR + 0x18)

 SMBUS_MAILBOX_INT_SET1_REG (SMBUS_MAILBOX_BASE_ADDR + 0x1C)

 SMBUS_MAILBOX_INT_STATUS2_REG (SMBUS_MAILBOX_BASE_ADDR + 0x20)

 SMBUS_MAILBOX_INT_ENABLE2_REG (SMBUS_MAILBOX_BASE_ADDR + 0x24)

 SMBUS_MAILBOX_INT_SET2_REG (SMBUS_MAILBOX_BASE_ADDR + 0x28)

 SMBUS_MAILBOX_FIFO_STATUS_REG (SMBUS_MAILBOX_BASE_ADDR + 0x2C)

8.8. Code Flow

8.8.1. Application CPU Main Flow

The Application CPU performs message exchange with the Host PC and gives the mode of operation value to the Security
CPU to perform a particular task. The Application CPU previously performs authentication and verifies the Host PC, which is
followed by key exchange through ECDH algorithm. After the exchange of keys, other cryptographic algorithms are
performed. For better understanding authentication and key exchange flows are there.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 98

START

Reads Data Packet

Checks status

register

Stores value

and calls RSA

signature

verify function

END

Empty

Not Empty

Checks Packet type,

packet sequence

Compare message Hash

value received by Host PC

and output function

Sends

Success msg

to PC

Sends Fail

message to

PC

Not Same

Same

Stores these

parameters into

an array

Checks Request

Message Code

(Authentication here)

Functions

Other than

Authentication

code

Pkt seq

(1, 2, and 3)

Pkt type –

A1 (public

key and

signature

Authentication

request code

Pkt seq (4)

Pkt type –

A2 (public

exponential and

Hash message)

Figure 8.11. Authentication Flow

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 99

START

ECC Key pair generation

through CRE IP

Waits for SMBus packet

(ECDH pkt)

Stores public key sent by Host

PC and sends its own public

key in response

STOP

No

Stores echd mode value and

Host PC s public key to

Security CPU for generating

shared secret

Yes

Figure 8.12. ECDH Flow

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 100

START

Initialize SMBus, UART and pic init

Check PCIe Linkup

While(pcie_linkup == 1)

Check SMBus Status

SMBus FIFO Status == 0x01

Read all data present in FIFO

Check for message type and call APIs

Check Data is in MCTP format

STOP

ERROR

SUCCESS

Yes

No

Yes

No

Yes

No

Figure 8.13. Main Code Flow

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 101

8.8.2. Algorithm APIs

There are two main flows for algorithms, one is for UART to PCIe and the other is for PCIe to UART. In PCIe to UART, data is
sent by the Host PC to the Ingress RAM. The Application CPU reads and sends the data to the Security CPU. The Application
CPU previously sends mode value (that decides the algorithm execution to perform) to the Security CPU, and sets interrupt
for it. Until then it waits for the Application CPU interrupt which is set by the Security CPU once it has done its operation.
The Application CPU then reads the output data and displays it on the UART terminal. Decryption is performed in PCIe to
UART flow.

Following are the functions which are PCIe to UART:

 int aes_method_with_pcie (unsigned char *aes_key_arr, unsigned char *aes_iv_vector_arr, unsigned char mode_aes,
int aes_sha_mode) – This API takes key, IV vector and mode value as input from the SMBus and sends it to the Security
CPU for AES-CBC Decryption mode. In this API, the Application CPU writes key and IV vector, mode of AES, and data to
register for the Security CPU. It then enables the interrupt for the Security CPU so that it can start processing. It waits
for the Application CPU interrupt which comes from the Security CPU. After successfully completing AES operation, the
Application CPU reads the data and displays it on UART terminal.

 unsigned int sha_with_pcie (unsigned char mode_sha, unsigned int sha_length) – This API is performs SHA384
operation. It takes mode and sha_length as input and gives the hash value of data as output. It initially writes SHA
mode value and SHA length to the Security CPU. It calculates block size according to SHA length. SHA operation and
interrupt enabling depends upon the SHA length as there are different conditions for length. One is length being equal
to 128 bytes and another is length being less than 128 bytes. Data is sent through ping pong registers. After these
operations, the API waits for the Application CPU interrupt to read the hash value of data as output.

 int sha_with_pcie_new (unsigned char mode_sha, unsigned int sha_length, unsigned char *aes_key_arr, unsigned char
*aes_iv_vector_arr) – This API takes input for AES decryption and sends the output for SHA384 operation. The output is
displayed on the UART terminal. This API mainly calls AES and SHA for operation and is used in PCIe to UART flow.

 unsigned int hmac_with_pcie (unsigned char *key, unsigned char mode_hmac, unsigned int sha_length) – This API is
used to calculate hash value of data through HMAC Algorithm. It requires key as input. This is the same as the SHA API
in terms of calculating block numbers from SHA length and performing pin pong operations. However, the Application
CPU writes SHA length mode and key to the Security CPU.

 int aes_gcm (unsigned char *key, unsigned char *iv_vector, unsigned char *add_arr, unsigned int cipher_size) – This
API works for AES GCM mode. It takes input key, IV vector, additional data, data length, and addition data length from
the SMBus to the Security CPU. It then enables the interrupt for the Security CPU so that it can start its processing.
Later, it waits for the Application CPU interrupt, which comes from the Security CPU. After successful completion of AES
operation, the Application CPU reads the data and displays it on the UART terminal.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 102

The following are the functions for UART to PCIe:-

For sending data from UART to PCIe, the user needs to create a packet on the UART terminal. Figure 8.14 shows the packet
structure.

DATA

Header – 2 Bytes Packet Length – 2 Bytes

Figure 8.14. UART to PCIe

The header is = 0xcc and 0x77

 int aes_enc_uart_to_pcie (unsigned char mode_aes, unsigned char *aes_key_arr, unsigned char *aes_iv_vector_arr) –
This API works for AES encryption. Input data is obtained from the UART and sent to the Security CPU. The output data
is read once the Security CPU completes encryption and is sent to the Host PC through PCIe.

 int sha_uart_to_pcie (unsigned char mode_sha, unsigned int sha_length) – In this API, data is obtained from the UART.
Data, key, IV vector and mode (encryption in this case) are sent to the AES API. The output of THE AES encryption data
is sent for hash calculation through SHA384. The output hash value is then sent to the Host PC.

 int aes_gcm_uart_to_pcie (unsigned char *key, unsigned char *iv_vector, unsigned char *add_arr, unsigned int
cipher_length) – This is for AES-GCM encryption calculation. The flow is the same as AES UART to PCIe. However, the
key and IV vector additional data, data length, and additional data length are sent to the Security CPU.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 103

8.9. Security CPU Main Flow

START

STOP

Initialize programmable interrupt controller, enable

Security CPU by writing 1 into register

Security CPU waits for start trigger from application

CPU till status security value becomes 1

After receiving interrupt from application CPU, it

clear the security interrupt, it reads mode value and

servo status

Checks servo status for servo in service condition

and then makes it servo busy

Performs crypto operation according to the mode

value

Mode = SHA Algorithm

Mode = Encryption / Decryption

Mode = Encryption / Decryption

Mode = HMAC Algorithm

SHA 384 Algorithm

HMAC 384 Algorithm

AES – CBC 256 Encryption/ Decryption

AES – GCM 256 Encryption/ Decryption

Figure 8.15. Security CPU Main Flow

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 104

8.10. Security CPU Algorithm APIs
In the Security CPU, there are common main flows for UART to PCIe and for PCIe to UART. In the case of PCIe to UART and
UART to PCIe, data is read from the Register Interface by the Security CPU. The Application CPU sends the data through the
Register Interface to the Security CPU. The Security CPU waits for interrupt to start the process and also reads the mode
value and servo status sent by the Application CPU through the Register Interface to run the whole system for the selected
algorithm based on the mode value.

Servo status has three operations:

 Idle (nothing is happening between application and the Security CPU).

 Service (the Application CPU starts sending data and interrupt to the Security CPU)

 Busy (the Security CPU is processing all the data sent by the Application CPU and sent it to the IP).

After completion of any algorithm, the Security CPU sends output data to the Application CPU through the Register
Iinterface. The Application CPU reads output data and display it on the UART terminal.

The following are the functions used for PCIe to UART and UART to PCIe:

 unsigned int aes_enc_dec (unsigned int mode_value) – This API is for AES CBC 256 encryption/decryption. It reads key
length, key, IV vector and based upon the mode value it, runs the encryption and decryption process through IP.

 unsigned int gcm_enc_dec (unsigned int mode_value) – This API is for AES GCM 256 encryption/decryption. It reads key
length, key, IV vector, Additional data and Additional data length. Then, based upon the mode value, it runs the
encryption and decryption process through IP.

 unsigned int sha384_sec() – This API is used for SHA384 Algorithm, it reads data length from SMBus, input data from
the Register Interface. It uses HASH INITIAL to tell IP to process the data and configures HASH UPDATE to tell IP to
process if data is greater than 128 bytes. HASH FINISH only configures for last block of input data and also sends data
length to IP. After complete processing of data, IP generates Digest value of 384 bits and then sends it to the
Application CPU through the Register Interface.

 unsigned int hmac_sec() – This API is used for HMAC SHA384 Algorithm, it reads data length from SMBus, input key and
input data from the Register Interface. HMAC algorithm used IPAD (0x36) and OPAD (0x5C) value for XORing the input
key before sending to IP. It uses HASH INITIAL to tell IP to process the data and configures HASH UPDATE to tell IP to
process if data is greater than 128 bytes. HASH FINISH only configures for last block of input data and also sends data
length to the IP. After the data is completely processed, the IP generates Digest value of 384 bits and then sends it to
the Application CPU through the Register Interface.

 unsigned int sha_ping_block (unsigned int sha_input_length) – This API is used to read the data sent by the Application
CPU through the Register Interface. The sha_input_length indicates the number of bytes to be read from the ping
memory and sends it to the IP. To indicate that the entire data is read from this location, 0 is written at the end

 unsigned int sha_pong_block (unsigned int sha_input_length) – This API is used to read the data sent by the Application
CPU through the Register Interface. The sha_input_length indicates the number of bytes to be read from the pong
memory and sends it to the IP. To indicate that the entire data is read from this location, 0 is written at the end.

 unsigned int Hash_finish (unsigned int sha_input_length, unsigned char pingpong) – This API is used to perform
operation on the last block of input data to complete the process. The ping-pong variable keeps track of the memory
from which the data is read, either from the ping or the pong memory. The sha_input_length indicates the number of
bytes to be read from the specific memory and sends it to the IP.

 unsigned int rsa_key_verify() – This API is used to read the public key and signature of 3072 bits from the ping and pong
buffer through the Register Interface, in which the Application CPU writes these data. The RSA verification is performed
using CRE IP. Output data is sent to the Application CPU through the Register Interface.

 unsigned int rsa_ping_block (unsigned int sha_input_length) – This API is used to read the data sent by the Application
CPU through the Register Interface. The sha_input_length indicates the number of bytes to be read from the ping
memory and sends it to the IP. To indicate that the entire data is read from this location, 0 is written at the end.

 unsigned int rsa_pong_block (unsigned int sha_input_length) – This API is used to read the data sent by the Application
CPU through the Register Interface. The sha_input_length indicates the number of bytes to be read from the pong
memory and sends it to the IP. To indicate that the entire data is read from this location, 0 is written at the end.

 unsigned char ecdh_algo() – This API is used to exchange shared secret between the Application CPU and the Security
CPU. The Security CPU reads the public key x, public key y, and private key from the buffer and send the values to the

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 105

IP. After the IP completes the operation, the Security CPU sends the generated shared secret to the Application CPU
through the Register Interface.

Note: For more details, refer to the Detailed Description of Crypto Operations section for all APIs.

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 106

Appendix A. Resource Utilization
Table A.1. Resource Utilization

Subsystems Blocks LUTs PFU Registers EBRs DSPs

 Reset_Sync 79 35 0 0

Crypto-256 ahbl2lmmi 288 199 0 0

CRE 0 0 0 0

Sub-total (Crypto-256) 288 199 0 0

Crypto-384 AHBL Interconnect (1 masters, 3 slaves) 143 7 0 0

Registers Interface(16 kB) 198 136 8 0

Security RISC-V 2399 1008 2 0

System (Instruction + Data) Memory (128 kB) 88 35 2 LRAMs 0

PKC 5672 1314 6 16

SHA2-384 4006 2882 0 0

AES CBC 9741 2017 40 0

AES-GCM 9722 2924 24 0

ORAN Security Enclave top wrapper
(interconnect + top wrapper)

88 36 0 0

Sub-total (ORAN Security Enclave without CBC module) 19488 7156 30 16

Sub-total (Crypto-384) 22316 8342 40B , 2L 16

PCIe Ingress RAM (64 kB) 259 328 32 0

Egress RAM (64 kB) 625 819 32 0

PCIe with DMA (2 AHBL masters, 1 APB) 20383 11619 40 0

Sub-total 21267 12766 104 0

Application AHBL Interconnect of Application (1 master, 7 slaves) 297 11 0 0

AHBL TO APB Interconnect 206 254 0 0

APB Interconnect (1 master, 2 slaves) 54 3 0 0

Application CPU (RISC-V) 2710 1449 2 0

System (Instruction + Data) Memory (128 kB) 119 35 2 LRAMS 0

UART 254 146 0 0

SMBus Slave 1271 701 2 0

Sub-total 4911 2599 4B,2L 0

Total Used 48861 23941 148B,4L 16

Total Available Resources 79872 79872 208 B,7 L 156

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 107

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

5G Lattice ORAN Solution Stack 1.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 108

Revision History

Revision 1.0, June 2022

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	5G Lattice ORAN Solution Stack 1.0
	Acronyms in This Document
	1. Introduction
	2. Design Architecture
	2.1. PCIe Subsystem
	2.1.1. PCIe Endpoint with DMA Enabled
	2.1.2. AHBL Interconnect of PCIe
	2.1.3. Ingress RAM
	S0_AHB Slave
	AXI_master
	S1_AHB_slave
	Control Signals

	2.1.4. Egress RAM
	S0_AHBL slave
	AXI_slave
	S1_AHBL_slave
	Control Signals

	2.2. Application CPU Subsystem
	2.3. Crypto Subsystem
	2.3.1. Crypto-256 Subsystem
	2.3.2. Crypto-384 Subsystem
	2.3.3. Register Interface

	2.4. Programming Model

	3. Memory Map
	4. IPs/RTL Blocks used in the Design
	4.1. ORAN Security Enclave
	4.1.1. AES CBC 256 IP
	4.1.2. AES GCM 256 IP
	4.1.3. Hash Function IP
	4.1.4. Public Key Cryptography (PKC) IP

	4.2. CRE Module IP
	4.3. SMBus Controller
	4.3.1. SMBus Functional Description
	4.3.2. SMBus Program Flow
	4.3.3. SMBus Slave Controller Initialization Flow
	4.3.4. SMBus Master Initialization
	4.3.5. SMBus Slave Controller Operation Flow
	4.3.6. SMBus Master Controller Operation Flow
	4.3.7. Write Data to SMBus Slave
	4.3.8. Read Data from SMBus Slave

	4.4. PCIe Subsystem IP
	4.5. Reset Sync
	4.6. OSC for CRE

	5. Detailed Description of Crypto Operations
	5.1. AES-256 CBC Decryption (PCIe to UART)
	5.1.1. DMA Read
	5.1.2. Application CPU Process
	5.1.3. Security CPU Process

	5.2. AES-256 CBC Encryption (UART to PCIe)
	5.2.1. DMA Write
	5.2.2. Application CPU Process
	5.2.3. Security CPU

	5.3. AES-256 GCM Decryption (PCIe to UART)
	5.3.1. DMA Read
	5.3.2. Application CPU Process
	5.3.3. Security CPU Process

	5.4. AES-256 GCM Encryption (UART to PCIe)
	5.4.1. DMA Write
	5.4.2. Application CPU Process
	5.4.3. Security CPU Process

	5.5. SHA384 Authentication (PCIe to UART)
	5.5.1. PCIe DMA Read
	5.5.2. Application CPU Process
	5.5.3. Security CPU Side Process

	5.6. SHA384 Message Digest Generation (UART to PCIe)
	5.6.1. Application CPU Process
	5.6.2. Security CPU Process

	5.7. SHA384 Authentication (PCIe to UART using GCM Decryption)
	5.7.1. PCIe DMA Read
	5.7.2. Application CPU Process
	5.7.3. Security CPU Process

	5.8. HMAC 384 Authentication (PCIe to UART)
	5.9. HMAC 384 Message Digest Generation (UART to PCIe)
	5.10. ECC 256 Bit Key Pair Generation (using CRE IP)
	5.11. RSA Encryption/Decryption
	5.12. AES Throughput Calculation

	6. PCIe DMA
	6.1. Overview
	6.2. Components of DMA Design
	6.3. FPGA Design
	6.3.1.1. Register Address (0x00)
	6.3.1.2. Register Address (0x04)
	6.3.1.3. Register Address (0x08)
	6.3.1.4. Register Address (0x0C)
	6.3.1.5. Register Address (0x10)
	6.3.1.6. Register Address (0x14)
	6.3.1.7. Register Address (0x18)
	6.3.1.8. Register Address (0x1C)
	6.3.1.9. Register Address (0x20)
	6.3.1.10. Register Address (0x30)
	6.3.1.11. Register Address (0x34)
	6.3.2. Descriptor Field Format
	6.3.3. Status Field Format
	6.3.4. How to Trigger the DMA Operation.
	6.3.5. Register Space: BASE ADDRESS -- 0x00180000
	6.3.5.1. Register Address (0x0) (Default: 0x60)
	6.3.5.2. Register Address (0x4)
	6.3.5.3. Register Address (0x8)
	6.3.5.4. Register Address (0xC)
	6.3.5.5. Register Address (0x10)
	6.3.5.6. Register Address (0x14)
	6.3.5.7. Register Address (0x18)
	6.3.5.8. Register Address (0x1C)
	6.3.5.9. Register Address (0x20)
	6.3.5.10. Register Address (0x24)
	6.3.5.11. Register Address (0x28)
	6.3.5.12. Register Address (0x30)
	6.3.5.13. Register Address (0x34)
	6.3.5.14. Register Address (0x38)
	6.3.5.15. Register Address (0x3C)
	6.3.5.16. Register Address (0x40)
	6.3.5.17. Register Address (0x44)
	6.3.5.18. Register Address (0x48)
	6.3.5.19. Register Address (0x50)
	6.3.5.20. Register Address (0x54)
	6.3.5.21. Register Address (0x58)
	6.3.5.22. Register Address (0x5C)
	6.3.5.23. Register Address (0x60)
	6.3.5.24. Register Address (0x64)
	6.3.5.25. Register Address (0x70)

	7. MCTP over SMBus
	7.1. SMBus
	7.2. MCTP
	7.3. SPDM
	7.4. Algorithm Selection
	7.5. AES CBC/GCM Algorithm
	7.6. SHA Algorithm
	7.7. HMAC Algorithm
	7.8. ECDH Algorithm
	7.9. RSA Algorithm
	7.9.1. RSA Signature:
	7.9.2. RSA Verify Signature

	8. User Flow
	8.1. Driver Initialization
	Supported Boards
	Supported OS
	Required Packages

	8.2. SMBus Driver
	8.3. PCIe Driver
	8.3.1. Core API supported in PCIe Driver

	8.4. Functions Used
	8.5. Flow Description
	8.6. User Selection for Algorithm
	8.6.1. Directory Structure

	8.7. Application CPU Subsystem
	8.7.1. UART
	8.7.1.1. UART Frame Packet
	8.7.1.2. UART Functions
	8.7.1.3. Functions for UART to PCIe Flow

	8.7.2. SMBus
	8.7.2.1. Functions in SMBus
	8.7.2.2. Register Address Set

	8.8. Code Flow
	8.8.1. Application CPU Main Flow
	8.8.2. Algorithm APIs

	8.9. Security CPU Main Flow
	8.10. Security CPU Algorithm APIs

	Appendix A. Resource Utilization
	Technical Support Assistance
	Revision History
	Revision 1.0, June 2022

