= LATTICE

5G Lattice ORAN Solution Stack 1.0

Reference Design

FPGA-RD-02257-1.0

June 2022

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not
rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the
Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in
conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a situation where personal injury,
death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 2

http://www.latticesemi.com/legal

= LATTICE

Contents
ACTONYMS iN THiS DOCUMENTeieiiiiiiieciieeesteee e et e et e e e sttt e e e tte e e sateeeesstaeeeassteeesssaaeastaeesanssseessseaeanssaeesansseeesnssnaeanssenennnes 8
O [o Yo (3ot d [o 1SS UP R 9
N B 1T F-d o IV o o 11 (=Tt (U1 YR UPPTN 10
2.1. PCIE SUDSYSTEIM ...ttt ettt ettt et e s bt e e bt e sttt s bt e sab e e s bt e sabe e s bt e sabeeeaseesabeesaneesares 11
2.1.1. PCle Endpoint With DIMA ENGDIEAooieiiiiieeee ettt ettt et e e e s tae e e e sabe e e seaaaeeesabbeeeesteeeenns 11
D N\ o T =T oo Y Vg 1= Yot e il = 1 [OOSR PTOPP 12
D0 I T [¥ - { L S AN |V T T T P PP TP PP PP PP PPPPPP 12
204, EGIESS RAM ettt e e e s e aaaaaeaeaeeeaaaaaaaaes 14
2.2. PAY o] o] [TorLa o T T @] 1 0 A U] o 1S3 V] = o SR 17
2.3. Y PO SUDSYSTEIM . tieee ettt e et e e et e e e st e e s eaeeeeesabaeeeeaseeeesanseeeeansaeaeansseeeennseeeesnssneeansenennnes 17
2.3. 1. Cryplo-256 SUDSYSTOM..c.uuiiiiiiiiiiieiiteeite ettt ettt ettt et h et e bt e e bt e e s be e e bt e e bbe s bt e e sbee e bt e ebnesbeeenneenee s 17
2.3.2. Crypto-384 SUDSYSTEIM....cciiiiiiiiiiiee et eectee ettt e e e st e e e et e e e eettae e e s baeeeessbeeeseabaaeesabseaeestaeesassssaessssaasnstesenanes 17
2.3.3. REEISTEI INTEITACE ..ueeei ittt e e et e e e et e e e e s ba e e e esabeeeeeabaeaesbaeaaestaeesassaesessssaeastesennnes 17
2.4, (o4 T a0 g 11 ¥ =017/ o Yo =] LR 22
T |V =10 o Lo T 4V 1Y/ = « T T T T U U P PP PP PP PPPP 23
4, IPS/RTL BIOCKS USEA iN The DESIGN....ccveeiieiieieiteeitee sttt ete et ete et et e e e saaestaesaaesaeesbeebeeaseeseaebeebeeabeenseessesasesseeseensennns 25
4.1. (0] 2V A=Y olU g YA = g Tl - 1Y USSR 25
O O N A 1= T 0l 1 T | S USRRUSRRt 26
R N e €L 011V Y S 1 R RTRUSRt 28
R TR - =1 o T U ot o o T PSSPt 29
4.1.4. Public Key Cryptography (PKC) IPoo ittt ettt e e e e tte e e e tae e e e sate e e eeaaae e e sabaeeeestaeeeensaeaesnsaneaan 29
4.2. CRE MOTUIE IP ettt ettt ettt sttt et s e e s at e e sa b e e sateesateesateesabeesabeesbbeasabeessbeenabeesabeenaseesataensneenns 31
4.3. SIMBUS CONEIOIIET <.ttt ettt sttt et e sttt s bt e sttt s bt e ettt e beeeabeesbeesabeeebeesabeeesaesnbeean 34
4.3.1. SMBUS FUNCEIONAl DESCIIPTION . .ceiiiiiieieiie ettt e esiee e ettt e sttt e e et e e e eaee e e staeeeesnteeeesnaaeeessseeeeannseeesnnsneeesnsanannn 36
4.3.2. SIMBUS PrOZIam FIOW......cieiuiiiiiiiiteeite ettt ettt ettt ettt et ettt e sat et esb b e e bt e e sabeeenbeessbeesseeesbbeesnbeesnseannneenns 38
4.3.3. SMBus Slave Controller INitialization FIOWcooiiiiiiiiiiieceee ettt sre e e st ssaae e e sbaee s 38
4.3.4. SMBUS MasSter INFtIaliZation........ccueeeie it ee e e e st e e saae e s teesaaeesaseessaeesareenaneens 39
4.3.5. SMBus Slave Controller Operation FIOW............coiuiie ittt e ettt eeeate e e etre e e eeabe e e eeaaaeaeeabaeaaas 39
4.3.6. SMBus Master Controller Operation FIOWccciiiiciiiiiiiiie e eetee e sree et e e e e aae e e stae e e e are e e eeanaeeesaraeeaan 39
4.3.7. WIite Data t0 SIMBUS SIQVE....cuuiiiiiiiiii ettt ettt et te st e e stt e e saa e e sb e e sate e sateesateesateessaeessseessseesateensneenns 39
4.3.8. Read Data from SIVIBUS SIGVEcuuiiiiiiiieiiie ettt ettt sttt ettt e e st e e sabeesateesabeessaeesasaenaneenns 40
4.4, PCIE SUDSYSTEIM [P ...ttt ettt ettt ettt e b e sttt s bt e sttt s bt e sab e e s bt e sabe e s bt e sabeeeaseesabeesaneesares 41
4.5. RESET SYNC ittt ettt e s e bt et e e e e e s e b e e e e s na e e e e e e e s e rae e e snne s 44
4.6. (01 O o @1 2 TSRS PRPRTRPSRTRINS 44
5. Detailed Description Of Crypto OPeratioNsS.........cceiuiiiieiiiieeciieeeeciieeeeitte e e ettt e e estteeeeetreeesbaeeeensteeesessaeaestseeeassseseensses 45
5.1. AES-256 CBC Decryption (PCIE tO UART)iiiiiiieecciiee e citee e ettt e ee e e e ettee e et e e eeataee e snsaeessntaeesenssaeesnnsneessnsenanan 45
70 0 R B 11 1N 7= Vo B ORI 46
T8 0 Yo Yo Tor= Yo T o B 08 o N o o Yol TSRS 47
5.1.3. SECUIILY CPU PrOCESS ..eeeiiiiieiiiiieeteeeieiititeeeesssssiateteeessessaateteeeessassssrasaeeessssssssssaaesessssnssssaeeeesssnnssssesesessenssnne 48
5.2. AES-256 CBC ENCryption (UART 10 PCIE) ..ciiuiiiieiieieeieeiie sttt ettt sttt ettt ettt st sae s et saeesaeanbeenaeens 49
I B 1V VATV o | - ST U PP PU PR 50
5.2.2. APPICATION CPU PrOCESS...c.uviiieitiieeeeitieeeectieeeeettteeeetteeeeitbeeeeettaeeestaeeaessbeseaesbaaaessssaaaastesesassssasssssaeanstesennnes 50
o T Y- To U 4 | AV 1 = U T P T U PP P PP PPP PP 51
5.3. AES-256 GCM Decryption (PCIE 10 UART) ..uiiiieiiiieeceieeeecitee e ettt e e tte e e sttee e esttae e eeataaeesnsaaessasaeesenssesesnnssesssnsenenan 52
5.3, 1. DIMIA REAU.cuuiiiiiiiiit ettt ettt ettt ettt ettt e b e e be e e bt e e bt e e bt e e be e e bt e e bt e e bt e e be e e bbe e bt e e bt e e bt e e beeebaeenteebae s 53
5.3.2. APPIICAtION CPU PrOCESS...cicviiiiieieeeeitieeeeitteeeeettreesstteeeettesesessaaeessaeeeassseeesanseaeessseesassesesasssesssssneeansseeennnes 53
5.3.3. SECUNILY CPU PrOCESS .. .eviiiiiiiiiiciite ettt ettt s e et e s e st e e s b e e e s s ba e e s e anr e e e smnneessanaeeseanteeesnns 54
5.4. AES-256 GCM ENCryption (UART 10 PCIE)...c..eeruieiieiieieeiie sttt et ettt e st ettt satesatesbeesaeesseentesaeesaeanseenseans 56
B4 T DIMA W eeeeie ittt ettt ettt ettt e ettt e e e e e abe e et e e e e e s unbe et e eeeee s sbeeeeeeeaesanssbeeeeeeesaaannbeeeeeeeeannnren 57
5.4.2. APPIICALION CPU PrOCESS. uiiiiieieeiiciitieeee e e e eectee e e e e e e e setteeeeeeeeesesbateeeeaeesasbssaeasaeesaassssaeaeasssasasstasesasseasasees 57
5.4.3. SECUIMTY CPU PrOCESS oieieieeeieieieieieieee s e eee et e e e e e e e e e e e e e e e e e e s eeeaeaeaeeeaeaeaaeeeeaeaeaeeeeaeees 58

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.5. SHA384 Authentication (PCIE t0 UART)uuiieiiiieeceieee e stee e erte e ettt e s te e s et e e e e aate e e snseeeesntaeesensseeesnnsneeesnsenaaan 60
5.5.1. PCIE DIMIA REAM......uutiiiieeieectieteee e ettt e e e et e e e e e e e et a e e e e e e ee s e abaaaeeeeeesasssssaaaeeeesanssssasaseessenssssanaseeseenannres 61
5.5.2. APPIICAtION CPU PrOCESS....ciiuttiieieitieeitt ettt ettt ettt ettt et e sttt e sbte et e e s bt e e sbe e e s bee e bt e e btesbeeesbeeeseeesseesseesseesneeas 61
5.5.3. SECUILY CPU Sid@ PrOCESS ...uutviiieiiiiieiiiiiieeeeeeeiiteeeeeeeeesttaseeeeeeeseastateeaeaeesassaaseasaaeseasssbasasassaasasstasssaesennannees 62

5.6. SHA384 Message Digest Generation (UART t0 PCIE) ...ciuuiieieiiiie ettt ettt e et e e e eaaea e 63
5.6.1. APPICAtION CPU PrOCESS...cccuviiieiiiieeiitieeeeitteeeeittteeesteeeeestteeeeetsaeeesbasaaassbeeeaasaaeessssaaastesesasssssesasssaasnstesesnnes 64
5.6.2. SECUNMTY CPU PrOCESS .. oieieieieieieieeeeeeeee et ee ettt et e aeeaeeaeaeeeeeaaeaeees 65

5.7. SHA384 Authentication (PCle to UART using GCM DeCryptioNn)eeevcuveeeeiiieeeeiiieeeeieeeertree e e senne e s snaee e 66
5.7.1. PCIE DIMIA REA...ecuuiiiiieiiit ettt ettt e stte e sttt stteeste e e sbaessbe e s bee s bt e e sbaeesbaeesbbeebee e saeenbee e baesabaesbbeenbeesbaeenbaesssesnsaeen 67
5.7.2. APPICAtION CPU PrOCESS...cicuvviiiitieeeeiieteeecieeesitteeestteessssteeesssaeeesssaeesassseeesasseasessseasasssesesasssesessssnesansseeennnes 67
5.7.3. SECUIILY CPU PrOCESS ..eeeiiiiiiiiiiiietetiieititeetesssesiattteeessessaateteeesssessssbataeaessesssssssaaaessssssssssaeaeesssnssssseeeeesssnnsnnes 68

5.8. HMAC 384 Authentication (PCIE t0 UART) ...iiciiiiieiieecieeeiteeetesesteeete s esteeeteesteessteesaeesnbeessseesaseesnseesnsessnsessnses 70

5.9. HMAC 384 Message Digest Generation (UART 10 PCIE).......ueiiiuiiieeiiiieceiiee et et ee e e eettee e et e e e aae e e e 71

5.10. ECC 256 Bit Key Pair Generation (USING CRE IP)ccciiiiiiieiiee e ciiee ettt e et e ettt e e e st e e eetre e e ettaeeesabaeeeensaeeeeannnas 72

5.11. RSA ENCIYPtioN/DECIYPTION ...cvveeieieeiieeteeeetee ettt eetteeeteeestaeeetee e baeesteeesaseessseessaeessseessseaasseessseensseesssaessseesssesnsseeres 73

5.12. AES Throughput CalCUIGtioNccieieee ettt et e e et e e e et te e e s ee e e e et e e e eentsaeesnseeeenraeesansseeesnnenes 73
PCIE DIMIA .ttt ettt ettt ettt st e s et e st e s a bt e s b e e s ab e e s ab e e s a b e e e abeesa b e e s aseesa ke e ea b e e sab e e easeesa b e e e nbeesabeeeabeesateenaneesnreenaneeas 74

6.1. OVEIVIEW ..ttt ettt ettt e s e e sttt e s ettt e e s et e e s s bt e e s e be e e e s ame e e e s s b et e s e ase e e e s nse e e e aa s et e sennreeesannneessanaeesenreeesanns 74

6.2. COMPONENTS OF DIMIA DESIGN ...veeuiiieiiieiite ettt ettt ettt ettt ettt ettt e sit e bt e e sb bt e sat e e sabeesaeeesbteesabeesmbeesnbeesmreesnbeesmseenneeenns 75

6.3. FPGA DESIBIN .ttt ettt et et e e st e e s s et e s s b bt e e s e e e e e b et e e et e e s e b r e e e s ba e e e s be e e s ra e e e nnae s 75
6.3.2. DeSCrIPLOr FIEIA FOIMAt..ccciiiiiiiiiee ettt ettt ettt e e et e e et e e e s ba e e e esabe e e e abaaeesbaeaeestaeesassaesessssaaastesennnns 79
T 2 TR - (U L) o =] [o oY 4 = | SRR PROUPTOPPPI 79
6.3.4. How to Trigger the DIMA OPEIatioN.cccciiiiiiiiee et eete e s tte e e e stte e e e taee e streeessateeesensseeesasseaeasseeennnes 80
6.3.5. Register Space: BASE ADDRESS -- OX00180000ccecueerueeeriueerieeenireenieeeneessieeesaessseeesseessseessseesssesssseessseees 80

c IMICTP OVEE SIMIBUS. ...ttt ettt ettt e e e e e e e et e e e e e s e e et et e e e s mrr et e e e e s se s srraaeeeeesesnnraneeeeesenan 84

7.1. SIMIBUS ... it e aaeaeaeaaeaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaes 84

7.2. 1Y I PPNt 84

7.3. K] 24 RSO P R PRROPR 84

7.4. AlZOTTNIM SEIBCTION ...ttt e ettt e e ettt e e e e ta e e e e taeeeesabeeeeesteeeeassaaeeaataeesasseseaansaesesnsenaaan 85

7.5. FY @ =T 0 LTl I P={o T 4 o T o S 87

7.6. Y o VNN Fdo 1 o T o T PRSI 87

7.7. L LY X @Y o 1 o o o TSRS 87

7.8. ECDH AlOTTERM ..ttt ettt e st e e bt e st e e st e st e e s bt e sabe e s bt e sabeesaseesabeesnneesares 87

7.9. RSA AIZOTIENIM .ttt s bt bt e sttt s bt e st et s bt e sab e e s bt e sabe e s bt e sabeesabeesabeesaneesares 89
7.9. 0. RS A SIgNatUIE: i e e e aaaaaaas 89
7.9.2. RSA VEIIfY SIBNATUIEeviiieiiee ettt eete e e ettt e e ettt e e e e tbaeeesbaeeeeasbeeeeeabaaaesbseaeesbesesassseaessseaaansteeenanes 89
USEI FIOW 1.ttt ettt ettt ettt st s e e st e st e st e s e beesaaeesateesasee s e beesaseesabeesabeesa b e e sabeesabeesabeesabeesaseesateensaeennteesaneenns 90

8.1. DFIVEE INIETAIIZATION .veeiitii ittt et et te e st e s be e st e e sbeesabeesabeesabeesabeesabeesabaesabeesnseesases 90

8.2. SIMIBUS DIV ..ttt eeietee ettt ettt e s et e sttt e s sttt e st e e s sare e e s e s st e e e nr e e e s aanaee s e s be e e s nneeeesanseeeenraeesensreeesannneesannenenan 92

8.3. Ol B 4 Y= PPV 92
8.3.1. Core APl SUPPOItEA iN PCIE DIiVENciiiiiiieeriteeieeeitte ettt ettt e e st e st e st e s bt e st e e s bt e sabeesabeesabeesaneesars 92

8.4. FUNCEIONS USEA ...ttt ettt e e ettt e e et e e e s bt e e s a bt e e s s abteeesabbaeeeabeeessaabeeesabsaeesnbeeesnnsteeesnnas 93

8.5. FlOW DS CIIPTION .. etteee et e ettt e ettt e ettt e e ettt e e ettt e e eetbeeeeetaee e e taeeeeaabeeeeassaaeeesseaaeastasaeansseseeasssaeeassseaeanssesennnes 93

8.6. User Selection for AlZOITTNM ... e e e e e e st e e e et e e s e ere e e sasaeeesnteeeeensaeeeennnes 94
L3NS T0 N B 11 = Tol o] 4 VAN 1 U o1 (U1 TP PPPPPPPPPPPPPOE 94

8.7. P oY o] [Tor: 1 Lo o W@ o W IR] o 13V A] =Y o o SR 95
2t T U 1 2 L OO PRSP S P PP P PRPRTPRP 96
S] |V, 1= T LSS 96

8.8. (0o Yo 1IN o Uo T Y PSPPSR 97
8.8.1. APPlIication CPU Main FIOWccooiuiiiiiiiieeeciee ettt ettt e e tte e e ette e e e s te e e eeabe e e eeaaaeaesabaeeeesseeeennsaeaeansanaann 97
L= T B X F-Jo Y o 1o o Vo o 1 o [SRR SPPP 101

8.9. SECUNTY CPU MaAIN FIOW eeneiiiiieieiee ettt ettt e ettt e ettt e e ett e e e e abaeeseaateeesaabeaaenstaeesansaseesnsanaeanstaeesansaseesnsenanan 103

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

8.10. Security CPU AIZOIERM APISoiiiciiee i ceee ettt et e e et e e e tte e e st e e e e s teeeeessteeesnseeeesssaeeeanseeeeesnsnaeesnsenennn 104
Appendix A. RESOUICE ULIlIZAtION......ciiiiiii et e et e e st e e sttt e e e s s be e e esanteeessaeaeennseeeeanseeeeennsees 106
Technical Support Assistance
Revision Historyc..ccccceeuee

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 5

http://www.latticesemi.com/legal

= LATTICE

Figures

= U O R =1 oYl QDI V= =Y o PR
FIBUIE 2.1. TOP LEVEI AFCNIEECTUIE ...ttt ettt ettt e h et e bt e s bt e e sat e e sat e e sateesabeesnteesaseennteesnseenneeens
Figure 2.2. PCle Endpoint With DIMA ENGDIEU...........eeuiiiiiei et e e et e e e e e e ata e e e e e e s e s anbr e e e e e e eesanraaeeaaeas
Figure 2.3. Ingress RAM With IMUX SEIECTIONeeiuiiiiiiiiiii ettt et e sab et esareesnte e smreesaeeens
Figure 2.4. Egress RAM WIth IMUX SEIECHIONooiiiii ettt ettt ertt e e e sttt e e e et e e e eeabaeeesabaeeeensbeeeeasseeeesabaeesensteeeansaeas
Figure 2.5. Register Interface Memory MapPing SPACE ...ccccuuiiiiiiieeeciieeeecite e e eeite e e sttt e e eeette e e esbeeeestaeeeesreeeeessaaeesabaeeeesteeeessaens
Figure 4.1. ORAN Security Enclave Detailed ArChitECUIEoccuiiiiiiiee ettt e e e e e tre e e e e e e satae e e e nreeeenaeeas
Figure 4.2. CRE MOUIE IP BIOCK DIGBIami.......uuiiiiciieeiiiieeeeiiee e stte et e e e et e e e saaeeeesataeeeesateeesnsaeeasssaeeaanssesesnseaeesssaeesanssesesnnsenns
Figure 4.3. SMBUS MailbDOX WIite BYtE IMESSAEE ...uvveeiiuiiieieitieieiiiteeeiitee e ettt e ssaateeesteeeessteeeessteeeesstaeeeassseeesnsseaeesssaeesasseeesnsseens
Figure 4.4. SMBUS MailbDOX REAA BYLE IMIESSAZEuvveiiiuiiieieiieieccitee e sttee e ettt e seeteeesataeeesateeeesaaeeeessseeeeassseeesnseaeesnsaeesssreessnssnens
Figure 4.5. MCTP over SMBUS Packet FOIMATccc.uiiiiiiiiieieee ettt ettt ettt e e sar e e sate e sareesaeeens
Figure 4.6. SMBus IP Core FUNCLIONal BIOCK DI@Iram iccccuiiiiiiiieeeciiee ettt et e ettt e e e tte e e eeatae e e s ataeeeesbeeeeataeeesabaeeeensreeesnnseens
Figure 5.1. AES-256 CBC Decryption (PCIE t0 UART) ...uuiie ettt ettt e e ettt e ettt e e e sttt eeeeate e e eeabaeeesabaeasensseeeenseaeesabaeeeesteeeessanns
Figure 5.2. AES-256 CBC ENCryption (UART £0 PCIE) ..ccuuiieeeiiiieciieeectiee e et ee e sette e e sttt e e s e ate e e sataeessataeasensseaesanseaeesnsaeesenssesesnnsnens
Figure 5.3. AES-256 GCM Decryption (PCIE t0 UART)uiiiciiiiiiiiee e ciieeeeiree e eette e e str e e e e ate e e sataeeesataeesansseeesnnssaeesnsaeesenssesesnnsnens
Figure 5.4. AES-256 GCM ENCryption (UART £0 PCIE) ..eeeuiiiiiieeeiieeiiteeeee ettt eette e sttt eette e stteeeaae e staeesaaeesateesaseesasaesnseesaseennseessseensseens
Figure 5.5. SHA384 Authentication (PCIE 10 UART) ...cuuiccuiieiie et ettt ettt e stteeetteestveestaeestteessaeessseessseessseassseessseesssaessseesnseessseenseeens
Figure 5.6. SHA384 Message Digest Generation (UART to PCle)

Figure 5.7. SHA384 Authentication (PCle to UART using GCM DECIYPLION) ..ccueeiiriiriieniieieeienie sttt ettt 66
Figure 5.8. HMAC 384 Authentication (PCIE t0 UART) ...uiiiiiiiiieiiee ettt e ettt eetee e e ettt e e e ette e e eeataeeesabaeaeeasseeesssaeeesabaeeeensseeeensanas 70
Figure 5.9. HMAC 384 Message Digest Generation (UART 10 PCIE)oeicuiiii i ciiee ettt ettt et eate e e s vae e eente e e enaaeas 71
[T U T o R o T o WYY I =] Fo ol B 1= o SRR 74
Figure 6.2. TOp Level Archit@CtUre Of PCIE DESIZNciiiiiieieiieieccieeeectee e ettee e sete e e st e e e e ate e e s stae e e ssteeeeensteeesnseeeesnsaeesesreeesnsseens 76
FISUIPE 7. 1. IMMCTP OVEE SIVIBUSueiiiiiiietiieiiiitteee e e ettt e e e e e sttt e e e e e s s bttt eeeeessaasaabaaeeeessasssataeaeesssasssbaeeeesssassssssaeeesssnnanssanaeessns 84
Figure 7.2. FIOW Of ECDH (HOST PC aNd FPGA)ocuiiiiiieeiieeciieeste ettt ste e site s teesaae e sateasaaeesstaesaaeesateassseesssaasssaessseessseesssaansenens 88
Figure 7.3. RSA SigN and VEIITY FIOW ...coiuiiiiiiiiieiie ettt ettt et e h e e it e shb e e sae e e sbbeesnteesmbeesnteesmneenneeens 89
FIGUIE 8.1, USEI FIOW DIBEIaAMciiiiuiieiiiiieeeeitiee e ettt e eette e e ettt e e eetteeeesabaeeaetbeeesaasaeeesabasaeassseeaaasasaeaabaseeansssseasssaeeasbasasansseeeanssaens 90
FIBUIE 8.2, IMIAKE ...ttt ettt e ettt e ettt e e e et ee e e e taeeeeaasaeeeeabaeeaaasbeeeaassaeaeaabeseeassseeeassaseeaabaseeansssseensssaeeasbasasansseseassaens 91
T LU =T 2 T8 TR C TG GRS PP PRTOUPOPRPRPPPON 91
L F LU IR S C T PSSO OO PRTOPRPRPRPPPON 91
[T U IR B T =T 0 0 1Y VT o o S 91
FIGUIE 8.6. UART 10 PC..iiiiiiiiiiiiie ettt ettt ettt e st e e s et e e s et e e s s bt e e s e ba et e s mb e e e s aa b e e e s aabae e e sanneeesanreeesennneessannnens 93
FIGUIE 8.7. PC O UART ..ttt ettt ettt e st e e et e s bt e e s s bt e e s e aba e e e s mb e e e s am b e e e s eas et e e sann e e e s anreeesennneeesannnens 93
FIGUIE 8.8. SEIBCT AlGOTITNIM ... ittt e et e e e et e e e eetb e e e eeaaaeeesabaeeeesbeeeeaabaseeaabaseeansseseesssaeeasbaeasensteeeasreeas 94
T dUT ISR TR D 1 [Tl o] VAP 94
Figure 8.10. Application CPU SOFtWAre MOGUIEcouviie ettt e st e e et e e e et a e e e s ata e e e easteeesntaeeesataeeeensreeesnnseens 95
Figure 8.11. AULNENTICAtION FIOW........uiiiiiiieeciii ettt e e e et e e et e e e e st e e e eeabeeesasaeeasataeeaansseeesssaaeasataeesanssesesnsenns 98
FIGUIE 8.12. ECDH FIOWutiiiiiiiiieecites e sttt e e ettt e e ettt e e e st e e ettt e e snteee e ssaeeaansseeeansseeeassseeeeansseseansseeeeansaeeeansseeeannseeeesnsenesansseeesnnsnans 99
FIgure 8.13. MAin COUE FIOWoiiieeiieeiiieeeeciee ettt e e et e e et e e e sttt e e et e e e e sesaeeeesasaeeeassseeeeaaseeeesasseeeansseeesnnsneeesnseesassnnenannns 100
FIGUIE 8.14. UART 10 PCIE ...ciiiiiiiiiitee ettt ettt e e et e e s e e s s b e e e s e s b e e e s abe e e s sana e e s enreeesemnneessnaeesennreeesannne 102
Figure 8.15. SECUNitY CPU IMAIN FIOW ..ccouuiiiiiiiiieeiet ettt ettt ettt e et sttt e bt e sttt e bt e s bt e e bt e sabeesbbesabeeebeesabeeeneesanees 103

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Tables

Table 2.1. Interrupt Registers Definition in Register INtErfacecoccuiiiiiciiie e 19
Table 2.2. CONrol and StatUs REGISTEIS ..ccc.uiiiiiiiiieeiee ettt ettt ettt e s rbe e st e s b e st e e s bt e sabe e s bt e sabeesbeesabeesbeesabeesnseenane 20
B o1 (I T 1V oo [l Y=Y - o =T PSRRI 20
Table 2.4. SCratch MEmOIY REGISTEISciiuiiiiiiiiieeee ettt ettt sttt e bt e sttt st e st e e e bt e sabeeeabeesabeesabeesabeesbeesabeesnneenane 21
Table 3.1. MemOFrY MaP DETAIISviiieeiiee ettt e r e e et e e e et e e e stae e e e tteeeeeataeeeaasssaaeastaeeeesssseessssaeestaeasanssesessseens 23
Table 4.1. OSE TOp LeVel SigNal DESCIIPTIONcciiiiieeciiie et e ettt e eecte e e ettt e e e ste e e e e tteeeeetbeeesbaseeeastaeeeassseeesssasenstasasansseeesnsseens 25
Table 4.2. Block-Cipher IP (AES CBC-256) Register DESCIiPLiONcccccuiiiiiciiee e ciiee et ee e e s e e et e e e eae e e e nae e e enbe e e e eeneeesnnnaeas 26
Table 4.3. Block-Cipher IP (AES GCM-256) Register DESCIIPLIONcccuiiiiiciiie ettt e tre e e ve e e e e e e ae e e e eanraeas 28
Table 4.4. Hash FUNCLioNn IP REGIStEr DESCIIPLION ...eeiieeiiiieiiee ettt ettt e e et e e ate e e st e e e sa b e e esaae e e saaeeeesnseeeennneeeesnnsnens 29
Table 4.5. PKC IP REEIStEr DESCIIPTION . .vviiiieiieeeiiiee ettt ettt ettt e e st e e st e e e s aae e e e s teeesenateeesnsaeeeestaeeesnseeeesasaeeeennseeesansseeesssnens 29
Table 4.6. CRE Module IP Signal DESCIIPLIONccoiuiiiiiiiiieetie ettt ettt st e et e st e s bt e sab e sbeesabeesbeesabeesnreenane 31
Table 4.7. CRE Module IP REGISTEI DESCIIPTION.iiiecctiieeeciieeeciteeeecte e e eete e e e stteeeestbeeeeetaeeeebaseeasstasaeassseessssesesstaeasansseeesssaens 33
Table 4.8. SMBUS IP Interface SigNal DESCIIPTIONcccccuiiiiiiiieeecieeeeecte e e et e e e st e e e e st e e e e e tteeesbaeeeesataeeeessseesssseeenstaeasansseeesnsseeas 35
Table 4.9. SMBUS ReISTEr MaP DELAIISccceeeieiiiiie ettt e e et e e e e ta e e e s et e e e e s te e e e asaeeesnaeeeestaeesensseeesnnsnens 37
Table 4.10. PCle IP Signal DESCIIPLION.ii i ciieeeiieeeeee ettt e st e e et e e ete e e e st tae e e et teeeseasaeeesasaeeaanstaseesnssaeesnnsaesassaeesansseeesnssnnns 41
LI o] E 0 N oYU L =B Y U0 Vo - 2SR 44
Table 4.12. Reset SYNC IP SigNal DESCIIPLION.ciiiiiieeiie ettt s e e et e e et e e e et e e e s e e e e esnteeessnsaeeesnaeeeennseeeeenseeeeennseens 44
Table 4.13. ALEFDULE SUMIMAIY.....ii ittt ettt e s bt e e bt e s bt e s bt e sa b et e bt e sabeesabeesabeesabeesabeesbeesabeesnneenane 44
Table 4.14. OSC for CRE IP SigNal DESCIIPTION. ...cccutiiiiiiiieeiet ettt ettt sttt s e s bt e s bt e s bt e sabe e sbeesabeesbeesabeesbeesabeesnseenane 44
Table 4,15, ATErIOULE SUMIMAIY...ciiiiiie et eeee e e st e e e e tbe e e eeaaeeeesbaeaaestteeeeassaseeaasssaaaastaseaanssaeeesssasesteeesanssesesssaens 44
Table 5.1. ECC Private + Public Key GENeration PrOCEAUIEuiieeiiiiee et ettt e ettt ee e e et e e e e sate e e e tbee e eateeeesabaeeeensseeeennraeas 72
Table 5.2. ECC Public Key (from Private Key) GENeration ProCEAUIEuviiiuiiee ettt e sitee e e tte e e ve e e e sarae e e ene e e sanraeas 72
LI Lo E S0 R T ol o] o T gl = 4 Y o 1 1 - | SRR 79
Table 6.2. STAtUS ENTIY FOIrMAt ..ooii it e e st e e e et e e s e et e e e sabaeeeenteeeesnseeeesnsaeeeennseeesnnsseeesnnsnens 79
Table 7.1. Algorithm Selection STruCTUre TablEs.........coo ittt b e st e bt e s e sree e 85
Table A. L. RESOUICE ULITIZAtION .eeiiiiiiiieiiee ettt ettt e e st e e s st a e e e s bt e e e sataeessabeeeesasteeesnseeesanbeeesnnsteessnnseens 106

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Acronyms in This Document

A list of acronyms used in this document.

= LATTICE

Acronym Definition

AES Advanced Encryption Standard

AHBL Advanced High-performance Bus-Lite

APB Advanced Peripheral Bus

AXI Advanced eXtensible Interface

CPU Central Processing Unit

DMA Direct Memory Access

ECC Elliptical Curve Cryptography

FIFO First-In-First-Out

HMAC Hash Message Authentication Code

IRQ Interrupt Request

OSE ORAN Security Enclave

PCle Peripheral Component Interconnect Express
PKC Public Key Cryptography

RISC-V Reduced Instruction Set Computer-V

RSA Rivest-Shamir—-Adleman

RTL Register-Transfer Level

SHA384 Secure Hash Algorithm

SMBus System Management Bus

UART Universal Asynchronous Receiver-Transmitter

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

1. Introduction

This document provides the overall design flow of the 5G Lattice ORAN™ Solution Stack 1.0 reference design. In this project,
the CertusPro™-NX is used with soft IPs to support fast packet encryption/decryption using either AES-CBC/GCM mode.

Support for packet authentication is provided by ECC384, HMAC384 or RSA 3K/4K over PCle Interface. Keys and other
required configuration are set up through SMBus as a part of sideband communication.

PCle Genl x1 Lane

USB-UART Encryption/
Decryption/
usB < Interface Authentication

Connector |

CertusPro-NX SMBus

QSPI Interface

Figure 1.1. Block Diagram

Figure 1.1 shows the system block diagram.

CertusPro-NX is connected to the Host PC using PCle x1 Endpoint IP. CertusPro-NX boots from the bitstreams stored at an
external QSPI flash. It also connects to external components through SMBus. Furthermore, CertusPro-NX connects to an
external USB through soft IP UART and an external converter UART to USB.

This document discusses the critical functions of various IP’s and individual components. It show the integration with
CertusPro-NX and provides detailed description of all crypto algorithm implementations in the FPGA.

The main functions of the 5G Lattice ORAN Solution Stack are:

e Packet authentication, encryption, and decryption between the Host CPU and CertusPro-NX over PCle.

e Support of AES-256 CBC, AES-256 GCM, SHA384, HMAC384, RSA 3K/4K, ECDH crypto algorithms.

e Crypto-256 and Crypto-384 services to customers through software APIs.

e Support of SPDM protocol over MCTP.

e Support of secure out-of-band communication over SMBus.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 9

http://www.latticesemi.com/legal

5G Lattice ORA_N Solution Stack 1.0LATTICE

Reference Design BN SEMICONDUCTOR

2. Design Architecture

The design architecture consists of three subsystems:

e PCle
e Application CPU
e Crypto
Crypto 384 Block
AXI-4 Stream

Interrupt

Crypto 256 Block

CRE

Interrupt

AXI-4 Stream

Figure 2.1. Top Level Architecture

Figure 2.1 shows the top level architecture of the 5G Lattice ORAN Solution Stack 1.0. The three main subsystems are
described below.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 10

http://www.latticesemi.com/legal

= LATTICE

2.1. PCle Subsystem

The PCle subsystem is built by the following IPs:

e PCle Endpoint IP —This IP is configured with DMA and two AHBL Master interfaces and one APB interface.

e AHBL Interconnect of PCle — It supports two AHBL Master and two AHBL Slave interfaces.

e Ingress RAM — It has two AHBL Slave Ports and one AXI stream Master Port. One of the ports, SO, is connected to the
AHBL Interconnect of PCle. The other port, S1, is connected to the AHBL Interconnect of Application.

e Egress RAM — It has two AHBL Slave Ports and one AXI stream Slave Port. One of the ports, SO, is connected to the AHBL
Interconnect of PCle. The other port, S1, is connected to the AHBL Interconnect of Application.

The Host PC initiates the transaction over PCle Endpoint to CertusPro-NX. The PCle Endpoint IP is configured with DMA and
two AHBL Master and one AHBL slave, The DMA transfers the incoming packets to Ingress RAM from its AHBL Master Port
to Slave Port SO at Ingress RAM. Furthermore, the DMA transfers outgoing packets from Egress RAM to PCle Endpoint and
then to the Host CPU. The PCle IP also has an APB interface, from which the Application CPU firmware can do some
configurations and check its status. Both Ingress RAM and Egress RAM has a second AHBL Slave Port S1, from which the
RISC-V CPU firmware can also control AXI4 Stream data transfer from the Ingress RAM to AES Encrypt/Decrypt IP block and
from AES Encrypt/Decrypt IP block to Egress RAM. The AHBL port S1 can also be used for reading the data/printing the data
on UART terminal in PCle to UART flow and providing data in UART to PCle Flow.

The PCle subsystem is configured by the following modules:
e PCle Endpoint IP

e AHBL Interconnect of PCle

e Ingress RAM and Egress RAMs

2.1.1. PCle Endpoint with DMA Enabled

The design is configured with two AHBL masters(one for reading and another for writing) and one APB slave interface for
register configuration of PCle IP, PCle with DMA interface data flow block diagram as shown in Figure 2.2.

Brief description of each block is explained in the PCle DMA section.

apb_master_wrapper
g n APB Interface
APB Interconnect of PCle < Re-config > » PCle Soft IP Tx TLP
Memory
Space Soft IP Rx TLP
AHB Register | |«
PCle X1 Lane
master0 AHB Space >
< PCle Hard IP
< _master0 PLULIN g
Register Space AHB -
DMA
masterl . AHB | UCFG
d masterl hl |
Memory AHB g
master0
h
AHB
masterl o)
Status Queue P| AHB Arbiter
AHB PCle_DMA
master0
AHBL Interconnect of PCle
>
AHB
masterl

Figure 2.2. PCle Endpoint with DMA Enabled

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.1.2. AHBL Interconnect of PCle

The design supports two AHBL Master interfaces and two AHBL Slave interfaces to write and read from the Ingress RAM
and the Egress RAM.

2.1.3. Ingress RAM

The design has two AHBL Slave Ports. One (S0) is connected to the AHBL interconnect of PCle through which RX data is
acquired from the PCle module. The other (S1) is connected to the AHBL interconnect of the Application CPU through which
the CPU can control/configure the ingress data RAM.

In addition, the AXI stream port is available for sending the incoming data to Crypto 384 block for encryption/decryption.

This has one True Dual Port RAM, two AHBL slaves and one AXI master. The base address for AHBL slaves and memory
depth for True Dual Port RAM (for two ports) should be provided in a general manner. Data width for True Dual Port RAM
are 64 width for Port A and 128 width for port B. The Port A of True Dual Port RAM is being accessed by SO_AHB_slave.The
Port B of True Dual Port RAM is being accessed by AXI master and S1_AHB_slave.

SO_AHB Slave
This SO_AHB slave only operates on data.

Here, the slave stores data in True Dual Port RAM by mapping AHB SO slave address with Port A of True Dual Port RAM
based on AHB transactions.

Based upon ahb_write and ahb_trans, the slave writes data into True Dual Port RAM.

AXI_master
The three AXI signals, TDATA, TVALID, and TREADY are used for AXI transactions.

Here, the master provides data only when there is enough data entered from Port A of True Dual Port RAM and makes
TVALID HIGH.

If TREADY is LOW, the master holds data and TVALID in same position.

If TREADY is HIGH, the transaction gets completed and master provides next data if it has enough data in True Dual Port
RAM.

S1_AHB_slave

The S1_AHB_slave helps to transfer data and also used for control signals based on the address given. Data is being
operated on addresses from (0x0000) - (OXEFFF).Here slave takes data from True Dual Port RAM by mapping AHB S1 slave
address with Port B of True Dual Port RAM based on AHB transactions. This slave can also writes data in Port B of Tue dual
port RAM.

Based upon ahb_write and ahb_trans, the slave writes and reads data in the True Dual Port RAM.
The controls are PRI on address from (0xF000).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Control Signals

= LATTICE

(0xf008)
31:2 1:0
reserved To indicate the AES flow direction and whether decryption or
encryption is taking place.
0x1: for AES Decryption
0x2: for AES Encryption
Default: 0x0
Write only
(0xf00C)
31:1 0
reserved To enable the AXI master
Default: 0 (AXI master is disabled)
Write only
(0xf01C)
31:1 0
reserved To select which protocol type should be used for RAM Port B
access.(whether AXI master or s1_AHB_slave)
Default: 1 (AXI protocol)
Write only
(0xf024)
31:1 0
reserved To decide whether port b is for reading or writing
Default: 0 (Reading)
Write only
(0xf028)
31:0
Data size given by UART
Default: 0x0
Write only
(0xf004)
31:0
READ ADDRESS of port B
Read only
(0xf010)
31:0
WRITE ADDRESS of port A
Read only

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.1.4. Egress RAM

The Egress RAM has two AHBL Slave Ports. One (S0) is connected to the AHBL interconnect of PCle through which PCle
module reads the data from Egress RAM. The other (S1) is connected to the AHBL interconnect of the Application CPU
through which the CPU controls/configures the Egress RAM.

In addition, the Egress RAM has an AXI stream port through which it receives the data from the Crypto 384 block after
performing encryption/decryption. There is one True Dual Port RAM, two AHBL slaves, and one AXI slave. The base address
for AHBL slaves and memory depth for True Dual Port RAM (for two ports) are provided. Data width for True Dual Port RAM
is 64 for Port A and 128 for Port B. Port A of True Dual Port RAM is accessed by SO_AHBL _slave. Port B of is accessed by AXI
master and S1_AHBL_slave.

SO_AHBL slave
The SO_AHBL slave only operates on data.

Here, the slave takes data from True Dual Port RAM by mapping AHB SO slave address with Port A of True Dual Port RAM
based on AHBL transactions.

Based upon ahb_write and ahb_trans, the slave takes data from True Dual Port RAM.

AXI_slave
The Three AXI signals, TDATA, TVALID, and TREADY are used for AXI transactions.
Here, slave takes data without any interrupt.

S1_AHBL_slave

The S1_AHBL_slave helps to transfer data and is also used for control signals based on the given address. Data is operated
on addresses from (0x0000) to (OXEFFF). Here, slave stores data in True Dual Port RAM by mapping the AHB S1 slave
address with Port B based on AHBL transactions. This slave can also read data from Port B.

Based upon ahbl_write and ahbl_trans, the slave writes and reads data in True Dual Port RAM.

The controls are given on address from (0xFO00).

Control Signals

(0xf008)
31:2 1:0
reserved To indicate the AES flow direction and whether decryption or
encryption is taking place.
0x1: for AES Decryption
0x2: for AES Encryption
Default: 0x0
Write only
(0xf00C)
31:1 0
reserved To Enable the AXI Slave
Default: 0 (AXI slave is disabled)
Write only
(0xf01C)
31:1 0
reserved To select which protocol type should be used RAM Port B access.
(whether AXI slave or s1_AHB_slave)
Default: 1 (AXI protocol)
Write only

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0LATTICE

Reference Design

(0xf020)

31:1 0

reserved SHA data ready
Default: 0 (data not ready)

Write only

(0xf024)

31:1 0

reserved To decide whether Port-B is for reading or writing.
Default: 0 (Reading)

Write only

(0xf028)

31:.0

Data size given by UART
Default: 0x0

Write only

(0xf004)

31:0

WRITE ADDRESS of port B

Read only

(0xf010)

31:.0

READ ADDRESS of Port A

Read only

(0xf014)

31:0

DATA SIZE given by PCle for AES

Read only

(0xf018)

31:0

Data ready signal which tells data is encrypted/decrypted
Default: 0x0

Read only

(0xf044)

31:0

Performance counter for AES algorithm
Default: 0x0

Read only

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 15

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

The two blocks, Ingress RAM and Egress RAM, are built from an existing IP. In Dual Port EBR memory, the writing port and
the reading port need to be controlled using AHB Lite and AXI stream interfaces, as shown in Figure 2.3 and Figure 2.4.

INGRESS
RAM

AXI Stream
Out 128 Bits

AHBL_SO EE—

> RUA TDPRAM
64 Bits >
AHBL_S1
32 Bits

Register Control

Figure 2.3. Ingress RAM with Mux Selection

EGRESS
RAM
AXI Stream
In 128 Bits
AHBL_SO E—
< TDPRAM
64 Bits >
AHBL_S1
32 Bits

Register Control

Figure 2.4. Egress RAM with Mux Selection

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 16

http://www.latticesemi.com/legal

= LATTICE

2.2. Application CPU Subsystem

The Application CPU is the main interface that controls the process flow to other submodules. It interacts with submodules
over the AHBL interface. The Application CPU has two AHBL Master Ports. One is tasked to send/receive data from other
interfaces, which are connected through AHBL interconnect. The other is connected to the Instruction RAM.

The Application CPU subsystem has the following sub-interfaces:

e Application CPU — It is a RISC-V processor with two AHBL Master Ports. One fetches instruction and the other fetches
data.

e AHBL Interconnect of Application — It supports one AHBL Master Port and multiple Slave Ports. The Application CPU is
the master. Data RAM, Register Interface module (Port SQ), Ingress RAM (port S1), Egress RAM (port S1), AHBL2LMMI
(connected to CRE/HSE), AHBL2APB, SMBus, and Slave Customer PLD are the slaves. The block AHBL2APB is connected
to APB Interconnect, which connects to multiple slaves including SMBus Slave controller, UART controller.

e Instruction RAM — It has one AHBL Slave Port.

e Data RAM — It has one AHBL Slave Port.

e Customer PLD Logic

2.3. Crypto Subsystem

The design is divided into two sub systems one is Crypto-256 subsystem and others one is Crypto-384 subsystem.

2.3.1. Crypto-256 Subsystem

Crypto-256 Block has a CRE module and an AHB Lite to LMMI slave interface. The AHB Lite slave interface is connected to
the AHB Lite Interconnect of Application. The Crypto-256 block also has a block of AHBL2LMMI to convert AHB Lite bus
signals to LMMI signals since HSE uses LMMI interface. Crypto-256 block is used for generating the 256 bit Key Pair (Public
and Private), generating 256 bit Public Key using Private Key for validation.

2.3.2. Crypto-384 Subsystem

e AHBL Interconnect of Security — It supports one AHBL Master Port and three AHBL Slave Ports. One Master Port is
connected to the Security CPU and the Slave Ports are Crypto-Accelerators (SHA2-384/ECC-384/AES-CBC/AES-GCM),
Register Interface (port S1), and Instruction RAM of the Security CPU.

e Instruction RAM — It has one AHBL Slave Port.

e Register Interface — It has two AHBL Slave Ports: one port SO is connected to the AHBL Interconnect of the Application
CPU, the other port S1 is connected to the AHBL Interconnect of the Security CPU.

e Crypto IPs— It includes accelerator for SHA2-384, PKC IP, and AES-CBC/AES-GCM. It has one AHBL Slave Port and two
AXIl4-Stream ports (one for stream in and one for stream out).

e Security RISC-V CPU - It includes one master AHBL interconnect of security interface, Instruction RAM register
interface, crypto IPs.

2.3.3. Register Interface

The Register Interface block has two AHB Lite Slave Ports. One port is connected to the Security CPU AHB Lite Interconnect
and the other one is Security RISC-V CPU base address 0x2C0000 is used. When accessing from the Security CPU through S1
Port of the Register Interface, the base address 0x2EQ000 is used.

When the Application CPU requests any service from Crypto-384, it writes certain information to the Register Interface
which then generates an interrupt to the Security CPU. The interrupt service routine at the Security CPU reads the
information from the Register Interface and provides service such as SHA2-384, AES CBC and ECC384 and then clear the
interrupt. Once the service is completed, the Security CPU writes to the interrupt set register at the Register Interface,
which generates an interrupt to Application to inform that the request has been completed. The Application CPU can read
the status register at the Register Interface and then send the next service request.

The design can be improved by allowing pipelined request for Crypto-384 service. Once the Security CPU finishes reading
the data from the Register Interface, it can generate an interrupt to the Application CPU and to inform the Application CPU

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

that the data has been read through a status register. The Application CPU can then send a new request while the current
request is being serviced by Crypto-384.

Crypto services are provided through the Register Interface which consists of:

e Interrupt registers

e Control and status registers

e Scratch RAM (0x2D_0000 — 0x2D,3F00)

The Register Interface has interrupt registers, 8 Kbytes (8192 x 32) two-port (2RW) scratch memory and control/status
registers. Its memory space mapping is shown in Figure 2.5.

Interrupt Registers are mapped to the top of the address space from 0x002C_0000 and 0x002C_0014. These registers are
implemented in the FPGA fabric.

The Scratch Memory has 4096 bit depth, 32 bit width, and is implemented with EBRs with two RW ports. The memory
address is from 0x002D_0000 to 0x000D_3FFF. The bottom of this memory space from 0x002D_3FEC to 0x000D_3FFC is
used for control and status registers.

Other spaces such as the gap between (1) and (2) are unmapped.

0x002D_3FFC
Control and Status

Registers 0x002D_3F00

0x002D_3EFF
4096 x 32

Two Ports (2RW)
Scratch Memory
(16 KB)

0x002D_0100
Pong Block (1 KB)

0x002D_0080
Ping Block (1 KB)

0x002D_0000

Unmapped Space

0x002C_0014

Interrupt Registers

0x002C_0000

Figure 2.5. Register Interface Memory Mapping Space

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 2.1. Interrupt Registers Definition in Register Interface

= LATTICE

Name

Address
Offset

Width
(Bits)

Access from
Application CPU

Access from
Security CPU

Default

Description

int_status_app

0x2C_0000

1

RW1C

RO

Interrupt status register.

1'b0: no interrupt to the Application
CPU.

1'b1: interrupt is set for the
Application CPU. If int_enable_app is
set, the interrupt is generated.

The interrupt service routine at the
Application CPU should write 1 to
clear the interrupt after it is be
serviced.

int_enable_app

0x2C_0004

RW

N/A

Interrupt enable register.

1’b0: interrupt to the Application
CPU is disabled.

1’b1: interrupt to the Application
CPU is enabled.

int_set_app

0x2E_0008

N/A

RW

Interrupt set register.

1’b0: no interrupt is set.

1’b1: causes int_status_app to be
setto 1.

Read from this register always
return O per Lattice Hard IP Interface
Standard (see ref[7]).

int_status_security

0x2E_000C

RO

RW1C

Interrupt status register.

1’b0: no interrupt to the Security
CPU.

1’b1: interrupt is set for the Security
CPU. If int_enable_security[0] is set,
the interrupt is generated.

The interrupt service routine at the
Security CPU should write 1 to clear
the interrupt after it is be serviced.

int_enable_security

0x2E_0010

N/A

RW

Interrupt enable register.

1’b0: interrupt to the Security CPU is
disabled.

1’b1: interrupt to the Security CPU is
enabled.

int_set_security

0x2C_0014

RW

N/A

Interrupt set register.

1’b0: no interrupt is set.

1’b1: causes int_status_security[0]
to be set to 1.

Read from this register always
return O per Lattice Hard IP Interface
Standard (see ref[7]).

The Control and Status registers are defined in Table 2.2. To save fabric resources, these Control and Status registers are

mapped to the scratch memory (instantiating system memory with 2RW ports). It is better to map these registers near the
end address of the scratch memory. If the scratch memory has 16 Kbytes with address offset from (0x0000 to Ox3FFF), the
address offset should map backwards from the end of the space. In this way, the top space can be mapped to SHA and PKC

with the same offset as their IP requires.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 2.2. Control and Status Registers

= LATTICE

Register Name

Address Offset

Width (Bits)

Access from
Application CPU

Access from
Security CPU

Default

Description

Mode

0x0002D_3FFC

32

RW

R

CPU needs to write to
this register. The Security
CPU can only read it.

AES key length

0x0002D_3FF8

RW

Bit O:
0 means 128-bit key
1 means 256-bit key

SHA source

0x0002D_3FF4

RW

Bit O:
0 means SHA message
source from Register File.

AES source

0x0002D_3FFO0

RW

Bit O:
0 means AES message
source from PCle

Status

0x0002D_3FEC

32

RW

Bit [31:16]

Error Code (To be
defined)

Bit 0

0 means IDLE

1 means DONE

Version

0x0002D_3FES

32

RW

Bit [31:16] version
number of Crypto-384 IP
Bit [15: 0] version
number of Crypto CPU
Firmware

Table 2.3. Mode Registers

Mode Register

Operating Mode

0x35

SHA384

0x36 HMAC-SHA384

0x3A ECDH

Ox3F AES-256 CBC encryption

0x40 AES-256 CBC decryption

0x41 AES-256 GCM encryption

0x42 AES-256 GCM decryption

0x43 RSA 3K Authentication

0x44 RSA 4K Authentication

0x50 ECC 256 bit public key generation from a given private key(using CRE | P)
0x57 ECC 256 key pair generation (Qx, Qy, d) (using CRE IP)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The other memory spaces in the Register Interface are two-port scratch memory with starting address offset at
0x002D_0000. We can define the initial 32 entries as ping region (from 0x002D_0000 to 0x002D_007F) and the next 32
entries as pong region (from 0x002D_0080 to 0x002D_0OFF).

To transfer data between the security firmware and the Application CPU firmware, the data regions below are defined.

Table 2.4. Scratch Memory Registers

Only)

Region Offset Size(Bytes) Description
Ping buffer 0x2D,0000 128 Used to transfer SHA384 message and ECIES message
Pong buffer 0x2D,0080 128
Output buffer 0x2D,0100 128 Buffer to output data
BUF1 0x2D,0180 48 Writing AES (CBC/GCM) key
BUF2 0x2D,01B0 48 Writing AES (CBC/GCM) initial vector
BUF3 0x2D,01E0 48 Writing AES (GCM) additional data
BUF4 0x2D,0210 48 Writing AES len(A)64 | | len(C)64
BUF5 0x2D,0240 48 Reading GCM tag
Ping status 0x2D,0270 4 Bit 0: 1 — ping buffer ready
APP CPU: when ready bit 0, write to buffer, then set 1
SEC CPU: when ready bit 1, read from buffer, then set 0
Always start from ping buffer
Pong status 0x2D,0274 4 Bit 0: 1 — pong buffer ready
APP CPU: when ready bit 0, write to buffer, then set 1
SEC CPU: when ready bit 1, read from buffer, then set 0
Servo Status 0x2D,0278 4 Bit [1:0]:
0x0 — Servo Idle
0x1 —Servo in service
0x2 — Servo busy
APP CPU: when servo idle, change state to servo in service, then issue
interrupt to notify SEC CPU
SEC CPU: when servo in service detected, set to servo busy then
handle the request. After service done, change to servo idle then issue
interrupt to notify APP CPU
Input buffer Size 0x2D,027C 4 Size of SHA input data in bytes
Output buffer Size 0x2D,0280 Size of data in output buffer
AES Mode (Read 0x2D0290 4 1: AES CBC mode

2: AES GCM mode

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.4. Programming Model

At a high level, follow the steps below to program the registers:

1.

From the Application CPU, write to the Register Interface control registers, data in scratch memory, and interrupt
registers to generate an interrupt to the Security CPU.

The Security CPU interrupt service routine checks the Register Interface control registers (such as mode) and then reads
the Register Interface scratch memory to ORAN Security Enclave IPs.

The Security CPU checks the Security Enclave registers for status and then copies the result back to the Register
Interface scratch memory, and then writes to interrupt registers to generate an interrupt to the Application CPU. At the
same time, the Security CPU should clear its interrupt.

The Application CPU checks the status registers at the Register Interface and reads the output back from the Register
Interface scratch memory and then clears its interrupt.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. Memory Map

The memory map of the three subsystems is defined in Table 3.1. Base Address remains same for every interface. Range
needs to be changed according to memory requirement.

Table 3.1. Memory Map Details

Subsystem Base End Range Range Size Block Base End
Address Address (Bytes) (Bytes (Kbytes) Address Address
in Hex)
Application CPU
00000000 0007FFFF 524288 80000 512 Instruction RAM and | O 524287
data RAM
00080000 | 0008O3FF | 1024 400 1 ﬁl‘m;at'on CPUPIC | 524288 525311
00080400 OOOBFFFF 261120 3FC00 255 RESERVED 525312 786431
000C0000 O00O0C1FFF 8192 2000 8 RESERVED 786432 794623
000C2000 0OO0C3FFF 8192 2000 8 UART 794624 802815
Application 000C4000 000C7FFF 16384 4000 16 SMBus Slave 802816 819199
000C8000 O00C9FFF 8192 2000 8 RESERVED 819200 827391
000CA000 O0OCBFFF 8192 2000 8 PCle EP 827392 835583
000CC000 OO0OCDFFF 8192 2000 8 RESERVED 835584 843775
000CEO00 OOOCEFFF 4096 1000 4 RESERVED 843776 847871
000CF000 OOOCFFFF 4096 1000 4 RESERVED 847872 851967
000D0000 OOOFFFFF 196608 30000 192 RESERVED 851968 1048575
00100000 0013FFFF 262144 40000 256 HSE 1048576 1310719
00140000 0017FFFF 262144 40000 256 Customer PLD Logic 1310720 1572863
PCle DMA control
00180000 00180FFF 4096 1000 4 the Register 1572864 1576959
Interface
00181000 | O0182FFF | 8192 2000 |8 apsljes[t):qus ‘lﬁ:&ptor 1576960 | 1585151
00183000 0018FFFF 53428 D000 13 RESERVED 1585152 1638399
Ingress RAM
PCle Port SO:
00190000 O01AFFFF 65536 10000 64 0x0019_0000 1638400 1703935
Port S1:
0x001A_0000
Egress RAM
Port SO:
001B0000 O001CFFFF 65536 10000 64 0x001B_0000 1703936 1769471
Port S1:
0x001C_0000

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Subsystem Base End Range Range Size Block Base End
Address Address (Bytes) (Bytes (Kbytes) Address Address
in Hex)
001D0000 001FFFF 65536 10000 64 RESERVED 1769472 1835007
Security CPU
Instruction
00000000 0001FFFF 131072 20000 128 RAM/Data RAM 2097152 2162687
00210000 0023FFFF 196608 30000 192 RESERVED 2162688 2359295
00240000 0027FFFF 262144 40000 256 RESERVED 2359296 2621439
Security CPU
00280000 002803FF 1024 400 1 PIC/Timer 2621440 2622463
Security Configu ration
00280400 002807FF 1024 400 1 Engine 2622464 2623487
00280800 002BFFFF 260096 3F800 254 RESERVED 2623488 2883583
Register Interface
002C0000 002FFFFF 262144 40000 256 Port SO: 002C_0000 | 2883584 3145727
Port S1: 002E_0000
SHA2-
00300000 0033FFFF 262144 40000 256 384/ECC384/AES 3145728 3407871
00340000 0034FFFF 65536 10000 64 RESERVED 3407872 3473407
00350000 0035FFFF 65536 10000 64 RESERVED 3473408 3538943

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

4. IPs/RTL Blocks used in the Design

Some of the IPs used in this design, which are directly generated from Lattice Radiant software, are discussed in this
section. Along with them, details about the ORAN Security Enclave (OSE) IP are also explained.

4.1. ORAN Security Enclave

Figure 4.1 shows the detailed architecture of the IP. It mainly involves three Crypto IP’s namely Block Cipher IP,
hash function IP and Public Key Cryptography (PKC) IP.

SYSTEM
RAM

T M HOST Fabric
32 32
AXI-STREAM AHB-Lite
IF Slave IF

A 4
AHB-Lite Register Interface

Block Cipher Hash Function Public Key
IP IP Cryptography IP

RA RA
M1 M2

Figure 4.1. ORAN Security Enclave Detailed Architecture

Figure 4.1 shows that the AXI stream interface, AHB-Lite interface, and Clock reset interface are used in the OSE for inputs
and outputs for the IP.

Table 4.1. OSE Top Level Signal Description

Ports Direction Width | Description

Clk Input 1 Main clock signal, duty cycle 50:50
n_rst Input 1 Asynchronous active - low reset signal
oran_security_enclave_irq_o output 1 Interrupt signal raised by an IP done event
oran_security_enclave_ahblite_ahblite_slave_hsel_i Input 1 hsel signal
oran_security_enclave_ahblite_ahblite_slave_hwrite_i Input 1 hwrite Signal
oran_security_enclave_ahblite_ahblite_slave_hsize_i Input 2 hsize signal
oran_security_enclave_ahblite_ahblite_slave_hburst_i Input 3 hburst signal
oran_security_enclave_ahblite_ahblite_slave_hprot_i Input 4 hprot signal
oran_security_enclave_ahblite_ahblite_slave_htrans_i Input 2 htrans signal
oran_security_enclave_ahblite_ahblite_slave_hmastlock_i | Input 1 hmastlock signal
oran_security_enclave_ahblite_ahblite_slave_hready_i Input 1 hready signal
oran_security_enclave_ahblite_ahblite_slave_haddr_i Input 32 address signal

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 25

http://www.latticesemi.com/legal

= LATTICE

Ports Direction Width | Description
oran_security_enclave_ahblite_ahblite_slave_hwdata_i Input 32 write data signal
oran_security_enclave_ahblite_ahblite_slave_hreadyout_o | Output 1 hreadyout signal
oran_security_enclave_ahblite_ahblite_slave_hresp_o Output 1 hresp signal
oran_security_enclave_ahblite_ahblite_slave_hrdata_o Output 32 read data signal
oran_security_enclave_axistream_slave_tdata_i Input 128 AXI stream data input signal
oran_security_enclave_axistream_slave_tvalid_i Input 1 AXI stream valid input signal
oran_security_enclave_axistream_slave_tready_o Output 1 AXI stream readyout signal
oran_security_enclave_axistream_master_tdata_o Output 128 AXI stream data out signal
oran_security_enclave_axistream_master_tvalid_o Output 1 AXI stream valid out signal
oran_security_enclave_axistream_master_tready_i Input 1 AXI stream ready in signal

4.1.1. AES CBC 256 IP

The Block-Cipher IP Core is a security enhanced hardware implementation of one or several block-cipher algorithms under a
common and comprehensive interface. It also embeds one or several modes of operation with different key sizes on a 128
bits data path. The AES (Advanced Encryption Standard) performs encryption/decryption with 128/256 bits keying material,
which is used in the Block-Cipher IP. The encryption and decryption in the Block-Cipher IP performs in two modes: CBC
Mode (Cipher-Block Chaining) and GCM Mode (Galois Counter Mode). Based upon the requirements, the mode can be

selected in the Block-Cipher IP.

Table 4.2. Block-Cipher IP (AES CBC-256) Register Description

Registers Address Offset Reset Value Access Description
VERSION 0x0000 0x00010005 RO Version register. Provides a constant value relative to the
project.
STATUS 0x0004 0x0 RO Status register. Provides useful information regarding the IP.
Bit[0]: Status
1’b1 : Ready for operation
Bits[8:1] : Error code
0x01 : Unauthorized algorithm
0x02 : Unauthorized key size of algorithm
0x03 : Unauthorized cipher direction
0x04 : Unauthorized mode
0x05 : Unauthorized algorithm for mode
0x06 : Unauthorized direction for mode
0x07 : Unauthorized key size for algorithm and mode
0xff : Unknown setup error
Bit [31:9] Reserved
CONTROL 0x0008 0x0 wo Control register. This register is useful to start an AES
operation and setup the random value to be used by the
counter measure. It also drives the key selection signal as well
as the key register lock signals.
Bits[4:1] : Random data to be used by Block-Cipher IP
Bit[0] : Control
1’b1 : Starts AES operation
1’b0 : Nothing

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Registers

Address Offset

Reset Value

Access

Description

CONFIG

0x000C

0x0

WO

Configuration register. Used to set up the AES operation to be
performed (encryption/decryption/mode).

31 - 27 Reserved (always read as 0b00000).

26 - 24 ALGO "0x00": AES

"0x01": SM4

"0x02": TDEA

"0x03": ARIA

This field is always read as 0b000.

23 - 16 Reserved (always read as 0x00).

15 - 8 MODE

"0x10": CBC_INIT

"0x11": CBC_UPDATE

2 > 1KSS

"0x0": The Block Cipher IP is configured to use 128-bit keys.
"0x1": The Block Cipher IP is configured to use 192-bit keys.
"0x2": The Block Cipher IP is configured to use 256-bit keys.
This field is always read as 0b0O.

0 CD 0bO0: encryption

0b1: decryption

This field is always read as 0b0.

DIN

0x0010 to
0x001C

0x0

WO

Data input register. Contains the data to be processed by the
Block Cipher IP. This register is wired to data_i.

Bits[31 : 0] can be accessed at address 16 Bits[127 : 96]
respectively at address 28

DOuUT

0x0020 to
0x002C

0x0

RO

Data output register. Contains the data processed by the
Block Cipher IP. This register is wired to data_o Bits[127 : 0]

KEY

0x0030 to
0x004C

0x0

WO

Key input registers. Contains the key. This register is wired to
key_i[255: 0].

0x0050 to
0x005C

0x0

WO

Initialization Vector (IV) input registers. Contains the
Initialization Vector (V). This register is wired to iv_i[127 : 0].

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.1.2. AES GCM 256 IP

The Block-Cipher IP Core is a security enhanced hardware implementation of one or several block-cipher algorithms under a
common and comprehensive interface. It also embeds one or several modes of operation with different key sizes on a 128
bits data path. The AES performs encryption/decryption with 128/256 bits keying material, which is used in the Block-Cipher
IP. The encryption and decryption in the Block-Cipher IP performs in two modes: CBC Mode (Cipher-Block Chaining) and
GCM mode (Galois Counter Mode). Based upon the requirements, the mode can be selected in the Block-Cipher IP.

Table 4.3. Block-Cipher IP (AES GCM-256) Register Description

Registers Address Offset | Reset Value | Access Description

VERSION 0x0000 0x00020005 RO Version register. Provides a constant value relative to the project.
STATUS 0x0004 0x0 RO Status register

CONTROL 0x0008 0x0 wo Control register. This register is useful to start an AES operation and

setup the random value to be used by the counter measure. It also
drives the key selection signal as well as the key register lock signals.
CONFIG 0x000C 0x0 wo Configuration register. This register is useful to setup an AES
operation to be performed (encryption/decryption/mode)

31 - 27 Reserved (always read as 0b00000).
26 - 24 ALGO "0x00": AES

"0x01": SM4

"0x02": TDEA

"0x03": ARIA

This field is always read as 0b000.

23 - 16 optional block size in bits
(CMAC_FINISH,CCM_UPDATE,GCM_update,GCM_FINISH,CCM_FINISH
modes of operation only).

15 - 8 MODE

"0x50": GCM_INIT

"0x51": GCM_GHASH

"0x52": GCM_UPDATE

"0x53": GCM_FINISH_IV

"0x54": GCM_FINISH

7->3 Reserved.

2 > 1KSS

"0x0": The Block Cipher IP is configured to use 128-bit keys.
"0x1": The Block Cipher IP is configured to use 192-bit keys.
"0x2": The Block Cipher IP is configured to use 256-bit keys.
This field is always read as 0b0O.

0 CD 0bO0: encryption

0b1: decryption

This field is always read as 0bO0.

DIN 0x0010 to 0x0 wo Data input register. Contains the data to be processed by the Block
0x001C Cipher IP. This register is wired to data_| Bits[127 : 0].

DOUT 0x0020 to 0x0 RO Data output register. Contains the data processed by the Block Cipher
0x002C IP. This register is wired to data_o Bits[127 : 0].

KEY 0x0030 to 0x0 WO Key input registers. Contains the key. This register is wired to
0x004C key_i[255 : 0].

1\ 0x0050 to 0x0 WO Initialization Vector (IV) input registers. Contains the Initialization
0x005C Vector (IV). This register is wired to iv_i[127 : 0].

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.1.3. Hash Function IP

Hash function is any function that can be used to map data of arbitrary size to fixed-size values. Based on that there are 5
classes of secure hash functions. SHA2-384 and SHA2-512 are the hash functions used. The values 384 and 512 represent
the message digest size, which is fixed. The hash function takes the input and produces a hash value for the required
message digest size.

Table 4.4. Hash Function IP Register Description

Registers Address Offset Default Value | Access Description
VERSION 0x0000 0x00 RO Version register. Provides information regarding the IP-Core
version
STATUS 0x0004 0x00 RO Status register. Provides information regarding the IP-Core.
Bit[0] : Ready status
1’b1 : Ready
1’b0 : Not Ready
CONTROL 0x0008 0x00 RW Control register. Starts an operation in the IP Core.
Bit[0] : Start Operation. The operation begins when the bit is
HIGH.
CONFIG 0x000C 0x00 RW Operation, algorithm and mode selection port.

x"04" : OP_HASH_INIT
x"05" : OP_HASH_UPDATE
x"06" : OP_HASH_FINISH
others: Reserved

MSG_LEN_I(X) 0x0010 - 0x001c | OxO0 RW Message length input register for padding
DATA_I 0x0020 0x0 RW Data Input register.

Contains the data to be processed by the IP-Core.
DATA_O(X) 0x0034 - 0x0060 | 0x0 RO Data Output register.

Contains the data to be processed by the IP-Core.

4.1.4. Public Key Cryptography (PKC) IP

The PKC IP Core is a hardware implementation that supports and accelerates Public-Key Cryptography protocols of
primitives standards. The PKC accelerator IP Core implements modular arithmetic over large numbers. This IP performs RSA
primitives for the Digital Standard Signature and the RSA signature verification and ECC primitives for the Digital Standard
Signature [ECDSA] and signature verification. Mathematically, the elliptic curve digital signature protocols are highly
dependent of the ECSM (Elliptic Curve Scalar Multiplication) operation. The ECSM also relies on “lower-level” elliptic curve
operations, namely the point doubling and point addition operations. Then, the RSA protocols depends on the modular
exponentiation operation (called RSA primitives). Finally, the whole system depends on finite field arithmetic.

ECC module is composed of two ECDSA primitive operations: signature generation (private operation), signature verification
(public operation). The physical counter measures are only used for the signature generation and the elliptic curve scalar
multiplication in order to protect the private key.

Table 4.5. PKC IP Register Description

Registers Address Offset Default Value Access Description

MEMORY_1 0x0000 N.A RW Dedicated memory bank 1 for PKC accelerator
MEMORY_2 0x4000 N.A RW Dedicated memory bank 2 for PKC accelerator
OPO 0x6000 0x00 WO Operand registers access for PKC accelerator.
OP1 0x6004 0x00 WO Operand registers access for PKC accelerator.
OP2 0x6008 0x00 wo Operand registers access for PKC accelerator.
OP3 0x600C 0x00 wo Operand registers access for PKC accelerator.
OP4 0x6010 0x00 wo Operand registers access for PKC accelerator.
OP5 0x6014 0x00 \uYe] Operand registers access for PKC accelerator.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

Registers Address Offset Default Value Access Description

OP6 0x6018 0x00 \uYe] Operand registers access for PKC accelerator.
OP7 0x601C 0x00 wo Operand registers access for PKC accelerator.
COUNT_LOAD_3 0x61DC 0x00 wo Counter registers access for PKC accelerator.
COUNT_LOAD_2 0x61EQ 0x00 wo Counter registers access for PKC accelerator.
COUNT_LOAD_1 Ox61E4 0x00 WO Counter registers access for PKC accelerator.
NUM_WORDS_3 Ox61E8 0x00 \uYe] Counter registers access for PKC accelerator.
NUM_WORDS_2 Ox61EC 0x00 wo Counter registers access for PKC accelerator.
NUM_WORDS_1 0x61F0 0x00 wo Counter registers access for PKC accelerator.
STATUS 0x61F4 0x00 wo PKC accelerator status register.

CONTROL 0x61F8 0x00 WO PKC accelerator control register.

VERSION 0x61FC 0x00600505 RO PKC accelerator version.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 30

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

4.2. CRE Module IP
CRE stands for Cryptographic Engine. Figure 4.2 shows the block diagram of the CRE Module IP.

FIFO

b
e El 4 4

|
|
|
I RST from Kﬁ‘__‘> = m APB
i oscilp ! [Module Bridge APB Interface
I J
LMMI Interface

Figure 4.2. CRE Module IP Block Diagram

The FIFO 1/0 only applies to FIFO control pins; the data pins are shared with the LMMI. The FIFO interface also requires the
information to be sent through the LMMI bus, hence the FIFO pins are only available if the LMMI interface is also selected.

The LMMI Interface is the native interface of the IP, and the most resource-efficient interface of the CRE Module. Using this
interface, the user can directly use all the native IP features without using any fabric or additional control signals.

The LMMI + FIFO interface is similar to the native LMMI interface with the addition of a FIFO control port. The FIFO shares
its input and output data connection with the LMMI’s input and output connection, hence, the user must design additional
circuitry to fully take advantage of this interface. The benefits of the FIFO data path are the increased throughput for
AES/SHA transactions. In this configuration, the user can still utilize all the features of the IP while minimizing resource
utilization.

Important: The LMMI write and read data ports are shared with the FIFO interface. Proper care must be taken when
writing/sampling data to/from the IP using different clocks. This document assumes that the user has properly taken care of
any possible clock crossing issues which could arise from the use of asynchronous clocks.

Table 4.6. CRE Module IP Signal Description

Signals | Direction | Width (Bits) | Description

Core IP Signals

cfg_clk_i INPUT 1 Configuration Clock Signal (from OSC IP)

cre_clk_i INPUT 1 CRE Clock Signal (from OSC IP)

cre_rstn_i INPUT 1 CRE Engine Reset Signal (Active Low)

LMMI Slave Interface

Immi_clk_i INPUT 1 Clock Signal of the LMMI Interface

Immi_resetn_i INPUT 1 LMMI Reset Signal. Active Low, LMM I interface is in reset when
asserted.

Immi_request_i INPUT 1 Active HIGH signal, indicates that the master wants initiate a
transaction when asserted.

Immi_wr_rdn_i INPUT 1 Active HIGH signal, indicates a write transaction when the
asserted.

Immi_offset_i INPUT 18 Offset address, the accessed location of the current active
transaction.

Immi_wdata_i INPUT 32 Input data, the data to be written in the offset address. (This port

is shared with the FIFO data input).

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 31

http://www.latticesemi.com/legal

= LATTICE

Signals Direction Width (Bits) | Description

Immi_rdata_o OUTPUT 32 Output data, the data result from the previous transaction. (This
port is shared with the FIFO data output).

Immi_rdata_valid_o OUTPUT 1 Active HIGH, indicates that the data is valid when asserted.

Immi_ready_o OUTPUT Active HIGH, indicates that the slave is ready to receive
transactions when asserted.

FIFO Interface

Async_fifo_clk_i INPUT Clock Signal of the FIFO Interface

Async_fifo_rst_i INPUT 1 FIFO Reset Signal, Active HIGH, indicates that the FIFO interface is
reset when asserted

Async_fifo_wr_en_i INPUT 1 Active HIGH, indicates that an input data would be written to the
FIFO if the FIFO is not full.

Async_fifo_rd_en_i INPUT 1 Active HIGH, indicates that an output data would be generated
from the FIFO if the FIFO is not empty.

Async_fifo_full_o OUTPUT 1 Active HIGH, indicates that the FIFO is full.

Async_fifo_empty_0 OUTPUT 1 Active HIGH, indicates that the FIFO is empty.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 4.7. CRE Module IP Register Description

= LATTICE

Name LMMI [17:0] Size R/W Description

RI_CTRL1 0x2 000C 4B W/0 Instruction register, writing to this register defines the
current function of the CRE Engine and automatically starts
the Engine:
0x00: Clears previous instruction
0x02: True Random Generation
0x04: Generates ECC public keys from a private key 0x05:
Starts SHA256
0x06: Starts HMAC-SHA256
0x07: Starts ECIES Encryption 0x08: Starts ECIES Decryption
0x09: Starts AES Engine
0x0C: Starts ECDSA Generation 0x0D: Starts ECDSA
Verification
OxOE: Generates both ECC private and public keys from TRNG
engine

RI_CTRL3 0x2 0014 4B wW/0 Sets the size of the message to be encrypted / decrypted
(ECIES [1760B max] / HMAC-SHA [1980B max)

AES_SIZE 0x2 0018 4B wW/0 Sets the size of the key used in the encryption / decryption
process (AES)
0x00: 128-bits (16B)
0x01: 256-bits (32B)

RO_GPO 0x2 0020 4B R/O Shows the current status of the CRE Engine: 0xOBO: Engine is
ready to accept instructions 0xOB1: Engine is busy
0x0B2: Engine has completed performing instructions

DPA_CON 0x2 0030 4B W Writes the information controlling the Differential Power
Analysis features of the IP.
Bit[0] controls “Clock Randomization” Bit[1] controls
“Random Noise Addition”
Bit[3] controls the JML counter operation

DATA_SRC 0x2 003C 4B Ww/0 Sets the data source for the SHA / AES engine: 0x00: Sets the
AES engine data source to the bus 0x02: Sets the SHA engine
data source to the bus 0x03: Sets the SHA engine data source
to the FIFO
0x04: Sets the AES engine data source to the FIFO

AES_CON 0x2 2040 4B wW/0 AES control register, sets the current function of the AES
engine to either encrypt or decrypt
0x00: Encryption
0x01: Decryption

AES_STAT 0x2 2044 4B R/O Shows the current status of the AES Engine: AES_STAT[0] = O:
AES is busy expanding the key AES_STAT[0] = 1: AES key
expansion ready AES_STAT[1] = 0: AES is encrypting /
decrypting
AES_STAT[1] = 1: AES process finished

SHA_INIT 0x2 3070 4B w/0 Initializes the SHA engine, must be written with 0x01
followed by 0x00

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

4.3. SMBus Controller

The System Management Bus (SMBus) is a two-wire interface through which simple system and power management
devices can communicate with the rest of the system. The protocol is compatible with the 12C bus protocol and is often
found in monitoring power conditions, temperature, and other sensors on a board. While SMBus is derived from 12C, there
are several major differences existing between the specifications of the two buses. The device that initiates the
transmission on the SMBus is commonly known as the Master, while the device being addressed is called the Slave.

SMBus protocols support many kinds of formats, such as SMBus write byte, SMBus write word, SMBus read byte, SMBus
read word, SMBus write block, SMBus read block and so on. SMBus write byte and read byte message format is shown in
Figure 4.3 and Figure 4.4.

Slave Slave Slave
Resp 8 Bit Resp 8 Bit from Master Resp

RoT Address RF Address RF Data n

7 Bit+ 1 Bitwr

Figure 4.3. SMBus Mailbox Write Byte Message

Slave . Slave . Slave . Master
Resp 8 Bit Resp 7 Bit+ 1 BitRd Resp 8 Bitfrom Slave Resp

TZETE I 1 I 1 Y N K

7 Bit + 1 Bit Wr

Figure 4.4. SMBus Mailbox Read Byte Message

The MCTP over SMBus/I2C transport binding defines how MCTP packets are delivered over a physical SMBus or 12C medium
using SMBus transactions. All MCTP transactions are based on the SMBus Block Write bus protocol. The first 8 bytes make
up the packet header. The first three fields—Destination Slave Address, Command Code, and Length—map directly to
SMBus functional fields. The remaining header and payload fields map to SMBus Block Write "Data Byte" fields. The
inclusion of the Source Slave Address in the header is specified by MCTP rather than SMBus. This is done to facilitate
addressing required for establishing communications back to the message originator. The MCTP over SMBus packet format
as shown in Figure 4.5.

+0 +1 +2 +3

1le|s|4|3]2|1]0|7|6|5|4|3]2]1]0|7|6]|5]4]3|2|1]0|7|6|5]4]3]2]1]0

Destination Slave Command Code = Source Slave

Byte 1> Address MCTP = OFh Byte Count Addross
Bvte 5 > MCTP Hdr Destination Source g g g:t T| Msg
yte Reserved Version Endpoint ID Endpoint ID ulv #q ol Tag

I
Byte 9 > Message Message | . |
Msg Type Header Data | Message Integrity Check :

| —— e e

Byte N > PEC

Figure 4.5. MCTP over SMBus Packet Format

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 34

http://www.latticesemi.com/legal

Table 4.8. SMBus IP Interface Signal Description

= LATTICE

Signal Name Width Direction Description

Clock and Reset

clk_i 1 input system clock

rst_n_i 1 input System reset. The reset assertion can be asynchronous but
reset negation should be synchronous. When asserted,
output ports and registers are forced to their reset values.

AHB-Lite Bus

ahbl_hsel_slv_i 1 input AHBL Select signal
Indicates that the slave device is selected and a data
transfer is required.

ahbl_haddr_slv_i 32 input The system address bus.

ahbl_hburst_slv_i 3 input 3'b000: SINGLE burst 3'b001: INCR Incrementin gburst of
undefined lengh (NOT supported) 3'b010: WRAP4 4-bit
wrapping burst 3'b011: INCR4 4-bit incrementing burt
4'b100: WRAPS 8-bit wrapping burst 3'b101: INCR8 8-bit
incrementing burst 8'b110: WRAP16 16-bit wrapping burst
3'b111: INCR16 16-bit incrementing burst

ahbl_hprot_slv_i 4 input ahbl_hprot_slv_i [0] :1'b0 - opcode fetch; 1'b1 - data access
ahbl_hprot_slv_i [1]: 1'b0 - user access; 1'b1 - privileged
access ahbl_hprot_slv_i [2]: 1'b0 - non-bufferable, 1'b1 -
bufferable ahbl_hprot_slv_i [3]: 1'b0 - non-cacheable; 1'b1
- cacheable

ahbl_hsize_slv_i 3 input 3'b000: 1 byte 3'b001: 2 bytes 3'b010: 4 bytes

ahbl_htrans_slv_i 2 input Indicates the transfer type of the current transfer. This can
be: 2’b00: IDLE 2’b01: BUSY 2’b10: NONSEQUENTIAL 2'b11:
SEQUENTIAL

ahbl_hwdata_slv_i 32 input The write data bus

ahbl_hwrite_slv_i 1 input When HIGH, this signal indicates a write transfer and when
LOW a read transfer.

ahbl_hready_slv_i 1 input This signal should come from AHBL Interconnect. When set
to 1, this indicates the previous transfer is complete.

ahbl_hrdata_slv_o 32 output The read data bus

ahbl_hreadyout_slv_o 1 output When HIGH, this signal indicates that a transfer has finished
on the bus. This signal can be driven LOW to extend a
transfer.

ahbl_hresp_slv_o 1 output When LOW, this signal indicates that the transfer status is

OKAY. When HIGH, it indicates that the transfer status is
ERROR.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.3.1. SMBus Functional Description

The SMBus interface is connected to the external bus through SDA/SCL signals. It connects to the Master Controller through
P1 and to the Slave Controller through PO. Because Master Controller and Slave Controller share the same interface, a
switch between these two controllers is required. The switch is implemented in the SMBus interface through the following
method. If the Master Controller does not initiate transfer, PO is routed to SMBus interface and P1 is switched of.
Otherwise, P1 is routed to the SMBus interface, and PO is switched off.

The Master Controller can initiate SMBus transfer to access other SMBus Slaves. The MCTP transfer is also controlled by this
Master Controller logic. The Master Controller supports multi-master on one bus simultaneously.

The SMBus IP Core functional block diagram is shown in Figure 4.6.

sda_io
scl_io
smbalert_n_|o

A 4

y

SMBus Interface
PO Pl |e

AAA

select
X mux

A 4

A 4

A 4
RX_FIFO | Tx_FIFo | Register File ‘
Slave Controller ‘ Master Controller
Register AHBL Register

AHBL AHBL
clk_i A v
rst_n_i S00 || SO01 || S02
Ltte » AHB-Lite Interface

Figure 4.6. SMBus IP Core Functional Block Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

= LATTICE

Table 4.9. SMBus Register Map Details

Offset Register Name

Access

Reset

Description

0x0 RD_DATA_REG

RO

Not guaranteed

Read data register

ox4 WR_DATA_REG

wo

Not guaranteed

Write data register

0x8 SLVADR_L_REG

RW

[7] RSVD
[6:0] 12C Slave Address[6:0]

Slave address lower register, same
as 12C

Slave address attribute

0xC CONTROL_REG

RW

[7:5] RSVD
[4:1]0
[0] Addressing Mode in

Control register
7:5: RSVD

4: nack_data

3: nack_addr
2:reset

1: clk_stretch_en
0: addr_10bit_en

0x10 TGT_BYTE_CNT_REG

RW

8’h00

Target byte count register

0x14 INT_STATUS1_REG

RW1C

8’h00

Interrupt status first register
ctr_cmp_int

: stop_det_int

: tx_fifo_full_int

: tx_fifo_aempty_int

: tx_fifo_empty_int

: rx_fifo_full_int

: rx_fifo_afull_int

: rx_fifo_ready_int

O L N W B U1 OO

0x18 INT_ENABLE1_REG

RW

8’h00

Interrupt enable register
ttr_cmp_int

: stop_det_int

: tx_fifo_full_en

: tx_fifo_aempty_en
:tx_fifo_empty_en

: rx_fifo_full_en

: rx_fifo_afull_en

: rx_fifo_ready_en

O R, N W B U1 O

oxlc INT_SET1_REG

wo

8’h00

Interrupt set first register
1tr_cmp_set

: stop_det_set

: tx_fifo_full_set

: tx_fifo_aempty_set

: tx_fifo_empty_set

: rx_fifo_full_set
:rx_fifo_afull_set

: rx_fifo_ready_set

O L N W B U1 O

0x20 INT_STATUS2_REG

RW

8’h00

Interrupt status second register
7:3 reserved

2: external SMBus Master access
slave default address(7'h61)

1: stop_err_int

0: start_err_int

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0

37

http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access Reset Description
0x24 INT_ENABLE2_REG RW [7:2] RSVD Interrupt enable second register
[1:0] 2'b00 7: 2 reserved

1: stop_err_en

0: start_err_en

0x28 INT_SET2_REG WO [7:2] RSVD Interrupt set second register
[1:0] 2'b00 7: 2 reserved

1: stop_err_set

0: start_err_set

0x2c FIFO_STATUS_REG RO [7:6] RSVD FIFO status register

[5:0] 6'b011001

: 6 Reserved

: tx_fifo_full

: tx_fifo_aempty

: tx_fifo_empty

: rx_fifo_full

: rx_fifo_afull

: rx_fifo_empty

0x30 SMB_CONTROL_REG RW [7:1] RSVD SMBus control and status register
[0] 1’bO [7:1] RSVD

[0] smb_alert: Transmits the alert
interrupt to SMBus Master

1’b0 — No interrupt to Master
1’b1 — SMBus Slave sends alert
interrupt to Master

0x34 to 0x3c Reserved RSVD RSVD Reserved

Write access is ignored and O is
returned on read access.

O R, N W & U1

4.3.2. SMBus Program Flow

The SMBus mailbox IP is used as SMBus Master and SMBus Slave simultaneously. However, the SMBus Master function can
also be disabled by unchecking Enable Master Function attribute box when configuring the IP in the Lattice Propel Builder
software.

If both SMBus Master and SMBus Slave are enabled, when SMBus Master initiates a transfer, SMBus Slave logic halts and it
cannot receive external master’s messages. When SMBus Master logic halts, SMBus Slave logic wakes up and waits for
external master’s messages. The SMBus mailbox IP needs initialization for both SMBus Master and SMBus Slave controller
logics before normal operation.

4.3.3. SMBus Slave Controller Initialization Flow

To perform initialization, load the appropriate registers of the Slave Controller namely:

e SLAVE_ADDRL_REG, SLAVE_ADDRH_REG —This step is optional. In most cases, the initial value set in 12C Slave
Addresses attribute of the user interface does not need to be changed. Read access to the address by the external
SMBus Master is routed to the Register File, while write access to the address is routed to the internal RX_FIFO.

e CONTROL_REG

e TGT_BYTE_CNT_REG - It is recommended to set this if the size of the data is known. Set this to 8'h00 if the number of
bytes to transfer is not known, that is receiving unknown amount of data.

e INT_ENABLE1_REG - It is recommended to enable only the following interrupts when receiving commands from
master.

Transfer Complete Interrupt — If the size of data is known
Receive FIFO Data Interrupt — If the size of data is unknown
e INT_ENABLE2_REG - It is recommended to enable both error interrupts

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.3.4. SMBus Master Initialization

Write the appropriate data to the prescale register based on the frequency of SCL through the AHB-Lite bus S02.The SCL
frequency meets the equation: 5 x SCL frequency = clk_i / (PRERhi<<8 + PRERIo).

4.3.5. SMBus Slave Controller Operation Flow

This section describes the data transfer process in response to the read request of the external SMBus Master. It is assumed
that the amount of data to send is known.

To perform data transfer in response to read request of SMBus Master:
1. Write data to WR_DATA_REG, amounting to <= FIFO Depth.
2. Enable only Transfer Complete Interrupt if transmit data is > FIFO Depth.
3. Enable TX FIFO Almost Empty interrupt if there are no other data to transfer. Otherwise, proceed to step 8.
4. Wait for TX FIFO Almost Empty Interrupt.
If polling mode is desired, read INT_STATUS1_REG until tx_fifo_aempty_int asserts.
If interrupt mode is desired, wait for the interrupt signal to assert.
Read INT_STATUS1_REG and check that tx_fifo_aempt_int is asserted.
Read INT_STATUS2_REG to make sure that no error occurred.
Clear TX FIFO Almost Empty Interrupt. It is also acceptable to clear all interrupts.
Write data byte to WR_DATA_REG, amounting to less than or equal to (FIFO Depth - TX FIFO Almost Empty Setting).
If there are remaining data to transfer, go back to Step 3, otherwise, disable TX FIFO Almost Empty Interrupt.
Wait for Transfer Complete Interrupt.
If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts.
If interrupt mode is desired, wait for interrupt signal to assert.
Read INT_STATUS1_REG and check if tr_cmp_int is asserted.
Read INT_STATUS2_REG to make sure that no error occurred.
8. Clear all interrupts.

4.3.6. SMBus Master Controller Operation Flow

In the SMBus Master program flow, the Master Controller is used in polling mode. The polling mode is the same as the
interrupt mode. However, the polling mode needs to poll the SR bit 0 instead of interrupted by int_o to check status. In the
polling mode, set the CTR to 0x80.

4.3.7. Write Data to SMBus Slave

To write date to SMBus Slave:
1. Write 0x80 to the control register (CTR) to enable the SMBus Controller through the AHB-Lite bus. For enable interrupt,
the write data is 0xCO.

Read the status register (SR) through the AHB-Lite bus until all bits of the status register is 0.
Write the SMBus Slave address and write bit to the transmit register (TXR) through the AHB-Lite bus.
Write 0x90 to the command register (CR) through the AHB-Lite bus to start the SMBus write operation.

vk W

When using polling mode, read the status register (SR) until bit 0 of the status register is set and check if other bits
except bit 6 are Os.

When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are Os.

Both modes need to write Ox1 to CR to clear bit 0 of SR. If other bits except bit 0 and bit 6 are not Os, there is an error.
Write 0x5 to CR to clear SR and go back to step 2.

6. Write the byte which is sent to the SMBus Slave to the transmit register (TXR) through the AHB-Lite bus.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

10.

= LATTICE

Write 0x10 to the CR through the AHB-Lite bus to set SMBus write operation.

When using polling mode, read the status register (SR) until bit O of the status register is set and check if other bits
except bit 6 are Os.

When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are Os.

Both modes need to write Ox1 to CR to clear bit 0 of SR. If other bits except bit 0 and bit 6 are not Os, there is an error.
Write Ox5 to CR to clear SR and go back to step 2. If there is no error, another data needs to be written.

Go back to step 6.

When all the bytes are sent, write 0x40 to the command register (CR) through the AHB-Lite bus to stop the SMBus write
operation.

When using polling mode, read the status register (SR) until bit 0 of the status register is set and check if other bits
except bit 6 are Os. Bit6 is set when another master uses the bus at this time. Otherwise it also should be 0.

4.3.8. Read Data from SMBus Slave

To read data from SMBus Slave:

1.

vk N

10.

Write 0x80 to the control register (CTR) to enable the SMBus Controller through the AHB-Lite bus. If enable interrupt,
the write data is 0xCO.

Read the status register (SR) through the AHB-Lite bus until all bits of the status register is Os.

Write the SMBus Slave address and the read bit to the transmit register (TXR) through the AHB-Lite bus.

Write 0x90 to the command register (CR) through the AHB-Lite bus to start the SMBus read operation.

When using polling mode, read the status register (SR) until bit 0 is set and check if other bits except bit 6 are Os.

When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are Os.

Both modes need to write 0Ox1 to CR to clear bit 0 of SR. If other bits except bit 0 and bit 6 are not Os, there is an error.
Write 0x5 to CR to clear SR and go back to step 2.

Write 0x20 to command register (CR) through the AHB-Lite bus to read data from the slave. If it is the last byte to read,
write 0x28 to command register (CR) to NACK last byte.

When using polling mode, read the status register (SR) until bit 0 is set and check if other bits except bit 6 are Os.

When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are Os.

Both modes need to write Ox1 to CR to clear bit 0 of SR. If other bits except bit 0 and bit 6 are not Os, there is an error.
Write 0x5 to CR to clear SR and go back to step 2.

Read data from the receive register (RXR) through the AHB-Lite bus. If there is no error and another data needs to be
read, go back to step 6.

When the read operation is finished, write 0x40 to the command register (CR) through the AHB-Lite bus to stop the
SMBus read operation.

When using polling mode, read the status register (SR) until bit 0 is set and check if other bits, except bit 6, are Os. Bit 6
is set when other master use the bus at this time, otherwise it also should be 0.

When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are Os.

Both modes need to write Ox1 to CR to clear bit 0 of SR. If other bits except bit 0 and bit 6 are not Os, there is an error.
Write 0x5 to CR to clear SR and go back to step 9.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.4. PCle Subsystem IP

The PCle subsystem is built by the PCle Endpoint IP configured with DMA, two AHBL Master interfaces, and one APB
interface. The IP also has the Ingress RAM and the Egress RAM.

At the top level of this IP, the following set of signals are present.

PCle interface signals and status signals

APB slave interface for controlling the PCle register interface

Two AHBL Slave Ports (S1) for the Ingress RAM and Egress RAM data/configuration
Two AXI Stream Ports (AXI master and AXI slave)

Table 4.10. PCle IP Signal Description

Signal Name Width Direction Description

rxp_i 1 input Differential receive serial signal, RX+

rxn_i 1 input Differential receive serial signal, RX-

txp_o 1 output Differential transmit serial signal, TX+

txn_o 1 output Differential transmit serial signal, TX-

clk_125 1 input User clock 125 MHz

refclkp_i 1 input Differential reference clock, CLK+ (100 MHz)

refclkn_i 1 input Differential reference clock, CLK- (100 MHz)

perst_n_i 1 input PCl Express fundamental reset active-low asynchronous assert,
synchronous de-assert reset to the Link Layer, PHY, and Soft Logic
blocks.

refret_i 1 input 1'b0

rext_i 1 input 1’b0

usr_rst_n 1 input System reset. The reset assertion can be asynchronous but reset

negation should be synchronous. When asserted, output ports and
registers are forced to their reset values.

pll_lock 1 output Pll_lock output along with reset
clk_sel, 1 output 1'bl; For END_POINT
pcie_sel, 1 output 1'b0; For END_POINT
pcie_swl_pd 1 output 1'b0
pcie_sw2_pd 1 output 1’b0
linkup_done 1 output PCle link up
clock_flag 1 output Clock flag reserved
dma_done_o 1 output This signal indicates DMA completion
ahbl_s1_clk_i 1 input Clock for AHB transactions
ahbl_s1_rstn_i 1 input Reset for AHB transactions.
AHB-Lite Bus (Egress)
ahbl_eg sl _select_i 1 input AHBL Select signal
This signal indicates that the slave device is selected and a data transfer
is required.
ahbl_eg sl address_i 32 input The system address bus.
ahbl_eg_s1_burst_i 3 input 3'b000: SINGLE Single burst

3'b001: INCR Incrementing burst of undefined length (NOT supported)
3'b010: WRAP4 4-bit wrapping burst

3'b011: INCR4 4-bit incrementing burst

4'b100: WRAPS8 8-bit wrapping burst

3'b101: INCR8 8-bit incrementing burst

8'b110: WRAP16 16-bit wrapping burst

3'b111: INCR16 16-bit incrementing burst

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Signal Name Width Direction Description

ahbl_eg_s1_prot_i 4 input ahbl_hprot_slv_i [0] :1'b0 - opcode fetch; 1'b1 - data access
ahbl_hprot_slv_i [1]: 1'bO - user access; 1'b1 - privileged access
ahbl_hprot_slv_i [2]: 1'b0 - non-bufferable, 1'b1 - bufferable
ahbl_hprot_slv_i [3]: 1'b0 - non-cacheable; 1'b1 - cacheable

ahbl_eg sl size i 3 input 3'b000: 1 byte
3'b001: 2 bytes
3'b010: 4 bytes

ahbl_eg_s1_mastlock_i | 1 input When HIGH, this signal indicates that the current transfer is part of a
locked sequence. It has the same timing as the address and control
signals.

ahbl_eg sl trans_i 2 input This signal indicates the transfer type of the current transfer. This can
be:
2’b00: IDLE
2’b01: BUSY
2’b10: NONSEQUENTIAL
2’b11: SEQUENTIAL

ahbl_eg_s1 wdata_i 32 input The write data bus

ahbl_eg_s1_write_i 1 input When HIGH, this signal indicates a write transfer and when LOW a read
transfer.

ahbl_eg sl _ready o 1 output This signal indicates whether slave is ready or not. When set to 1, this
indicates slave is ready.

ahbl_eg sl rdata_o 32 output The read data bus

ahbl_eg sl resp_o 1 output When LOW, this signal indicates that the transfer status is OKAY. When
HIGH, it indicates that the transfer status is ERROR.

AHB-Lite Bus (Ingress)

ahbl_ing_s1 select_i 1 input AHBL select signal
This signal indicates that the slave device is selected and a data transfer
is required.

ahbl_ing_s1_address_i 32 input The system address bus.

ahbl_ing_s1_burst_i 3 input 3'b000: SINGLE Single burst
3'b001: INCR Incrementing burst of undefined length (NOT supported)
3'b010: WRAP4 4-bit wrapping burst
3'b011: INCR4 4-bit incrementing burst
4'b100: WRAPS8 8-bit wrapping burst
3'b101: INCRS8 8-bit incrementing burst
8'b110: WRAP16 16-bit wrapping burst
3'b111: INCR16 16-bit incrementing burst

ahbl_ing_s1_prot_i 4 input ahbl_hprot_slv_i [0] :1'b0 - opcode fetch; 1'b1 - data access
ahbl_hprot_slv_i [1]: 1'b0 - user access; 1'b1 - privileged access
ahbl_hprot_slv_i [2]: 1'b0 - non-bufferable, 1'b1 - bufferable
ahbl_hprot_slv_i [3]: 1'b0 - non-cacheable; 1'b1 - cacheable

ahbl_ing_s1_size_i 3 input 3'b000: 1 byte
3'b001: 2 bytes
3'b010: 4 bytes

ahbl_ing_s1_mastlock_i | 1 input When HIGH, this signal indicates that the current transfer is part of a

locked sequence. It has the same timing as the address and control
signals.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Signal Name Width Direction Description

ahbl_ing_s1_trans_i 2 input This signal indicates the transfer type of the current transfer. This can
be:
2’b00: IDLE
2’b01: BUSY
2’b10: NONSEQUENTIAL
2’b11: SEQUENTIAL

ahbl_ing_s1_wdata_i 32 input The write data bus

ahbl_ing_s1_write_i 1 input When HIGH, this signal indicates a write transfer and when LOW a read
transfer.

ahbl_ing_s1_ready_o 1 output This signal indicates whether slave is ready or not. When set to 1, this
indicates slave is ready.

ahbl_ing_s1_rdata_o 32 output The read data bus

ahbl_ing_s1_resp_o 1 output When LOW, this signal indicates that the transfer status is OKAY. When
HIGH, it indicates that the transfer status is ERROR.

APB-Interface

apb_s_clk_i 1 input Clock for apb transactions

apb_s_rstn_i 1 input Reset for apb transactions.

apb_s_sel_i 1 input AHBL select signal
Indicates that the slave device is selected and a data transfer is
required.

apb_s_addr_i 32 input The system address bus.

apb_s_enable_i 1 input Enable
This signal indicates the second and subsequent cycles of an APB
transfer

apb_s_wdata_i 32 input The write data bus

apb_s_write_i 1 input When HIGH, this signal indicates a write transfer and when LOW a read
transfer.

apb_s_ready_o 1 output This signal indicates whether slave is ready or not. When set to 1, this
indicates slave is ready.

apb_s_rdata_o 32 output The read data bus

apb_s_slverr_o 1 output When LOW, this signal indicates that the transfer status is OKAY. When
HIGH, it indicates that the transfer status is ERROR.

AXI Interface

axi_clk_i 1 input Clock for AXI transactions.

axi_rstn_i 1 input Reset for AXI transactions.

s_axis_tdata_i 128 input Data bus.

s_axis_tvalid_i 1 input When this signal is HIGH, the data is valid.

s_axis_tready_o 1 output Slave is ready if this signal is HIGH.

m_axis_tdata_o 128 output Data bus.

m_axis_tvalid_o 1 output When this signal is HIGH, the data is valid.

m_axis_tready_i 1 input Indicates slave is ready.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Table 4.11. Attribute Summary

= LATTICE

Attribute Values Description
PCle Device Type (not connected internally) End port PCle acts as end port
SIM 0 For synthesis

1 For simulation
DATA interface with ip (not connected internally) | TLP interface PCle uses TLP interface
TARGET LINK SPEEED (not connected internally) 25G PCle with Gen 1
Main clock frequency (not connected internally) 125 MHz PCle with 125 MHz clock

FPGA_VERSION

32 bit value in hex

FPGA version should be given

ING_SO_BASE_ADDR

32 bit value in hex

Default value = 32'h00190000

ING_S1_BASE_ADDR

32 bit value in hex

Default value = 32'h001A0000

EG_SO_BASE_ADDR

32 bit value in hex

Default value = 32'h001B0000

EG_S1_BASE_ADDR

32 bit value in hex

Default value = 32'h001C0000

4.5. Reset Sync

The Reset Sync module is used to synchronize the external reset coming to the FPGA using the debounce logic. It has one
parameter to select if the module is used in simulation or in synthesis.

Table 4.12. Reset Sync IP Signal Description

Signal Name Width Direction Description

clk 1 input Clock signal

pb_in_n 1 input Signal to be debounced

pb_out 1 output Debounced signal
Table 4.13. Attribute Summary

Attribute Values Description

SIM 0 For synthesis

1 For simulation

4.6. OSC for CRE

The oscillator for CRE is used for generating the design clock (75 MHz) and the CRE clocks, which are connected to CRE IP.

Table 4.14. OSC for CRE IP Signal Description

Signal Name Width Direction Description

hf_out_en_i 1 input Enable port for hf_clock_out_o.

sedc_rst_n_i 1 input Reset port for SEDC.

hf_clk_out_o 1 output High frequency clock output, enabled by HFCLK Enable and
controlled by HFCLK Divider

cre_clk_o 1 output CRE block clock output, controlled by CRECLK Enable.

cfg_clk_o 1 output Configuration clock output, enabled by SEDCLK Enable and
controlled by SEDCLK Divider.

Table 4.15. Attribute Summary

Attribute

Values

Description

Fixed Frequency

75 MHz

Frequency is fixed at 75Mhz for this release

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 Y | |
Reference Design e LATTICE

Wl SEMICONDUCTOR.

5. Detailed Description of Crypto Operations

Data flow direction can be from PCle to UART or UART to PCle.

5.1. AES-256 CBC Decryption (PCle to UART)

Crypto 384 Block
AXI-4 Stream
Interrupt
Interrupt
AXI-4 Stream

R

Figure 5.1. AES-256 CBC Decryption (PCle to UART)

Input values to AES IP are initialization vector (128 bit), key (256 bit), and plain text (length=L). Output value is cipher text
(length=L).

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 45

http://www.latticesemi.com/legal

= LATTICE

5.1.1. DMA Read

The
1.

The
The
The

10.

following describes the AES-256 CBC Decryption (PCle to UART) process:

Through SMBus, the Application CPU is directed to perform AES-256 CBC Decryption mode. 256 bit key, 128 bit
initialization vector comes through SMBus to the Application CPU.

The Application CPU writes the mode register (0x002D_3FFC) with value 0x40 for AES-256 bit CBC Decryption and
register address 0x002D_3FF8 with 0x1 for 256 bit key support.

The Application CPU writes the 256 bit key required for the operation in the BUF (starting address 0x2D_0180) and 128
bit initialization vector into BUF (starting address 0x2D_01B0).

The Application CPU instructs the Host PC to transfer data required for encryption through PCle and then raises
interrupt for the Security CPU (writes ‘1’ to address 0x2C_0014).

The Security CPU performs checks for the interrupt and starts reading mode register to get the operation that needs to
be performed.

Host CPU should check register continuously at (@0x00180030). If this is 1, the CPU starts the DMA process.
DMA_READ process is performed to send data into FPGA.

following describes the DMA_READ (PC to FPGA) process:
Descriptor count is obtained as input from the user.

Descriptor data (requestor_id, source address, destination address, descriptor length) is written to the system memory
starting from (@0x00181000).

DATA _size is obtained as input from the user (bytes in hex). This DATA_size should not be more than (descriptor_count x
512 bytes). If the user enters more DATA_size than (descriptor_count x 512 bytes), the CPU considers only
(descriptor_count x 512 bytes) data.

Note: Here, a maximum of 60 kB (120 descriptors) can be written using the DMA Read operation at once. If more data is
required, the DMA Read operation should be performed again.

The Host CPU should write descriptor count in register_space at (@0x00180008).
(DATA _size divided by 16) is written in register_space at (@0x00180038) by the Host CPU.
Note: Steps 2, 3, and 4 does not matter.

After the completion of steps 2, 3, 4, 5 and 6, using Host CPU, write 0x02 to the register_space address (@0x0018000C)
to start DMA_READ.

PCle Endpoint (by itself) starts DMA operation and serves the data.

After the data is obtained by the PCle and sent to application (Ingress RAM), the Host CPU reads at (@0x00180000) if it
comes as 0xCO (indicates completion of DMA_READ).

The process continues or an error is printed. The tenth point should be implemented in the same way as DMA status is
implemented in previous design.

AES operation takes place with help of the internal CPU (security and application) and data is written in EGRESS_RAM.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.1.2. Application CPU Process

The following describes the process on the Application CPU side:

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

20.
21.
22.
23.
24,
25.
26.

Before starting the process, wait for PCle to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

When PCle provides linkup, the Application CPU writes x01 at (@0x000CA000).
Write Ox1 into the register @ Ox1AF008 to indicate the decryption operation.

The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00) and sets servo_status to
SERVO_IN_SERVICE (0x01).

The Application CPU writes 0x1 to register @0x002C0004 to enable its interrupt.

The Application CPU writes key (@0x002D0180), Initial Vector (@0x002D01B0), and mode of encryption
(@0x002D3FFC) to the Register Interface.

Note: These information comes from the SMBus.
The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).
The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1, the Application CPU instructs the Ingress RAM port to send data to AESIP. Here, Ingress RAM
waits if the data is received from PCle. If the data is received from PCle, then until this step happens, the data is not
sent to AES Write Ox1AF00C address with Ox1 value.

The Application CPU clears its interrupt by writing 1 to INT_STATUS_APP (@0x002C000).

The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1, the Application CPU starts Egress RAM port to take the output decrypted data into it.
Write 0x1Cf01C to 0x1 for changing the Port B of RAM from AHB to AXI.

Write 0x1Cf024 to 0x1 for making Port B of RAM to be used for writing.

Write Ox1CFOOC to Ox1 for taking data into Egress RAM.

As the Security CPU configured the IP, it continues to operate the data and provide output data.

ORAN Security Enclave AES IP decrypts the data and sends output to Egress RAM port.

Read 0x1CF014 to get the DMA Read size, that is, ingress of ‘16 bytes (no .of 128 bit blocks)’ sent from the PCle to FPGA
for Decryption in single iteration.

Read 0x1CF018 until it gets the value 0x1. This one is to understand that the complete decrypted data is stored in the
Egress RAM and ready to read out from UART.

Now Disable the Ingress RAM for sending data to AES.

Write Ox1AFOOC address with 0x0 value.

Set Interrupt to the Security CPU.

To read from Egress RAM through UART, Port B of RAM must be changed to AHBL reading.

Write 0x1Cf01C to 0x0 for changing the Port B of RAM from AXI to AHBL.

Write 0x1Cf024 to 0x0 for making Port B of RAM to be used for reading

Starting from 0x1C0000, read out the data from UART until the complete encrypted data comes out.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.1.3. Security CPU Process

The following describes the process on the Security CPU side:

1.

S T

~

10.
11.
12.
13.
14.
15.
16.
17.

In the Security CPU side, write int_enable_security (@0x002E0010) to ‘Ox01’ and then read for INT_STATUS_SECURITY
(@0x002E00C) to become 1.

If INT_STATUS_SECURITY is 1, the Security CPU reads servo status (@0x002F0278) mode of encryption (@0x002F3FFC).
The Security CPU clears its interrupt by writing 1 to INT_STATUS_SECURITY (@0x002E00C).

The Security CPU reads for mode (@0x2F3FFC) and servo_status (@0x2F0278).

If servo_status reads SERVO_IN_SERVICE (0x01) the Security CPU writes servo_status to SERVO_BUSY (0x02).

Based on mode of encryption, the Security CPU reads key (@0x002F0180) and initial vector (@0x002F01B0) from the
Register Interface.

The Security CPU writes key (@0x00300030), initial vector (@0x00300050) to OSE.

The Security CPU configures the OSE with AES_256_DECRYPT by writing 0x00801004 into the register CONFIG (@
0x0000000c).

The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

If there is interrupt for AES, the Security CPU configures the OSE for the second time .

Write 0x00801104 into register CONFIG (@ 0x0000000c).

The Security CPU also clear AES interrupt by writing 1 to AES_INT_STATUS_CLR (@0x00300060) and it writes 0.
The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).
Decryption continues with the data going from the Ingress RAM to AES through AXI stream.

The decrypted data goes to the Egress RAM through AXI stream.

The Security CPU waits for the interrupt set by the Application CPU. Once the interrupt is received, it clears the Security
CPU interrupt as well as the AES interrupt. (Registers are previously provided.)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORA_N Solution Stack 1.0LATTICE

Reference Design BN SEMICONDUCTOR

5.2. AES-256 CBC Encryption (UART to PCle)

Crypto 384 Block

AXI-4 Stream

Interrupt

Crypto 256 Block

CRE

Interrupt

AXI-4 Stream

Figure 5.2. AES-256 CBC Encryption (UART to PCle)

The input plain text is written to the Ingress RAM starting from the base address 0x1A0000.0Once written, Port B is switched
to AXI stream reading and the AES is performed similar to the AES-256 CBC Decryption (PCle to UART) section. Once the
complete data is stored into Egress RAM, PCle DMA write operation is performed to get the encrypted data out.

The Host CPU should check register continuously at (@0x00180030). If this is 1, the CPU should start DMA process.
The DMA_WRITE process is performed to acquire data from the FPGA.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 49

http://www.latticesemi.com/legal

= LATTICE

5.2.1. DMA Write
The following describes the DMA_WRITE (FPGA to PC) process:

1.

A

v o N

11.

The Host CPU reads from register_space address (0x00180034) until it becomes 1. This indicates that the AES processed
data is entered into Egress RAM.

The Data size is read from register_space address (@0x00180050). The size represents no .of “128 bit” blocks of data.
This (Data size x16) gives the total size in bytes. Based on this descriptor count is calculated and descriptors are formed.
Descriptor count = ((Data size x16)/512) (this should be rounded to upper value.)

Descriptors data (requestor_id, source address, destination address, descriptor length) should be written to system
memory starting from (@0x00181000).

Note: Here, a maximum of 60 kB (120 descriptors) can be written using the DMA Read operation at once. If more data is
required, the DMA Write operation should be performed again.

The Host CPU writes descriptor count in register_space at (@0x00180008).
Write 0x01 to the register_space address (@0x0018000C) to start DMA_WRITE.
PCle Endpoint (by itself) starts DMA operation and serves the data.

After the data is obtained by application (Egress RAM), the Host CPU reads at (@0x00180000) if it comes as 0x42
(indicates completion of DMA_WRITE).

. The process continues or an error is printed. The tenth point should be implemented in the same way as they have

implemented DMA status in previous design.

AES operation takes place with the help of the internal CPUs (Security and Application) and data is written in
EGRESS_RAM.

5.2.2. Application CPU Process
The following describes the process on the Application CPU side:

1.

N o s W

10.

11.
12.
13.

14.
15.

Before starting the process, wait for PCle to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

When PCle provides linkup, the Application CPU writes x01 at (@0x000CA000).
Write 0x2 into the register @ Ox1AF008 to indicate the encryption operation.
DATA size is taken from UART in the form of ‘no of bytes’.

(DATA size/16) is written into Ingress RAM 0x1Af028.

(DATA size/16) is written into Egress RAM 0x1Cf028.

The input plain text Is written to the Ingress RAM starting from the base address 0x1A0000 based on data size. This data
should be taken from UART.

The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00) and sets servo_status to
SERVO_IN_SERVICE (0x01).

The Application CPU writes key (@0x002D0180), Initial Vector (@0x002D01B0) and mode of encryption
(@0x002D3FFC) to the Register Interface.

The Application CPU writes 0x1 to register @0x002C0004 to enable its interrupt.

Note: These information comes from the SMBus or key should be generated from CRE IP (procedure is given in Table 21
with Base Address 0x00100000 for CRE IP).

The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).
The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1, the Application CPU instructs the Ingress RAM port to send data to AESIP, that is, start the
Ingress RAM.

Write 0x1Af01C to Ox1 for changing the Port B of RAM from AHB to AXI.
Write 0x1Af024 to 0x0 for making Port B of RAM to be used for reading.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

16.
17.
18.
19.
20.
21.
22.
23.

24.
25.

26.
27.
28.

= LATTICE

Write Ox1AFOOC to 0x1 for taking data from the Ingress RAM.

The Application CPU clears its interrupt by writing 1 to INT_STATUS_APP (@0x002C000)

The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1, the Application CPU starts Egress RAM port to take the output encrypted data into it.
Write O0x1Cf01C to Ox1 for changing the Port B of RAM from AHB to AXI.

Write 0x1Cf024 to 0x1 for making Port B of RAM to be used for writing.

Write Ox1CFOOC to Ox1 for taking data into Egress RAM.

While the Security CPU has configured the AES IP in update mode, it continues to encrypt the data and provide the
encrypted output data.

ORAN Security Enclave AES IP decrypts the data and sends output to Egress RAM port.

Read 0x1CF018 until it gets the value Ox1. This one is to understand that the complete decrypted data is stored in the
Egress RAM and ready to read out from UART.

Disable the Ingress RAM for sending data to AES.
Write Ox1AFOOC address with 0x0 value.
Set Interrupt to the Security CPU.

5.2.3. Security CPU
The following describes the process on the Security CPU side:

1.

S O

~

10.
11.

12.
13.
14,

15.

In the Security CPU side, write int_enable_security (@0x002E0010) to ‘0x01’ and then read for INT_STATUS_SECURITY
(@0x002E00C) to become 1.

If INT_STATUS_SECURITY is 1, the Security CPU reads servo status (@0x002F0278) mode of encryption (@0x002F3FFC).
The Security CPU clears its interrupt by writing 1 to INT_STATUS_SECURITY (@0x002E00C).

The Security CPU reads for mode (@0x2F3FFC) and servo_status (@0x2F0278).

If servo_status reads SERVO_IN_SERVICE (0x01), the Security CPU writes servo_status to SERVO_BUSY (0x02).

Then based on mode of encryption, the Security CPU reads key (@0x002F0180) and initial vector (@0x002F01B0) from
the Register Interface.

The Security CPU writes key (@0x00300030), initial vector (@0x00300050) to OSE.

The Security CPU configures the OSE with AES_256_DECRYPT by writing 0x00801004 into register CONFIG (@
0x0000000c).

The Security CPU sets interrupt for Application CPU by writing 1 to INT_SET_APP (@0x002E0008).
The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

If there is interrupt for AES, the Security CPU configure the OSE for the second time by writing 0x00801104 into register
CONFIG (@ 0x0000000c).

The Security CPU also clear AES interrupt by writing 1 to AES_INT_STATUS_CLR (@0x00300060) and it writes O .
The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

Decryption continues with the data going from the Ingress RAM to AES through AXI stream and the decrypted data goes
to the Egress RAM through AXI stream.

The Security CPU waits for the interrupt set by the Application CPU. Once interrupt is received, it clears the Security
CPU interrupt as well as the AES interrupt. (Registers are already given previously.)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORA_N Solution Stack 1.0LATTICE

Reference Design BN SEMICONDUCTOR

5.3. AES-256 GCM Decryption (PCle to UART)

CJypto 384 Block

AXI-4 Stream

Interrupt

Interrupt

AXI-4 Stream

oo

Figure 5.3. AES-256 GCM Decryption (PCle to UART)

The Host CPU should check register continuously at (@0x00180030). If this is 1, the CPU should start DMA process.
The DMA_READ process is performed to send data to the FPGA.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 52

http://www.latticesemi.com/legal

= LATTICE

5.3.1. DMA Read
The following describes the DMA_READ (PC to FPGA) process:

1.
2.

10.

11.

12.

Descriptor count should be taken as input from user.

Descriptor data (requestor_id,source address, destination address,descriptor length) should be written to system
memory starting from (@0x00181000).

DATA_size should be taken as input from user (bytes in hex). This DATA_size should not be more than (descriptor_count
x 512 bytes). If the user enters more DATA_size than (descriptor_count x 512bytes), the CPU considers only
(descriptor_count x 512 bytes) data.

Host CPU should write descriptor count in register_space at (@0x00180008).

Note: Here, a maximum of 60 kB (120 descriptors) can be written using the DMA Read operation at once. If more data is
required, the DMA Read operation should be performed again.

(DATA _size divided by 16) is written in register_space at (@0x00180038) by Host CPU.

If cipher text length is not a multiple of 128 bit then we have to write size of cipher text in bits in the register
(@0x00180070).

Steps 2, 3, and 4 sequence does not matter.

After completion of steps 2, 3, 4, 5, and 6 then by Host CPU write 0x02 to the register_space address (@0x0018000C) to
start DMA_READ.

After this PCle Endpoint (by itself) starts DMA operation and serve the data.

After data is taken by PCle and sent to application (Ingress RAM), Host CPU should read at (@0x00180000) if it comes as
0xCO (indicates completion of DMA_READ).

The process continues or an error is printed. The tenth point should be implemented in the same way as they have
implemented DMA status in previous design.

Here, AES operation takes place with help of internal CPUs (Security and Application) and data is written in
EGRESS_RAM.

5.3.2. Application CPU Process
The following describes the process on the Application CPU side:

1.

12.
13.
14.

Before starting the process, wait for PCle to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

When PCle gives linkup, the Application CPU writes x01 at (@0x000CA000).
Write Ox1 into the register @ Ox1AF008 to indicate the decryption operation.

The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00) and sets servo_status to
SERVO_IN_SERVICE (0x01).

The Application CPU writes key (@0x002D0180), Initial Vector (@0x002D01B0)(96 BITS) and mode of encryption
(@0x002D3FFC) to the Register Interface.

The Application CPU writes AADITIONAL_DATA (@0x002D01EO) to the Register Interface.

The Application CPU writes 0x1 to register @0x002C0004 to enable its interrupt.

The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).
The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

. If INT_STATUS_APP is 1, the Application CPU tells Ingress RAM port to send data to OSE.

. Here, Ingress RAM keeps on waiting if the data is not received from PCle. If the data is received from PCle already, then

until this step happens, data is not sent to AES Write Ox1AFOOC address with 0x1 value.
Write 0x1Af01C to 0x1 for changing the Port B of Ingress RAM from AHB to AXI.

Write 0x1Af024 to 0x0 for making Port B of Ingress RAM to be used for reading.

The Application CPU clears its interrupt by writing 1 to INT_STATUS_APP (@0x002C000).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

15.
16.
17.
18.
19.
20.
21.
22.

23.

24,

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

= LATTICE

The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1, the Application CPU start Egress RAM port to take the output data.
Write Ox1CFOOC address with Ox1 value.

Write 0x1Cf01C to 0x1 for changing the Port B of Egress RAM from AHB to AXI.

Write 0x1Cf024 to Ox1 for making Port B of Egress RAM to be used for writing.

As the Security CPU has configured the IP, it continues to operate the data and give output data.
OSE encrypts the data and send output to Egress RAM port.

Read 0x1CF014 to get the DMA DATA size, that is, ingress of ‘16 bytes (no .of 128 bit blocks)’ sent from the PCle to FPGA
for Decryption in single iteration.

The Application CPU writes length (AADITIONAL_DATA)| | length(CIPHER_TEST) (@0x002D0210) to the Register
Interface.

length (AADITIONAL_DATA) =128 BITS (FIXED FOR NOW)
length (CIPHER_TEST) (@0x002D0210) = (DMA DATA size)*16*8.

Note: If cipher text length is not a multiple of 128 bit then we have to read the register (@0x000CA034) and pass as
length(CIPHER_TEST)

Read 0x1CF018 until it gets the value 0x1.This one is to understand that the complete decrypted data is stored in the
Egress RAM.

Disable the Ingress RAM from sending data to AES.

Write Ox1AFOOC address with 0x0 value.

The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC(@0x002C0014).
The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1, the Application CPU reads READ_TAG from the Register Interface (@0x002D0240).
The Application CPU sends READ_TAG to UART.

For reading from Egress RAM through UART, Port B of RAM must be changed to AHBL reading.

Write 0x1Cf01C to 0x0 for changing the Port B of RAM from AXI to AHBL.

Write 0x1Cf024 to 0x0 for making Port B of RAM to be used for reading

Starting from 0x1C0000, read out the data from UART until complete encrypted data came out.
Write Ox1CFOOC address with 0x0 value to stop stream of Egress RAM.

5.3.3. Security CPU Process

The following describes the process on the Security CPU side:

1.

o vk W

~

In the Security CPU side write int_enable_security (@0x002E0010) to ‘0x01’ and then read for INT_STATUS_SECURITY
(@0x002E00C) to become 1.

If INT_STATUS_SECURITY is 1, the Security CPU reads servo status (@0x002F0278) mode of encryption (@0x002F3FFC).
The Security CPU clears its interrupt by writing 1 to INT_STATUS_SECURITY (@0x002E00C).

The Security CPU reads for mode (@0x2F3FFC) and servo_status (@0x2F0278).

If servo_status reads SERVO_IN_SERVICE (0x01), the Security CPU writes servo_status to SERVO_BUSY (0x02).

Based on the mode of encryption, the Security CPU reads key (@0x002F0180) and initial vector (@0x002F01B0) from
the Register Interface.

The Security CPU writes key (@0x00300030), initial vector (@0x00300050) to OSE.

The Security CPU configures the OSE with AES_256_GCM_DECRYPT by writing 0x00805005 into register CONFIG (@
0x0000000C).

The Security CPU gives start pulse to the AES GCM IP by writing 0x1 to register @0x00000008 with base address
0X00300000.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

10.
11.

12.
13.

14.

15.
16.

17.
18.
19.
20.
21.

22.
23.
24,

25.
26.
27.

28.
29.
30.
31.

= LATTICE

The Security CPU waits for AES Interrupt rising edge on irq_o.

If there is interrupt for AES, the Security CPU configures the OSE for the second time with GCM_GHASH By writing
0x00805105 into register CONFIG (@ 0x0000000c).

The Security CPU reads ADDITIONAL_DATA (@0x002F01EQ) from the Register Interface.
The Security CPU writes ADDITIONAL_DATA (@0x00300010) to OSE.
Note: AES IP is kept under AES GCM_GHASH mode until all the AAD data are sent.

The Security CPU gives start pulse to the AES GCM IP by writing 0x1 to register @0x00000008 with base address
0X00300000.

The Security CPU waits for AES Interrupt rising edge on irq_o.

The Security CPU configures the AES GCM IP with AES_256_GCM_DECRYPT_UPDATE mode by writing 0x00805205 into
CONFIG register (@ 0x0030000c).

The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).
The Security CPU waits for AES Interrupt rising edge on irg_o.

The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).
The Security CPU waits for interrupt by reading INT_STATUS_SEC (@0x002E00C).

If INT_STATUS_SEC is 1, the Security CPU configures the AES GCM IP in GCM_GHASH mode by writing 0x00805205 into
CONFIG register (@ 0x0030000c).

The Security CPU reads len (AADITIONAL_DATA)| |len(CIPHER_TEST) (@0x002F0210) from the Register Interface.
The Security CPU writes len (AADITIONAL_DATA)| |len(CIPHER_TEST) (@0x00300010) to OSE.

The Security CPU gives start pulse to the AES GCM IP by writing 0x1 to register @0x00000008 with base address
0X00300000.

The Security CPU waits for AES Interrupt rising edge on irq_o.
If there is interrupt for AES, the Security CPU configures the OSE with GCM_FINISH.

The Security CPU gives start pulse to the AES GCM IP by writing 0x1 to register @0x00000008 with base address
0X00300000.

The Security CPU waits for AES Interrupt rising edge on irq_o.

If there is interrupt for AES, the Security CPU reads READ_TAG (@0x00300020) from OSE.

The Security CPU writes READ_TAG (@0x002F0240) to the Register Interface.

The Security CPU sets interrupt for Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORA_N Solution Stack 1.0LATTICE

Reference Design BN SEMICONDUCTOR

5.4. AES-256 GCM Encryption (UART to PCle)

Crypto 384 Block

AXI-4 Stream

Interrupt

Crypto 256 Block

CRE

Interrupt

AXI-4 Stream

R

Figure 5.4. AES-256 GCM Encryption (UART to PCle)

The Host CPU should check register continuously at (@0x00180030). If this is 1, the CPU should start DMA process.
The DMA_WRITE process is performed to obtain data from the FPGA.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 56

http://www.latticesemi.com/legal

= LATTICE

5.4.1. DMA Write
The following describes the DMA_WRITE (FPGA to PC) process:

1.

10.

11.

The Host CPU reads from the register_space address (0x00180034) until it becomes 1. This indicates that the AES
processed data is entered into the Egress RAM.

Data size is read from register_space address (@0x00180050). The size represents the number of 128 bit blocks of data.

This (Data size *16) gives the total size in bytes. Based on this, the descriptor count is calculated and descriptors are
formed.

Descriptor count = ((Data size *16)/512). This is rounded to the upper value.

Descriptor data (requestor_id, source address, destination address, descriptor length) is written to the system memory
starting from (@0x00181000).

The Host CPU writes the descriptor count in register_space at (@0x00180008).

Note: Here, a maximum of 60 kB (120 descriptors) can be written using the DMA Read operation at once. If more data is
required, the DMA Write operation should be performed again.

Write 0x01 to the register_space address (@0x0018000C) to start DMA_WRITE.
PCle Endpoint (by itself) starts the DMA operation and serves the data.

After obtaining data from the application (Egress RAM), the Host CPU reads at (@0x00180000) if it comes as 0x42. This
indicates completion of DMA_WRITE.

The process continues or an error is printed. The tenth point should be implemented in the same way as they have
implemented DMA status in previous design.

AES operation takes place with help of internal CPUs (Security and Application) and data is written in EGRESS_RAM.

5.4.2. Application CPU Process

The following describes the process on the Application CPU side:

1.

10.

11.
12.
13.
14.

Before starting the process, wait for PCle to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

When PCle provides linkup, the Application CPU writes x01 at (@0x000CAQ000).
Write 0x2 into the register @ Ox1AF008 to indicate the Encryption operation.
DATA size is taken from UART in the form of ‘no of bytes’.

Note: Maximum DATA size currently supported in this case is up to 60 kB.
(DATA size/16) should be written into Ingress RAM 0x1Af028.

(DATA size/16) should be written into Egress RAM 0x1Cf028.

Note: These values should be rounded to upper value.

The input plain text is written to the Ingress RAM starting from the base address 0x1A0000 based upon data size. This
data should be taken from UART.

The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00) and sets servo_status to
SERVO_IN_SERVICE (0x01).

The Application CPU writes key (@0x002D0180), Initial Vector (@0x002D01B0), and mode of encryption
(@0x002D3FFC) to the Register Interface.

The Application CPU writes AADITIONAL_DATA (@0x002D01EQ), len (AADITIONAL_DATA)| |len(CIPHER_TEST)
(@0x002D0210) to the Register Interface.

Note: Additional data length and cipher text length should be in bits.

The Application CPU writes 0x1 to register @0x002C0004 to enable its interrupt.

The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).
The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1, the Application CPU instructs the Ingress RAM port to send data to OSE.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

15.
16.
17.
18.
19.
20.
21.
22.
23.
24,

25.
26.

27.
28.

29.
30.
31.
32.
33.
34,

= LATTICE

Write Ox1AFOOC address with 0x1 value.

Write 0x1Af01C to 0x1 for changing the Port B of Ingress RAM from AHB to AXI.

Write 0x1Af024 to 0x0 for making Port B of Ingress RAM to be used for reading.

The Application CPU clears its interrupt by writing 1 to INT_STATUS_APP (@0x002C000)
The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1, the Application CPU starts Egress RAM port to take the output data.
Write Ox1CFOOC address with Ox1 value.

Write Ox1Cf01C to Ox1 for changing the Port B of Egress RAM from AHB to AXI.

Write 0x1Cf024 to 0x1 for making Port B of Egress RAM to be used for writing.

As the Security CPU has configured the AES IP in update mode, it continues to encrypt the data and provide the
encrypted output data.

OSE encrypts the data and sends output to Egress RAM port.

The Application CPU writes length (AADITIONAL_DATA)| | length(CIPHER_TEST) (@0x002D0210) to the Register
Interface.

length (AADITIONAL_DATA) =128 BITS(FIXED FOR NOW)
length (CIPHER_TEST) (@0x002D0210) = (DATA size)*8.
Read 0x1CF018 until it gets the value 0x1. The completely decrypted data is stored in the Egress RAM.

If the condition is satisfied, the Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC
(@0x002C0014).

Disable the Ingress RAM from sending data to AES.

Write Ox1AFOOC address with 0x0 value.

The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1, the Application CPU reads READ_TAG from the Register Interface (@0x002D0240).
The Application CPU sends READ_TAG to UART.

Write O0x1CFOOC address with 0x0 value to stop AXI stream of Egress RAM.

5.4.3. Security CPU Process

The following describes the process on the Security CPU side:

1.

S e

~

10.
11.
12.
13.

In the Security CPU side write int_enable_security (@0x002E0010) to ‘Ox01’ and then read for INT_STATUS_SECURITY
(@0x002E00C) to become 1.

If INT_STATUS_SECURITY is 1, the Security CPU reads servo status (@0x002F0278) mode of encryption (@0x002F3FFC).
The Security CPU clears its interrupt by writing 1 to INT_STATUS_SECURITY (@0x002EQOQC).

The Security CPU reads for mode (@0x2F3FFC) and servo_status (@0x2F0278).

If servo_status reads SERVO_IN_SERVICE (0x01) the Security CPU writes servo_status to SERVO_BUSY (0x02).

Based on mode of encryption, the Security CPU reads key (@0x002F0180) and initial vector (@0x002F01B0) from the
Register Interface.

The Security CPU writes key (@0x00300030), initial vector (@0x00300050) to OSE.

The Security CPU configures the OSE with AES_256_GCM_ENCRYPT by writing 0x00805004 into register CONFIG (@
0x0000000C).

The Security CPU gives start by writing Ox1 @0x00000008.

The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

If there is interrupt for AES, the Security CPU configures the OSE for the second time with GCM_GHASH.
Write 0x00805104 into register CONFIG (@ 0x0000000c).

The Security CPU reads ADDITIONAL_DATA (@0x002F01EQ) from the Register Interface.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

14.
15.
16.

17.

18.

19.
20.
21.

22.
23.

24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.

= LATTICE

The Security CPU writes ADDITIONAL_DATA (@0x00300010) to OSE.

The Security CPU gives start by writing Ox1 @0x00000008.

The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).
Note: AES IP is kept under AES GCM_GHASH mode until all the AAD data is sent.

If there is interrupt for AES, Security CPU also clears AES interrupt by writing 1 to AES_INT_STATUS_CLR (@0x00300060)
and it writes 0.

The Security CPU configures the OSE with AES_256_GCM_ENCRYPT_UPDATE by writing 0x00805204 into register
CONFIG (@ 0x0000000c).

The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).
The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

If there is interrupt for AES, the Security CPU sets interrupt for Application CPU by writing 1 to INT_SET_APP
(@0x002E0008).

The Security CPU waits for interrupt by reading INT_STATUS_SEC (@0x002E00C).

If INT_STATUS_SEC is 1, the Security CPU configures the OSE with GCM_GHASH by writing 0x00805204 into register
CONFIG (@ 0x0000000c).

The CPU reads len (AADITIONAL_DATA)| |len(CIPHER_TEST) (@0x002F0210) from the Register Interface.
The Security CPU writes len (AADITIONAL_DATA)| | len(CIPHER_TEST) (@0x00300010) to OSE.

The Security CPU gives start by writing 0x1 @0x00000008.

The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

If there is interrupt for AES, the Security CPU configure the OSE with GCM_FINISH.

The Security CPU gives start by writing 0x1 @0x00000008.

The Security CPU waits for AES Interrupt by reading from AES_INT_STATUS_REG (@0x00300004).

If there is interrupt for AES, the Security CPU reads READ_TAG (@0x00300020) from OSE.

The Security CPU writes READ_TAG (@0x002F01EO0) to the Register Interface.

The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).
The Security CPU also clear AES interrupt by writing 1 to AES_INT_STATUS_CLR (@0x00300060) and it writes 0.
The Security CPU sets interrupt for the Application CPU by writing 1 to INT_SET_APP (@0x002E0008).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 Y | |
Reference Design e LATTICE

Wl SEMICONDUCTOR.

5.5. SHA384 Authentication (PCle to UART)

Crypto 384 Block

AXI-4 Stream

Interrupt

Interrupt

AXI-4 Stream

Figure 5.5. SHA384 Authentication (PCle to UART)

SHA384 Authentication can be done with the help of the Application CPU, Security CPU, PCle Endpoint, Ingress RAM, Egress
RAM, Register Interface and SHA2 IP.

For this SHA Authentication, plain text is initially encrypted using AES-256-CBC mode in the Host PC and the encrypted data

is sent over the PCle using DMA Read to the Ingress RAM. From here, data goes to AES CBC Decryption with the key and IV.
After decryption, the data is written to Egress RAM.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 60

http://www.latticesemi.com/legal

= LATTICE

Up to here, the flow is the same as the AES-256 CBC Decryption (PCle to UART). After that, on this decrypted data SHA384
needs to be performed using the Application CPU, Security CPU, and Register Interface in the following way.

5.5.1. PCle DMA Read

Similar to AES-256 CBC Decryption (PCle to UART). In addition to that, SHA Data length(in bits) needs to be written into
0x180028 register along with AES size register(0x180038) which is in terms of 128 bit blocks.

5.5.2. Application CPU Process
The following describes the process on the Application CPU side:

1. Follow steps 1to 17 in the AES-256 CBC Decryption (PCle to UART) section. To check whether the data is ready and
Egress Port B must be switched to AHBL reading. It is same as Application CPU’s steps 1 to 17 in the AES-256 CBC
Decryption (PCle to UART) section.

2. Write 0x1Cf01C to 0x0 for changing the Port B of Egress RAM from AXI to AHBL.
Write 0x1Cf024 to 0x0 for making Port B of Egress RAM to be used for reading

Application CPU writes to the mode register (address= 0x2D3FFC) of the Register Interface with the value 0x35 for
SHA384 message digest Authentication.

Application CPU writes to the SHA SOURCE register (address = 0x2D3FF4) with the value 0x00.
Application CPU writes to the int_enable_app (0x2C004) with 0x01.
Read 0xCAOOC to know the SHA Data Length (in bits).

Write SHA Data Length to register 0x2D027C in the Register Interface so that the Security CPU also knows the size of
Plain Text data to be hashed.

9. The Application CPU writes 0x0 in ping and pong buffer ready registers.
10. The Application CPU reads the ping buffer ready from (0x2D0270) to know whether it is in LOW.

11. The Application CPU reads 1K block of data from Egress RAM address (0x1C0000) which is incremented by four offsets
and sends it to ping data of the Register Interface starting from (0x2D0000).

12. The Application CPU sets ping status (0x2D0270) to 1.
13. The Application CPU reads the pong buffer ready from (0x2D0274) to know whether it is in LOW.

14. The Application CPU reads 1K block of data from Egress RAM (0x1C0080) which is incremented by four offsets and
sends it to pong data of the Register Interface (0x2D0080).

15. The Application CPU sets pong status (0x2D0274) to 1.
16. The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SECURITY (@0x002C0014).

17. If the data is more than 2 kB (2048 bits), then it follows the steps for next ping and pong data and change the Egress
RAM data address accordingly.

&

© N o WU

18. Here check the ping ready bit until 0 and write ping block of data. Same Ready Check for the pong block data

19. After the final data is sent, wait for the Application CPU interrupt status, and once it comes, read the data out from
OUTPUT BUFFER(starting address @0x2D0100) and print through UART.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.5.3. Security CPU Side Process

The following describes the process on the Security CPU side:

1.

10.

11.
12.

13.
14.
15.
16.
17.
18.

19.
20.

21.

In the Security CPU side write int_enable_security (0x2E0010) to ‘Ox01’ and then read for int_status_security
(Ox2E000C) to become 1.

Follow steps 1 to 17 in the AES-256 CBC Decryption (PCle to UART) section.

Then if the value of int_status_register becomes 1, it clear the interrupt and then read for mode (@0x2F3FFC) , SHA
source (@0x2F3FF4) and servo status (@0x2F0278), SHA input message length(0x2F027C).

If mode registers reads value 0x35 then configure the value 0x304 (HASH_INITIAL) to the register 0x0031000C
(Configuration register).

The Security CPU reads the ping ready buffer (@0x002F0270) until it reaches the value 0x01.

If ping ready buffer is HIGH then the data from ping block (@0x2F0000) of the Register Interface to SHA IP
(@0x310020).

The Security CPU writes control register (@0x00310008) to 0x1.
It sets ping ready buffer (@0x002F0270) to 0x00.
The Security CPU waits for the SHA interrupt from sha_int_status_register (@0x310004) .

If the data input is more than 1Kbits, configure the value 0x305 (SHA384 update) to the Configuration
register(0x31000C).

The Security CPU reads the pong ready buffer (@0x002F0274) until it reaches the value 0x01.

If pong ready buffer is HIGH then the data from pong block (@0x2F0080) of the Register Interface to SHA IP
(@0x310020).

The Security CPU writes control register (@0x00310008) to Ox1.

It sets pong ready buffer (@0x002F0274) to 0x0.

The Security CPU waits for the SHA interrupt from sha_int_status_register (@0x310004) .

If more data is there, check for ping and pong Ready bits and if they are 1, read data from them and send to the SHA IP
For last block of SHA data, HASH FINISH (0x306) has to be written to the configuration register of Hash IP

Write the message length in SHA IP register (starting from 0x310010) and the last block of input data to 0x310020
register in Hash IP

Give the start command to SHA IP (writes control register (@0x00310008) to 0x1)

After complete transaction of data to the SHA IP, the Security CPU waits for the interrupt from the SHA IP, reads the
data from the SHA IP of address (0x310134 to 0x310160) and sends it to output buffer (0X2F0100) of the Register
Interface.

The Security CPU sets the interrupt for the Application CPU int_set_application (0x2E0008) to 0x01.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORA_N Solution Stack 1.0LATTICE

Reference Design BN SEMICONDUCTOR

5.6. SHA384 Message Digest Generation (UART to PCle)

Crypto 384 Block

—

Interrupt

Figure 5.6. SHA384 Message Digest Generation (UART to PCle)

The input plain text is written to the Ingress RAM starting from the base address 0x1A0000. Once completed, Port B is
switched to AHBL reading and the SHA is performed similar to the SHA384 Authentication (PCle to UART) section.

Once complete data is stored in the Egress RAM, PCle DMA write operation is started to get the Message digest data out
using only one descriptor similar to the AES-256 CBC Encryption (UART to PCle) section based on 0x180034.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 63

http://www.latticesemi.com/legal

= LATTICE

5.6.1. Application CPU Process

The following describes the process on the Application CPU side:

1.

&

L KN oW

11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.

22.
23.
24.

25.
26.

27.

Before starting the process, wait for PCle to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

When PCle provides linkup, the Application CPU writes x01 at (@0x000CA000).
DATA size is taken from UART in the form of ‘no of bits’.

The input plain text is written to the Ingress RAM starting from the base address 0x1A0000 based upon data size. This
data should be taken from UART.

Write 0x1Af01C to 0x0 for changing the Port B of Ingress RAM from AXI to AHBL.
Write Ox1Af024 to 0x1 for making Port B of Ingress RAM to be used for writing.
Write UART plain text data into Ingress RAM based upon the data size.

Write O0x1AF024 to 0x0 for making Port B of Ingress RAM to be used for reading.
Write Ox1AFOOC to 0x1 for start Ingress RAM read.

. The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00) and sets servo_status to

SERVO_IN_SERVICE(0x01) and write 0x35 to mode register 0x002D3FFC,data size is written into 0x2D0270.
The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).

The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1 then clears its interrupt by writing 1 to INT_STATUS_APP (@0x002C000).

The Application CPU starts read data from the Ingress RAM starting address 0x1A0000.

The Application CPU writes 0x0 to ping and pong buffer ready registers.

The Application CPU writes 0x0 in ping and pong buffer ready registers.

The ping buffer ready is read from (0x2D0270) to know whether it is in LOW.

The Application CPU reads 1K block of data from the Ingress RAM address (0x1A0000), which is incremented by four
offsets and sends it to ping data of the Register Interface starting from (0x2D0000).

The Application CPU sets ping status (0x2D0270) to 1.
It reads the pong buffer ready from (0x2D0274) to know whether it is in LOW.

It reads 1K block of data from the Ingress RAM (0x1A0080), which is incremented by four offsets and sends it to the
pong data of the Register Interface (0x2D0080).

The Application CPU sets pong status (0x2D0274) to 1.
The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SECURITY (@0x002C0014).

If the data is more than 2 kB (2048 bits), it follows the steps for the next ping and pong data and changes the Egress
RAM data address accordingly.

Check the ping ready bit until 0 and write ping block of data. Same Ready Check for the pong block data

After the final data is sent, wait for the Application CPU interrupt status. Once it arrives, read the data from the OUTPUT
BUFFER (starting address @0x2D0100) and write to Egress RAM (starting with 0x1C0000).

For the Host PC to initiate DMA write transaction, write 0x1 followed by 0x0 to O0x1CF020.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.6.2. Security CPU Process

The following describes the process on the Security CPU side:

1.

v

L ©® N O

12.
13.
14.
15.
16.
17.

18.
19.

20.

In the Security CPU side, write int_enable_security (0x2E0010) to ‘Ox01’ and then read for int_status_security
(Ox2E000C) to become 1.

If the value of int_status_register becomes 1, it clears the interrupt and then reads for mode (@0x2F3FFC), SHA source
(@O0x2F3FF4), servo status (@0x2F0278), and SHA input data length(0x2F027C).

If mode registers read value 0x35, configure the value 0x304 (HASH_INITIAL) to the register 0x0031000C (Configuration
register).
The Security CPU reads the ping buffer ready (@0x002F0270) until it reaches the value 0x01.

If the ping buffer ready value is 0x1, the data from the ping block (starting address @0x2F0000) of the Register Interface
is read by the Security CPU and given to SHA IP (@0x310020).

The Security CPU writes control register (@0x00310008) to 0x1.
It sets ping ready buffer (@0x002F0270) to 0x00.
The Security CPU waits for the SHA interrupt from sha_int_status_register (@0x310004).

If the data input is more than 1 Kbit, configure the value 0x305 (SHA384 update) to the configuration register
(0x31000C).

. The Security CPU reads the pong ready buffer (@0x002F0274) until it reaches the value 0x01.
11.

If pong ready buffer is HIGH, then the data from pong block (@0x2F0080) of the Register Interface to SHA IP
(@0x310020).

The Security CPU writes control register (@0x00310008) to 0x1.

It sets pong ready buffer (@0x002F0274) to 0x0.

The Security CPU waits for the SHA interrupt from sha_int_status_register (@0x310004).

If more data is there, check for ping and pong ready bits. If they are 1, read the data and send it to the SHA IP.
For last block of SHA data, HASH FINISH (0x306) has to be written to the configuration register of Hash IP.

Write the message length in SHA IP register (starting from 0x310010) and the last block of input data to 0x310020
register in Hash IP.

Then give the start command to SHA IP (writes control register (@0x00310008) to 0x1).

After complete transaction of data to the SHA IP the Security CPU waits for the interrupt from the SHA IP, reads the data
from the SHA IP of address (0x310134 to 0x310160) and sends it to output buffer (0X2F0100) of the Register Interface.

The Security CPU sets the interrupt for the Application CPU int_set_application (0x2E0008) to 0x01.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0LATTICE

Reference Design NEN SEMICONDUCTOR

5.7. SHA384 Authentication (PCle to UART using GCM Decryption)

Crypto 384 Block

AXI-4 Stream

Interrupt

Interrupt

AXI-4 Stream

Figure 5.7. SHA384 Authentication (PCle to UART using GCM Decryption)

SHA384 Authentication can be done with the help of the Application CPU, Security CPU, PCle Endpoint, Ingress RAM, Egress
RAM, Register Interface, and SHA2 IP.

For this SHA Authentication, plain text is initially encrypted using AES-256-GCM mode in the Host PC and the encrypted data
is sent over the PCle using DMA Read to the Ingress RAM. From here, data goes to AES GCM Decryption with the key and IV.
After decryption, the data is written to Egress RAM. Up to here, the flow is the same as the AES Decryption explained in the
AES-256 GCM Decryption (PCle to UART) section.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 66

http://www.latticesemi.com/legal

= LATTICE

On the decrypted data, SHA384 needs to be performed using the Application CPU, Security CPU, and Register Interface in
the following way.

5.7.1. PCle DMA Read

The PCle DMA Read is similar to AES-256 GCM Decryption (PCle to UART). In addition, SHA Data length (in bits) needs to be
written into 0x180028 register along with AES size register(0x180038), which is in terms of 128 bit blocks.

5.7.2. Application CPU Process
The following describes the process on the Application CPU side:

1.

© XN W

21.
22.
23.

24,
25.
26.

Before starting the process, wait for PCle to linkup by checking continuously the register (@0x000CA004) for value of
0x1 through the Application CPU.

When PCle provides linkup, the Application CPU writes x01 at (@0x000CA000).

The Application CPU waits until servo_status (@0x002D0278) equals to SERVO_IDLE (0x00). It sets servo_status to
SERVO_IN_SERVICE(0x01) and configures MODE_REG (0x002D3FFC) to 0x42 (AES-256GCM_DEC_MODE).

The Application CPU writes key (@0x002D0180), Initial Vector (@0x002D01B0), and mode of encryption
(@0x002D3FFC) to the Register Interface.

The Application CPU configures interrupt enable register (0x002C0004) by writing 0x01.

The Application CPU sets interrupt to the Security CPU by writing 1 to INT_SET_SEC (@0x002C0014).
The Application CPU waits for interrupt by reading INT_STATUS_APP (@0x002C000).

If INT_STATUS_APP is 1, the Application CPU tells the Ingress RAM port to send data to OSE.

The Ingress RAM waits for the data from PCle in the DMA Read operation.

Note: Even If the data is received from PCle before step 8, the data is not sent to AES until step 8 is completed.

. Write Ox1AF00C address with 0Ox1 value to start the Ingress RAM.
11.
12.
13.
14,
15.
16.
17.
18.
19.
20.

Write Ox1Cf01C to Ox1 for changing the Port B of the Egress RAM from AHB to AXI.

Write 0x1Cf024 to Ox1 for making Port B of the Egress RAM to be used for writing.

Write Ox1CFOOC to Ox1 for start egress RAM.

To check the DMA size, read the Egress RAM register (Ox1CF014).

Poll the data ready register (0x1CF018) of the Egress RAM until the valid signal becomes 1.

Write 0x001AF0OC to 0x0 for stopping AXI stream in the Ingress RAM for more than one iteration.
Write 0x001CFOOC to 0x0 for stopping AXI stream in the Egress RAM for more than one iteration.
Write 0x1Cf01C to 0x0 for changing the Port B of the Egress RAM from AXI to AHBL.

Write 0x1Cf024 to 0x0 for making Port B of the Egress RAM to be used for reading.

The Application CPU writes to the mode register (address= 0x2D3FFC) of the Register Interface with the value 0x35 for
SHA384 message digest Authentication.

The Application CPU writes to the SHA SOURCE register (address = 0x2D3FF4) with the value 0x00.
The Application CPU Reads OxCAO0OC to know the SHA Data Length(in bits).

Write SHA Data Length to register 0x2D027C in the Register Interface so that the Security CPU also knows the size of
plain text data to be hashed

The Application CPU initially writes 0x0 in the ping and pong buffer ready registers.
The Application CPU reads the ping buffer ready from (0x2D0270) to know whether it is in LOW.

The Application CPU reads 1K block of data from the Egress RAM address (0x1C0000), which is incremented by four
offsets and sends it to ping data of the Register Interface starting from (0x2D0000).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

27.
28.
29.

30.
31.
32.

33.
34,

= LATTICE

The Application CPU sets ping status (0x2D0270) to 1.
The Application CPU reads the pong buffer ready from (0x2D0274) to know whether it is in LOW.

The Application CPU reads 1K block of data from Egress RAM (0x1C0080), which is incremented by four offsets and
sends it to pong data of the Register Interface (0x2D0080).

The Application CPU sets pong status (0x2D0274) to 1.
The Application CPU sets interrupt for the Security CPU by writing 1 to INT_SET_SECURITY (@0x002C0014).

If the data is more than 2 kB (2048 bits), then it follows the steps for next ping and pong data and changes the Egress
RAM data address accordingly.

Check the ping ready bit until 0 and write ping block of data. Same Ready Check for the pong block data.

After the final data is sent, wait for the Application CPU interrupt status, and once it comes, read the data out form
OUTPUT BUFFER (starting address @0x2D0100) and print through the UART.

5.7.3. Security CPU Process
The following describes the process on the Security CPU side:

1.

w

N o U ok

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

In the Security CPU side, write int_enable_security (0x2E0010) to ‘Ox01’ and then read for int_status_security
(Ox2E000C) to become 1.

Follow steps 1 to 10 in the AES-256 GCM Decryption (PCle to UART) section.

The Security CPU waits for ORAN Security Enclave interrupt rising edge on irq_o and configures the AES_CONFIG_REG
(0X0030000C) with AES_GCM_DEC_UPDATE (0x00805205).

The Security CPU sets interrupt to the Application CPU by writing 0x01 into the register int_set_app (0x2E0008).
The Security CPU waits for ORAN Security Enclave interrupt rising edge on irg_o.

The Security CPU sets interrupt to the Application CPU by writing 0x01 into the register int_set_app (0x2E0008).
Check the Security CPU interrupt status. If the value of sec_int_status_register becomes 1.

Clear the interrupt and read for mode (@0x2F3FFC), SHA source (@0x2F3FF4), servo status (@0x2F0278), and SHA
input message length (0x2F027C).

If mode register reads value 0x35, configure the value 0x304 (HASH_INITIAL) to the register 0x0031000C (configuration
register).

The Security CPU reads the ping ready buffer (@0x002F0270) until it reaches the value 0x01.

If the ping ready buffer is HIGH, the data from ping block (@0x2F0000) of the Register Interface to SHA IP (@0x310020).
The Security CPU writes control register (@0x00310008) to 0x1.

The Security CPU sets ping ready buffer (@0x002F0270) to 0x00.

The Security CPU waits for OSE interrupt rising edge onirg_o .

If the data input is more than 1 kB, write value 0x305 (SHA384 update mode) to the configuration register (0x31000C).
The Security CPU reads the pong ready buffer (@0x002F0274) until it reaches the value 0x01.

If pong ready buffer is HIGH, the data from pong block (@0x2F0080) of the Register Interface to SHA IP (@0x310020).
The Security CPU writes control register (@0x00310008) to Ox1.

The Security CPU sets pong ready buffer (@0x002F0274) to 0xO0.

The Security CPU waits for the ORAN Security Enclave interrupt rising edge on irq_o.

If more data is available, check for ping and pong Ready bits and if they are 1.

Read data from the Register Interface ping pong index and send to SHA IP.

For the last block of SHA data, HASH FINISH (0x306) is written to the configuration register of Hash IP.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 []
Reference Design L LATTICE

22. Write the message length in SHA IP register (starting from 0x310010) and the last block of input data to 0x310020
register in Hash IP.

23. Execute the start command to SHA IP (writes control register (@0x00310008) to 0x1).

24. After the complete transaction of data to the SHA IP, the Security CPU waits for the OSE interrupt rising edge on irq_o,

reads the data from the SHA IP of address (0x310134 to 0x310160), and sends it to the output buffer (0X2F0100) of the
Register Interface.

25. The Security CPU sets the interrupt for the Application CPU int_set_application (0x2E0008) to 0x01.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 69

http://www.latticesemi.com/legal

5G Lattice ORA_N Solution Stack 1.0LATTICE

Reference Design BN SEMICONDUCTOR

5.8. HMAC 384 Authentication (PCle to UART)

Crypto 384 Block

AXI-4 Stream

Interrupt

Interrupt

AXI-4 Stream

Figure 5.8. HMAC 384 Authentication (PCle to UART)

HMAC 384 Authentication (PCle to UART) is similar to the SHA384 Authentication (PCle to UART) section. However, the key
has to be managed and the second hash has to be performed in the Security CPU for the appended data of XOR (key, OPAD)
and the first hash message digest.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 70

http://www.latticesemi.com/legal

5G Lattice ORA_N Solution Stack 1.0LATTICE

Reference Design BN SEMICONDUCTOR

5.9. HMAC 384 Message Digest Generation (UART to PCle)

Crypto 384 Block

o=

Interrupt

R l

CRE

Interrupt

Figure 5.9. HMAC 384 Message Digest Generation (UART to PCle)

HMAC 384 Message Digest Generation (UART to PCle) is a combination of the AES-256 GCM Decryption (PCle to UART) and
AES-256 GCM Encryption (UART to PCle) sections.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02257-1.0 71

http://www.latticesemi.com/legal

= LATTICE

5.10. ECC 256 Bit Key Pair Generation (using CRE IP)
ECC 256 bit key pair generation can be performed with the help of the Application CPU, Security CPU, and CRE module.

The Application CPU waits until “servo status” (address = 0x2D0278) equals to “idle”. It then and sets servo status to “servo
in service” and perform the following steps:

1. The Application CPU writes to the mode register (address= 0x2D3FFC) of the Register Interface with the value 0Ox3E for
ECC key pair generation operation.

2. The Application CPU generates interrupt to the Security CPU by writing into int_set_security (address= 0x2C0014) with
value 1'b1.

3. The Security CPU reads the int_status_security (address= 0x2C000C) and starts performing the service requested by the
Application CPU as per the mode register data.

4. The Security CPU performs the procedure shown in Table 5.1 to generate the ECC key pair. Base address to access
HSE/CRE module is 0x00100000

Table 5.1. ECC Private + Public Key Generation Procedure

Transaction LMMI Data Description

Read 0x2 0020 4B Poll if IP is Ready. [RO_GPO == 0xBO0]

Write 0x2 000C 4B [RI_CTRL1 & OxOE]
Starts the ECC key generation process.

Read 0x2 0020 4B Poll if transaction is done. [RO_GPO == 0xB2]

Read Ox1 F840 32B Public Key X

Read 0x1 F860 32B Public Key Y

Read 0x1 F880 32B Private Key

Write 0x2 000C 4B [RI_CTRL1 & 0x00]
Clears the previous transaction, and sets the IP ready for the
next.

5. Once keys are generated, Public Key X, Public Key Y, and Private Key are read to BUF1, BUF2, and BUF3 of the scratch

memory. Refer to Table 2.4 for register details of BUF1, BUF2, and BUF3.

The Security CPU generates the interrupt to the Application CPU that the operation is completed. The Application CPU
can obtain the generated keys from the BUF1, BUF2, and BUF3 respectively. Base address to access HSE/CRE module is
0x00100000.

Table 5.2. ECC Public Key (from Private Key) Generation Procedure

Transaction LMMI Data Description

Read 0x2 0020 4B Poll if IP is Ready. [RO_GPO == 0xBO0]

Write 0x1 F800 32B Private Key

Write 0x2 000C 4B [RI_CTRL1 & 0x04] Starts the Public Key generation process.
Read 0x2 0020 4B Poll if transaction is done. [RO_GPO == 0xB2]

Read 0x1 FCO0 32B Public Key X

Read 0x1 FC80 32B Public Key Y

Write 0x2 000C 4B [RI_CTRL1 < 0x00] Clears the previous

Once the keys are generated, read the Public Key X, Public Key Y to BUF2, BUF3 of the scratch memory.

Once done, the Security CPU generates the interrupt to the Application CPU that the operation is completed. The
Application CPU can obtain the generated public keys from the BUF2 and BUF3 respectively.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.11. RSA Encryption/Decryption

RSA encryption and decryption is managed by the firmware APIs. All the arithmetic operations required for the RSA
algorithm is handled by the PKC IP.

5.12. AES Throughput Calculation

The FPGA runs one counter internally for calculating AES throughput.
This counter starts when the start pulse of the Egress RAM is given by the Application CPU.
Note: The Egress RAM stores decrypted data in the PCle to UART flow and encrypted data in the UART to PCle flow.

The operation stops when the complete data is encrypted/decrypted (according to the length provided by the user). The
counter is placed in the register (0x1CF044).

The Application CPU reads register 0x1CF044 to get the counter value. After running the AES encryption/decryption, this
counter value can be multiplied with 13.333 (using 75 MHz) to obtain the total time in nanoseconds for the given amount of
data to be processed. For AES CBC/GCM mode, the calculated value for up to 60 kB is 1024018.42 ns. Based on this
calculation, throughput is around 468.7 Mbps.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6. PCle DMA

6.1. Overview

The term Bus Master, used in the context of PCl Express, indicates the ability of a PCle port to initiate PCle transactions,
typically Memory Read and Write transactions. The most common application for Bus Mastering Endpoints is for DMA.
DMA is a technique used for efficient transfer of data to and from Host CPU system memory. DMA implementations have
many advantages over standard programmed input/output (PIO) data transfers. PIO data transfers are executed directly by
the CPU and are typically limited to one (or in some cases two) DWORDs at a time. For large data transfers, DMA
implementations result in higher data throughput because the DMA hardware engine is not limited to one or two DWORD
transfers. In addition, the DMA engine offloads the CPU from directly transferring the data, resulting in better overall
system performance through lower CPU utilization. There are two basic types of DMA hardware implementations found in
systems using PCl Express: System DMA implementation and Bus Master DMA (BMD) implementation. System DMA
implementations typically consist of a shared DMA engine that resides in a central location on the bus and can be used by
any device that resides on the bus. System DMA implementations are not commonly found anymore and very few root
complexes and operating systems support their use. A BMD implementation is by far the most common type of DMA found
in systems based on PCl Express. BMD implementations reside within the Endpoint device and are called Bus Masters
because they initiate the movement of data to (Memory Writes) and from (Memory Reads) system memory. Figure 35
shows a typical system architecture that includes a root complex, PCI Express switch device, and an integrated Endpoint
block for PCI Express. A DMA transfer either transfers data from an integrated Endpoint block for PCl Express buffer into
system memory or from system memory into the integrated Endpoint block for PCI Express buffer. Instead of the CPU
having to initiate the transactions needed to move the data, the BMD relieves the processor and allows other processing
activities to occur while the data is moved. The DMA request is always initiated by the integrated Endpoint block for PCI
Express after receiving instructions and buffer location information from the application driver.

Main Memory
Memory Controller cPU
Root Port
PCle
Switch
Host PC

PCle Lane/Edge
Connector

PCle FPGA Board
Endpoint
DMA Memory

Figure 6.1. Top Level Block Diagram

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

In addition to the data-throughput advantages of DMA versus PO transactions for large data transfers, many other
variables can affect data throughput in PCI Express systems, e.g., link width and speed, receive buffer sizing, return credit
latency, end-to-end latency, and congestion within switches and root complexes. For these reasons, the use of PCI Express
for high data-throughput applications requires a BMD engine.

6.2. Components of DMA Design

A typical design for PCl Express includes the following main components:
e Hardware HDL

e Design Driver

e Design Software Application

The hardware design refers to the Verilog or VHDL application residing on the Lattice FPGA. In this case, it is the bus master
DMA design or BMD. This design contains control engines for the receive and transmit data path along with various
registers and memory interfaces to store and retrieve data. The driver design is normally written in C and is the link
between the higher-level software application and the hardware application. The driver contains various routines that are
called by the software application and are used to communicate with the hardware via the PCl Express link. The driver
resides in the kernel memory on the system. The software application is most apparent to the user and can be written in
any programming language. It can be as simple as a small C program or as complex as a GUI-based application. The user
interfaces with the software application, which invokes routines in the driver to perform the necessary data movements.
The software keeps on checking whether the data movement is completed or not. Once completed, the driver can invoke
routines in the software application to inform the user that the request is completed.

6.3. FPGA Design

Figure 6.2 shows the top-level architecture of FPGA design.

DMA support is an option provided by the Lattice soft IP to enable more efficient data transfer when endpoint is acting as
initiator or master. To transfer data through DMA, the Core requires source address, destination address, and transfer
control, that is, length and direction of transfer. This information is collectively called descriptor.

To store the descriptor, two queues are implemented in a local memory. These are the descriptor queue and the status
queue. When data transfer is completed or aborted, a status, which contains done flag, error flag, length of transfer and
data address offset, is written into the status queue.

The description of each block of FPGA design architecture is given below.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

APB Master
APB Interconnect Wrapper APB Interface A .
of PCle Re-config -
Memory Space Soft IP DR
AHB AHB Write Register 5 PCle | R
Master0 Master0 Space < » HardIP PCle x1 Lang
< < LMMI
Register Space DMA »
> UCFO
AHB
Masterl >
AHB
Read
Memory Masterl
AHB —
Descriptor Master0 ..q__'?
Queue > Q
<
—
Status Queue %
AHB
Masterl < PCle DMA
AHB Master0
APB Interconnect [*
of PCle -
AHB Masterl

Figure 6.2. Top Level Architecture of PCle Design

e AHB Arbiter
This block selects the three blocks: APB master, system memory, and FIFO wrapper depending on the address received
in the TLP. See the memory segregation for address range of the different blocks. The user can select the address range
by modifying the parameter in AHB_arbiter.v file. The AHB master0 port is used for receiving (RX TLP) and AHB masterl
port is being used for transmitting (TX TLP).

e APB Master
The APB Slave Port is available to access the registers of soft IP or hard IP. To access these registers through
software/driver, the APB master is needed. This block is used to make the APB master interface. Initial reconfiguration
of soft IP and hard IP is done through the APB master. A configuration space is implemented in the design to store all
the configuration values required for the PCle IP.

BASE ADDRESS: 0x0O0CA0000 for accessing from the Application CPU.

6.3.1.1. Register Address (0x00)

31:1 0
To start DMA
reserved
Default: 0
Write

6.3.1.2. Register Address (0x04)
31:1 0
reserved To check PCle linkup
Read

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6.3.1.3. Register Address (0x08)
31:1 0
reserved To check DMA complete
Read
6.3.1.4. Register Address (0x0C)
31:0
SHA DATA LENGTH
Read
6.3.1.5. Register Address (0x10)
31:0
FIRMWARE VERSION
Write
6.3.1.6. Register Address (0x14)
31:1 0
reserved AES DATA READY IN EGRESS RAM
Read
6.3.1.7. Register Address (0x18)
31:0
PCle VERSION
Read
6.3.1.8. Register Address (0x1C)
31:0
FPGA VERSION
Read
6.3.1.9. Register Address (0x20)
31:0
Application CPU can give signal to PCle(used for handshaking)
Default : 0
Write Read
6.3.1.10. Register Address (0x30)
31:0

PCle can give signal to the Application CPU

Read

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

6.3.1.11. Register Address (0x34)

31:0
GCM CIPHER TEST LENGTH IN BITS
Read

e Desc Queue
This DMA implementation is based on the descriptors. To store the descriptors a queue is implemented. The pointer of
the descriptor queue is to be updated by the driver/software after/before writing the descriptors in the descriptors
queue. Descriptors are fetched by the DMA soft IP to serve the descriptors. The corresponding read pointer is updated
by the DMA Core.

e Status Queue
After one descriptor is served by the DMA Engine, its status is stored. To report the status of a transfer, a status queue
is implemented. The status of each descriptor or transfer is stored in this queue.

e Register Space
A register space is implemented in the design to configure the DMA or to get the status of transfer and throughput.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 78

http://www.latticesemi.com/legal

6.3.2. Descriptor Field Format

Table 6.1 shows the descriptor entry format.

Table 6.1. Descriptor Entry Format

= LATTICE

DW DW name Field name Bit offset Size Description
length 0 13 Size of data transfer in bytes. (4096 bytes maximum)
Direction of transfer. 0 — AHB-Lite to PCle 1 — PCle to
o 13 1 .
direction AHB-Lite
0 desc_ctrl 14 10 reserved
Optional descriptor ID. If the parameter EN_DESC_ID
desc_id 24 8 == “Enable” the Core adds this information in the
Status entry.
1 desc_src addr_offset 32 source address/ offset
2 desc_dst addr_offset 0 32 destination address/offset
Requester ID to be used in TLP Header requester_id
. [7:0] — bus number[7:0] requester_id [10:8] — function
requester_id 0 16 number([2:0] requester_id [15:11] — device
number[4:0]
traffic_class 16 3 Traffic Class to be used in TLP Header
3 desc_hdr - P
When set, it indicates that the requester_id field is
19 1 valid and should be used in TLP header. Otherwise,
use_requestor_id the Core uses the captured configuration ID of
function 0 as the default requester ID.
20 12 Reserved
6.3.3. Status Field Format
Table 6.2 shows the status field format.
Table 6.2. Status Entry format
DW DW Name Field Name Bit Offset Size Description
If this bit is asserted, it indicates that the transfer has been
done 0 1
completed
. If this bit is asserted, it Indicates an error occurred during
with_error 1 1
- transfer.
If this bit is asserted, it indicates the transfer was terminated
aborted 2 1 . o
before it completes the specified length.
1 stat_flag o 3 Direction of transfer. 0 — AHB-Lite to PCle 1 — PCle to AHB-Lite
direction
4 4 reserved
desc_id 3 3 Op'fllonal d(iscrlptor ID. Available if the parameter EN_DESC_ID
== “Enable
length 16 13 Size of data transfer in bytes. (4096 bytes maximum)
en
& 29 3 Reserved
) stat buff addr 0 32 Pata addrgss. Thls is the local memor_y ad.dress where the data
- is stored (direction==1) or fetched (direction==0).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

6.3.4. How to Trigger the DMA Operation.

= LATTICE

It is assumed that the user is aware of the descriptor and status queue. Else, the user can go through Memory Map section.

To trigger/start the DMA operation:

1. Write the descriptors starting from address 0x1000. Note that one descriptor needs four DW (32 bit) space. Check the
descriptor field format. If the first descriptor is written at 0x1000, the next descriptor should be written at 0x1010

address.
Write the number of descriptors at 0x8.
3. Write Ox1 at address Ox1 to start the DMA operation.

6.3.5. Register Space: BASE ADDRESS -- 0x00180000

6.3.5.1. Register Address (0x0) (Default: 0x60)

31:6 7 6 5 4 3 2 1 0
DMA Read aboDrll/(lalzl in | Errorinone DMA write
Reserved operation Reserved Reserved Reserved . . Operation Reserved
one iteration
done . . done
iteration
Read Only
DMA read DMA . DMA . DMA write
. . . iteration is . Lo
operation is iteration is iteration is
completed
completed aborted . completed
with error

6.3.5.2. Register Address (0x4)

31:.0

Throughput Counter value

Read Only

Multiply this counter value by 13.33 to get the total time (in ns) of one iteration

6.3.5.3. Register Address (0x8)

31:8
7:0
Reserved
Number of descriptors written in one iteration; valid values are
Reserved
between 1-255
Read Only Write Only

6.3.5.4. Register Address (0xC)

31:2 1 0

Reserved Start DMA read operation Start DMA write operation

Write Only

Write 1 to start the DMA write operation

Write 1 to start the DMA read operation

6.3.5.5. Register Address (0x10)

31:0

reserved

Read Only

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

6.3.5.6. Register Address (0x14)

31:0

FPGA Version register; upper 8 bit [31:24] is indicating the date in decimal, next 8 bit [23:16] is indicating month in decimal, next 8 bit
[15:8] is indicating the hour in 24 hour format, next 8 bit [7:0] is indicating the minute;

Read Only
6.3.5.7. Register Address (0x18)
31:0
reserved
Read Only
6.3.5.8. Register Address (0x1C)
31:0
reserved
Read Write
6.3.5.9. Register Address (0x20)
31:0
DMA write size in DW, this indicates how much DWs we have to write in DMA write operation
Read Write
6.3.5.10. Register Address (0x24)
31:0
DMA read size in DW, this indicates how much DWs we have to read in DMA read operation
Read Write
6.3.5.11. Register Address (0x28)
31:0
SHA Data Length(in bits)
Write
6.3.5.12. Register Address (0x30)
31:1 0
reserved Start given by the Application CPU
Read
6.3.5.13. Register Address (0x34)
31:1 0
reserved Data ready given by Egress RAM
Read

www.latticesemi.com/legal

http://www.latticesemi.com/legal

6.3.5.14.

Register Address (0x38)

= LATTICE

31:0

DMA DATA SIZE

Write

6.3.5.15.

Register Address (0x3C)

31:0

Ingress write port address

Read

6.3.5.16.

Register Address (0x40)

31:0

Ingress read port address

Read

6.3.5.17.

Register Address (0x44)

31:0

Egress write port address

Read

6.3.5.18.

Register Address (0x48)

31:0

Egress read port address

Read

6.3.5.19.

Register Address (0x50)

31:0

DMA SIZE GIVEN BY UART

Read

6.3.5.20.

Register Address (0x54)

31:0

FPGA VERSION

Read

6.3.5.21.

Register Address (0x58)

31:0

FIRMWARE VERSION

Read

6.3.5.22.

Register Address (0x5C)

31:0

PCle VERSION

Read

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0
Reference Design

= LATTICE

6.3.5.23. Register Address (0x60)

31:0

Reserved for PCle

Write and Read

6.3.5.24. Register Address (0x64)

31:0

Application CPU can give signal

Read

6.3.5.25. Register Address (0x70)

31:0

GCM CIPHER TEST LENGTH IN BITS

Write

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0

83

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

7. MCTP over SMBus

7.1. SMBus

The System Management Bus (abbreviated to SMBus or SMB) is a single-ended simple two-wire bus for the purpose of
lightweight communication. Most commonly it is found in computer motherboards for communication with the power
source for ON/OFF instructions. It is derived from 12C for communication.

7.2. MCTP

The Management Component Transport Protocol (MCTP) supports the PMCI goals by defining a media-independent
transport protocol that enables communications between different intelligent hardware components that make up a
platform management subsystem that provides monitoring and control functions inside a managed system.

MCTP can be implemented over many physical media, here we are using SMBus. The MCTP over SMBus/I 276 2C transport
binding defines how MCTP packets are delivered over a physical SMBus or | 277 2C medium using SMBus transactions. This
includes how physical addresses are used. Following is the diagram of MCTP over SMBus.

+0 +1 +2 +3

1]6|5]4a|3]2]|1]o|7]|6|5]4|3|2]1]0]7]6|5]|4]3]2]|1]0|7]6]|5]4]3]2]1]0

Destination Slave Command Code = Bvte Count Source Slave
Address MCTP = OFh y Address

Bvte 5 > MCTP Destination Source (S) g ;':t Msg
yte Reserved Ver5|on Endpoint ID Endpoint ID ulv q Tag
Byte 9 > l Msg Type

Byte N >

Byte 1 >

Message Message
Header Data I |

PEC

Figure 7.1. MCTP over SMBus

7.3. SPDM

The SPDM message exchanges are defined in a generic fashion that allows the messages to be communicated
across different physical mediums and over different transport protocols.

The specification-defined message exchanges enable Requesters to:

e Discover and negotiate the security capabilities of a Responder.

e Authenticate the identity of a Responder.

e Retrieve the measurements of a Responder.

e Securely establish cryptographic session keys to construct a secure communication channel for the transmission or
reception of application data.

There are different kind of messages for specific purpose, following is the description of messages used here:-

e Get-Version - Requester sends this message to know the version of SPDM it is supporting.

e Get Capabilities - Requester sends its capabilities (specifications it supports) to responder and in response it gets
responder’s capabilities.

e Negotiate Algorithm - Through this algorithm requester and responder negotiates and agree over an algorithm which
requester wants to perform.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 84

http://www.latticesemi.com/legal

= LATTICE

e Challenge message - This message is used in authentication, where requester verifies signature sent by responder in

challenge response message.

e Vendor Defined Message: This message is used when requester wants to some specific information to responder and it
can be define by users for different purposes.

7.4. Algorithm Selection

As discussed in the above section, algorithm is selected through the negotiate algorithm message.

If both requesters have property to store the version and capability message response, only the negotiate algorithm
massage is exchanged for changing the algorithm. In case the request is not able to store the messages response, then for
changing algorithm again, get-version, get-capabilities, and negotiate algorithm is sent to the responder.

In the negotiate algorithm message, there are four types of algorithm selection tables. The following are the structure

tables.

Table 7.1. Algorithm Selection Structure Tables

Offset Field Size (Bytes Value

0 AlgType 1 0x2=DHE

1 AlgCount 1 Bit [7:4]=2

Offset Field Size (Bytes Value

2 AlgSupported 2 Bit mask listing Requester-supported SPDM enumerated Diffie-
Hellman Ephemeral (DHE) groups. Values in parenthesis specify the
size of the corresponding public values associated with each group.
Byte 0 Bit 0 ffdhe2048 (D=256)
Byte 0 Bit 1 ffdhe3072 (D=384)
Byte O Bit 2 ffdhe4096 (D=512)
Byte 0 Bit 3 secp256r1 (D=64, C=32)
Byte 0 Bit 4 secp348rl (D=96, C=48)
Byte 0 Bit 5 secp521r1 (D=132, C=66)
All other values are reserved.

4 AlgExternal 4*ExtAlgCount2 List of Requester-supported extended DHE groups. The Extended
algorithm field format table described the format of this field.

Offset Field Size (Bytes Value

0 AlgType 1 0x3=AEAD

1 AlgCount 1 Bit [7:4]=2.
Bit [3:0]=Number of Requester supported extended AEAD algorithms
(=ExtAlgCount3).

2 AlgSupported 2 Bit mask listing Requester-supported SPDM enumerated AEAD
algorithms.
Byte 0 Bit 0. AES-128-GCM. 128-bit key; 96-bit IV (Initialization Vector);
tag size is specified by the transport layer.
Byte 0 Bit 1. AES-256-GCM. 128-bit key; 96-bit IV; tag size is specified
by the transport layer.
Byte 0 Bit 2. CHACHA20_POLY1305. 256-bit key; 96-bit IV; 128-bit tag.
All other values are reserved.

4 AlgExternal 4*ExtAlgCount3 List of Requester-supported extended AEAD algorithms. The Extended

algorithm field format table described the format of this field.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Offset

Field

Size (Bytes

Value

AlgType

1

0x4=ReqBaseAsymAlg

AlgCount

1

Bit [7:4]=2.
Bit [3:0]=Number of Requester supported extended asymmetric key
signature algorithms (=ExtAlgCount4).

AlgSupported

Bit mask listing Requester-supported SPDM enumerated asymmetric
key signature algorithms for the purpose of signature generation.
Byte 0 Bit 0. TPM_ALG_RSASSA_ 2048

Byte 0 Bit 1. TPM_ALG_RSAPSS_2048

Byte 0 Bit 2. TPM_ALG_RSASSA_3072

Byte 0 Bit 3. TPM_ALG_RSAPSS_3072

Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5. TPM_ALG_RSASSA_4096

Byte 0 Bit 6. TPM_ALG_RSAPSS_4096

Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

Byte 0 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

All other values are reserved.

AlgExternal

4*ExtAlgCount4

List of Requester-supported extended AEAD algorithms. The Extended
algorithm field format table described the format of this field.

Offset

Field

Size (Bytes

Value

AlgType

1

0x5=KeySchedule

AlgCount

1

Bit [7:4]=2.
Bit [3:0]=Number of Requester supported extended key schedule
algorithms (=ExtAlgCount5).

Offset

Field

Size (Bytes

Value

AlgSupported

2

Bit mask listing Requester-supported SPDM enumerated key schedule
algorithms.

Byte 0 Bit 0. SPDM Key Schedule.

All other values are reserved.

AlgExternal

4*ExtAlgCount5

List of Requester-supported key schedule algorithms. The Extended
algorithm field format table describes the format of this field.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

7.5. AES CBC/GCM Algorithm

The AES Encryption algorithm (also known as the Rijndael algorithm) is a symmetric block cipher algorithm with a
block/chunk size of 128 bits. It converts these individual blocks using keys of 128, 192, and 256 bits. Once it encrypts these
blocks, it joins them together to form the cipher text. Here we are using AES-256, which means it requires 32 bytes (256
bits) key.

It is based on a substitution-permutation network, also known as an SP network. It consists of a series of linked operations,
including replacing inputs with specific outputs (substitutions) and others involving bit shuffling (permutations).

AES-CBC (Cipher Blocker Chaining) is an advanced form of block cipher encryption. With CBC mode encryption, each cipher
text block is dependent on all plain text blocks processed up to that point. This adds an extra level of complexity to the
encrypted data.

AES-GCM (Galois Counter Mode) is a mode of operation for symmetric key cryptographic block ciphers. GCM is ideal for
protecting packets of data because it has low latency and a minimum operation overhead.

7.6. SHA Algorithm

Sha384 is a function of cryptographic algorithm Sha-2, evolution of Sha-1. It is the same encryption than Sha512, except
that the output is truncated at 384 bits. There are also differences in the initialization process. It takes any number of data
with its hash value of 384 bits. SHA384 is mainly used in message authentication.

7.7. HMAC Algorithm

HMAC algorithm stands for Hashed- or Hash-based Message Authentication Code. It is a result of work done on developing
a MAC derived from cryptographic hash functions. HMAC is a great resistance towards crypto analysis attacks as it uses the
hashing concept twice. HMAC consists of twin benefits of hashing and MAC and thus is more secure than any other
authentication code.

HMAC takes data and key as input to produce the hash value of 384 bits.

7.8. ECDH Algorithm

ECDH: Elliptic Curve Diffie Hellman (ECDH) is an Elliptic Curve variant of the standard Diffie Hellman algorithm. See Elliptic
Curve Cryptography for an overview of the basic concepts behind Elliptic Curve algorithms. ECDH is used for key agreement.

Elliptical curve used here is secp256r1, which produces two key pairs of 32Bytes. At both ends, the same arithmetic
operation is done to calculate the shared secret.

PKC IP is used for performing the calculation part of this algorithm.

For example:

Alice private key = a

Bob private key = b

G parameter = G

Alice public key which needs to be shared to bob = G*a = Pa

Bob public key which needs to be shared to Alice = G*b = Pb

Now Shared secret = Pa *b (At Bob’s end) = Pb * a (At Alice’s end) = G*a*b

www.latticesemi.com/legal

http://www.latticesemi.com/legal

HOST PC
#Private key of Host PC (a)
#Generate generating point(G)
#Generate public key(A) using G
and a

#Store public key of application
CPU(B)
#Share secret (B+a)

G*a

= LATTICE

G*b

APPLICATION CPU

#Private key of App CPU (b)

#Generate generating point(G)

#Generate public key(B) using G
and b

#Store public key of Host PC(A)
#Share secret (A+b)

‘ ‘ Key+Data

SECURITY CPU

HMAC-384 AES

Figure 7.2. Flow of ECDH (Host PC and FPGA)

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

7.9. RSA Algorithm

RSA algorithm is asymmetric cryptography algorithm. Asymmetric means that it works on two different keys, such as public
key and private key. PKC IP is used for performing the calculation part of this algorithm.

7.9.1. RSA Signature:

To sign a message msg with the private key exponent d:
1. Calculate the message hash: h = hash (msg)

2. Encrypt h to calculate the signature: s=hd(modn)

3. The hash h should be in the range [0...n). The obtained signature s is an integer in the range [0...n).

7.9.2. RSA Verify Signature

To verifying a signature s for the message msg with the public key exponent e:
1. Calculate the message hash: h = hash(msg)

2. Decrypt the signature: h’=se(modn)

3. Compare h with h' to find whether the signature is valid or not

HOST PC Authentication Request Message APPLICATION CPU
MCTP HEADER
Generates Public/Private Key.
M_SG TYPE_ Component (M1, M2)
S1 = Sign Hash [M1] Al — (Public Key + Signature)
+ Private Key A2 — (Public Exponential + Msg Hash Identical = Send Success
Message
Sends Signature + Public Key Packet Sequence
(modulus N) + . .) Not identical = Send Fail
Public Exponential + DATA (Public Key + Signature/Public Message
Message Hash Exponential + Msg has [M1]

Authentication Response

Send Data +
Mode Value

SECURITY CPU

Reads data from the ping pong
region, vrifies signature and sends it
back to the Application CPU.

Verify (S1 + Public Key
= O/p Message Hash [M2]

Figure 7.3. RSA Sign and Verify Flow

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

8. User Flow
The host computer connects to the CertusPro-NX board through the SMBus. The host computer then becomes the SMBus
Master device and CertusPro-NX board becomes the SMBus Slave device.

The msg transferred between the host computer and the board is in MCTP format. The MCTP msg contains the SPDM Msg.
SPDM version, capabilities, and algorithm are preformed between Requester and Responder.

User Selection

A
Third Party Tool
encrypts data based on user selection

A

User Selection

SPDM Application
MCTP Layer
\ 4
SMBus PCle Driver
Driver Driver Layer
\ 4
FPGA Board

Figure 8.1. User Flow Diagram

8.1. Driver Initialization

The PCle and the SMBus drivers are initialized and inserted into the kernel.

Supported Boards
e CertusPro-NX

Supported OS

e Distributor ID: Ubuntu.

e Description: Ubuntu 16.04.3/18.04.3 & above LTS, Kernel version 4 and above.
e Release: 18.04.

e OS Type: 64bit.

e Codename: Bionic

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Required Packages

To check whether packages are installed or not, run the commands shown in the figures below. For example, make -v to
check the availability of make packages.

attice@lattice dem e/Llinuxs make -v
NU Make 4.1
Built for x86_64-pc-linux-gnu

opyright (C) 1988-2014 Free Software Foundation, Inc.

icense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
his is free software: you are free to change and redistribute it.

here is NO WARRANTY, to the extent permitted by law.

Figure 8.2. Make

lattice@lattice f_demo/Sof /1inux$ gcc -v
Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-1inux-gnu/7/1to-wrapper
OFFLOAD_TARGET_NAMES=nvptx-none
OFFLOAD_TARGET_DEFAULT=1
Target: x86_64-1linux-gnu
Configured with: ../src/configure -v --with-pkgversion='Ubuntu 7.5.8-3ubuntu1~18.04"' --with-bugurl=file:///usr/share/doc/gcc-7/README.Bugs --enable-languages=c,ada,c++,
go,brig,d,fortran,objc,obj-c++ --prefix=fusr --with-gcc-major-version-only --program-suffix=-7 --program-prefix=x86_64-1inux-gnu- --enable-shared --enable-linker-build-
i libexecdir=fusr/1lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib nable-nls --enable-bootstrap --enable-clocale=gnu nable-1libstdcxx-deb
es --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-1libmpx nable-plugin --enable-default-pie
nable-multiarch --disable-werror --with-arch (1:13] ith-abi=m64 ith-multilib-1list=m32,m64,m
able-multilib --with-tune=generic --enable-offload-targets=nvptx-none --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-1lin
gnu --target=x86_64-1linux-gnu
Thread model: posix
gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)

Figure 8.3. GCC

lattice@lattice

Using built-in specs.

COLLECT_GCC=g++

COLLECT_LTO_WRAPPER=/usr/1ib/gcc/x86_64-1inux-gnu/7/lto-wrapper

OFFLOAD_TARGET_NAMES=nvptx-none

OFFLOAD_TARGET_DEFAULT=1

Target: x86_64-1linux-gnu

configured with: ../src/configure -v --with-pkgversion='Ubuntu 7.5.0-3ubuntul~18.04"' --with-bugurl=file:///usr/share/doc/gcc-7/README.Bugs --enable-langua ,ada,c++,
go,brig,d,fortran,objc,obj-c++ --prefix=/usr --with-gcc-major-version-only --program-suffix=-7 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-
id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/1ib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-deb
ug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-libmpx --enable-plugin --enable-default-pie
--with-system-zlib --with-target-system-z1lib --enable-objc-gc=auto --enable-multiarch --disable-werror --with-arch-32=i686 --with-ab 64 ith-multilib-11st=m32,m64,m
%x32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none - thout-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-1in
ux-gnu --target=x86_64-1inux-gnu

Thread model: posix

gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntul-18.04)

Figure 8.4. G++

pooja@pooja-Latitude-E7470:~$ uname -a
Linux pooja-Latitude-E7470 5.4.0-91-generic #102~18.04.1-Ubuntu SMP Thu Nov 11 14:46:36 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux

pooja@pooja-Latitude-E7470:~5 I

Figure 8.5. Kernel Version

Pre-Requisites

Follow Package.sh to install required packages.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

8.2. SMBus Driver

SMBus_init — This function is called when the SMBus module is inserted into the kernel through the insmod
command. It creates the SMBus type Adaptor on the I12C line, with its functionality, class, and adaptor name. It also
creates the i2c client given i2c line. Add the device driver for the client.

SMBus Probe — This function is called when the driver detects the device.

SMBus Exit — This function is called when the device driver is removed from kernel.

Cmd to insert/remove the driver into the kernel:

For inserting the driver — Sudo modprobe i2c i801

For removing the driver— Sudo rmmod i2c 1801

8.3. PCle Driver

Pcie_register_driver — This function is called when the module is inserted into the kernel through the insmod
command. It registers the Lattice PCle driver into the kernel.

Pcie_probe — This function reads the device vendor, device ID, number of bars, and IRQ. It also enables the PCle Master
bus and registers the driver for the device.

CreateCharDevice — This function allocates the memory to the driver, major and minor number for device driver and
mapping of file operations for read, write, ioctl, open and release.

Pcie_unregister_driver — This function is called when the driver is removed from the kernel by rmmod.

Cmd to insert/remove the driver into/from the kernel — Go to the driver directory, and run the commands below.

For inserting the driver: Sudo insmod lattice main.ko

For removing the driver: Sudo rmmod lattice main.ko

8.3.1. Core API supported in PCle Driver

Read (Addr, Data) — This function reads the register values.

Write (Addr, Value) — This function writes to the register values.

getDriverVerString (Value) — This function reads the register driver version string.

ReadFPGAReg (Addr, Data) — This function reads the FPGA registers value.

WriteFPGAReg (Addr, Value) — This function writes to the FPGA registers.

PCleConfigRead (Addr, Data) — This function reads the PCle Configuration register values.

PCleConfigWrite (Addr, Value) — This function writes to the PCle Configuration register values.

Read (uint32_t addr, uint8_t *val, size_t le) — Read function is used to read bulk data through IOCTL. addr is Read start
location, val data buffer read and len data length to be read.

write (uint32_t addr, uint8_t *val, size_t le) — Write function is used to write bulk data through IOCTL. addr is Write
start location, val data buffer write and len data length to be written.

getPClConfigRegs (uint8_t *pCfg) — This function returns the 256 bytes of the device's PCl configuration space registers.
These registers must be present on any PCI/PClexpress device.

pCfg user location to store 256 bytes — The function returns true if read byte is successful and false if the driver reports
an error.

getPciDriverinfo (PCIResourcelnfo_t **pinfo) — This function returns the extra device driver information structure. This
includes the DMA memory buffer info, PCl bus/dev/func address. Pinfo is user's pointer that indicates the internal
driver structure.

getPciDriverDMAInfo (const DMAResourcelnfo_t **pDMAInfo) — This function returns the extra device driver
information structure in c++ supported format. This includes the DMA memory buffer info, PCl bus/dev/func address.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

8.4. Functions Used

e Third party Tool (Openssl) is used for data encryption on PC side.

e Abstraction Layer APIs

e Spdm_client_init — This API forms the send or receive of the SPDM message for version, capabilities, and negotiation

and sends packet to mctp layer.
e Mctp_responsder_init — This API receives the SPDM message and forms the MCTP packet.

e mctpSendMessage — This APl sends the SPDM over MCTP packet over the SMBus.
e mctp_responsder_init — This APl receives the SMBus packet, which is MCTP format, extracts the SPDM , and sends to

SPDM.

8.5. Flow Description

User input choice
selected

SPDM over MCTP
packet send/receive

Host PC reads
encrypted data

A

> between HC and

= LATTICE

Application CPU

Security CPU reads

User input choice
selected

MCTP packet send/
receive over SMBus

A 4

sends to Egress RAM

Figure 8.6. UART to PC

SPDM over MCTP
packet send/receive

Application CPU
displays output on
UART terminal

encrypted dataand |«

Application CPU sends
plain data to Ingress
RAM

between HC and
Application CPU

Application CPU reads
data and sends to
Security CPU.

A

MCTP packet send/
receive over SMBus

Security CPU decrypts
data and sends to
Application CPU.

Figure 8.7. PC to UART

PCle driver sends
encrypted data

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

8.6. User Selection for Algorithm

The user can select the algorithm to be used.

Hello USER, select the Algorithm from below:

SHA 384 PC to UART

SHA 384 UART to PC

HMAC 384 PC to UART

HMAC 384 UART to PC

AES-GCM 256 EMCRYPTION (UART to PC)
AES-GCM 256 DECRYPTION (PC to UART)
Exit

SNoOWhAWNE

Figure 8.8. Select Algorithm

In the PC to UART flow, the cipher text is sent over PCle using DMA Read. After decryption, plain text data is sent over the
UART terminal.

In the UART to PC flow, plain text is given from UART terminal. After encryption, the Cipher text data is sent over PCle using
DMA Write to the host computer.

8.6.1. Directory Structure

clean.sh Input_data Llibspdm - packagé.txt preRequisites RSA userinput.sh

clientDetected.sh libmctp OutPut_data PCIe_Source_Code README.md run.sh

Figure 8.9. Directory

e App - Contains middleware API that takes user input and sends request to the SPDM module.
e Build — Contains SPDM binary and library protocols.

e libmctp — Contains MCTP code that sends packet to the SMBus.

e Libspdm — Contains the SPDM source code.

e PCle_Source_code — Contains PCle driver code and API that calls the PCle driver.

e preRequistes — Contains packages to be installed on the Linux host computer.

e RSA — Contains script.sh that generates file with signature and SHA for authentication.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 []
Reference Design L LATTICE

8.7. Application CPU Subsystem

The Application CPU is the main interface that communicates with the Security CPU through different interfaces that are
listed below. The Application CPU manages the firmware level work, that is, it has the BSPs of all interfaces.

When the Application CPU requests any service from Crypto-384, it writes certain information to the Register Interface
which then generates an interrupt to the Security CPU. The interrupt service routine at the Security CPU reads the
information from the Register Interface and provides service such as SHA2-384 and then clear the interrupt. Once the
service is completed, the Security CPU writes to the interrupt set register at the Register Interface, which generates an
interrupt to Application to inform that the request has been completed. The Application CPU can read the status register at
the Register Interface and then send the next service request.

APPLICATION LAYER

Register

aeeEll Interface

Sends Command R/W/Ini

ABSTRACTION LAYER

Config
Manager Calls Interface Dependent

APIs

HARDWARE LAYER

UART SMBus

Figure 8.10. Application CPU Software Module

The Application CPU has the following interfaces:
e UART
e SMBus Slave

The following sections provide the details on the UART and SMBus protocols.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 95

http://www.latticesemi.com/legal

= LATTICE

8.7.1. UART

UART stands for Universal Asynchronous Receiver/Transmitter. It is not a communication protocol like SPI and 12C, but a
physical circuit in a micro-controller, or a stand-alone IC.

The main purpose of the UART is to transmit and receive serial data. In UART communication, two UART communicate
directly with each other. Only two wires are needed to transmit data between two UART. Data flows from the TX pin of the
transmitting UART to the RX pin of the receiving UART.

Data is transmitted to the data bus by adding one start bit, one parity bit, and one stop bit to make it a packet. In the
receiving part to retrieve data, start, parity, and stop bit are removed.

And in receiving part to retrieve data start, parity and stop bit is removed.

8.7.1.1. UART Frame Packet
e Start/Stop bit

e Data bits

e Parity bit

8.7.1.2. UART Functions

e Initialization of UART — Initializes the UART.

e Receiving Data — Receives data by removing the start, parity and stop bits.

e Transmitting Data — Sends data in a packet format by adding start, parity and stop bits.

Setting baud rate — Sets the baud rate for UART as in case we need to change the baud rate this function is called.
e Configure UART — Configures the UART.

8.7.1.3. Functions for UART to PCle Flow

UART to PCle flow is used in encryption. In this flow, data packet is created with first byte as Oxcc, second byte as 0x77, and
then next two bytes are used for packet size. This packet is sent over UART to PCle. Following are the crypto algorithm flow
with UART to PCle.

8.7.2. SMBus

The SMBus Interface is only used for message exchange and communication between the Host PC and the Application CPU.
Algorithm selection and other processes are performed through the SMBus.

8.7.2.1. Functions in SMBus

e int smbus_mailbox_write_data_register (unsigned char wbyte) — This function writes one-byte wbyte to
WR_DATA_REG. It pushes one byte to Transmit FIFO. If the Transmit FIFO is full, this API returns an error. During SMBus
read transaction, this data is shown from the Transit FIFO.

e int smbus_mailbox_read_data_register (unsigned char *rbyte) — This function reads one byte from the Receive FIFO.
After a data is received from SMBus during write transaction, the received data is pushed to Receive FIFO. Reading
from RD_DATA_REG shows a word from Receive FIFO. If the Receive FIFO is empty, this function returns an error.

e void smbus_mailbox_write_slave_address_register (unsigned short slv_id) — Sets up SMBus Slave ID for the IP block.

e void smbus_mailbox_read_slave_address_register (unsigned short *slv_id) — Reads SMBus Slave ID for the IP block.

e void smbus_mailbox_set_control_register (unsigned char wbyte) — Sets up control register

e void smbus_mailbox_read_control_register (unsigned char *rbyte) — Reads control register.

e void smbus_mailbox_read_interrupt_statusl_register (unsigned char *rdata) — Reads interrupt status register
INT_STATUS1_REG.

e void smbus_mailbox_write_rf (unsigned char waddr, unsigned char wbyte) — Writes the data to Register File inside
SMBus Mailbox IP.

e void smbus_mailbox_read_rf (unsigned char waddr, unsigned char *rbyte) — Reads the data from the Register File
inside SMBus Mailbox IP.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

8.7.2.2. Register Address Set

e SMBUS_MAILBOX_BASE_ADDR

e SMBUS_MAILBOX_RF_OFFSET 0x2000

e SMBUS_MAILBOX_RF_ADDR

e (SMBUS_MAILBOX_BASE_ADDR + SMBUS_MAILBOX_RF_OFFSET)

e SMBUS_MAILBOX_RD_DATA REG (SMBUS_MAILBOX_BASE_ADDR + 0x00)

e SMBUS_MAILBOX_WR_DATA_REG (SMBUS_MAILBOX_BASE_ADDR + 0x00)

e SMBUS_MAILBOX_SLVADR_L_REG (SMBUS_MAILBOX_BASE_ADDR + 0x04)

e SMBUS_MAILBOX_SLVADR_H_REG (SMBUS_MAILBOX_BASE_ADDR + 0x08)

e SMBUS_MAILBOX_CONTROL_REG (SMBUS_MAILBOX_BASE_ADDR + 0x0C)

e SMBUS_MAILBOX_TGT_BYTE_CNT_REG (SMBUS_MAILBOX_BASE_ADDR + 0x10)
e SMBUS_MAILBOX_INT_STATUS1_REG (SMBUS_MAILBOX_BASE_ADDR + 0x14)
e SMBUS_MAILBOX_INT_ENABLE1_REG (SMBUS_MAILBOX_BASE_ADDR + 0x18)
e SMBUS_MAILBOX_INT_SET1_REG (SMBUS_MAILBOX_BASE_ADDR + 0x1C)

e SMBUS_MAILBOX_INT_STATUS2_REG (SMBUS_MAILBOX_BASE_ADDR + 0x20)
e SMBUS_MAILBOX_INT_ENABLE2_REG (SMBUS_MAILBOX_BASE_ADDR + 0x24)
e SMBUS_MAILBOX_INT_SET2_REG (SMBUS_MAILBOX_BASE_ADDR + 0x28)

e SMBUS_MAILBOX_FIFO_STATUS_REG (SMBUS_MAILBOX_BASE_ADDR + 0x2C)

8.8. Code Flow

8.8.1. Application CPU Main Flow

The Application CPU performs message exchange with the Host PC and gives the mode of operation value to the Security
CPU to perform a particular task. The Application CPU previously performs authentication and verifies the Host PC, which is
followed by key exchange through ECDH algorithm. After the exchange of keys, other cryptographic algorithms are
performed. For better understanding authentication and key exchange flows are there.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0

Reference Design

= LATTICE

>

Checks status
register

Not Empty

Reads Data Packet

Other than
Authentication
code

Checks Request

Message Code
(Authentication here

Functions

Pkt seq
(1, 2, and 3)
Pkt type —
Al (public
key and
signature

Authentication
request code

Checks Packet type,

Stores these
packet sequence

parameters into
an array

Pkt seq (4)
Pkt type —
A2 (public
exponential and
Hash message)

Stores value
and calls RSA
signature
verify function

Compare message Hash
value received by Host PC
and output function

Not Same

Sends Fail
message to

PC

Sends
Success msg
to PC

Figure 8.11. Authentication Flow

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice
FPGA-RD-02257-1.0

98

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0

Reference Design

= LATTICE

ECC Key pair generation
through CRE IP

Waits for SMBus packet
(ECDH pkt)

Yes
4

Stores public key sent by Host
PC and sends its own public
key in response

Stores echd mode value and
Host PC’s public key to
Security CPU for generating
shared secret

Figure 8.12. ECDH Flow

No

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0

99

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0

Reference Design

= LATTICE

Initialize SMBus, UART and pic init

4

Check PCle Linkup

While(pcie_linkup == 1)

A\4

Check SMBus Status

A

SMBus FIFO Status == 0x01

Read all data present in FIFO

Check Data is in MCTP format

Check for message type and call APIs

SUCCESS

Figure 8.13. Main Code Flow

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0

100

http://www.latticesemi.com/legal

= LATTICE

8.8.2. Algorithm APIs

There are two main flows for algorithms, one is for UART to PCle and the other is for PCle to UART. In PCle to UART, data is
sent by the Host PC to the Ingress RAM. The Application CPU reads and sends the data to the Security CPU. The Application
CPU previously sends mode value (that decides the algorithm execution to perform) to the Security CPU, and sets interrupt
for it. Until then it waits for the Application CPU interrupt which is set by the Security CPU once it has done its operation.
The Application CPU then reads the output data and displays it on the UART terminal. Decryption is performed in PCle to
UART flow.

Following are the functions which are PCle to UART:

int aes_method_with_pcie (unsigned char *aes_key_arr, unsigned char *aes_iv_vector_arr, unsigned char mode_aes,
int aes_sha_mode) — This API takes key, IV vector and mode value as input from the SMBus and sends it to the Security
CPU for AES-CBC Decryption mode. In this API, the Application CPU writes key and IV vector, mode of AES, and data to
register for the Security CPU. It then enables the interrupt for the Security CPU so that it can start processing. It waits
for the Application CPU interrupt which comes from the Security CPU. After successfully completing AES operation, the
Application CPU reads the data and displays it on UART terminal.

unsigned int sha_with_pcie (unsigned char mode_sha, unsigned int sha_length) — This APl is performs SHA384
operation. It takes mode and sha_length as input and gives the hash value of data as output. It initially writes SHA
mode value and SHA length to the Security CPU. It calculates block size according to SHA length. SHA operation and
interrupt enabling depends upon the SHA length as there are different conditions for length. One is length being equal
to 128 bytes and another is length being less than 128 bytes. Data is sent through ping pong registers. After these
operations, the APl waits for the Application CPU interrupt to read the hash value of data as output.

int sha_with_pcie_new (unsigned char mode_sha, unsigned int sha_length, unsigned char *aes_key_arr, unsigned char
*aes_iv_vector_arr) — This APl takes input for AES decryption and sends the output for SHA384 operation. The output is
displayed on the UART terminal. This API mainly calls AES and SHA for operation and is used in PCle to UART flow.
unsigned int hmac_with_pcie (unsigned char *key, unsigned char mode_hmac, unsigned int sha_length) — This APl is
used to calculate hash value of data through HMAC Algorithm. It requires key as input. This is the same as the SHA API
in terms of calculating block numbers from SHA length and performing pin pong operations. However, the Application
CPU writes SHA length mode and key to the Security CPU.

int aes_gcm (unsigned char *key, unsigned char *iv_vector, unsigned char *add_arr, unsigned int cipher_size) — This
APl works for AES GCM mode. It takes input key, IV vector, additional data, data length, and addition data length from
the SMBus to the Security CPU. It then enables the interrupt for the Security CPU so that it can start its processing.
Later, it waits for the Application CPU interrupt, which comes from the Security CPU. After successful completion of AES
operation, the Application CPU reads the data and displays it on the UART terminal.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

The following are the functions for UART to PCle:-

For sending data from UART to PCle, the user needs to create a packet on the UART terminal. Figure 8.14 shows the packet
structure.

Header — 2 Bytes Packet Length — 2 Bytes

DATA

Figure 8.14. UART to PCle

The header is = Oxcc and 0x77

e intaes_enc_uart_to_pcie (unsigned char mode_aes, unsigned char *aes_key_arr, unsigned char *aes_iv_vector_arr) —
This APl works for AES encryption. Input data is obtained from the UART and sent to the Security CPU. The output data
is read once the Security CPU completes encryption and is sent to the Host PC through PCle.

e intsha_uart_to_pcie (unsigned char mode_sha, unsigned int sha_length) — In this API, data is obtained from the UART.
Data, key, IV vector and mode (encryption in this case) are sent to the AES API. The output of THE AES encryption data
is sent for hash calculation through SHA384. The output hash value is then sent to the Host PC.

e intaes_gcm_uart_to_pcie (unsigned char *key, unsigned char *iv_vector, unsigned char *add_arr, unsigned int
cipher_length) — This is for AES-GCM encryption calculation. The flow is the same as AES UART to PCle. However, the
key and IV vector additional data, data length, and additional data length are sent to the Security CPU.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 102

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

8.9. Security CPU Main Flow

Initialize programmable interrupt controller, enable
Security CPU by writing 1 into register

v

Security CPU waits for start trigger from application
CPU till status security value becomes 1

v

After receiving interrupt from application CPU, it
clear the security interrupt, it reads mode value and
servo status

v

Checks servo status for servo in service condition
and then makes it servo busy

v

Performs crypto operation according to the mode
value

Mode = SHA Algorithm SHA 384 Algorithm

Mode = HMAC Algorithm HMAC 384 Algorithm

Mode = Encryption / Decryption AES — CBC 256 Encryption/ Decryption

Mode = Encryption / Decryption AES — GCM 256 Encryption/ Decryption

Figure 8.15. Security CPU Main Flow

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 103

http://www.latticesemi.com/legal

= LATTICE

8.10. Security CPU Algorithm APIs

In the Security CPU, there are common main flows for UART to PCle and for PCle to UART. In the case of PCle to UART and
UART to PCle, data is read from the Register Interface by the Security CPU. The Application CPU sends the data through the
Register Interface to the Security CPU. The Security CPU waits for interrupt to start the process and also reads the mode
value and servo status sent by the Application CPU through the Register Interface to run the whole system for the selected
algorithm based on the mode value.

Servo status has three operations:

e Idle (nothing is happening between application and the Security CPU).

e Service (the Application CPU starts sending data and interrupt to the Security CPU)

e Busy (the Security CPU is processing all the data sent by the Application CPU and sent it to the IP).

After completion of any algorithm, the Security CPU sends output data to the Application CPU through the Register
linterface. The Application CPU reads output data and display it on the UART terminal.

The following are the functions used for PCle to UART and UART to PCle:

e unsigned int aes_enc_dec (unsigned int mode_value) — This API is for AES CBC 256 encryption/decryption. It reads key
length, key, IV vector and based upon the mode value it, runs the encryption and decryption process through IP.

e unsigned int gcm_enc_dec (unsigned int mode_value) — This APl is for AES GCM 256 encryption/decryption. It reads key
length, key, IV vector, Additional data and Additional data length. Then, based upon the mode value, it runs the
encryption and decryption process through IP.

e unsigned int sha384_sec() — This APl is used for SHA384 Algorithm, it reads data length from SMBus, input data from
the Register Interface. It uses HASH INITIAL to tell IP to process the data and configures HASH UPDATE to tell IP to
process if data is greater than 128 bytes. HASH FINISH only configures for last block of input data and also sends data
length to IP. After complete processing of data, IP generates Digest value of 384 bits and then sends it to the
Application CPU through the Register Interface.

e unsigned int hmac_sec() — This APl is used for HMAC SHA384 Algorithm, it reads data length from SMBus, input key and
input data from the Register Interface. HMAC algorithm used IPAD (0x36) and OPAD (0x5C) value for XORing the input
key before sending to IP. It uses HASH INITIAL to tell IP to process the data and configures HASH UPDATE to tell IP to
process if data is greater than 128 bytes. HASH FINISH only configures for last block of input data and also sends data
length to the IP. After the data is completely processed, the IP generates Digest value of 384 bits and then sends it to
the Application CPU through the Register Interface.

e unsigned int sha_ping_block (unsigned int sha_input_length) — This API is used to read the data sent by the Application
CPU through the Register Interface. The sha_input_length indicates the number of bytes to be read from the ping
memory and sends it to the IP. To indicate that the entire data is read from this location, 0 is written at the end

e unsigned int sha_pong_block (unsigned int sha_input_length) — This APl is used to read the data sent by the Application
CPU through the Register Interface. The sha_input_length indicates the number of bytes to be read from the pong
memory and sends it to the IP. To indicate that the entire data is read from this location, 0 is written at the end.

e unsigned int Hash_finish (unsigned int sha_input_length, unsigned char pingpong) — This API is used to perform
operation on the last block of input data to complete the process. The ping-pong variable keeps track of the memory
from which the data is read, either from the ping or the pong memory. The sha_input_length indicates the number of
bytes to be read from the specific memory and sends it to the IP.

e unsigned int rsa_key_verify() — This APl is used to read the public key and signature of 3072 bits from the ping and pong
buffer through the Register Interface, in which the Application CPU writes these data. The RSA verification is performed
using CRE IP. Output data is sent to the Application CPU through the Register Interface.

e unsigned int rsa_ping_block (unsigned int sha_input_length) — This API is used to read the data sent by the Application
CPU through the Register Interface. The sha_input_length indicates the number of bytes to be read from the ping
memory and sends it to the IP. To indicate that the entire data is read from this location, 0 is written at the end.

e unsigned int rsa_pong_block (unsigned int sha_input_length) — This APl is used to read the data sent by the Application
CPU through the Register Interface. The sha_input_length indicates the number of bytes to be read from the pong
memory and sends it to the IP. To indicate that the entire data is read from this location, 0 is written at the end.

e unsigned char ecdh_algo() — This APl is used to exchange shared secret between the Application CPU and the Security
CPU. The Security CPU reads the public key x, public key y, and private key from the buffer and send the values to the

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

IP. After the IP completes the operation, the Security CPU sends the generated shared secret to the Application CPU
through the Register Interface.

Note: For more details, refer to the Detailed Description of Crypto Operations section for all APIs.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 105

http://www.latticesemi.com/legal

= LATTICE

Appendix A. Resource Utilization

Table A.1. Resource Utilization

Subsystems Blocks LUTs PFU Registers | EBRs DSPs
Reset_Sync 79 35 0 0
Crypto-256 ahbl2lmmi 288 199 0 0
CRE 0 0 0 0
Sub-total (Crypto-256) 288 199 0 0
Crypto-384 AHBL Interconnect (1 masters, 3 slaves) 143 7 0 0
Registers Interface(16 kB) 198 136 8 0
Security RISC-V 2399 1008 2 0
System (Instruction + Data) Memory (128 kB) 88 35 2LRAMs | O
PKC 5672 1314 6 16
SHA2-384 4006 2882 0 0
AES CBC 9741 2017 40 0
AES-GCM 9722 2924 24 0
ORAN Security Enclave top wrapper 88 36 0 0
(interconnect + top wrapper)
Sub-total (ORAN Security Enclave without CBC module) | 19488 7156 30 16
Sub-total (Crypto-384) 22316 8342 408, 2L 16
PCle Ingress RAM (64 kB) 259 328 32 0
Egress RAM (64 kB) 625 819 32 0
PCle with DMA (2 AHBL masters, 1 APB) 20383 11619 40 0
Sub-total 21267 12766 104 0
Application AHBL Interconnect of Application (1 master, 7 slaves) 297 11 0 0
AHBL TO APB Interconnect 206 254 0 0
APB Interconnect (1 master, 2 slaves) 54 3 0 0
Application CPU (RISC-V) 2710 1449 2 0
System (Instruction + Data) Memory (128 kB) 119 35 2LRAMS | O
UART 254 146 0 0
SMBus Slave 1271 701 2 0
Sub-total 4911 2599 4B,2L 0
Total Used 48861 23941 1488B,4L 16
Total Available Resources 79872 79872 208B,7L | 156

www.latticesemi.com/legal

http://www.latticesemi.com/legal

5G Lattice ORAN Solution Stack 1.0 l.l.LATTICE

Reference Design

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0 107

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

5G Lattice ORAN Solution Stack 1.0

Reference Design

= LATTICE

Revision History

Revision 1.0, June 2022

Section

Change Summary

All

Initial release.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-RD-02257-1.0

108

http://www.latticesemi.com/legal

s=LATTICE

http://www.latticesemi.com/

	5G Lattice ORAN Solution Stack 1.0
	Acronyms in This Document
	1. Introduction
	2. Design Architecture
	2.1. PCIe Subsystem
	2.1.1. PCIe Endpoint with DMA Enabled
	2.1.2. AHBL Interconnect of PCIe
	2.1.3. Ingress RAM
	S0_AHB Slave
	AXI_master
	S1_AHB_slave
	Control Signals

	2.1.4. Egress RAM
	S0_AHBL slave
	AXI_slave
	S1_AHBL_slave
	Control Signals

	2.2. Application CPU Subsystem
	2.3. Crypto Subsystem
	2.3.1. Crypto-256 Subsystem
	2.3.2. Crypto-384 Subsystem
	2.3.3. Register Interface

	2.4. Programming Model

	3. Memory Map
	4. IPs/RTL Blocks used in the Design
	4.1. ORAN Security Enclave
	4.1.1. AES CBC 256 IP
	4.1.2. AES GCM 256 IP
	4.1.3. Hash Function IP
	4.1.4. Public Key Cryptography (PKC) IP

	4.2. CRE Module IP
	4.3. SMBus Controller
	4.3.1. SMBus Functional Description
	4.3.2. SMBus Program Flow
	4.3.3. SMBus Slave Controller Initialization Flow
	4.3.4. SMBus Master Initialization
	4.3.5. SMBus Slave Controller Operation Flow
	4.3.6. SMBus Master Controller Operation Flow
	4.3.7. Write Data to SMBus Slave
	4.3.8. Read Data from SMBus Slave

	4.4. PCIe Subsystem IP
	4.5. Reset Sync
	4.6. OSC for CRE

	5. Detailed Description of Crypto Operations
	5.1. AES-256 CBC Decryption (PCIe to UART)
	5.1.1. DMA Read
	5.1.2. Application CPU Process
	5.1.3. Security CPU Process

	5.2. AES-256 CBC Encryption (UART to PCIe)
	5.2.1. DMA Write
	5.2.2. Application CPU Process
	5.2.3. Security CPU

	5.3. AES-256 GCM Decryption (PCIe to UART)
	5.3.1. DMA Read
	5.3.2. Application CPU Process
	5.3.3. Security CPU Process

	5.4. AES-256 GCM Encryption (UART to PCIe)
	5.4.1. DMA Write
	5.4.2. Application CPU Process
	5.4.3. Security CPU Process

	5.5. SHA384 Authentication (PCIe to UART)
	5.5.1. PCIe DMA Read
	5.5.2. Application CPU Process
	5.5.3. Security CPU Side Process

	5.6. SHA384 Message Digest Generation (UART to PCIe)
	5.6.1. Application CPU Process
	5.6.2. Security CPU Process

	5.7. SHA384 Authentication (PCIe to UART using GCM Decryption)
	5.7.1. PCIe DMA Read
	5.7.2. Application CPU Process
	5.7.3. Security CPU Process

	5.8. HMAC 384 Authentication (PCIe to UART)
	5.9. HMAC 384 Message Digest Generation (UART to PCIe)
	5.10. ECC 256 Bit Key Pair Generation (using CRE IP)
	5.11. RSA Encryption/Decryption
	5.12. AES Throughput Calculation

	6. PCIe DMA
	6.1. Overview
	6.2. Components of DMA Design
	6.3. FPGA Design
	6.3.1.1. Register Address (0x00)
	6.3.1.2. Register Address (0x04)
	6.3.1.3. Register Address (0x08)
	6.3.1.4. Register Address (0x0C)
	6.3.1.5. Register Address (0x10)
	6.3.1.6. Register Address (0x14)
	6.3.1.7. Register Address (0x18)
	6.3.1.8. Register Address (0x1C)
	6.3.1.9. Register Address (0x20)
	6.3.1.10. Register Address (0x30)
	6.3.1.11. Register Address (0x34)
	6.3.2. Descriptor Field Format
	6.3.3. Status Field Format
	6.3.4. How to Trigger the DMA Operation.
	6.3.5. Register Space: BASE ADDRESS -- 0x00180000
	6.3.5.1. Register Address (0x0) (Default: 0x60)
	6.3.5.2. Register Address (0x4)
	6.3.5.3. Register Address (0x8)
	6.3.5.4. Register Address (0xC)
	6.3.5.5. Register Address (0x10)
	6.3.5.6. Register Address (0x14)
	6.3.5.7. Register Address (0x18)
	6.3.5.8. Register Address (0x1C)
	6.3.5.9. Register Address (0x20)
	6.3.5.10. Register Address (0x24)
	6.3.5.11. Register Address (0x28)
	6.3.5.12. Register Address (0x30)
	6.3.5.13. Register Address (0x34)
	6.3.5.14. Register Address (0x38)
	6.3.5.15. Register Address (0x3C)
	6.3.5.16. Register Address (0x40)
	6.3.5.17. Register Address (0x44)
	6.3.5.18. Register Address (0x48)
	6.3.5.19. Register Address (0x50)
	6.3.5.20. Register Address (0x54)
	6.3.5.21. Register Address (0x58)
	6.3.5.22. Register Address (0x5C)
	6.3.5.23. Register Address (0x60)
	6.3.5.24. Register Address (0x64)
	6.3.5.25. Register Address (0x70)

	7. MCTP over SMBus
	7.1. SMBus
	7.2. MCTP
	7.3. SPDM
	7.4. Algorithm Selection
	7.5. AES CBC/GCM Algorithm
	7.6. SHA Algorithm
	7.7. HMAC Algorithm
	7.8. ECDH Algorithm
	7.9. RSA Algorithm
	7.9.1. RSA Signature:
	7.9.2. RSA Verify Signature

	8. User Flow
	8.1. Driver Initialization
	Supported Boards
	Supported OS
	Required Packages

	8.2. SMBus Driver
	8.3. PCIe Driver
	8.3.1. Core API supported in PCIe Driver

	8.4. Functions Used
	8.5. Flow Description
	8.6. User Selection for Algorithm
	8.6.1. Directory Structure

	8.7. Application CPU Subsystem
	8.7.1. UART
	8.7.1.1. UART Frame Packet
	8.7.1.2. UART Functions
	8.7.1.3. Functions for UART to PCIe Flow

	8.7.2. SMBus
	8.7.2.1. Functions in SMBus
	8.7.2.2. Register Address Set

	8.8. Code Flow
	8.8.1. Application CPU Main Flow
	8.8.2. Algorithm APIs

	8.9. Security CPU Main Flow
	8.10. Security CPU Algorithm APIs

	Appendix A. Resource Utilization
	Technical Support Assistance
	Revision History
	Revision 1.0, June 2022

