

CrossLink-NX Scene Segmentation Reference
Design

Reference Design

FPGA-RD-02256-1.0

June 2022

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02256-1.0

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer.
Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited
testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice
products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a
situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is
proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 3

Contents
Acronyms in This Document ... 6
1. Introduction .. 7

1.1. Design Process Overview .. 7
2. Setting Up the Basic Environment .. 8

2.1. Tools and Hardware Requirements ... 8
2.1.1. Lattice Tools ... 8
2.1.2. Hardware .. 8

2.2. Setting Up the Linux Environment for Machine Training .. 8
2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU 9
2.2.2. Setting Up the Environment for Training and Model Freezing Scripts ... 10
2.2.3. Creating new environment with python 3.7 .. 11
2.2.4. Installing the TensorFlow v1.15.. 11
2.2.5. Installing the Python Package .. 12

3. Code Structure .. 14
4. Dataset Preparation .. 15

4.1. Downloading the Dataset .. 15
4.2. Convert Matting dataset to segmentation dataset ... 15
4.3. Dataset Augmentation .. 16

5. Training Code Preparation .. 17
5.1. Neural Network Architecture .. 17

5.1.1. Neural Network Architecture ... 17
5.1.2. Semantic Segmentation Network Output .. 20
5.1.3. Training Code Overview ... 21

5.2. Training ... 23
6. Creating Frozen File .. 26

6.1. Generating the Frozen (.pb) File ... 26
7. Model Evaluation .. 28

7.1. Run Inference on test set and calculate IOU/DICE .. 28
8. Creating Binary File with SensAI ... 29
9. Hardware (RTL) Implementation .. 35

9.1. Top Level Information ... 35
9.1.1. Block Diagram ... 35
9.1.2. Operational Flow .. 35
9.1.3. Core Customization .. 35

9.2. Architectural Details .. 36
9.2.1. Pre-Processing operation ... 36
9.2.2. Post-Processing operation.. 36

10. Creating FPGA Bit stream file ... 38
Technical Support Assistance ... 40
Revision History .. 41

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02256-1.0

Figures
Figure 1.1. Lattice Machine Learning Design Flow ... 7
Figure 2.1. Lattice CrossLink-NX Voice and Vision Machine Learning (VVML) Board, Rev B .. 8
Figure 2.2. Download CUDA Repo .. 9
Figure 2.3. Install CUDA Repo ... 9
Figure 2.4. Fetch Keys ... 9
Figure 2.5. Update Ubuntu Packages Repositories ... 9
Figure 2.6. CUDA Installation .. 10
Figure 2.7.cuDNN Library Installation ... 10
Figure 2.8.Anaconda Installation .. 11
Figure 2.9.Accept License Terms .. 11
Figure 2.10.Confirm/Edit Installation Location ... 11
Figure 2.11.Launch/Initialize Anaconda Environment on Installation Completion .. 11
Figure 2.12.TensorFlow Installation.. 12
Figure 2.13.TensorFlow Installation Confirmation ... 12
Figure 2.14.OpenCV Installation ... 12
Figure 2.15.Pillow Installation .. 13
Figure 2.16.Tqdm Installation ... 13
Figure 2.17. Scipy Installation ... 13
Figure 2.18. Matplotlib Installation .. 13
Figure 3.1. Training Code Directory Structure .. 14
Figure 4.1. Matting dataset Directory Structure ... 15
Figure 4.2. Matting dataset sample image and ground truth ... 15
Figure 4.3. Converted matting GT to segmentation GT .. 15
Figure 4.4. Augmentation sample images .. 16
Figure 5.1. Enet Architecture .. 18
Figure 5.2. Training Code Flow Diagram ... 21
Figure 5.3. Code Snippet: train.sh configurations .. 22
Figure 5.4. Code Snippet: Create Graph ... 23
Figure 5.5. Code Snippet: Loss Function ... 23
Figure 5.6. Code Snippet: Training Graph ... 23
Figure 5.7. Execute Run Script .. 24
Figure 5.8. TensorBoard – Generated Link ... 24
Figure 5.9. TensorBoard .. 24
Figure 5.10. Image Menu of TensorBoard .. 25
Figure 5.11. Example of Checkpoint Data Files at Log Folder ... 25
Figure 6.1. freeze.sh configuration ... 26
Figure 6.2. Run freeze.sh To Generate Inference .pb ... 26
Figure 6.3. Frozen Inference. pb Output ... 27
Figure 7.1. Run Testing ... 28
Figure 8.1. SensAI – Home Screen .. 29
Figure 8.2. SensAI – Select Framework, Device and Network File .. 30
Figure 8.3. SensAI – Select image Data File .. 30
Figure 8.4. SensAI – Update Project Settings .. 31
Figure 8.5. Analyze Project ... 31
Figure 8.6. Q Format Settings for Each Layer ... 33
Figure 8.7. Compile Project ... 34
Figure 9.1. Top Block Diagram of Portrait segmentation with Crosslink-NX Voice & Vision ML (RevB) Board 35
Figure 9.2. Downscaling image ... 36
Figure 10.1 Radiant Software ... 38
Figure 10.2. Radiant Software – Open Project ... 39
Figure 10.3. Radiant Software – Bit stream Generation Export Report.. 39

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 5

Tables
Table 9.1. Core Parameters .. 35

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02256-1.0

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

CKPT Checkpoint

CNN Convolutional Neural Network

EVDK Embedded Vision Development Kit

FPGA Field-Programmable Gate Array

LED Light-emitting diode

MLE Machine Learning Engine

NN Neural Network

NNC Neural Network Compiler

SD Secure Digital

SDHC Secure Digital High Capacity

SDXC Secure Digital extended Capacity

SPI Serial Peripheral Interface

VIP Video Interface Platform

USB Universal Serial Bus

VVML Voice & Vision Machine Learning Board

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 7

1. Introduction
This document describes the Semantic Segmentation design process using Crosslink-NX Voice and Vision Board. As
application this document will refer to background blurring demo.

1.1. Design Process Overview
The design process involves the following steps:

1. Training the model

• Setting up the basic environment.

• Preparing the dataset.

• Training the machine.

• Training the machine and creating the checkpoint data

• Creating the frozen file (*.pb)

2. Compiling Neural Network: Creating the filter and firmware binary files with Lattice SensAI 5.0 program.

3. FPGA design: Creating the FPGA Bit stream file.

4. FPGA Bit stream and Quantized Weights and Instructions: Flashing the binary and bit stream files to Crosslink-NX
VnV hardware.

Figure 1.1. Lattice Machine Learning Design Flow

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02256-1.0

2. Setting Up the Basic Environment

2.1. Tools and Hardware Requirements
This section describes the required tools and environment setup for training and model freezing.

2.1.1. Lattice Tools
• Lattice Radiant Tool v3.1.1 – Refer to http://www.latticesemi.com/latticeradiant.

• Lattice Radiant Programmer v3.1.1 – Refer to http://www.latticesemi.com/latticeradiant.

• Lattice SensAI Compiler v 5.0 – Refer to
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler.

2.1.2. Hardware

This design uses the Crosslink-NX Voice and Vision board as shown in Figure 2.1.

• CrossLink-NX Voice and Vision Machine Learning (VVML) Board, Rev B Board

Figure 2.1. Lattice CrossLink-NX Voice and Vision Machine Learning (VVML) Board, Rev B

2.2. Setting Up the Linux Environment for Machine Training
This section describes the steps for NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS. NVIDIA library and
TensorFlow version is dependent on PC and Ubuntu/Windows version.

http://www.latticesemi.com/legal
http://www.latticesemi.com/latticeradiant
http://www.latticesemi.com/latticeradiant
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 9

2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU

2.2.1.1. Installing the CUDA Toolkit

To install the CUDA toolkit, run the following commands in the order specified below:
$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-

repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.2. Download CUDA Repo

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.3. Install CUDA Repo

$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.

pub

Figure 2.4. Fetch Keys

$sudo apt-get update

Figure 2.5. Update Ubuntu Packages Repositories

$ sudo apt-get install cuda-9-0

http://www.latticesemi.com/legal
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02256-1.0

Figure 2.6. CUDA Installation

2.2.1.2. Installing the cuDNN

To install the cuDNN:

1. Create Nvidia developer account: https://developer.nvidia.com.

2. Download cuDNN lib: https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

3. Execute below commands to install cuDNN
$ tar xvfcudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h/usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

4. $ sudochmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*

Figure 2.7.cuDNN Library Installation

2.2.2. Setting Up the Environment for Training and Model Freezing Scripts

This section describes the environment setup information for training and model freezing scripts for 64-bit Ubuntu
16.04. Anaconda provides one of the easiest ways to perform machine learning development and training on Linux.

2.2.2.1. Installing the Anaconda Python

To install the Anaconda and Python 3:

1. Go to https://www.anaconda.com/products/individual#download-section

2. Download Python3 version of Anaconda for Linux.

3. Run the command below to install the Anaconda environment:
$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://www.anaconda.com/products/individual%23download-section

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 11

Figure 2.8.Anaconda Installation

4. Accept the license.

Figure 2.9.Accept License Terms

5. Confirm the installation path, follow the instruction on screen if you want to change the default path.

Figure 2.10.Confirm/Edit Installation Location

6. After installation, enter No as shown in Figure 2.11.

Figure 2.11.Launch/Initialize Anaconda Environment on Installation Completion

2.2.3. Creating new environment with python 3.7

1. Activate base conda environment using below command
$ source <conda directory>/bin/activate

2. To create new environment run below command
$ conda create -n <Name of New environment> python=3.7

3. Activate newly created environment

$ conda activate <Name of New environment>

2.2.4. Installing the TensorFlow v1.15

1. Install the TensorFlow by running the command below:
$ conda install tensorflow-gpu==1.15

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02256-1.0

Figure 2.12.TensorFlow Installation

2. After installation, enter Y as shown in Figure 2.13.

Figure 2.13.TensorFlow Installation Confirmation

2.2.5. Installing the Python Package

To install the Python package:

1. Install OpenCV by running the command below:
$ conda install –c menpo opencv

Figure 2.14.OpenCV Installation

2. Install Pillow by running the command below:
$ conda install pillow

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 13

Figure 2.15.Pillow Installation

3. Install tqdm by running the command below:
$ conda install tqdm

Figure 2.16.Tqdm Installation

4. Install scipy by running the command below:
$ conda install scipy=1.1.0

Figure 2.17. Scipy Installation

5. Install matplotlib by running the command below:
$ conda install matplotlib

Figure 2.18. Matplotlib Installation

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02256-1.0

3. Code Structure
Download the Lattice Background Blurring demo training code. Its directory structure should look like:

Figure 3.1. Training Code Directory Structure

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 15

4. Dataset Preparation
This section describes steps & guidelines used to prepare dataset to train the Background Blurring demo for CNX-VNV.
Please note that this section is for the example reference. With following sections, Lattice is just providing the guidelines
and/or example which can be used as reference for preparing dataset for given use cases but in no case, Lattice is
recommending and/or endorsing any dataset(s). Lattice strongly recommends customers to gather and prepare their
own datasets for their end applications.

4.1. Downloading the Dataset
To download the dataset, run the commands below.

In this demo document we are using “https://www.kaggle.com/datasets/laurentmih/aisegmentcom-matting-human-
datasets” dataset as reference. Download Dataset from kaggle from link Download Dataset and extract the data.

Figure 4.1. Matting dataset Directory Structure

Figure 4.2. Matting dataset sample image and ground truth

4.2. Convert Matting dataset to segmentation dataset
Convert matting-human dataset to segmentation images and ground truth using below command.
$ python data_utils.py --mode Generate --input_data <Matting dataset Path> --

output_Data <Output converted dataset>

Figure 4.3. Converted matting GT to segmentation GT

http://www.latticesemi.com/legal
https://www.kaggle.com/datasets/laurentmih/aisegmentcom-matting-human-datasets
https://www.kaggle.com/datasets/laurentmih/aisegmentcom-matting-human-datasets
https://www.kaggle.com/datasets/laurentmih/aisegmentcom-matting-human-datasets/download

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02256-1.0

Note: The image shown above is for visualization. Actual image will have pixel values of 0 and 1 rather than 0 and 255.

4.3. Dataset Augmentation
python data_utils.py --mode Augment --input_data <converted dataset path> --output_Data <Output augmented
dataset> --background_data <background images path> --output_dim 160

Figure 4.4. Augmentation sample images

Note: background images path should contain multiple images of sample background as shown in above figure.

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 17

5. Training Code Preparation

5.1. Neural Network Architecture

5.1.1. Neural Network Architecture

This section provides information on the Convolution Neural Network Configuration of the Background Blurring design.

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02256-1.0

Figure 5.1. Enet Architecture

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 19

In above diagram model contains Convolution (conv), batch normalization (bn), Relu, Resize Bilinear, Argmaxpooling,
unpooling, maxpooling and channel padding layers.

• Layer information

• Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels) which convolves with input layer/image and generates activation map (I.e.
feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each of these
filters can be thought of as feature identifiers, like straight edges, simple colors, and curves & other high-level
features. For example, the filters on the first layer convolve around the input image and “activate” (or
compute high values) when the specific feature (say curve) it is looking for is in the input volume.

• Relu (Activation layer)

After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward.
The purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear
operations during the conv layers (just element wise multiplications and summations).In the past, nonlinear
functions like tanh and sigmoid were used, but researchers found out that Relu layers work far better because
the network is able to train a lot faster (because of the computational efficiency) without making a significant
difference to the accuracy. The Relu layer applies the function f(x) = max (0, x) to all of the values in the input
volume. In basic terms, this layer just changes all the negative activations to 0. This layer increases the
nonlinear properties of the model and the overall network without affecting the receptive fields of the conv
layer.

• Pooling Layer

After some Relu layers, programmers may choose to apply a pooling layer. It is also referred to as a down
sampling layer. In this category, there are also several layer options, with Maxpooling being the most popular.
This basically takes a filter (normally of size 2x2) and a stride of the same length. It then applies it to the input
volume and outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once we know that a specific feature is in the original input
volume (there will be a high activation value), its exact location is not as important as its relative location to
the other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost. The second is that
it will control over fitting. This term refers to when a model is so tuned to the training examples that it is not
able to generalize well for the validation and test sets. A symptom of over fitting is having a model that gets
100% or 99% on the training set, but only 50% on the test data.

• Batchnorm Layer

Batch normalization layer reduces the internal covariance shift. In order to train a neural network, we do some
preprocessing to the input data. For example, we could normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). Reason being preventing the early saturation of
non-linear activation functions like the sigmoid function, assuring that all input data is in the same range of
values, etc.

But the problem appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt them to
a new distribution in every training step. This problem is known as internal covariate shift.

Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following below process during training time:

• Calculate the mean and variance of the layers input.

• Normalize the layer inputs using the previously calculated batch statistics.

• Scales and shifts in order to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be care
free about weight initialization, works as regularization in place of dropout and other regularization
techniques.

• Drop-out layer

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02256-1.0

Dropout layers have a very specific function in neural networks. After training, the weights of the network are
so tuned to the training examples they are given that the network doesn’t perform well when given new
examples. The idea of dropout is simplistic in nature. This layer “drops out” a random set of activations in that
layer by setting them to zero. It forces the network to be redundant. That means the network should be able
to provide the right classification or output for a specific example even if some of the activations are dropped
out. It makes sure that the network isn’t getting too “fitted” to the training data and thus helps alleviate the
over fitting problem. An important note is that this layer is only used during training, and not during test time.

• Fully connected layer

This layer basically takes an input volume (whatever the output is of the conv or Relu or pool layer preceding
it) and outputs an N dimensional vector where N is the number of classes that the program must choose from.

• Argmax Pooling Layer

Performs max pooling same as pooling layer and outputs both max values and indices. This later can be reused
to perform unpooling layer.

• Unpooling Layer

The unpooling operation is used to revert the effect of the max pooling operation. The idea is just to work as
an upsampler.

• Channel Padding Layer

Channel padding or zero padding is layer that can be used to pad any dimensions with zeros to get desired
dimensions as output.

• Resize Bilinear Layer

Resizing an image (or a feature map) to a desired spatial dimension is a common operation when building
computer vision applications based on convolutional neural networks. Bilinear resizing a 2-D array relies on
bilinear interpolation, which can be broken down into linear resizing operations in y (height) and x (width)
dimension.

• Quantization

Quantization is a method to bring the neural network to a reasonable size, while also achieving high
performance accuracy. This is especially important for on-device applications, where the memory size and
number of computations are necessarily limited. Quantization for deep learning is the process of
approximating a neural network that uses floating-point numbers by a neural network of low bit width
numbers. This dramatically reduces both the memory requirement and computational cost of using neural
networks.

Above architecture provide nonlinearities and preservation of dimension that help to improve the robustness of the
network and control over fitting.

5.1.2. Semantic Segmentation Network Output

Semantic Segmentation network gives Output tensor of dimension (BATCH_SIZE, Image Width, Image Height, Num
Classes).

• Background Blurring Demo:

Demo has 2 classes as below:

1. User

2. Background

Input Dimension: 160x160x1

Output Dimension: 160x160x2

Output Interpretation: Each channel in output gives confidence of respective class for that pixel. In Background
Blurring demo we have two channels each class. By applying argmax over channel we can get class index for given
pixel as post processing.

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 21

5.1.3. Training Code Overview

Figure 5.2. Training Code Flow Diagram

Training code can be divided into below parts:

• Model config

• Model building

• Model freezing

• Data preparation

• Training for overall execution flow.

Details of each can be found in subsequent sections.

5.1.3.1. Model Config

Below is summary of configurable parameters:

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02256-1.0

Figure 5.3. Code Snippet: train.sh configurations

• --train_dataset_dir: Training dataset path

• --val_dataset_dir: Validation dataset path

• --logdir: Checkpoints and tensorboard directory path

• --is_training: Is model training or not. This flag helps to generate freezing graph when user wants to generate
frozen model

• --save_images: To save validation output images

• --combine_dataset: True if user wants to include validation dataset in training dataset

• --num_classes: Number of classes to train

• --batch_size: Training batch size

• --eval_batch_size: validation batch size

• --image_height: Input image height

• --image_width: Input image width

• --num_epochs: Number of epochs to train the model

• --num_epochs_before_decay: Number of epochs after user wants to reduce learning rate

• --weighting: “ENET or MFB” to choose between median frequency class weight balancing and Enet class balancing
introduced in Enet paper.

• --num_initial_blocks: Number of initial CNN blocks to have in network in order to make network deeper.

• --stage_two_repeat: Number of times to repeat stage two in order to make network deeper.

• --skip_connections: If True, add the corresponding encoder feature maps to the decider. They are of exact same
shapes.

• --weight_decay: The weight decay for Enet convolution layers

• --learning_rate_decay_factor: The learning rate decay factor

• --initial_learning_rate: The initial learning rate for training

5.1.3.2. Model Building

Enet class constructor builds model which can be divided in below sections:

• Forward graph

• Loss Function

• Train model

Forward graph

• CNN architecture consists of Convolution, Dilated Convolution, Batch normalization, Relu, Channel padding,
Argmax pooling, Resize Bilinear and Maxpool layers.

• Script “train.py” handles data preparation, graph creation, training the model as well as test graph creation.

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 23

Figure 5.4. Code Snippet: Create Graph

• Forward graph consists of one initial block, 17 Bottleneck layers and one output block as shown in Figure 5.1.

Loss Function and training graph

This block calculates loss which needs to be minimized. In order to learn segmentation weighed cross entropy loss
function will be used to get a mask with each pixel’s value representing the weights.

Figure 5.5. Code Snippet: Loss Function

Figure 5.6. Code Snippet: Training Graph

Adam optimizer will be used to panelize weights. Also, above spinet show the accuracy and IOU calculation while
training.

5.2. Training
To train the machine:

1. Modify training script

Training script at @train.sh is used to trigger training. Figure 5.3 shows the input parameters which can be
configured.

2. Execute the train.sh script which starts training.

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02256-1.0

Figure 5.7. Execute Run Script

3. Start TensorBoard.
$ tensorboard –logdir=<log directory of training>

For example: tensorboard –logdir=’./logs/’

4. Open the local host port on your web browser.

Figure 5.8. TensorBoard – Generated Link

5. Check the training status on TensorBoard

Figure 5.9. TensorBoard

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 25

Figure 5.9 shows the image menu of TensorBoard.

Figure 5.10. Image Menu of TensorBoard

6. Check if the checkpoint, data, meta, index, and events (if using TensorBoard) files are created at the log directory.
These files are used for creating the frozen file (*.pb).

Figure 5.11. Example of Checkpoint Data Files at Log Folder

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02256-1.0

6. Creating Frozen File
This section describes the procedure for freezing the model, which is aligned with the Lattice SensAI tool. Perform the
steps below to generate the frozen protobuf file:

6.1. Generating the Frozen (.pb) File

Figure 6.1. freeze.sh configuration

Set all parameters in freeze.sh same as train.sh which is used while training the model, also set “ckpt_dir” path same as
“logdir”.
$ bash freeze.sh

Figure 6.2. Run freeze.sh To Generate Inference .pb

• “freeze.sh” will use latest checkpoint in train directory to generate frozen ‘.pb’ file.

• Once the “freeze.sh” is executed successfully the log directory will now have <ckpt-prefix>_frozenforInference.pb
file as shown in screenshot above.

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 27

Figure 6.3. Frozen Inference. pb Output

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02256-1.0

7. Model Evaluation
This section contains guide to calculate model performance in terms of MAP.

7.1. Run Inference on test set and calculate IOU/DICE
Semantic Segmentation code contains ‘testing.py’.

Note: If user did any change in training code regarding image size, number of classes than user should replicate those
changes in testing script.

Run below command to run inference on test set.
$ python testing.py –pb <converted pb path> --input_images <test set images path>

Figure 7.1. Run Testing

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 29

8. Creating Binary File with SensAI
This chapter describes how to generate binary file using the Lattice SensAI version 5.0 program.

Figure 8.1. SensAI – Home Screen

To create the project in SensAI tool:

1. Click File > New.

2. Enter the following settings:

• Project name

• Framework – TensorFlow

• Class – CNN

• Device – Crosslink-NX

• IP – Extended_CNN

3. Click Network File and select the network (PB) file.

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02256-1.0

Figure 8.2. SensAI – Select Framework, Device and Network File

4. Click Image/Video/Audio Data button and select the audio input file.

Figure 8.3. SensAI – Select image Data File

5. Click Next.

6. Set following attributes:

a. Mean Value for Data Pre-Processing: 0

b. Scratch Pad Memory Block Size: 8191

c. ARGS MAX Size: 8192

d. On-Chip Memory Block Size: 131072

e. Scale Value for Data Pre-Processing: 0.0078125

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 31

Figure 8.4. SensAI – Update Project Settings

7. Clock Ok to create project.

8. Double click on Analyze.

Figure 8.5. Analyze Project

9. Confirm the Q format of each layer as shown in Figure 8.6.

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02256-1.0

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 33

Figure 8.6. Q Format Settings for Each Layer

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02256-1.0

10. Double click on compile to generate the Firmware and filter binary file.

Figure 8.7. Compile Project

Firmware bin file location will be displayed in the compilation log. Use generated firmware bin on hardware for testing.

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 35

9. Hardware (RTL) Implementation

9.1. Top Level Information

9.1.1. Block Diagram

Figure 9.1. Top Block Diagram of Portrait segmentation with Crosslink-NX Voice & Vision ML (RevB) Board

9.1.2. Operational Flow
• The external camera Himax HM0360 is configured using I2C Master Block (lsc_i2cm_himax.v).

• The real time input image data is received by Video path. The RAW8 data from (csi2_to_parallel.v) is sent to pre-
processing (crop_downscale_front_vga_multi_bb.v) which performs Crop & Downscale operation to provide
compatible input image resolution of 160x160 to Extended CNN engine.

• The 1MB firmware BIN file (.mcs) is loaded to the SPI Flash module (qspi_fifo.v) configured with starting address
24’h300000 to end address 24’h400000.

• CNN Engine receives the downscaled image data from (portrait_seg_post.v) through LMMI Write interface and the
firmware file through AXI hyperbus interface to provide inference result output.

• CNN inference output is read again by (portrait_seg_post.v) through LMMI Read interface and passed to OSD block
for output display.

• For final output display, the (osd_back_vga_portrait_seg.v) module performs segmentation on the received
downscaled image from Crop & Downscale module using the CNN object detection pixel information obtained
from (portrait_seg_post.v) block.

9.1.3. Core Customization

Table 9.1. Core Parameters

Parameter Value Description

USE_ML 1’b1 Indicates 1:Enable/0:Disable to use Extended CNN Engine

ML_TYPE EXTENDED_CNN Can be configured as COMPACT_CNN , OPTIMIZED_CNN or EXTENDED_CNN

SCRATCH_SIZE 8K Indicates scratch pad memory size of Extended CNN

LB_SIZE 512 Indicates line buffer size of Extended CNN

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02256-1.0

Parameter Value Description

BYTE_MODE UNSIGNED Indicates byte mode type of Extended CNN

BYTE_SHIFT 3’b101 Indicates byte shift value of Extended CNN

MEM_TYPE DUAL_LRAM Indicates memory type of Extended CNN

DUAL_CONV 1’b1 Indicates convolution engine type of Extended CNN

CONV1X1 OCTA Indicates Machine learning convolution type 1x1 of Extended CNN

ARGMAX_SIZE 8192 Indicates maximum argument size of Extended CNN

EN_UART 1’b0 Indicates 1:Enable/0:Disable UART for video output

FIRMWARE_ADDR 24’h300000 Indicates starting address to load Firmware in external SPI Flash

FIRMWARE_SIZE 24’h100004 Indicates size of firmware to be loaded in external SPI Flash. Here is 1 MB size.

9.2. Architectural Details

9.2.1. Pre-Processing operation
• The (crop_downscale_front_vga_multi_bb.v) video processing block is used to crop and downscale the image data

to make it compatible for CNN engine.

• Masking values for incoming image data from camera are set to capture the image data of resolution
640x480.

• As shown in below image initially this 640x480 image is downscaled into 160x120 image resolution using block size
4, and to obtain 160x160 image for CNN input, 40 lines are then padded vertically.

Figure 9.2. Downscaling image

• The accumulated pixel values are written into accumulation buffer. While reading the data from Buffer is sent to
the CNN engine for inference through line buffer.

9.2.2. Post-Processing operation
The post processing operation is explained as below.

• The (portrait_seg_post.v) block mainly handles the task of providing downscaled input image to CNN for inference
and receiving the detection results back.

• The writing and reading back data to and from Extended CNN engine takes place over LMMI Interface when it is
idle and not running.

• When CNN Engine is not running, this block initially receives the 160x160 downscaled image from pre-processing
module and provides it to CNN over LMMI WRITE Interface (lmmi_write_i).

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 37

• When CNN has done inference over this frame and again when it is idle, this module receives the CNN results over
LMMI READ Interface (lmmi_rdata_o) and passes it on to the OSD module for display.

• The (osd_back_vga_portrait_seg.v) module received mainly the 160x160 downscaled image from pre-processing
module and the CNN result data from post processing block.

• Using the pixel information of human detection received from post –processing block, the OSD module performs
segmentation over the 160x160 downscaled image.

• In the final segmentation output display, the human presence can be observed in gray-scale and the background is
blurred with Green pixels.

This entire Pre and Post processing cycle goes on till the board is powered-on and the real time image is being captured
by camera.

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02256-1.0

10. Creating FPGA Bit stream file
This section provides the procedure for creating your FPGA bit stream file using Lattice Radiant Software.

To create the FPGA bit stream file, follow the below steps.

1. STEP 1: Open Lattice Radiant Software as shown in Figure 10.1.

Figure 10.1 Radiant Software

2. STEP 2: Click File > Open Project and from project database open the Radiant project file (.rdf) from
vvml_semantic_seg folder as shown in Figure 10.2.

http://www.latticesemi.com/legal

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 39

Figure 10.2. Radiant Software – Open Project

3. STEP 3: Click Export Files to generate the bit file. View the log message in Export Reports that indicates the generated
bit stream. Find this bit file at location /vvml_semantic_seg/impl_1 as shown in Figure 10.3.

Figure 10.3. Radiant Software – Bit stream Generation Export Report

http://www.latticesemi.com/legal

CrossLink-NX Scene Segmentation Reference Design
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02256-1.0

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

 CrossLink-NX Scene Segmentation Reference Design
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02256-1.0 41

Revision History

Revision 1.0, June 2022

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	CrossLink-NX Scene Segmentation Reference Design
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting Up the Basic Environment
	2.1. Tools and Hardware Requirements
	2.1.1. Lattice Tools
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU
	2.2.1.1. Installing the CUDA Toolkit
	2.2.1.2. Installing the cuDNN

	2.2.2. Setting Up the Environment for Training and Model Freezing Scripts
	2.2.2.1. Installing the Anaconda Python

	2.2.3. Creating new environment with python 3.7
	2.2.4. Installing the TensorFlow v1.15
	2.2.5. Installing the Python Package

	3. Code Structure
	4. Dataset Preparation
	4.1. Downloading the Dataset
	4.2. Convert Matting dataset to segmentation dataset
	4.3. Dataset Augmentation

	5. Training Code Preparation
	5.1. Neural Network Architecture
	5.1.1. Neural Network Architecture
	5.1.2. Semantic Segmentation Network Output
	5.1.3. Training Code Overview
	5.1.3.1. Model Config
	5.1.3.2. Model Building
	Forward graph
	Loss Function and training graph

	5.2. Training

	6. Creating Frozen File
	6.1. Generating the Frozen (.pb) File

	7. Model Evaluation
	7.1. Run Inference on test set and calculate IOU/DICE

	8. Creating Binary File with SensAI
	9. Hardware (RTL) Implementation
	9.1. Top Level Information
	9.1.1. Block Diagram
	9.1.2. Operational Flow
	9.1.3. Core Customization

	9.2. Architectural Details
	9.2.1. Pre-Processing operation
	9.2.2. Post-Processing operation

	10. Creating FPGA Bit stream file
	Technical Support Assistance
	Revision History
	Revision 1.0, June 2022

