

AXI4 to APB Bridge Module

IP Version: 1.4.0

User Guide

FPGA-IPUG-02198-1.5

June 2025

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

Contents	3
Acronyms in This Document	4
1. Introduction	5
1.1. Features	5
1.2. Assumptions	
2. Functional Descriptions	
2.1. Overview	
2.2. Attributes	10
Appendix A. Resource Utilization	
References	
Technical Support Assistance	
Revision History	
Figure 2.1. AXI4 to APB Bridge	7
Tables Table 1.1. FPGA Software for IP Configuration, Generation, and Implementation	5
Table 2.1. AXI4 to APB Bridge Module Signal Description	
Table 2.2. Attribute Table	
Table 2.3 Attribute Name	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
AMBA	Advanced Micro-controller Bus Architecture
AXI	Advanced Extensible Interface Bus
APB	Advanced Peripheral Bus
FPGA	Field Programmable Gate Array
RTL	Register Transfer Level

5

1. Introduction

The Lattice Semiconductor AXI4 to APB Bridge Module provides an interface between the high-speed AXI4 and APB. The design is implemented in Verilog HDL. The IP can be configured based on Table 1.1.

Table 1.1. FPGA Software for IP Configuration, Generation, and Implementation

Supported Devices	IP Configuration and Generation	IP Implementation (Synthesis, Map, Place and Route)
LatticeECP3™	Lattice Propel™ Builder software	Lattice Diamond™ software
ECP5™	Lattice Propel Builder software	Lattice Diamond software
CrossLink™-NX	Lattice Propel Builder software	Lattice Radiant™ software
Certus™-NX	Lattice Propel Builder software	Lattice Radiant software
Certus-N2	Lattice Propel Builder software	Lattice Radiant software
MachXO5™-NX	Lattice Propel Builder software	Lattice Radiant software
CertusPro™-NX	Lattice Propel Builder software	Lattice Radiant software
Lattice Avant™	Lattice Propel Builder software	Lattice Radiant software

1.1. Features

The key features of the AXI4 to APB Bridge Module include:

- Compliance with AMBA AXI4 and APB3 Protocol
- Support configurable data bus width: 8,16, and 32
- Support configurable AXI4 ID width: 1 to 11
- Support configurable AXI4 User width: 1 to 128
- Support of AXI4 INCR burst
- Support 32-bit Address width
- Number of supported APB completer is one
- Registered output

1.2. Assumptions

- AxQOS, AxREGION, AxCACHE, AxLOCK, and AxPROT are considered as don't care.
- AxUSER is passed back as such in the write and read response channels.
- AXI4 wrap and fixed burst not supported.
- AXI4 unaligned address is passed as such to the external APB completer during write and read. Based on the
 implementation of unaligned address in the external APB completer, the data read back from APB completer is
 passed as such to the AXI4 external manager.

2. Functional Descriptions

2.1. Overview

The Lattice Semiconductor AXI4 to APB Bridge core is used to connect AXI4 manager to APB completer. Read and write transfers on the AXI4 bus are converted into corresponding transfers on the APB.

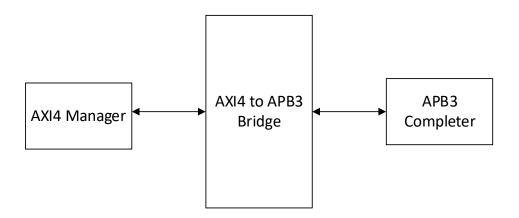


Figure 2.1. AXI4 to APB Bridge

Figure 2.2 shows the interface diagram of the AXI4 to APB Bridge Module. The diagram shows all the available ports for the IP core.

7

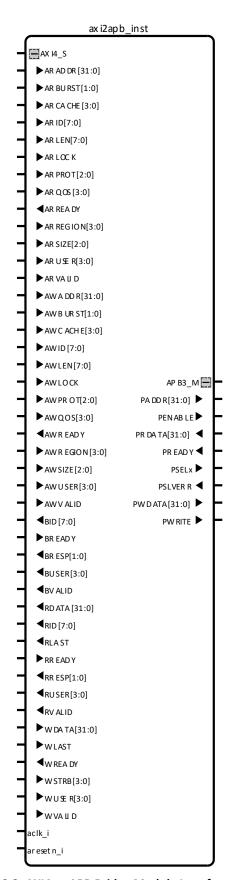


Figure 2.2. AXI4 to APB Bridge Module Interface Diagram

Table 2.1. AXI4 to APB Bridge Module Signal Description

Pin Name	Direction	Width (Bits)	Description
Clock and Reset			
aclk i	In	1	AXI4 to APB bridge clock.
aresetn i	In	1	Active low reset.
AXI4 Subordinate Inter			7.00.00.000.0000
axi_slv_awvalid_i	In	1	Write address valid. This signal indicates that the channel is signaling valid write address and control information.
axi_slv_awaddr_i	In	32	Write address. The write address gives the address of the first transfer in a write burst transaction.
axi_slv_awsize_i	In	3	Burst size. This signal indicates the size of each transfer in the burst.
axi_slv_awburst_i	In	2	Burst type. The burst type and the size information, determine how the address for each transfer within the burst is calculated.
axi_slv_awlen_i	In	8	Burst length. This indicates the number of beats per AXI4 burst.
axi_slv_awid_i	In	AXI_ID_WIDTH	AXI4 write ID width.
axi_slv_awlock_i	In	1	Lock type. AXI4: Optional
axi_slv_awcache_i	In	4	Memory type. AXI4: Optional
axi_slv_awprot_i	In	3	Protection type. AXI4: Optional
axi_slv_awqos_i	In	4	Quality of Service. AXI4: Optional
axi_slv_awregion_i	In	4	Region AXI4: Optional
axi_slv_awuser_i	In	AXI_USER_WIDTH	User signals. AXI4: Optional
axi_slv_awready_o	Out	1	Write address ready. This signal indicates that the subordinate is ready to accept an address and associated control signals.
axi_slv_wvalid_i	In	1	Write valid. This signal indicates the valid write data and strobes are available.
axi_slv_wdata_i	In	AXI_APB_DATA_WIDTH	Write data.
axi_slv_wlast_i	In	1	Write last. This signal indicates the last transfer in a write burst.
axi_slv_wstrb_i	In	AXI_APB_DATA_WIDTH/8	Write strobes. This signal indicates the byte lanes hold valid data. There is one write strobe bit for each eight bits of the write data bus.
axi_slv_wuser_i	In	AXI_USER_WIDTH	AXI4 write user width.
axi_slv_wready_o	Out	1	Write data ready. This signal indicates that the subordinate is ready to accept write data.
axi_slv_bvalid_o	Out	1	Write response valid. This signal indicates that the channel is signaling a valid write response.
axi_slv_bid_o	Out	AXI_ID_WIDTH	Write response ID.
axi_slv_buser_o	Out	AXI_USER_WIDTH	Write response User signal.
axi_slv_bresp_o	Out	2	Write response. This signal indicates the status of the write transaction.

Pin Name	Direction	Width (Bits)	Description
axi_slv_bready_i	In	1	Response ready. This signal indicates that the manager can accept a write response.
axi_slv_arvalid_i	In	1	Read address valid. This signal indicates that the channel is signaling valid read address and control information.
axi_slv_araddr_i	In	32	Read address. The read address gives the address of the first transfer in a read burst transaction.
axi_slv_arsize_i	In	3	Burst size. This signal indicates the size of each transfer in the burst.
axi_slv_arburst_i	In	2	Burst type. The burst type and the size information determine how the address for each transfer within the burst is calculated.
axi_slv_arlen_i	In	8	AXI4 read burst length. This indicates the number of beats per AXI4 burst.
axi_slv_arid_i	In	AXI_ID_WIDTH	AXI4 read address ID width.
axi_slv_arlock_i	In	1	Lock type. AXI4: Optional
axi_slv_arcache_i	In	4	Memory type. AXI4: Optional
axi_slv_arprot_i	In	3	Protection type AXI4: Optional
axi_slv_arqos_i	In	4	Quality of Service. AXI4: Optional
axi_slv_arregion_i	In	4	Region AXI4: Optional
axi_slv_aruser_i	In	AXI_USER_WIDTH	User signals. AXI4: Optional
axi_slv_arready_o	Out	1	Read address ready. This signal indicates that the subordinate is ready to accept an address and associated control signals.
axi_slv_rvalid_o	Out	1	Read valid. This signal indicates that the channel is signaling the required read data.
axi_slv_rdata_o	Out	AXI_APB_DATA_WIDTH	Read data.
axi_slv_rresp_o	Out	2	Read response. This signal indicates the status of the read transfer.
axi_slv_ruser_o	Out	AXI_USER_WIDTH	User signals. AXI4: Optional
axi_slv_rid_o	Out	AXI_ID_WIDTH	AXI4 read data ID width.
axi_slv_rlast_o	Out	1	Read last. This signal indicates the last transfer in a read burst.
axi_slv_rready_i	In	1	Read ready. This signal indicates that the manager can accept the read data and response information.
APB Requester Interfa	ce		
apb_mas_sel_o	Out	1	APB Select. It indicates completer device is selected and that data transfer is required.
apb_mas_en_o	Out	1	APB Enable.
apb_mas_addr_o	Out	32	Address. This is the APB address bus. It can be up to 32 bits wide and is driven by the peripheral bus bridge unit.

Pin Name	Direction	Width (Bits)	Description
apb_mas_write_o	Out	1	APB transfer direction. This signal indicates an APB write access when High and APB read access when Low.
apb_mas_wdata_o	Out	AXI_APB_DATA_WIDTH	APB write data. This bus is driven during write operation.
apb_mas_ready_i	In	1	APB Ready. Completer uses this signal to extend the APB transfer.
apb_mas_rdata_i	In	AXI_APB_DATA_WIDTH	APB read data. The selected completer drives this bus during read cycles when Write is LOW.
apb_mas_slverr_i	In	1	APB completer error response. This signal indicates transfer failure.

2.2. Attributes

Table 2.2 provides the list of user-configurable attributes for the AXI4 to APB Bridge Module. The attribute values are specified using the IP core Configuration user interface in the Propel Builder software as shown in Figure 2.3.

Table 2.2. Attribute Table

Attribute Name	Attribute ID	Selectable Values	Default	Dependency on Other Attributes
General Settings Tab				
AXI_APB Data width	AXI_APB_DATA_WIDTH	8,16,32	32	_
AXI User width	AXI_USER_WIDTH	1-128	4	_
AXI ID width	AXI_ID_WIDTH	1-11	8	_

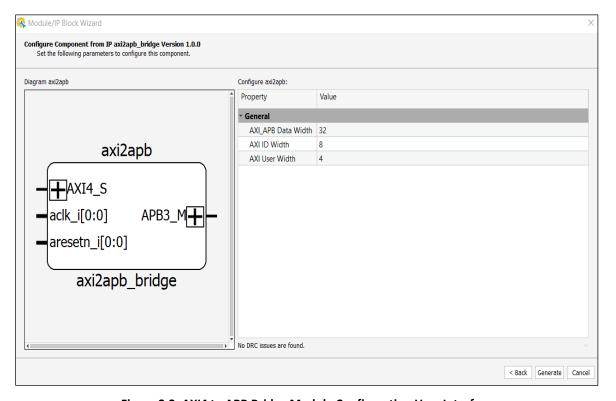


Figure 2.3. AXI4 to APB Bridge Module Configuration User Interface

Table 2.3. Attribute Name

Attribute Name	Description
General Settings Tab	
AXI_APB Data Width	This describes the data bus width of both AXI4 and APB bus.
AXI User Width	This decides the width of AXI4 user signals AWUSER, WUSER, BUSER, ARUSER, and RUSER.
AXI ID Width	This decides the width of AXI4 AWID, ARID, BID, and RID signals.

Appendix A. Resource Utilization

The following tables show the resource utilization of the AXI4 to APB Bridge Module for different Lattice FPGA devices using Lattice Radiant Software 2022.1 with Synplify Pro (S-2021.09LR-SP2, Build 164R, Oct. 18, 2022) as the Synthesis Tool. The different Data Widths are used while the other attributes are the default configuration.

Table A.1. Resource Utilization Using LAV-AT-E70-3LFG1156I

Configuration	Clock Fmax (MHz)	Registers	LUTs	EBRs
AXI_APB Data Width = 32 AXI ID Width = 8, AXI User Width = 4	350.00	213	287	0
AXI_APB Data Width = 16 AXI ID Width = 8, AXI User Width = 4	350.00	165	277	0
AXI_APB Data Width = 8 AXI ID Width = 8, AXI User Width = 4	350.00	142	277	0

Table A.2. Resource Utilization Using LAV-AT-E70-1LFG1156I

Configuration	Clock Fmax (MHz)	Registers	LUTs	EBRs
AXI_APB Data Width = 32 AXI ID Width = 8, AXI User Width = 4	350.00	213	563	0
AXI_APB Data Width = 16 AXI ID Width = 8, AXI User Width = 4	350.00	165	489	0
AXI_APB Data Width = 8 AXI ID Width = 8, AXI User Width = 4	350.00	142	457	0

Table A.3. Resource Utilization Using LFCPNX-100-9LFG672I

Configuration	Clock Fmax (MHz)	Registers	LUTs	EBRs
AXI_APB Data Width = 32 AXI ID Width = 8, AXI User Width = 4	200.000	213	573	0
AXI_APB Data Width = 16 AXI ID Width = 8, AXI User Width = 4	200.000	165	494	0
AXI_APB Data Width = 8 AXI ID Width = 8, AXI User Width = 4	200.000	141	459	0

Table A.4. Resource Utilization Using LFCPNX-100-7LFG672I

Configuration	Clock Fmax (MHz)	Registers	LUTs	EBRs
AXI_APB Data Width = 32 AXI ID Width = 8, AXI User Width = 4	169.837	213	579	0
AXI_APB Data Width = 16 AXI ID Width = 8, AXI User Width = 4	157.679	165	494	0
AXI_APB Data Width = 8 AXI ID Width = 8, AXI User Width = 4	164.745	141	459	0

References

- AXI4 to APB Bridge Module Release Notes (FPGA-RN-02047)
- Lattice Propel 2022.1 Builder User Guide (FPGA-UG-02177)
- Lattice Radiant Timing Constraints Methodology (FPGA-AN-02059)
- AMBA AXI Protocol Specification web page for IHI0022H_c_amba_axi_protocol_spec
- AMBA 3 APB Protocol Specification web page
- LatticeECP3 web page
- ECP5 web page
- CrossLink-NX web page
- CertusPro-NX web page
- Certus-NX web page
- Certus-N2 web page
- MachXO5-NX web page
- Avant-E web page
- Avant-G web page
- Avant-X web page
- Lattice Radiant Software web page
- Lattice Propel Design Environment web page
- Lattice Diamond Software web page
- Lattice Insights for Lattice Semiconductor training courses and learning plans

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport. For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

Revision History

Revision 1.5, IP v1.4.0, June 2025

Section	Change Summary
Introduction	Renamed <i>Supported FPGA Family</i> to <i>Supported Devices</i> in Table 1.1. FPGA Software for IP Configuration, Generation, and Implementation.
References	Updated references.

Revision 1.4, IP v1.3.0, December 2024

Section	Change Summary
Introduction	Added Certus-N2, LatticeECP3, and ECP5 devices in Table 1.1. FPGA Software for IP
	Configuration, Generation, and Implementation.
References	Updated references.

Revision 1.3, June 2024

REVISION 1.3, June 2024		
Section	Change Summary	
All	This release is for version 1.2.0 of the AXI4 to APB Bridge Module.	
	Renamed document from AXI4 to APB Bridge Module – Lattice Propel Builder to AXI4 to APB Bridge Module.	
	Changed AXI to AXI4.	
Inclusive Language	Added the inclusive language boilerplate.	
Introduction	Added CrossLink-NX, Certus-NX, and MachXO5-NX devices in Table 1.1. FPGA Software for IP Configuration, Generation, and Implementation.	
Appendix A. Resource Utilization	Updated the device name for Avant devices from LAV-AT-500E to LAV-AT-E70.	
References	Updated references.	

Revision 1.2, June 2023

Section	Change Summary
Introduction	 In Features, changed Number of supported APB slave is one to Number of supported APB completer is one. In Assumptions: changed APB slave to APB completer; changed AXI4 external master to AXI4 external manager.
Functional Descriptions	 In Overview: changed AXI4 master to AXI4 manager; changed APB slave to APB completer. Table 2.1. AXI4 to APB Bridge Module Signal Description: changed AXI4 Slave Interface to AXI4 Subordinate Interface; for axi_slv_awready_o, axi_slv_wready_o and axi_slv_arready_o, changed slave to subordinate in the Description column; for axi_slv_bready_i and axi_slv_rready_i, changed master to manager in the Description column; changed APB Master Interface to APB Requester Interface; for apb_mas_sel_o, apb_mas_ready_i, apb_mas_rdata_i and apb_mas_slverr_i, changed slave to completer in the Description column.
Technical Support Assistance	Added the link to Lattice Answer Database.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Revision 1.1, November 2022

Section	Change Summary
Introduction	Updated Table 1.1. FPGA Software for IP Configuration, Generation, and Implementation adding LAV-AT device support.
Resource Utilization	Newly added Appendix for CertusPro-NX (LFCPNX) and Avant (LAV-AT) devices.

Revision 1.0, May 2022

Section	Change Summary
All	Initial release.

www.latticesemi.com