s=LATTICE

Lattice Propel 1.1 Root-of-Trust Reference
Design

User Guide

FPGA-RD-02243-1.1

March 2022

Lattice Propel 1.1 Root-of-Trust Reference Design .':LATT’CE

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer.
Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited
testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice
products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a
situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is
proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

2 FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

= LATTICE

Contents
WYl oY o120 s F T o T I o T o ol U Ly =T o | SRS 5
O (o1 oo I3 T 4 T o U OO O P PRSPPI 6
1.1. UL o Lo LIRS 6
1.2. F X Lo [=T ool OO PO P PP PPPTPPO 6
1.3. DOCUMENT STIUCTUIE ..ttt ettt ettt e e ettt e e e e e e s ba e et e e e e e s aa bbbt eeaeeesaababeeeeeeesaassbbaeeeeesesnnsaeaeeeesanann 6
2. Platform Firmware Resiliency System (PFR) Root of Trust (ROT) INtroductioncccceeviievieeiieesie e esee e 7
2.1, [5 PSP PUUPPUPPRRRRPPPRE 7
2.2. {210 1 PSP RO PUUPPPPPPRRRPPPRE 7
2.3. LattiCe ROT IMBCRANISI .eeiiiiieiieiieeeie sttt ettt sa e e st e e s ab e e sabe e s bt e e s a b e e saeeesabe e baeesabeenateessteebaeensseennes 7
2.4, S A 0= 017 Y T =Tt USRS 8
2.5. (VT aTora oY = T A A @ A= oV T RS 8
2.5.1. Mach-NX SOC FUNCEION BIOCKeitiiiiiiiiiiiie ittt et sttt e ettt s et e s e sate e e ssabae e s sbteeessnbaeesssseaeesnsanenns 8
2.5.2. MACKh-NX SFB INTEITACE c.eiutteiiiiiieeeiiee e ceitee st e sttt e sttt e e st e e s saate e e sbaeeesabaeessasaeesssbeeesanbaeesanssaeesnnsanenns 9
3. PFR System Architecture and RUNTIME FIOWcooiiiiiiiiiiieiiieee ettt sttt st ne e s 10
3.1. FIrMWAIE ANCNITECTUIE ...ttt e e e e e et e e e e e e s e tabaeeeeeeeesaasaeeeeeeeesassaaseaeesessntaaeeaeesennen 10
3.2. [2Te Yo 4 o F-To [T O P UORUPPR 10
3.3. RUNTIME FIOW 1.ttt ettt ettt et ettt s bt e e bt e e s bt e e b ae e sabeesbaeesabeesbteesabeanaaeesabeesaaeessbeenaseesnsaesnseenn 11
3.4, (00T oY T={U =1 o] AU RPR SN 12
3.4.1. Mach-NX PFR Manifest IMANagEr........ccccciiiiiiiieeectieeeeitee e ertte e e ettt eeeettaeessaseeaesatseesassaeesssaeessstaeseanssaeesnnseens 14
Y N o -1 o Vo o [e T | U PUTRRROPRR 15
3.5. = ToTo) Al UL oI o) f<Tot o] o PP PO T PP OPPUPPPPTIRE 16
3.6. RECOVEIY ..ottt et e e sttt e s e s b et et e e e s s b e e et e e e s e b e a e e e e e s e 17
3.7. (D71 d=Tot o] o DSOS OPPPPPRTPTN 19
3.8. (oY =AY Yo B 2U=Y o Yo o [T 2S PSRN 19
N N S L Y ol 2= {T =T o ol T TSP PSPPSR 21
4.1. Lattice SENTIY QSPI IMONITON ... iiieieiiiie ettt ettt et e e ettt e st e e e s bt e e s s abe e e sbbteeesabeeeesnbeeesnseeessabeeesnnnne 21
4.2. Lattice SENTry QSPI STrEAMIET .. .eeiiiiiiii ittt s e e e s e e e sse e e e e sar e e e s esne e e senneeessreeesannns 23
4.3. Lattice SENTrY SIMBUS FIlEEN ..cooueiiiiiieiteeet ettt b e st e st e e s b e st e e sabeesabeesbeeeanee s 27
4.4. LattiCe SENTIY SECUIE ENCIAVEooieiiiie ettt e et e e et e e e st e e e at e e e santeeeesntaeeeenteeeennneeeesnsseeeannns 28
O I 01 V] o o Ao S [=Y o =T < PSR PSPRN 28
4.4.2. Crypto384 INTEITACE ..cccutiieeeciiee e ettt e ettt e e ettt e ettt e e e sttt e e e etteeeeebaeeestbaeeasstaeeeaasaaeeesseaaastseesansasaesassaaaaastaneeases 32
4.5. LattiCe SENTIY PLD INTEITACE ..o uviie ettt ettt e e et e e e ete e e e s bt e e e e tbeeesatbeaeesabaeeeestaeeeassaeeeasseeeannns 37
4.6. UFIM ACCESS BIOCK (UAB)eiiietiee ettt eeite e ettt e e ettt e e e ette e e e sttt e e e eaabeeeseabaaaesatasaeanssaeesassasaaastaseeastaeesssaaesassseenannes 38
5. PFR COMPONENT API REFEIENCE .oeeeiieeeiee ettt e e et e e et e e e st a e e e e sabeeeeeateeesanseeeesnsteeeenseeesnnneens 43
5.1. (Y T o 1) =T AV T F= Y=Y o =T o | SRS 43
5.2. Y [0 o o o Tol=E Y o T~ PP PPPPPN 46
5.3. Y TolN g AV Y/ = 1A T (=] PP PPPTRRRIE 47
5.4. Log Management
6. PFR System Design (from LattiCe PrOPEI) ..ocueii oottt ettt e e et e e et e e e e tte e e setaea e e e nbbeeeenraeeeennaeas 51
6.1. [S Yo LT To] o T =Y ']] = 1 <SSR 51
6.2. PFR System Design CUSTOMIZATIONeiiiiiiiiiiiieeieiee ettt e e st sne e e e sar e e e senne e e snneeessnneeesannne 52
6.2.1. Customer PLD CUSTOMIZATION .iooiuiiiiiiiiiiiiiiiiteee e sttt e e e e sttt e e e e s ss bttt e e e e s ssanbbeaeeessesssstaeaeeessessssnnneeeess 52
7. PFR SyStem Validation GUIdE......coiuiiiiiiiiiieiie ettt et st et s bt e ae e s bt e bt e e abe e e beesabeeesabeebeeesneeeneas 53
7.1. PER ULIIEIES +eeuteeiteeetee ettt ettt sttt ettt sttt ettt et b e s bt e e bt e e s bt e e bt e e sa b e e bt e e sab e e st e e sabeessbeesabeesateesabeenaseesabaenaneens 53
7.1.1. Lattice Sentry DEMO GUI TOO........uiiiiieeiieiiiiieee ettt e et e e e e e e ettt e e e e e e see bbb e e e e e e sesastaaaeeeeeeennsaaneeaeas 53
7.2. Key Feature Validation IMELROMooi et e e e et e e e e s et a e e e e e e e e s santaaeeeaeeeanas 57
7.2.1. FUNCHION SIMUIGEION 1.ttt et e e sttt e s et e e sttt e e s sabeeessbbeeesabbaeessabeeessnbeeesaanaeas 57
B B U1 4 =1 o1 4 or- (o) o U OO OSSP PP PPRPUPPRPI 58
N T o o] =Tt o] o T PP PUPPPI 59
A T U= Tolo 1V T o PP P PO PRPOPOPON 64
RETEIEINCES ...ttt et sttt et s bt e st e s a b e st e e s a b e e e bt e sa ke e e bt e sa ke e e bt e ea ke e e beeea b e e e beeeabeeebee s beeenee s beeennee et 66
NV K o] g T = 1 1) o VA TS TP RUPUTT 67

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Figures

Figure 2.1. Lattice PFR SySte@m ArChIitE@CIUIEcoiiiiiiieiiee ettt sttt st s bt e s bt e s beesbeeeaneeeas 8
Figure 3.1. Software Architecture of Lattice PFR SOIULIONccccuiiiiiiiiiiiiieee e e e 10
Figure 3.2. Customer PFR Firmware BOOt UpP FIOWcoouiiiiiiiiieiiieiie ettt sttt et 11
Figure 3.3. Lattice PFR RUNTIME FIOW ..couiiiiiiiiiieiie ettt st ettt sab e st s b e e b e sab e eneesars 12
Figure 3.4. Lattice PFR 3.0 CONfigUration FIOWciiiiiiiii ettt ee et eetee e et e e et e e s et e e e snbaeeesntbeeeentneesnnnes 13
Figure 3.5. Launch Manifest Manager in Lattice Propel SDKuviiiiiii ittt e et e e s e e et e e e e e 14
Figure 3.6. Manifest Manager WINGOWcuvieioiiiiiiiee e ciee ettt e eetre e s vt e e et e e e seeaaeesasaaeeasstaeesanssaeesssaeeesntseesassaeesnnsees 14
Figure 3.7. Launch Lattice Sentry FIash Address GUI.........cccuuieeeiiiiiiiiee e ctie et et e e saee e e st e e s eate e e saraeeesataeeeeseaeeennnes 15
Figure 3.8. Configuration in FIash Address TOOIc..eiiiiiiiiiiiieiieeee ettt ettt st e s enee e 16
Figure 3.9. PFR BOOt-UP ProteCtion HanGIr.......couiiiiiieieeeee ettt ettt et be e s s ne e e 17
Figure 3.10. PFR RECOVEIY HANGIENoouiiiiiieiieeie ettt st ettt e st e et e st e sabee st e e eabeesabeeeaneesares 18
Figure 3.11. PFR DeteCtioN HaNAIBI .. .cooi ettt et e e st e e e e st e e et e e e satae e e e staeeeeaseaeesnnsaeeesntseeeenssaeesnnenes 19
Figure 6.1. Lattice Propel TEMPIATE FIOWc...evieieiiiie ettt ee et e et e e e st e e e sata e e e eastaeesnsaeeesnsseeeestaeesnnnees 51
Figure 6.2. CUSTOMEr PLD WOTKFIOWccouiiieiiiiie ettt e st e e et e e et e e e s ta e e e e staeesenstaeesnsaeeesntaeeeenssaeesnnnnes 52
Figure 7.1. Launch Lattice Sentry DeMO GUI TOO!ccocuiiiiiiiie ettt et e e tte e e st e e e st e e e e eaate e e sabaeeesatseeeessaeeensees 53
Figure 7.2 COM Port Scan of the Lattice Sentry DEMO GUI TOOIcoocuiiiiiiriiiiiiieniee ettt s 54
Figure 7.3 Enable Lattice Sentry DemMO GUI TOOIcoiuuiiiiiiiiienieeiieeeie ettt sttt sttt s e st e b e sb e sbeeeneesanes 55
Figure 7.4. Send Command of Lattice Sentry DemO GUI TOOIcoueiiiiiiiiiiiieiiieeiee et 56
Figure 7.5 Logging of Lattice Sentry DEMO GUI TOOIcccuiiiiiiiiieiiieeiee sttt sttt ettt st e s e s esneeeanes 56
Figure 7.6 Read Address Space of Lattice Sentry DEmMO GUI TOOI ...ccccuuiiiiiiiieeeciiie ettt et e e et e e et 57
Figure 7.7. BMC Image Authentication fOr FIAsh Oc..coiiiiieiiiiie ettt e e are e e st a e e e s atr e e e e ataeeeanaes 58
Figure 7.8. Get Logs for IMmage AULhENTICATIONSiiiiiiii ettt e e e e et e e e st e e e e eat e e e sabaeeesabaee e e staeeensees 59
Figure 7.9. Initial Value of 0X00300000~0X0030000Fccccuteieirereerirreeeiitreeeesireesssseeeesesseeeessseeessssseeesssseeesssseeesssseeessssees 60
Figure 7.10. Value of 0x00300000~0X0030000F @fter WIItec.eeiueeriierieeeieeritee ettt et sttt st e st e e s e e s 61
Figure 7.11. Value of 0x00310000~0X0031000F @fter WIIteccueeiueeriieriieeieeriee ettt sttt st st e s s e e s 62
Figure 7.12. LOgS Of IHEZal OPEIatioNcoeuiiiiiiiiieiieeeit ettt ettt st e st e st e e bt e st e e saseesabeeenbeesabeesnneesares 63
Figure 7.13. Authentication Failed with COrrupted IMageccccviiiioiiie e et e et e e e e aaa e e eares 64
Figure 7.14. Authenticate Primary Image after RECOVEIY DONEcccuveieiiiieeeiiieeeeiiee e etee e et e e e eate e e sara e e e e tbe e e e eataeeennes 65
Tables

Table 3.1. AUthority LeVEl DEfINITIONeiiieeeece e ettt e e et e e e s tb e e e e tte e e seabaseesabbeeeeataeeeeasaaeesasaeaaan 19
Table 3.2. Lattice PFR LOg FOrmat Definitionccuiiiiiiiie ettt ettt e e et e e et e e s eaaae e e saabee e e abaeeeeanaaaessreeaas 20

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

AMBA Advanced Microcontroller Bus Architecture used by the RISC-V to communicate with peripherals.

BMC Baseboard Management Controller

BSP Board Support Package, the layer of software containing hardware-specific drivers and libraries to function in a
particular hardware environment.

CoT Chain of Trust

CPU Central Processing Unit

ECDSA Elliptic Curve Digital Signature Algorithm

FW Firmware

GPIO General Purpose Input Output.

GUI Graphic User Interface

HAL Hardware Abstraction Layer, a software interface to hide the detail of the hardware design and provide general
services to the upper layer.

12C Inter Integrated Circuit

MCTP Management Component Transport Protocol

PFR Platform Firmware Resiliency

QSPI Quad Serial Peripheral Interface

00B Out of Band

PCH Platform Controller Hub

PFR Platform Firmware Resiliency

PLD Programmable Logic Device

RISC.V Reduced Instruction Set Computer — Five, a free and open instruction set architecture (ISA) enabling a new era
of processor innovation through open standard collaboration.

RoT Root of Trust

RTL Register Transfer Level

RTRec Root of Trust for Recovery

Rx Receiver

SDK System Design and Develop Kit. A set of software development tools that allows the creation of applications for
software package on the Lattice embedded platform.

SFB SoC Function Block

SHA Secure Hash Algorithm

SMBus System Management Bus

SoC System on Chip

SPI Serial Peripheral Interface

Tx Transmitter

UART Universal Asynchronous Receiver-Transmitter

UFM User Flash Memory

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

1. Introduction

1.1. Purpose

Lattice Mach-NX device is a new low-density FPGA with enhanced security features and on-chip dual boot flash. The
enhanced bitstream security and user-mode security functions enable the Mach-NX device to be used as a
Root-of-Trust hardware solution in a complex system. With Lattice Mach-NX device, you can implement a Platform
Firmware Resiliency (PFR) solution in your system, as described in NIST Special Publication 800-193.

The purpose of this document is to introduce the design methodology of the Lattice Sentry PFR solution on the
Mach-NX device using the Lattice Propel toolsets, which can largely reduce the design complexity.

1.2. Audience

The intended audience for this document includes embedded system designers and embedded software developers.
The technical guidelines assume readers have expertise in embedded system design and FPGA technologies. In
addition, readers are recommended to read NIST 800-193 Platform Firmware Resiliency Guidelines before reading this
document.

Contents in this document are the Mach-NX PFR solution design guide of recommended flows using Lattice Propel
tools. It introduces a recommended design guide but not a constraint to experienced users.

1.3. Document Structure

The remainder of this document is with the following major sections:

e Platform Firmware Resiliency System (PFR) Root of Trust (RoT) Introduction section — Introduces the Lattice
Mach-NX PFR Root of Trust (RoT) solution, including system architecture, functionality overview, and principles
supporting firmware resiliency.

e PFR System Architecture and Runtime Flow section — Describes the Lattice Mach-NX PFR RoT firmware
architecture, runtime flow, particularly the system configuration, protection, detection and recovery mechanism.

e PFRIP API Reference and PFR Component APl Reference sections — List the API reference for the PFR IP and PFR
component.

e PFR System Design (from Lattice Propel) section — Shows the design flow through Lattice Propel toolsets, including
template design, customization, and simulation.

e PFR System Validation Guide section — A system validation guide by applying Lattice PFR utilities.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2. Platform Firmware Resiliency System (PFR) Root of Trust
(RoT) Introduction

2.1. PFR

NIST 800-193 Platform Firmware Resiliency (PFR) Guidelines describe the principles of supporting platform resiliency.
As stated in NIST 800-193, the security guidelines are based on the following three principles:

Protection: Mechanisms for ensuring that Platform Firmware code and critical data remain in a state of integrity and
are protected from corruption, such as the process for ensuring the authenticity and integrity of firmware updates.

Detection: Mechanisms for detecting when Platform Firmware code and critical data have been corrupted, or
otherwise changed from an authorized state.

Recovery: Mechanisms for restoring Platform Firmware code and critical data to a state of integrity in the event that
any such firmware code or critical data are detected to have been corrupted, or when forced to recover through an
authorized mechanism. Recovery is limited to the ability to recover firmware code and critical data.

2.2. RoT

The security mechanisms are founded in Roots of Trust (RoT). A RoT is an element that forms the basis of providing one

or more security-specific functions, such as measurement, storage, reporting, recovery, verification, and update. A RoT

device must be designed to always behave in the expected manner. Proper function of the device is essential to

providing security-specific functions. If this device is unchecked, faulty behavior cannot be detected. A RoT is typically

the first element in a Chain of Trust (CoT) and can serve as an anchor for the chain to deliver more complex

functionality.

The foundational guidelines on the Roots of Trust (RoT) support the subsequent guidelines for Protection, Detection,

and Recovery. These guidelines are organized based on the logical component responsible for each of the security

properties.

e The Root of Trust for Update (RTU) is responsible for authenticating firmware updates and critical data changes to
support platform protection.

e The Root of Trust for Detection (RTD) is responsible for firmware and critical data corruption detection.

e The Root of Trust for Recovery (RTRec) is responsible for recovery of firmware and critical data when corruption is
detected.

2.3. Lattice RoT Mechanism

Lattice Mach-NX FPGA can serve as the Root of Trust and can provide the following services:

e Image Authentication: On system power-up or reset, Mach-NX device holds the protected devices in reset while it
authenticates their boot images in SPI flash. After each signature authentication passes, Mach-NX device releases
each reset, and those devices can boot from their authenticated SPI flash image. Image authentication can also be
requested at any time through the Out of Band (OOB) communication path.

o Image Recovery: If a flash image becomes corrupted for any reason, it fails to be authenticated. The Mach-NX
device can restore it to a known good state by copying from an authenticated backup image.

e SPI Flash Monitoring and Protection: The Mach-NX device can monitor multiple SPI/QSPI buses for unauthorized
activity and block unauthorized accesses using external quick switches. The monitors can be configured to check
for specific SPI flash commands and address ranges defined by the system designer and designate them as
authorized (whitelisted) or unauthorized (blacklisted).

e Event Logging: Mach-NX device logs security events, such as unauthorized flash accesses and notifies the BMC.

e SMBus Filtering: The Mach-NX device can monitor a SMBus for unauthorized activity and filter the unauthorized
transactions. The monitor can be configured with multiple whitelist or blacklist filters to watch for specific
commands defined by the system designer and designate them as authorized or unauthorized SMBus transactions.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.4. System Architecture

Figure 2.1 shows the architecture of a Lattice Mach-NX FPGA working as a RoT device. The system design consists of
the SFB module, which integrates a RISC-V processor connected to a set of peripherals through the AMBA bus.
Software running on the processor controls the general and PFR solution peripherals and handles all the events at
runtime to perform the system functionalities.

General Peripherals in SFB module include the Mach-NX hard GPIO, UART, JTAG, and SMBus Mailbox, as shown in
Figure 2.1. These modules perform the basic board-level controls and communications. PFR solution Peripherals
include Secure Enclave, QSPI Streamer/Monitor, SMBus Filter and Customer PLD interface, which perform the main PFR
functionalities. You can add or remove the peripherals using the Lattice Propel tools upon your design requirement. For
details of customization, refer to the PFR System Design (from Lattice Propel) section.

SFB

RISC-V [pic
Timer
SHB Interface
A 1L \
o iL Svs!emﬂus(NiB/AL)) pic
E SMBus Customer
GPIO UART SPI Master u
w Lo | s Sheamer =
1 4 Filter Interface PLD Fabric
3 w1 L,
> uAB
T ==
B Data Mux
S
5 ECc2se A F'y
v Eccass
UART 3 5:“: [aisp (aIspi
v Boot Load
Switch Ctrl Switch Ctrl
l ee
A A 4 AA
oo [ajse! f aspl
e SPI Flash | mm— | | SP| Flash
GPIO SPI switch 0 | SPIswitchN |
SPI Flash | cee p—p! 5Pl Flash
[GE] L i aspi
A A
[aisp [Qsei
v v v

BMC

[FunctionModule PCH
[customer Logic

Figure 2.1. Lattice PFR System Architecture

2.5. Functionality Overview

2.5.1. Mach-NX SoC Function Block

SoC Function Block (SFB) is a hard module in Mach-NX device mainly designed for Lattice Sentry PFR solution. It
contains RISC-V processor, PFR solution-specific function modules, and other general modules for communication with
BMC and PCH.

2.5.1.1. RISC-V Processor

The RISC-V Processor provides the main control function in Mach-NX SFB block. The processor integrates JTAG
debugger, PIC and Timer. The RISC-V core supports RV32l instruction set and 5-stage pipelines to fulfill the
performance requirement for PFR system. JTAG debugger, PIC, and Timer can be enabled or disabled based on the
system requirement.

2.5.1.2. Lattice Sentry Secure Enclave

The Secure Enclave is a security block that provides a set of security services for Mach-NX device, including ECC256,
ECC384, SHA256, and SHA384 crypto functions. The module has two interfaces for sending and receiving data: a
register interface, and a High Speed Data Port (HSP) which is a FIFO-style interface.

Besides the security services, the Secure Enclave also has a boot loader function which performs the secure boot for
the whole system.

For the system software developer, refer to the PFR IP APl Reference section for more details on the API reference.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

2.5.1.3. Lattice Sentry QSPI Master Streamer

Lattice Sentry QSPI Master Streamer is a configurable SPI master that supports single, dual and quad modes. It contains
FIFOs for Tx and Rx data, which supports long SPI transactions (more than 32 bits). It also provides an external
8-bit Rx FIFO interface that can be connected to the Secure Enclave for image authentication.

QSPI Streamer incorporates a SPI FIFO Master that provides significant performance improvement by supporting data
read and write transactions of programmable length, allowing an entire SPI flash device to be read in one SPI
transaction. The external Rx FIFO interface enables direct transmission of input data from the SPI slave to another
block, such as the Secure Enclave which frees up the CPU or system bus.

For the system software developer, refer to the PFR IP APl Reference section for more details on the API reference.

2.5.1.4. Lattice Sentry QSPI Monitor

The QSPI Monitor is a configurable security module which can monitor one or more SPI or QSPI buses for unauthorized
activity and block transactions by controlling the chip select signal and external quick switch devices. In addition to
monitoring, it can connect external SPI/QSPI buses to the QSPI Master Streamer through a programmable mux/demux
block.

The QSPI Monitor checks the external buses for allowed flash commands and flash addresses. This block provides fine
grain control over the set of allowed commands, and supports up to four configurable address spaces which can be
independently monitored for erase, program, and read commands. Address spaces can be whitelisted for erase or
program command, or be blacklisted for read commands. Both 24-bit and 32-bit flash addressing are supported.

For the system software developer, refer to the PFR IP APl Reference section for more details on the API reference.

2.5.1.5. Lattice Sentry System Management Bus (SMBus) Filter

The SMBus filter is a configurable security module which can monitor traffic on the SMBus to identify unauthorized
activity, based on set of up to 256 programmabile filters. If unauthorized activity is detected, the SMBus is disabled and
PFR firmware is notified so that an event can be logged.

For the system software developer, refer to the PFR IP APl Reference section for more details on the API reference.

2.5.1.6. General Peripherals

Besides the PFR solution peripherals, SFB also integrates some general peripherals for board-level control or
communication, including GPIO, UART, SMBus Mailbox. You can use one or more of these modules based on the
system requirement.

2.5.2. Mach-NX SFB Interface

2.5.2.1. Customer PLD Interface

The Customer PLD Interface is a register-based interface which is used to send and receive messages between the PFR
firmware and the customer control PLD logic. It can be used to request system control actions, to check status, or to
send customized messages. You may want to connect the PLD logic to the defined interface and implement the actions
associated with messages sent by firmware. The design of the actual Customer PLD logic is system-dependent and is
implemented by the customer for the particular system.

For the system software developer, refer to the PFR IP APl Reference section for more details on the API reference.

2.5.2.2. UFM Access Module (UAB)

The UFM Access Module (UAB) is a functional block inside the SFB interface for accessing the internal flash memory of
Mach-NX device. Through the UAB block, PFR solution firmware can access the manifest of the system and runtime log
event data.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

3. PFR System Architecture and Runtime Flow

3.1. Firmware Architecture

The Lattice PFR solution of Mach-NX device has firmware running on the processor to handle the system dependent

information and runtime events.

Figure 3.1 shows the architecture of the firmware of the PFR 3.0 RISC-V solution. The Lattice PFR solution firmware is

composed of four layers.

e Sitting on the top is the APP layer, which is the demo application to demonstrate all the features on Protection,
Detection and Recovery that PFR spec defined.

e The Component layer is functional module based for dedicated solutions. For PFR solution, this layer contains OOB
Communication module, Log/Manifest Management module, and Security Management module to implement the
corresponding features.

e BSP/Driver and HAL layers are automatically generated during the system design. All the system-dependent
information is applied statically into the source code. The BSP/Driver layer is for all the general IPs, while the HAL
layer is for the RISC-V processor IP that capsulates all the platform dependent information.

PFR App System Initialization/Command Handling/...
OOB/MCTP Log/Manifest Security
PFR Component Communication Management Management

it

SMBus Mailbox QSP! Streamer/ UAB UART
Monitor
BSP/Driver
Layer
. Customer PLD
SMBus Filter Secure Enclave Interface GPIO
HAL Layer Timer/Interrupt/Register

Figure 3.1. Software Architecture of Lattice PFR Solution

3.2. Bootloader

The Bootloader performs the secure boot function after the system is power on and is responsible for loading customer
firmware from the external flash. The boot up flow is shown in Figure 3.2.

During the boot up flow, Bootloader will parse the flash configuration data in UFM3 of Mach-NX device, for the detail
of the flash configuration in UFM3, please refer to the Flash Address Tool section.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Start Authenticate decrypted . .
© ‘ packet C1 Fail Configure PFR IPs
Read UFM3, FW Decrvot packet C1 Hand over driving of Enter service mode
authentication key ypPLp Flash_CSN
<all>n% Read AES key from OTP ‘
7VH Log Failure Message to UFM2 }(y @H Requersgsiiiélr:;riaceto ‘

from external flash

Load & Authenticate PFR FW ‘ ‘ Release PFR master reset ‘

Figure 3.2. Customer PFR Firmware Boot Up Flow

3.3. Runtime Flow
The firmware runtime flow comprises the following major steps (as shown in Figure 3.3):

1. Configuration Handler: Read and parse the system Manifest, and configure the system accordingly. Refer to the
Configuration section for more details.

2. Boot-up Protection Handler: Authenticate the firmware on the SPI flash before BMC/PCH boot up. Refer to the
Boot Up Protection section for more details.

3. Recovery Handler: Recover the firmware on the SPI flash if the image is corrupted. Refer to the Recovery section for
more details.

4. Invalid SPI/SMBus Event Detection and Protection: Monitor and detect the system SPI/SMBus events to avoid
invalid behaviors. Refer to the Detection section for more details.

5. Logging and Reporting Handler: Log events which occur and report to the BMC/PCH when requested. Refer to the
Logs and Reporting section for more details.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design

User Guide

= LATTICE

System Power on

System initialization
Hold the BMC/PCH Reset Pin

Configuration Handler

A 4

Protection(Authentication
Handler for BMC/PCH

Boot-up \
) |

Authentication OK?

Yes

v

Release the Reset Pin for
BMC/PCH

Recover Handler

Any Invalid Events?

ommunication From

Log/Repo

rt Handler

4

BMC/PCH

Figure 3.3. Lattice PFR Runtime Flow

3.4. Configuration

System dependent information is configured as a manifest, which is stored in the UFM of Lattice Mach-NX FPGA device.
The system manifest is a data structure which provides crucial information such as flash layout, signature, and keys, for
each firmware to store, authenticate and monitor on the SPI flash in the system.

Use of the manifest in the RoT device makes it easier to maintain a common code functionality for authentication and

recovery across different platform designs.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

12

FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

= LATTICE

Lattice Propel 1.1 Root-of-Trust Reference Design

User Guide

During the runtime, the system software reads the manifest in the UFM and parses the critical data for firmware
authentication, recovery and detection. Figure 3.4 shows configuration flow of Lattice PFR 3.0 Configuration Handler.

Configuration Handler

Manifest Reading and

Parsing

Configure the

Detection Handler

System Power On

Read the header of
Manifest

Reading the Manifest

Get the public Key, SPI
flash layout,

o

Get the information SPI
monitor and SMBus
Filter

4

Configure the white/
black spaces for SPI
Monitor

o

Configure the
monitored activities
for SMBus Filter

Configuration Done

Figure 3.4. Lattice PFR 3.0 Configuration Flow

0o

| Manifest Read Error

0o

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1

13

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design .':LATT’CE

User Guide

3.4.1. Mach-NX PFR Manifest Manager

Lattice Propel provides a Manifest Manager tool to manage the manifest for your own system. The Manifest is stored
in UFMO of the Mach-NX device.

You can follow steps below to create, modify the manifest for your system.

1. Open Lattice Propel SDK. Click LatticeTools -> Lattice Sentry Tools for Mach-NX -> Lattice Sentry Manifest Manager
to run manifest manager. See
Figure 3.5.

2. Click the Open button and choose the .mem file. Manifest Manager loads the .mem file and parses its manifest
information, as shown in the three tabs, Image Data, Flash Data and SMBus Filter Data (Figure 3.6).

3. Click the Generate button to create the .mem file for UFMO initialization. The .jed file is programmed into UFMO.

?:::5 workspace - Lattice Propel - O X
File Edit Source Refactor Navigate Search Project Run LatticeTools Window Help
o~ |®& & v BiLIO R SRid~ & v [Open Design in Propel Builder v - v o vt Q &S
‘&3 Project Explorer & Generate and Open Diamond Proejct = D gz ou = =B
Generate and Open Radiant Proejct ¢ i

There are no projects in your workspace. i . .
To add a project: Lattice Sentry Tools for MachXO3D > There is no active

Lattice Sentry Tools for Mach-NX > Lattice Sentry Demo GUI
I Lattice Sentry Manifest Manager I
Lattice Sentry FlashAddr G-UI

[Create a new Lattice C project

& Create a new lattice SoC Design Project

¥ Create a project...
i |mport projects...

[2! Problems 2 . & Tasks & Console El Properties| & Terminal v o3 =

Figure 3.5. Launch Manifest Manager in Lattice Propel SDK

attice Sentry Manifest Manager for Mach-NX — O X

Configuration Image count set to 1
Device Info Image Count Flash count set to 1

Filter count set to 0

Load mem file \\Ishnas02\Engineering\SW_Solutions\Project\RISCVADVT\TestReport\2021 3 24 Raptor_post-Beta_1GB

2 v 12C Filter Count | \manifest.mem.

Image count set to 2

Flash count set to 2

Filter count set to 2

Load mem file successfully!

2 v Flash Count
2 v
Manifest Name

manifest

[] Append time to file name

Generate

Image Data Flash Data 12C Filter Data I

Ecc384 UBoot Flash ID Version Threshold Primary Image Location Primary Image Length Primary Signature Location Backup Image Location Backup Image Le
1 [l 0 0000 00000000 00200000 00200000 00000000 00200000
2 O [1 0000 00000000 001F0000 001F0000 00000000 001F0000
< >

Figure 3.6. Manifest Manager Window

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

14 FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

:LATTICE Lattice Propel 1.1 Root-of-Trust Reference Design

User Guide

3.4.2. Flash Address Tool

Lattice Propel provides a Flash Address tool to configure the system flash storage related information which can be
used during the system secure boot. The flash configuration data is stored in UFM3 of the Mach-NX device.

You can follow steps below to create and modify the flash configuration data for your system.

1.

In Lattice Propel SDK, choose LatticeTools -> Lattice Sentry Tools for Mach-NX -> Lattice Sentry FlashAddr GUI. See
Figure 3.7.

Click the Open button and choose the “config.jed” file from the SoC project (Figure 3.8), which is generated by
Lattice Propel builder. Flash Address tool loads the “config.jed” file and parses the information. You need to input
the specific data for “SoC Firmware Address” and “SFB Config Address” to match your own system for successful
boot up. You also need to provide the “Recovery Target Image Address” for BMC to use in case of a boot up failure.
Click the Save button to create the .jed file for UFM3 initialization. The .jed file can then be programmed into
UFM3.

£ workspace - Lattice Propel — O X
File Edit Source Refactor Navigate Search Project Run | LatticeTools Window Help
 lmi] 57 |® ~ & v BiSIOIRSRlig ~ 65~ [] Open Design in Propel Builder vl &k o | Q im|E
& Project Explorer Generate and Open Diamond Proejct = 0 ||[Ezous ==
. . Generate and Open Radiant Proejct @ 3§
There are no projects in your workspace.
To add a project: Lattice Sentry Tools for MachXO3D > There is no active
. . Lattice Sentry Tools for Mach-NX > Lattice Sentry Demo GUI
[Create a new Lattice C project
i i . Lattice Sentry Manifest Manager
% Create a new Lattice SoC Design Project
Lattice Sentry FlashAddr GUI

T Create a project...
&3 Import projects...

[Problems . ¥ Tasks & Console T Properties| & Terminal v 8= 8
0 items

Description - Resource Path Location Type
< >

84M of 336M i)

Figure 3.7. Launch Lattice Sentry Flash Address GUI

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 15

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design .':LATT’CE

User Guide

i1 Flash Address GUI - O X

File Mame Mach-MX SoC FirmwareD Address: | 00220000

Mach-MX SoC Firmwarel Address: | O O0E00000

Open Save Mach-MX SFB Configl Address: | (x00BO0000

|
|
config jed Mach-NX SFE Configd Address: | 0x00500000 |
|
|

Recovery Target Image Address: | (00000000

Console Qutput

Read Flash Address File Success!

Figure 3.8. Configuration in Flash Address Tool

3.5. Boot Up Protection

Before the system boots up, the Mach-NX RoT ensures that the system firmware is valid. If not, the RoT performs
recovery.

Figure 3.9 shows the boot-up protection flow for authenticating the firmware on the SPI flash. The authentication
consists of two steps. First, perform ECDSA verification using the firmware data and signature stored on the SPI flash
with the public key in the Manifest. The second step is to perform a version check to avoid firmware roll back.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

16 FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

::LATT’CE Lattice Propel 1.1 Root-of-Trust Reference Design

User Guide

start Authentication

Read the FW Image
from SPI Flash

H

Feed data into
Secure Enclave and
Generate the Digest

H

Read the public key
from Manifest

H

Read the signature
from SPI Flash

Boot-up Protection
Handler

H

Feed digest, public
key and signature
into Secure Enclave
for verification

yes

Read version from
SPI Flash

FW Version >
threshold

Pass Authentication

Figure 3.9. PFR Boot-up Protection Handler

3.6. Recovery

Recovery mechanism aims to keep the firmware and critical data in a valid and authorized state in case the firmware
and the critical data are detected to have been corrupted. Generally, two circumstances can trigger the recovery
mechanism: one is when RoT has detected the firmware has been corrupted, the other is the BMC/PCH initiates the
recovery progress. After recovery, authentication is recommended to ensure the integrity of the firmware and data in

the recovered flash.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1

17

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

= LATTICE

Figure 3.10 shows the recovery process flow.

Start Recovering

Get the SPI Flash

SN

/ A

M Storage Information

_

4

/ o

/ Erase Fi

,/ S

, Image

B

rmware

_

G A

// /7
/ Erase Si

//

A
T

gnature

_

/ A
/ o
, Copy the

,/ S

, Image

A
T

Firmware

_

A

 —

Recovery Handler Read the
fromthe

—

—

Signature
SPI Flash

_

N A

N S

\ Destinatio

N —

N A

\ Copy to the

A
T

n SPI Flash

—

AN o

A
T

\ Log the Recovery
\ Event

AN —

\ Re-authenticate the
\ Recovered Flash

Complete
Recovering

Figure 3.10. PFR Recovery Handler

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18

FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

= LATTICE

3.7. Detection

The detection mechanism can detect unauthorized changes to device firmware and critical data before the firmware is
executed or the data is consumed by the device. In Lattice Mach-NX PFR solution (Figure 3.11), two kinds of events can
be monitored, SPI flash access and SMBus access.

Firmware and critical data can be stored on the SPI flashes of the system. Different locations of the flash can have
different authority levels. The three authority levels defined in the Lattice PFR solution are called White, Grey and Black
lists (Table 3.1). For each monitored spaces of the flash, one authority level is defined and configured in the manifest
accordingly.

Table 3.1. Authority Level Definition

Authority Level Definition

White Read, Erase, and Write are all allowed.

Grey Only Read is allowed. Neither Erase nor Write operation is permitted.

Black Read, Erase or Write operations are not permitted. The transaction is blocked when any of the
Read, Erase, or Write operation is detected on the SPI bus.

The SMBus may be used for communications between on-board devices. Some critical data can be exchanged. The
Lattice Mach-NX PFR solution can be configured to define a set of transactions which are monitored on the SMBus
interface at runtime. If any illegal transactions are detected, an interrupt or a flag is issued to notify the processor. This
information is logged and reported to the BMC/PCH.

Configure the
monitored events
from Manifest

Enable the
Detection

SMBus Event
Detected?

SPI Events
Detected?

Detection Handler

Check the detected Checking the events,
SMBus events and read the information
read the information of theillegal event

Log and Report

Figure 3.11. PFR Detection Handler

3.8. Logs and Reporting

Logged events are written to the UFM2 of the Lattice Mach-NX device, starting from page 1. Each page of UFM2 holds a
single log entry. Byte 0 is the log index and indicates the page where the log is stored. Byte 15 is used to indicate if a log
has been read (RD).

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

The BMC/PCH can read the log from RoT device via the SMBus OOB channel. Table 3.2 shows the detailed definition of
the log format.

Table 3.2. Lattice PFR Log Format Definition

Log Ent Data | Data | Data | Data | Date | Data | Data | Data | Data | Data | Data | Data | Data | Data | Data | Data
og Entr
Ty;g)e y Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Authentication | ©8 | oxo | ™8 | P/ [Pass/ 00 | oxo0 | oxoo | |mestamp inSeconds - - - RD
Index ID Sec Fail (32-bit)
L Flash SPI Ti t inS d
SPI Exception %% loxor | ° SPI Address imestamp I >econds - - - RD
Index ID CMD (32-bit)
SMB L SMBu Filter Timestamp in Seconds
us %8 1l ox02 | s 0x00 | 0x00 | 0x00 | 0x00 >ramp - - - RD
Exception Index b ID (32-bit)
0-
Pri=>
Recovery Log | ooq |'me | BU 0x00 | 0x00 | 0x00 | oxop | |mestamp inSeconds - - - RD
Index ID 1- (32-bit)
BU=>
Pri
Recovery Log Img 1-Pri Timestamp in Seconds _ _ _
UBoot index | 9 | b 2.py | 200 | X001 Ox00 1 OX00 oy RD

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4. PFRIP API Reference

The PFR IPs are critical parts of the Lattice PFR solution. You can use the APIs to initialize, configure, and control the IPs
to perform the functions.

The following sections provide reference to the APIs for each PFR IP, which is released in the corresponding IP package
by Lattice.

4.1. Lattice Sentry QSPI Monitor

qgspi_mon_init

unsigned char gspi_mon_init(struct spi_mon_instance *this_spi_monitor,
unsigned int base_address)

Parameter | Description

this_spi_monitor | The pointer to the current QSPI monitor instance.

Base address of the QSPI monitor module. Propel SDK automatically parses the address

base_address - . .
- map of the SoC system and passes the information to software via the sys_platform.h.

Returns | Description

0: Succeeded in initializing the QSPI monitor module.

unsigned char
& 1: Failed to initialize the QSPI monitor module.

Description

This function is used to Initializes QSPI monitor instance. This function is supposed to be called when the platform is initializing.
This function should be called before calling any QSPI monitor related functions.

gspi_mon_flash_update
unsigned char gspi_mon_flash_update(struct spi_mon_instance
*this_spi_monitor, unsigned int flash_id,
unsigned int flash_select, unsigned int master_select)

Parameter | Description

this_spi_monitor | The pointer to the current QSPI monitor instance.
flash_id | The value of the flash id number.

The value of flash to select:
flash_select | 0x10: Select Flash A.

0x20: Select Flash B.

The value of master to select:
master_select | 0: SPI Monitor

1: Internal Master

Returns | Description

0: Succeeded in selecting the new flash.

unsigned char
& 1: Failed to select the new flash.

Description

This function is used to select flash that QSPI master accesses to.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

gspi_mon_ws_update

unsigned char gspi_mon_ws_update(struct spi_mon_instance *this_spi_monitor,

unsigned int flash_id, unsigned int mon_cntl,
unsigned int dummy_num,
struct spi_monitor_space *flash_mon_sp)

Parameter

Description

this_spi_monitor

The pointer to the current QSPI monitor instance.

flash_id

The value of the flash ID number.

mon_cntl

The monitor control value that is configured for the QSPI monitor.

dummy_num

The value of dummy byte number that is configured in the QSPI monitor.

flash_mon_sp

The pointer to the flash monitoring spaces that is configured for the QSPI monitor.

Returns

Description

unsigned char

0: Succeeded in updating the QSPI monitor space.
1: Failed to update the QSPI monitor space.

Description

This function is used to update white space and control setting for the QSPI monitor.

gspi_mon_exception_get

unsigned char gspi_mon_exception_get(struct spi_mon_instance

*this_spi_monitor, unsigned int flash_id,
unsigned int *command, unsigned int *address)

Parameter

Description

this_spi_monitor

The pointer to the current QSPI monitor instance.

flash_id | The value of the flash ID number.

command | The pointer to the buffer to store the exception SPI command.
address | The pointer to the buffer to store the exception SPI address.
Returns | Description

unsigned char

0: Succeeded in getting the exception.
1: Failed to get the exception.

Description

This function is used to get the command and SPI access address of the exception from the QSPI monitor.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.2. Lattice Sentry QSPI Streamer

spi_streamer_init

unsigned char spi_streamer_init(struct spi_streamer_instance *this_spi,
unsigned int base_addr,
unsigned int spi_mode,
unsigned int sck_div)

Parameter | Description
this_spi | The pointer to the instance of the current QSPI streamer device.
base addr Base address of the QSPI streamer module. Propel SDK parses the address map of the SoC
- system and passes the information to software via the sys_platform.h.
The value of QSPI mode to select.
spi_mode | 0x00: QSPI mode 0
0x03: QSPI mode 3
sck_div | The value of the clock division.
Returns | Description
unsigned char 0: Su.cceede.d |n ir.1itializing the QSPI streamer.
1: Failed to initialize the QSPI streamer.

Description

This function is used to Initialize QSPI streamer module. This function is supposed to be called when the platform is initializing.
This function should be called before calling any QSPI streamer related functions.

unsigned char spi_write(struct spi_streamer_instance *this_spi,
unsigned int addr, unsigned int length,
unsigned char *buff, unsigned char addr4B)

Parameter | Description
this_spi | The pointer to the instance of the current QSPI streamer device.
addr | The start address of the SPI flash to write to.
length | The number of data in bytes that is written to the SPI device.
buff | The pointer to the data buffer that is written to the SPI device.
addrdB | The value of the addressing mode to select.
0: 3-byte address mode
1: 4-byte address mode
Returns | Description
unsigned char 0: Su-cceeded i-n writing th.e.specified data to the S.PI device.
1: Failed to write the specified data to the SPI device.

Description

This function is used to write the specified length of data in the buffer to the SPI device from the specified address. Refer to
spi_read() for the data reading details.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

unsigned char spi_read(struct spi_streamer_instance *this_spi,

unsigned int addr, unsigned int length,
unsigned char *buff, unsigned char addr4B)

Parameter | Description

this_spi | The pointer to the instance of current QSPI streamer device.

addr | The start address of the SPI flash to read from.

length | The length of data in byte that is read from the SPI device.

buff | The pointer to the data buff that stores the data read from the SPI device.

The value of mode to select.
addr4B | 0: 3-byte address mode
1: 4-byte address mode

Returns | Description

0: Succeeded in reading the specified data from the SPI device.

unsigned char
g 1: Failed to read the specified data from the SPI device.

Description

This function is used to read the specified length of data from the SPI device. Refer to spi_write() for the data writing details.

unsigned char spi_write_txfifo(struct spi_streamer_instance *this_spi,
unsigned int addr, unsigned int length)

Parameter | Description

this_spi | The pointer to the instance of current QSPI streamer device.

addr | The start address of the SPI device to write to.

length | The number of data in byte that is written to the SPI device.

Returns | Description

0: Succeeded in writing the specified data to the SPI device.

unsigned char
& 1: Failed to write the specified data to the SPI device.

Description

This function is used to write the specified length of data in the TX FIFO to the SPI device from the specified address.

spi_read_txfifo

unsigned char spi_read_txfifo(struct spi_streamer_instance *this_spi,
unsigned int addr, unsigned int length)

Parameter | Description

this_spi | The pointer to the instance of current QSPI streamer device.

addr | The start address of SPI device to read from.

length | The length of data in byte that is read from the SPI device.

Returns | Description

0: Succeeded in reading the specified data from the SPI device.

igned ch
unsigned char 1: Failed to read the specified data from the SPI device.

Description

This function is used to read the specified length of data from the SPI device and store the data into the TX FIFO of the QSPI
streamer module.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

unsigned char spi_read_esb(void *this_spi_streamer, unsigned int addr,
unsigned int length, unsigned char addr4B)

Parameter | Description
this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of SPI flash to read from.
length | The length of data in byte that is read from the SPI device.

The value of mode to select.

addr4B | 0: 3-byte address mode
1: 4-byte address mode

Returns | Description

unsigned char 0: Su.cceeded in reading th? specified data from the.SPI device.

1: Failed to read the specified data from the SPI device.

Description

This function is used to read the specified length of data from the SPI device and feed to the ESB module for processing. For
details on general data read, refer to spi_read().

spi_erase_4k

unsigned char spi_erase_4k(struct spi_streamer_instance *this_spi,
unsigned int addr, unsigned char addr4B)

Parameter | Description
this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of the SPI flash to erase.

The value of mode to select.

addrdB | 0O: 3-byte address mode
1: 4-byte address mode

Returns | Description

unsigned char 0: Scheeded in erasing the 4K data.

1: Failed to erase the 4K data.

Description

This function is used to erase a 4K memory of the SPI device from the specified address.

unsigned char gspi_quad_read(void *this_spi,
unsigned int addr, unsigned int length,
unsigned char addr4B)

Parameter | Description
this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of the SPI flash to read from.
length | The length of data for the current read.

The value of mode to select.

addrdB | 0: 3-byte address mode
1: 4-byte address mode

Returns | Description

unsigned char 0: Su-cceeded in reading the data from flash.

1: Failed to read the data.

Description

This function is used read the specified length of data from the flash in quad mode.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

gspi_quad_write

unsigned char spi_quad_write (struct spi_streamer_instance *this_spi,
unsigned int addr, unsigned int length,
unsigned char *buff, unsigned char addr4B)

Parameter | Description
this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of the SPI flash to write to.

length | The length of data for the current write.
buff | The pointer to the data buff that stores the data read from the SPI device.
The value of mode to select.
addr4B | 0: 3-byte address mode
1: 4-byte address mode
Returns | Description

unsigned char

0: Succeeded in writing the data to flash.
1: Failed to write the data to flash.

Description

This function is used to write the specified length of data to the flash in quad mode.

gspi_quad_read_crypto

unsigned char gspi_quad_read_crypto (void *this_spi_streamer, unsigned int addr,

unsigned int length, unsigned char addr4B);

Parameter | Description
this_spi | The pointer to the instance of current QSPI streamer device.
addr | The start address of the SPI flash to read from.
length | The length of data for the current write.

The value of mode to select.

addr4B | 0: 3-byte address mode
1: 4-byte address mode

Returns | Description

unsigned char

0: Succeeded in reading the data from flash.
1: Failed to read the data from flash.

Description

This function is used to read the data from flash and feed into the secure enclave.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.3. Lattice Sentry SMBus Filter

smbus_filter_init

unsigned char smbus_filter_init (struct smbus_filter_instance *this_smbus_filter,
unsigned int base_addr);

Parameter | Description
SMBus filter | The pointer to the instance of the current SMBus filter.

Base address of the SMBus Filter module. Propel SDK automatically parses the address map

base_addr
- of the SoC system and pass the information to software.

Returns | Description
0: Succeeded in initializing the SMBus filter.
1: Failed to initialize the SMBus filter.

unsigned char

Description

This function is used to initialize the SMBus filter module. This function is supposed to be called when the platform is being
initialized. This function should be called before calling any SMBus filter related functions.

smbus_filter_set_whitelist
void smbus_filter_set_whitelist(struct smbus_filter_manifest *sm_filter_manifest,
struct smbus_filter_instance *this_smbus_filter, unsigned char list_id)

Parameter | Description

sm_filter_manifest | The pointer to the smbus configuration data in the manifest.

this_smbus_filter | The pointer to the instance of the current SMBus filter.
list_id | The list ID to be configured for the SMBus filter.
Returns | Description

0: Succeeded in configuring the SMBus filter.

unsigned char
& 1: Failed to configure the SMBus filter.

Description
This function is used to configure the SMBus filter device by setting the number of entry and the entry data.

smbus_filter_event_get
unsigned char smbus_filter_event_get(struct smbus_filter_instance *this_filter,
unsigned char *addr_status, unsigned int *cmd_status);

Parameter | Description
this_filter | The pointer to the instance of the current SMBus filter.

addr_status | The pointer to the buffer to store the detected slave address.

cmd_status | The pointer to the buffer to store the detected command.

Returns | Description

0: Succeeded in getting the detected SMBus filter events.

unsigned char
& 1: Failed to get the detected SMBus filter events.

Description

This function is used to get the slave address and SMBus command of the detected event.

void smbus_filter_isr(void *ctx)

Parameter | Description

ctx | The pointer to the context of the SMBus filter device.

Returns | Description

void | —

Description

This function is used to process SMBus filter interrupt. The function can be registered via calling pic_isr_register ().

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.4. Lattice Sentry Secure Enclave

4.4.1. Crypto256 Interface

unsigned char esb_init(struct esb_instance *this_esb,
unsigned int base_addr);

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

Base address of the ESB module. Propel SDK automatically parses the address map of the

base_addr . ;
- SoC system and passes the information to the software.

Returns | Description

0: Succeeded in initializing the ESB module.

nsigned char
unsig 1: Failed to initialize the ESB module.

Description

This function is supposed to be called when the platform is initialized. This function should be called before calling any ESB
related functions.

esb_mux_por_sel

unsigned char esb_mux_port_sel(struct esb_instance *this_esb,
unsigned int sel_port)

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.
sel_port | Select the ESB mux to high speed port (HSP) or WISHBONE bus port.
Returns | Description

0: Succeeded in selecting the specified port for ESB module.

nsigned char
unsig 1: Failed to select the specified port for ESB module.

Description

This function is used to select the ESB mux to the specified data port. There are two data ports for the ESB module: one is the
HSP high-speed port, the other is the WISHBONE bus port.

esb_switch_idle
unsigned char esb_switch_idle(struct esb_instance *this_esb)

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

Returns | Description

0: Succeeded in switching the ESB module to idle state.

unsigned char
& 1: Failed to switch the ESB module to idle state.

Description

This function is used to switch the ESB module into idle state. The ESB module only can start new operation in idle state.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

esb_trng32bits_get

unsigned char esb_trng32bits_get(struct esb_instance *this_esb,
unsigned int *trn_value)

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

The pointer to the data buffer to store the 32-bit long random number generated by the
ESB module.

Returns | Description

trn_value

0: Succeeded in getting the random number.

nsigned char
unsig 1: Failed to get the random number.

Description

This function is used to generate a 32-bit long random number by the ESB module.

esb_nonce_get
unsigned char esb_nonce_get(struct esb_instance *this_esb,
unsigned char p_trn[16])

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

The data buffer to store the 15-byte random number generated by the ESB block and one

p_trn byte checksum.

Returns | Description

0: Succeeded in getting the random number.

unsigned char
& 1: Failed to get the random number.

Description

This function is used to get the random number generated by the ESB module.

esb_trng256bits_get

unsigned char esb_trng256bits_get(struct esb_instance *this_esb,
unsigned char p_trn[32])

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

p_trn | The data array to store the 256-bit random number generated by the ESB module.

Returns | Description

0: Succeeded in getting the random number.

unsigned char
& 1: Failed to get the random number.

Description

This function is used to generate a 256-bit long random number.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

esb_pubkey_derive

unsigned char esb_pubkey_derive(struct esb_instance *this_esb,

EccPoint * p_publicKey,
unsigned char p_privateKey[NUM_ECC_DIGITS])

Parameter | Description
this_esb | The pointer to the instance of the current ESB device.
p_publickey | The pointer to data buffer to store the generated public key.

p_privateKey

The private key input to the ESB module.

Returns

Description

unsigned char

0: Succeeded in deriving the public key.
1: Failed to derive the public key.

Description

This function is used to derive the public key.

esb_ecdh_get

unsigned char esb_ecdh_get(struct esb_instance *this_esb,
unsigned char p_secret[NUM_ECC_DIGITS],
EccPoint * p_publicKey,
unsigned char p_privateKey[NUM_ECC_DIGITS])

Parameter Description

this_esb The pointer to the instance of the current ESB device.
p_secret The data array to store the shared secret generated by ECDH.
p_publicKey The public key to for ECDH.

p_privateKey

The private key for ECDH.

Returns

Description

unsigned char

0: Succeeded in getting the ECDH shared secret.
1: Failed to get the ECDH shared secret.

Description

This function is used to generate the shared secret with ECDH.

esb_aes

unsigned char esb_aes(struct esb_instance *this_esb, unsigned char *key,
unsigned char *bufferin, unsigned char *bufferOut,
unsigned int decrypt)

Parameter | Description
this_esb | The pointer to the instance of the current ESB device.
key | The 128-bit long public key to do the AES encryption or decryption.
bufferin | 16-byte long data to do the AES encryption or decryption.
bufferOut | The 16-byte long result of the AES encryption or decryption for the input data.

The flag to indicate to do encryption or decryption.

decrypt | O: To do encryption.
1: To do decryption.

Returns | Description

unsigned char

0: Succeeded in doing the AES for the input data.
1: Failed to do the AES for the input data.

Description

This function is used to do the AES encryption or decryption for the input data with the specified public key.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

esb_sha256

unsigned char esb_sha256(struct esb_instance *this_esb,
struct sha256_ctx *ctx)

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.
ctx | The pointer to the context to do the SHA256.
Returns | Description

0: Succeeded in generating the digest via SHA-256 hash function.

nsigned char
unsig 1: Failed to generate the digest via SHA-256 hash function.

Description

This function is used to generate a 256-bit long digest for the data specified in the context via the SHA-256 hash function.

esb_esdsa_verify

unsigned char esb_esdsa_verify(struct esb_instance *this_esb,
unsigned int digest([],
unsigned int pub_key[],
unsigned int signature(],
unsigned char *auth_pass)

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.
digest | The digest that feeds to the ESB module to do the ECDSA authentication.
pub_key | The public key that feeds to the ESB module to do the ECDSA authentication.
signature | The signature that feeds to the ESB module to do the ECDSA authentication.

The pointer to the data buffer to hold the authentication result:
auth_pass | 1: Authentication passed.

0: Authentication failed.

Returns | Description

0: Succeeded in doing the ECDSA verification.

1: Failed to do the ECDSA verification.

unsigned char

Description
This function is used to do the ECDSA authentication.

get_nonce

unsigned char get_nonce(struct esb_instance *this_esb,

unsigned char p_trn[16])

Parameter | Description

this_esb | The pointer to the instance of the current ESB device.

The data buffer to store the 15-byte random number generated by the ESB block and one

p_trn byte checksum.

Returns | Description

0: Succeeded in getting the random number.

unsigned char
& 1: Failed to get the random number.

Description

This function is used to get the random number generated by the ESB module.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.4.2. Crypto384 Interface

crypto384_init

unsigned int crypto_init(struct crypto_instance *this_crypto,
unsigned int base_addr)

Parameter | Description
this_crypto | The pointer to the instance of the current crypto384 device.
Base address of the Crypto384 module, the SFB module has a pre-assigned address for each
base_addr . .
module and passed by header file to the software via Propel.
Returns | Description
. 0: Succeeded in initializing the Crypto384 module.
unsigned char . R
1: Failed to initialize the Crypto384 module

Description

This function is supposed to be called when the platform is initialized. This function should be called before calling any
Crypto384 related functions.

crypto_sha384

unsigned int crypto_sha384(struct crypto_instance *this_crypto,
struct sha384_ctx* ctx,
unsigned char mode)

Parameter | Description
this_ crypto | The pointer to the instance of the current Crypto384 device.
ctx | The pointer to the context to do the SHA384.
mode | The SHA384 mode to do the general SHA384 or CDI HAMC SHA384.
Returns | Description

unsigned char

0: Succeeded in generating the digest via SHA-384 hash function.
1: Failed to generate the digest via SHA-384 hash function.

Description

This function is used to generate a 384-bit long digest for the data specified in the context via the SHA-384 hash function.

crypto_firmware_sha384

unsigned int crypto_sha384(struct crypto_instance *this_crypto,
struct sha384_ctx* ctx)

Parameter | Description
this_ crypto | The pointer to the instance of the current Crypto384 device.
ctx | The pointer to the context to do the SHA384.
Returns | Description

unsigned char

0: Succeeded in generating the CDI HMAC SHA-384 digest for firmware image.
1: Failed to generate the CDI HMAC SHA-384 digest for firmware image.

Description

SHA-384 hash function.

This function is used to generate a 384-bit long digest for the firmware image specified in the context via the CDI HMAC

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

crypto_hmac_sha384

unsigned int crypto_hmac_sha384(struct crypto_instance *this_crypto,

unsigned char *hmac_key,
struct sha384_ctx* ctx)

Parameter | Description
this_ crypto | The pointer to the instance of the current Crypto384 device.
hmac_key | The pointer to buffer holding the HMAC key.
ctx | The pointer to the context to do the SHA384.
Returns | Description

unsigned char

0: Succeeded in generating the MAC code via SHA-384 hash function.
1: Failed to generate the MAC code via SHA-384 hash function.

Description

the HMAC key provided.

This function is used to generate a 384-bit MAC code for the data specified in the context via the SHA-384 hash function and

crypto_keypair_derive

unsigned char crypto_keypair_derive(struct crypto_instance *this_crypto,

struct ecc384_point * p_publicKey,
unsigned char p_privateKey[NUM_ECC_DIGITS_384])

Parameter | Description
this_ crypto | The pointer to the instance of the current Crypto384 device.
p_publicKkey | The pointer to the structure to store the public key generated.

p_privateKey

The pointer to the array to store the private key generated.

Returns

Description

unsigned char

0: Succeeded in generating the ECC384 key pair.
1: Failed to generate the ECC384 key pair.

Description

This function is used to generate a key pair of ECC384.

crypto_pubkey_derive

unsigned char crypto_pubkey_derive(struct crypto_instance *this_crypto,

struct ecc384_point * p_publicKey,
unsigned char p_privateKey[NUM_ECC_DIGITS_384]);

Parameter | Description
this_crypto | The pointer to the instance of the current Crypto384 device.
p_publicKey | The pointer to the structure to store the public key generated.

p_privateKey

The pointer to the array storing the private key.

Returns

Description

unsigned char

0: Succeeded in generating the ECC384 public key.
1: Failed to generate the ECC384 public key.

Description

This function is used to generate an ECC384 public key from the provided private key.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

crypto_ecdh_get

unsigned char crypto_ecdh_get(struct crypto_instance *this_crypto,
unsigned char p_secretfNUM_ECC_DIGITS_384],
struct ecc384_point * p_publicKey,
unsigned char p_privateKey[NUM_ECC_DIGITS_384]);

Parameter | Description
this_crypto | The pointer to the instance of the current Crypto384 device.
p_secret | The pointer to the array to store the shared secret key generated.
p_publicKkey | The pointer to the structure of the public key caller provides.

p_privateKey

The pointer to the array of the private key caller provides.

Returns

Description

unsigned char

0: Succeeded in getting the shared secret key via ECDH.
1: Failed to get the shared secret key via ECDH.

Description

This function is used to generate a shared secret key via ECDH based on provided ECC384 public key and private key.

crypto3sd ecdsasign

unsigned char crypto_ecdsa_sign(struct crypto_instance *this_crypto,

unsigned int digest([],
unsigned int private_key([],
unsigned int nonce[],
unsigned int signature[]);

Parameter | Description
this_crypto | The pointer to the instance of the current Crypto384 device.
digest | The pointer to the array storing the digest.
private_key | The pointer to the array storing the private key.
nonce | The pointer to the array storing the random number.
signature | The pointer to the array used to store the signature generated.
Returns | Description

unsigned char

0: Succeeded in generating the signature via ECDSA.
1: Failed to generate the signature via ECDSA.

Description

This function is used to generate the ECDSA signature for the input digest and private key.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

crypto_ecdsa_verify

unsigned char crypto_ecdsa_verify(struct crypto_instance *this_crypto,

unsigned int digest([],
unsigned int pub_key[],
unsigned int signature[],
unsigned char *auth_pass)

Parameter | Description
this_crypto | The pointer to the instance of the current Crypto384 device.
digest | The pointer to the array storing the digest.
pub_key | The pointer to the array storing the public key.
signature | The pointer to the array storing the signature.
auth_pass | The pointer to the buffer to store the ECDSA verification result.
Returns | Description

unsigned char

0: Succeeded in doing the ECDSA verification.
1: Failed to do the ECDSA verification.

Description

This function is used to do the ECDSA verification for the input digest, signature and public key.

crypto_ecies_encryptex

unsigned char crypto_ecies_encryptex(struct crypto_instance *this_crypto,

unsigned char p_secretfNUM_ECC_DIGITS_384],
unsigned char *plain_text,

unsigned char length,

unsigned char *auth_tag,

unsigned char *cipher_text)

Parameter | Description
this_crypto | The pointer to the instance of the current Crypto384 device.
p_secret | The pointer to the array storing the shared secret key.
plain_text | The pointer to buffer storing the plain text that needs to be encrypted.
length | The length of the plan text in byte.
auth_tag | The pointer to the buffer to store the authentication tag.
cipher_text | The pointer to the buffer to store the encrypted text.
Returns | Description

unsigned char

0: Succeeded in doing the ECIES encryption.
1: Failed to do the ECIES encryption.

Description

This function is used to do the ECIES encryption for the plain text.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

crypto_ecies_decryptex

unsigned char crypto_ecies_decryptex(struct crypto_instance *this_crypto,

= LATTICE

unsigned char p_secretfNUM_ECC_DIGITS_384],
unsigned char *auth_tag,

unsigned char *cipher_text,

unsigned char length,

unsigned char cipher_status,

unsigned char *plain_data)

Parameter | Description
this_crypto | The pointer to the instance of the current Crypto384 device.
p_secret | The pointer to the array storing the shared secret key.
auth_tag | The pointer to the buffer storing the authentication tag.
cipher_text | The pointer to buffer storing the cipher text that needs to be decrypted.
length | The length of the plan text in byte.

cipher_status

The pointer to the buffer to store the cipher status.

plain_data

The pointer to the buffer to store the plain text decrypted.

Returns

Description

unsigned char

0: Succeeded in doing the ECIES decryption.
1: Failed to do the ECIES decryption.

Description

This function is used to do the ECIES decryption for the input cipher text and authentication tag.

crypto_ecies_decryptex

unsigned char crypto_jtag_cntl(struct crypto_instance *this_crypto,
unsigned int ctrl);

Parameter | Description
this_crypto | The pointer to the instance of the current Crypto384 device.
p_secret | The pointer to the array storing the shared secret key.
auth_tag | The pointer to the buffer storing the authentication tag.
cipher_text | The pointer to buffer storing the cipher text that needs to be decrypted.
length | The length of the plan text in byte.

cipher_status

The pointer to the buffer to store the cipher status.

plain_data

The pointer to the buffer to store the plain text decrypted.

Returns

Description

unsigned char

0: Succeeded in doing the ECIES decryption.
1: Failed to do the ECIES decryption.

Description

This function is used to do the ECIES decryption for the input cipher text and authentication tag.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

4.5. Lattice Sentry PLD Interface

unsigned char cstm_pld_init(struct cstm_pld_instance *this_cstm_pld,
unsigned int base_addr)

Parameter | Description

this_cstm_pld | The pointer to the current customer PLD instance.

The base address of the customer PLD module. Propel SDK automatically parses the address

base_addr . .
- map of the SoC system and passes the information to software.

Returns | Description

0: Succeeded in initializing the customer PLD module.

unsigned char
& 1: Failed to initialize the customer PLD module.

Description

This function is used to initialize the customer PLD module.

cstm_pld_int_set
unsigned char cstm_pld_int_set(struct cstm_pld_instance *this_cstm_pld,
unsigned int ints)

Parameter | Description

this_cstm_pld | The pointer to the current customer PLD instance.

ints | The interrupts bit set to notify the PLD logic.

Returns | Description

0: Succeeded in setting the interrupt bits.

unsigned char
& 1: Failed to set the interrupt bits.

Description

This function is used to set the specified interrupts bit to notify the customer PLD logic.

cstm_pld_int_status_get

unsigned char cstm_pld_int_status_get(struct cstm_pld_instance
*this_cstm_pld, unsigned int *ints)

Parameter | Description

this_cstm_pld | The pointer to the current customer PLD instance.

ints | The pointer to data buffer to hold the interrupt status.

Returns | Description

. 0: Succeeded in getting the interrupt status.
unsigned char . .
1: Failed to get the interrupt status.

Description

This function is used to get the interrupt status of customer PLD module.

cstm_pld_msg_receive

unsigned char cstm_pld_msg_receive(struct cstm_pld_instance *this_cstm_pld,
unsigned char *msg)

Parameter | Description

this_cstm_pld | The pointer to the current customer PLD instance.

msg | The pointer to buffer to hold the message that is received from the customer PLD logic.

Returns | Description

0: Succeeded in receiving the message.

unsigned char . .
1: Failed to receive the message.

Description

This function is used to receive the message from the customer PLD logic.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

cstm_pld_msg_send

unsigned char cstm_pld_msg_send(struct cstm_pld_instance *this_cstm_pld,

unsigned char *msg)

Parameter | Description
this_cstm_pld | The pointer to the current customer PLD instance.
msg | The pointer to the message that is to be sent to the customer PLD logic.
Returns | Description

unsigned char

0: Succeeded in sending the message to the customer PLD logic.
1: Failed to send the message to the customer PLD logic.

Description

This function is used to send the message to the customer PLD logic.

void cstm_pld_isr(void *ctx)

Parameter | Description
ctx | The pointer to context that is passed to the interrupt service routine.
Returns | Description
void | —

Description

pic_isr_register ().

This function is called when there is interrupts from the customer PLD module. The function can be registered via calling

4.6. UFM Access Block (UAB)

unsigned char uab_init(struct uab_instance *this_uab,
unsigned int base_addr)

Parameter | Description
this_uab | The pointer to the current UAB instance.
base addr The base address of the UAB module. Propel SDK automatically parses the address map of
- the SoC system and passes the information to software.
Returns | Description
. 0: Succeeded in initializing the UAB module.
unsigned char . S
1: Failed to initialize the UAB module.

Description

This function is used to initialize the UAB module.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

unsigned char uab_done_set(struct uab_instance *this_uab,
uint32_t cfg, uint32_t auth)

Parameter | Description

this_uab | The pointer to the current UAB instance.

Specify the configuration sector.

cfg | 0: CFGO
1: CFG1
Specify the DONE bit or AUTH DONE bit to be set.
auth | 0: DONE
1: AUTH Done

Returns | Description
0: Succeeded in setting the DONE bit.
1: Failed to set the DONE bit.

unsigned char

Description

This function is used to set the DONE or AUTH DONE bit for the specified configuration sector. After in-system-program the
configuration sector, the DONE bit or AUTH Done bit needs be set, otherwise Config Engine cannot boot up the bit-stream
successfully.

uab_auth_eanble_write

unsigned char uab_auth_enable_write(struct uab_instance *this_uab,
uint32_t enable)

Parameter | Description

this_uab | The pointer to the current UAB instance.

The value to set the authentication enable bit
enable | 0: HMAC_SHA
1: ECDSA

Returns | Description

0: Succeeded in setting the authentication enable bit.

unsigned char
& 1: Failed to set the authentication enable bit.

Description

This function is used to set the authentication enable bit. Once updating the public key, the authentication enable bit will also
be erased and need to be set by using this function.

uab_usercode_read

unsigned char uab_usercode_read(struct uab_instance *this_uab,
unsigned char usercode[])

Parameter | Description

this_uab | The pointer to the current UAB instance.

usercode | The data buffer to store the user code read back.

Returns | Description

0: Succeeded in reading back the user code.

unsigned char
& 1: Failed to read back the user code.

Description

This function is used to read back the user code from the UAB module.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

uab_pubkey_read

unsigned char uab_pubkey_read(struct uab_instance *this_uab,
unsigned char pubkey[64])

Parameter | Description

this_uab | The pointer to the current UAB instance.

pubkey[] | The data buffer to store the public key read back from UAB module.

Returns | Description

0: Succeeded in reading back the public key.

nsigned char
unsig 1: Failed to read back the public key.

Description

This function is used to read the public key from the UAB module.

uab_pubkey_write
unsigned char uab_pubkey_write(struct uab_instance *this_uab,
unsigned char pubkey[64])

Parameter | Description

this_uab | The pointer to the current UAB instance.

pubkey[] | Data buffer storing the public key to be written to UAB module.

Returns | Description

0: Succeeded in writing the public key.

nsigned char
unsig 1: Failed to write the public key.

Description

This function is used to write the public key into the UAB module.

uab_usec_read

unsigned char uab_usec_read(struct uab_instance *this_uab,
unsigned short *usec)

Parameter | Description

this_uab | The pointer to the current UAB instance.

usec | Pointer to the buffer to store the USEC data read back.

Returns | Description

0: Succeeded in reading back the USEC data.

igned ch
unsigned char 1: Failed to read back the USEC data.

Description

This function is used to read back the USEC data from the UAB module.

uab_usec_write
unsigned char uab_usec_write(struct uab_instance *this_uab,
unsigned short usec)

Parameter | Description

this_uab | The pointer to the current UAB instance.

usec | Data buffer storing the USEC to be written to UAB module.

Returns | Description

0: Succeeded in writing the USEC.

igned ch
UNSIgNedchar 1 . tailed to write the USEC.

Description

This function is used to write the USEC data into the UAB module.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

uab_csec_read

unsigned char uab_csec_read(struct uab_instance *this_uab,
unsigned int *csec)

Parameter | Description

this_uab | The pointer to the current UAB instance.
csec | Data buffer storing the CSEC data read back from UAB module.
Returns | Description
0: Succeeded in reading back the CSEC data.
1: Failed to read back the CSEC data.

unsigned char

Description
This function is used to read back the CSEC data from the UAB module.

uab_csec_write

unsigned char uab_csec_write(struct uab_instance *this_uab,
unsigned int csec)

Parameter | Description

this_uab | The pointer to the current UAB instance.
csec | Data buffer storing the CSEC to be written to UAB module.
Returns | Description

0: Succeeded in writing the CSEC data.
1: Failed to write the CSEC data.

unsigned char

Description
This function is used to write the CSEC data into the UAB module.

uab_feabit_read

unsigned char uab_feabit_read(struct uab_instance *this_uab,
unsigned int *feabit)

Parameter | Description

this_uab | The pointer to the current UAB instance.

feabit | Data buffer storing the feature bits read back from UAB module.

Returns | Description

0: Succeeded in reading back the feature bits.

igned ch
unsigned char 1: Failed to read back the feature bits.

Description

This function is used to read back the feature bits from the UAB module.

uab_feabit_write

unsigned char uab_feabit_write(struct uab_instance *this_uab,
unsigned int feabit)

Parameter | Description

this_uab | The pointer to the current UAB instance.

feabit | Feature bits value to be written to UAB module.

Returns | Description

0: Succeeded in writing the feature bits.

unsigned char
& 1: Failed to write the feature bits.

Description

This function is used to write the feature bits into the UAB module.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

unsigned char uab_cr0_read(struct uab_instance *this_uab,
unsigned int *cr0_value)

Parameter | Description

this_uab | The pointer to the current UAB instance.

crO_value | Data buffer storing the control register 0 read back from UAB module.

Returns | Description

0: Succeeded in reading back the control register 0.

nsigned char
unsig 1: Failed to read back the control register 0.

Description

This function is used to read back the control register 0 from the UAB module.

unsigned char uab_crO_write(struct uab_instance *this_uab,
unsigned int crO_value)

Parameter | Description

this_uab | The pointer to the current UAB instance.

cr0_value | The value to be written to the Control Register 0.

Returns | Description

0: Succeeded in writing the Control Register 0.

unsigned char
& 1: Failed to write the Control Register 0.

Description

This function is used to write the Control Register 0 into the UAB module.

unsigned char uab_udss_write(struct uab_instance *this_uab,
unsigned int ufm, unsigned char udss_val)

Parameter | Description

this_uab | The pointer to the current UAB instance.

ufm | Specify the user flash sector.

udss_val | The value to be written to the UDSS section for each sector.

Returns | Description

0: Succeeded in writing the UDSS value.

unsigned char
& 1: Failed to write the UDSS value.

Description

This function is used to write the UDSS value for the specified user flash sector.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5. PFR Component APl Reference

The component layer of the Lattice PFR solution provides basic function for protection, detection, and recovery.

The following section provides the APl reference on how to manage the manifest, MCTP protocol, high-level security
and log. Based on the provided component layer APIs, you can develop your own PFR software easily.

5.1. Manifest Management

load_manifest_flash

unsigned char load_manifest_flash(struct st_manifest_t *manifest)

Parameter | Description

manifest | The pointer to the manifest of the system.

Returns | Description

unsigned char | Returns 0 if no error.

Description

This function is used to load the manifest into internal flash.

unsigned char mfst_oob_read(struct st_manifest_t *manifest,
volatile struct st_i2cCtx_t *this_i2c_efb,
struct esb_instance *this_esb)

Parameter | Description

manifest | The pointer to the manifest of the system.

this_i2c_efb | The pointer to the instance of the current I12C device used for the OOB channel.

this_esb | The pointer to the instance of the current ESB device.

Returns | Description

unsigned char | Returns 0 if no error.

Description
This function is used to read manifest from UFM and send the data to BMC over the OOB channel.

mfst_ufm_read

unsigned char mfst_ufm_read(struct st_manifest_t *manifest,
struct spi_mon_instance *SPImonitor)

Parameter | Description

manifest | The pointer to the manifest of the system.

SPImonitor | The pointer to the instance of the current SPI monitor device.

Returns | Description

unsigned char | Returns O if no error.

Description
This function is used to read manifest from UFM and then parse the information into internal data structure.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

mfst_ufm_write

unsigned char mfst_ufm_write(struct st_manifest_t *manifest,
volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter | Description
manifest | The pointer to the manifest of the system.
this_i2c_efb | The pointer to the instance of the current I12C device used for the OOB channel.
Returns | Description

unsigned char

Returns O if no error.

Description

This function is used to update manifest in UFM.

mfst_image_update

unsigned char mfst_image_update(struct st_manifest_t *manifest,

volatile struct st_i2cCtx_t *this_i2c_efb);

Parameter | Description
manifest | The pointer to the manifest of the system.
this_i2c_efb | The pointer to the instance of the current 12C device used for the OOB channel.
Returns | Description

unsigned char

Returns O if no error.

Description

This function is used to update the image information in manifest.

mfst_sign_update

unsigned char mfst_sign_update(struct st_manifest_t *manifest,
volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter | Description
manifest | The pointer to the manifest of the system.
this_i2c_efb | The pointer to the instance of the current I2C device used for the OOB channel.
Returns | Description

unsigned char

Returns O if no error.

Description

This function is used to update the signature information in manifest.

mfst_ver_update

unsigned char mfst_ver_update(struct st_manifest_t *manifest,
volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter | Description
manifest | The pointer to the manifest of the system.
this_i2c_efb | The pointer to the instance of the current 12C device used for the OOB channel.
Returns | Description

unsigned char

Returns O if no error.

Description

This function is used to update the version information in manifest.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

mfst_ver_thrhd_update

unsigned char mfst_ver_thrhd_update(struct st_manifest_t *manifest,

volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter | Description
manifest | The pointer to the manifest of the system.
this_i2c_efb | The pointer to the instance of the current I12C device used for the OOB channel.
Returns | Description

unsigned char

Returns O if no error.

Description

This function is used to update version threshold in manifest.

mfst_pkey_update

unsigned char mfst_pkey_update(struct st_manifest_t *manifest,

volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter | Description
manifest | The pointer to the manifest of the system.
this_i2c_efb | The pointer to the instance of the current 12C device used for the OOB channel.
Returns | Description

unsigned char

Returns O if no error.

Description

This function is used to update the public key in manifest.

unsigned char mfst_wsa_update(

mfst_wsa_update

struct st_manifest_t *manifest,

volatile struct st_i2cCtx_t *this_i2c_efb,
struct spi_mon_instance *SPImonitor)

Parameter | Description
manifest | The pointer to the manifest of the system.
this_i2c_efb | The pointer to the instance of the current I2C device used for the OOB channel.
SPImonitor | The pointer to the instance of the current SPI monitor device.
Returns | Description

unsigned char

Returns O if no error.

Description

This function is used to update the white space address in manifest.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.2. MCTP Processing

void mctp_init(struct mctp *mctp, mctp_rx_fn fn, void *data)

Parameter | Description

mctp | The pointer to the current mctp component.

fn | The function pointer to the callback function which handles the vendor specific commands.

date | The pointer to the argument of the callback function.

Returns | Description

void | —

Description
This function is used to Initialize MCTP structure. This function is supposed to be called when the platform is being initialized.

mctp_register_bus
void mctp_register_bus(struct mctp *mctp, struct mctp_binding *binding, unsigned char eid)

Parameter | Description

mctp | The pointer to the current mctp component.

binding | The pointer to the bus instance that the MCTP protocol is running on.
eid | The Endpoint ID values for the MCTP local bus.

Returns | Description

void | —

Description
This function is used to register a binding bus that the MCTP protocol is running on. This function is supposed to be called when
the platform is being initialized.

mctp_message_rx

int mctp_message_rx(struct mctp_binding *binding, struct mctp_pktbuf *pkt)

Parameter | Description

binding | The pointer to the instance of the binding bus.
pkt | The pointer to the MCTP packet.
Returns | Description

1: Succeeded in parsing the MCTP packet.
0: Failed to parse the MCTP packet.

int

Description

This function is used to parse the received MCTP packets.

mctp_message_tx
int mctp_message_tx(struct mctp *mctp, unsigned char_t eid, void *msg, unsigned int msg_len)

Parameter | Description

mctp | The pointer to the current MCTP component.
eid | The Endpoint ID values for the target MCTP bus.
msg | The pointer to the message that is to be sent to the binding bus.

msg_len | The number of message in bytes that is to be sent to the binding bus.

Returns | Description

int | Returns 0 if no error.

Description

This function is used to send the specified length of message in the buffer to a peer device.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

mctp_pktbuf_init
void mctp_pktbuf_init(struct mctp_binding *binding, struct mctp_pktbuf *buf, unsigned int len)

Parameter | Description
binding | The pointer to the instance of the binding bus.
buf | The pointer to the MCTP packet.

len | The length of the data in the packet buffer.
Returns

Description

void | —

Description

This function is used to Initialize the mctp packet with the specified length.

mctp_pktbuf_hdr
struct mctp_hdr *mctp_pktbuf_hdr(struct mctp_pktbuf *pkt)

Parameter | Description
pkt | The pointer to the MCTP packet.
Returns | Description
struct mctp_hdr * | Return the address of the packet header.

Description

This function is used to get the address of the packet header.

mctp_pktbuf_size

unsigned char mctp_pktbuf_size(struct mctp_pktbuf *pkt)

Parameter | Description
pkt | The pointer to the mctp packet.
Returns | Description

unsigned char | Returns the value of the size of packet buff.

Description

This function is used to get the size of packet buff.

5.3. Security Manager

Select_flash

int select_flash(struct spi_mon_instance *SPImonitor,
unsigned int flash_id, unsigned int flash_select,

unsigned int master_select);

Parameter | Description
SPImonitor | The pointer to the QSPI monitor device.
flash_id | The value of the flash ID you want to select.
flash_select | The primary of secondary flash you want to select.

master_select

The SPI master you want to select.
0: QSPI Monitor.
1: Internal QSPI master.

Returns

Description

int

1: Succeeded in selecting the SPI flash.
—1: Failed to select the SPI flash.

Description

This function is used to select the SPI flash you want to access.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

authenticate_image

int authenticate_image(struct st_manifest_t *manifest,
struct spi_mon_instance *SPImonitor,
struct spi_streamer_instance
*gspi_master_streamer_inst,
struct esb_instance *esb_inst,
unsigned int image_id, unsigned int flash_sel);

Parameter
manifest | The pointer to the current manifest.
SPImonitor | The pointer to the QSPI monitor device.

qspi_master_streamer_inst

The pointer to the QSPI streamer device.

esb_inst | The pointer to the ESB device.
image_id | The image ID that used to get the image related information from the manifest.
flash_sel | The primary or the secondary SPI flash where you wants to do the authentication.
Returns
int 1: Succeeded in authenticating the specified image.

—1: Failed to authenticate the specified image.

Description

This function is used to authenticate the specified image stored on the SPI flash.

recover_image

int recover_image(struct st_manifest_t *manifest,
struct spi_mon_instance *SPImonitor,
struct spi_streamer_instance *qspi_master_streamer_inst,
unsigned int image_id, unsigned int buflash2priflash);

Parameter
manifest The pointer to the current manifest.
SPImonitor The pointer to the QSPI monitor device.

gspi_master_streamer_inst

The pointer to the QSPI streamer device.

image_id The image ID that used to get the image related information from the manifest.
buflash2priflash The flash to indicate the direction of the recovery. 0 means recovery from primary to
Returns
int 1: Succeeded in recovering the specified image.

—1: Failed to recover the specified image.
Description

This function is used to recover the image from the specified source to the specified destination.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

void cfg_isp(struct st_pfr_instance *pfr_inst,
unsigned int fromAddr,
unsigned char is_signed)

Parameter Description
pfr_inst The pointer to the current PFR instance.
fromAddr The flash address where firmware can load the Jedec file and download into the CFG.

1: The Jedec file is signed.

Is_signed 0: The Jedec file is not signed.
Returns Description

void —

Description

This function is used to load the Jedec file from the specified flash address and download the Jedec file into the CFG space and
set the done bit and authentication done bit accordingly.

fw_authdone_set

int fw_authdone_set(struct st_pfr_instance *pfr_inst,
unsigned int start_address)

Parameter Description

pfr_inst The pointer to the current PFR instance

start_address The flash address where the new firmware image is located

Returns Description

int 0: Succeeded in setting the done-bit for the specified firmware image.
—1: Failed to set the done-bit for the firmware image.

Description

This function is used to set the done-bit for the new firmware image. Otherwise, the system cannot boot up successfully with the
new firmware image.

ufm3_update

unsigned char ufm3_update(struct uab_instance *uab_inst,
unsigned int start_address)

Parameter Description

pfr_inst The pointer to the current PFR instance.

start_address The flash address where the new ufm3 data is located.
Returns Description

0: Succeeded in updating the data for ufm3.

unsigned int
& 1: Failed to update the ufm3 data.

Description

This function is used to update the ufm3 data into ufm2. And Mach-NX device authenticates the data and makes update into
UFM3 when booting up.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

5.4. Log Management

log_write

int log_write(struct st_manifest_t *manifest, unsigned char *data)

Parameter | Description
manifest | The pointer to the current manifest of the system.
data | The pointer to the data buffer that stores the log.
Returns | Description
int 0: Succeeded in writing the log.
—1: Failed to write the log.

Description

This function is used to write one slot of log data into the UFM.

log_read

unsigned int log_read(struct st_manifest_t *manifest,
volatile struct st_i2cCtx_t *this_i2c_efb,
unsigned char *pException,
struct esb_instance *this_esb);

Parameter | Description
manifest | The pointer to the manifest of the current system.
this_i2c_efb | The pointer to the I2C slave device that is used as the communication channel.
pException | The pointer to the flag for exception.
this_esb | The pointer to the ESB device.
Returns | Description
unsigned int | Return the available address for the next log.

Description
This function is used to read the log from the UFM and send it to BMC via the OOB channel.

log_ack
int log_ack(struct st_manifest_t *manifest, unsigned int page);

Parameter | Description
manifest | The pointer to the current manifest of the system.
page | The value of log entry.
Returns | Description
int 0: Succeeded in writing the log.
—1: Failed to write the log.

Description

This function is used to acknowledge that the previous log has been received.

log_clear
int log_clear(struct st_manifest_t *manifest);

Parameter | Description
manifest | The pointer to the current manifest of the system.
Returns | Description
int | O0: Succeeded in clearing the log. No other return value.

Description

This function is used to write one slot of log data into the UFM.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

Lattice Propel 1.1 Root-of-Trust Reference Design

User Guide

6. PFR System Design (from Lattice Propel)

Lattice Propel is a platform for embedded system design, development, and validation. Lattice Propel provides a PFR
Solution Template to simplify customer PFR solution design.

6.1. PFR Solution Template

The PFR Solution Template provides a baseline PFR implementation with all required features enabled. You can follow
Lattice Propel tool flow to create or modify a standard PFR design.

The diagram below (Figure 6.1) shows the general design flow based on Propel tool sets. Choose PFR Template during
the Select Solutions Templates step. After that, follow the Propel user guide to create the entire design step by step.

@pen Lattice Prop@

v

Select Solution Templates

v

Select Processor and Device

v

SoC Project

v

A

Propel Builder

DGE (Formatter)

v

Prepared Files (RTL, LPF, and TCL)
for Lattice Diamond Project

v

Lattice Diamond

v

SoC Bistream

Figure 6.1. Lattice Propel Template Flow

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1

51

http://www.latticesemi.com/legal

= LATTICE

6.2. PFR System Design Customization
You can customize your hardware and software designs on top of the PFR Solution Template to meet your specific
requirements.
When creating a new PFR system design, to build a customized design, you can:
e after creating the SoC project, customize the SoC design in System Builder.
e after creating a project in Lattice Diamond:
e add/edit RTL source files to bring in customer logic;
e edit the LPF file for I/O mapping and constrain settings.
e after the software project is created, edit the source files in Propel SDK.
Further changes can be made to the existing PFR system design which is created through the Propel tool sets. Note

when an SoC design is changed in the System Builder, it is necessary to build the hardware project in Propel SDK to
regenerate the BSP. After that, a new software project needs to be created with the updated BSP.

6.2.1. Customer PLD Customization

As stated in the Customer PLD Interface section, a Customer PLD module is provided to allow you to integrate the
control logic into the PFR solution. In the Lattice PFR Solution Template, a simple customer PLD design is provided
(Figure 6.2) to demonstrate a typical usage as monitoring and controlling customized I/O pads.

Customer PLD PFR Firmware
4 I 4 I

Initial Customer PLD

Interface

User Toggle Switch Input Change Detected

A 4 A
Send Message ‘r‘ Receive Message

A

Receive Message < Send Message

A 4

LED Toggled Toggle Output

- J - J

Figure 6.2. Customer PLD Workflow
You can edit the template project to customize the functionality of customer PLD as well as the firmware accordingly.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

= LATTICE

7. PFR System Validation Guide

7.1. PFR Utilities

A set of utilities in Lattice Propel can let you validate the functionalities for the PFR system. With these utilities, you can
perform system-level validation for your own PFR solutions.

7.1.1. Lattice Sentry Demo GUI Tool

The Lattice Sentry Demo GUI is a tool which can communicate between a PC with Windows platform and the Mach-NX

device through UART to I2C bridge on the Lattice Sentry Demo Board for Mach-NX part. This tool also provides SPI

access to verify the monitoring and protection of the SPI Flash. The Lattice Sentry Demo GUI is integrated in Lattice

Propel platform.

To use Lattice Sentry Demo GUI Tool:

1. Connect mini-USB cable from PC to the mini-USB connector J11 of the Lattice Sentry Demo Board for Mach-NX.

2. From your PC desktop, invoke Lattice Propel. Choose LatticeTools > Lattice Sentry Tools for Mach-NX > Lattice
Sentry Demo GUI to invoke Lattice Sentry Demo Tool. See Figure 7.1.

% workspace - Lattice Propel — O X
File Edit Source Refactor Navigate Search Project Run LatticeTools Window Help
il 52 | &~ & ~iBISIOIRSRIE~ 68~ [Open Design in Propel Builder I M Q iE|d
& Project Explorer & Generate and Open Diamond Proejct = 5|8 0u & s =
Generate and Open Radiant Proejct

There are no projects in your workspace.

To add a project: Lattice Sentry Tools for MachXO3D > There is no active

Lattice Sentry Tools for Mach-NX > Lattice Sentry Demo GUI
Lattice Sentry Manifest Manager
Lattice Sentry FlashAddr GUI

[£1 Create a new Lattice C project

% Create a new Lattice SoC Design Project

9 Create a project...
&1 |mport projects...

2! Problems 2 ¥ Tasks| & Console [T Properties | & Terminal f § =8
0 items

Description - Resource Path Location Type
< >

109M of 336M L)

Figure 7.1. Launch Lattice Sentry Demo GUI Tool

3. The available COM ports are listed in Console Output. Clicking the Scan Ports button can update the available ports.
See Figure 7.2.

4. Two COM ports are associated with the Lattice Sentry Demo Board for Mach-NX. The COM port with smaller
number is for BMC, while the COM port with larger number is for PCH. Select the associated COM port for both
BMC and PCH channel. See Figure 7.2.

www.latticesemi.com/legal

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

= LATTICE

Lattice Sentry Demo GUI for Mach-NX — O X
UART Control
Authenticate Image ~ | | Image ID 1=Pri 2=Sec
0x00 0x01
Command ID:1 < >
12C Address: 0x42
BMC com1 v [T]opf | 0x01 0x00 0x01 OxFD Send Command
PCH coM1 ~ [JoFF |0x010x00 0x01 OxFD Send Command
Scan Ports | | Read Log

Console Output

Address Space Information

port list:

Serial port: COM1
Serial port: COM5
Serial port: COM6

Figure 7.2 COM Port Scan of the Lattice Sentry Demo GUI Tool

5. Clicking the OFF check box for BMC to open the port and establish the connection between GUI and BMC. If the
BMC port can be opened successfully, the OFF check box is changed to ON. See Figure 7.3. All logs are listed in the
Console Output area. For PCH, the operation is similar.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54

FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

::LATTICE Lattice Propel 1.1 Root-of-Trust Reference Design

User Guide
Lattice Sentry Demo GUI for Mach-NX - O X
UART Control
Authenticate Image | | Image ID 1=Pri 2=5ec
0x00 0x01
Command ID:1 < >
[2C Address:
042 | 1 8MC [coms ~ [T on I 0x01 0x00 0x01 0xFD Send Command
PCH comé v [[7]oN |‘ 0x01 0x00 Ox01 OxFD Send Command
Scan Ports | Read Log
Console Output Address Space Information
A

Send version check emd 0xBC 0x03 0x00!
Response data: 31 02 00
version number is 2.0!

Checking 12C connnection!
12C communication established!
Open port COM5 successfully!

Send version check emd 0xBC 0x03 0x00!
Response data: 31 02 00
version number is 2.0!

Open port COM6 successfully!

Clear Read Address Space

Figure 7.3 Enable Lattice Sentry Demo GUI Tool

Click the Clear button to clear the message log in the Console Output window.

In the UART Control section, you can select a command and change the parameters for the corresponding
command. The message for this command is generated automatically.

8. Clicking Send Command can send selected command and receive the response. All logs are shown in the Console
Output window. See Figure 7.4.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1

55

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design

= LATTICE

User Guide
Lattice Sentry Demo GUI for Mach-NX X
JART Control
Authenticate Image | | | Image ID 1=Pri 2=Sec
0x00 0x01
Command ID:1 < >

9.

12C Address:
s 2] BMC (coms v [on | 0x01 0x00 0x01 0xFD

Send Command

PCH 'COM6 v []oN | 0x01 0x00 0x01 OxFD

Send Command

Scan Ports | | Read Log

Console Output

Sending 12C write command: 0x01 0x00 0x01 0xFD
Response data: 30 01 00 FE
Command: 01 Status: 00 Done/Success

Figure 7.4. Send Command of Lattice Sentry Demo GUI Tool

Address Space Information

Clicking Read Log reads one log entry at a time. Logs are available for Authentication, Recovery, and SPI Exceptions.
When the Current and Last Index values are the same, there are no more log entries. See Figure 7.5.

Lattice Sentry Demo GUI for Mach-NX

UART Control

Authenticate Image | | Image ID 1=Pri 2=Sec
0x00 0x01

Command ID:1

12C Address:
e BMC [COM5 v [/]on | 0xO1 0x00 0x01 OxFD

PCH |COM6 ~ | [JoN | 0x01 0x00 0x01 OxFD

‘ Scan Ports ‘ Read Log

Console Output

Open port COM®6 successfully!

Reading log...
esponse data: 31 06 00 00 01 01 01 00 00 00 00 00 Q0 09 ED

Log index:6| Event: Authenticate Img ID: 0 Pri/Sec: 1 Auth Pass/ Vers Pass /
imestamp: 0:0:0 | Last log index: 9

Reading log...
a:3107 000002 010100000000000009EB

Log index:7 | Event: Authenticate _Img ID: 0 Pri/Sec: 2 Auth Pass/ Vers Pass /
limestamp: 0:0:0 | Last log index: 9

(v

Figure 7.5 Logging of Lattice Sentry Demo GUI Tool

Address Space Information

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

56

FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

= LATTICE

10. Clicking Read Address Space retrieves the information of the manifest from UFMO in Mach-NX device. In the
Address Space Information area, the FlashO tab is for the BMC port and the Flash1 tab is for the PCH port. See
Figure 7.6.

% Lattice Sentry Demo GUI for Mach-NX - m} had
UART Control
Authenticate Image | | ImageID 1=Pri 2=5ec
000 001

Command ID:1

12C Address: 0xd2
BMC coms ~ JoN |DxD‘I 0x00 0xD1 OxFD ‘ T —
Scan Ports Read Log PCH |coms ~ ON | 0x01 000 001 O« FD ‘ Send Command
Console Output Address Space Information
FlashD Flash1 = 12C Filter
port list: P
Serial part: COM1 Flash Information:
Serial port: COM3
Serial bort, COME Address Space 0; Enable 0x00300000 - 0x003000FF White
Serial port: COM3 Address Space 1t Enable Cx003001FF - 0x003002FF White
Serial pnrt: coma Address Space 22 Enable 0x0D0307000 - 0x00301FFF Black
) Address Space 3t Enable 000310000 - 0x00317FFF Black
Send version check cmd OxBC 0x03 000! i::'ess zpﬂcegj EHEE:E gggiigggg - ggggigggg g:ﬂct
Response data: 3102 00 ress apace 3 bnable N ac

Address Space & Enable 0x00350000 - 0x0035TFFF White
Address Space 70 Enable (x00360000 - 0x00360700 Black

wversion number is 2.0 |

Checking 12C connnection!

12C communication established!

Image 0:
0 rt COMS fully! g
pen po successiuly Image Location: 0x00000D00
. Image Length: 000200000
1
;:';s;:;:g;t;h;ﬁrgod DBC 003 00! Signature Location: DxDD200000
version numhe‘r 2.0 Backup Image Location: 000000000
o Backup Image Length: 0x00200000
Backup Signature Location: Ox00200000
o} rt COME fully!
penpe successiuly Version Offset: Dx000D000D
Version Threshold: 00000
Clear Read Address Space

Image Infarmation:

Figure 7.6 Read Address Space of Lattice Sentry Demo GUI Tool

For the detail definition of the commands, refer to the Write Commands and Read Commands sections of the Mach-NX
Platform Firmware Resiliency Out-of-Band I2C Command Protocol User Guide (FPGA-UG-02032).

7.2. Key Feature Validation Method

Lattice Propel provides several methods which can be used to validate the PFR functionalities at different levels. When
you design a PFR solution using Lattice Propel, functions from basic register access to system-level can all be validated
in the simulation environment. At board-level validation, key features for PFR system, including authentication,
protection, and recovery are necessary. Lattice Propel provides tool set to validate the basic features on demo board.

7.2.1. Function Simulation
Follow steps below, you can form Functional Simulation at multiple levels:

1. Register access testing for all available registers. Special registers, such as write-only registers, are not covered at
this stage, in order to make sure the correctness of SOC connection, address map, and basic quality of RTLs of SOC
and IP.

2. Functional simulation for all available IP BSP to ensure each standalone IP works as expected.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 57

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design .':LATT’CE

User Guide

3. Build up the system-level simulation environment, which is aligned with maximum real application hardware
environment, and then use firmware directly as stimulus to do the system-level simulation.

For Step 1 above, write and readback scenario are used as the starting point.
For Step 2 above, the functionality of each IP plus BSP is the key focus.

Meanwhile, for Step 1 and Step 2, each transaction on the system bus (AHBLITE and APB buses) is traced from end to
end with address map checking. The content of each transaction is also checked.

Step 3 mainly verifies the functionality of the system-level usage defined in firmware.

An internal UVM-based simulation platform has been developed to support verification of all levels. Each level of
verification can be enabled/customized using a unified configuration interface.

An external user can have a customized simulation environment which can be run using Active-HDL.

Lattice Propel provides a utility, Lattice Sentry Demo GUI Tool, which allows you to operate all PFR 12C commands to
implement and validate the PFR Key functionality.

7.2.2. Authentication

As stated in the Boot Up Protection section, the PFR system authenticates BMC/PCH image at boot-up stage. For
function validation, you can use a command to perform image authentication manually.

The command should be selected with correct arguments in the Lattice PFR Demo Tool.

To force authentication for the Primary image in FlashO, select the command ‘Authenticate Image’ and modify the
value in the right command parameter table (Figure 7.7), then it generates the whole command 0x01 0x00 0x01 OxFD.
Click the Send Command. You can see a Console Output message (Figure 7.7), if it was executed successfully.

7% Lattice Sentry Demo GUI for Mach-MNX -] X
UART Contrel
Authenticate Image Image ID 1=Pri 2=Sec
0x00 0x01
Command ID:1 !

12C Address: D2
BMC [coMs v| FAON [0x01 0x00 0x01 0cFD | [send Command

Scan Ports Read Log PCH [coms v [FoN | 007 000 001 OxFD | Send Command

Console Output Address Space Infermation

[Flashl Flash1 = 12C Filter
Sending 12C write command: Cx01 0x00 0x07 0xFD Flash Inf —
Response data: 30 01 00 FE ash Information:

c d: 01 Status: 00 Done/S
omman atusi U Lone/success Address Space0: Enable 0x00300000 - Dx0D3000FF White

Address Space 1: Enable (x003001FF - 0x003002FF White
Address Space 2@ Enable (00301000 - 0x00301FFF Black
Address Space 3: Enable 0x00310000 - 0x00317FFF Black
Address Space 4 Enable (x00320000 - 0x00330000 Black
Address Space 5 Enable (x00340000 - 0x00340600 Black
Address Space 6 Enable (x00350000 - 0x00357FFF White
Address Space 7t Enable (00360000 - 0x 00380700 Black
Image Information:
Image &
Image Location: 000000000
Image Length: 000200000
Signature Location: 000200000
Backup Image Location: 000000000
Backup Image Length: Ox 00200000
Backup Signature Location: 0x00200000
Version Offset: 000000000
Version Threshold: 0x0000

Clear Read Address Space

Figure 7.7. BMC Image Authentication for Flash 0

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

58 FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

::LATT’CE Lattice Propel 1.1 Root-of-Trust Reference Design

User Guide

Authenticate Image (0x01 0x00 0x01 OxFD) — to authenticate Primary image in FlashO

Authenticate Image (0x01 0x00 0x02 OxFC) — to authenticate Secondary image in FlashO

Authenticate Image (0x01 0x01 OxFC) — to authenticate Primary image in Flash1 Authenticate
Image (0x01 0x01 0x02 OxFB) — to authenticate Secondary image in Flash1

Next, check all of the security logs by clicking Read Log, and the latest log should be “Event: Authenticate ImgID: 0
Pri/Sec: 1 Auth Pass/ Vers Pass /”, which is corresponded to the previous command 0x01 0x00 0x01 OxFD, as shown
in Figure 7.8.

8 Lattice Sentry Demo GUI for Mach-MNX — [} X
UART Control
Authenticate Image | | Image D 1=Pri 2=5ec
0x00 001

Command ID:1

12C Address: Dxd?2
BMC |coms ~| MoN | 0x01 000 CxD1 GxFD | Bavs) o
Scan Ports Read Log PCH coms ~ 1oN | 0x01 0x00 0x01 OxFD | Send Command
Consele Qutput Address Space Information

FlashD Flash1 I2C Filter

Sending 12C write command: 001 0x00 0x01 0xFD Flash Inf P—
Response data: 30 01 00 FE ash Information:
C d: 01 Status: 00 Done/S:
ormman s T Ronepucees Address Space 0: Enable DxD0300000 - 0x003000FF White
Reading log... Address Space 1: Enable Ox003001FF - 0x003002FF White
Response data: 31 08 0001 01010100 00 00 00 00 00 0A E9 padress Space 2 Enab e DO S P Dack
Logindex:d Event Authenticate ImglD:1 Pri/Sec:1 Auth Pass/ VersPass/ Timestamp: 1E55 Jpace s Tnale)) ac
0:00 Last log index: 10 Address Space 4 Enable 0x00320000 - 0x00330000 Black
Address Space 3 Enable 000340000 - 000340600 Black
Reading log... Address Space 6 Enable 0w00330000 - 0x00357FFF White
Response data: 3109 000102 0101000000 000000 0A E7 Address Space 7: Enzble 0x00360000 - 0x00360700 Black
Logindex:d Event: Authenticate ImglD:1 Pri/Sec: 2 Auth Pass/ VersPass/ Timestamp: | Inf —
0:0:0 Lastlog index: 10 mage Information:
Image O
Image Location: 000000000
Reading log...
Response data: 31 0A 00 00 0101 0100 00 00 00 OC 1E 0A BE Image Length: = 000200000
Logindex:10 Event: Authenticate |mgID:0 Pri/Sec:1 Auth Pass/ Vers Pass/ Timestamp: signature Location: . 0x00200000
0:51:42 Last log index: 10 Backup Image Location: 000000000
Backup Image Length: 000200000
Backup Signature Location: 0x00200000
Version Offset: Dx00000000
Version Threshold: Ox 0000
Clear Read Address Space

Figure 7.8. Get Logs for Image Authentications

7.2.3. Protection
Click Read Address Space to get the Address Space information for FlashO and Flash1. All White Spaces are also listed,
as shown in Figure 7.8, which was configured in Manifest file as default.

7.2.3.1. Legal Operation (Operate on White Space)
Read 16 bytes starting from 0x00300000 in Flash0 (White Space), program a value (0x5A) to 0x00300003, and read
back the bytes again.

Flash Page Read (0xF3 0x00 0x30 0x00 0x00) — to read 16 bytes started from 0x00300000 in FlashO. The read back data
is all Oxff, as Figure 7.9 shows.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 59

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design .':LATT’CE

User Guide
% Lattice Sentry Demo GUI for Mach-NX - O X
UART Control
Flash Page Read | | Flash Address
(00300000

Command ID:243

12C Address: 0xd2
BMC |coms ~ [JoN |(»<F30x000x300x000x00 | Send Command

Scan Ports Read Log PCH [cOMs | [AON [0xF3 0c0D 0x30 000 000 | send Command

Censole Output Address Space Information

FlashD Flash1 12C Filter

Sending 5P| read command: 0xF3 Cx00 030 0x00 (00

Response data: 31 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF OF Flash Information:
16 bytes data:
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Address Space 0t Enable (00300000 - Ox00D3000FF White

Address Space 1t Enable (x003001FF - 0x003002FF White
Address Space 22 Enable (00307000 - 0x00301FFF Black
Address Space 3t Enable (00310000 - 0x00317FFF Black
Address Space 4 Enable (00320000 - 0x00330000 Black
Address Space 3t Enable (00340000 - 0500340600 Black
Address Space & Enable (00350000 - Ox00D357FFF White
Address Space i Enable (x00360000 - 000360700 Black

Image Information:

Image 0

Image Location: (000000000
Image Length: 000200000
Signature Location: 0= 00200000
Backup Image Location: 0x 00000000
Backup Image Length: 0x 00200000
Backup Signature Location: (x00200000
Version Offset: 0x 00000000
Version Threshold: 00000

Clear Read Address Space

Figure 7.9. Initial Value of 0x00300000~0x0030000F

Disable SPI Filter (0x16 0x00 0x00 OxE9) — to disable all commands for filtering on BMC SPI port.

Flash Sector Erase (0xFO 0x00 0x30 0x00 0x00 0x01) — to erase the sector started from 0x00300000 in FlashO.

Enable SPI Filter (0x16 0x00 0x01 OxE8) — to enable all commands for filtering on BMC SPI port.

Flash Byte Write (OxF4 0x00 0x30 0x00 0x03 0x5A) — to write a value (Ox5A) to 0x00300003 in FlashO.

Flash Page Read (0xF3 0x00 0x30 0x00 0x00) — to read 16 Bytes started from 0x00300000 in FlashO with above steps.

As Figure 7.10 shows, the address 0x00300003 was programmed with Ox5A successfully, for 0x00300003 is in White
Address List space 0.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

60 FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

::LATT’CE Lattice Propel 1.1 Root-of-Trust Reference Design

User Guide
Py .
i} Lattice Sentry Demo GUI for Mach-MNx - O x
UART Control
Flash Page Read | | Flash Address
0x00300000
Command 1D:243
12C Address: 0x42
BMC coms ~ oM ‘DxF3DxDDDx30 0x00 0x00 | Send Command
Scan Ports Read Log PCH | coms > ON ‘ 0xF3 0x00 0x30 0x00 0x 00 | Send Command
Console Qutput Address Space Information
Flash0 Flash1 |2C Filter
Sending 5Pl read command: 0xF3 0x00 030 000 0w 00 Flash Inf :
Response data: 31 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FFFF OF ash Information:
16 bytes data: Address Space D: Enable 0x00300000 - 0x003000FF White
FF FF FF FF FF FF FF FF FF FF FF FF FF FFFF FF : i
Address Space 1: Enable Ox003001FF - (x003002FF White
Sending 5Pl write command: OxF4 0xD0 Dx30 000 0x03 Dx54 Address Space 21 Enable 0x00301000 - 0x00301FFF Black
Response data: 30 F4 00 0B Address Space 31 Enable (x00310000 - 0x00317FFF Black
Command; F4 Status: D0 Done/Success Address Space 4 Enable 0x00320000 - (00330000 White
)) Address Space 3 Enable 0x00340000 - 0x00340600 Black
Sending SPI read command: 0xF3 0x00 0x30 0x00 000 e e e o Dok
Response data: 31 FF FF FF 5A FF FF FF FF FF FF FF FF FF FF FFFF B4 ress apace & tnable) ! ac
16 bytes data: | Inf -
FF FF FF 5A FF FF FF FF FF FF FF FF FF FF FF FF |$:g: 1'? ormation:
Image Location: 000000000
Image Length: 0x001FO000
Signature Location: Ox001FO0DD
Backup Image Location: 000000000
Backup Image Length: 0001 FOO00
Backup Signature Location: 0x001FD0D0
Version Offset: 0x 00000000
Version Threshold: 00000
Clear Read Address Space

Figure 7.10. Value of 0x00300000~0x0030000F after Write

7.2.3.2. lllegal Operation (operate on Black Space)

Reading 16 bytes started from 0x00310000 in FlashO, program a value (0xAA) to 0x00310003, and read back the bytes
again. Follow steps below:

Flash Page Read (0xF3 0x00 0x31 0x00 0x00) — to read 16 Bytes started from 0x00310000 in FlashO

Flash Byte Write (OxF4 0x00 0x31 0x00 0x03 OxAA) — to write a value (OxAA) to 0x00310003 in FlashO

Flash Page Read (0xF3 0x00 0x31 0x00 0x00) — to read 16 Bytes started from 0x00310000 in FlashO.

After running above steps, Figure 7.11 shows that the read address 0x00310000 is blocked and the return values are all
0x00. 0x00310003 is Black Address Space 3 (0x00310000~0x00317FFF), so it cannot be programmed.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 61

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

= LATTICE

% Lattice Sentry Demo GUI for Mach-NX — [m| X
UART Centrol
Flash Byte Write | | Flash Address Byte
0x00310003 DA
Command I0:244
12C Address: Oed2

BMC com3 ~ [on |0xF~40x000x310x00(b(030xM

| Send Command

Scan Ports Read Log

PCH |coms ~ Hon |0x|:40x000x310x00m030xm

| Send Command

Console Qutput

Sending 5Pl read command: 0xF3 0x00 0x37 0x00 0x00

Response data: 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FF
16 bytes data:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Reading log...

Log index:1 Event: SPI

Sending 5Pl write command: OxF4 000 O3 1 000 003 DAL
Response data: 30 F4 00 OB
Command: F4 Status: 00 Dene/Success

Reading log...

0790

Log index:2 Event: 5P

4

Sending 5Pl read command: OxF3 000 (37 0xc00 0D

Response data: 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FF
16 bytes data:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Reading log...
Response data: 3103070003 003100000000 00 A5031F

0:2:45 Last log index: 3

Exception Flash ID: 00 SPI CMD 03 5Pl Address: 00310000 | Timestamp:

| Exception Flash [D: 00 SPI CMD 02 SPI Address: D0310000 ITlmE;tamp:

Log index:3 Event: 5P| Exception Flash ID: 00 SPICMD 03 5P| Address: 00310000 Timestamp:

Clear

Address Space Information

FlashD Flash1 12C Filter

Flash Information:

Address Space: Enable 0x00300000 - 0x003000FF White
Address Space 11 Enable 0x003001FF - 0x003002FF White
Address Space2: Enable 0x00301000 - 0x00301FFF Black
Address Space 3 Enable 0x00310000 - 0x00317FFF Black
Address Space 4 Enable 0x00320000 - 0x00330000 Black
Address Space 5t Enable (0x00340000 - 0x00340600 Black
Address Space & Enable 0x00350000 - 0x00337FFF White
Address Space 7: Enable 0x00360000 - 000360700 Black
Image Infermation:

Image 0:

Image Location: (00000000

Image Length: (00200000

Signature Location: 000200000

Backup Image Location: (00000000

Backup Image Length: (00200000

Backup Signature Location: (x00200000

Version Offset: (00000000

Version Threshold: 00000

Read Address Space

Figure 7.11. Value of 0x00310000~0x0031000F after Write

Using the Read log operation, SPI Exception Events are printed in detail by Lattice Sentry Demo GUI Tool, as shown in
Figure 7.12. The illegal command is captured as the Flash Byte Write to BMC FlashO.

62

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

= LATTICE

Lattice Propel 1.1 Root-of-Trust Reference Design

User Guide
T
i} Lattice Sentry Demo GUI for Mach-MX - m} x
UART Control
Flash Byte Write «| | Flash Address Byte
0x00310003 DAl
Command 1D:244
12C Address: xd2

BMC comz ~ [Aon

| OncF4 05c00 Che37 Q00 D03 Dy

| | Send Command |

PCH 'com4 ~ Hon

Scan Ports | | Read Log |

| O F4 0500 0x 37 000 0x03 OxAA

| | Send Command |

Console Output

Sending 5P read command: OxF3 000 031 GO0 00D

Response data: 31 00 00 00 00 00 00 00 O 00 00 00 00 00 00 00 00 FF
16 bytes data:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Reading log...

Sending 5P| write command: DicF4 000 31 0200 Cre03 D AA
Response data: 30 F4 00 0B
Command: F4 Status: 00 Done/Success

Reading leg...

0778

Sending 5P read command: 0xF3 0x00 0x31 Cx00 0x00

Response data: 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 FF
16 bytes data:

00 00 00 00 00 00 G0 00 00 00 00 00 00 00 00 00

Reading leg...

Logindex:1 Event: SPl Exception Flash ID: 00 SPICMD 03 5P| Address: 00310000 || Timestamp:
i ol

Logindex:2 Event: SPlException Flash [D: 00 SPICMD 02 5P| Address: 00310000 I'ﬁmestamp:

Logindex:3 Event: 5P| Exception Flash ID: 00 SPICMD 03 5PI Address: 00310000 | Timestamp:

Address Space Information

FlashD Flash1 12C Filter

Flash Information:

Enable
Enable
Enable
Enable
Enable
Enable
Enable
Enable

Address Space O
Address Space 1
Address Space 2:
Address Space 3
Address Space &
Address Space 5t
Address Space &
Address Space T:

Image Information:

Image 0:

Image Location:

Image Length:

Signature Location:
Backup Image Location:
Backup Image Length:
Backup Signature Location:
Version Offset:

Version Threshold:

(00300000 - 0x003000FF White
0x00300TFF - 0xD03002FF White
0xD0301000 - 0x00301FFF Black
0x00310000 - 0x00317FFF Black
000320000 - 0x00330000 Black
000340000 - 0x00340600 Black
000350000 - 0xD0357FFF White
0x00360000 - 0x00360700 Black

000000000
000200000
(00200000
000000000
000200000
(000200000
000000000
00000

Read Address Space

Figure 7.12. Logs of lllegal Operation

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1

63

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design .':LATT’CE

User Guide

7.2.4. Recovery

Image recovery is demonstrated by manually corrupting the image and recovering it from a known good image.

7.2.4.1. Manual Image Corruption

Disable all commands filtering for BMC. Then erase the sector starting from 0x00100000 in FlashO to corrupt Primary
image in Flash0. Authenticate Primary image after corrupting the Primary image. Authentication should fail, as
Figure 7.13 shows. Follow steps below:

Authenticate Image (0x01 0x00 0x01 OxFD) — to authenticate Primary image in FlashO.

Disable SPI Filter (0x16 0x00 0x00 OxE9) — to disable all commands for filtering on BMC SPI port.

Flash Sector Erase (0xFO 0x00 0x10 0x00 0x00 0x01) — to erase the sector started from 0x00100000 in FlashO.
Authenticate Image (0x01 0x00 0x01 OxFD) — to authenticate Primary image in FlashO.

7% Lattice Sentry Demo GUI for Mach-NX — O X
UART Control
Authenticate Image ~ Image ID 1=Pri 2=Sec
000 01

Command ID:1

12C Address: 0xd2
BMC comz + Hon |Ox01 0x00 0x01 OxFD | o L —
Scan Ports Read Log PCH lcoma ~ ON | 0x01 0x00 0x01 OxFD | Send Command
Console Qutput Address Space Information

Flash0 Flash1 12C Filter

Sending 12C write command: 07 000 Oae01 OxFD Flash Inf -
Response data: 3001 00 FE ash Information:

Command: 01 Status: 00 Done/Success Address Space 0: Enable 0xD0300000 - 0x003000FF White
Address Space 1: Enable 0x003001FF - 0xD03002FF White
Address Space 2 Enable (x00301000 - 0x00301FFF Black
Address Space 3: Enable 0x00310000 - 0x00317FFF Black
Address Space 4 Enable 0x00320000 - 000330000 Black
Address Space 3: Enable (x00340000 - 000340600 Black
Sending I2C write command: 0x16 0x00 0x00 0xE9 Address Space & Enable 0x00350000 - 0x00357FFF White
Response data: 30 16 00 E9 Address Space 7: Enable (00360000 - 000360700 Black

Command: 16 Status: 00 Done/Success

Reading log...
o dat21.21.01.0000 02 00 00
Logindex:1 Event: Authenticate ImgID: 0 Pri/Sec: 1 Auth Pass/ Vers Pass/ [Timestamp:
JH a og index:

Image Information:

. - Image 0:
Sending SPI writ d: OxcFO Coc00 Oxc 10 000 0500 Cre 01
RZ:plor:-lgse da:\;r,l ;cF%rggn;; Image Location: b 00000000
| Image Length: 000200000
C d: FO Status: 00 D S
emman s one/Success Signature Location: 000200000
: - Backup Image Lecation: 0x 00000000
Sending I2C writ d: 0x01 000 001 OxFD pmag
RZ:plor:?sa da::rlgziﬁrggn;; Backup Image Length: 0x00200000
Command: 01 .Status: FF Error/Fail Backup Signature Location: - (x00200000
Version Offset: 0% 00000000
Reading log... Version Threshold: 00000
i Auth Fail / Vers Fail / || Timestamp:
Clear Read Address Space

Figure 7.13. Authentication Failed with Corrupted Image

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

64 FPGA-RD-02243-1.1

http://www.latticesemi.com/legal

::LATT’CE Lattice Propel 1.1 Root-of-Trust Reference Design

User Guide

7.2.4.2. Manual Image Recovery

Select the command Recovery Image and modify the value in the right command parameter table (Figure 7.14). It
generates the whole command 0x02 0x00 0x01 0xFC. Click Send Command. If successful, the console output appears
with messages, as shown in Figure 7.14.

2% Lattice Sentry Demo GUI for Mach-NX — [m| X
UART Control
I Recover Image - I Image ID 0=Pri->5ec 1=5ec-...
0x00 001
Command ID:2 |
12C Address: 042
BMC | comz ~ O | 0502 0x00 0x01 DxFC | Send Command
Scan Ports Read Log PCH | coma ~ ON | 0:02 0x00 0x01 0xFC | Send Command
Console Output Address Space Information
Response data: 30 FO 00 OF ~ FlashD Flash1 = 12C Filter

Command: FQ Status: 00 Done/Success -
Flash Information:

;Z:g"j”ngf;::”;%iﬁ?;":;d Bx01 0x00 x0T xFD Address Space 0: Enable 000300000 - Ox003000FF White
Command: 01 Status: FF Error/Fail Address Space 11 Enable (x003001FF - 0x003002FF White
Address Space 22 Enable (00301000 - 0x00301FFF Black
Address Space 31 Enable 0x00310000 - (x00317FFF Black

Reading log... '

Response data: 3102 00 0D 01 00 00 00 00 00 00 00 7A 02 80 ﬁ::’e“gpace‘;- E”EE:E ggﬂm'ggﬁgﬁ g:“t
Log index:2 Event: Authenticate Img ID:0 PrifSec: 1 Auth Fail / VersFail / Timestamp: ress apace 2 Enab’e 340000 - ac
03:92'"L‘:’;t|09}‘:;a; enheate ma i/Seci1 AuthFail /- Vers Fail / Timestamp Address Space & Enable 0x00350000 - 0xD0357FFF White

Address Space 7: Enable (x00360000 - 0x00360700 Black

Sending 12C write command: (02 0x00 001 OxFC .
Image Information:

Image 0
Response data: 30 02 00 FD 9
Command: 02 Status: 00 Done/Success :m:g:tz;;‘:ﬁ:m 300[2“““
Sending I2C write command: 0x01 0x00 0x01 DxFD Signature Location: 0<00200000
Response data: 30 01 00 FE Backup Image Location: (00000000
X ' Backup Image Length: 000200000
C d: 07 Status: 00 D S
omman A one/Success Backup Signature Location: (x00200000
- Version Offset: (00000000
Reading log...
€acing log) 2 Version Threshold: 00000

Log index:3 Event: Recover ImgID:00 Sec -» Pri| Timestamp: (:5:4 Last log index: 4

Reading log...

Response data: 3104 000001 07 01 00 00 00 00 01 60 04 93

Logindex:d Event: Authenticate |mglD: 0 Pri/Sec:1 AuthPass/ VersPass/ Timestamp:
(:3:52 Lastlog index: 4

Clear Read Address Space

Figure 7.14. Authenticate Primary Image after Recovery Done

Recover Image (0x02 0x00 0x01 OxFC) — to recover BMC image to Primary with Secondary (good image) in FlashO.
Authenticate Image (0x01 0x00 0x01 OxFD) — to authenticate Primary image in FlashO.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 65

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design .':LATTICE

User Guide

References

e Llattice Sentry PLD Interface IP Core (FPGA-IPUG-02106)

e SFBInterface IP Core (FPGA-IPUG-02151)

e Lattice Sentry SMBus Mailbox IP Core - Lattice Propel Builder (FPGA-IPUG-02165)
e Lattice Sentry I12C Filter IP Core - Lattice Propel Builder (FPGA-IPUG-02166)

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

66 FPGA-RD-02243-1.1

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52882
http://www.latticesemi.com/view_document?document_id=53137
https://www.latticesemi.com/view_document?document_id=53430
http://www.latticesemi.com/view_document?document_id=53429

= LATTICE

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

Revision History

Revision 1.1, March 2022

Section

Change Summary

PFR IP API Reference

In the UFM Access Block (UAB) section:

e newly added uab_done_set, uab_auth_eanble_write, uab_usercode_read,
uab_pubkey_read, uab_pubkey_write, uab_usec_read, uab_usec_write,
uab_csec_read, uab_csec_write, uab_feabit_read, uab_feabit_write, uab_cr0_read,
uab_cr0_write, and uab_udss_write blocks.

Revision 1.0, January 2022

Section

Change Summary

All

Initial general-purpose production release.

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1

67

http://www.latticesemi.com/legal

s LATTICE

http://www.latticesemi.com/

	Lattice Propel 1.1 Root-of-Trust Reference Design
	Acronyms in This Document
	1. Introduction
	1.1. Purpose
	1.2. Audience
	1.3. Document Structure

	2. Platform Firmware Resiliency System (PFR) Root of Trust (RoT) Introduction
	2.1. PFR
	2.2. RoT
	2.3. Lattice RoT Mechanism
	2.4. System Architecture
	2.5. Functionality Overview
	2.5.1. Mach-NX SoC Function Block
	2.5.1.1. RISC-V Processor
	2.5.1.2. Lattice Sentry Secure Enclave
	2.5.1.3. Lattice Sentry QSPI Master Streamer
	2.5.1.4. Lattice Sentry QSPI Monitor
	2.5.1.5. Lattice Sentry System Management Bus (SMBus) Filter
	2.5.1.6. General Peripherals

	2.5.2. Mach-NX SFB Interface
	2.5.2.1. Customer PLD Interface
	2.5.2.2. UFM Access Module (UAB)

	3. PFR System Architecture and Runtime Flow
	3.1. Firmware Architecture
	3.2. Bootloader
	3.3. Runtime Flow
	3.4. Configuration
	3.4.1. Mach-NX PFR Manifest Manager
	3.4.2. Flash Address Tool

	3.5. Boot Up Protection
	3.6. Recovery
	3.7. Detection
	3.8. Logs and Reporting

	4. PFR IP API Reference
	4.1. Lattice Sentry QSPI Monitor
	4.2. Lattice Sentry QSPI Streamer
	4.3. Lattice Sentry SMBus Filter
	4.4. Lattice Sentry Secure Enclave
	4.4.1. Crypto256 Interface
	4.4.2. Crypto384 Interface

	4.5. Lattice Sentry PLD Interface
	4.6. UFM Access Block (UAB)

	5. PFR Component API Reference
	5.1. Manifest Management
	5.2. MCTP Processing
	5.3. Security Manager
	5.4. Log Management

	6. PFR System Design (from Lattice Propel)
	6.1. PFR Solution Template
	6.2. PFR System Design Customization
	6.2.1. Customer PLD Customization

	7. PFR System Validation Guide
	7.1. PFR Utilities
	7.1.1. Lattice Sentry Demo GUI Tool

	7.2. Key Feature Validation Method
	7.2.1. Function Simulation
	7.2.2. Authentication
	7.2.3. Protection
	7.2.3.1. Legal Operation (Operate on White Space)
	7.2.3.2. Illegal Operation (operate on Black Space)

	7.2.4. Recovery
	7.2.4.1. Manual Image Corruption
	7.2.4.2. Manual Image Recovery

	References
	Revision History
	Revision 1.1, March 2022
	Revision 1.0, January 2022

