

Lattice Propel 1.1 Root-of-Trust Reference
Design

User Guide

FPGA-RD-02243-1.1

March 2022

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02243-1.1

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer.
Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited
testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice
products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a
situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is
proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 3

Contents
Acronyms in This Document ... 5
1. Introduction .. 6

1.1. Purpose ... 6
1.2. Audience ... 6
1.3. Document Structure .. 6

2. Platform Firmware Resiliency System (PFR) Root of Trust (RoT) Introduction .. 7
2.1. PFR .. 7
2.2. RoT .. 7
2.3. Lattice RoT Mechanism ... 7
2.4. System Architecture .. 8
2.5. Functionality Overview ... 8

2.5.1. Mach-NX SoC Function Block .. 8
2.5.2. Mach-NX SFB Interface ... 9

3. PFR System Architecture and Runtime Flow .. 10
3.1. Firmware Architecture .. 10
3.2. Bootloader .. 10
3.3. Runtime Flow .. 11
3.4. Configuration .. 12

3.4.1. Mach-NX PFR Manifest Manager .. 14
3.4.2. Flash Address Tool .. 15

3.5. Boot Up Protection ... 16
3.6. Recovery .. 17
3.7. Detection ... 19
3.8. Logs and Reporting.. 19

4. PFR IP API Reference .. 21
4.1. Lattice Sentry QSPI Monitor .. 21
4.2. Lattice Sentry QSPI Streamer .. 23
4.3. Lattice Sentry SMBus Filter ... 27
4.4. Lattice Sentry Secure Enclave ... 28

4.4.1. Crypto256 Interface .. 28
4.4.2. Crypto384 Interface .. 32

4.5. Lattice Sentry PLD Interface .. 37
4.6. UFM Access Block (UAB) ... 38

5. PFR Component API Reference .. 43
5.1. Manifest Management.. 43
5.2. MCTP Processing ... 46
5.3. Security Manager .. 47
5.4. Log Management .. 50

6. PFR System Design (from Lattice Propel) ... 51
6.1. PFR Solution Template .. 51
6.2. PFR System Design Customization .. 52

6.2.1. Customer PLD Customization ... 52
7. PFR System Validation Guide .. 53

7.1. PFR Utilities ... 53
7.1.1. Lattice Sentry Demo GUI Tool ... 53

7.2. Key Feature Validation Method .. 57
7.2.1. Function Simulation .. 57
7.2.2. Authentication .. 58
7.2.3. Protection ... 59
7.2.4. Recovery ... 64

References .. 66
Revision History .. 67

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02243-1.1

Figures
Figure 2.1. Lattice PFR System Architecture ... 8
Figure 3.1. Software Architecture of Lattice PFR Solution .. 10
Figure 3.2. Customer PFR Firmware Boot Up Flow ... 11
Figure 3.3. Lattice PFR Runtime Flow ... 12
Figure 3.4. Lattice PFR 3.0 Configuration Flow ... 13
Figure 3.5. Launch Manifest Manager in Lattice Propel SDK .. 14
Figure 3.6. Manifest Manager Window .. 14
Figure 3.7. Launch Lattice Sentry Flash Address GUI .. 15
Figure 3.8. Configuration in Flash Address Tool ... 16
Figure 3.9. PFR Boot-up Protection Handler ... 17
Figure 3.10. PFR Recovery Handler ... 18
Figure 3.11. PFR Detection Handler .. 19
Figure 6.1. Lattice Propel Template Flow ... 51
Figure 6.2. Customer PLD Workflow ... 52
Figure 7.1. Launch Lattice Sentry Demo GUI Tool .. 53
Figure 7.2 COM Port Scan of the Lattice Sentry Demo GUI Tool .. 54
Figure 7.3 Enable Lattice Sentry Demo GUI Tool .. 55
Figure 7.4. Send Command of Lattice Sentry Demo GUI Tool .. 56
Figure 7.5 Logging of Lattice Sentry Demo GUI Tool .. 56
Figure 7.6 Read Address Space of Lattice Sentry Demo GUI Tool .. 57
Figure 7.7. BMC Image Authentication for Flash 0 ... 58
Figure 7.8. Get Logs for Image Authentications ... 59
Figure 7.9. Initial Value of 0x00300000~0x0030000F ... 60
Figure 7.10. Value of 0x00300000~0x0030000F after Write .. 61
Figure 7.11. Value of 0x00310000~0x0031000F after Write .. 62
Figure 7.12. Logs of Illegal Operation ... 63
Figure 7.13. Authentication Failed with Corrupted Image ... 64
Figure 7.14. Authenticate Primary Image after Recovery Done ... 65

Tables
Table 3.1. Authority Level Definition .. 19
Table 3.2. Lattice PFR Log Format Definition .. 20

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 5

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

AMBA Advanced Microcontroller Bus Architecture used by the RISC-V to communicate with peripherals.

BMC Baseboard Management Controller

BSP
Board Support Package, the layer of software containing hardware-specific drivers and libraries to function in a
particular hardware environment.

CoT Chain of Trust

CPU Central Processing Unit

ECDSA Elliptic Curve Digital Signature Algorithm

FW Firmware

GPIO General Purpose Input Output.

GUI Graphic User Interface

HAL
Hardware Abstraction Layer, a software interface to hide the detail of the hardware design and provide general
services to the upper layer.

I2C Inter Integrated Circuit

MCTP Management Component Transport Protocol

PFR Platform Firmware Resiliency

QSPI Quad Serial Peripheral Interface

OOB Out of Band

PCH Platform Controller Hub

PFR Platform Firmware Resiliency

PLD Programmable Logic Device

RISC-V
Reduced Instruction Set Computer – Five, a free and open instruction set architecture (ISA) enabling a new era
of processor innovation through open standard collaboration.

RoT Root of Trust

RTL Register Transfer Level

RTRec Root of Trust for Recovery

Rx Receiver

SDK
System Design and Develop Kit. A set of software development tools that allows the creation of applications for
software package on the Lattice embedded platform.

SFB SoC Function Block

SHA Secure Hash Algorithm

SMBus System Management Bus

SoC System on Chip

SPI Serial Peripheral Interface

Tx Transmitter

UART Universal Asynchronous Receiver-Transmitter

UFM User Flash Memory

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02243-1.1

1. Introduction

1.1. Purpose
Lattice Mach-NX device is a new low-density FPGA with enhanced security features and on-chip dual boot flash. The
enhanced bitstream security and user-mode security functions enable the Mach-NX device to be used as a
Root-of-Trust hardware solution in a complex system. With Lattice Mach-NX device, you can implement a Platform
Firmware Resiliency (PFR) solution in your system, as described in NIST Special Publication 800-193.

The purpose of this document is to introduce the design methodology of the Lattice Sentry PFR solution on the
Mach-NX device using the Lattice Propel toolsets, which can largely reduce the design complexity.

1.2. Audience
The intended audience for this document includes embedded system designers and embedded software developers.
The technical guidelines assume readers have expertise in embedded system design and FPGA technologies. In
addition, readers are recommended to read NIST 800-193 Platform Firmware Resiliency Guidelines before reading this
document.

Contents in this document are the Mach-NX PFR solution design guide of recommended flows using Lattice Propel
tools. It introduces a recommended design guide but not a constraint to experienced users.

1.3. Document Structure
The remainder of this document is with the following major sections:

 Platform Firmware Resiliency System (PFR) Root of Trust (RoT) Introduction section — Introduces the Lattice
Mach-NX PFR Root of Trust (RoT) solution, including system architecture, functionality overview, and principles
supporting firmware resiliency.

 PFR System Architecture and Runtime Flow section — Describes the Lattice Mach-NX PFR RoT firmware
architecture, runtime flow, particularly the system configuration, protection, detection and recovery mechanism.

 PFR IP API Reference and PFR Component API Reference sections — List the API reference for the PFR IP and PFR
component.

 PFR System Design (from Lattice Propel) section — Shows the design flow through Lattice Propel toolsets, including
template design, customization, and simulation.

 PFR System Validation Guide section — A system validation guide by applying Lattice PFR utilities.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 7

2. Platform Firmware Resiliency System (PFR) Root of Trust
(RoT) Introduction

2.1. PFR
NIST 800-193 Platform Firmware Resiliency (PFR) Guidelines describe the principles of supporting platform resiliency.
As stated in NIST 800-193, the security guidelines are based on the following three principles:

Protection: Mechanisms for ensuring that Platform Firmware code and critical data remain in a state of integrity and
are protected from corruption, such as the process for ensuring the authenticity and integrity of firmware updates.

Detection: Mechanisms for detecting when Platform Firmware code and critical data have been corrupted, or
otherwise changed from an authorized state.

Recovery: Mechanisms for restoring Platform Firmware code and critical data to a state of integrity in the event that
any such firmware code or critical data are detected to have been corrupted, or when forced to recover through an
authorized mechanism. Recovery is limited to the ability to recover firmware code and critical data.

2.2. RoT
The security mechanisms are founded in Roots of Trust (RoT). A RoT is an element that forms the basis of providing one
or more security-specific functions, such as measurement, storage, reporting, recovery, verification, and update. A RoT
device must be designed to always behave in the expected manner. Proper function of the device is essential to
providing security-specific functions. If this device is unchecked, faulty behavior cannot be detected. A RoT is typically
the first element in a Chain of Trust (CoT) and can serve as an anchor for the chain to deliver more complex
functionality.

The foundational guidelines on the Roots of Trust (RoT) support the subsequent guidelines for Protection, Detection,
and Recovery. These guidelines are organized based on the logical component responsible for each of the security
properties.

 The Root of Trust for Update (RTU) is responsible for authenticating firmware updates and critical data changes to
support platform protection.

 The Root of Trust for Detection (RTD) is responsible for firmware and critical data corruption detection.

 The Root of Trust for Recovery (RTRec) is responsible for recovery of firmware and critical data when corruption is
detected.

2.3. Lattice RoT Mechanism
Lattice Mach-NX FPGA can serve as the Root of Trust and can provide the following services:

 Image Authentication: On system power-up or reset, Mach-NX device holds the protected devices in reset while it
authenticates their boot images in SPI flash. After each signature authentication passes, Mach-NX device releases
each reset, and those devices can boot from their authenticated SPI flash image. Image authentication can also be
requested at any time through the Out of Band (OOB) communication path.

 Image Recovery: If a flash image becomes corrupted for any reason, it fails to be authenticated. The Mach-NX
device can restore it to a known good state by copying from an authenticated backup image.

 SPI Flash Monitoring and Protection: The Mach-NX device can monitor multiple SPI/QSPI buses for unauthorized
activity and block unauthorized accesses using external quick switches. The monitors can be configured to check
for specific SPI flash commands and address ranges defined by the system designer and designate them as
authorized (whitelisted) or unauthorized (blacklisted).

 Event Logging: Mach-NX device logs security events, such as unauthorized flash accesses and notifies the BMC.

 SMBus Filtering: The Mach-NX device can monitor a SMBus for unauthorized activity and filter the unauthorized
transactions. The monitor can be configured with multiple whitelist or blacklist filters to watch for specific
commands defined by the system designer and designate them as authorized or unauthorized SMBus transactions.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02243-1.1

2.4. System Architecture
Figure 2.1 shows the architecture of a Lattice Mach-NX FPGA working as a RoT device. The system design consists of
the SFB module, which integrates a RISC-V processor connected to a set of peripherals through the AMBA bus.
Software running on the processor controls the general and PFR solution peripherals and handles all the events at
runtime to perform the system functionalities.

General Peripherals in SFB module include the Mach-NX hard GPIO, UART, JTAG, and SMBus Mailbox, as shown in
Figure 2.1. These modules perform the basic board-level controls and communications. PFR solution Peripherals
include Secure Enclave, QSPI Streamer/Monitor, SMBus Filter and Customer PLD interface, which perform the main PFR
functionalities. You can add or remove the peripherals using the Lattice Propel tools upon your design requirement. For
details of customization, refer to the PFR System Design (from Lattice Propel) section.

System Bus (AMBA)

BMC

SPI switch 0
SPI Flash

SPI Flash
... SPI switch N

...
SPI Flash

SPI Flash

PCH

[Q]SPI [Q]SPI

Switch Ctrl Switch Ctrl

[Q]SPI [Q]SPI

[Q]SPI

[Q]SPI

[Q]SPI

[Q]SPI

OOB

GPIO

UART

PLD Fabric

Customer
PLD

Interface

FunctionModule

Customer Logic

I2C

GPIO

RISC-V

UART QSPI Monitor

Monitor0 MonitorN...
[Q]SPI

Data Mux

FIFO

Mux 0 Mux N

...

Timer

PIC

ECC256

ECC384

SMBus
Mailbox SMBus

Filter

SFB

SHA256

SHA384

UAB

PIC

AHB

SFB Interface

Boot Loader

Se
cu

re
 E

n
cl

av
e

QSPI Master
Streamer

Figure 2.1. Lattice PFR System Architecture

2.5. Functionality Overview

2.5.1. Mach-NX SoC Function Block

SoC Function Block (SFB) is a hard module in Mach-NX device mainly designed for Lattice Sentry PFR solution. It
contains RISC-V processor, PFR solution-specific function modules, and other general modules for communication with
BMC and PCH.

2.5.1.1. RISC-V Processor

The RISC-V Processor provides the main control function in Mach-NX SFB block. The processor integrates JTAG
debugger, PIC and Timer. The RISC-V core supports RV32I instruction set and 5-stage pipelines to fulfill the
performance requirement for PFR system. JTAG debugger, PIC, and Timer can be enabled or disabled based on the
system requirement.

2.5.1.2. Lattice Sentry Secure Enclave

The Secure Enclave is a security block that provides a set of security services for Mach-NX device, including ECC256,
ECC384, SHA256, and SHA384 crypto functions. The module has two interfaces for sending and receiving data: a
register interface, and a High Speed Data Port (HSP) which is a FIFO-style interface.

Besides the security services, the Secure Enclave also has a boot loader function which performs the secure boot for
the whole system.

For the system software developer, refer to the PFR IP API Reference section for more details on the API reference.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 9

2.5.1.3. Lattice Sentry QSPI Master Streamer

Lattice Sentry QSPI Master Streamer is a configurable SPI master that supports single, dual and quad modes. It contains
FIFOs for Tx and Rx data, which supports long SPI transactions (more than 32 bits). It also provides an external
8-bit Rx FIFO interface that can be connected to the Secure Enclave for image authentication.

QSPI Streamer incorporates a SPI FIFO Master that provides significant performance improvement by supporting data
read and write transactions of programmable length, allowing an entire SPI flash device to be read in one SPI
transaction. The external Rx FIFO interface enables direct transmission of input data from the SPI slave to another
block, such as the Secure Enclave which frees up the CPU or system bus.

For the system software developer, refer to the PFR IP API Reference section for more details on the API reference.

2.5.1.4. Lattice Sentry QSPI Monitor

The QSPI Monitor is a configurable security module which can monitor one or more SPI or QSPI buses for unauthorized
activity and block transactions by controlling the chip select signal and external quick switch devices. In addition to
monitoring, it can connect external SPI/QSPI buses to the QSPI Master Streamer through a programmable mux/demux
block.

The QSPI Monitor checks the external buses for allowed flash commands and flash addresses. This block provides fine
grain control over the set of allowed commands, and supports up to four configurable address spaces which can be
independently monitored for erase, program, and read commands. Address spaces can be whitelisted for erase or
program command, or be blacklisted for read commands. Both 24-bit and 32-bit flash addressing are supported.

For the system software developer, refer to the PFR IP API Reference section for more details on the API reference.

2.5.1.5. Lattice Sentry System Management Bus (SMBus) Filter

The SMBus filter is a configurable security module which can monitor traffic on the SMBus to identify unauthorized
activity, based on set of up to 256 programmable filters. If unauthorized activity is detected, the SMBus is disabled and
PFR firmware is notified so that an event can be logged.

For the system software developer, refer to the PFR IP API Reference section for more details on the API reference.

2.5.1.6. General Peripherals

Besides the PFR solution peripherals, SFB also integrates some general peripherals for board-level control or
communication, including GPIO, UART, SMBus Mailbox. You can use one or more of these modules based on the
system requirement.

2.5.2. Mach-NX SFB Interface

2.5.2.1. Customer PLD Interface

The Customer PLD Interface is a register-based interface which is used to send and receive messages between the PFR
firmware and the customer control PLD logic. It can be used to request system control actions, to check status, or to
send customized messages. You may want to connect the PLD logic to the defined interface and implement the actions
associated with messages sent by firmware. The design of the actual Customer PLD logic is system-dependent and is
implemented by the customer for the particular system.

For the system software developer, refer to the PFR IP API Reference section for more details on the API reference.

2.5.2.2. UFM Access Module (UAB)

The UFM Access Module (UAB) is a functional block inside the SFB interface for accessing the internal flash memory of
Mach-NX device. Through the UAB block, PFR solution firmware can access the manifest of the system and runtime log
event data.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02243-1.1

3. PFR System Architecture and Runtime Flow

3.1. Firmware Architecture
The Lattice PFR solution of Mach-NX device has firmware running on the processor to handle the system dependent
information and runtime events.

Figure 3.1 shows the architecture of the firmware of the PFR 3.0 RISC-V solution. The Lattice PFR solution firmware is

composed of four layers.

 Sitting on the top is the APP layer, which is the demo application to demonstrate all the features on Protection,
Detection and Recovery that PFR spec defined.

 The Component layer is functional module based for dedicated solutions. For PFR solution, this layer contains OOB
Communication module, Log/Manifest Management module, and Security Management module to implement the
corresponding features.

 BSP/Driver and HAL layers are automatically generated during the system design. All the system-dependent
information is applied statically into the source code. The BSP/Driver layer is for all the general IPs, while the HAL
layer is for the RISC-V processor IP that capsulates all the platform dependent information.

Log/Manifest
Management

Security
Management

QSPI Streamer/
Monitor

UAB

GPIO

UART

Timer/Interrupt/RegisterHAL Layer

Secure Enclave
Customer PLD

Interface

BSP/Driver
Layer

PFR Component

PFR App System Initialization/Command Handling/...

OOB/MCTP
Communication

SMBus Mailbox

SMBus Filter

Figure 3.1. Software Architecture of Lattice PFR Solution

3.2. Bootloader
The Bootloader performs the secure boot function after the system is power on and is responsible for loading customer
firmware from the external flash. The boot up flow is shown in Figure 3.2.

During the boot up flow, Bootloader will parse the flash configuration data in UFM3 of Mach-NX device, for the detail
of the flash configuration in UFM3, please refer to the Flash Address Tool section.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 11

Start

Read UFM3, FW
authentication key

Fail

Loop forever

Read AES key from OTP

Request SFB interface to
reset release

Enter service mode

Configure PFR IPs

Hand over driving of
Flash_CSN

Log Failure Message to UFM2y

Authenticate decrypted
packet C1

Fail

Decrypt packet C1

n
Load & Authenticate PFR FW

from external flash

n

Fail to authenticatey

Release PFR master reset

y

Figure 3.2. Customer PFR Firmware Boot Up Flow

3.3. Runtime Flow
The firmware runtime flow comprises the following major steps (as shown in Figure 3.3):

1. Configuration Handler: Read and parse the system Manifest, and configure the system accordingly. Refer to the
Configuration section for more details.

2. Boot-up Protection Handler: Authenticate the firmware on the SPI flash before BMC/PCH boot up. Refer to the
Boot Up Protection section for more details.

3. Recovery Handler: Recover the firmware on the SPI flash if the image is corrupted. Refer to the Recovery section for
more details.

4. Invalid SPI/SMBus Event Detection and Protection: Monitor and detect the system SPI/SMBus events to avoid
invalid behaviors. Refer to the Detection section for more details.

5. Logging and Reporting Handler: Log events which occur and report to the BMC/PCH when requested. Refer to the
Logs and Reporting section for more details.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02243-1.1

System Power on

System initialization
Hold the BMC/PCH Reset Pin

Configuration Handler

Boot-up
Protection(Authentication)

Handler for BMC/PCH

Release the Reset Pin for
BMC/PCH

Authentication OK? Recover Handler

Detect the SPI/I2C Events

Any Invalid Events?

Communication From
BMC/PCH

Yes

No

Log/Report HandlerYes

Yes

Figure 3.3. Lattice PFR Runtime Flow

3.4. Configuration
System dependent information is configured as a manifest, which is stored in the UFM of Lattice Mach-NX FPGA device.
The system manifest is a data structure which provides crucial information such as flash layout, signature, and keys, for
each firmware to store, authenticate and monitor on the SPI flash in the system.

Use of the manifest in the RoT device makes it easier to maintain a common code functionality for authentication and
recovery across different platform designs.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 13

During the runtime, the system software reads the manifest in the UFM and parses the critical data for firmware
authentication, recovery and detection. Figure 3.4 shows configuration flow of Lattice PFR 3.0 Configuration Handler.

Configuration Handler

Manifest Reading and
Parsing

Configure the
Detection Handler

Read the header of
Manifest

Get the public Key, SPI
flash layout,

Valid?

Reading the Manifest

Checksum OK?

Get the information SPI
monitor and SMBus

Filter

yes

yes

no

no

Configure the white/
black spaces for SPI

Monitor

Configure the
monitored activities

for SMBus Filter

System Power On

Configuration Done

Manifest Read Error

Figure 3.4. Lattice PFR 3.0 Configuration Flow

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02243-1.1

3.4.1. Mach-NX PFR Manifest Manager

Lattice Propel provides a Manifest Manager tool to manage the manifest for your own system. The Manifest is stored
in UFM0 of the Mach-NX device.

You can follow steps below to create, modify the manifest for your system.

1. Open Lattice Propel SDK. Click LatticeTools -> Lattice Sentry Tools for Mach-NX -> Lattice Sentry Manifest Manager
to run manifest manager. See
Figure 3.5.

2. Click the Open button and choose the .mem file. Manifest Manager loads the .mem file and parses its manifest
information, as shown in the three tabs, Image Data, Flash Data and SMBus Filter Data (Figure 3.6).

3. Click the Generate button to create the .mem file for UFM0 initialization. The .jed file is programmed into UFM0.

Figure 3.5. Launch Manifest Manager in Lattice Propel SDK

Figure 3.6. Manifest Manager Window

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 15

3.4.2. Flash Address Tool

Lattice Propel provides a Flash Address tool to configure the system flash storage related information which can be
used during the system secure boot. The flash configuration data is stored in UFM3 of the Mach-NX device.

You can follow steps below to create and modify the flash configuration data for your system.

1. In Lattice Propel SDK, choose LatticeTools -> Lattice Sentry Tools for Mach-NX -> Lattice Sentry FlashAddr GUI. See
Figure 3.7.

2. Click the Open button and choose the “config.jed” file from the SoC project (Figure 3.8), which is generated by
Lattice Propel builder. Flash Address tool loads the “config.jed” file and parses the information. You need to input
the specific data for “SoC Firmware Address” and “SFB Config Address” to match your own system for successful
boot up. You also need to provide the “Recovery Target Image Address” for BMC to use in case of a boot up failure.

3. Click the Save button to create the .jed file for UFM3 initialization. The .jed file can then be programmed into
UFM3.

Figure 3.7. Launch Lattice Sentry Flash Address GUI

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02243-1.1

Figure 3.8. Configuration in Flash Address Tool

3.5. Boot Up Protection
Before the system boots up, the Mach-NX RoT ensures that the system firmware is valid. If not, the RoT performs
recovery.

Figure 3.9 shows the boot-up protection flow for authenticating the firmware on the SPI flash. The authentication
consists of two steps. First, perform ECDSA verification using the firmware data and signature stored on the SPI flash
with the public key in the Manifest. The second step is to perform a version check to avoid firmware roll back.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 17

Boot-up Protection
Handler

Read the FW Image
from SPI Flash

Feed data into
Secure Enclave and
Generate the Digest

Read the public key
from Manifest

Read the signature
from SPI Flash

Feed digest, public
key and signature

into Secure Enclave
for verification

Verify Pass

Read version from
SPI Flash

FW Version >
threshold

Pass Authentication

yes

yes

ERROR
no

no

Logging the event

start Authentication

Figure 3.9. PFR Boot-up Protection Handler

3.6. Recovery
Recovery mechanism aims to keep the firmware and critical data in a valid and authorized state in case the firmware
and the critical data are detected to have been corrupted. Generally, two circumstances can trigger the recovery
mechanism: one is when RoT has detected the firmware has been corrupted, the other is the BMC/PCH initiates the
recovery progress. After recovery, authentication is recommended to ensure the integrity of the firmware and data in
the recovered flash.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02243-1.1

Figure 3.10 shows the recovery process flow.

Recovery Handler

Get the SPI Flash
Storage Information

Erase Firmware
Image

Erase Signature

Copy the Firmware
Image

Read the Signature
from the SPI Flash

Copy to the
Destination SPI Flash

Complete
Recovering

Re-authenticate the
Recovered Flash

Log the Recovery
Event

Start Recovering

Figure 3.10. PFR Recovery Handler

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 19

3.7. Detection
The detection mechanism can detect unauthorized changes to device firmware and critical data before the firmware is
executed or the data is consumed by the device. In Lattice Mach-NX PFR solution (Figure 3.11), two kinds of events can
be monitored, SPI flash access and SMBus access.

Firmware and critical data can be stored on the SPI flashes of the system. Different locations of the flash can have
different authority levels. The three authority levels defined in the Lattice PFR solution are called White, Grey and Black
lists (Table 3.1). For each monitored spaces of the flash, one authority level is defined and configured in the manifest
accordingly.

Table 3.1. Authority Level Definition

Authority Level Definition

White Read, Erase, and Write are all allowed.

Grey Only Read is allowed. Neither Erase nor Write operation is permitted.

Black Read, Erase or Write operations are not permitted. The transaction is blocked when any of the
Read, Erase, or Write operation is detected on the SPI bus.

The SMBus may be used for communications between on-board devices. Some critical data can be exchanged. The
Lattice Mach-NX PFR solution can be configured to define a set of transactions which are monitored on the SMBus
interface at runtime. If any illegal transactions are detected, an interrupt or a flag is issued to notify the processor. This
information is logged and reported to the BMC/PCH.

Configure the
monitored events

from Manifest

Detection Handler

SPI Events
Detected?

SMBus Event
Detected?

Checking the events,
read the information

of the illegal event

Check the detected
SMBus events and

read the information

Log and Report

YesYes

Enable the
Detection

Figure 3.11. PFR Detection Handler

3.8. Logs and Reporting
Logged events are written to the UFM2 of the Lattice Mach-NX device, starting from page 1. Each page of UFM2 holds a
single log entry. Byte 0 is the log index and indicates the page where the log is stored. Byte 15 is used to indicate if a log
has been read (RD).

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02243-1.1

The BMC/PCH can read the log from RoT device via the SMBus OOB channel. Table 3.2 shows the detailed definition of
the log format.

Table 3.2. Lattice PFR Log Format Definition

Log Entry
Type

Data

Byte

0

Data

Byte

1

Data

Byte

2

Data

Byte

3

Date

Byte

4

Data

Byte

5

Data

Byte

6

Data

Byte

7

Data

Byte

8

Data

Byte

9

Data
Byte

10

Data

Byte

11

Data

Byte

12

Data
Byte

13

Data
Byte

14

Data
Byte

15

Authentication
Log

Index
0x0

Img

ID

Pri/

Sec

Pass/
Fail

0x00 0x00 0x00
Timestamp in Seconds

(32-bit)
— — — RD

SPI Exception
Log

Index
0x01

Flash

ID

SPI

CMD
SPI Address

Timestamp in Seconds

(32-bit)
— — — RD

SMBus
Exception

Log
Index

0x02

SMBu
s

ID

Filter

ID
0x00 0x00 0x00 0x00

Timestamp in Seconds

(32-bit)
— — — RD

Recovery
Log
Index

0x04
Img
ID

0-
Pri=>
BU

1-
BU=>
Pri

0x00 0x00 0x00 0x00
Timestamp in Seconds

(32-bit)
— — — RD

Recovery
UBoot

Log
Index

0x05
Img
ID

1-Pri

2-BU
0x00 0x00 0x00 0x00

Timestamp in Seconds

(32-bit)
— — — RD

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 21

4. PFR IP API Reference
The PFR IPs are critical parts of the Lattice PFR solution. You can use the APIs to initialize, configure, and control the IPs
to perform the functions.

The following sections provide reference to the APIs for each PFR IP, which is released in the corresponding IP package
by Lattice.

4.1. Lattice Sentry QSPI Monitor
qspi_mon_init

unsigned char qspi_mon_init(struct spi_mon_instance *this_spi_monitor,

 unsigned int base_address)

Parameter Description

this_spi_monitor The pointer to the current QSPI monitor instance.

base_address
Base address of the QSPI monitor module. Propel SDK automatically parses the address
map of the SoC system and passes the information to software via the sys_platform.h.

Returns Description

unsigned char
0: Succeeded in initializing the QSPI monitor module.

1: Failed to initialize the QSPI monitor module.

Description

This function is used to Initializes QSPI monitor instance. This function is supposed to be called when the platform is initializing.
This function should be called before calling any QSPI monitor related functions.

qspi_mon_flash_update

unsigned char qspi_mon_flash_update(struct spi_mon_instance

 *this_spi_monitor, unsigned int flash_id,

 unsigned int flash_select, unsigned int master_select)

Parameter Description

this_spi_monitor The pointer to the current QSPI monitor instance.

flash_id The value of the flash id number.

flash_select

The value of flash to select:

0x10: Select Flash A.

0x20: Select Flash B.

master_select

The value of master to select:

0: SPI Monitor

1: Internal Master

Returns Description

unsigned char
0: Succeeded in selecting the new flash.

1: Failed to select the new flash.

Description

This function is used to select flash that QSPI master accesses to.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02243-1.1

qspi_mon_ws_update

unsigned char qspi_mon_ws_update(struct spi_mon_instance *this_spi_monitor,

 unsigned int flash_id, unsigned int mon_cntl,

 unsigned int dummy_num,

 struct spi_monitor_space *flash_mon_sp)

Parameter Description

this_spi_monitor The pointer to the current QSPI monitor instance.

flash_id The value of the flash ID number.

mon_cntl The monitor control value that is configured for the QSPI monitor.

dummy_num The value of dummy byte number that is configured in the QSPI monitor.

flash_mon_sp The pointer to the flash monitoring spaces that is configured for the QSPI monitor.

Returns Description

unsigned char
0: Succeeded in updating the QSPI monitor space.

1: Failed to update the QSPI monitor space.

Description

This function is used to update white space and control setting for the QSPI monitor.

qspi_mon_exception_get

unsigned char qspi_mon_exception_get(struct spi_mon_instance

 *this_spi_monitor, unsigned int flash_id,

 unsigned int *command, unsigned int *address)

Parameter Description

this_spi_monitor The pointer to the current QSPI monitor instance.

flash_id The value of the flash ID number.

command The pointer to the buffer to store the exception SPI command.

address The pointer to the buffer to store the exception SPI address.

Returns Description

unsigned char
0: Succeeded in getting the exception.

1: Failed to get the exception.

Description

This function is used to get the command and SPI access address of the exception from the QSPI monitor.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 23

4.2. Lattice Sentry QSPI Streamer
spi_streamer_init

unsigned char spi_streamer_init(struct spi_streamer_instance *this_spi,

 unsigned int base_addr,

 unsigned int spi_mode,

 unsigned int sck_div)

Parameter Description

this_spi The pointer to the instance of the current QSPI streamer device.

base_addr
Base address of the QSPI streamer module. Propel SDK parses the address map of the SoC
system and passes the information to software via the sys_platform.h.

spi_mode

The value of QSPI mode to select.

0x00: QSPI mode 0

0x03: QSPI mode 3

sck_div The value of the clock division.

Returns Description

unsigned char
0: Succeeded in initializing the QSPI streamer.

1: Failed to initialize the QSPI streamer.

Description

This function is used to Initialize QSPI streamer module. This function is supposed to be called when the platform is initializing.
This function should be called before calling any QSPI streamer related functions.

spi_write

unsigned char spi_write(struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned int length,

 unsigned char *buff, unsigned char addr4B)

Parameter Description

this_spi The pointer to the instance of the current QSPI streamer device.

addr The start address of the SPI flash to write to.

length The number of data in bytes that is written to the SPI device.

buff The pointer to the data buffer that is written to the SPI device.

addr4B The value of the addressing mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in writing the specified data to the SPI device.

1: Failed to write the specified data to the SPI device.

Description

This function is used to write the specified length of data in the buffer to the SPI device from the specified address. Refer to
spi_read() for the data reading details.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02243-1.1

spi_read

unsigned char spi_read(struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned int length,

 unsigned char *buff, unsigned char addr4B)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of the SPI flash to read from.

length The length of data in byte that is read from the SPI device.

buff The pointer to the data buff that stores the data read from the SPI device.

addr4B

The value of mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in reading the specified data from the SPI device.

1: Failed to read the specified data from the SPI device.

Description

This function is used to read the specified length of data from the SPI device. Refer to spi_write() for the data writing details.

spi_write_txfifo

unsigned char spi_write_txfifo(struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned int length)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of the SPI device to write to.

length The number of data in byte that is written to the SPI device.

Returns Description

unsigned char
0: Succeeded in writing the specified data to the SPI device.

1: Failed to write the specified data to the SPI device.

Description

This function is used to write the specified length of data in the TX FIFO to the SPI device from the specified address.

spi_read_txfifo

unsigned char spi_read_txfifo(struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned int length)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of SPI device to read from.

length The length of data in byte that is read from the SPI device.

Returns Description

unsigned char
0: Succeeded in reading the specified data from the SPI device.

1: Failed to read the specified data from the SPI device.

Description

This function is used to read the specified length of data from the SPI device and store the data into the TX FIFO of the QSPI
streamer module.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 25

spi_read_esb

unsigned char spi_read_esb(void *this_spi_streamer, unsigned int addr,

 unsigned int length, unsigned char addr4B)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of SPI flash to read from.

length The length of data in byte that is read from the SPI device.

addr4B

The value of mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in reading the specified data from the SPI device.

1: Failed to read the specified data from the SPI device.

Description

This function is used to read the specified length of data from the SPI device and feed to the ESB module for processing. For
details on general data read, refer to spi_read().

spi_erase_4k

unsigned char spi_erase_4k(struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned char addr4B)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of the SPI flash to erase.

addr4B

The value of mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in erasing the 4K data.

1: Failed to erase the 4K data.

Description

This function is used to erase a 4K memory of the SPI device from the specified address.

qspi_quad_read

unsigned char qspi_quad_read(void *this_spi,

 unsigned int addr, unsigned int length,

 unsigned char addr4B)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of the SPI flash to read from.

length The length of data for the current read.

addr4B

The value of mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in reading the data from flash.

1: Failed to read the data.

Description

This function is used read the specified length of data from the flash in quad mode.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02243-1.1

qspi_quad_write

unsigned char spi_quad_write (struct spi_streamer_instance *this_spi,

 unsigned int addr, unsigned int length,

 unsigned char *buff, unsigned char addr4B)

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of the SPI flash to write to.

length The length of data for the current write.

buff The pointer to the data buff that stores the data read from the SPI device.

addr4B

The value of mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in writing the data to flash.

1: Failed to write the data to flash.

Description

This function is used to write the specified length of data to the flash in quad mode.

qspi_quad_read_crypto

unsigned char qspi_quad_read_crypto (void *this_spi_streamer, unsigned int addr,

 unsigned int length, unsigned char addr4B);

Parameter Description

this_spi The pointer to the instance of current QSPI streamer device.

addr The start address of the SPI flash to read from.

length The length of data for the current write.

addr4B

The value of mode to select.

0: 3-byte address mode

1: 4-byte address mode

Returns Description

unsigned char
0: Succeeded in reading the data from flash.

1: Failed to read the data from flash.

Description

This function is used to read the data from flash and feed into the secure enclave.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 27

4.3. Lattice Sentry SMBus Filter
smbus_filter_init

unsigned char smbus_filter_init (struct smbus_filter_instance *this_smbus_filter,

 unsigned int base_addr);

Parameter Description

SMBus filter The pointer to the instance of the current SMBus filter.

base_addr
Base address of the SMBus Filter module. Propel SDK automatically parses the address map
of the SoC system and pass the information to software.

Returns Description

unsigned char
0: Succeeded in initializing the SMBus filter.

1: Failed to initialize the SMBus filter.

Description

This function is used to initialize the SMBus filter module. This function is supposed to be called when the platform is being
initialized. This function should be called before calling any SMBus filter related functions.

smbus_filter_set_whitelist

void smbus_filter_set_whitelist(struct smbus_filter_manifest *sm_filter_manifest,

 struct smbus_filter_instance *this_smbus_filter, unsigned char list_id)

Parameter Description

sm_filter_manifest The pointer to the smbus configuration data in the manifest.

this_smbus_filter The pointer to the instance of the current SMBus filter.

list_id The list ID to be configured for the SMBus filter.

Returns Description

unsigned char
0: Succeeded in configuring the SMBus filter.

1: Failed to configure the SMBus filter.

Description

This function is used to configure the SMBus filter device by setting the number of entry and the entry data.

smbus_filter_event_get

unsigned char smbus_filter_event_get(struct smbus_filter_instance *this_filter,

 unsigned char *addr_status, unsigned int *cmd_status);

Parameter Description

this_filter The pointer to the instance of the current SMBus filter.

addr_status The pointer to the buffer to store the detected slave address.

cmd_status The pointer to the buffer to store the detected command.

Returns Description

unsigned char
0: Succeeded in getting the detected SMBus filter events.

1: Failed to get the detected SMBus filter events.

Description

This function is used to get the slave address and SMBus command of the detected event.

i2c_mon_isr

void smbus_filter_isr(void *ctx)

Parameter Description

ctx The pointer to the context of the SMBus filter device.

Returns Description

void —

Description

This function is used to process SMBus filter interrupt. The function can be registered via calling pic_isr_register ().

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02243-1.1

4.4. Lattice Sentry Secure Enclave

4.4.1. Crypto256 Interface
esb_init

unsigned char esb_init(struct esb_instance *this_esb,

 unsigned int base_addr);

Parameter Description

this_esb The pointer to the instance of the current ESB device.

base_addr
Base address of the ESB module. Propel SDK automatically parses the address map of the
SoC system and passes the information to the software.

Returns Description

unsigned char
0: Succeeded in initializing the ESB module.

1: Failed to initialize the ESB module.

Description

This function is supposed to be called when the platform is initialized. This function should be called before calling any ESB
related functions.

esb_mux_por_sel

unsigned char esb_mux_port_sel(struct esb_instance *this_esb,

 unsigned int sel_port)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

sel_port Select the ESB mux to high speed port (HSP) or WISHBONE bus port.

Returns Description

unsigned char
0: Succeeded in selecting the specified port for ESB module.

1: Failed to select the specified port for ESB module.

Description

This function is used to select the ESB mux to the specified data port. There are two data ports for the ESB module: one is the
HSP high-speed port, the other is the WISHBONE bus port.

esb_switch_idle

unsigned char esb_switch_idle(struct esb_instance *this_esb)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

Returns Description

unsigned char
0: Succeeded in switching the ESB module to idle state.

1: Failed to switch the ESB module to idle state.

Description

This function is used to switch the ESB module into idle state. The ESB module only can start new operation in idle state.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 29

esb_trng32bits_get

unsigned char esb_trng32bits_get(struct esb_instance *this_esb,

 unsigned int *trn_value)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

trn_value
The pointer to the data buffer to store the 32-bit long random number generated by the
ESB module.

Returns Description

unsigned char
0: Succeeded in getting the random number.

1: Failed to get the random number.

Description

This function is used to generate a 32-bit long random number by the ESB module.

esb_nonce_get

unsigned char esb_nonce_get(struct esb_instance *this_esb,

 unsigned char p_trn[16])

Parameter Description

this_esb The pointer to the instance of the current ESB device.

p_trn
The data buffer to store the 15-byte random number generated by the ESB block and one
byte checksum.

Returns Description

unsigned char
0: Succeeded in getting the random number.

1: Failed to get the random number.

Description

This function is used to get the random number generated by the ESB module.

esb_trng256bits_get

unsigned char esb_trng256bits_get(struct esb_instance *this_esb,

 unsigned char p_trn[32])

Parameter Description

this_esb The pointer to the instance of the current ESB device.

p_trn The data array to store the 256-bit random number generated by the ESB module.

Returns Description

unsigned char
0: Succeeded in getting the random number.

1: Failed to get the random number.

Description

This function is used to generate a 256-bit long random number.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02243-1.1

esb_pubkey_derive

unsigned char esb_pubkey_derive(struct esb_instance *this_esb,

 EccPoint * p_publicKey,

 unsigned char p_privateKey[NUM_ECC_DIGITS])

Parameter Description

this_esb The pointer to the instance of the current ESB device.

p_publicKey The pointer to data buffer to store the generated public key.

p_privateKey The private key input to the ESB module.

Returns Description

unsigned char
0: Succeeded in deriving the public key.

1: Failed to derive the public key.

Description

This function is used to derive the public key.

esb_ecdh_get

unsigned char esb_ecdh_get(struct esb_instance *this_esb,

 unsigned char p_secret[NUM_ECC_DIGITS],

 EccPoint * p_publicKey,

 unsigned char p_privateKey[NUM_ECC_DIGITS])

Parameter Description

this_esb The pointer to the instance of the current ESB device.

p_secret The data array to store the shared secret generated by ECDH.

p_publicKey The public key to for ECDH.

p_privateKey The private key for ECDH.

Returns Description

unsigned char
0: Succeeded in getting the ECDH shared secret.

1: Failed to get the ECDH shared secret.

Description

This function is used to generate the shared secret with ECDH.

esb_aes

unsigned char esb_aes(struct esb_instance *this_esb, unsigned char *key,

 unsigned char *bufferIn, unsigned char *bufferOut,

 unsigned int decrypt)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

key The 128-bit long public key to do the AES encryption or decryption.

bufferIn 16-byte long data to do the AES encryption or decryption.

bufferOut The 16-byte long result of the AES encryption or decryption for the input data.

decrypt

The flag to indicate to do encryption or decryption.

0: To do encryption.

1: To do decryption.

Returns Description

unsigned char
0: Succeeded in doing the AES for the input data.

1: Failed to do the AES for the input data.

Description

This function is used to do the AES encryption or decryption for the input data with the specified public key.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 31

esb_sha256

unsigned char esb_sha256(struct esb_instance *this_esb,

 struct sha256_ctx *ctx)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

ctx The pointer to the context to do the SHA256.

Returns Description

unsigned char
0: Succeeded in generating the digest via SHA-256 hash function.

1: Failed to generate the digest via SHA-256 hash function.

Description

This function is used to generate a 256-bit long digest for the data specified in the context via the SHA-256 hash function.

esb_esdsa_verify

unsigned char esb_esdsa_verify(struct esb_instance *this_esb,

 unsigned int digest[],

 unsigned int pub_key[],

 unsigned int signature[],

 unsigned char *auth_pass)

Parameter Description

this_esb The pointer to the instance of the current ESB device.

digest The digest that feeds to the ESB module to do the ECDSA authentication.

pub_key The public key that feeds to the ESB module to do the ECDSA authentication.

signature The signature that feeds to the ESB module to do the ECDSA authentication.

auth_pass

The pointer to the data buffer to hold the authentication result:

1: Authentication passed.

0: Authentication failed.

Returns Description

unsigned char
0: Succeeded in doing the ECDSA verification.

1: Failed to do the ECDSA verification.

Description

This function is used to do the ECDSA authentication.

get_nonce

unsigned char get_nonce(struct esb_instance *this_esb,

 unsigned char p_trn[16])

Parameter Description

this_esb The pointer to the instance of the current ESB device.

p_trn
The data buffer to store the 15-byte random number generated by the ESB block and one
byte checksum.

Returns Description

unsigned char
0: Succeeded in getting the random number.

1: Failed to get the random number.

Description

This function is used to get the random number generated by the ESB module.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02243-1.1

4.4.2. Crypto384 Interface
crypto384_init

unsigned int crypto_init(struct crypto_instance *this_crypto,

 unsigned int base_addr)

Parameter Description

this_crypto The pointer to the instance of the current crypto384 device.

base_addr
Base address of the Crypto384 module, the SFB module has a pre-assigned address for each
module and passed by header file to the software via Propel.

Returns Description

unsigned char
0: Succeeded in initializing the Crypto384 module.

1: Failed to initialize the Crypto384 module

Description

This function is supposed to be called when the platform is initialized. This function should be called before calling any
Crypto384 related functions.

crypto_sha384

unsigned int crypto_sha384(struct crypto_instance *this_crypto,

 struct sha384_ctx* ctx,

 unsigned char mode)

Parameter Description

this_ crypto The pointer to the instance of the current Crypto384 device.

ctx The pointer to the context to do the SHA384.

mode The SHA384 mode to do the general SHA384 or CDI HAMC SHA384.

Returns Description

unsigned char
0: Succeeded in generating the digest via SHA-384 hash function.

1: Failed to generate the digest via SHA-384 hash function.

Description

This function is used to generate a 384-bit long digest for the data specified in the context via the SHA-384 hash function.

crypto_firmware_sha384

unsigned int crypto_sha384(struct crypto_instance *this_crypto,

 struct sha384_ctx* ctx)

Parameter Description

this_ crypto The pointer to the instance of the current Crypto384 device.

ctx The pointer to the context to do the SHA384.

Returns Description

unsigned char
0: Succeeded in generating the CDI HMAC SHA-384 digest for firmware image.

1: Failed to generate the CDI HMAC SHA-384 digest for firmware image.

Description

This function is used to generate a 384-bit long digest for the firmware image specified in the context via the CDI HMAC
SHA-384 hash function.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 33

crypto_hmac_sha384

unsigned int crypto_hmac_sha384(struct crypto_instance *this_crypto,

 unsigned char *hmac_key,

 struct sha384_ctx* ctx)

Parameter Description

this_ crypto The pointer to the instance of the current Crypto384 device.

hmac_key The pointer to buffer holding the HMAC key.

ctx The pointer to the context to do the SHA384.

Returns Description

unsigned char
0: Succeeded in generating the MAC code via SHA-384 hash function.

1: Failed to generate the MAC code via SHA-384 hash function.

Description

This function is used to generate a 384-bit MAC code for the data specified in the context via the SHA-384 hash function and
the HMAC key provided.

crypto_keypair_derive

unsigned char crypto_keypair_derive(struct crypto_instance *this_crypto,

 struct ecc384_point * p_publicKey,

 unsigned char p_privateKey[NUM_ECC_DIGITS_384])

Parameter Description

this_ crypto The pointer to the instance of the current Crypto384 device.

p_publicKey The pointer to the structure to store the public key generated.

p_privateKey The pointer to the array to store the private key generated.

Returns Description

unsigned char
0: Succeeded in generating the ECC384 key pair.

1: Failed to generate the ECC384 key pair.

Description

This function is used to generate a key pair of ECC384.

crypto_pubkey_derive

unsigned char crypto_pubkey_derive(struct crypto_instance *this_crypto,

 struct ecc384_point * p_publicKey,

 unsigned char p_privateKey[NUM_ECC_DIGITS_384]);

Parameter Description

this_crypto The pointer to the instance of the current Crypto384 device.

p_publicKey The pointer to the structure to store the public key generated.

p_privateKey The pointer to the array storing the private key.

Returns Description

unsigned char
0: Succeeded in generating the ECC384 public key.

1: Failed to generate the ECC384 public key.

Description

This function is used to generate an ECC384 public key from the provided private key.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02243-1.1

crypto_ecdh_get

unsigned char crypto_ecdh_get(struct crypto_instance *this_crypto,

 unsigned char p_secret[NUM_ECC_DIGITS_384],

 struct ecc384_point * p_publicKey,

 unsigned char p_privateKey[NUM_ECC_DIGITS_384]);

Parameter Description

this_crypto The pointer to the instance of the current Crypto384 device.

p_secret The pointer to the array to store the shared secret key generated.

p_publicKey The pointer to the structure of the public key caller provides.

p_privateKey The pointer to the array of the private key caller provides.

Returns Description

unsigned char
0: Succeeded in getting the shared secret key via ECDH.

1: Failed to get the shared secret key via ECDH.

Description

This function is used to generate a shared secret key via ECDH based on provided ECC384 public key and private key.

crypto384_ecdsa_sign

unsigned char crypto_ecdsa_sign(struct crypto_instance *this_crypto,

 unsigned int digest[],

 unsigned int private_key[],

 unsigned int nonce[],

 unsigned int signature[]);

Parameter Description

this_crypto The pointer to the instance of the current Crypto384 device.

digest The pointer to the array storing the digest.

private_key The pointer to the array storing the private key.

nonce The pointer to the array storing the random number.

signature The pointer to the array used to store the signature generated.

Returns Description

unsigned char
0: Succeeded in generating the signature via ECDSA.

1: Failed to generate the signature via ECDSA.

Description

This function is used to generate the ECDSA signature for the input digest and private key.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 35

crypto_ecdsa_verify

unsigned char crypto_ecdsa_verify(struct crypto_instance *this_crypto,

 unsigned int digest[],

 unsigned int pub_key[],

 unsigned int signature[],

 unsigned char *auth_pass)

Parameter Description

this_crypto The pointer to the instance of the current Crypto384 device.

digest The pointer to the array storing the digest.

pub_key The pointer to the array storing the public key.

signature The pointer to the array storing the signature.

auth_pass The pointer to the buffer to store the ECDSA verification result.

Returns Description

unsigned char
0: Succeeded in doing the ECDSA verification.

1: Failed to do the ECDSA verification.

Description

This function is used to do the ECDSA verification for the input digest, signature and public key.

crypto_ecies_encryptex

unsigned char crypto_ecies_encryptex(struct crypto_instance *this_crypto,

 unsigned char p_secret[NUM_ECC_DIGITS_384],

 unsigned char *plain_text,

 unsigned char length,

 unsigned char *auth_tag,

 unsigned char *cipher_text)

Parameter Description

this_crypto The pointer to the instance of the current Crypto384 device.

p_secret The pointer to the array storing the shared secret key.

plain_text The pointer to buffer storing the plain text that needs to be encrypted.

length The length of the plan text in byte.

auth_tag The pointer to the buffer to store the authentication tag.

cipher_text The pointer to the buffer to store the encrypted text.

Returns Description

unsigned char
0: Succeeded in doing the ECIES encryption.

1: Failed to do the ECIES encryption.

Description

This function is used to do the ECIES encryption for the plain text.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02243-1.1

crypto_ecies_decryptex

unsigned char crypto_ecies_decryptex(struct crypto_instance *this_crypto,

 unsigned char p_secret[NUM_ECC_DIGITS_384],

 unsigned char *auth_tag,

 unsigned char *cipher_text,

 unsigned char length,

 unsigned char cipher_status,

 unsigned char *plain_data)

Parameter Description

this_crypto The pointer to the instance of the current Crypto384 device.

p_secret The pointer to the array storing the shared secret key.

auth_tag The pointer to the buffer storing the authentication tag.

cipher_text The pointer to buffer storing the cipher text that needs to be decrypted.

length The length of the plan text in byte.

cipher_status The pointer to the buffer to store the cipher status.

plain_data The pointer to the buffer to store the plain text decrypted.

Returns Description

unsigned char
0: Succeeded in doing the ECIES decryption.

1: Failed to do the ECIES decryption.

Description

This function is used to do the ECIES decryption for the input cipher text and authentication tag.

crypto_ecies_decryptex

unsigned char crypto_jtag_cntl(struct crypto_instance *this_crypto,

 unsigned int ctrl);

Parameter Description

this_crypto The pointer to the instance of the current Crypto384 device.

p_secret The pointer to the array storing the shared secret key.

auth_tag The pointer to the buffer storing the authentication tag.

cipher_text The pointer to buffer storing the cipher text that needs to be decrypted.

length The length of the plan text in byte.

cipher_status The pointer to the buffer to store the cipher status.

plain_data The pointer to the buffer to store the plain text decrypted.

Returns Description

unsigned char
0: Succeeded in doing the ECIES decryption.

1: Failed to do the ECIES decryption.

Description

This function is used to do the ECIES decryption for the input cipher text and authentication tag.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 37

4.5. Lattice Sentry PLD Interface
cstm_pld_init

unsigned char cstm_pld_init(struct cstm_pld_instance *this_cstm_pld,

 unsigned int base_addr)

Parameter Description

this_cstm_pld The pointer to the current customer PLD instance.

base_addr
The base address of the customer PLD module. Propel SDK automatically parses the address
map of the SoC system and passes the information to software.

Returns Description

unsigned char
0: Succeeded in initializing the customer PLD module.

1: Failed to initialize the customer PLD module.

Description

This function is used to initialize the customer PLD module.

cstm_pld_int_set

unsigned char cstm_pld_int_set(struct cstm_pld_instance *this_cstm_pld,

 unsigned int ints)

Parameter Description

this_cstm_pld The pointer to the current customer PLD instance.

ints The interrupts bit set to notify the PLD logic.

Returns Description

unsigned char
0: Succeeded in setting the interrupt bits.

1: Failed to set the interrupt bits.

Description

This function is used to set the specified interrupts bit to notify the customer PLD logic.

cstm_pld_int_status_get

unsigned char cstm_pld_int_status_get(struct cstm_pld_instance

 *this_cstm_pld, unsigned int *ints)

Parameter Description

this_cstm_pld The pointer to the current customer PLD instance.

ints The pointer to data buffer to hold the interrupt status.

Returns Description

unsigned char
0: Succeeded in getting the interrupt status.

1: Failed to get the interrupt status.

Description

This function is used to get the interrupt status of customer PLD module.

cstm_pld_msg_receive

unsigned char cstm_pld_msg_receive(struct cstm_pld_instance *this_cstm_pld,

 unsigned char *msg)

Parameter Description

this_cstm_pld The pointer to the current customer PLD instance.

msg The pointer to buffer to hold the message that is received from the customer PLD logic.

Returns Description

unsigned char
0: Succeeded in receiving the message.

1: Failed to receive the message.

Description

This function is used to receive the message from the customer PLD logic.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02243-1.1

cstm_pld_msg_send

unsigned char cstm_pld_msg_send(struct cstm_pld_instance *this_cstm_pld,

 unsigned char *msg)

Parameter Description

this_cstm_pld The pointer to the current customer PLD instance.

msg The pointer to the message that is to be sent to the customer PLD logic.

Returns Description

unsigned char
0: Succeeded in sending the message to the customer PLD logic.

1: Failed to send the message to the customer PLD logic.

Description

This function is used to send the message to the customer PLD logic.

cstm_pld_isr

void cstm_pld_isr(void *ctx)

Parameter Description

ctx The pointer to context that is passed to the interrupt service routine.

Returns Description

void —

Description

This function is called when there is interrupts from the customer PLD module. The function can be registered via calling
pic_isr_register ().

4.6. UFM Access Block (UAB)
uab_init

unsigned char uab_init(struct uab_instance *this_uab,

 unsigned int base_addr)

Parameter Description

this_uab The pointer to the current UAB instance.

base_addr
The base address of the UAB module. Propel SDK automatically parses the address map of
the SoC system and passes the information to software.

Returns Description

unsigned char
0: Succeeded in initializing the UAB module.

1: Failed to initialize the UAB module.

Description

This function is used to initialize the UAB module.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 39

uab_done_set

unsigned char uab_done_set(struct uab_instance *this_uab,

 uint32_t cfg, uint32_t auth)

Parameter Description

this_uab The pointer to the current UAB instance.

cfg

Specify the configuration sector.

0: CFG0

1: CFG1

auth

Specify the DONE bit or AUTH DONE bit to be set.

0: DONE

1: AUTH Done

Returns Description

unsigned char
0: Succeeded in setting the DONE bit.

1: Failed to set the DONE bit.

Description

This function is used to set the DONE or AUTH DONE bit for the specified configuration sector. After in-system-program the
configuration sector, the DONE bit or AUTH Done bit needs be set, otherwise Config Engine cannot boot up the bit-stream
successfully.

uab_auth_eanble_write

unsigned char uab_auth_enable_write(struct uab_instance *this_uab,

 uint32_t enable)

Parameter Description

this_uab The pointer to the current UAB instance.

enable

The value to set the authentication enable bit

0: HMAC_SHA

1: ECDSA

Returns Description

unsigned char
0: Succeeded in setting the authentication enable bit.

1: Failed to set the authentication enable bit.

Description

This function is used to set the authentication enable bit. Once updating the public key, the authentication enable bit will also
be erased and need to be set by using this function.

uab_usercode_read

unsigned char uab_usercode_read(struct uab_instance *this_uab,

 unsigned char usercode[])

Parameter Description

this_uab The pointer to the current UAB instance.

usercode The data buffer to store the user code read back.

Returns Description

unsigned char
0: Succeeded in reading back the user code.

1: Failed to read back the user code.

Description

This function is used to read back the user code from the UAB module.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02243-1.1

uab_pubkey_read

unsigned char uab_pubkey_read(struct uab_instance *this_uab,

 unsigned char pubkey[64])

Parameter Description

this_uab The pointer to the current UAB instance.

pubkey[] The data buffer to store the public key read back from UAB module.

Returns Description

unsigned char
0: Succeeded in reading back the public key.

1: Failed to read back the public key.

Description

This function is used to read the public key from the UAB module.

uab_pubkey_write

unsigned char uab_pubkey_write(struct uab_instance *this_uab,

 unsigned char pubkey[64])

Parameter Description

this_uab The pointer to the current UAB instance.

pubkey[] Data buffer storing the public key to be written to UAB module.

Returns Description

unsigned char
0: Succeeded in writing the public key.

1: Failed to write the public key.

Description

This function is used to write the public key into the UAB module.

uab_usec_read

unsigned char uab_usec_read(struct uab_instance *this_uab,

 unsigned short *usec)

Parameter Description

this_uab The pointer to the current UAB instance.

usec Pointer to the buffer to store the USEC data read back.

Returns Description

unsigned char
0: Succeeded in reading back the USEC data.

1: Failed to read back the USEC data.

Description

This function is used to read back the USEC data from the UAB module.

uab_usec_write

unsigned char uab_usec_write(struct uab_instance *this_uab,

 unsigned short usec)

Parameter Description

this_uab The pointer to the current UAB instance.

usec Data buffer storing the USEC to be written to UAB module.

Returns Description

unsigned char
0: Succeeded in writing the USEC.

1: Failed to write the USEC.

Description

This function is used to write the USEC data into the UAB module.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 41

uab_csec_read

unsigned char uab_csec_read(struct uab_instance *this_uab,

 unsigned int *csec)

Parameter Description

this_uab The pointer to the current UAB instance.

csec Data buffer storing the CSEC data read back from UAB module.

Returns Description

unsigned char
0: Succeeded in reading back the CSEC data.

1: Failed to read back the CSEC data.

Description

This function is used to read back the CSEC data from the UAB module.

uab_csec_write

unsigned char uab_csec_write(struct uab_instance *this_uab,

 unsigned int csec)

Parameter Description

this_uab The pointer to the current UAB instance.

csec Data buffer storing the CSEC to be written to UAB module.

Returns Description

unsigned char
0: Succeeded in writing the CSEC data.

1: Failed to write the CSEC data.

Description

This function is used to write the CSEC data into the UAB module.

uab_feabit_read

unsigned char uab_feabit_read(struct uab_instance *this_uab,

 unsigned int *feabit)

Parameter Description

this_uab The pointer to the current UAB instance.

 feabit Data buffer storing the feature bits read back from UAB module.

Returns Description

unsigned char
0: Succeeded in reading back the feature bits.

1: Failed to read back the feature bits.

Description

This function is used to read back the feature bits from the UAB module.

uab_feabit_write

unsigned char uab_feabit_write(struct uab_instance *this_uab,

 unsigned int feabit)

Parameter Description

this_uab The pointer to the current UAB instance.

feabit Feature bits value to be written to UAB module.

Returns Description

unsigned char
0: Succeeded in writing the feature bits.

1: Failed to write the feature bits.

Description

This function is used to write the feature bits into the UAB module.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

42 FPGA-RD-02243-1.1

uab_cr0_read

unsigned char uab_cr0_read(struct uab_instance *this_uab,

 unsigned int *cr0_value)

Parameter Description

this_uab The pointer to the current UAB instance.

 cr0_value Data buffer storing the control register 0 read back from UAB module.

Returns Description

unsigned char
0: Succeeded in reading back the control register 0.

1: Failed to read back the control register 0.

Description

This function is used to read back the control register 0 from the UAB module.

uab_cr0_write

unsigned char uab_cr0_write(struct uab_instance *this_uab,

 unsigned int cr0_value)

Parameter Description

this_uab The pointer to the current UAB instance.

cr0_value The value to be written to the Control Register 0.

Returns Description

unsigned char
0: Succeeded in writing the Control Register 0.

1: Failed to write the Control Register 0.

Description

This function is used to write the Control Register 0 into the UAB module.

uab_udss_write

unsigned char uab_udss_write(struct uab_instance *this_uab,

 unsigned int ufm, unsigned char udss_val)

Parameter Description

this_uab The pointer to the current UAB instance.

ufm Specify the user flash sector.

udss_val The value to be written to the UDSS section for each sector.

Returns Description

unsigned char
0: Succeeded in writing the UDSS value.

1: Failed to write the UDSS value.

Description

This function is used to write the UDSS value for the specified user flash sector.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 43

5. PFR Component API Reference
The component layer of the Lattice PFR solution provides basic function for protection, detection, and recovery.

The following section provides the API reference on how to manage the manifest, MCTP protocol, high-level security
and log. Based on the provided component layer APIs, you can develop your own PFR software easily.

5.1. Manifest Management
load_manifest_flash

unsigned char load_manifest_flash(struct st_manifest_t *manifest)

Parameter Description

manifest The pointer to the manifest of the system.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to load the manifest into internal flash.

mfst_oob_read

unsigned char mfst_oob_read(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb,

 struct esb_instance *this_esb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

this_esb The pointer to the instance of the current ESB device.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to read manifest from UFM and send the data to BMC over the OOB channel.

mfst_ufm_read

unsigned char mfst_ufm_read(struct st_manifest_t *manifest,

 struct spi_mon_instance *SPImonitor)

Parameter Description

manifest The pointer to the manifest of the system.

SPImonitor The pointer to the instance of the current SPI monitor device.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to read manifest from UFM and then parse the information into internal data structure.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

44 FPGA-RD-02243-1.1

mfst_ufm_write

unsigned char mfst_ufm_write(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update manifest in UFM.

mfst_image_update

unsigned char mfst_image_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb);

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update the image information in manifest.

mfst_sign_update

unsigned char mfst_sign_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update the signature information in manifest.

mfst_ver_update

unsigned char mfst_ver_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update the version information in manifest.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 45

mfst_ver_thrhd_update

unsigned char mfst_ver_thrhd_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update version threshold in manifest.

mfst_pkey_update

unsigned char mfst_pkey_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update the public key in manifest.

mfst_wsa_update

unsigned char mfst_wsa_update(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb,

 struct spi_mon_instance *SPImonitor)

Parameter Description

manifest The pointer to the manifest of the system.

this_i2c_efb The pointer to the instance of the current I2C device used for the OOB channel.

SPImonitor The pointer to the instance of the current SPI monitor device.

Returns Description

unsigned char Returns 0 if no error.

Description

This function is used to update the white space address in manifest.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02243-1.1

5.2. MCTP Processing
mctp_init

void mctp_init(struct mctp *mctp, mctp_rx_fn fn, void *data)

Parameter Description

mctp The pointer to the current mctp component.

fn The function pointer to the callback function which handles the vendor specific commands.

date The pointer to the argument of the callback function.

Returns Description

void —

Description

This function is used to Initialize MCTP structure. This function is supposed to be called when the platform is being initialized.

mctp_register_bus

void mctp_register_bus(struct mctp *mctp, struct mctp_binding *binding, unsigned char eid)

Parameter Description

mctp The pointer to the current mctp component.

binding The pointer to the bus instance that the MCTP protocol is running on.

eid The Endpoint ID values for the MCTP local bus.

Returns Description

void —

Description

This function is used to register a binding bus that the MCTP protocol is running on. This function is supposed to be called when
the platform is being initialized.

mctp_message_rx

int mctp_message_rx(struct mctp_binding *binding, struct mctp_pktbuf *pkt)

Parameter Description

binding The pointer to the instance of the binding bus.

pkt The pointer to the MCTP packet.

Returns Description

int
1: Succeeded in parsing the MCTP packet.

0: Failed to parse the MCTP packet.

Description

This function is used to parse the received MCTP packets.

mctp_message_tx

int mctp_message_tx(struct mctp *mctp, unsigned char_t eid, void *msg, unsigned int msg_len)

Parameter Description

mctp The pointer to the current MCTP component.

eid The Endpoint ID values for the target MCTP bus.

msg The pointer to the message that is to be sent to the binding bus.

msg_len The number of message in bytes that is to be sent to the binding bus.

Returns Description

int Returns 0 if no error.

Description

This function is used to send the specified length of message in the buffer to a peer device.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 47

mctp_pktbuf_init

void mctp_pktbuf_init(struct mctp_binding *binding, struct mctp_pktbuf *buf, unsigned int len)

Parameter Description

binding The pointer to the instance of the binding bus.

buf The pointer to the MCTP packet.

len The length of the data in the packet buffer.

Returns Description

void —

Description

This function is used to Initialize the mctp packet with the specified length.

mctp_pktbuf_hdr

struct mctp_hdr *mctp_pktbuf_hdr(struct mctp_pktbuf *pkt)

Parameter Description

pkt The pointer to the MCTP packet.

Returns Description

struct mctp_hdr * Return the address of the packet header.

Description

This function is used to get the address of the packet header.

mctp_pktbuf_size

unsigned char mctp_pktbuf_size(struct mctp_pktbuf *pkt)

Parameter Description

pkt The pointer to the mctp packet.

Returns Description

unsigned char Returns the value of the size of packet buff.

Description

This function is used to get the size of packet buff.

5.3. Security Manager
Select_flash

int select_flash(struct spi_mon_instance *SPImonitor,

 unsigned int flash_id, unsigned int flash_select,

 unsigned int master_select);

Parameter Description

SPImonitor The pointer to the QSPI monitor device.

flash_id The value of the flash ID you want to select.

flash_select The primary of secondary flash you want to select.

master_select

The SPI master you want to select.

0: QSPI Monitor.

1: Internal QSPI master.

Returns Description

int
1: Succeeded in selecting the SPI flash.

–1: Failed to select the SPI flash.

Description

This function is used to select the SPI flash you want to access.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

48 FPGA-RD-02243-1.1

authenticate_image

int authenticate_image(struct st_manifest_t *manifest,

 struct spi_mon_instance *SPImonitor,

 struct spi_streamer_instance

 *qspi_master_streamer_inst,

 struct esb_instance *esb_inst,

 unsigned int image_id, unsigned int flash_sel);

Parameter Description

manifest The pointer to the current manifest.

SPImonitor The pointer to the QSPI monitor device.

qspi_master_streamer_inst The pointer to the QSPI streamer device.

esb_inst The pointer to the ESB device.

image_id The image ID that used to get the image related information from the manifest.

flash_sel The primary or the secondary SPI flash where you wants to do the authentication.

Returns Description

int
1: Succeeded in authenticating the specified image.

–1: Failed to authenticate the specified image.

Description

This function is used to authenticate the specified image stored on the SPI flash.

recover_image

int recover_image(struct st_manifest_t *manifest,

 struct spi_mon_instance *SPImonitor,

 struct spi_streamer_instance *qspi_master_streamer_inst,

 unsigned int image_id, unsigned int buflash2priflash);

Parameter Description

manifest The pointer to the current manifest.

SPImonitor The pointer to the QSPI monitor device.

qspi_master_streamer_inst The pointer to the QSPI streamer device.

image_id The image ID that used to get the image related information from the manifest.

buflash2priflash
The flash to indicate the direction of the recovery. 0 means recovery from primary to
secondary.

Returns Description

int
1: Succeeded in recovering the specified image.

–1: Failed to recover the specified image.

Description

This function is used to recover the image from the specified source to the specified destination.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 49

cfg_isp

void cfg_isp(struct st_pfr_instance *pfr_inst,

 unsigned int fromAddr,

 unsigned char is_signed)

Parameter Description

pfr_inst The pointer to the current PFR instance.

fromAddr The flash address where firmware can load the Jedec file and download into the CFG.

is_signed
1: The Jedec file is signed.

0: The Jedec file is not signed.

Returns Description

void —

Description

This function is used to load the Jedec file from the specified flash address and download the Jedec file into the CFG space and
set the done bit and authentication done bit accordingly.

fw_authdone_set

int fw_authdone_set(struct st_pfr_instance *pfr_inst,

 unsigned int start_address)

Parameter Description

pfr_inst The pointer to the current PFR instance

start_address The flash address where the new firmware image is located

Returns Description

int
0: Succeeded in setting the done-bit for the specified firmware image.

–1: Failed to set the done-bit for the firmware image.

Description

This function is used to set the done-bit for the new firmware image. Otherwise, the system cannot boot up successfully with the
new firmware image.

ufm3_update

unsigned char ufm3_update(struct uab_instance *uab_inst,

 unsigned int start_address)

Parameter Description

pfr_inst The pointer to the current PFR instance.

start_address The flash address where the new ufm3 data is located.

Returns Description

unsigned int
0: Succeeded in updating the data for ufm3.

1: Failed to update the ufm3 data.

Description

This function is used to update the ufm3 data into ufm2. And Mach-NX device authenticates the data and makes update into
UFM3 when booting up.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

50 FPGA-RD-02243-1.1

5.4. Log Management
log_write

int log_write(struct st_manifest_t *manifest, unsigned char *data)

Parameter Description

manifest The pointer to the current manifest of the system.

data The pointer to the data buffer that stores the log.

Returns Description

int
0: Succeeded in writing the log.

–1: Failed to write the log.

Description

This function is used to write one slot of log data into the UFM.

log_read

unsigned int log_read(struct st_manifest_t *manifest,

 volatile struct st_i2cCtx_t *this_i2c_efb,

 unsigned char *pException,

 struct esb_instance *this_esb);

Parameter Description

manifest The pointer to the manifest of the current system.

this_i2c_efb The pointer to the I2C slave device that is used as the communication channel.

pException The pointer to the flag for exception.

this_esb The pointer to the ESB device.

Returns Description

unsigned int Return the available address for the next log.

Description

This function is used to read the log from the UFM and send it to BMC via the OOB channel.

log_ack

int log_ack(struct st_manifest_t *manifest, unsigned int page);

Parameter Description

manifest The pointer to the current manifest of the system.

page The value of log entry.

Returns Description

int
0: Succeeded in writing the log.

–1: Failed to write the log.

Description

This function is used to acknowledge that the previous log has been received.

log_clear

int log_clear(struct st_manifest_t *manifest);

Parameter Description

manifest The pointer to the current manifest of the system.

Returns Description

int 0: Succeeded in clearing the log. No other return value.

Description

This function is used to write one slot of log data into the UFM.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 51

6. PFR System Design (from Lattice Propel)
Lattice Propel is a platform for embedded system design, development, and validation. Lattice Propel provides a PFR
Solution Template to simplify customer PFR solution design.

6.1. PFR Solution Template
The PFR Solution Template provides a baseline PFR implementation with all required features enabled. You can follow
Lattice Propel tool flow to create or modify a standard PFR design.

The diagram below (Figure 6.1) shows the general design flow based on Propel tool sets. Choose PFR Template during
the Select Solutions Templates step. After that, follow the Propel user guide to create the entire design step by step.

Select Solution Templates

Select Processor and Device

DGE (Formatter)

Prepared Files (RTL, LPF, and TCL)
for Lattice Diamond Project

SGE

System Configuration File
& BSP Files

C Project

Develop & Build

Debug and Profile

SW Binary

Open Lattice Propel

SoC Project Propel Builder

Lattice Diamond

SoC Bistream

Figure 6.1. Lattice Propel Template Flow

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

52 FPGA-RD-02243-1.1

6.2. PFR System Design Customization
You can customize your hardware and software designs on top of the PFR Solution Template to meet your specific
requirements.

When creating a new PFR system design, to build a customized design, you can:

 after creating the SoC project, customize the SoC design in System Builder.

 after creating a project in Lattice Diamond:

 add/edit RTL source files to bring in customer logic;

 edit the LPF file for I/O mapping and constrain settings.

 after the software project is created, edit the source files in Propel SDK.

Further changes can be made to the existing PFR system design which is created through the Propel tool sets. Note
when an SoC design is changed in the System Builder, it is necessary to build the hardware project in Propel SDK to
regenerate the BSP. After that, a new software project needs to be created with the updated BSP.

6.2.1. Customer PLD Customization

As stated in the Customer PLD Interface section, a Customer PLD module is provided to allow you to integrate the
control logic into the PFR solution. In the Lattice PFR Solution Template, a simple customer PLD design is provided
(Figure 6.2) to demonstrate a typical usage as monitoring and controlling customized I/O pads.

User Toggle Switch

LED Toggled Toggle Output

Receive Message

Send Message

Input Change Detected

Send Message

Receive Message

Initial Customer PLD
Interface

Customer PLD PFR Firmware

Figure 6.2. Customer PLD Workflow

You can edit the template project to customize the functionality of customer PLD as well as the firmware accordingly.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 53

7. PFR System Validation Guide

7.1. PFR Utilities
A set of utilities in Lattice Propel can let you validate the functionalities for the PFR system. With these utilities, you can
perform system-level validation for your own PFR solutions.

7.1.1. Lattice Sentry Demo GUI Tool

The Lattice Sentry Demo GUI is a tool which can communicate between a PC with Windows platform and the Mach-NX
device through UART to I2C bridge on the Lattice Sentry Demo Board for Mach-NX part. This tool also provides SPI
access to verify the monitoring and protection of the SPI Flash. The Lattice Sentry Demo GUI is integrated in Lattice
Propel platform.

To use Lattice Sentry Demo GUI Tool:

1. Connect mini-USB cable from PC to the mini-USB connector J11 of the Lattice Sentry Demo Board for Mach-NX.

2. From your PC desktop, invoke Lattice Propel. Choose LatticeTools > Lattice Sentry Tools for Mach-NX > Lattice
Sentry Demo GUI to invoke Lattice Sentry Demo Tool. See Figure 7.1.

Figure 7.1. Launch Lattice Sentry Demo GUI Tool

3. The available COM ports are listed in Console Output. Clicking the Scan Ports button can update the available ports.
See Figure 7.2.

4. Two COM ports are associated with the Lattice Sentry Demo Board for Mach-NX. The COM port with smaller
number is for BMC, while the COM port with larger number is for PCH. Select the associated COM port for both
BMC and PCH channel. See Figure 7.2.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54 FPGA-RD-02243-1.1

Figure 7.2 COM Port Scan of the Lattice Sentry Demo GUI Tool

5. Clicking the OFF check box for BMC to open the port and establish the connection between GUI and BMC. If the
BMC port can be opened successfully, the OFF check box is changed to ON. See Figure 7.3. All logs are listed in the
Console Output area. For PCH, the operation is similar.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 55

Figure 7.3 Enable Lattice Sentry Demo GUI Tool

6. Click the Clear button to clear the message log in the Console Output window.

7. In the UART Control section, you can select a command and change the parameters for the corresponding
command. The message for this command is generated automatically.

8. Clicking Send Command can send selected command and receive the response. All logs are shown in the Console
Output window. See Figure 7.4.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

56 FPGA-RD-02243-1.1

Figure 7.4. Send Command of Lattice Sentry Demo GUI Tool

9. Clicking Read Log reads one log entry at a time. Logs are available for Authentication, Recovery, and SPI Exceptions.
When the Current and Last Index values are the same, there are no more log entries. See Figure 7.5.

Figure 7.5 Logging of Lattice Sentry Demo GUI Tool

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 57

10. Clicking Read Address Space retrieves the information of the manifest from UFM0 in Mach-NX device. In the
Address Space Information area, the Flash0 tab is for the BMC port and the Flash1 tab is for the PCH port. See
Figure 7.6.

Figure 7.6 Read Address Space of Lattice Sentry Demo GUI Tool

For the detail definition of the commands, refer to the Write Commands and Read Commands sections of the Mach-NX
Platform Firmware Resiliency Out-of-Band I2C Command Protocol User Guide (FPGA-UG-02032).

7.2. Key Feature Validation Method
Lattice Propel provides several methods which can be used to validate the PFR functionalities at different levels. When
you design a PFR solution using Lattice Propel, functions from basic register access to system-level can all be validated
in the simulation environment. At board-level validation, key features for PFR system, including authentication,
protection, and recovery are necessary. Lattice Propel provides tool set to validate the basic features on demo board.

7.2.1. Function Simulation

Follow steps below, you can form Functional Simulation at multiple levels:

1. Register access testing for all available registers. Special registers, such as write-only registers, are not covered at
this stage, in order to make sure the correctness of SOC connection, address map, and basic quality of RTLs of SOC
and IP.

2. Functional simulation for all available IP BSP to ensure each standalone IP works as expected.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

58 FPGA-RD-02243-1.1

3. Build up the system-level simulation environment, which is aligned with maximum real application hardware
environment, and then use firmware directly as stimulus to do the system-level simulation.

For Step 1 above, write and readback scenario are used as the starting point.

For Step 2 above, the functionality of each IP plus BSP is the key focus.

Meanwhile, for Step 1 and Step 2, each transaction on the system bus (AHBLITE and APB buses) is traced from end to
end with address map checking. The content of each transaction is also checked.

Step 3 mainly verifies the functionality of the system-level usage defined in firmware.

An internal UVM-based simulation platform has been developed to support verification of all levels. Each level of
verification can be enabled/customized using a unified configuration interface.

An external user can have a customized simulation environment which can be run using Active-HDL.

Lattice Propel provides a utility, Lattice Sentry Demo GUI Tool, which allows you to operate all PFR I2C commands to
implement and validate the PFR Key functionality.

7.2.2. Authentication
As stated in the Boot Up Protection section, the PFR system authenticates BMC/PCH image at boot-up stage. For
function validation, you can use a command to perform image authentication manually.
The command should be selected with correct arguments in the Lattice PFR Demo Tool.
To force authentication for the Primary image in Flash0, select the command ‘Authenticate Image’ and modify the
value in the right command parameter table (Figure 7.7), then it generates the whole command 0x01 0x00 0x01 0xFD.
Click the Send Command. You can see a Console Output message (Figure 7.7), if it was executed successfully.

Figure 7.7. BMC Image Authentication for Flash 0

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 59

Authenticate Image (0x01 0x00 0x01 0xFD) – to authenticate Primary image in Flash0
Authenticate Image (0x01 0x00 0x02 0xFC) – to authenticate Secondary image in Flash0
Authenticate Image (0x01 0x01 0xFC) – to authenticate Primary image in Flash1 Authenticate
Image (0x01 0x01 0x02 0xFB) – to authenticate Secondary image in Flash1

Next, check all of the security logs by clicking Read Log, and the latest log should be “Event: Authenticate Img ID: 0
Pri/Sec: 1 Auth Pass / Vers Pass /”, which is corresponded to the previous command 0x01 0x00 0x01 0xFD, as shown
in Figure 7.8.

Figure 7.8. Get Logs for Image Authentications

7.2.3. Protection
Click Read Address Space to get the Address Space information for Flash0 and Flash1. All White Spaces are also listed,
as shown in Figure 7.8, which was configured in Manifest file as default.

7.2.3.1. Legal Operation (Operate on White Space)

Read 16 bytes starting from 0x00300000 in Flash0 (White Space), program a value (0x5A) to 0x00300003, and read
back the bytes again.

Flash Page Read (0xF3 0x00 0x30 0x00 0x00) – to read 16 bytes started from 0x00300000 in Flash0. The read back data
is all 0xff, as Figure 7.9 shows.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

60 FPGA-RD-02243-1.1

Figure 7.9. Initial Value of 0x00300000~0x0030000F

Disable SPI Filter (0x16 0x00 0x00 0xE9) – to disable all commands for filtering on BMC SPI port.
Flash Sector Erase (0xF0 0x00 0x30 0x00 0x00 0x01) – to erase the sector started from 0x00300000 in Flash0.
Enable SPI Filter (0x16 0x00 0x01 0xE8) – to enable all commands for filtering on BMC SPI port.
Flash Byte Write (0xF4 0x00 0x30 0x00 0x03 0x5A) – to write a value (0x5A) to 0x00300003 in Flash0.
Flash Page Read (0xF3 0x00 0x30 0x00 0x00) – to read 16 Bytes started from 0x00300000 in Flash0 with above steps.

As Figure 7.10 shows, the address 0x00300003 was programmed with 0x5A successfully, for 0x00300003 is in White
Address List space 0.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 61

Figure 7.10. Value of 0x00300000~0x0030000F after Write

7.2.3.2. Illegal Operation (operate on Black Space)

Reading 16 bytes started from 0x00310000 in Flash0, program a value (0xAA) to 0x00310003, and read back the bytes
again. Follow steps below:
Flash Page Read (0xF3 0x00 0x31 0x00 0x00) – to read 16 Bytes started from 0x00310000 in Flash0
Flash Byte Write (0xF4 0x00 0x31 0x00 0x03 0xAA) – to write a value (0xAA) to 0x00310003 in Flash0
Flash Page Read (0xF3 0x00 0x31 0x00 0x00) – to read 16 Bytes started from 0x00310000 in Flash0.
After running above steps, Figure 7.11 shows that the read address 0x00310000 is blocked and the return values are all
0x00. 0x00310003 is Black Address Space 3 (0x00310000~0x00317FFF), so it cannot be programmed.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

62 FPGA-RD-02243-1.1

Figure 7.11. Value of 0x00310000~0x0031000F after Write

Using the Read log operation, SPI Exception Events are printed in detail by Lattice Sentry Demo GUI Tool, as shown in
Figure 7.12. The illegal command is captured as the Flash Byte Write to BMC Flash0.

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 63

Figure 7.12. Logs of Illegal Operation

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

64 FPGA-RD-02243-1.1

7.2.4. Recovery

Image recovery is demonstrated by manually corrupting the image and recovering it from a known good image.

7.2.4.1. Manual Image Corruption

Disable all commands filtering for BMC. Then erase the sector starting from 0x00100000 in Flash0 to corrupt Primary
image in Flash0. Authenticate Primary image after corrupting the Primary image. Authentication should fail, as
Figure 7.13 shows. Follow steps below:
Authenticate Image (0x01 0x00 0x01 0xFD) – to authenticate Primary image in Flash0.
Disable SPI Filter (0x16 0x00 0x00 0xE9) – to disable all commands for filtering on BMC SPI port.
Flash Sector Erase (0xF0 0x00 0x10 0x00 0x00 0x01) – to erase the sector started from 0x00100000 in Flash0.
Authenticate Image (0x01 0x00 0x01 0xFD) – to authenticate Primary image in Flash0.

Figure 7.13. Authentication Failed with Corrupted Image

http://www.latticesemi.com/legal

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 65

7.2.4.2. Manual Image Recovery
Select the command Recovery Image and modify the value in the right command parameter table (Figure 7.14). It
generates the whole command 0x02 0x00 0x01 0xFC. Click Send Command. If successful, the console output appears
with messages, as shown in Figure 7.14.

Figure 7.14. Authenticate Primary Image after Recovery Done

Recover Image (0x02 0x00 0x01 0xFC) – to recover BMC image to Primary with Secondary (good image) in Flash0.
Authenticate Image (0x01 0x00 0x01 0xFD) – to authenticate Primary image in Flash0.

http://www.latticesemi.com/legal

Lattice Propel 1.1 Root-of-Trust Reference Design
User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

66 FPGA-RD-02243-1.1

References
 Lattice Sentry PLD Interface IP Core (FPGA-IPUG-02106)

 SFB Interface IP Core (FPGA-IPUG-02151)

 Lattice Sentry SMBus Mailbox IP Core - Lattice Propel Builder (FPGA-IPUG-02165)

 Lattice Sentry I2C Filter IP Core - Lattice Propel Builder (FPGA-IPUG-02166)

http://www.latticesemi.com/legal
http://www.latticesemi.com/view_document?document_id=52882
http://www.latticesemi.com/view_document?document_id=53137
https://www.latticesemi.com/view_document?document_id=53430
http://www.latticesemi.com/view_document?document_id=53429

 Lattice Propel 1.1 Root-of-Trust Reference Design
 User Guide

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02243-1.1 67

Revision History

Revision 1.1, March 2022

Section Change Summary

PFR IP API Reference In the UFM Access Block (UAB) section:

 newly added uab_done_set, uab_auth_eanble_write, uab_usercode_read,
uab_pubkey_read, uab_pubkey_write, uab_usec_read, uab_usec_write,
uab_csec_read, uab_csec_write, uab_feabit_read, uab_feabit_write, uab_cr0_read,
uab_cr0_write, and uab_udss_write blocks.

Revision 1.0, January 2022

Section Change Summary

All Initial general-purpose production release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Lattice Propel 1.1 Root-of-Trust Reference Design
	Acronyms in This Document
	1. Introduction
	1.1. Purpose
	1.2. Audience
	1.3. Document Structure

	2. Platform Firmware Resiliency System (PFR) Root of Trust (RoT) Introduction
	2.1. PFR
	2.2. RoT
	2.3. Lattice RoT Mechanism
	2.4. System Architecture
	2.5. Functionality Overview
	2.5.1. Mach-NX SoC Function Block
	2.5.1.1. RISC-V Processor
	2.5.1.2. Lattice Sentry Secure Enclave
	2.5.1.3. Lattice Sentry QSPI Master Streamer
	2.5.1.4. Lattice Sentry QSPI Monitor
	2.5.1.5. Lattice Sentry System Management Bus (SMBus) Filter
	2.5.1.6. General Peripherals

	2.5.2. Mach-NX SFB Interface
	2.5.2.1. Customer PLD Interface
	2.5.2.2. UFM Access Module (UAB)

	3. PFR System Architecture and Runtime Flow
	3.1. Firmware Architecture
	3.2. Bootloader
	3.3. Runtime Flow
	3.4. Configuration
	3.4.1. Mach-NX PFR Manifest Manager
	3.4.2. Flash Address Tool

	3.5. Boot Up Protection
	3.6. Recovery
	3.7. Detection
	3.8. Logs and Reporting

	4. PFR IP API Reference
	4.1. Lattice Sentry QSPI Monitor
	4.2. Lattice Sentry QSPI Streamer
	4.3. Lattice Sentry SMBus Filter
	4.4. Lattice Sentry Secure Enclave
	4.4.1. Crypto256 Interface
	4.4.2. Crypto384 Interface

	4.5. Lattice Sentry PLD Interface
	4.6. UFM Access Block (UAB)

	5. PFR Component API Reference
	5.1. Manifest Management
	5.2. MCTP Processing
	5.3. Security Manager
	5.4. Log Management

	6. PFR System Design (from Lattice Propel)
	6.1. PFR Solution Template
	6.2. PFR System Design Customization
	6.2.1. Customer PLD Customization

	7. PFR System Validation Guide
	7.1. PFR Utilities
	7.1.1. Lattice Sentry Demo GUI Tool

	7.2. Key Feature Validation Method
	7.2.1. Function Simulation
	7.2.2. Authentication
	7.2.3. Protection
	7.2.3.1. Legal Operation (Operate on White Space)
	7.2.3.2. Illegal Operation (operate on Black Space)

	7.2.4. Recovery
	7.2.4.1. Manual Image Corruption
	7.2.4.2. Manual Image Recovery

	References
	Revision History
	Revision 1.1, March 2022
	Revision 1.0, January 2022

