

PCIe Multifunction Demo for Lattice Nexusbased FPGAs

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Contents	
Acronyms in This Document	7
1. Introduction	8
1.1. Learning Objectives	8
2. Hardware and Software Requirements	9
2.1. Hardware Requirements	9
2.2. Software Requirements	9
3. Demo Design Overview	10
3.1. Theory of Operation	10
3.2. Design Overview	11
3.2.1. User Interface Application	11
3.2.2. Device Drivers	11
3.2.3. Device Hardware (FPGA Design)	12
4. Importing and Building the FPGA Demonstration	13
4.1. Hardware Directory Structure	13
4.2. Building a Lattice Radiant Project	13
5. Setting Up the Demo	14
5.1. Hardware Setup	14
5.1.1. Jumper Configuration	14
5.1.2. Programming the FPGA	17
5.1.3. Status LED	22
5.2. Software Setup	
5.2.1. Software Setup and Installation for Windows	24
5.2.2. Software Setup for Linux	43
6. Application Overview	46
6.1. Running the PCI Express Demo Application	
6.2. Using the PCI Express Demo Application User Interface	48
6.2.1. Functionality Test Tab	48
6.2.2. GPIO	49
6.2.3. I2C (For CrossLink-NX, Certus-NX, and CertusPro-NX Devices)	50
6.2.4. MDIO (for CrossLink-NX and Certus-NX Devices)	57
7. Customizing the Design for CertusPro-NX Devices	60
7.1. Changing PCIe Lane Width	60
7.2. Changing the PCIe Link Speed	62
8. Troubleshooting	65
8.1. SPI Flash Update	65
8.2. Installing the Driver and User Interface Launch for Windows	66
8.2.1. Problem with Installing the Driver	66
8.2.2. Problem with Launching User Interface	66
8.3. Installing the Driver User Interface Launch for Linux	67
8.3.1. Problem in Installing the Driver	67
8.3.2. Problem in Loading the Driver	67
8.3.3. Problem with User Interface Launching	69
References	70
Technical Support Assistance	71
Revision History	72

Figures

Figure 3.1. Relationship between Hardware and Software Components	10
Figure 3.2. PCle Multifunction Demo SW Design	11
Figure 3.3. PCIe Multifunction FPGA Design	12
Figure 5.1. CrossLink-NX PCIe Bridge Board Jumper Location	14
Figure 5.2. CrossLink-NX PCIe Bridge Board Connection	
Figure 5.3. Certus-NX PCIe Versa Evaluation Board Connection	15
Figure 5.4. CertusPro-NX Versa Evaluation Board Connection	
Figure 5.5. MachXO5-NX Development Board Connection	
Figure 5.6. Creating a New Project from a Scan	
Figure 5.7. Lattice Radiant Programmer Window	18
Figure 5.8. CrossLink-NX FPGA Device Settings	18
Figure 5.9. Certus-NX FPGA Device Settings	18
Figure 5.10. CertusPro-NX FPGA Device Settings	18
Figure 5.11. MachXO5-NX FPGA Device Settings	18
Figure 5.12. Device Properties Window for CrossLink-NX SPI Flash Programming	19
Figure 5.13. Device Properties Window for Certus-NX SPI Flash Programming	20
Figure 5.14. Device Properties Window for CertusPro-NX SPI Flash Programming (with Macronix Flash)	21
Figure 5.15. Device Properties Window for MachXO5-NX Flash Programming	21
Figure 5.16. Programmer Menu Bar	22
Figure 5.17. Programmer Output Window	22
Figure 5.18. CrossLink-NX Status LED	22
Figure 5.19. Certus-NX Device Programming Done LED	23
Figure 5.20. CertusPro-NX Device Programming Done LED	23
Figure 5.21. MachXO5-NX Programming Done LED	24
Figure 5.22. Running Disable Integrity Checks Command	
Figure 5.23. Running Test Sign On Command	25
Figure 5.24. Troubleshoot Option	25
Figure 5.25. Advanced Options	25
Figure 5.26. Select Startup Settings	26
Figure 5.27. Restarting Windows	26
Figure 5.28. Windows Installer: Welcome Page	27
Figure 5.29. Windows Installer: Destination Folder Page	27
Figure 5.30. Windows Installer: Summary Page	28
Figure 5.31. Windows Installer: Application Installed	
Figure 5.32. Device Configuration Prompt	29
Figure 5.33. Device Driver Installation Wizard	29
Figure 5.34. Windows Security in Driver Installation	30
Figure 5.35. Device Driver Installation Completed	30
Figure 5.36. Device Manager	31
Figure 5.37. Showing Device Properties	31
Figure 5.38. Hardware IDs of CrossLink-NX MDIO Device	32
Figure 5.39. Hardware IDs of CrossLink-NX I2C Device	32
Figure 5.40. Hardware IDs of CrossLink-NX GPIO Device	33
Figure 5.41. Hardware IDs of Certus-NX MDIO Device	
Figure 5.42. Hardware IDs of Certus-NX I2C Device	
Figure 5.43. Hardware IDs of Certus-NX GPIO Device	
Figure 5.44. Hardware IDs of CertusPro-NX I2C Device	
Figure 5.45. Hardware IDs of CertusPro-NX and MachXO5-NX Devices	
Figure 5.46. Update Driver Menu in Device Manager	
Figure 5.47. Update Driver Options	
Figure 5.48. Browse the Driver for Device	
Figure 5.49. Windows Security in Device Manager	37

Figure 5.50. MDIO Driver Installation Status Message for the CrossLink-NX Device Board	38
Figure 5.51. MDIO Driver Installation Status Message for the Certus-NX Device Board	38
Figure 5.52. I2C Driver Installation Status Message for the CertusPro-NX Device Board	39
Figure 5.53. Multifunction Demo Device Name Displayed in Device Manager	39
Figure 5.54. MDIO, I2C, and GPIO Device Drivers for the CrossLink-NX Board in Device Manager	40
Figure 5.55. MDIO, I2C, and GPIO Device Drivers for the Certus-NX Board in Device Manager	40
Figure 5.56. I2C, and GPIO Device Drivers for the CertusPro-NX Device Board in Device Manager	41
Figure 5.57. GPIO Device Drivers for MachXO5-NX in Device Manager	
Figure 5.58. Select Uninstall Device for the Device User To Uninstall	42
Figure 5.59. Select the Check Box and Click on Uninstall Button	
Figure 5.60. Uninstalled Device	
Figure 5.61. Display Make Utility in Linux Terminal	
Figure 5.62. Display Compiler Version in Linux Terminal	
Figure 5.63. Update Compiler Version in Linux Terminal	
Figure 6.1. PCIe Test Application Device Info Tab for Crosslink-NX Devices	
Figure 6.2. PCIe Test Application Device Info Tab for CertusPro-NX Devices	
Figure 6.3. PCIe Test Application Device Info Tab for MachXO5-NX Devices	
Figure 6.4. Functionality Test Tab for Crosslink-NX/Certus-NX Devices	
Figure 6.5. Functionality Test Tab for CertusPro-NX	
Figure 6.6. Functionality Test Tab for MachXO5-NX	
Figure 6.7. GPIO Input Switch.	
Figure 6.8. GPIO Output LEDs	
Figure 6.9. I2C Bit-Rate Selection	
Figure 6.10. I2C Address Program	
Figure 6.11. I2C Master Write	
Figure 6.12. Single Write to an Arbitrary Address of IMX258-0AQH5 Camera	
Figure 6.13. Sequential Write Starting from an Arbitrary Address of IMX258-0AQH5 Camera	
Figure 6.14. I2C Master Write Procedure	
Figure 6.15. I2C Master Read	
Figure 6.16. Single Read from the Held Address of IMX258-0AQH5 camera	
Figure 6.18. I2C Master Write to Write the Register Address	
Figure 6.19. I2C Master Read	
Figure 6.20. I2C Master Register Read	
Figure 6.21. Single Read from an Arbitrary Address of MX258-0AQH5 Camera	
Figure 6.22. Sequential Read Starting from an Arbitrary Address of MX258-0AQH5 Camera	
Figure 6.23. I2C Master Register Read	
Figure 6.24. I2C Master Register Read	
Figure 6.25. I2C Batch Mode Read/Write	
Figure 6.26. MDIO Phy Addr	
Figure 6.27. MDIO Configuration Register Read	
Figure 6.28. MDIO Register Write	
Figure 6.29. MDIO Configuration through File	
Figure 6.30. MDIO Configuration File Example	
Figure 7.1. Save New Project	
Figure 7.2. Open PClex4 IP	60
Figure 7.3. PCIe IP Configuration to Select Lane Width	
Figure 7.4. IP Generation	61
Figure 7.5. Selecting Input and Output Ports	61
Figure 7.6. Example of PDC File	62
Figure 7.7. Save and Recompilation of the Design	62
Figure 7.8. PCIe IP Configuration to Link Speed	63
Figure 7.9. Open PLL IP	63
Figure 7.10. PLL IP Configuration	64

Figure 8.1. TCK Frequency Setting	65
Figure 8.2. Port Selection	65
Figure 8.3. User Interface with No Device Driver	66
Figure 8.4. Ispci -vnm for CrossLink-NX Output Image	67
Figure 8.5. Ispci -vnm for Certus-NX Output Image	68
Figure 8.6. Ispci -vnm for CertusPro-NX Device Output Image	
Figure 8.7. Ispci -vnm for MachXO5-NX Device Output Image	68
Figure 8.8. Content List of Demonstration/Linux Directory.	
Figure 8.9. Content List of Software/Linux Directory	69
Tables	
Table 5.1. Jumper Configuration	14
Table 5.2. Jumper Configuration	
Table 5.3. Status LED Description	
· · · · · · · · · · · · · · · · · · ·	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition	
API	Application Programming Interface	
BAR	Base Address Register	
BIOS	Basic Input/Ouput System	
DLL	Dynamic Link Library	
FDSOI	Fully Depleted Silicon on Insulator	
FPGA	Field-Programmable Gate Array	
LED	Light-emitting diode	
MIPI	Mobile Industry Processor Interface	
PCle	PCI Express	
PHY	Physical Layer	
SPI	Serial Peripheral Interface	
USB	Universal Serial Bus	
I2C	Inter-integrated Circuit	
MDIO	Management Data Input Output	
GPIO	General Purpose Input Output	
OS	Operating System	

1. Introduction

This guide describes how to set up and run the PCIe Multifunction Demo using devices built on the Lattice Nexus™ platform, specifically CrossLink™-NX, Certus™-NX, CertusPro™-NX, MachXO5™-NX devices.

For CrossLink-NX devices, the demo is targeted to the CrossLink-NX PCIe Bridge Board, which features the CrossLink-NX FPGA in a 400-ball caBGA package (LIFCL-40-8BG400C). For Certus-NX devices, the demo is targeted to the Certus-NX Versa Evaluation Board, which features the Certus-NX FPGA in a 256-ball caBGA package (LFD2NX-40-8BG256C). For Certus-Pro-NX devices, the demo is targeted to the Certus-Pro-NX Versa Evaluation Board, which features the Certus-Pro-NX FPGA in a LFG672 package. For MachXO5-NX, the demo is targeted to the MachXO5T-NX Development Board, which features the LFMXO5-100T FPGA in the BBG400 package. The above-mentioned FPGAs are built on the Nexus FPGA platform using low power 28 nm FDSOI technology.

This guide familiarizes with the process of setting up the PCI Express development environment. It is assumed that you do not have any associated tools installed on the system.

The demo discussed in this document is the PCI Express Multifunction Demo.

1.1. Learning Objectives

After completing the steps in this guide, you can perform the following:

- Set up and install all applicable development tools and PCI Express demos.
- Establish communication between the FPGA and the system through the PCI Express link.
- Run the PCI Express Multifunction Demo which implements three separate PCI Express functions on a single endpoint device. Each function allows you to control a different aspect of the FPGA Board.
- Use what the demo teaches about designing Lattice PCI Express solutions.
- Modify and rebuild the PCI Express Multifunction Demo.
- Become familiar with the software development tools and major design flow steps employed in this kit.
- Use other existing documentation in conjunction with this guide.

This document assumes that you have already installed the Lattice Radiant™ design software. This document covers some of the basic functions of the Lattice Radiant software. If you like to learn more about the Lattice Radiant software, refer to the Lattice Radiant software Help system.

2. Hardware and Software Requirements

2.1. Hardware Requirements

To install the kit design and run the demo software, a computer with a PCI Express ×16, ×8, ×4, or ×1 slot is required. The computer must also have a USB port and be able to run the Lattice Radiant software. All other hardware and drivers are included in the kit.

- Mini-USB to USB-A cable for programming the bitstream
- 12 V Power Adapter
- Evaluation Board
 - CrossLink-NX PCIe Bridge Board for the CrossLink-NX FPGA
 - Certus-NX Versa Evaluation Board for the Certus-NX FPGA
 - CertusPro-NX Versa Evaluation Board for the CertusPro-NX FPGA
 - MachXO5T-NX Development Board for MachXO5-NX

Additionally, for Certus-NX and CertusPro-NX devices, a MIPI CSI Camera Module is needed to test I2C functionality; this demo uses the Sony IMX258-0AQH5 Camera Module. The CrossLink-NX PCIe Bridge Board must already contain the camera module. The MachXO5T-NX Development Board does not provide an interface to connect a camera module, hence only incorporates test involving DIP switches and LEDs.

2.2. Software Requirements

The following software applications are required to obtain the expected results in the procedures described in this guide:

- Lattice Radiant software version 2.2 or later (available at the Lattice website Design Software and IP page)
- PCIe Multifunction Demo for Windows or Linux
- Windows Operating System or Ubuntu 24.04.2 Operating System
- Bit file for the SPI Flash
- LIFCL40 PCIe MultiFunction.bit file for CrossLink-NX devices
- LFD2NX PCIe MF.bit file for Certus-NX devices
- MultifunctionDemo Implementation.bit file for CertusPro-NX devices
- MultifunctionDemo Implementation.bit file for MachXO5-NX devices

3. Demo Design Overview

3.1. Theory of Operation

The demo runs on a standard ×64 PC and accesses the FPGA board installed on a PCle slot. Figure 3.1 shows the relationship between the hardware and software components of the demo. The PCle IP on the Lattice FPGA acts as a PCle endpoint occupying certain ranges of PCl memory space. When the computer boots, the BIOS and OS probe the PCl Express and PCl buses to detect devices present on the buses and assign the devices ranges in the PCl memory space. The BIOS maps the PCl memory space to the memory space in the PC. After the device driver is installed, the software can read from and write to the PCle device memory (Embedded Block RAM - EBR). The software can also read from the PCle configuration space registers. The Multifunction demo implements, one (for MachXO5-NX devices) or two (for CertusPro-NX devices) or three (for CrossLink-NX and Certus-NX devices) separate PCle functions within a single endpoint.

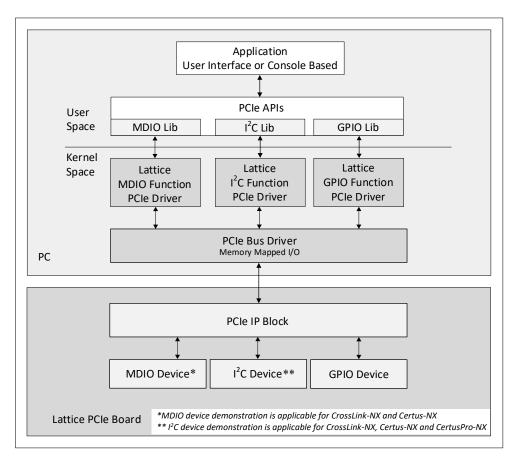


Figure 3.1. Relationship between Hardware and Software Components

3.2. Design Overview

The included user interface application demonstrates the PCIe Multifunction design. The application software is developed using a layered architecture consisting of the following layers:

- User interface application
- Driver API
- Device Drivers
- Device Hardware (FPGA Design)

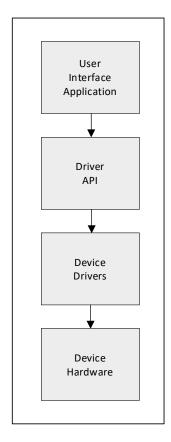


Figure 3.2. PCIe Multifunction Demo SW Design

3.2.1. User Interface Application

The Multifunction demo includes a user interface written in Qt. The user interface uses the driver API to communicate with the device hardware to send control plane read/write instructions to registers in the IP. The Driver API is a C++ dynamic library that provides an interface to access the hardware.

On Windows, the *multifunction_lib.dll* library is a DLL that bridges the user space demo applications to the kernel space driver code and provides routines to control the IP modules.

On Linux, the library is called libmem_rw.so.

3.2.2. Device Drivers

Hardware drivers provide access to the FPGA board. On Windows, the <code>lpcie_gpio.sys</code>, <code>lpcie_i2c.sys</code>, and <code>lpcie_mdio.sys</code> drivers support the Multifunction demo. On Linux, the <code>gpio_main.ko</code>, <code>i2c_main.ko</code>, and <code>mdio_main.ko</code> drivers support the demo. Note that the MDIO driver is only applicable to CrossLink-NX and Certus-NX devices.

3.2.3. Device Hardware (FPGA Design)

Figure 3.1 shows the top-level architecture of the FPGA design. The design uses the PCIe hard IP on the FPGA to implement the PCIe endpoint. The endpoint interfaces with the application logic for each function through an arbiter. For initial configuration of the PCIe IP, the LMMI interface is used.

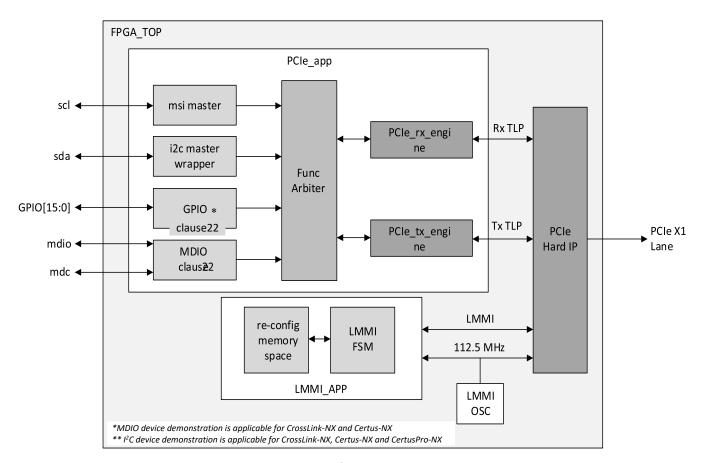


Figure 3.3. PCIe Multifunction FPGA Design

4. Importing and Building the FPGA Demonstration

The design package includes the PCIe IP, .bit file, and synthesis projects created with the Lattice Radiant software.

4.1. Hardware Directory Structure

The Hardware folder inside the package contains the following subfolders.

- IP Contains the pre-generated IPs used in the design. These IPs can be configured by clicking the .ipx file after opening the project in the Lattice Radiant software.
- Implementation Contains the Lattice Radiant project (.rdf) file, constraints file (.pdc), and implemented design and bit files.
- Source Contains RTL files required for the design.

4.2. Building a Lattice Radiant Project

To generate the bit stream file:

- 1. Open the Lattice Radiant software.
- 2. Click Open project and browse to the .rdf file
 - a. For CrossLink-NX, the file is *LIFCL_PCIe_MF.rdf*, which is located in the *HardwareImplementation\LIFCL-40 PCIe MF* folder.
 - b. For Certus-NX, the file is LFD2NX_PCIe_MF.rdf, which is located in the *Hardware*\
 \Implementation\LFD2NX_PCIe_MF folder.
 - c. For CertusPro-NX, the file is MultifunctionDemo.rdf, which is located in the *Hardware\ VersaBoard\MultifunctionDemo* folder.
 - d. For MachXO5-NX, the file is MultifunctionDemo.rdf, which is located in the *Hardware\ MultifunctionDemo* folder.
- 3. When user project loads, click **Task Detail View**. This shows a list of actions that the Lattice Radiant software performs to build the .bit file.
- 4. Select the files and reports that you want to generate.
 - Note: The software selects options needed to regenerate the .bit file by default.
- 5. After selecting preferred reports, click Run All.
 - This creates a .bit file with the user project's current name in the impl_1 or Implementation folder.

5. Setting Up the Demo

5.1. Hardware Setup

This section covers the steps in programming the demo to the SPI memory of the FPGA board.

5.1.1. Jumper Configuration

For the CrossLink-NX board, install the jumpers listed in Table 5.1.

Table 5.1. Jumper Configuration

rable 3121 Janiper Configuration		
Jumper Checklist	Configuration	
J11, J18	Connect pins 1 and 2	
J7, J6, J13, J14	Connect pins 1 and 2	
J31, J32, J331	Connect pins 1 and 2	
J8, J9, J10, J15, J16, J19, J20, J21, J22, J23, J25, J26, J29, J30, J34, J35, J36, J37, J38, J39, J42	These are current measurement headers and must be kept Open.	
J51	Connect pins 2 and 4	
J48	Connect pins 2 and 3	
J27	Connect pins 1 and 2	
J45, J46	Connect pins 1 and 2	
J17	Open	

Note:

Figure 5.1 shows the location of the jumpers.



Figure 5.1. CrossLink-NX PCIe Bridge Board Jumper Location

^{1.} J31, J32, and J33 are different from the default board configuration.

Make sure the card is plugged into a PCIe slot or connected to the 12 V input supply. If the card is plugged into the PCIe slot, external power is provided by the system, and SW2 must be in the *up* position to receive power from the PCIe slot. If external 12 V power is provided, then SW2 must be in the *down* position to receive power from the external 12 V connection. Connect the board to the PC running the Lattice Radiant software with the Mini USB Type A cable as shown in Figure 5.2.

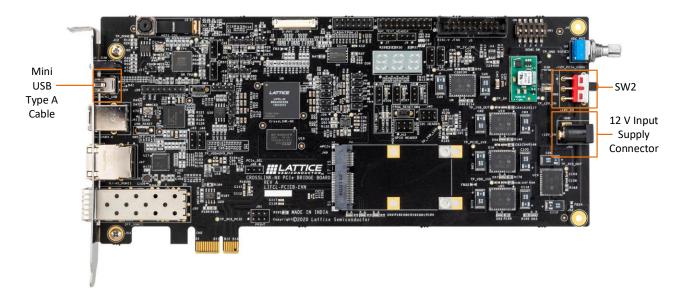


Figure 5.2. CrossLink-NX PCIe Bridge Board Connection

For the Certus-NX board, there are no jumpers to configure beyond the default. Refer to the Certus-NX Evaluation Board User Guide (FPGA-EB-02032) for the default jumper configuration.

There is no toggle switch for selecting the power source. The board can be powered through the PCle slot or from an external 12 V input supply. If the board is powered from the PCle slot, the external 12 V input supply connector does not need to be connected. Connect the board to the PC running the Lattice Radiant software with the Mini USB Type A Cable as shown in Figure 5.3.

Figure 5.3. Certus-NX PCIe Versa Evaluation Board Connection

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

For the CertusPro-NX device board, there are no jumpers to configure beyond the default. Refer to the CertusPro-NX Versa Board User Guide (FPGA-EB-02053) for a detailed list of jumpers on the board. when the board is plugged into the PCIe slot, external power is provided by the system, and SW6 must be in the *up* position to receive power from the PCIe slot. Connect the board to the PC running the Lattice Radiant software with the Mini USB Type A Cable as shown in Figure 5.4.

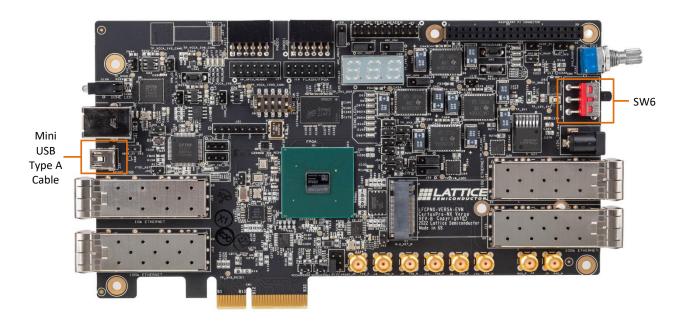


Figure 5.4. CertusPro-NX Versa Evaluation Board Connection

For MachXO5-NX devices, install the jumpers listed in Table 5.2 beyond the default. Refer to the MachXO5T-NX Development Board User Guide (FPGA-EB-02052) for a detailed list of jumpers on the board. when the board is plugged into the PCIe slot, external power is provided by the system, and SW6 must be in the up position to receive power from the PCIe slot. Connect the board to the PC running the Lattice Radiant software with the Mini USB Type A Cable as shown in Figure 5.5.

Table 5.2. Jumper Configuration

Jumper Checklist	Configuration
JP10	Connect pins 1 and 2
JP4	Connect pins 1 and 2

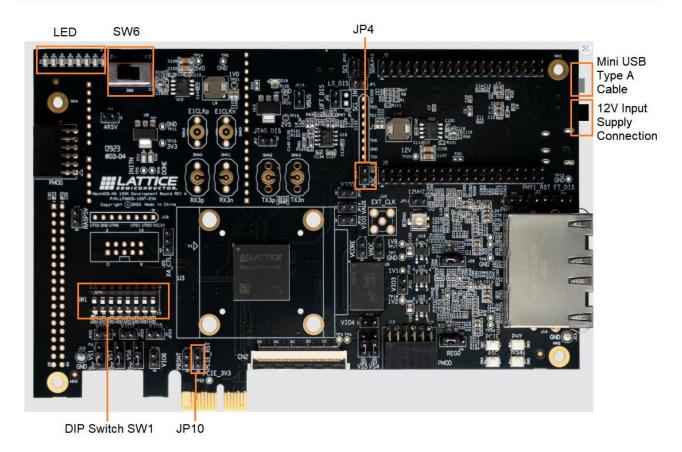


Figure 5.5. MachXO5-NX Development Board Connection

5.1.2. Programming the FPGA

To program the FPGA device:

- 1. Create a new project using the Lattice Radiant Programmer software. In the **Getting Started** dialog box, input the **Project Name** and **Location** as shown in Figure 5.6.
- Select Create a new project from a scan. Values are indicated in the Cable, Port, and TCK Divider Setting (0-30×) fields.
- 3. Click OK.

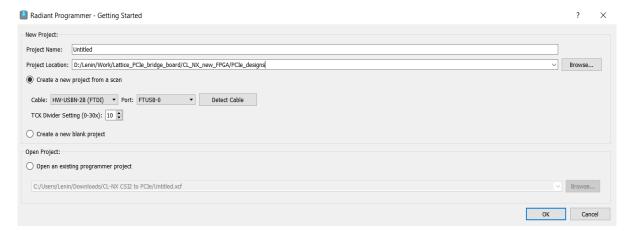


Figure 5.6. Creating a New Project from a Scan

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4. The main interface opens as shown in Figure 5.7.

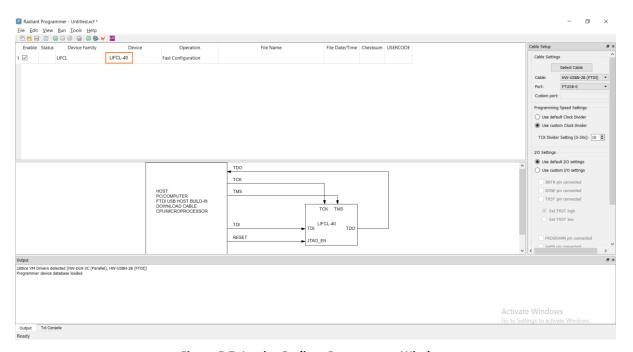


Figure 5.7. Lattice Radiant Programmer Window

 If the Programmer settings do not match the settings shown in Figure 5.8 for CrossLink-NX devices, Figure 5.9 for Certus-NX devices, or Figure 5.10 for CertusPro-NX devices, or Figure 5.11 for MachXO5-NX select these settings manually from the drop down menu.

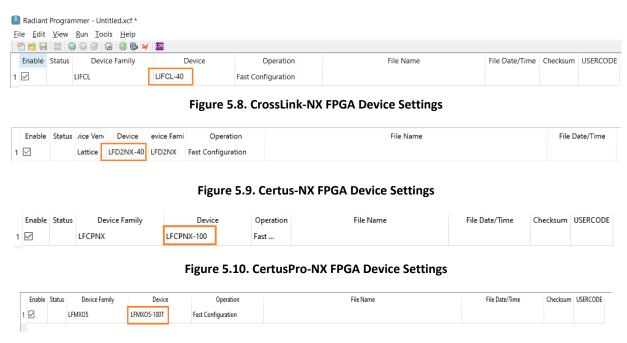


Figure 5.11. MachXO5-NX FPGA Device Settings

To select programming settings:

- 1. Browse and select the Programming file from the *Demonstration\Bitstream* folder.
 - a. For CrossLink-NX devices, select LIFCL40_PCIe_Multifunction.bit.
 - b. For Certus-NX devices, select LFD2NX_PCIe_MF.bit.
 - c. For CertusPro-NX devices, select MultifunctionDemo Implementation.bit.
 - d. For MachXO5-NX, select MultifunctionDemo_Implementation.bit.
- 2. Click OK.
- Double-click under Operation to open the Device Properties dialog box.
- 4. Select the settings as shown in Figure 5.12 for CrossLink-NX devices, Figure 5.13 for Certus-NX devices, or Figure 5.14 for CertusPro-NX devices.
- 5. For MachXO5-NX, Flash programming, select the Flash Header Programming Options and CFGO Programming Options. The .msc file and jed.file can be found in the following locations:

 $Hardware \verb| Implementation \verb| Multifunction Demo_Implementation \verb| header.mcs | Hardware \verb| Implementation \verb| Multifunction Demo_Implementation \verb| O.jed | D. State Foundation of the property of the proper$

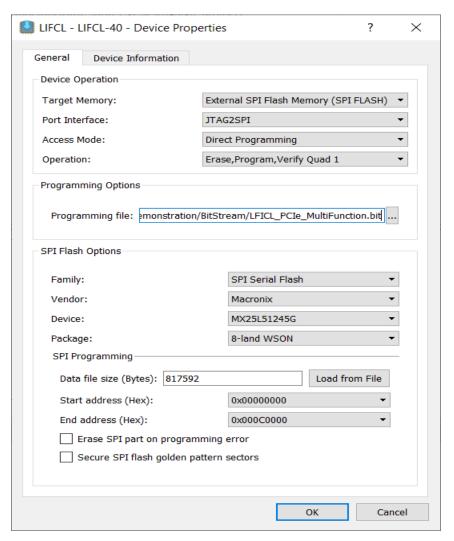


Figure 5.12. Device Properties Window for CrossLink-NX SPI Flash Programming

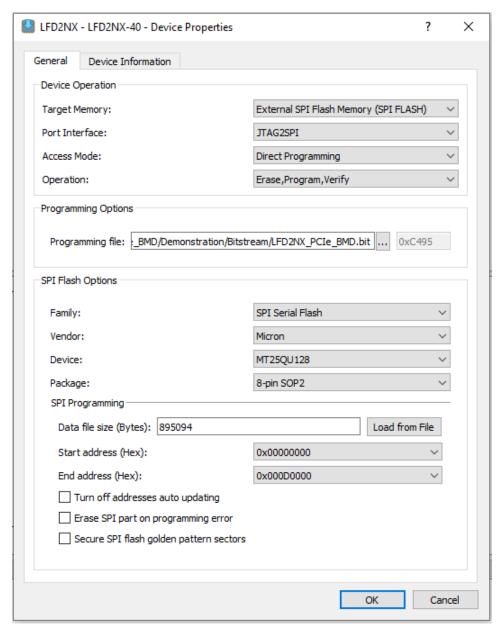


Figure 5.13. Device Properties Window for Certus-NX SPI Flash Programming

20

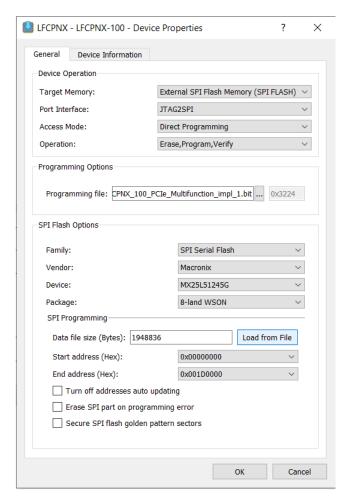


Figure 5.14. Device Properties Window for CertusPro-NX SPI Flash Programming (with Macronix Flash)

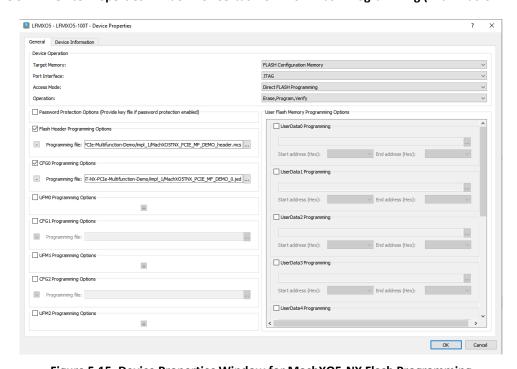


Figure 5.15. Device Properties Window for MachXO5-NX Flash Programming

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6. Click the **Programming** button from the menu bar shown in Figure 5.16 to start programming.

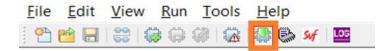


Figure 5.16. Programmer Menu Bar

When the FPGA programming is successful, the output console displays an **Operation: successful** message as shown in Figure 5.17.

INFO - Execution time: 00 min : 28 sec
INFO - Elapsed time: 00 min : 32 sec
INFO - Operation: successful.
Output Tcl Console

Figure 5.17. Programmer Output Window

If the programming operation is unsuccessful, refer to the Troubleshooting section of this document.

After programming, power cycle the board and check the status LEDs on the board. The LED status is discussed in the next section.

5.1.3. Status LED

For the Crosslink-NX board, the three status LEDs are shown in Figure 5.18.

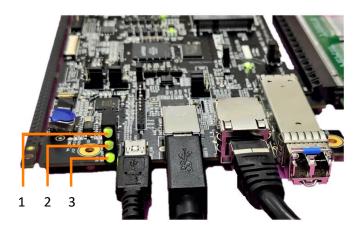


Figure 5.18. CrossLink-NX Status LED

The description of each status LED is provided in Table 5.3.

Table 5.3. Status LED Description

SI. No	Name	Description	
1 125 MHz Clock present Green – Blinking when clock is present		Green – Blinking when clock is present	
2 DCIa Lialella	Green – Lights up if PCIe link up is successful		
2 PCle Link Up		Red – Lights up if PCIe link up is not successful	
3	DONE	Green – Lights if configuration is successful	

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

For the Certus-NX board, the programming done LED lights up in green if the configuration is successful. The LED is located at D29 on the board, as indicated in Figure 5.19.

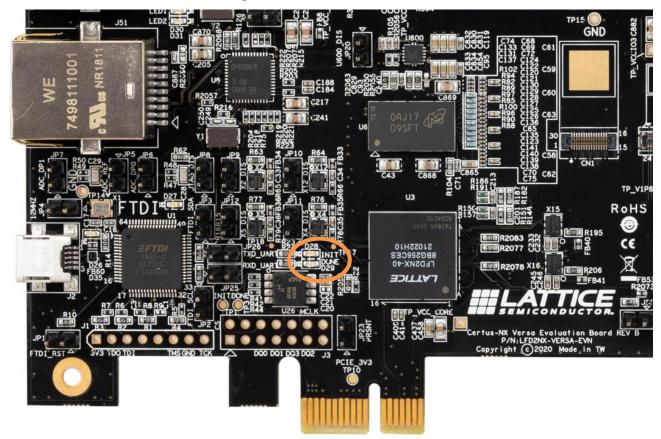


Figure 5.19. Certus-NX Device Programming Done LED

For the CertusPro-NX device board, the programming done LED lights up in green if configuration is successful. The LED is located as shown in Figure 5.20.

Figure 5.20. CertusPro-NX Device Programming Done LED

For MachXO5-NX, the programming done LED D10 lights up in green if configuration is successful. The LED is located as shown in Figure 5.21.

Figure 5.21. MachXO5-NX Programming Done LED

5.2. Software Setup

This section provides the procedure for installing software onto the host machine.

5.2.1. Software Setup and Installation for Windows

Before installing the driver, the Driver Signature Enforcement feature must be disabled.

5.2.1.1. Disabling Driver Signature Enforcement Permanently

To permanently disable Driver Signature Enforcement:

- 1. Start the Command Prompt as administrator.
- 2. Enter the following lines and press Enter.

bcdedit.exe -set loadoptions DISABLE_INTEGRITY_CHECKS

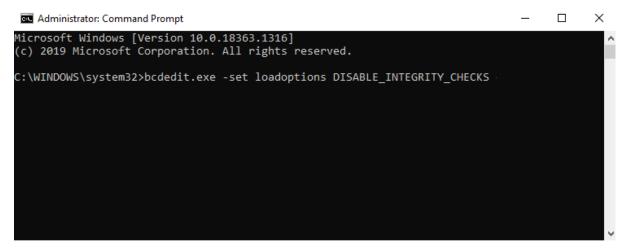


Figure 5.22. Running Disable Integrity Checks Command

bcdedit.exe -set TESTSIGNING ON

Figure 5.23. Running Test Sign On Command

3. Close the Command Prompt and restart the PC.

5.2.1.2. Disabling Driver Signature Enforcement Temporarily

Note: If Driver Signature Enforcement is already disabled, skip this section and proceed to the <u>Driver Installation</u> section.

To disable Driver Signature Enforcement temporarily on Windows Operating System:

- 1. Press the Windows key and click the power button.
- 2. Press and hold the Shift key and click Restart.
- 3. When the Choose an option screen appears as shown in Figure 5.24, release the Shift key.
- 4. Click Troubleshoot.

Figure 5.24. Troubleshoot Option

5. Select **Advanced options** and press Enter.

Figure 5.25. Advanced Options

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Select Startup Settings and press Enter.

Figure 5.26. Select Startup Settings

Click Restart.

Figure 5.27. Restarting Windows

8. After restarting, select Option 7 to disable driver signature verification.

5.2.1.3. Driver Installation

There are two ways to install the device driver:

- Install through a user interface installer (.exe) that is included in the demo package
- Install manually with the Device Manager

Installing Multifunction Demo Device Driver with the User Interface Installer

The Multifunction Demo device driver can be installed during the installation of the user interface as described in the following section.

The Installer provides a standard packaging format for applications and a standard method for customizing the applications. The installer helps to install the Multifunction Demo application in the system.

The Framework supported version is Windows Operating System.

To install the Multifunction Demo device driver through the user interface:

- 1. In the *Demonstration\Windows\Application* folder, double click the **setup.exe**.
- The welcome page appears. Click Next.

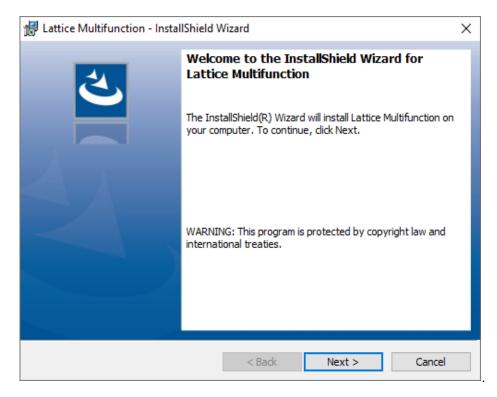


Figure 5.28. Windows Installer: Welcome Page

3. Provide the location where you want to install the application. Click **Next**.

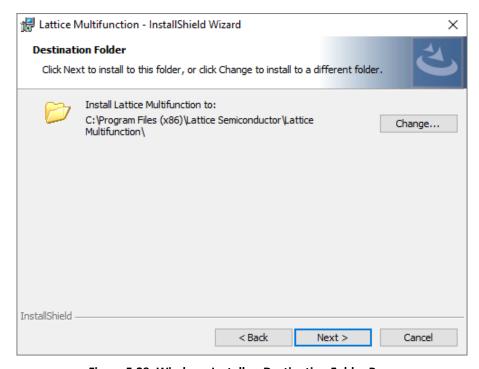


Figure 5.29. Windows Installer: Destination Folder Page

4. The installation summary page is shown. Click Install.

Note: Administrative access is required to run this command.

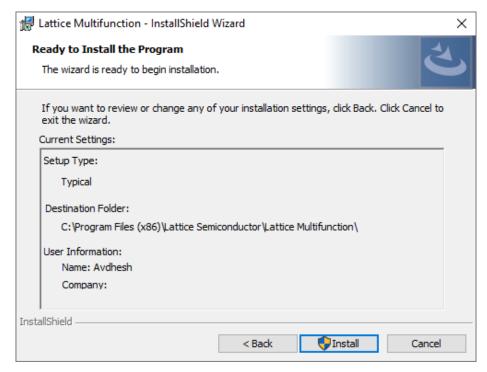


Figure 5.30. Windows Installer: Summary Page

5. The installation of the Multifunction Demo application starts. When the installation of the software is complete, the drivers are installed.

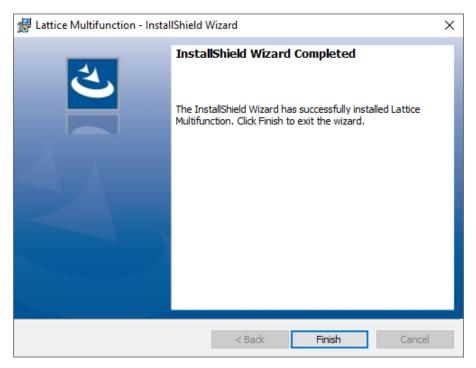


Figure 5.31. Windows Installer: Application Installed

6. A message box appears. Click Yes.

Figure 5.32. Device Configuration Prompt

7. The device driver installation wizard opens. Click **Next**.

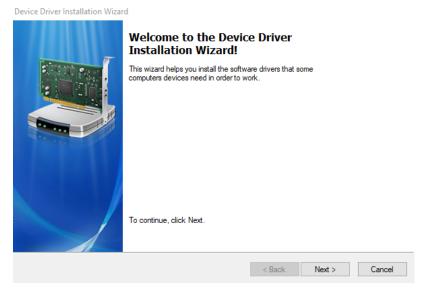


Figure 5.33. Device Driver Installation Wizard

8. If you receive a Windows Security prompt, select Install this driver software anyway as shown in Figure 5.34.

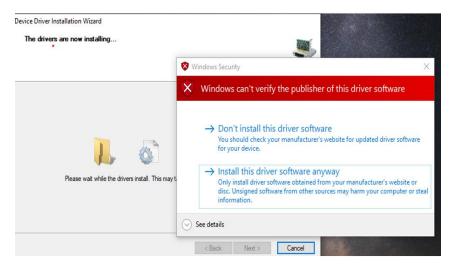


Figure 5.34. Windows Security in Driver Installation

9. If the driver is installed successfully, a message is displayed as shown in Figure 5.35. Click Finish.

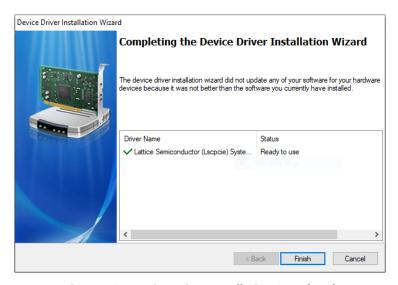


Figure 5.35. Device Driver Installation Completed

Installing the Multifunction Demo Device Driver Manually

The drivers for the Multifunction Demo can be found in the $\textit{Demonstration} \setminus \textit{Windows} \setminus \textit{Driver}$ folder.

To install the Multifunction Demo device driver manually:

Open Device Manager, which shows the connected PCle devices, as shown in Figure 5.36.
 Note: If the Device Manager does not show the connected PCle device, see the Troubleshooting section.

30

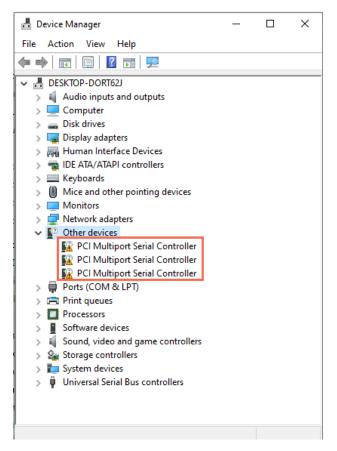


Figure 5.36. Device Manager

2. Right-click on each device and select **Properties** as shown in Figure 5.37.

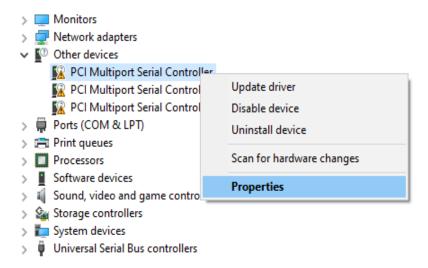


Figure 5.37. Showing Device Properties

3. The information in **Hardware IDs** is needed to install the correct driver for the corresponding device. The Hardware IDs of the MDIO, I2C, and GPIO devices are shown below:

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 5.4. Hardware IDs

SI. No	CrossLink-NX	Certus-NX	CertusPro-NX	MachXO5-NX
MDIO	PCI\VEN_1204&DEV_9C22 &SUBSYS_E00419AA	PCI\VEN_1204&DEV_9C32&S UBSYS_E00419AA	N/A	N/A
I2C	PCI\VEN_1204&DEV_9C1F &SUBSYS_E00419AA	PCI\VEN_1204&DEV_9C2F&S UBSYS_E00419AA	PCI\VEN_1204&DEV_9C40&SUBS YS_E00419AA	N/A
GPIO	PCI\VEN_1204&DEV_9C20 &SUBSYS_E00419AA	PCI\VEN_1204&DEV_9C30&S UBSYS_E00419AA	PCI\VEN_1204&DEV_9C42&SUBS YS_E00419AA	PCI\VEN_1204&DE V_9C42&SUBSYS_E 00419AA

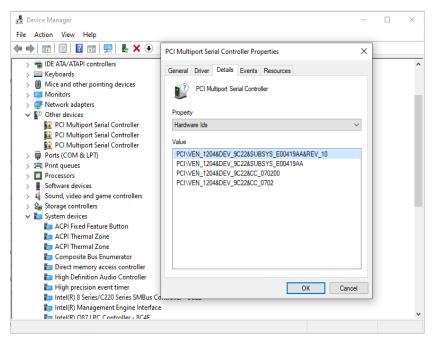


Figure 5.38. Hardware IDs of CrossLink-NX MDIO Device

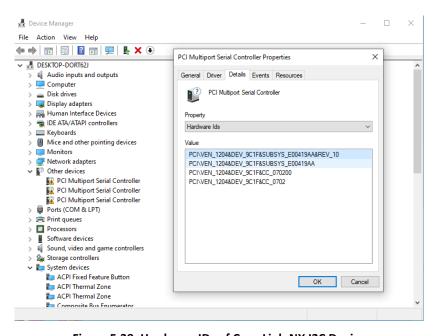


Figure 5.39. Hardware IDs of CrossLink-NX I2C Device

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

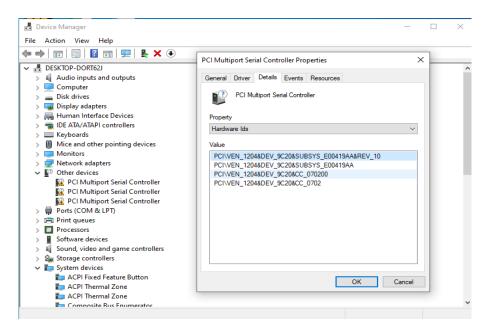


Figure 5.40. Hardware IDs of CrossLink-NX GPIO Device

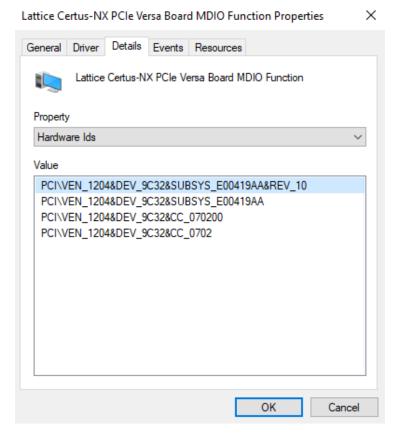


Figure 5.41. Hardware IDs of Certus-NX MDIO Device

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

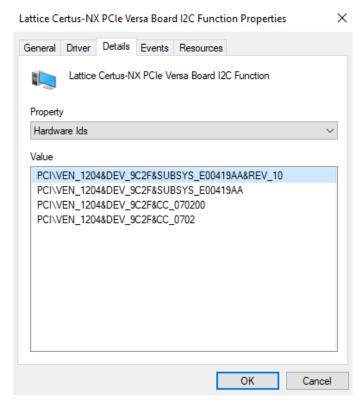


Figure 5.42. Hardware IDs of Certus-NX I2C Device

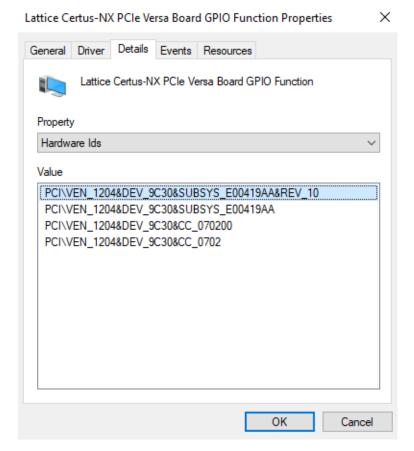


Figure 5.43. Hardware IDs of Certus-NX GPIO Device

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

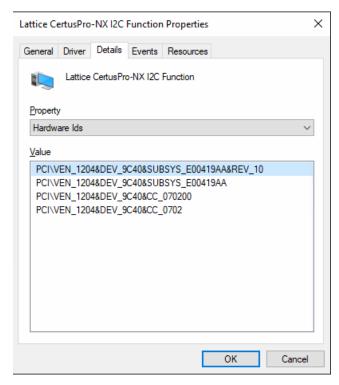


Figure 5.44. Hardware IDs of CertusPro-NX I2C Device

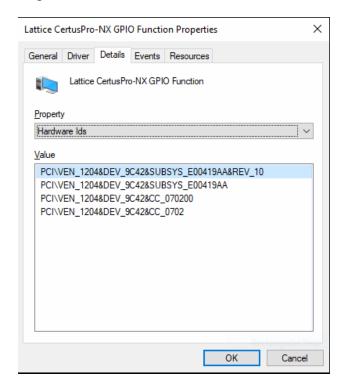


Figure 5.45. Hardware IDs of CertusPro-NX and MachXO5-NX Devices

4. Right-click on the device and select **Update driver**.

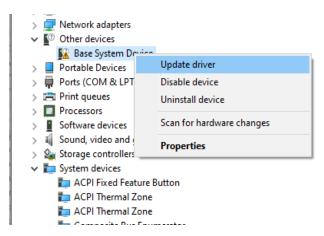
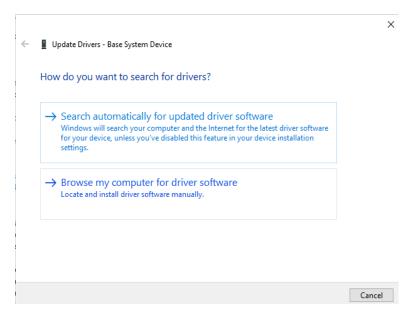



Figure 5.46. Update Driver Menu in Device Manager

5. Select the Browse my computer for driver software option as shown in Figure 5.47.

Figure 5.47. Update Driver Options

6. Browse for the MDIO device drivers as shown in Figure 5.48. For the CertusPro-NX device board, browse for I2C or GPIO driver.

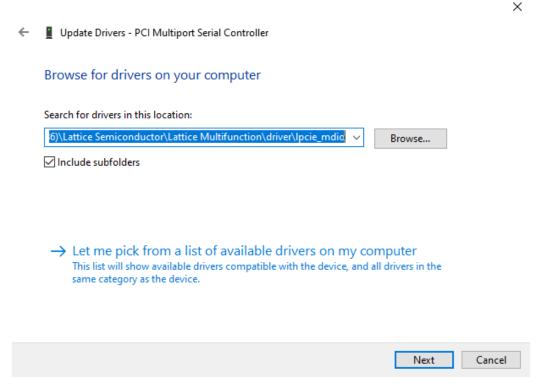


Figure 5.48. Browse the Driver for Device

7. If you receive a Windows Security prompt, select Install this driver software anyway as shown in Figure 5.49.

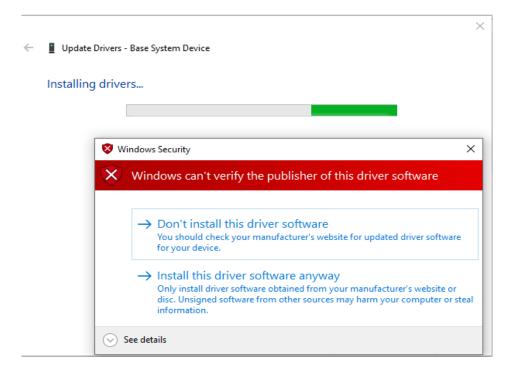


Figure 5.49. Windows Security in Device Manager

8. If the driver is installed successfully, a message is displayed as shown in Figure 5.50 for the CrossLink-NX board, Figure 5.51 for the Certus-NX board, and Figure 5.52 for the CertusPro-NX device board.

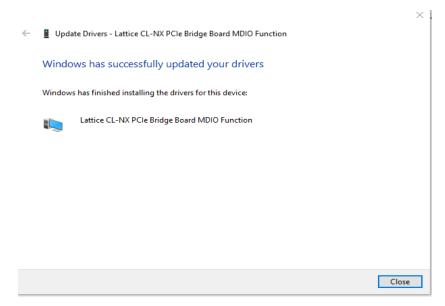


Figure 5.50. MDIO Driver Installation Status Message for the CrossLink-NX Device Board

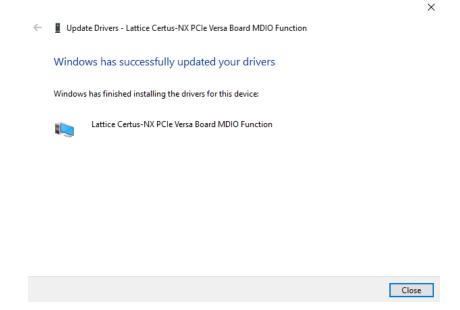


Figure 5.51. MDIO Driver Installation Status Message for the Certus-NX Device Board



Figure 5.52. I2C Driver Installation Status Message for the CertusPro-NX Device Board

9. After the driver is installed, the device driver name is displayed in **Device Manager**, as shown in Figure 5.53.

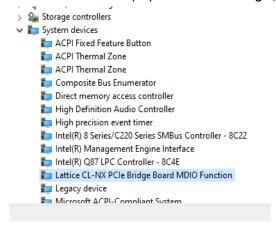


Figure 5.53. Multifunction Demo Device Name Displayed in Device Manager

10. Follow steps 3 through 8 for the I2C and GPIO devices. After successful installation, all the three devices must be displayed in Device Manager as shown in Figure 5.54 for the CrossLink-NX device board, Figure 5.55 for the Certus-NX device board, and Figure 5.56 for the Certus-Pro-NX device board.

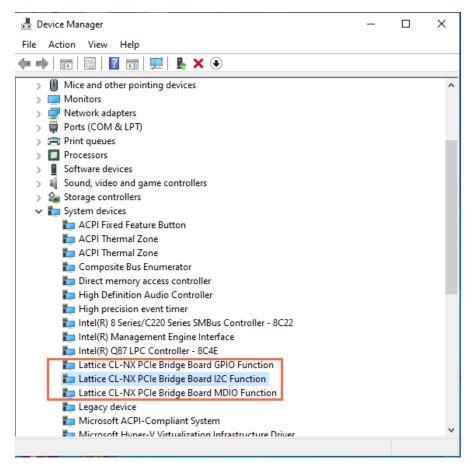


Figure 5.54. MDIO, I2C, and GPIO Device Drivers for the CrossLink-NX Board in Device Manager

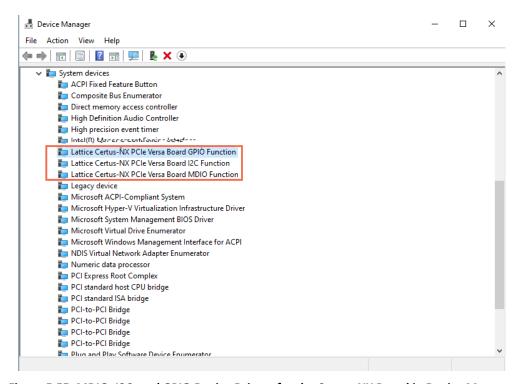


Figure 5.55. MDIO, I2C, and GPIO Device Drivers for the Certus-NX Board in Device Manager

40

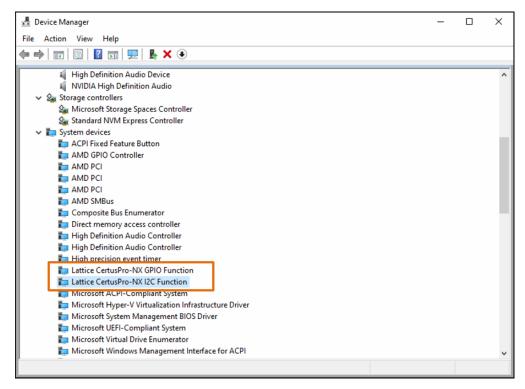


Figure 5.56. I2C, and GPIO Device Drivers for the CertusPro-NX Device Board in Device Manager

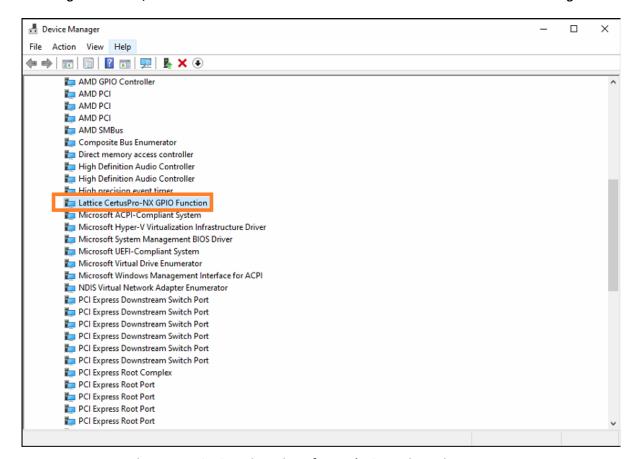


Figure 5.57. GPIO Device Drivers for MachXO5-NX in Device Manager

5.2.1.4. Uninstall Device Driver Manually

Follow the steps below to uninstall the device driver.

- 1. Open Device Manager window. Look for the device you want to uninstall.
- Right-click on the device driver and select Uninstall device as shown in Figure 5.58.

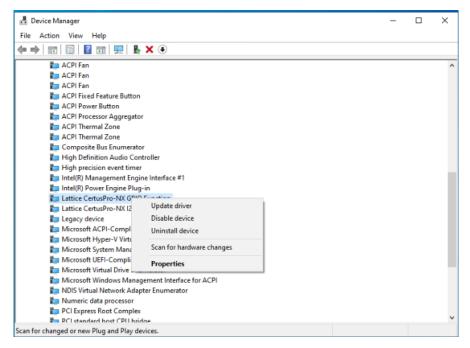


Figure 5.58. Select Uninstall Device for the Device User To Uninstall

3. Check the option **Delete the driver software for this device** and click on **Uninstall** as shown in Figure 5.59.

Figure 5.59. Select the Check Box and Click on Uninstall Button

4. In the **Device Manager**, Click **Action** menu and select **Scan for hardware changes**. Make sure that the uninstalled device is not listed in the **Device Manager**.

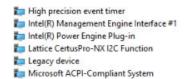


Figure 5.60. Uninstalled Device

5.2.2. Software Setup for Linux

5.2.2.1. Supported Operating System

• Distribution: Ubuntu

Description: Ubuntu 24.04.2 LTS

Release: 24.04.2

5.2.2.2. Required Packages

To check whether the required packages are installed, run the following commands on a terminal as shown below. make -v

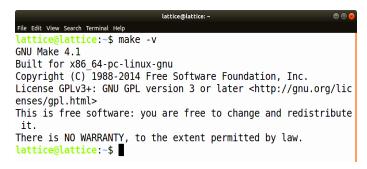


Figure 5.61. Display Make Utility in Linux Terminal

gcc -v

```
File Edit View Search Terminal Help
      e@lattice:~$ gcc -v
Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO WRAPPER=/usr/lib/gcc/x86 64-linux-gnu/7/lto-wra
OFFLOAD TARGET NAMES=nvptx-none
OFFLOAD_TARGET_DEFAULT=1
Target: x86_64-linux-gnu
Configured with: ../src/configure -v --with-pkgversion='Ubu
ntu 7.5.0-3ubuntu1~18.04' --with-bugurl=file:///usr/share/d
oc/gcc-7/README.Bugs --enable-languages=c,ada,c++,go,brig,d
,fortran,objc,obj-c++ --prefix=/usr --with-gcc-major-versio
n-only --program-suffix=-7 --program-prefix=x86_64-linux-gn
u- --enable-shared --enable-linker-build-id --libexecdir=/u
sr/lib --without-included-gettext --enable-threads=posix --
libdir=/usr/lib --enable-nls --enable-bootstrap --enable-cl
ocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=
yes --with-default-libstdcxx-abi=new --enable-gnu-unique-ob
ject --disable-vtable-verify --enable-libmpx --enable-plugi
n --enable-default-pie --with-system-zlib --with-target-sys
tem-zlib --enable-objc-gc=auto --enable-multiarch --disable
-werror --with-arch-32=i686 --with-abi=m64 --with-multilib-
list=m32,m64,mx32 --enable-multilib --with-tune=generic --e
nable-offload-targets=nvptx-none --without-cuda-driver --en
able-checking=release --build=x86 64-linux-gnu --host=x86 6
4-linux-gnu --target=x86_64-linux-gnu
Thread model: posix
gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)
```

Figure 5.62. Display Compiler Version in Linux Terminal

g++ -v


```
lattice@lattice:
lattice@lattice:~$ g++ -v
Using built-in specs.
COLLECT GCC=a++
COLLECT_LTO WRAPPER=/usr/lib/gcc/x86 64-linux-gnu/7/lto-wrapper
OFFLOAD TARGET NAMES=nvptx-none
OFFLOAD TARGET DEFAULT=1
Target: x86_64-linux-gnu
Configured with: ../src/configure -v --with-pkgversion='Ubuntu 7
.5.0-3ubuntu1~18.04' --with-bugurl=file:///usr/share/doc/gcc-7/R
{\tt EADME.Bugs --enable-languages=\bar{c},ada,c++,go,brig,d,fortran,objc,o}
bj-c++ --prefix=/usr --with-gcc-major-version-only --program-suf
fix=-7 --program-prefix=x86_64-linux-gnu- --enable-shared --enab
le-linker-build-id --libexecdir=/usr/lib --without-included-gett
ext --enable-threads=posix --libdir=/usr/lib --enable-nls --enab
le-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --ena
ble-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable
-gnu-unique-object --disable-vtable-verify --enable-libmpx --ena
ble-plugin --enable-default-pie --with-system-zlib --with-target
-system-zlib --enable-objc-gc=auto --enable-multiarch --disable-
werror --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m
32,m64,mx32 --enable-multilib --with-tune=generic --enable-offlo
ad-targets=nvptx-none --without-cuda-driver --enable-checking=re
lease --build=x86 64-linux-gnu --host=x86 64-linux-gnu --target=
x86 64-linux-gnu
Thread model: posix
gcc version 7.5.0 (<u>U</u>buntu 7.5.0-3ubuntu1~18.04)
lattice@lattice:~$
```

Figure 5.63. Update Compiler Version in Linux Terminal

5.2.2.3. Packages Installation Steps

Run the following commands on a terminal to install the required packages.

sudo apt update
sudo apt install build-essential
sudo apt install flex

5.2.2.4. Automatic Setup and Installation

To setup the demo in automatic mode:

- 1. Go to the *Demonstration/Linux* directory.
- 2. Change the permission of the *install.sh* file by running the chmod command.

sudo chmod 777 install.sh

3. Run the command below, which builds the driver and API library, installs the driver, and launches the QT use interface application.

sudo ./install.sh

4. To uninstall the driver, go to the Demonstration/Linux directory and run the command below.

sudo ./uninstall.sh

5.2.2.5. Manual Setup and Installation

Note: You can skip this section if you have installed the driver successfully in the previous section.

Before installing the driver, the driver must be built.

To build the driver:

- 1. Go to the Demonstration/Linux directory.
- 2. Run the following command on terminal.

sudo chmod 777 -R Source_Code

- 3. Go to the Source_Code directory.
- 4. Run the following commands.

sudo make clean

sudo make

This builds the driver and the API library.

- 5. Make sure that the driver is not installed.
- 6. To remove an existing driver, run one or all of the following command in a terminal window:

sudo rmmod gpio_main.ko

sudo rmmod i2c_main.ko

sudo rmmod mdio_main.ko

To install the drivers:

FPGA-UG-02150-1.3

- 1. Go to *drv_src/gpio_drv/* directory.
- 2. Run the command below.

sudo insmod gpio_main.ko

a. Repeat the same procedure for the i2c_drv and mdio_drv directories.

Note: mdio_drv is not applicable to the CertusPro-NX device board.

3. To launch the user interface application, go to the <code>app_src/gui/deploy/</code> directory and run the command below. sudo <code>./MFDemo.sh</code>

45

6. Application Overview

The PCI Express Multifunction application demonstrates the multifunction capabilities of the FPGA. The application allows you to access the GPIO, I2C, and MDIO registers on the Crosslink-NX and Certus-NX device boards. The application provides real time interaction with the FPGA hardware to demonstrate a functional PCI Express communications path between the software and the FPGA IP.

6.1. Running the PCI Express Demo Application

On Linux, you can launch the demo application by running the ./MFDemo.sh script located in the Demonstration/Linux/Source_Code/app_src/gui/deploy directory. On Windows, you can launch the application by clicking the Lattice Multifunction shortcut on the desktop.

The graphical user interface opens the PCI Express Test Application software with the Device Info tab selected, as shown in Figure 6.1 for the Crosslink-NX device (similar to the Certus-NX device), Figure 6.2 for the Certus-Pro-NX device, and Figure 6.3 for the MachXO5-NX device. Note that some of the information shown may vary between different FPGA devices (such as the Device ID).

Figure 6.1. PCIe Test Application Device Info Tab for Crosslink-NX Devices

Figure 6.2. PCIe Test Application Device Info Tab for CertusPro-NX Devices

Figure 6.3. PCIe Test Application Device Info Tab for MachXO5-NX Devices

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

6.2. Using the PCI Express Demo Application User Interface

The PCI Express Device Info page displays information about the device driver and PCI configuration registers. The data displayed is read-only and cannot be edited. If there is a problem loading the driver or accessing the device, an error message appears on this page.

6.2.1. Functionality Test Tab

Figure 6.4 shows the Functionality Test tab for the Crosslink-NX and Certus-NX devices. Figure 6.5 for the CertusPro-NX device, and Figure 6.6 for MachXO5-NX device.

You can read from or write to the device using controls present on this tab.

Figure 6.4. Functionality Test Tab for Crosslink-NX/Certus-NX Devices



Figure 6.5. Functionality Test Tab for CertusPro-NX

Figure 6.6. Functionality Test Tab for MachXO5-NX

6.2.2. GPIO

This section describes how to interact with the GPIO endpoint function.

6.2.2.1. Input Switch

There are five input LEDs present in the GPIO input box. These LEDs change status when you change the position of the input switches on the board. On CrossLink-NX and CertusPro-NX devices, this is mapped to SW1 on the board, and there is one LED per input switch. On Certus-NX devices, the first four switches are mapped to SW10, and the fifth switch is mapped to SW3. For MachXO5-NX, all five switches are mapped to SW1. To start reading input from the switches, click the Read Input button. An example of the LEDs is shown in Figure 6.7.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

Figure 6.7. GPIO Input Switch.

6.2.2.2. Output LED

The Output LED section shows the status of five output LEDs. These LEDs represent the five bits of a counter, which begin to increment when you click the Run counter button on the user interface, as shown in Figure 6.8.

Figure 6.8. GPIO Output LEDs

6.2.3. I2C (For CrossLink-NX, Certus-NX, and CertusPro-NX Devices)

This section describes how to use the user interface to read from and write to the I2C device.

6.2.3.1. Test Mode

This control has two options for testing the I2C interface: Normal Mode and Batch Mode. In Normal Mode, you must enter each I2C command manually. In Batch Mode, the I2C commands are loaded from a script.

6.2.3.2. Settings

This control is used to configure the I2C bit-rate. Two bit-rates, 100 kHz and 400 kHz, are supported and can be selected from the Bitrate drop down box as shown in Figure 6.9. After selecting the desired speed from the drop-down box, you must click the Set button to apply the settings to the device.

Figure 6.9. I2C Bit-Rate Selection

6.2.3.3. Slave Addr

This control is used to program the I2C slave address target. The user interface supports both 7-bit and 10-bit addressing modes. Note that CertusPro-NX devices support only 7-bit addressing mode. The address mode can be selected by selecting the appropriate radio button as shown in Figure 6.10. The 7-bit mode is selected by default.

Figure 6.10. I2C Address Program

6.2.3.4. Master Write

The Master write option is used to write data to the I2C device. You can either manually type the address and/or the data information into the Message box, or you can load the data from a hex file by clicking the Load button. Clicking the Master Write button initiates the write operation. The interface is shown in Figure 6.11.

You can clear or save the message box contents into a file. To do so, click the Save button, provide the desired path, enter the name of the file, and click OK. This saves the data into the specified hex file. The I2C interface is spot-checked using the camera: Sony IMX258-0AQH5. The camera module is included with the CrossLink-NX board. For Certus-NX and CertusPro-NX device boards, the camera module must be obtained separately. The testing procedure is described below.

Figure 6.11. I2C Master Write

Table 6.1. Master Write Control Description

Controls	Description	
Clear	Clears the input box	
Load	Loads the file configuration hex file into the input box	
Save	Saves the input box data into the hex file	
Master Write	Writes the input box data on the I2C device	

IMX258-0AQH5 Camera Write Protocol

Figure 6.12 shows the communication protocol format for the IMX258 camera for a single write to an arbitrary address. Figure 6.13 shows the format for a sequential write starting from an arbitrary address.

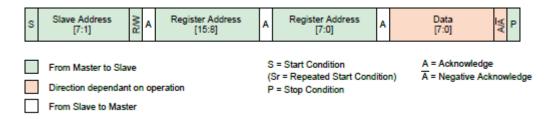


Figure 6.12. Single Write to an Arbitrary Address of IMX258-0AQH5 Camera

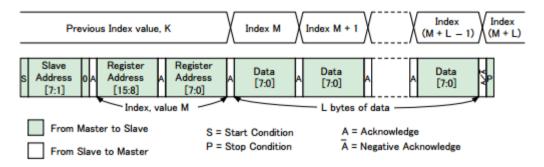


Figure 6.13. Sequential Write Starting from an Arbitrary Address of IMX258-0AQH5 Camera

To test the I2C interface, data can be written to the register 0x3093 of the camera, as shown in Figure 6.14. Additional register information can be obtained through the IMX258-0AQH5 camera data sheet available from Sony. An example of how to execute this transaction is discussed in the next section.

Table 6.2. Registers of MX258-0AQH5 CMOS Camera

Address	Bit	Name	Description
0x3092	[1:0]	MANUAL_DATA PEDESTAL_VALUE [9:8]	Manual setting value for Data Pedestal
0x3093	[7:0]	MANUAL_DATA PEDESTAL_VALUE [7:0]	Default setting value: 0x40
0x3090	[0]	MANUAL_DATA PEDESTAL_ENABLE	Output black level is controlled with Manual_DTA_PEDESTAL_VALUE register value 0x0: pedestal = 0x40 (fixed value) 0x1: pedestal = MANUAL_DATA_PEDESTAL_VALUE Else: inhibited value
0x0340	[7:0]	FRM_LENGTH_LINES [15:8]	The length of frame
0x0341	[7:0]	FRM_LENGTH_LINES [7:0]	Unit: lines Format: 16-bit unsigned integer *set value for given capture mode ≤ 65525d
0x0342	[7:0]	LINE_LENGTH_PCK [15:8]	The length of line
0x0343	[7:0]	LINE_LENGTH_PCK [7:0]	Unit: pixels Format: 16-bit unsigned integer *Set to 5352d. For any other value change required, confirm with SONY.

Master Write Procedure

To perform a write operation to the camera's register address 0x3093:

- 1. Select **Normal Mode** from the **Test mode** drop down box.
- 2. Select 100 kHz bit-rate from the Bitrate drop down box and click the Set button.
- 3. Enter **0x1A** in the **Slave addr** box.
- 4. Select the **7-bit mode** radio button.
- 5. Enter the data and address into the message box two bytes of address and one byte of data as shown in Figure 6.14. For example, to write address 0x3093 with 0xFF data, then enter 30 93 FF into the message box.
- 6. To initiate the transaction, click the **Master Write** button. To verify that the write operation is successful, follow the instructions on how to perform a Master Read operation.

Figure 6.14. I2C Master Write Procedure

6.2.3.5. Master Read Procedure

The Master read option is used to read the data from the I2C device. This section describes the Master read procedure with an example IMX258-0AQH5 camera.

Master Read from a Held Address

The Master Read option is used to read data from the held address of the I2C device. When a master transmits the slave address but does not designate an index or address, the previously read from address value is used or *held*. A single byte or sequential data can be read from the held address.

Figure 6.15. I2C Master Read

IMX258-0AQH5 Camera Read Protocol From a Held Address

Figure 6.16 shows the communication protocol format for the IMX258 camera for a single read from the held address. Figure 6.17 shows the format for a sequential read starting from the held address.

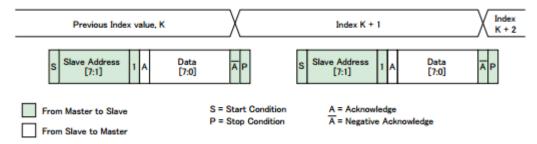


Figure 6.16. Single Read from the Held Address of IMX258-0AQH5 camera

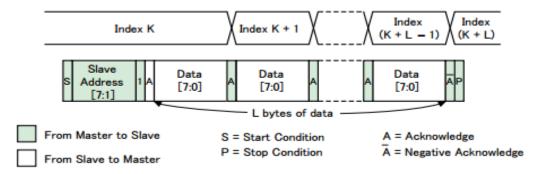


Figure 6.17. Sequential Read Starting from the Held Address of IMX258-0AQH5 Camera

An example of performing a single read from the held address (in this example, 0x3093) is shown below. To perform a Master Read from a held address:

- 1. Select **Normal Mode** from the **Test mode** drop down box.
- 2. Select **100 kHz** bit-rate from the Bitrate drop down box and click the **Set** button.
- 3. Enter **0x1A** in the **Slave addr** box.
- 4. Select the **7-bit mode** radio button.
- 5. Enter the register address in the Master Write message box as shown in below Figure 6.18 to set the current register address. For an example, to read from 0x3093 register address, enter **30 93** in the message box and click the **Master Write** button.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-UG-02150-1.3

Figure 6.18. 12C Master Write to Write the Register Address

6. Enter the number of bytes to read in the Number of Data Byte box as shown in Figure 6.19 and click Master Read. The results of the read transaction are shown in the transaction log table, and the data value read out can be found in the data column of the transaction log table.

Figure 6.19. I2C Master Read

Master Register Read from an Arbitrary Address

The Master Register Read option is used to read data from an arbitrary address of the I2C device. A single byte or sequential data can be read from an arbitrary address.



Figure 6.20. I2C Master Register Read

Table 6.3. Master Register Read Control Description

Controls	Description
Register Addr	Specifies the register address to be read.
Addr Width	Specifies the address width. Valid values are 1 Byte and 2 Bytes.
Num of Bytes	Specifies the number of bytes to be read from the I2C device.
Register Read	When this button is pressed, the read operation is performed.

IMX258-0AQH5 Camera Read Protocol from an Arbitrary Address

Figure 6.21 shows the communication protocol format single read from an arbitrary address and Figure 6.22 shows the sequential read starting from an arbitrary address of MX258-0AQH5 Camera.

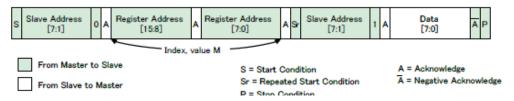


Figure 6.21. Single Read from an Arbitrary Address of MX258-0AQH5 Camera

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54

Figure 6.22. Sequential Read Starting from an Arbitrary Address of MX258-0AQH5 Camera

To perform a Master Read operation:

- 1. Select **Normal Mode** from the **Test mode** drop down box.
- 2. Select either 100 kHz or 400 kHz from the Bitrate drop down box and click the Set button.
- 3. Enter 0x1A in Slave addr.
- 4. Select the **7-bit mode** radio button.
- 5. Enter 3093 in the Register Addr field.
- 6. Select 2Bytes in Addr Width.
- 7. Enter 1 in Num of Bytes.
- 8. Click the Register Read button and check the transaction log for the readback value.

Figure 6.23. I2C Master Register Read

Note: I2C does not work without power cycle, if any step goes wrong.

6.2.3.6. Transaction Log

The Transaction Log shows the details of all transactions on the I2C device as shown in Figure 6.24. You can save and clear the log. To save the log into file click **SaveToFile**, select the desired location and enter the log file name. The log is saved in text format. To clear the log from the table, click the **ClearLog** button.

Figure 6.24. I2C Master Register Read

The log table is updated only when the transaction is successfully completed. Failed transactions are not logged in the table. The description of each column of the transaction log table is described in Table 6.4.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice FPGA-UG-02150-1.3

55

Table 6.4. Transaction Log Control Description

Column	Description
Time	The start time of the transaction.
R/W	Specifies whether the transaction was a read or write.
Bit Rate	Specifies what bit rate was chosen for the transaction.
Slave Addr	Specifies the I2C slave address of the transaction.
Length	Specifies the number of bytes transferred during the transaction.
Data	Specifies the transferred data during the transaction.

6.2.3.7. Batch Mode

Batch mode is used to read and write the I2C device using an XML file. You can load an XML file by clicking the **Load** button. Click the **Execute** button to run the commands in the XML file. To abort the operation, press the **Stop** button. After completion, an **Updated successfully** message is displayed. An example of Batch mode XML is shown in Figure 6.25.

Figure 6.25. I2C Batch Mode Read/Write

XML node description:

- i2c bitrate elements used to configure the I2C device bit-rate.
- kHz attributes to I2C bit rate value.
- i2c write elements used to write address and data or address-only.
- addr attribute that holds the I2C slave device address.
- addrmod attribute that specifies the addressing mode, with a value of 0 for 7bit and 1 for 10bit.
- count attribute that specifies the number bytes to be written or read.
- radix attribute that specifies the radix of the device address and data format.
- i2c read elements used to read data from the device.

Table 6.5. Batch Mode Control Description

Control	Description	
Clear	Clears the input box.	
Load	Loads the xml configuration file in the input box.	
Save	Saves the input box configuration to a file.	
Stopped	Indicates the Master device status when any operation is run.	
Execute	Used to start batch file execution.	
Stop	Used to stop the execution of the batch file.	

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6.2.4. MDIO (for CrossLink-NX and Certus-NX Devices)

This section describes how to use the user interface to read and write the MDIO device. This section is only applicable for CrossLink-NX and Certus-NX devices.

6.2.4.1. Phy Addr

Phy Addr specifies the address of the PHY to access. The valid address range is from 0x0 to 0x1F. Both the CrossLink-NX PCIe Bridge Board and the Certus-NX Versa Evaluation board only have a single PHY connected at address 0x0.

Figure 6.26. MDIO Phy Addr

6.2.4.2. MDIO Read

This control is used to read the specified MDIO register, as shown in Figure 6.27. Enter the register address as **0x0** in **Addr** and click the **Read** button. **Value** is updated to show the data read from the specified address. The CrossLink-NX PCIe Bridge Board PHY is the DP83867 Ethernet Phy. The address **0x0** contains the default value of **0x1140**, which appears after clicking the **Read** button.

Figure 6.27. MDIO Configuration Register Read

6.2.4.3. MDIO Write

This control is used to write the specified MDIO register as shown in Figure 6.28. After entering the Phy register address in **Addr** and the data in **Value**, click the **Write** button. After clicking the **Write** button, the data is written to that given address. For testing purposes, write **0x40** to the Phy (DP83867 Ethernet Phy) register address **0x1F** and verify by reading back using the MDIO Read function.

Figure 6.28. MDIO Register Write

6.2.4.4. File

This control is used to load MDIO register commands from a file. You can browse the MDIO configuration file by clicking the **Load** button, which opens a dialog box to browse for a configuration file. After loading the file, the MDIO commands loaded from the file is shown in the table. You can save the table data into a file by clicking the *Save* button. A dialog box opens to allow you to indicate the file name and location.

Figure 6.29. MDIO Configuration through File

Table 6.6. MDIO Batch Mode Control Description

Control	Description	
Load	Used to load an MDIO configuration file.	
Save	Used to save table content to a file.	

Table 6.7. MDIO Batch Mode Table Description

Column Name	Description
Operation	Specifies whether the command is a read or write operation
Address	Specifies the read/write address.
Data	Specifies the data read from or to be written to the specified address
Status	Specifies the status of the operation as either PASS or Fail

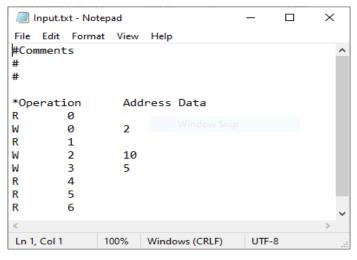


Figure 6.30. MDIO Configuration File Example

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

The MDIO configuration file is a tab separated text file where each column is separated by a tab as shown in Figure 6.30. Comment lines begins with the '#' symbol while column headers begins with a '*'. These lines are ignored while parsing the file.

Table 6.8. MDIO Input File Description

Column Name	Description
Operation	Specifies the operation type as R for read, and W for write.
Address	Specifies the register address in this column.
Data	For write operations, add a column specifying the data to be written. For read operations, this column needs to be kept blank.

7. Customizing the Design for CertusPro-NX Devices

The Basic Demo Design for Certus-Pro NX can be customized to:

- Change PCIe lane width from x4 to x2 or x1
- Change PCIe link speed from Gen3 to Gen2 or Gen1

7.1. Changing PCIe Lane Width

To customize the lane width manually, perform the following:

- Open the Lattice Radiant software.
- Click Open project and browse to the .rdf file.
 For CertusPro-NX, the file is MultifunctionDemo.rdf, which is in the Hardware/VersaBoard/MultifunctionDemo/ folder. It is recommended to save as a new project for any design customization. Click Save Project As to save the project with a new name and open the new project.

Figure 7.1. Save New Project

3. Click Open the PClex4 IP.

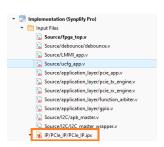


Figure 7.2. Open PClex4 IP

- 4. Select the Lane Width from the Bifurcation Select tab as following:
 - a. Select 1x1 value for x1 lane width.
 - b. Select 1x2 value for x2 lane width.
 - c. Select 1x4 value for x1 lane width.

Figure 7.3. PCIe IP Configuration to Select Lane Width

Click **Generate** to re-generate the PClex4 IP instance.

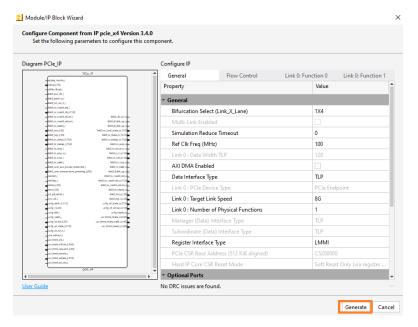


Figure 7.4. IP Generation

- 6. Open the top level design file located in Hardware/VersaBoard/MultifunctionDemo/Source/fpga top.v in Radiant tool or in Notepad.
 - Specify appropriate lane width for x2 and x1 configuration by changing the WIDTH parameter in the top-level design file as shown in Figure 7.5. Selecting Input and Output Ports. This reduces the input and output ports required for x2 and x1 configuration.

```
module fpga top #(
    parameter SIM
                         = 0,
    parameter WIDTH
                         = 4,
                                  // 1 : X1 ; 2 : X2 ; 4 : X4 [Lane width]
    parameter DATA WIDTH = 128
                                  // 32 : X1 ; 64 : X2 ; 128 : X4 [Data width]
// serial interface for PCIe lanes
             [WIDTH-1:0]
                                                   // serial line RX+
input
                                    rxp_i,
             [WIDTH-1:0]
                                    rxn i,
                                                    // serial line RX-
output wire [WIDTH-1:0]
                                    txp_o,
                                                   // serial line TX+
output wire [WIDTH-1:0]
                                    txn_o,
                                                   // serial line TX-
// reference clock
input
                                    refclkp i,
                                                    // reference clock + (100MHz)
input
                                    refclkn_i,
                                                    // reference clock - (100MHz)
```

Figure 7.5. Selecting Input and Output Ports

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. FPGA-UG-02150-1.3 61

- b. Change the PClex4 IP interface data width by modifying the DATA_WIDTH parameter as shown in Figure 7.5.
 - Select 32 bus width for x1 lane width.
 - Select 64 bus width for x2 lane width.
 - Select 128 bus width for x4 lane width.
- 7. Save the changes done in the top-level design file.
- 8. Open the PDC file located in

Hardware/VersaBoard/MultifunctionDemo/Source/Implementation/MultifunctionDemo.pdc using Radiant tool or notepad. Update the PDC file according to the lane width selection. Add comment lines using # on the ldc_set_location command according to the lane width selection. Save the changes.

```
MultifunctionDemo.pdc
       #Comment for x1
       ldc_set_location -site {SD1_RXDP} [get_ports {rxp_i[1]}]
       ldc set location -site {SD1 RXDN} [get ports {rxn i[1]}]
       ldc_set_location -site {SD1_TXDP} [get_ports {txp_o[1]}]
       ldc_set_location -site {SD1_TXDN} [get_ports {txn_o[1]}]
       ldc set location -site {SD1 REFRET} [get ports {refret i[1]}]
       ldc_set_location -site {SD1_REXT} [get_ports {rext_i[1]}]
       #Comment for x2 and x1
       ldc_set_location -site {SD2_RXDP} [get_ports {rxp_i[2]}]
       ldc_set_location -site {SD2_RXDN} [get_ports {rxn_i[2]}]
       ldc_set_location -site {SD2_TXDP} [get_ports {txp_o[2]}]
       ldc set location -site {SD2_TXDN} [get_ports {txn_o[2]}]
       ldc_set_location -site {SD3_RXDP} [get_ports {rxp_i[3]}]
24
       ldc_set_location -site {SD3_RXDN} [get_ports {rxn_i[3]}]
       ldc_set_location -site {SD3_TXDP} [get_ports {txp_o[3]}]
26
       ldc_set_location -site {SD3_TXDN} [get_ports {txn_o[3]}]
       ldc_set_location -site {SD2_REFRET} [get_ports {refret_i[2]}]
       ldc_set_location -site {SD2_REXT} [get_ports {rext_i[2]}]
       ldc_set_location -site {SD3_REFRET} [get_ports {refret_i[3]}]
       ldc_set_location -site {SD3_REXT} [get_ports {rext_i[3]}]
```

Figure 7.6. Example of PDC File

9. Save the changes and recompile the design. Use the configuration bit file located in the new design. The bit file in the original design is available in

 $Hardware \ \ Versa Board \ \ Multifunction Demo \ \ Implementation. Multifunction Demo \ \ Implementation. Bit.$

Figure 7.7. Save and Recompilation of the Design

7.2. Changing the PCIe Link Speed

To customize the link speed from Gen3 to Gen2 and Gen1 manually,

- 1. Open the Lattice Radiant software.
- 2. Click Open project and browse to the .rdf file
 - For CertusPro-NX, the file is MultifunctionDemo.rdf, which is in the Hardware/VersaBoard/MultifunctionDemo/ folder.
 - It is recommended to save as a new project for any design customization. Click **Save Project As** to save the project with a new name and open the new project as shown in Figure 7.1.
- 3. Click Open the PCIe IP as shown in Figure 7.2.
- 4. Select the value from the Link O: Target Link Speed tab as following:

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

- a. Select 8G value for Gen3 speed.
- b. Select 5G value for Gen2 speed.
- c. Select 2P5G value for Gen1 speed.

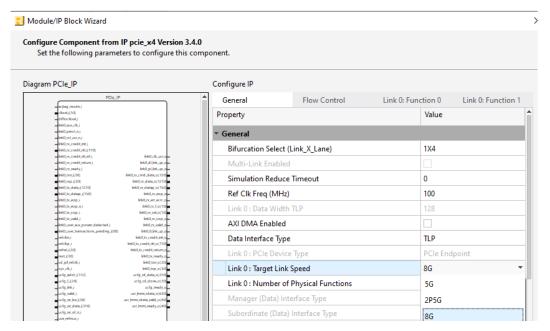


Figure 7.8. PCIe IP Configuration to Link Speed

- 5. Click **Generate** to re-generate the PCle_IP instance as shown in Figure 7.4.
- 6. Click **Open** the PLL IP insance as shown in Figure 7.9.

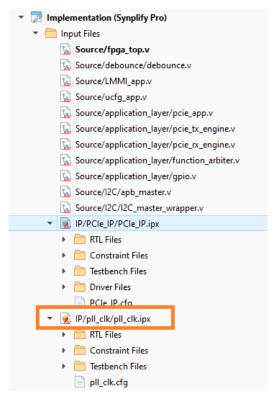


Figure 7.9. Open PLL IP

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notic

- 7. Change the Primary Clock Output value as following and click generate.
 - 250 MHz for Gen3
 - 125 MHz for Gen2
 - 62.5 MHz for Gen1

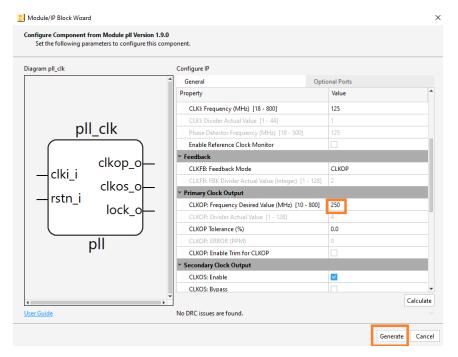


Figure 7.10. PLL IP Configuration

8. Save the design changes and recompile the design as shown in Figure 7.7. Please use the configuration bit file located in the new design. The bit file in the original design is available in Hardware\VersaBoard\MultifunctionDemo\Implementation\MultifunctionDemo Implementation.bit.

8. Troubleshooting

8.1. SPI Flash Update

• If you are getting a verification error while dumping the .bit file, try changing the TCK frequency to a value greater than 4. The TCK Divider Setting option is in the Cable Setup dialog box of the Lattice Radiant Programmer Window, as shown in Figure 8.1. Restart programming by clicking the Program button as shown in Figure 5.16.

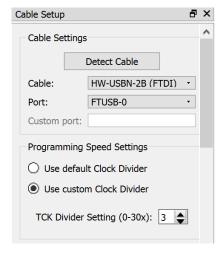


Figure 8.1. TCK Frequency Setting

- If the verification error problem still occurs, press and hold the PROGRAMN push button on the board before clicking the Program button.
- If the device is not getting detected on port FTUSB-0. Click Detect cable and select the port FTUSB-1.

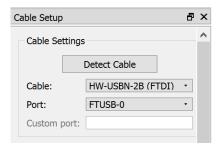


Figure 8.2. Port Selection

8.2. Installing the Driver and User Interface Launch for Windows

This section describes troubleshooting steps for the Windows operating system.

8.2.1. Problem with Installing the Driver

- If the hardware IDs are not found in Device Manager, ensure that the board is properly installed in a PCIe slot.
- Ensure that the board has a valid PCle bitstream file loaded in the SPI Flash. Shut down the system and try another slot. If the board is present, check the Properties and the Resource tab to verify if memory is assigned to it.

 Also, verify if the Vendor ID and Device ID are valid, as seen by Windows Plug-n-Play. If the values are invalid, perhaps the bitstream file is corrupt and needs to be reloaded into SPI flash. If the PCle board is shown in the list of Device Manager, install the driver manually.
- If the driver is not being installed even though the device is present in the Device Manager, make sure that the driver signature enforcement is disabled permanently. If not, follow the steps described in the Disabling Driver Signature Enforcement Permanently section.

8.2.2. Problem with Launching User Interface

Ensure that the driver is installed properly. Otherwise, the Device Info section of the user interface displays the message shown in Figure 8.3.

The *Driver Open [FAILED]* message is displayed if the driver is not installed properly. The Device information is present if the drivers are installed properly.

Figure 8.3. User Interface with No Device Driver

If any such error message occurs, ensure that the device is properly inserted in the system. After that, verify that drivers are installed. When all the issues are resolved, restart the user application.

When using file saving operations in the Memory portion of the demo, make sure that you have write permissions for the location where the file is being saved. Similarly, for file reading operations, the directory from where the file is being loaded must have Read Permission.

If the Multifunction demo short cut icon is accidentally deleted, then the application can be launched by double clicking on lattice_bd.exe file present in [INSTALLATION FOLDER]/Lattice Semiconductor/Multifunction Demo/bin folder.

8.3. Installing the Driver User Interface Launch for Linux

This section describes troubleshooting steps for the Linux operating system.

8.3.1. Problem in Installing the Driver

The following error may occur during software driver installation.

Issue: insmod: ERROR: could not insert module lattice_main.ko: Operation not permitted.

Resolution: Ensure that the Secure Boot option is disabled in the BIOS of the system. Refer to the BIOS user manual to learn about the steps for turning off the Secure Boot option.

Issue: insmod: ERROR: could not insert module drv src/drvr/lattice main.ko: Invalid module format.

Resolution: Run the following commands sequentially in the terminal.

```
sudo apt update && sudo apt upgrade
sudo apt remove --purge linux-headers-*
sudo apt autoremove && sudo apt autoclean
sudo apt install linux-headers-generic
sudo apt-get install build-essential linux-headers-`uname -r`
```

8.3.2. Problem in Loading the Driver

After launching the user interface, if the driver is not loaded properly, a *Driver open[Failed]* message is displayed in the Info section.

- Make sure that the board is properly connected to the PC.
- Run the command below in a terminal window to show the list of PCIe devices connected to PC.

```
sudo lspci -vnm
```

Ensure that the Lattice device is present by checking the device and vendor IDs, as shown in Figure 8.4 for the CrossLink-NX board, Figure 8.5 for the Certus-NX board, Figure 8.6 for the Certus-Pro-NX device board, and Figure 8.7 for MachXO5-NX.

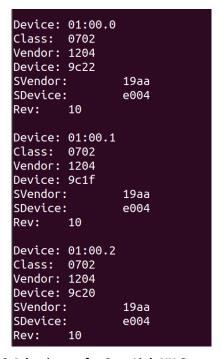


Figure 8.4. Ispci -vnm for CrossLink-NX Output Image

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


```
Device: 01:00.0
Class: 0702
Vendor: 1204
Device: 9c32
SVendor:
                 19aa
SDevice:
                 e004
Rev:
        10
Device: 01:00.1
Class: 0702
Vendor: 1204
Device: 9c2f
SVendor:
                 19aa
SDevice:
                 e004
Rev:
        10
Device: 01:00.2
Class: 0702
Vendor: 1204
Device: 9c30
SVendor:
                 19aa
SDevice:
                 e004
Rev:
        10
```

Figure 8.5. Ispci -vnm for Certus-NX Output Image

```
Device: 09:00.0
Class: 0702
Vendor: 1204
Device: 9c40
SVendor:
                 19aa
SDevice:
                 e004
Rev:
        10
Device: 09:00.1
Class: 0702
Vendor: 1204
Device: 9c42
SVendor:
                 19aa
SDevice:
                 e004
Rev:
        10
```

Figure 8.6. Ispci -vnm for CertusPro-NX Device Output Image

```
Device: 04:00.1
Class: 0702
Vendor: 1204
Device: 9c42
SVendor: 19aa
SDevice: e004
Rev: 10
```

Figure 8.7. Ispci -vnm for MachXO5-NX Device Output Image

- If the device is present, perform the manual setup and installation steps one by one.
- If the driver does not build properly, check for any software or kernel dependencies.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8.3.3. Problem with User Interface Launching

• Go to the *Demonstration/Linux* directory. Check the content of this directory. The default content is shown in Figure 8.8. Check the permissions of these file.

```
lattice@lattice:~/mul6/CL-NX_BridgeBoard_PCIe_Multifunction/Demonstration/Linux$ ls -l
total 16
-rw-r--r-- 1 root root 175 Feb 16 11:53 install.sh
-rw-r--r-- 1 root root 237 Feb 16 11:53 Readme.txt
drwxr-xr-x 6 root root 4096 Feb 16 11:53 Source_Code
-rw-r--r-- 1 root root 47 Feb 16 11:53 uninstall.sh
```

Figure 8.8. Content List of Demonstration/Linux Directory.

- The script files must have *execute* permission to set permissions on the file, run the command below in the terminal and try to run the application again.
 - sudo chmod 777 filename
- If the user interface still does not launch, change directory into the Source_Code directory and verify that all files are present in this directory, according to Figure 8.9.

```
attice@lattice:~/mul6/CL-NX_BridgeBoard_PCIe_Multifunction/Demonstration/Linux/Source_Code$ ls -l
total 36
drwxr-xr-x
             root
                  root
                             Feb
                                     11:53 app_src
rw-r--r--
             root root
                             Feb 16 11:53 compile.sh
                                 16 11:53 drv_src
16 11:53 include
             root root 4096 Feb
drwxr-xr-x
             root root 4096 Feb
drwxr-xr-x
                                     11:53 install_drv.sh
                             Feb
                                 16
                         137
 rw-r--r--
             root root
                                 16 11:53 launch gui.sh
                             Feb
                          52
             root root
             root root 4096 Feb 16 11:53 lib
drwxr-xr-x 2
                             Feb 16
                                     11:53
                                           Makefile
             root root
                         566
 rw-r--r--
                         156
                             Feb
                                 16 11:53 Readme.txt
           1 root root
```

Figure 8.9. Content List of Software/Linux Directory

 If all files are present in this directory, change directory to app_src/gui/deploy and try to run the command below directly.

sudo ./MFDemo.sh

References

- Certus-NX FPGA web page
- CertusPro-NX FPGA web page
- CrossLink-NX FPGA web page
- MachXO5-NX web page
- Lattice Radiant Software FPGA web page
- Lattice Insights for Lattice Semiconductor training courses and learning plans

70

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/ Support/AnswerDatabase.

Revision History

Revision 1.3, August 2025

Section	Change Summary	
All	 Made editorial fixes across the document, including section names in Troubleshooting. Changed Windows 10 to Windows Operating System across the document. 	
Hardware and Software Requirements	 Removed CrossLink-NX, Certus-NX, and CertusPro-NX sub-folders in Hardware Directory Structure. Updated bullet items for Windows/Ubuntu, CertusPro-NX .bit, and MachXO5-NX .bit in Software Requirements. 	
Importing and Building the FPGA Demonstration	Updated the directory for CrossLink-NX, Certus-NX, CertusPro-NX, and MachXO5-NX for the .rdf file step in Building a Lattice Radiant Project.	
Setting Up the Demo	 Updated section content to change Windows10 to Windows in folder names. Updated Programming the FPGA section to change CertusPro-NX and MachXO5-NX bits to MultifunctionDemo_Implementation.bit and updated MachXO5-NX mcs and jed file location. Updated Description and Release versions and removed OS Type and Codename bullet points in Supported Operating System and added figure captions for images in Required Packages. 	
Customizing the Design for CertusPro-NX Devices	Added this section.	
References	Added this section.	

Revision 1.2. May 2023

Section	Change Summary
All	 Applied formatting and editorial changes throughout the document. Added CertusPro-NX device support where applicable. Added MachXO5-NX support. Rearranged specific sections to the following sequence: Demo Design Overview, Importing and Building the FPGA Demonstration, Setting Up the Demo, Application Overview, and Troubleshooting.
Acryonyms in This Document	Added new acronyms: API, BIOS, DLL, and OS.
Setting Up the Demo	 Updated Table 5.4. Hardware IDs to add MachXO5-NX information. Updated Figure 5.16. Programmer Menu Bar to highlight the Programming button. Updated Figure 5.32. Device Configuration Prompt to highlight Yes option in message box. Updated Figure 5.34. Windows Security in Driver Installation to highlight Install this driver software anyway option. Added Figure 5.5. MachXO5-NX Development Board Connection, Figure 5.11. MachXO5-NX FPGA Device Settings, Figure 5.15. Device Properties Window for MachXO5-NX Flash Programming, Figure 5.21. MachXO5-NX Programming Done LED, Figure 5.57. GPIO Device Drivers for MachXO5-NX in Device Manager, and Table 5.2. Jumper Configuration.
Application Overview	 Replaced bullet information from kHz - attributes hold the I2C bit rate value to kHz - attributes to I2C bit rate value in Batch Mode section. Added Figure 6.3. PCIe Test Application Device Info Tab for MachXO5-NX and Figure 6.6. Functionality Test Tab for MachXO5-NX.
Troubleshooting	 Added reference to Figure 5.16. Programmer Menu Bar in SPI Flash Update section. Added Figure 7.7. Ispci -vnm for MachXO5-NX Output Image.
Technical Support Assistance	Added a link to the Lattice Answer Database.

Revision 1.1, March 2022

Section	Change Summary	
All	•	Changed document title to PCIe Colorbar Demo for Lattice Nexus-based FPGAs.
	•	Updated the contents to be applicable to Lattice Nexus-platform devices, specifically CrossLink-NX and Certus-NX for this release.

Revision 1.0, February 2022

Section	Change Summary
All	Initial release.

www.latticesemi.com