

Lattice mVision AR0234 Sensor Board

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronyms in This Document	
1. Introduction	θ
1.1. Features	6
2. Required Components	8
3. Headers and Jumpers	
4. Programming the Board	
4.1. Programming the Device	
5. Interfaces	
5.1. J1 Interface	
5.2. External Power Supply Connections	
5.3. Flash and Shutter Control Connections	
5.4. IR CUT Driver Circuit	
6. Electrical Characteristics	
6.1. Absolute Maximum Ratings	
6.2. DC Electrical Characteristics	
6.3. Operating Current Consumption for MIPI Output	16
6.4. Standby Current Consumption	
6.5. Two-Wire Serial Bus Timing Parameters	
6.6. Two-Wire Serial Bus Characteristics	
7. Power-On Reset and Standby Timing	19
7.1. Power-Up Sequence	
7.2. Power-Down Sequence	
References	
Technical Support	
Revision History	

Figures

Figure 1.1. Top View of Lattice mVision AR0234CS Sensor Board	7
Figure 1.2. Bottom View of Lattice mVision AR0234CS Sensor Board	
Figure 2.1. Embedded Vision Development Kit	8
Figure 2.2. Lattice mVision AR0234 Sensor Board	8
Figure 2.3. EVDK and AR0234 Sensor Boards Connected with Flex Cable	9
Figure 2.4. Flex Cable Connection Detail	9
Figure 4.1. Programming Cable Setup	11
Figure 4.2. CrossLink Programming Setup	11
Figure 4.3. CrossLink Programming Status	12
Figure 4.4. ECP5 Programming Setup	12
Figure 4.5. ECP5 Programming Status	12
Figure 5.1. J1 Interface	13
Figure 5.2. External Power Supply Connections	13
Figure 5.3. Flash and Shutter Control Connections	14
Figure 5.4. IR_CUT Driver Circuit	14
Figure 6.1. Two-Wire Serial Bus Timing Parameters Diagram	17
Figure 7.1. Power-up Sequence	19
Figure 7.2. Power-down Sequence	20
Tables	
Table 3.1. AR0234 Sensor Board	10
Table 3.2. CrossLink VIP Input Bridge Board	10
Table 3.3. ECP5 VIP Processor Board	
Table 6.1. Absolute Maximum Ratings	
Table 6.2. DC Electrical Characteristics	15
Table 6.3. Operating Current Consumption for MIPI Output	16
Table 6.4. Standby Current Consumption	
Table 6.5. Two-Wire Serial Bus Characteristics	17
Table 7.1. Power-up Sequence	
Table 7.2. Power-down Sequence	21

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
EVDK	Embedded Vision Development Kit
FPGA	Field-Programmable Gate Array
ISP	Image Signal Processing
JTAG	Joint Test Action Group
MIPI	Mobile Industry Processor Interface
SCLK	Serial Clock Signal

1. Introduction

The Lattice mVision™ AR0234CS sensor board uses a 1/2.6–inch 2.3 Mp Color Odeg Global Shutter CMOS digital image sensor with an active–pixel array of 1920 (H) × 1200 (V) from On Semiconductor. The sensor board can be interfaced to the EVDK (Embedded Vision Development Kit). The EVDK combines the bridging capability of our CrossLink™ FPGA, the low-power, small form factor ECP5™ and the high-resolution benefits of our HDMI ASSP, onto this modular platform enabling flexible connectivity and energy efficient image processing for robotics, drones, ADAS, smart surveillance and AR/VR systems. The included software provides a comprehensive setup interface and flexibility to evaluate the Lattice mVision ISP solution from Lattice and full sensor features and capabilities.

The sensor board comes with a lens suitable for evaluation with M12 lens holder to use standard M12 compatible lenses. You can use your own lens as long as it is compatible with the mechanical and optical requirements.

An IR-CUT driver circuit using TI's DRV8838 integrated motor driver solution for cameras allows the use of IR-CUT filter.

1.1. Features

The key features of the Lattice mVision AR0234CS sensor board are:

- $\bullet \quad \text{ON Semiconductor CMOS $\%.6''$, Color, Odeg, Image Sensor AR02345CS with following specifications:} \\$
 - Active pixels: 1920H × 1200V
 Pixel size: 3.0 um × 3.0 um
 - Color sensor
 - Interface: MIPI output
 - Global Shutter
 - Part#: AR0234CS3C00SUKA0-CP-E
- IR_CUR driver circuit for use of IR_CUT filters
- Included PT-0620 lens with following specifications:
 - Focal Length: 6.0 mm
 - Iris: F2.0
 - Mount: M12x0.5
 - Image Sensor Size: 1/3"
 - Angle of View: 51°
 - Housing: Metal
 - Optics: Glass
- M12 lens holder
- External connection for Flash and Shutter control
- External connection for all power supplies
- External connection for EVDK kit (including power, data, and control signals)
- Tripod Connection

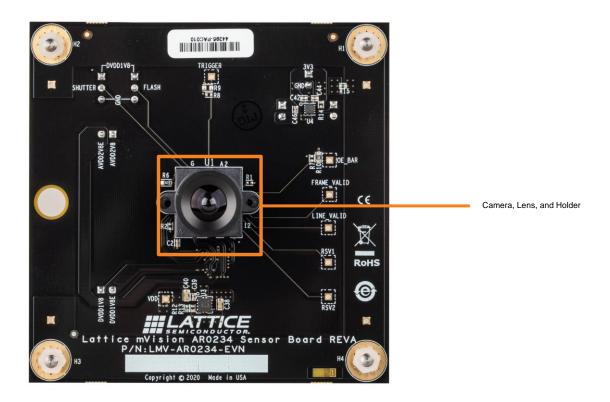


Figure 1.1. Top View of Lattice mVision AR0234CS Sensor Board

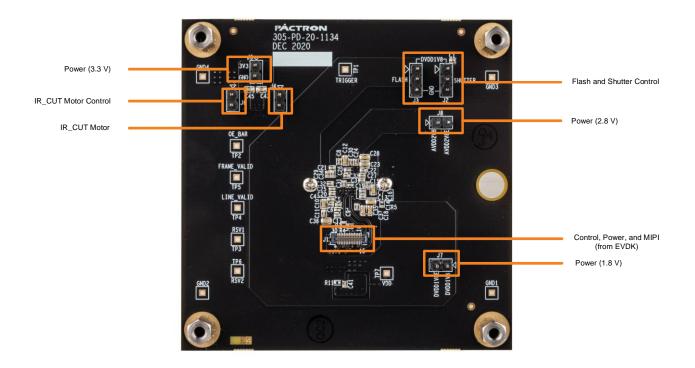


Figure 1.2. Bottom View of Lattice mVision AR0234CS Sensor Board

2. Required Components

Before starting the evaluation, the following items must be available and ready to use on the test bench.

• Embedded Vision Development Kit (EVDK) with camera modules removed

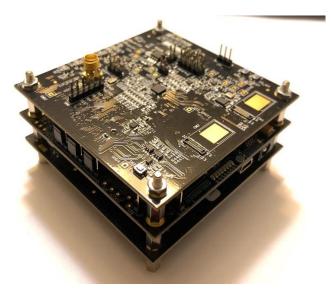


Figure 2.1. Embedded Vision Development Kit

mVision AR0234 Sensor Board with lens holder and lens assembled

Figure 2.2. Lattice mVision AR0234 Sensor Board

- HDMI Monitor
- HDMI Cable
- Flexible Cable
- Two jumpers placed on J7 and J8 headers of AR0234 Sensor Board

9

Once all required items are available, connect the EVDK and AR0234 sensor board together using the Flex cable as shown in Figure 2.3.

Figure 2.3. EVDK and AR0234 Sensor Boards Connected with Flex Cable

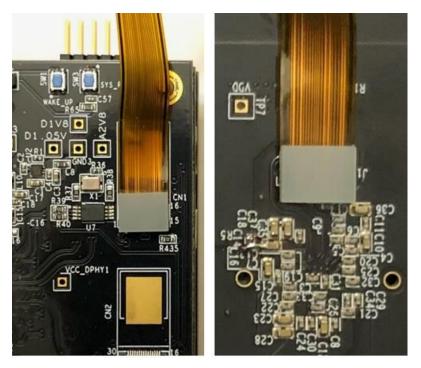


Figure 2.4. Flex Cable Connection Detail

3. Headers and Jumpers

Table 3.1 lists the headers and jumpers as shown in Figure 1.2.

Table 3.1. AR0234 Sensor Board

S. No.	Jumper Name	Description
1	J7	Short
2	J8	Short

Table 3.2. CrossLink VIP Input Bridge Board

S. No.	Jumper Name	Description
1	J4	Short
2	J30	Open
3	J2	Short
4	_	All other headers should be kept open

Table 3.3. ECP5 VIP Processor Board

S. No.	Jumper Name	Description
1	J55	Connect 2 and 3
2	J51	Connect 1 and 2
3	J5	Connect 1 and 2
4	J9	Connect 1 and 2
6	J6	Connect 1 and 2
7	J3	Connect 1 and 2, also 5 and 6
8	J50	Connect 1 and 2, also 3 and 5
9	J7	Connect 2 and 3
10	J52	Connect 1 and 2 for SPI, 2 and 3 for JTAG
11	J53	Connect 1 and 2
12	_	All other headers should be kept open

4. Programming the Board

4.1. Programming the Device

The board is programmed through the Lattice Radiant™ programmer software, which can be started as a standalone tool or from a Lattice Radiant Project.

To program the Lattice mVision AR0234 Sensor Board using the Lattice EVDK:

- 1. Connect the LF-EVDK1-EVN board to the DC power adapter (12 V).
- 2. Connect the board to PC through the USB mini port.
- 3. Start the Lattice Diamond® Programmer version 3.10 or higher.
- 4. In the Getting Started dialog box, select the configurations shown in Figure 4.1. Click OK.

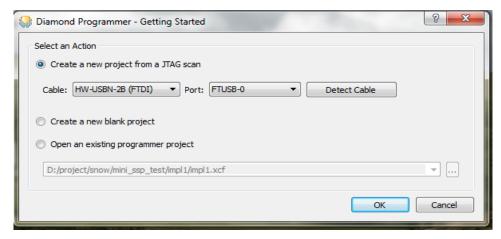


Figure 4.1. Programming Cable Setup

 Select LIFMD for Device Family, LIF-MD6000 for Device, Fast Program for Operation, and mVision_CSI2_2_parallel_impl1.bit for File Name as shown in Figure 4.5.

Figure 4.2. CrossLink Programming Setup

6. Click the **Program** button to program and check the status.

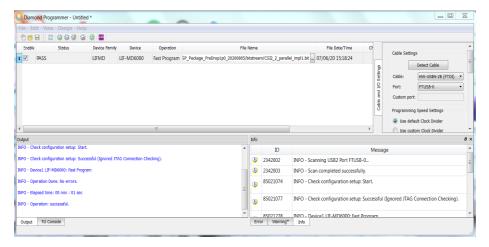


Figure 4.3. CrossLink Programming Status

 Select ECP5UM for Device Family, LFE5UM-85F for Device, Fast Program for Operation, and mVision_ISP_1080p_impl1.bit for File Name as shown in Figure 4.4.

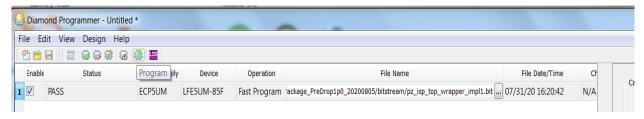


Figure 4.4. ECP5 Programming Setup

8. Click the Program button to program and check the status.

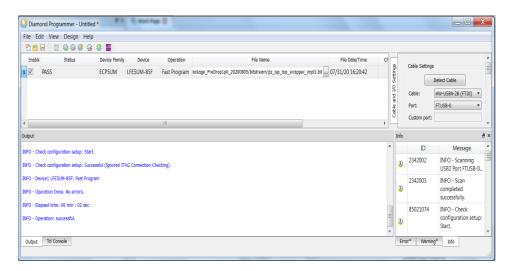


Figure 4.5. ECP5 Programming Status

- 9. Connect the HDMI monitor to the board using the HDMI cable.
- 10. Toggle the **SW3 (SYS_RST)** button on the Crosslink VIP Bridge Board. The sensor-captured video is displayed on the HDMI monitor.

© 2021-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

5. Interfaces

5.1. J1 Interface

The J1 interface includes power, control, and MIPI signals connection to EVDK.

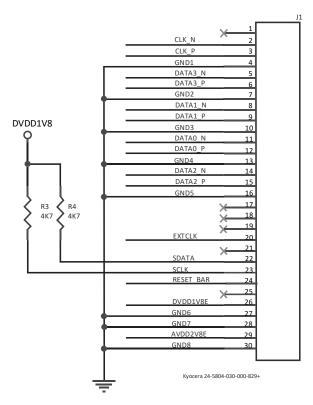
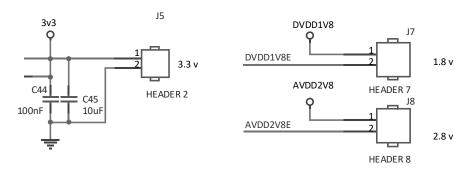



Figure 5.1. J1 Interface

5.2. External Power Supply Connections

The J5, J7, and J8 headers allow external power supply connection to the sensor board. Using a jumper to short pin 1 and 2 of the J7 header supplies 1.8 V from J1 connector. Using a jumper to short pin 1 and 2 of the J8 header supplies 2.8 V from J1 connector.

To use external supplies, use pin 1 of these headers. Note that 3.3 V supply for IR_CUT circuit is not provided through J1.

Figure 5.2. External Power Supply Connections

5.3. Flash and Shutter Control Connections

J2 and J3 allow external control for Shutter and Flash.

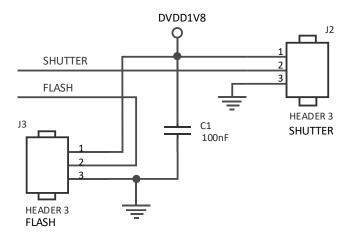


Figure 5.3. Flash and Shutter Control Connections

5.4. IR_CUT Driver Circuit

Figure 5.4 shows the IR_CUT driver circuit. A 3.3 V supply power must be applied using the J5 header. J6 allows external control of the driver. J4 must be connected to appropriate IR_CUT motor.

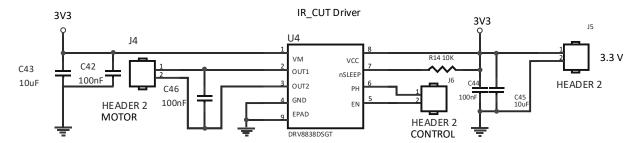


Figure 5.4. IR_CUT Driver Circuit

6. Electrical Characteristics

6.1. Absolute Maximum Ratings

Table 6.1. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
V _{SUPPLY}	Power Supply Voltage	-0.3	4.5	V
I _{SUPPLY}	Total Power Supply Current	_	200	mA
I _{GND}	Total Ground Current	_	200	mA
V _{IN}	DC Input Voltage	-0.3	V _{DD} _IO + 0.3	V
V _{OUT}	DC Output Voltage	-0.3	V _{DD} _IO + 0.3	V
T _{STG}	Storage Temperature ²	-40	+125	°C

Notes:

- Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur, and reliability may be affected.
- 2. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

6.2. DC Electrical Characteristics

Table 6.2. DC Electrical Characteristics

Symbol	Definition	Condition	Min	Тур	Max	Unit
V_{DO}	Core Digital Voltage		1.14	1.2	1.26	V
V _{DD} _IO	I/O Digital Voltage		1.7/2.5	1.8/2.8	1.9/3.1	V
V _{DD} _IO_PHY	I/O Power Supply		1.7/2.5	1.8/2.8	1.9/3.1	V
V _{AA}	Analog Voltage		2.5	2.8	3.1	V
V _{AA} _PIX	Pixel Supply Voltage		2.5	2.8	3.1	V
V _{DD} _PHY	MIPI Supply Voltage		1.14	1.2	1.26	V
V _{DD} _DATA	MIPI Supply Voltage		1.14	1.2	1.26	V
V _{AA} _PHY	MIPI Supply Voltage		2.5	2.8	3.1	V
V _{IH}	Input HIGH Voltage		V _{DD} _IO × 0.7	_	_	V
V _{IL}	Input LOW Voltage		_	_	$V_{DD}_{IO} \times 0.3$	V
I _{IN}	Input Leakage Current	No pull-up resistor; V _{IN} = V _{DD} _IO or D _{GND}	20	_	_	μΑ
V _{OH}	Output HIGH Voltage		V _{DD} _IO - 0.3	_	_	V
V _{OL}	Output LOW Voltage	V _{DD} _IO = 2.8 V	_	_	0.4	V
I _{OH}	Output HIGH Current	At specified V _{OH}	-22	_	_	mA
I _{OL}	Output LOW Current	At specified V _{OL}	_	_	22	mA

Note: Stresses greater than those listed in Table 6.2 may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

6.3. Operating Current Consumption for MIPI Output

Table 6.3. Operating Current Consumption for MIPI Output

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{DD} PHY + I _{DD} DATA + I _{DD}	Digital Operating Current	MIPI, Streaming, Full Resolution 120 fps	TBD	147	TBD	mA
I _{DD} IO_PHY + I _{DD} _IO	I/O Digital Operating Current	MIPI, Streaming, Full Resolution 120 fps	TBD	8	_	mA
I _{AA} _PHY + T _{AA}	Analog Operating Current	MIPI, Streaming, Full Resolution 120 fps	TBD	55	TBD	mA
I _{AA} _PIX	Pixel Supply Current	MIPI, Streaming, Full Resolution 120 fps	TBD	6	TBD	mA

Notes:

- 1. $(V_{AA} = V_{AA}_PIX = V_{DD}_IO = 2.8 \text{ V}; V_{DD} = V_{DD}_PHY = 1.2 \text{ V}; V_{DDIO}_PHY = 1.8 \text{ V}; PLL Enabled and PIXCLK = 90 MHz; T_A = 25 °C; C_{LOAD} = 10 pF)$
- 2. Values in Table 6.3 are subject to change.
- 3. The following supply rails can be connected together:
 - a. V_{DD} , V_{DD} PHY, and V_{DD} DATA
 - b. V_{DD} IO and V_{DD}IO PHY
 - c. V_{AA}, V_{AA}_PHY, and V_{AA}_PIX

6.4. Standby Current Consumption

Table 6.4. Standby Current Consumption

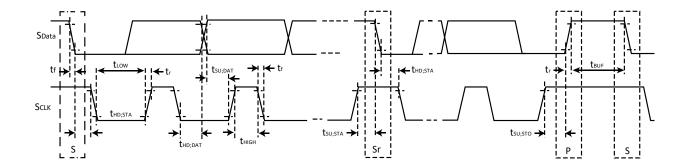
Definition	Condition	Min	Тур	Max	Unit
A L VOLUETROUMN (CL L OFF)	Analog, 2.8 V	TBD	10	TBD	μΑ
Apply XSHUTDOWN (Clock Off)	Digital, 1.8 V	TBD	40	TBD	μΑ
Apply XSHUTDOWN (Clock On)	Analog, 2.8 V	TBD	25	TBD	μΑ
	Digital, 1.8 V	TBD	55	TBD	μΑ
Soft Standby (Clock Off, Driven Low)	Analog, 2.8 V	TBD	15	TBD	μΑ
	Digital, 1.8 V	TBD	270	TBD	μΑ
Soft Standby (Clock On, EXTCLK = 27 MHz)	Analog, 2.8 V	TBD	70	TBD	μΑ
	Digital, 1.8 V	TBD	2600	TBD	μΑ

Notes:

- (Analog = V_{AA} + V_{AA}_PIX + V_{AA}_PHY; Digital = V_{DD} + V_{DD}_IO + V_{DD}_PHY + V_{DDIO}_PHY + V_{DD}_DATA; T_A = 25 °C)
- 2. Values in Table 6.4 are subject to change.

6.5. Two-Wire Serial Bus Timing Parameters

Unless otherwise stated, the following specifications apply to the following conditions:


- $V_{DD} = V_{DD}_PHY = V_{DD}_DATA = 1.2 V +/-0.06;$
- $V_{DD}IO = V_{AA} = V_{AA}PIX = 2.8 V + /-0.3 V; V_{DDIO}PHY = 1.8 V + /-0.1 V$
- T_A = -40 °C to + 105 °C;
- Output Load = 10 pF;
- PIXCLK Frequency = 90 MHz;
- MIPI off

The electrical characteristics of the two-wire serial register interface (S_{CLK}, S_{DATA}) are shown in Figure 6.1 and Table 6.5.

© 2021-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

NOTE: Read sequence: For an 8-bit READ, read waveforms start after WRITE command and register address are issued.

Figure 6.1. Two-Wire Serial Bus Timing Parameters Diagram

6.6. Two-Wire Serial Bus Characteristics

Table 6.5. Two-Wire Serial Bus Characteristics

Parameter	Combal	Standard	l Mode	Mode Fast Mode		
Parameter	Symbol	Min	Max	Min	Max	Unit
S _{CLK} Clock Frequency	f _{SCL}	0	100	0	400	kHz
Hold Time (Repeated) START Condition (after this period, the First Clock Pulse is generated)	t _{HD;STA}	4.0	_	0.6	_	μς
LOW Period of the S _{CLK} Clock	t_{LOW}	4.7	_	1.3	_	μs
HIGH Period of the S _{CLK} Clock	t _{HIGH}	4.0	_	0.6	_	μs
Set-Up Time for a Repeated START Condition	t _{su;sta}	4.7	_	0.6	_	μs
Data Hold Time	t _{HD;DAT}	O ⁵	3.45 ⁶	0 ⁷	0.9 ⁶	μs
Data Set-Up Time	t _{SU;DAT}	250	_	100 ⁷		μs
Rise Time of both S _{DATA} and S _{CLK} Signals	t _r	_	1000	20 + 0.1 Cb ⁸		μs
Fall Time of both S _{DATA} and S _{CLK} Signals	t _f	_	300	20 + 0.1 Cb ⁸		μs
Set-Up Time for STOP Condition	t _{su;sto}	4.0	_	0.6	_	μs
Bus Free Time between a STOP and START Condition	t _{BUF}	4.7	_	1.3	_	μs
Capacitive Load for each Bus Line	C _b	_	400	_	400	pF
Serial Interface Input Pin Capacitance	CIN_SI	_	3.3	_	3.3	pF
S _{DATA} Max Load Capacitance	CLOAD_SD	_	30	_	30	pF
S _{DATA} Pull-Up Resistor	RSD	1.5	4.7	1.5	4.7	kΩ

Notes:

- 1. $(f_{\text{EXTCLK}} = 27 \text{ MHz}; V_{\text{DD}} = 1.2 \text{ V}; V_{\text{DD}} = 2.8 \text{ V}; V_{\text{AA}} = 2.8 \text{ V}; V_{\text{AA}} = 1.8 \text{ V}; V_{\text{DD}} = 1.2 \text{ V}; V_{\text{DDIO}} = 1.8 \text{ V}; V_{\text{A}} = 2.8 \text{ V}; V_{\text{AA}} = 2.8 \text{ V}; V_{\text{DD}} = 1.2 \text{ V}; V_{\text{DDIO}} = 1.8 \text{ V}; V_{\text{A}} = 2.8 \text{ V}; V_{\text{AA}} = 1.8 \text{ V}; V_{\text{AA}}$
- 2. This table is based on I²C standard (v2.1 January 2000) Philips Semiconductor.
- 3. Two-wire control is I²C-compatible.
- 4. All values referred to V_{IHmin} = 0.9 V V_{DD} _IO and V_{ILmax} = 0.1 V_{DD} _IO levels. Sensor EXCLK = 27 MHz.
- 5. A device must internally provide a hold time of at least 300 ns for the SDATA signal to bridge the undefined region of the falling edge of SCLK. The two-wire standard specifies a minimum rise and fall time for Fast Mode operation. This specification is not a timing requirement that is enforced on ON Semiconductor sensor's as a receiver, because our receivers are designed to work in mixed systems with std-mode where no such minimum rise and fall times are required/specified. However, it is the host's responsibility when using fast edge rates, especially when two-wire slew-rate driver control is not available, to manage the generated EMI, and the potential voltage undershoot on the sensor receiver circuitry, to avoid activating sensor ESD diodes and current-clamping circuits. This is typically not an issue in most applications., but should be checked if below minimum fall times and rise times are required. A device must internally provide a hold time of at least 300 ns for the S_{DATA} signal to bridge the undefined region of the falling edge of S_{CLK}.

© 2021-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

- 6. The maximum t_{HD;DAT} has only to be met if the device does not stretch the LOW period (t_{LOW}) of the S_{CLK} signal.
- 7. A Fast mode I²C bus device can be used in a standard mode I2C-bus system, but the requirement $t_{SU;DAT}$ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the S_{CLK} signal. If such a device does stretch the LOW period of the S_{CLK} signal, it must output the next data bit to the S_{DATA} line t_f max + $t_{SU;DAT}$ = 1000 + 250 = 1250 ns (according to the Standard-mode I²C bus specification) before the S_{CLK} line is released.
- 8. Cb = total capacitance of one bus line in pF.

7. Power-On Reset and Standby Timing

7.1. Power-Up Sequence

The recommended power-up sequence for the AR0234 is shown in Figure 7.1. The available power supplies (VAA/VAA_PIX/VAA_PHY, VDDIO, VDDIO_PHY, VDD/VDD_PHY, and VDD_DATA) must have the separation specified below.

- Turn on VAA/VAA PIX/VAA PHY power supply.
- After 100 μs, turn on VDDIO power supply.
- After 100 μs, turn on VDDIO PHY (1.8 V) power supply.
- After 100 μs, turn on VDD/VDD_PHY power supply.
- After 100 μs, turn on VDD_DATA power supply.
- After the last power supply is stable, enable EXTCLK.
- Assert RESET_N for at least 1 ms. The parallel interface is tristated during this time.
- Wait for ~150000 EXTCLKs for internal initialization into soft standby where M3ROM and full OTPM upload is complete.
- Set streaming mode (mode select/stream (R0x301A[2]) = 1) and the internal PLL is enabled (not locked yet).
- Wait for 1 ms for PLL lock to complete, and then part goes into streaming mode.

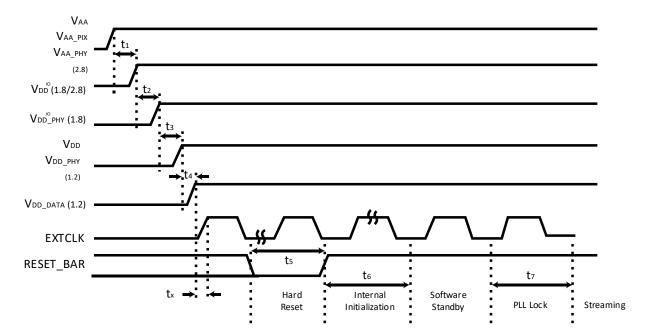


Figure 7.1. Power-up Sequence

Table 7.1. Power-up Sequence

SN	Definition	Symbol	Min	Тур	Max	Unit
1	V _{AA} /V _{AA} _PIX/V _{AA} _PHY to V _{DD} IO	t ₁	0	100	_	μs
2	V _{DD} IO to V _{DD} IO_PHY	t ₂	0	100	_	μs
3	V _{DD} IO_PHY to V _{DD} /V _{DD} _PHY	t ₃	0	100	_	μs
4	V _{DD} /V _{DD} _PHY to V _{DD} _DATA	t ₄	0	100	_	μs
5	Xtal Settle Time (Component Dependent)	t _x	_	30 ms	_	ms
6	Hard Reset	t ₅	1	_	_	ms
7	Internal Initialization	t ₆	16000	_	_	EXTCLK
8	PLL Lock Time	t ₇	1	_	_	ms

Notes:

- 1. V_{DD} and V_{DD} DATA can be tied together (t_4 becomes 0 in this case).
- 2. VAA/VAAPIX/VAA_PHY can be tied together.

7.2. Power-Down Sequence

The recommended power-down sequence for the AR0234 is shown in Figure 9. The available power supplies (VAA/VAA_PIX/VAA_PHY, VDDIO, VDDIO_PHY, VDD/VDD_PHY, and VDD_DATA) must have the separation specified below.

Disable streaming if output is active by setting standby R0x301a[2] = 0.

The soft standby state is reached after the current row or frame, depending on configuration, has ended.

- Turn off VDD_DATA.
- Turn off VDD/VDD_PHY.
- Turn off VDDIO PHY.
- Turn off VDDIO.
- Turn off VAA/VAA_PIX/VAA_PHY

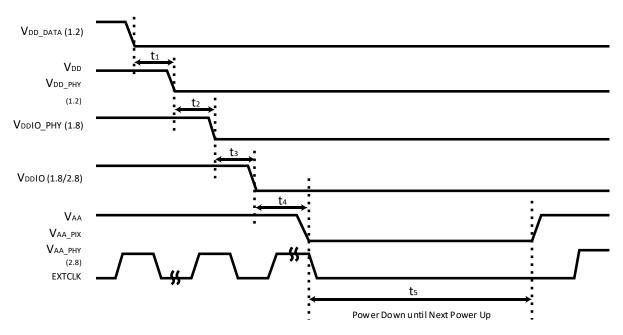


Figure 7.2. Power-down Sequence

Table 7.2. Power-down Sequence

SN	Definition	Symbol	Min	Тур	Max	Unit
1	V _{DD} _DATA to V _{DD} /V _{DD} _PHY	t ₁	0	_	_	_
2	V _{DD} /V _{DD} _PHY to V _{DD} IO_PHY	t ₂	0	_	_	_
3	V _{DD} IO_PHY to V _{DD} IO	t ₃	0	_	_	_
4	V _{DD} IO to V _{AA} /V _{AA} _PIX/V _{AA} _PHY	t ₄	0	_	_	_
5	PwrDn until next PwrUp Time	t ₅	100	_	_	ms

Notes:

- 1. V_{DD} and V_{DD} DATA can be tied together.
- 2. $V_{AA}/V_{AA}PIX/V_{AA}$ PHY can be tied together.

References

For more information, refer to Lattice mVision ISP Reference Design Quick Start Guide (FPGA-AN-02034).

Technical Support

For assistance, submit a technical support case at www.latticesemi.com/techsupport.

Revision History

Revision 1.1, February 2022

Section	Change Summary
All	Minor adjustments in formatting across the document.
Introduction	Updated Figure 1.1 and Figure 1.2.
Required Components	Added this section.
Headers and Jumpers	Added this section.
Programming the Board	Added this section.

Revision 1.0, March 2021

Section	Change Summary
All	Initial release

www.latticesemi.com