

CertusPro-NX MobileNet Object
Classification on VVML Board

Reference Design

FPGA-RD-02242-1.0

January 2022

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02242-1.0

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer.
Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited
testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice
products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a
situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is
proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 3

Contents
Acronyms in This Document ... 8
1. Introduction .. 9

1.1. Design Process Overview .. 9
2. Setting Up the Basic Environment .. 10

2.1. Software and Hardware Requirements ... 10
2.1.1. Lattice Software .. 10
2.1.2. Hardware .. 10

2.2. Setting Up the Linux Environment for Machine Training .. 10
2.2.1. Installing the CUDA Toolkit ... 10
2.2.2. Installing the cuDNN ... 12
2.2.3. Installing Anaconda and Python 3 .. 12

3. Preparing the Dataset ... 14
3.1. Preparing Dataset for Training .. 14
3.2. Generating Dataset from Board Camera ... 15
3.3. Generating Video for Demo .. 17

4. Training the Machine .. 18
4.1. Training Code Structure .. 18
4.2. Neural Network Architecture .. 18

4.2.1. Object Detection Training Network Layers ... 18
4.2.2. Object Detection Network Output ... 21
4.2.3. Training Code Overview .. 22

4.2.3.1. Model Configuration .. 22
4.2.3.2. Model Building ... 24
4.2.3.3. Training .. 29

4.3. Training from Scratch and/or Transfer Learning ... 29
5. Testing the Trained Model ... 32

5.1. Running the Test Shell Script ... 32
5.2. Checking the Mean Average Precision (mAP) of the Model ... 32
5.3. Testing the Centroid Tracking Algorithm .. 34

5.3.1. Testing the Images Captured using the Board Camera .. 34
5.3.2. Live Testing of the Centroid Tracking using Real-time Data from the Board .. 35

6. Creating Frozen File .. 36
6.1. Generating the Frozen .pb File .. 36

7. Creating Binary File with Lattice sensAI .. 37
8. Hardware Implementation ... 41

8.1. Top Level Information ... 41
8.1.1. Block Diagram ... 41
8.1.2. Operational Flow .. 41
8.1.3. Core Customization... 42

8.2. Architecture Details .. 43
8.2.1. SPI Flash Operation ... 43
8.2.2. Pre-processing CNN .. 44

8.2.2.1. Pre-processing Flow ... 44
8.2.3. HyperRAM Operations .. 45
8.2.4. Post-processing CNN ... 47

8.2.4.1. Confidence Sorting .. 48
8.2.4.2. Bounding Box Calculation .. 49
8.2.4.3. NMS – Non Max Suppression .. 50
8.2.4.4. Bounding Box Upscaling .. 51
8.2.4.5. Centroid Tracker .. 52
8.2.4.6. OSD Text Display .. 52
8.2.4.7. USB Wrapper ... 52

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02242-1.0

9. Creating FPGA Bitstream File .. 53
9.1. Bitstream Generation Using Lattice Radiant Software .. 53
9.2. Configuring the IP in Lattice Radiant Software ... 56

10. Programming the Demo ... 58
10.1. Programming the CertusPro-NX SPI Flash ... 58

10.1.1. Erasing the CertusPro-NX SRAM Prior to Reprogramming ... 58
10.1.2. Programming the CertusPro-NX Board... 59
10.1.3. Programming sensAI Firmware Binary to the CertusPro-NX SPI Flash ... 61

10.1.3.1. Convert Flash sensAI Firmware Hex to CertusPro-NX SPI Flash .. 61
11. Running the Demo .. 64
Appendix A. Other Labelling Tools .. 65
References .. 66
Technical Support Assistance ... 67
Revision History .. 68

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 5

Figures
Figure 1.1. Lattice Machine Learning Design Flow ... 9
Figure 2.1. Lattice CertusPro-NX Voice and Vision Machine Learning Board ... 10
Figure 2.2. CUDA Repo Download .. 11
Figure 2.3. CUDA Repo Installation ... 11
Figure 2.4. Fetch Keys ... 11
Figure 2.5. Update Ubuntu Packages Repositories... 11
Figure 2.6. CUDA Installation Completed ... 11
Figure 2.7. cuDNN Library Installation .. 12
Figure 2.8. Anaconda Installation ... 12
Figure 2.9. Accept License Terms ... 12
Figure 2.10. Confirm/Edit Installation Location 6 ... 13
Figure 2.11. Launch/Initialize Anaconda Environment on Installation Completion ... 13
Figure 3.1. Directory After Unzipping ... 14
Figure 3.2. CUDA Version 10.0 .. 14
Figure 3.3. Directory Path given as Input ... 15
Figure 3.4. Object Name to be Labeled .. 15
Figure 3.5. Selected Object ... 16
Figure 3.6. Text Label in the _Annotations_KITTI Directory ... 16
Figure 3.7. Generated Media Directory .. 17
Figure 4.1. Training Code Directory Structure .. 18
Figure 4.2. Training Code Flow Diagram ... 22
Figure 4.3. Code Snippet – Input Image Size Config ... 22
Figure 4.4. Code Snippet – Anchors Per Grid Config #1 (Grid Sizes) ... 23
Figure 4.5. Code Snippet – Anchors Per Grid Config #2 .. 23
Figure 4.6. Code Snippet – Anchors Per Grid Config #3 .. 23
Figure 4.7. Code Snippet – Training Parameters .. 24
Figure 4.8. Code Snippet – Filter Values ... 24
Figure 4.9. Code Snippet – Forward Graph Fire Layers for MobileNet v1 .. 25
Figure 4.10. Code Snippet – Forward Graph Last Convolution Layer ... 25
Figure 4.11. Grid Output Visualization #1 ... 26
Figure 4.12. Grid Output Visualization #2 ... 26
Figure 4.13. Code Snippet – Interpret Output Graph ... 27
Figure 4.14. Code Snippet – Bbox Loss ... 27
Figure 4.15. Code Snippet – Confidence Loss ... 28
Figure 4.16. Code Snippet – Class Loss ... 28
Figure 4.17. Code Snippet – Training .. 29
Figure 4.18. Training Code Snippet for Mean and Scale ... 29
Figure 4.19. Training Code Snippet for Dataset Path ... 29
Figure 4.20. Training Input Parameter .. 30
Figure 4.21. Execute train.sh Script .. 30
Figure 4.22. TensorBoard ... 31
Figure 4.23. Example of Checkpoint Data Files at weights/Object_Detector/train_weights/ folder 31
Figure 5.1. Test Script Last Log ... 32
Figure 5.2. Test Result in images_out_v1 Directory ... 32
Figure 5.3. Running map.py .. 33
Figure 5.4. map.png in MAP/results directory ... 33
Figure 5.5. crop.py Terminal Output .. 34
Figure 5.6. Input Parameter for the Script .. 34
Figure 5.7. Output Window with Overlay on Images ... 35
Figure 5.8. Object Detector on PC .. 35
Figure 6.1. pb File Generation from Checkpoint .. 36
Figure 6.2. Frozen .pb File ... 36

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02242-1.0

Figure 7.1. sensAI Home Screen ... 37
Figure 7.2. sensAI – Network File Selection .. 38
Figure 7.3. sensAI – Input Image File Selection .. 38
Figure 7.4. sensAI – Project Settings ... 39
Figure 7.5. sensAI – Analyze Project ... 39
Figure 7.6. Q Format Settings for Each Layer ... 40
Figure 7.7. Compile Project ... 40
Figure 8.1. RTL Top Level Block Diagram .. 41
Figure 8.2. SPI Read Command Sequence .. 43
Figure 8.3. Masking ... 44
Figure 8.4. Downscaling .. 45
Figure 8.5. HyperRAM Memory Addressing ... 46
Figure 8.6. HyperRAM Access Block Diagram ... 47
Figure 8.7. CNN Output Data Format ... 48
Figure 8.8. Confidence Sorting .. 49
Figure 8.9. Intersection-Union Area NMS ... 50
Figure 9.1. Radiant – Default Screen .. 53
Figure 9.2. Radiant – Open CertusPro-NX Project File (.rdf) ... 54
Figure 9.3. Radiant – Design Load Check After Opening the Project File ... 54
Figure 9.4. Radiant – Trigger Bitstream Generation ... 55
Figure 9.5. Radiant – Radiant Bit File Generation Report Window .. 55
Figure 9.6. Radiant – Uninstall Old IP ... 56
Figure 9.7. Radiant – Install New IP .. 56
Figure 9.8. Radiant – Select User IP Package to Install ... 57
Figure 10.1. Radiant Programmer Default Screen .. 58
Figure 10.2. Radiant programmer- Device selection .. 58
Figure 10.3. Radiant Programmer – Device Operation ... 59
Figure 10.4. Radiant Programmer – Selecting Device Properties Options for CertusPro-NX Flashing 60
Figure 10.5. CertusPro-NX Flashing Switch – SW4 Push Button ... 61
Figure 10.6. Radiant Programmer – Output Console .. 61
Figure 10.7. Radiant Programmer – Selecting Device Properties Options for CertusPro-NX Flashing 62
Figure 10.8. Radiant Programmer – Output Console .. 63
Figure 11.1. Running the Demo .. 64

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 7

Tables
Table 4.1. Object Detection MobileNet v1 Training Topology ... 19
Table 8.1. Core Parameter .. 42
Table 8.2. Data Parameters of CNN Output ... 47
Table 8.3. Pre-Selected Width and Height of Anchor Boxes... 49
Table 8.4. Grid Center Values (X, Y) for Anchor Boxes ... 49
Table A.1. Other Labelling Tools ... 65

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02242-1.0

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

AXI Advanced Extensible Interface

CNN Convolutional Neural Network

FPGA Field-Programmable Gate Array

NN Neural Network

SD Secure Digital

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

VVML Voice and Vision Machine Learning

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 9

1. Introduction
This document describes the Object detection Design process using the CertusPro™-NX platform.

Generic Object Classification base design is used. This document covers MobileNet v1 version of the reference design.

1.1. Design Process Overview
The design process involves the following steps:

1. Training the model

 Setting up the basic environment

 Preparing the dataset

 Training the machine

 Creating the checkpoint data

 Creating the frozen file (*.pb)

2. Compiling Neural Network

 Creating the binary file with Lattice Neural Network Compiler Software 4.0 program

3. FPGA Design

 Creating the FPGA bitstream file

4. FPGA Bitstream and Quantized Weights and Instructions

 Flashing the binary and bitstream files

 Binary File to Flash Memory on CertusPro-NX board

 Bitstream to Flash Memory on CertusPro-NX board

Figure 1.1. Lattice Machine Learning Design Flow

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02242-1.0

2. Setting Up the Basic Environment

2.1. Software and Hardware Requirements
This section describes the required tools and environment setup for the FPGA bitstream and flashing.

2.1.1. Lattice Software
 Lattice Radiant™ Tool – Refer to http://www.latticesemi.com/LatticeRadiant.

 Lattice Radiant Programmer – Refer to http://www.latticesemi.com/programmer.

 Lattice Neural Network Compiler Software 4.0– Refer to
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler.

2.1.2. Hardware

This design uses the CertusPro-NX Voice and Vision Machine Learning Board as shown in Figure 2.1.

Figure 2.1. Lattice CertusPro-NX Voice and Vision Machine Learning Board

2.2. Setting Up the Linux Environment for Machine Training

2.2.1. Installing the CUDA Toolkit

To install the CUDA toolkit, run the following commands in the order specified below:
$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cudarepo

-ubuntu1604_10.1.105-1_amd64.deb

http://www.latticesemi.com/legal
http://www.latticesemi.com/LatticeRadiant
http://www.latticesemi.com/LatticeRadiant
http://www.latticesemi.com/LatticeRadiant
http://www.latticesemi.com/programmer
http://www.latticesemi.com/programmer
http://www.latticesemi.com/programmer
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 11

Figure 2.2. CUDA Repo Download

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.3. CUDA Repo Installation

$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.

pub

Figure 2.4. Fetch Keys

$ sudo apt-get update

Figure 2.5. Update Ubuntu Packages Repositories

$ sudo apt-get install cuda-10-0

Figure 2.6. CUDA Installation Completed

http://www.latticesemi.com/legal
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02242-1.0

2.2.2. Installing the cuDNN

To install the cuDNN:

1. Create an NVIDIA developer account in https://developer.nvidia.com.

2. Download cuDNN lib in https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1.

3. Execute the commands below to install cuDNN.
$ tar xvf cudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

Figure 2.7. cuDNN Library Installation

2.2.3. Installing Anaconda and Python 3

To install Anaconda and Python 3:

1. Go to https://www.anaconda.com/products/individual#download-section.

2. Download Python 3 version of Anaconda for Linux.

3. Install the Anaconda environment by running the command below:
$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh version may vary based on the release.

Figure 2.8. Anaconda Installation

4. Accept the license.

Figure 2.9. Accept License Terms

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://www.anaconda.com/products/individual%23download-section
https://www.anaconda.com/products/individual%23download-section
https://www.anaconda.com/products/individual%23download-section
https://www.anaconda.com/products/individual%23download-section
https://www.anaconda.com/products/individual%23download-section

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 13

5. Confirm the installation path. Follow the instruction onscreen if you want to change the default path.

Figure 2.10. Confirm/Edit Installation Location 6

6. After installation, enter No, as shown in Figure 2.11.

Figure 2.11. Launch/Initialize Anaconda Environment on Installation Completion

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02242-1.0

3. Preparing the Dataset
This section describes how to create a synthetic dataset using python script.

The dataset generated has five classes. The Python script generates the images of resolution 1920×1080p and the
labels are also generated in parallel.

3.1. Preparing Dataset for Training
To prepare the dataset:

1. Unzip the package by running the following commands:
$ unzip synthetic_mobilenetV1.zip

$ cd Synthetic_data_test

Figure 3.1. Directory After Unzipping

2. Run the script below to create a virtual python environment:
$ virtualenv lattice_env --python=python3

3. Run the script below to activate the environment:
$ source lattice_env/bin/activate

Ensure that CUDA version is 10.0.
$ nvcc –V

Figure 3.2. CUDA Version 10.0

4. Run the script below to install the required packages:
$ pip install -r requirements.txt

Synthetic data generation takes 5 to 10 minutes to complete. Image count can be given as an argument as shown in
the script below.
$ python synthetic_datagenerator.py 5000

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 15

5. Split the generated dataset into train and validation set by running the script below:
$ python train_val_split.py

6. Crop the images and labels from 1920×1080p to 896×896p by running the script below. This also creates the val
and train text files in the ImageSet directory and takes a few minutes to complete.
$ python src/crop_data.py

3.2. Generating Dataset from Board Camera
After capturing the images from the board camera, use the annotate-to-KITTI software to label the data.

To generate the dataset from the board camera:

1. Copy folder containing captured images to labelapp folder

2. Run annotate-folder.py followed by directory name
$ cd labelapp/

$ python annotate-folder.py

3. Provide the directory path containing the captured images as shown in Figure 3.3Figure 3.3.

Figure 3.3. Directory Path given as Input

4. Provide the label name as shown in Figure 3.4. The image from the directory opens in a window.

Figure 3.4. Object Name to be Labeled

5. Left-click and drag to draw the box around the area of interest.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02242-1.0

Figure 3.5. Selected Object

6. Press Q to save and exit. The Label file is generated in the _Annotations_KITTI directory.

Figure 3.6. Text Label in the _Annotations_KITTI Directory

For more detailed description of the annotate-to-KITTI, go to https://github.com/SaiPrajwal95/annotate-to-KITTI.

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 17

3.3. Generating Video for Demo
To generate a video for demo:

1. Run the following script in the same virtual environment to generate the video.
$ python video_generator.py

2. The media folder is generated and contains the items shown in Figure 3.7.

Figure 3.7. Generated Media Directory

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02242-1.0

4. Training the Machine

4.1. Training Code Structure

Figure 4.1. Training Code Directory Structure

4.2. Neural Network Architecture

4.2.1. Object Detection Training Network Layers

This section provides information on the Convolution Network Configuration of the Object Detection design. Table 4.1
shows the MobileNet v1 structure.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 19

Table 4.1. Object Detection MobileNet v1 Training Topology

Image Input (224 × 224 × 1)

Fire 1

Conv3–32 Conv3 – # where:

 Conv3 = 3 × 3 Convolution filter Kernel size

 # = The number of filter

DWConv3–32 – # where:

 DWConv3 = Depthwise convolution filter with 3 × 3 size

 # = The number of filter

Conv1–32 – # where:

 Conv1 = 1 × 1 Convolution filter Kernel size

 # = The number of filter

For example, Conv3–16 = 16 3 × 3 convolution filters

BN – Batch Normalization

BN

ReLU

MaxPool

Fire 2

DWConv3–32

BN

ReLU

Conv1–24

BN

ReLU

Fire 3

DWConv3–24

BN

ReLU

Conv1–24

BN

ReLU

Fire 4

DWConv3–24

BN

ReLU

MaxPool

Conv1–48

BN

ReLU

Fire 5

DWConv3–48

BN

ReLU

Conv1–56

BN

ReLU

Fire 6

DWConv3–56

BN

ReLU

MaxPool

Conv1–100

BN

ReLU

Fire 7

DWConv3–100

BN

ReLU

Conv1–104

BN

ReLU

Conv12 Conv3–42

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02242-1.0

Conv3–#where:

 Conv3 = 3 × 3 Convolution filter Kernel size

 # = The number of filter

DWConv3–32- # where:

 DWConv3 = Depthwise convolution filter with 3 × 3 size # = The number of filter

Conv1–32- # where:

 Conv1 = 1 × 1 Convolution filter Kernel size

 # = The number of filter

For example, Conv3–16 = 16 3 × 3 convolution filters.

 The Object Detection network structure consists of seven fire layers followed by one convolution layer. A fire layer
contains Convolutional, Batch Normalization, and ReLU (Rectified Linear Unit). Pooling layers are only in Fire 1,
Fire 3, Fire 5, and Fire 7. Fire 2, Fire 4, and Fire 6 do not contain pooling layers.

 In Table 4.1, the layer contains Convolution (Conv), Batch Normalization (BN), and ReLU layers.

 Layer information:

 Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of a number of filters

(sometimes referred as kernels), which convolves with the input layer/image and generates an activation map
(that is, feature map). This filter is an array of numbers (called weights or parameters). Each of these filters can
be thought of as feature identifiers, such as straight edges, simple colors, curves, and other high-level features.
For example, the filters on the first layer convolve around the input image and activate (or compute high
values) when the specific feature it is looking for (such as curve) is in the input volume.

 ReLU (Activation Layer)

It is the convention to apply a nonlinear layer (or activation layer) immediately after each conv layer. The
purpose of this layer is to introduce nonlinearity to a system that is basically computing linear operations
during the conv layers (element wise multiplications and summations). In the past, nonlinear functions such as
tanh and sigmoid were used, but researchers found out that ReLU layers work far better because the network
is able to train a lot faster (because of the computational efficiency) without making a significant difference in
accuracy. The ReLU layer applies the function f(x) = max (0, x) to all of the values in the input volume. In basic
terms, this layer changes all the negative activations to 0. This layer increases the nonlinear properties of the
model and the overall network without affecting the receptive fields of the conv layer.

 Pooling Layer

After some ReLU layers, you may choose to apply a pooling layer. It is also referred to as a down sampling layer.
In this category, there are also several layer options, with MaxPooling being the most popular. This basically
takes a filter (normally of size 2 × 2) and a stride of the same length. It then applies a filter to the input volume
and outputs the maximum number in every sub region that the filter convolves around.

The intuitive reason behind this layer is that once it is known that a specific feature is in the original input
volume (there is a high activation value), its exact location is not as important as its relative location to the
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost. The second is that it
controls over fitting. This term is used when a model is so tuned to the training examples that it is not able to
generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or
99% on the training set, but only 50% on the test data.

 Batch Normalization Layer

Batch normalization layer reduces the internal covariance shift. To train a neural network, some preprocessing
to the input data are performed. For example, you can normalize all data so that it resembles a normal
distribution (which means zero mean and a unitary variance). This prevents the early saturation of non-linear
activation functions, such as sigmoid, and assures that all input data are in the same range of values.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 21

An issue, however, appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt them to
a new distribution in every training step. This is known as internal covariate shift.

Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following the process below during training:

a. Calculate the mean and variance of the layers input.

b. Normalize the layer inputs using the previously calculated batch statistics.

c. Scale and shift to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be care-
free about weight initialization, works as regularization in place of dropout, and other regularization
techniques.

 Depthwise Convolution and 1 × 1 Convolution Layer

Depthwise convolutions are used to apply a single filter per each input channel (input depth). Pointwise
convolution, a simple 1 × 1 convolution, is then used to create a linear combination of the output of the
depthwise layer.

Depthwise convolution is extremely efficient relative to standard convolution. However, it only filters input
channels. It does not combine them to create new features. An additional layer that computes a linear
combination of the output of depthwise convolution through the 1 × 1 convolution is needed in order to
generate these new features.

A 1 × 1 convolutional layer that compresses an input tensor with large channel size to one with the same batch
and spatial dimension, but smaller channel size. Given a 4D input tensor and a filter tensorshape [filter_height,
filter_width, in_channels, channel_multiplier] containing in_channels convolutional filters of depth 1,
depthwise_conv2d applies a different filter to each input channel, then concatenates the results together. The
output has in_channels × channel_multiplier channels.

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of
the network and control over fitting.

4.2.2. Object Detection Network Output

From the input image model, it extracts the feature maps first and overlays them with a W × H grid. Each cell then
computes K pre-computed bounding boxes called anchors. Each bounding box has the following:

 Four scalars (x, y, w, h)

 A confidence score (Pr(Object)*IOU)

 C° conditional class probability

 The current model architecture has a fixed output of WxHxK(4+1+C). where:

 W, H = Grid Size

 K = Number of Anchor boxes

 C = Number of classes for which you want detection

 The model has a total of 13720 output values, which are derived from the following:

 14 × 14 grid

 Seven anchor boxes per grid

 Six values per anchor box. It consists of:

 Four bounding box coordinates (x, y, w, h)

 One class probability

 One confidence score

As a result, there is a total of 14 × 14 × 7 × 10 = 13720 output values.

If your images are smaller, it is recommended to stretch the image to default size. You can also up-sample them
beforehand.

If your images are bigger and you are not satisfied with the results of the default image size, you can try using a denser
grid, as details might get lost during the downscaling.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02242-1.0

4.2.3. Training Code Overview

Model building

Placeholders

Loss
functions

CNN
architecture

Freeze
Model?

Data preparation

Start data fetch
threads

Train model

Exit

Freeze model and
generate .pb file

Generate .pbtxt

Generate .pb from
.pbtxt and

checkpoint files

YES

NO

Figure 4.2. Training Code Flow Diagram

Training Code is divided into the following parts:

 Model Configuration

 Model Building

 Training for Overall Execution Flow

The details of each part can be found in subsequent sections.

4.2.3.1. Model Configuration

The design uses Kitti dataset and SqueezeDet model. kitti_squeezeDet_config() maintains all the configurable
parameters for the model. Below is the summary of configurable parameters.

 Image size

 Change mc.IMAGE_WIDTH and mc.IMAGE_HEIGHT to configure image size (width and height) in
src/config/kitti_squeezeDet_config.py.

Figure 4.3. Code Snippet – Input Image Size Config

 Since there are four pooling layers, grid dimension is H = 14 and W = 14. anchor_shapes variable of
set_anchors() in src/config/kitti_squeezeDet_config.py indicates anchors width and heights. Update it based on
anchors per gird size changes.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 23

Figure 4.4. Code Snippet – Anchors Per Grid Config #1 (Grid Sizes)

 Batch size

 Change mc.BATCH_SIZE in src/config/kitti_squeezeDet_config.py to configure batch size.

 Anchors per grid

 Change mc.ANCHOR_PER_GRID in src/config/kitti_squeezeDet_config.py to configure anchors per grid.

Figure 4.5. Code Snippet – Anchors Per Grid Config #2

 Change hard coded anchors per grid in set_anchors() in src/config/kitti_squeezeDet_config.py. Here, B (value
7) indicates anchors per grid.

 To run the network on your own dataset, adjust the anchor sizes. Anchors are prior distribution over what
shapes your boxes should have. The better this fits to the true distribution of boxes, the faster and easier your
training is going to be.

 To determine anchor shapes, first load all ground truth boxes and pictures, and if your images are not of the
same size, normalize their height and width by the images’ height and width. All images are normalized before
being fed to the network, so you need to do the same to the bounding boxes and consequently, the anchors.

 Second, perform a clustering on these normalized boxes (that is, you can use k-means without feature
whitening and determine the number of clusters either by eyeballing or by using the elbow method).

 Check for boxes that extend beyond the image or have a zero to negative width or height.

Figure 4.6. Code Snippet – Anchors Per Grid Config #3

 Training Parameters

 Other training related parameters such as learning rate, loss parameters, and different thresholds can be
configured from src/config/kitti_squeezeDet_config.py.

http://www.latticesemi.com/legal
https://en.wikipedia.org/wiki/Elbow_method_%28clustering%29

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02242-1.0

Figure 4.7. Code Snippet – Training Parameters

4.2.3.2. Model Building

SqueezeDet class can be configured from src/nets/squeezeDet.py. SqueezeDet class constructor builds the model,
which is divided into the following sections:

 Forward Graph

 Interpretation Graph

 Loss Graph

 Train Graph

 Visualization Graph

 Forward Graph

Forward Graph

 The CNN architecture consists of Convolution, Batch Normalization, ReLU, and Maxpool.

 Forward graph consists of seven fire layers as described in Table 4.1.

Figure 4.8. Code Snippet – Filter Values

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 25

 Filter sizes of each convolutional block are mentioned in Table 4.1, which can be configured by changing the values
of depth, as shown in Figure 4.9.

Figure 4.9. Code Snippet – Forward Graph Fire Layers for MobileNet v1

Figure 4.10. Code Snippet – Forward Graph Last Convolution Layer

Interpretation Graph

 The Interpretation Graph consists of the following sub-blocks:

 interpret_output

This block interprets output from network and extracts predicted class probability, predicated confidence
scores, and bounding box values.

Output of the convnet is a 14 × 14 × 70 tensor – there are 70 (7 × (4 + 1 + 5)) channels of data for each of the
cells in the grid that is overlaid on the image and contains the bounding boxes, confidence score, class
predictions. This means the70 channels are not stored consecutively but are scattered all over and need to be
sorted. Figure 4.11 and Figure 4.12 show the details.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02242-1.0

14

14

70

Anchor 1
(6)

Anchor 2
(6)

Anchor 3
(6)

Anchor 4
(6)

Anchor 5
(6)

Anchor 6
(6)

Anchor 7
(6)

Figure 4.11. Grid Output Visualization #1

For each grid, cell values are aligned as shown in Figure 4.11.

14

14

70 values = (anchor 1, anchor 2, anchor 3, anchor 4, anchor 5, anchor 6, anchor 7
70 values = (7 × 10 as each anchor as 6 values)

Pc Cont Bx By Bw Bn

Figure 4.12. Grid Output Visualization #2

Figure 4.12 shows the output from the conv12 layer (4D array of batch size × 14 × 14 × 70) that needs to be
sliced with the proper index to get all values of probability, confidence, and coordinates.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 27

Figure 4.13. Code Snippet – Interpret Output Graph

For confidence score, this must be a number between 0 and 1, as such, sigmoid is used.

For predicting the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Apply a
softmax to make it probability distribution.

 bbox

This block calculates bounding boxes based on the anchor box and the predicated bounding boxes.

 IOU

This block calculates Intersection over Union for detected bounding boxes and actual bounding boxes.

 Probability

This block calculates detection probability and object class.

Loss Graph

 This block calculates different types of losses, which needs to be minimized. To learn detection, localization, and
classification, model defines a multi-task loss function. There are three types of losses which are considered for
calculation:

 Bounding Box

This loss is regression of the scalars for the anchors.

Figure 4.14. Code Snippet – Bbox Loss

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02242-1.0

 Confidence Score

 To obtain meaningful confidence score, the predicted value of each box is regressed against the real and
predicted box. During training, compare the ground truth bounding boxes with all anchors and assign
them to the anchors with the largest overlap (IOU).

 Select the closest anchor to match the ground truth box such that the transformation needed is reduced
to minimum. Equation evaluates to 1 if the k-th anchor at position-(i, j) has the largest overlap with a
ground truth box, and to 0 if no ground truth is assigned to it. This way, you only include the loss
generated by the responsible anchors.

 As there can be multiple objects per image, normalize the loss by dividing it by the number of objects
(self.num_objects).

Figure 4.15. Code Snippet – Confidence Loss

 Class

 The last part of the loss function is cross-entropy loss for each box to do classification, as you would for
image classification.

Figure 4.16. Code Snippet – Class Loss

In one model architecture, you obtain the bounding box prediction, the classification, as well as the
confidence score.

Train Graph

 This block is responsible for training the model with momentum optimizer to reduce all losses.

Visualization Graph

 This block provides visitations of detected results.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 29

4.2.3.3. Training

Figure 4.17. Code Snippet – Training

sess.run feeds the data, labels batches to network, and optimizes the weights and biases. The code above handles the
input data method in case of multiple threads preparing batches, or data preparation in the main thread.

4.3. Training from Scratch and/or Transfer Learning
To train the machine:

1. Go to the top/root directory of the Lattice training code from the command prompt.

The model works on 224 × 224 images.

Current Object detection training code uses mean = 0 and scale = 1/128 (0.0078125) in pre-processing step. Mean
and scale can be changed in training code @src/dataset/imdb.py as shown in Figure 4.18.

Figure 4.18. Training Code Snippet for Mean and Scale

The dataset path can be set in the training code @src/dataset/kitti.py and can be used in combination with the -
data_path option while triggering training using train.py to get the desired path. For example, you can have
<data_path>/train/crop_images and <data_path>/train/crop_labels.

Figure 4.19. Training Code Snippet for Dataset Path

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02242-1.0

Notes:

 train.txt – file name of dataset images (Gets generated when crop_data.py is executed)

 image_set – train (ImageSets/train.txt)

 data_path – $ROOT/DB/Object_Detector

 Images – $ROOT/DB/Object_Detector /train/crop_images

 Annotations – $ROOT/DB/Object_Detector/train/crop_labels

2. Modify the training script. @scripts/train.sh is used to trigger training.

Figure 4.20 shows the input parameters, which can be configured.

Figure 4.20. Training Input Parameter

 $TRAIN_DATA_DIR – dataset directory path. /DB/Object_Detector is an example.

 $TRAIN_DIR – log directory where checkpoint files are generated while model is training.

 $GPUID – gpu id. If the system has more than one gpu, it indicates the one to use.

 --summary_step – indicates at which interval loss summary should be dumped.

 --checkpoint_step – indicates at which interval checkpoints are created.

 --max_steps – indicates the maximum number of steps for which the model is trained.

3. Execute the train.sh command script which starts training.

Figure 4.21. Execute train.sh Script

4. Start Tensorbaord.
$ tensorboard --logdir <log directory of training>

For example: tensorboard --logdir ./weights/Object_Detector/train_weights

5. Open the local host port on your web browser.

6. Check the training status on tensorboard.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 31

Figure 4.22. TensorBoard

7. Check if the checkpoint, data, meta, index and events (if using TensorBoard) files are created at the weights
directory. These files are used for creating the frozen file(*.pb)

Figure 4.23. Example of Checkpoint Data Files at weights/Object_Detector/train_weights/ folder

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02242-1.0

5. Testing the Trained Model
This section describes how to test the trained model on the PC.

5.1. Running the Test Shell Script
The script below shows how to run the test shell. The results of detections are stored in the
DB/Object_Detector/val/images_out_v1 directory.
$./test.sh

Figure 5.1. Test Script Last Log

Figure 5.2. Test Result in images_out_v1 Directory

5.2. Checking the Mean Average Precision (mAP) of the Model
To check the mAP of the model, perform the following steps:

1. First the ground truth is generated
$ python generate_groundtruth.py

2. Run the map calculation script
$ python MAP/map.py

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 33

Figure 5.3. Running map.py

3. The results are stored in the MAP/results directory.

Figure 5.4. map.png in MAP/results directory

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02242-1.0

5.3. Testing the Centroid Tracking Algorithm
To test the centroid tracking algorithm, flash with_448x448p_window.bit into the board. This bit file makes the board a

normal USB webcam.

5.3.1. Testing the Images Captured using the Board Camera

Open the desktop application and start the video. Click the Capture images button in the application to record images
from the board. To stop capturing the images, click Capture images again to stop capturing. Images are stored in the
captured_images folder in the application root directory.

To test the centroid tracking on the generated video:

1. Create a directory named board_test and copy the captured_images directory to it. Since the captured images are
640×480p, you need to crop it to 448×448p by running the script below.
$ python crop.py ./board_test/captured_images

Figure 5.5. crop.py Terminal Output

2. Edit the test_fixedpoint.sh to set the path for the weights, input, and output.

Figure 5.6. Input Parameter for the Script

3. After saving, run ./test_fixedpoint.sh and click Enter to load the next frame. Press and hold Enter to load the
images rapidly.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 35

Figure 5.7. Output Window with Overlay on Images

5.3.2. Live Testing of the Centroid Tracking using Real-time Data from the Board

In this procedure, the board should be connected to the PC and two monitors are recommended. The Ubuntu virtual

machine is used to run the following ML scripts.

1. Connect the board to the PC using a micro-USB 3.0 cable. Make sure no other camera is connected to the PC.

2. Open the desktop app in one monitor. Do not click open camera.

3. Run the script.
$./test_fixedpoint_live.sh

4. Click Play in the desktop app. The result should look similar to the one shown in Figure 5.8.

Figure 5.8. Object Detector on PC

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02242-1.0

6. Creating Frozen File
This section describes the procedure for freezing the model, which is aligned with the Lattice sensAI™ tool. Perform the
steps below to generate the frozen protobuf file.

6.1. Generating the Frozen .pb File
Generate .pb file from the best mAP accuracy model using the command below from the root directory of the training
code.
$./generatepb.sh.

Figure 6.1. pb File Generation from Checkpoint

Figure 6.2 shows the generated .pb file in the weights/Object_Detector/train_weights folder.

Figure 6.2. Frozen .pb File

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 37

7. Creating Binary File with Lattice sensAI
This chapter describes how to generate the binary file using the Lattice Neural Network Compiler Software 4.0
program.

Figure 7.1. sensAI Home Screen

To create the project in sensAI tool:

1. Click File > New.

2. Enter the following settings:

 Project Name

 Framework – TensorFlow

 Class – CNN

 Device – CrossLink-NX

 ‘Compact Mode’ should be unchecked.

3. Click Network File and select the network (.pb) file.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02242-1.0

Figure 7.2. sensAI – Network File Selection

4. Click Image/Video/Audio Data and select the image input file.

Figure 7.3. sensAI – Input Image File Selection

5. Click NEXT.

6. Configure your project settings as shown in Figure 7.4.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 39

Figure 7.4. sensAI – Project Settings

Scratch Pad Memory Block Size and Data Section Base Address should match with FPGA RTL code.

7. Click OK to create the project.

8. Double-click analyze.

Figure 7.5. sensAI – Analyze Project

9. After analyzing the project, the tool generates the correct format for each layer since you perfromed the
quantization in training.

10. Confirm the Q format of each layer as shown in Figure 7.6. Edit the fractional bit for each layer by double-clicking
on the values against each layer one by one.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02242-1.0

Figure 7.6. Q Format Settings for Each Layer

11. After changing the fractional bit, double-click on Analyze again.

12. Double-click Compile to generate the Firmware file.

Figure 7.7. Compile Project

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 41

8. Hardware Implementation

8.1. Top Level Information

8.1.1. Block Diagram

HyperRAM

HM 0360 Camera

(640×480 PSO

Monochrome)

HyperBus

I/O

CertusPro-NX

AXI Slave

(axi2hyperbus)
ML Engine

SD Loader

(sd_spi)
External Flash Memory

(ML firmware/bitstream)

AXI Busaxi2_hyperbus

CYUB3014csi2_parallel crop_downscale_front_224×224 osd

Frame Data

det_out_filter bbox2box
Centroid

Tracker

Box Information

PC

UART Transmitted Data

Figure 8.1. RTL Top Level Block Diagram

8.1.2. Operational Flow

This section provides a brief idea about the data flow across the CertusPro-NX board.

 The CNN module is configured with the help of a binary (.bin) file stored in a SD card. The .bin file is a command
sequence code, which is generated by the Lattice Machine Learning software tool.

 The command code is written in hyperRAM through AXI before the execution of CNN Accelerator IP Core starts.
CNN reads command code from hyperRAM during its execution and performs calculation with it per command
code. Intermediate data may be transferred from/to hyperRAM per command code.

 The RAW8 data from the csi2_to_parallel module is downscaled to 224 × 224 image resolution by the
crop_downscale_front_224x224 module to match CNN input resolution. This data is written into hyperRAM
memory through axi2_hyperbus through the axi_ws2m AXI interface module.

 After the command code and input data are available, the CNN Accelerator IP Core starts calculation at the rising
edge of start signal.

 The output data of CNN is passed to det_out_filter for post processing. det_out_filter generates bounding box X, Y,
W, and H coordinates associated with top 5 confidence value indexes for 224 × 224 image resolution.

 These coordinates are passed to osd_back_128x128_human_count for resizing to fit the actual image resolution on
the PC.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

42 FPGA-RD-02242-1.0

8.1.3. Core Customization

Table 8.1. Core Parameter

Constant Default

(Decimal)

Description

OVLP_TH_2X 5 Intersection Over Union Threshold (NMS)

NUM_FRAC 10 Fraction Part Width in Q-Format representation.

EN_INF_TIME 0 Enable Timing measurement logic

By default, it is zero and the memory file used is human_count.mem.

If assigned 1, timing measurement is enabled and the memory file used is
human_count_INF.mem.

In order to configure the respective memory file, follow the steps below:

1. Open dpram8192x8_human_count.ipx from the File List in Radiant.

2. Click Browse Memory File from Initialization section.

3. Update the mem file path:

 For 0 – /src/jedi_common/human_count.mem

 For 1 – /src/jedi_common/human_count_INF.mem

INF_MULT_FAC 15907 Inference time multiplying factor calculated as per CNN clock frequency and using
Q-Format (Q1.31).

CNN Clock Frequency = 135 MHz

Hence, CNN clock period

= 1/(135 × 10-6) µs

= 0.000007407 ms

Now, Q1.31 = 0.000007407 × 231 = ~15907

FLASH_START_ADDR 24’h300000 SPI Flash Read Start Address (keep the same address in programmer while loading
the firmware file)

For example, for the current start address, programmer address should be
0x00300000.

FLASH_END_ADDR 24’h400000 SPI Flash Read End Address (keep the same address in programmer while loading
the firmware file)

The address must be in multiple of 512 bytes.

For example, for the current end address, programmer address should be:
0x00400000.

Constant Parameters (Not to be modified)

NUM_ANCHOR 1372 Number of reference bounding boxes for all grids

NUM_GRID 196 Total number of Grids (X * Y)

NUM_X_GRID 14 Number of X Grids

NUM_Y_GRID 14 Number of Y Grids

PIC_WIDTH 224 Picture Pixel Width (CNN Input)

PIC_HEIGHT 224 Picture Pixel Height (CNN Input)

TOP_N_DET 10 Number of Top confidence bounding boxes detection

HYPERRAM_BASEADDR 0x400000 Indicates hyperRAM starting Base address location value. This should match with
the sensAI compiler while generating the firmware.

RAW8_OFFSET 0 Indicates hyperRAM starting address location value to store RAW8.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 43

8.2. Architecture Details

8.2.1. SPI Flash Operation

The RTL module spi_loader_spram provides SPI Flash read operation and writes that data into HyperRAM through the
AXI interface. It reads from SPI Flash and as soon as the board gets powered up, the .bit and .bin files are loaded in the
expected addresses.

 Expected Address for BIT File (Programmer) – 0x0000000 - 0x00100000

 Expected Address for Firmware File (Programmer) – FLASH_START_ADDR - FLASH_END_ADDR

Typical sequence of the SPI Read commands for SPI Flash MX25L12833F is implemented using FSM in RTL as per the
flow of the operation below.

 After FPGA Reset, RELEASE FROM DEEP POWER DOWN command (0xAB) is passed to SPI Flash memory. Then RTL
waits for 500 clock cycles for SPI flash to come into Standby mode, if it is in Deep Power Down mode.

 RTL sends FAST READ command code (0x0B) on SPI MOSI signal for indication of Read Operation to SPI Flash.

 RTL sends three bytes of Address on SPI MOSI channel which determines the location in SPI flash from the position
the data needs to be read.

 This SPI Flash has eight Dummy cycles as wait duration before read data appears on MISO channel. After waiting
for eight dummy cycles, the RTL code starts reading the data.

 This read sequence is shown in Figure 8.2. The SPI Interface Signal Mapping with RTL signals are as follow:

 CS (Chip Select) => SPI_CSS

 SCLK (Clock) => SPI_CLK

 SI (Slave In) => SPI_MOSI

 SI (Slave Out) => SPI_MISO

 The Read Data on the MISO signal is stored in a FIFO in RTL, which then reads the data in multiples of 512 bytes.
After 512 bytes chip select is de-asserted, the AXI FSM state is activated.

CS#

SCLK

SI

SO

CS#

SCLK

SI

SO

Mode 3 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31

Mode 0
Command 24-Bit Address

0Bh 23 22 21 3 2 1 0

High-Z

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Configurable
Dummy Cycle

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7

MSB MSB MSB

Figure 8.2. SPI Read Command Sequence

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

44 FPGA-RD-02242-1.0

 AXI logic reads the data from FIFO in bursts of four on the AXI write channel, with each burst having 128 bytes.

 In accessing the HyperRAM, the axi_ws2m module is used as a Muxing module among the multiple input slave AXI
interfaces as shown in Figure 8.6. The spi_loader_spram module is considered as SLAVE 0 and given priority to
write into HyperRAM. The Master Interface connects to the axi2_hyperbus module, which provides output
interface for accessing HyperRAM.

 After writing to HyperRAM is complete, the 512 bytes are fetched from the SPI Flash using the same command
sequence as explained above until the FLASH_END_ADDR is reached.

8.2.2. Pre-processing CNN

The output from the csi2_to_parallel module is a stream of RGB data that reflects the camera image, which is given to
the crop_downscale_front_224x224 module.

The crop_downscale_front_224x224 module processes that image data and generates input of 224 × 224 image data
interface for CNN IP.

8.2.2.1. Pre-processing Flow

 RAW8 data values for each pixel are fed serially line by line for an image frame.

 These RAW8 data values are considered as valid only when horizontal and vertical masks are inactive. The mask
parameters set to mask out boundary area of resolution (1920x1080) to 448 × 448 are shown below.

 Left masking = 96

 Right masking = 544 (Obtained as 96 + 448)

 Top masking = 16

 Bottom masking = 464 (Obtained as 16 + 448)

 The image obtained after masking is shown in Figure 8.3.

640

480
448

448

Figure 8.3. Masking

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 45

 The 448 × 448 frame block is downscaled into 224 × 224 resolution image as shown in Figure 8.4 by accumulating
2 × 2 pixels into single pixel (that is 448/2 × 448/2 = 224 × 224).

2

2
448

448

Accumulation into
Single Pixel

Figure 8.4. Downscaling

 This accumulated value is written into Line Buffer. Line Buffer is a True Dual-Port RAM. Accumulated RAW8 pixel
values for 2 × 2 grids are stored in the same memory location.

 When data is read from memory, each RAW8 value is divided by 4 (that is the area of the 2 × 2 grid) to take the
average of 2 × 2 grid matrix.

 The data from memory is read and stored in HyperRAM for CNN input through axi2_hyperbus, through the
axi_w2sm module, which acts as an AXI interface to write data from slave (crop_downscale_front_224x224) to
master (axi2_hyperbus). This process is described in the next section.

8.2.3. HyperRAM Operations

The CertusPro-NX board uses external HyperRAM for faster data transfer mechanism among the internal blocks and
enhances the system performance. The crop_downscale_front_224x224 module uses HyperRAM to store the
downscaled image data.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02242-1.0

RAW 8

HyperRAM

HyperRAM BaseAddr +
RAW 8 Offset

Downscaled
224× 224 pixels

RAW 8

Figure 8.5. HyperRAM Memory Addressing

 The 448 × 448 image is distributed into 224 horizontal and 224 vertical lines, and each block consists of 2 × 2 pixels
as shown in Figure 8.4. Thus, there is a total of 224 × 224 pixel values for the downscaled image.

 Primarily, the crop_downscale_front_224x224 module stores 224 values each of RAW8 into a local FIFO for all 224
horizontal blocks. Later, this stored data is written to HyperRAM through the AXI write data channel.

 As shown in Figure 8.5, when final data is written out, 224 × 224 RAW8 pixels are initially stored into HyperRAM
starting from HyperRam Base address location.

 The 224 × 224 pixel values stored in HyperRAM are serially obtained by the CNN engine after getting command
sequence through the AXI interface.

 In order for the crop_downscale_front_224x224 module to access HyperRAM for the operations explained above,
the axi_ws2m module functions as a Muxing module for multiple input slave AXI interfaces as shown in Figure 8.6.

 For the internal blocks to access HyperRAM, the axi_ws2m module considers the sd_spi module as SLAVE 0, the
cnn_opt module as SLAVE 1, the crop_downscale_front_224x224 module as SLAVE 2, and the MASTER connects
these slaves to the axi2_hyperbus module.

 The priority to select write channel is given, respectively, to the pi_loader slave, cnn slave, and crop-downscale
slave. Whenever valid address is available from the respective Slave on its write address channel, that slave is
given access of master channel if other priority slaves are not accessing it. Thus, when valid write address is
obtained from crop_downscale_front_224x224 module, access is given to Slave 2 to use HyperRAM.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 47

spi_loader

cnn_opt

crop
downscale

AXI INTERFACE

axi_w2sm

SLAVE 0

SLAVE 1

SLAVE 2

MASTER

External
HyperRAM

hyperbus
I/O

axi2_
hyperbus

AXI wr channel

AXI wr channel

AXI wr channel

AXI wr channel

Figure 8.6. HyperRAM Access Block Diagram

8.2.4. Post-processing CNN

CNN provides a total of 13720 [1372 × 10 (C,P, X, Y, W, H)] values, which are given to the det_out_filter module. The
CNN output data consists of the following parameters.

Table 8.2. Data Parameters of CNN Output

Parameter Description

C This parameter indicates the confidence of detected object class.

For each grid cell (14 × 14), one confidence value (16-bit) for each anchor box (7) is provided making total
values of confidence 14 × 14 × 7 = 1372 from CNN Output.

P This parameter indicates the probability of detected object class. For each grid cell (14 × 14), one
probability value (16-bit) for each anchor box (7) is provided making total values of probability
14 × 14 × 7 = 1372 from CNN Output.

X This parameter indicates the Relative X coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one Relative X value (16-bit) for each anchor box is provided making total values of
14 × 14 × 7 = 1372 for X from CNN Output.

Y This parameter indicates the Relative Y coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one Relative Y value (16-bit) for each anchor box is provided making total values of
14 × 14 × 7 = 1372 for Y from CNN Output.

W This parameter indicates the Relative W (Width) coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one Relative W value (16-bit) for each anchor box is provided making total values of
14 × 14 × 7 = 1372 for W from CNN Output.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

48 FPGA-RD-02242-1.0

Parameter Description

H This parameter indicates the Relative H (Height) coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one Relative H value (16-bit) for each anchor box is provided making total values of
14 × 14 × 7 = 1372 for H from CNN Output.

Figure 8.7 shows the format of CNN output.

Figure 8.7. CNN Output Data Format

The primary functionality of the det_out_filter module is to capture the CNN valid output and modify it to work with
the osd_back_128x128_human_count module.

The det_out_filter module contains two sub-modules: det_sort_conf and det_st_bbox.

 1372 values of confidence are passed to the det_sort_conf module. It sorts out the top 10 highest confidence
values and stores their indexes. Index values are passed to the det_st_class and det_st_bbox modules.

 1372 values of probability are passed to the det_st_class module. It provides the valid class probability bitmap,
which is passed to the det_st_bbox module.

 1372 × 4 values of coordinates are passed to the det_st_bbox module. It calculates the bounding box coordinates
for 448 × 448 image from 224 × 224 coordinates.

The crop_downscale module contains logic for post processing.

 The draw_box module calculates the box coordinates for 896 × 896 image from 224 × 224 coordinates.

 The lsc_osd_text module generates character bitmap for text display on PC.

8.2.4.1. Confidence Sorting

 All input confidence values (1372) are compared with threshold parameter CONF_THRESH(500) value. Confidence
values that are greater than threshold are considered as valid for sorting.

 The det_sort_conf module implements an anchor counter (0-1371), which increments on each confidence value. It
provides the index of confidence value given by the CNN output.

 Two memory arrays are generated in this module: (1) sorted top 10 (TOP_N_DET) confidence value array, and (2)
sorted top 10 confidence index array.

 For sorting, a standard sorting algorithm is followed. As input confidence values start arriving, each value is
compared with stored/initial value at each location of the confidence value array.

 If the input value is greater than stored/initial value on any array location and lesser than stored/initial value of
previous array location, the input value is updated on current array location. The previously stored value of current
location is shifted into the next array location.

 Refer to Figure 8.8 for sorting of new value of confidence into existing confidence value array. Calculated
confidence index (anchor count value) is also updated in the confidence index array along with the confidence
value array.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 49

35

41

66

0

0

30

20

10

0

0

(40>30) -> update = 1

(40>20) & !(40>30)
-> update = 0
-> Store Prev Value

(40>10) & !(40>20)
-> update = 0
-> Store Prev Value

(40>0) & !(40>10)
-> update = 0
-> Store Prev Value

40

30

20

10

0

110

35

41

66

0

OLD ARRAY UPDATED ARRAY

Confidence
Index Array

Confidence
Value Array

Confidence
Value Array

Confidence
Index Array

1

2

3

4

10

1

2

3

4

10

New Confidence Value = 40, Index = 110

Figure 8.8. Confidence Sorting

 This process is followed for all 1372 confidence values. This module provides 10 indexes (o_idx_00 to o_idx_09) as
output along with the count of valid indexes (o_num_conf). o_idx_00 contains the highest confidence value index
and o_idx_09 contains the lowest confidence value index.

8.2.4.2. Bounding Box Calculation
The Neural Network for Object Detection is trained with seven reference boxes of pre-selected shapes having
constant W (Width) and H (Height). These reference boxes are typically referred as anchors.

Table 8.3. Pre-Selected Width and Height of Anchor Boxes

Anchor No. 1 2 3 4 5 6 7

W × H (pixel) 184 × 184 138 × 138 92 × 92 69 × 69 46 × 46 34 × 34 23 × 23

Anchors are centered around 14 × 14 grid cells of image. So each grid center has above seven anchors with pre-
selected shape. 14 × 14 are the number of grid centers along horizontal and vertical directions. The grid center (X, Y)
pixel values are shown in Table 8.4.

Table 8.4. Grid Center Values (X, Y) for Anchor Boxes

Grid No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

X (pixel) 15 30 45 60 75 90 105 119 134 149 164 179 194 209

Y (pixel) 15 30 45 60 75 90 105 119 134 149 164 179 194 209

CNN provides a total of 1372 (14 × 14 × 7) values of each relative coordinates X, Y, W, and H to transform the fixed size
anchor into a predicted bounding box. Input X, Y, W, and H values associated with top 10 sorted confidence indexes are
used for box calculation in det_st_bbox module.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

50 FPGA-RD-02242-1.0

Each anchor is transformed to its new position and shape using the relative coordinates as shown in logic 1.
LOGIC 1

X’ = X coordinate of Predicted Box

X = Grid Center X according to Grid number

W = Width of Anchor according to Anchor number

DeltaX = Relative coordinate for X (CNN output)

X’ = X + W × DeltaX

Y’ = Y + H × DeltaY

W’= W × DeltaW

H’ = H × DeltaH

The Box coordinates are passed to bbox2box module in jedi_human_count_top.v after NMS process.

8.2.4.3. NMS – Non Max Suppression

The NMS is implemented to make sure that in object detection, a particular object is identified only once. It filters out
the overlapping boxes using OVLP_TH_2X value.

NMS process is started when the CNN output data is completely received.

 The process starts from the box having highest Confidence coordinates: 0th location in X, Y, W, H array.

 These coordinates are compared against the second highest Confidence coordinates: First location in X, Y, W, H
array. From this comparison, Intersection and Union coordinates are found.

 From these coordinates, Intersection and Union area are calculated between the highest confidence box and the
second highest confidence box as shown in Figure 8.9.

Intersection

(X, Y)

Union

(X , Y)

W

H
Box1

Box2

H|

| |

W |

Figure 8.9. Intersection-Union Area NMS

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 51

 If Intersection Area × (OVLP_TH_2X/2) > Union Area, the box with the lower confidence value is blocked in final
output.

 This NMS calculation is performed between all the combinations of two boxes.

 After all combinations are checked, output array o_bbox_bmap contains boxes, which are correctly overlapped or
non-overlapped. o_out_en provides valid pulse for crop_downscale_human_count for further processing on these
box coordinates.

8.2.4.4. Bounding Box Upscaling

The process of upscaling bounding boxes for 448 × 448 resolution is accomplished by two different modules bboxbox
and draw_box_simple.

Initially, the bbox2box module in jedi_human_count_top.v obtains box coordinate outputs from det_out_filter.

Considering (X, Y) as center of the Box of Width W and Height H, it calculates extreme ends of the Box (X1, X2 and Y1,
Y2) for 224 × 224 resolution. It also clamps the coordinate values so that the box remains out of masking area. This is
shown in Logic 2.
LOGIC 2

X1 = If ((X’- W’/2) < 0) => 0 else (X’- W’/2)

Y1 = If ((Y’- H’/2) < 0) => 0 else (Y’- H’/2)

X2 = If ((X’+ W’/2) > 224) => 223 else (X’+ W’/2)

Y2 = If ((Y’+ H’/2) > 224) => 223 else (Y’+ H’/2)

The final calculated X1, X2, Y1, and Y2 values for all the boxes in bbox2box are then sent to draw_box_simple module
through the osd_back_128x128_human_count module. The draw_box_simple module converts these input
coordinates provided for 224 × 224 resolution into 448 × 448 resolution as shown in Logic 3.
LOGIC 3

X1’ = (X1) × 2 + Horizontal-Mask (96) Y1’ = (Y1) × 2 + Vertical-Mask (16)

X2’ = (X2) × 2 + Horizontal-Mask (96)

Y2’ = (Y2) × 2 + Vertical-Mask (16)

For converting from 224 to 448, the coordinates are multiplied with 2. Required offset value is added in coordinate
calculations to keep the boxes out of mask area. X1, X2 and Y1, Y2 coordinates are calculated for each Box.

Pixel Counter and Line Counter keep track of the pixels of each line, and lines of each frame. The outer boundary of the
box and inner boundary of the box are calculated when Pixel and Line counter reaches to coordinates (X1, X2) and (Y1,
Y2) respectively. Calculations are done as per Logic 4.
LOGIC 4

Outer Box = (Pixel Count >= (X1 – 1)) and (Pixel Count <= (X2 + 1)) and

 (Line Count >= (Y1 – 1)) and (Line Count <= (Y2 + 1))

Inner Box = (Pixel Count > (X1 + 1)) and (Pixel Count < (X2 - 1)) and

 (Line Count > (Y1 + 1)) and (Line Count < (Y2 - 1))

Each bounding box is calculated by removing the intersecting area of outer and inner box. The box is only displayed if
the

Box-Bitmap for that box is set to 1 (from the det_st_bbox via bbox2box module). Box on calculations are as done as
Logic 5.
LOGIC 5

Box_on[1] = Outer Box[1] and ~Inner Box[1] and Box-Bitmap[1] Box_on[2] = Outer

Box[2] and ~Inner Box[2] and Box-Bitmap[2] . .

Box_on[20] = Outer Box[20] and ~Inner Box[20] and Box-Bitmap[20]

The o_box_obj signal is asserted when any of the above Box_on signal is set which is then connected to green_on signal
and processed for Bounding Box display through the PC.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

52 FPGA-RD-02242-1.0

8.2.4.5. Centroid Tracker

The Centroid Tracker module is used to track the object from beginning to end (left to right). It is also responsible for
keeping the cumulative count of objects passing from left to right.

8.2.4.6. OSD Text Display

 The lsc_osd_text module provides bitmap of each ASCII character to be displayed with specified position on screen.
It takes count of detected Humans.

 It sets an output signal (text_on) when text is to be displayed on the PC through the USB. When text_on is set,
YCbCr value for that pixel location is assigned FF, 7F, and 7F respectively values (white color) and sent to USB
output instead of original pixel value.

8.2.4.7. USB Wrapper

 The Wrapper_USB3 module is used to transmit 16-bit data to the output 16-bit interface every clock cycle.

 This module takes input data in YCbCr 24-bit format and gives output as 16-bit YCb and YCr format. This module
does not change or regenerate input timing parameters.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 53

9. Creating FPGA Bitstream File
This section describes the steps to compile RTL bitstream using Lattice Radiant tool.

9.1. Bitstream Generation Using Lattice Radiant Software
To create the FPGA bitstream file:

1. Open the Lattice Radiant software. Default screen is shown in Figure 9.1.

Figure 9.1. Radiant – Default Screen

2. Go to File > Open > Project.

3. Open the Radiant project file (.rdf) for CertusPro-NX Object Detection Demo RTL. As shown in Figure 9.2, you can
also open the project by selecting the yellow folder shown in the user interface.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54 FPGA-RD-02242-1.0

Figure 9.2. Radiant – Open CertusPro-NX Project File (.rdf)

4. After opening the project file, check the following points shown in Figure 9.3.

 The design loaded with zero errors message shown in the Output window.

 Check the following information in the Project Summary window.

 Part Number – LFCPNX-100-9BBG484I

 Family – LFCPNX

 Device – LFCPNX-100

 Package BBG484

Figure 9.3. Radiant – Design Load Check After Opening the Project File

5. If the design is loaded without errors, click the Run button to trigger bitstream generation as shown in Figure 9.4.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 55

Figure 9.4. Radiant – Trigger Bitstream Generation

6. The Lattice Radiant tool displays Saving bit stream in … message in the Reports window, as shown in Figure 9.5. The
bitstream is generated at Implementation Location, as shown in Figure 9.5.

Figure 9.5. Radiant – Radiant Bit File Generation Report Window

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

56 FPGA-RD-02242-1.0

9.2. Configuring the IP in Lattice Radiant Software
If you are going to uninstall an old version of the existing IP or if a latest version of the IP should be installed after
loading the design without any errors, follow the procedure below and trigger the Bitstream generation RUN option.

To configure the IP:

1. If the existing IP should be uninstalled, go to IP Catalog. In the IP tree, go to IP > DSP and select your IP. Click Delete
as shown. Select Yes as shown in Figure 9.6 and the IP is successfully removed from the tree.

Figure 9.6. Radiant – Uninstall Old IP

2. To install a new IP in the tree, select Install a User IP, as shown in Figure 9.7.

Figure 9.7. Radiant – Install New IP

3. Select your IP package (.ipk) and the IP License agreement window pops up. Click Accept and the user IP is
installed in IP tree.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 57

Figure 9.8. Radiant – Select User IP Package to Install

4. After the user IP is installed, the bitstream can be generated by triggering RUN button.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

58 FPGA-RD-02242-1.0

10. Programming the Demo

10.1. Programming the CertusPro-NX SPI Flash

10.1.1. Erasing the CertusPro-NX SRAM Prior to Reprogramming

If the CertusPro-NX device is already programmed (either directly, or loaded from SPI Flash), follow this procedure to
first erase the CertusPro-NX SRAM memory before re-programming the CertusPro-NX’s SPI Flash. If you are doing this,
keep the board powered when re-programming the SPI Flash (so it does not reload on reboot).

To erase the CertusPro-NX: device:

1. Launch Radiant Programmer. In the Getting Started dialog box, select Create a new blank project.

Figure 10.1. Radiant Programmer Default Screen

2. Click OK.

3. In the Radiant Programmer main interface, select LIFMD for Device Family, LIFCL for Device Vendor, and LIFCL-40
for Device, as shown in Figure 10.2.

Figure 10.2. Radiant programmer- Device selection

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 59

4. Right-click and select Device Properties.

5. Select JTAG for Port Interface, Direct Programming for Access Mode, and Erase Only for Operation, as shown in

Figure 10.3.

Figure 10.3. Radiant Programmer – Device Operation

6. Click OK to close the Device Properties dialog box.

7. Click the Program button to start the erase operation.

10.1.2. Programming the CertusPro-NX Board

To program the CertusPro-NX Voice and Vision SPI Flash:

1. Ensure that the CertusPro-NX Voice and Vision device SRAM is erased by performing the steps in the Erasing the
CertusPro-NX SRAM Prior to Reprogramming section.

2. In the Radiant Programmer main interface, right-click the CertusPro-NX Voice and Vision row and select Device
Properties.

3. Apply the settings below:

a. Under Device Operation, select the options below:

 Port Interface – JTAG2SPI

 Access Mode – Direct Programming

 Operation – SPI Flash Erase, Program, Verify

b. Under Programming Options, select the bitstream file.

c. For SPI Flash Options, select the Macronix 25L12833F device, as shown in Figure 10.4.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

60 FPGA-RD-02242-1.0

Figure 10.4. Radiant Programmer – Selecting Device Properties Options for CertusPro-NX Flashing

d. Click Load from File to update the Data file size (bytes) value.

e. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00000000

 End Address (Hex) – 0x00220000

4. Click OK.

5. Press the SW5 push button switch before clicking the Program button, as shown in Figure 10.5. Hold it until you see
the Successful message in the Radiant log window.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 61

SW4 GSRN Push Button

SW5 PROGRAMN Push Button

Figure 10.5. CertusPro-NX Flashing Switch – SW4 Push Button

6. Click the Program button to start the programming operation.

7. After successful programming, the Output console displays the result, as shown in Figure 10.6.

Figure 10.6. Radiant Programmer – Output Console

10.1.3. Programming sensAI Firmware Binary to the CertusPro-NX SPI Flash

10.1.3.1. Convert Flash sensAI Firmware Hex to CertusPro-NX SPI Flash

To program the CertusPro-NX SPI flash:

1. Ensure that the CertusPro-NX device SRAM is erased by performing the steps in the Erasing the CertusPro-NX SRAM
Prior to Reprogramming section before flashing bitstream and sensAI firmware binary.

2. In the Radiant Programmer main interface, right-click the CertusPro-NX row. Select Device Properties to open the
dialog box, as shown in Figure 10.7.

3. Select SPI FLASH for Target Memory, JTAG2SPI for Port Interface, and Direct Programming for Access Mode.

4. For Programming File, select the CertusPro-NX sensAI firmware binary file after converting it to hex (*.mcs).

5. For SPI Flash Options, follow the configurations in Figure 10.7.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

62 FPGA-RD-02242-1.0

Figure 10.7. Radiant Programmer – Selecting Device Properties Options for CertusPro-NX Flashing

6. Click Load from File to update the data file size (bytes) value.

7. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00300000

 End Address (Hex) – 0x00400000

8. Click OK.

9. Press the SW5 push button switch. Click the PROGRAMN push button and hold it until you see the Successful
message in the Radiant log window.

10. Click the Program button to start the programming operation.

11. After successful programming, the Output console displays the result, as shown in Figure 10.8.

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 63

Figure 10.8. Radiant Programmer – Output Console

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

64 FPGA-RD-02242-1.0

11. Running the Demo
To run the demo:

1. Double-click Executable in the Lattice_Object_Detector_App folder to open the PC Application.

2. Connect the board using the USB3 cable. Once the USB device is connected, open the Camera button. The camera
output from the board is displayed on the right side of the application window.

3. Press the Play button to start the video playback.

4. Hold the board in such a way that the camera sees the video playback. Objects detected will have bounding box
drawn over them and cumulative count is displayed on the bottom left corner of the Camera output window.

The screen displays the video image with a bounding box when a DHT object is detected. The red LED D6 lights up
when an object is detected. Cumulative count is displayed to the left of the Camera output window.

Figure 11.1. Running the Demo

http://www.latticesemi.com/legal

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 65

Appendix A. Other Labelling Tools
Table A.1 provides information on other labelling tools.

Table A.1. Other Labelling Tools

Software Platform License Reference Converts
To

Notes

annotate-to-
KITTI

Ubuntu/Windows
(Python based
utility)

No License
(Open
source
GitHub
project)

https://github.com/SaiPrajwal95/annotate-to-
KITTI

KITTI Python based
CLI utility that
you can clone
and launch.

LabelBox JavaScript, HTML,
CSS, Python

Cloud or
On-
premise,
some
interfaces
are
Apache-2.0

https://www.labelbox.com/ json, csv,
coco, voc

Web
application

LabelMe Perl, JavaScript,
HTML, CSS, On
Web

MIT
License

http://labelme.csail.mit.edu/Release3.0/ xml Converts only
jpeg images

Dataturks On web Apache
License 2.0

https://dataturks.com/ json Converts to
json format
but creates
single json file
for all
annotated
images

LabelImg ubuntu OSI
Approved::
MIT
License

https://mlnotesblog.wordpress.com/2017/12/
16/how-to-install-labelimg-in-ubuntu-16-04/

xml Need to
install
dependencies
given in
reference

Dataset_

annotator

Ubuntu 2018

George
Mason
University
Permission
is hereby
granted,
Free of
charge

https://github.com/omenyayl/dataset-
annotator

json Need to
install
app_image
and run it by
changing
permissions

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

66 FPGA-RD-02242-1.0

References
 Google TensorFlow Object Detection GitHub

 Pretrained TensorFlow Model for Object Detection

 Python Sample Code for Custom Object Detection

 Train Model Using TensorFlow

http://www.latticesemi.com/legal
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://pythonprogramming.net/creating-tfrecord-files-tensorflow-object-detection-api-tutorial/
https://www.tensorflow.org/tutorials/estimators/cnn

CertusPro-NX MobileNet Object Classification on VVML Board
 Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02242-1.0 67

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

CertusPro-NX MobileNet Object Classification on VVML Board
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

68 FPGA-RD-02242-1.0

Revision History

Revision 1.0, January 2022

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	CertusPro-NX MobileNet Object Classification on VVML Board
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting Up the Basic Environment
	2.1. Software and Hardware Requirements
	2.1.1. Lattice Software
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the CUDA Toolkit
	2.2.2. Installing the cuDNN
	2.2.3. Installing Anaconda and Python 3

	3. Preparing the Dataset
	3.1. Preparing Dataset for Training
	3.2. Generating Dataset from Board Camera
	3.3. Generating Video for Demo

	4. Training the Machine
	4.1. Training Code Structure
	4.2. Neural Network Architecture
	4.2.1. Object Detection Training Network Layers
	4.2.2. Object Detection Network Output
	4.2.3. Training Code Overview
	4.2.3.1. Model Configuration
	4.2.3.2. Model Building
	Forward Graph
	Interpretation Graph
	Loss Graph
	Train Graph
	Visualization Graph

	4.2.3.3. Training

	4.3. Training from Scratch and/or Transfer Learning

	5. Testing the Trained Model
	5.1. Running the Test Shell Script
	5.2. Checking the Mean Average Precision (mAP) of the Model
	5.3. Testing the Centroid Tracking Algorithm
	5.3.1. Testing the Images Captured using the Board Camera
	5.3.2. Live Testing of the Centroid Tracking using Real-time Data from the Board

	6. Creating Frozen File
	6.1. Generating the Frozen .pb File

	7. Creating Binary File with Lattice sensAI
	8. Hardware Implementation
	8.1. Top Level Information
	8.1.1. Block Diagram
	8.1.2. Operational Flow
	8.1.3. Core Customization

	8.2. Architecture Details
	8.2.1. SPI Flash Operation
	8.2.2. Pre-processing CNN
	8.2.2.1. Pre-processing Flow

	8.2.3. HyperRAM Operations
	8.2.4. Post-processing CNN
	8.2.4.1. Confidence Sorting
	8.2.4.2. Bounding Box Calculation
	8.2.4.3. NMS – Non Max Suppression
	8.2.4.4. Bounding Box Upscaling
	8.2.4.5. Centroid Tracker
	8.2.4.6. OSD Text Display
	8.2.4.7. USB Wrapper

	9. Creating FPGA Bitstream File
	9.1. Bitstream Generation Using Lattice Radiant Software
	9.2. Configuring the IP in Lattice Radiant Software

	10. Programming the Demo
	10.1. Programming the CertusPro-NX SPI Flash
	10.1.1. Erasing the CertusPro-NX SRAM Prior to Reprogramming
	10.1.2. Programming the CertusPro-NX Board
	10.1.3. Programming sensAI Firmware Binary to the CertusPro-NX SPI Flash
	10.1.3.1. Convert Flash sensAI Firmware Hex to CertusPro-NX SPI Flash

	11. Running the Demo
	Appendix A. Other Labelling Tools
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, January 2022

