s LATTICE

Lattice Sentry SMBus Mailbox IP Core — Propel
Builder

User Guide

FPGA-IPUG-02165-1.1

August 2024



Lattice Sentry SMBus Mailbox IP Core — Propel Builder ....LATTICE

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document
is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor’s inclusive language policy. In some cases, the language in underlying tools and
other items may not yet have been updated. Please refer to Lattice’s inclusive language FAQ# 6878 for a cross reference of terms. Note in some cases
such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

2 FPGA-IPUG-02165-1.1


http://www.latticesemi.com/legal
https://www.latticesemi.com/support/answerdatabase/6/8/7/6878

= LATTICE

Contents
WA Yol oY o Ny s T I I g T o Yol [y =T o | SRS
O (o1 oo I3 T 4 T o U OO O P PRSPPI
1.1. FRATUIES ettt ettt e e et e e e e e s e e e e e e e e e s e e e e e e e e e e e r e e et e e e se R nreeeteeese e nnrreereeeeenans
1.2. (00T 01V T o | 4o T o |- OO RPPP PP
2. FUNCLIONAI DESCIIPLIONS «..eiiutieeiieetteette ettt ettt ettt ettt ettt ettt e bt e sbt e s bt e e bt e s bt e e bteeabe e e bt e sabeeeaseesabeeeaneesabeeeaseesabeeenneenane
2.1. OVEIVIBW ...eettieteeetet ettt ettt e e ettt e e e e e e e e bttt e e e e e e s s beaeeeee e e s abaeeeeeeeesaass b et eeeeeseaassbateeeeesesaanbbbaeeeesesaanssnaaaeens
2.2. SIBNAIS DESCIIPLION ..ttt ettt e et e st e e s ab e e s ab e e s ab e e sab e e eae e e sabeeeae e e sabeesnbeesabeeenbeesabeesareesn
2.3. JAN A ] o TU ) =TSSR 10
2.4. =T A I =Y gl D=2 ol o] o] o H TSSOSO PO ORP RPN 11
o T -V - = A e T €= 0= = 1) (= SO P PR ORPRPPRPROORN 16
Ny N VY= (1 <Y o T RS 22
2.4.3.  CONLrOllEr COrE REGISLEN ..eoueiiiiieiiii ettt ettt ettt et ettt s bt e sbe e s bt e sbee s b e e e bt e sab e e esbee e beeeseesbeeenneenane 22
2.5. SIMIBUS ALIT SIZNQAI ..ttt st e bt e st e e bt e s a b e e bt e e s abeeabe e e s abeeabe e e saneenneeesaneennees 22
T o fo={ - [ 0 1 = To 1T OO TSP T ST PPOPRPPRTOP 24
3.1. SMBUS Target Core INItIalization ........ooeeoii oot saneesaees 24
3.2. SMBuUS Controller Core INItIaliZation .......o.uieiieeriieiieee e s se e sbe e e s e e e sba e e saaeesateesareenaeas 24
3.3. SMBUS Target Core OPeration FIOW .........coccuiiii ittt e et e e st e e e s ta e e e e ate e e sabaeeesataeeeenraeeennnaeas 24
3.3.1. Data Transfer in Response to External Controller REad ...........cocuveieeiiiiiiiiiee et et 24
3.3.2. Data Transfer in Response to External Controller WIite ..........coccuviieeciiiiiiiiee et et 25
3.4. SMBuUSs Controller Core OpPeration FIOW ...........coiiiiiieiiiieiieeii ettt ettt esaneesaees 25
3.4.1.  Write Data t0 the SIMIBUS TArZeT.....cccuiiiiieiieeiit ettt ettt sttt s bt e st e s st e s b e e e aeesabeeesseesbeeesneenane 26
3.4.2. Read Data from the SMBUS TarZEt .....uceciiiiieiiiieiieeite ettt ettt st s b e s sbeesb e sbeesbeeesaeeeane 27
3.5. (O @oTo 1=\ OO SORUPPR 27
4. Generating the SMBUS MailbOX [P ......ccoiiiiiciee ettt te e e st e e e et a e e e eta e e e sabbeeeeaateeeesasseeesnsbeeeanstaeeennnenas 28
T Voo [Tor=T o] [0 L1 ol TSRS 30
2] (=T =T ool T OSSPSR 31
TeChNICAl SUPPOIT ASSISTANCE . .eeiiueiiitieeiee ettt et e bttt e s bt et e s bt e e bt e s bt e e bt e s beeebeesabeeebeesabeeeseesbeeennnenane 32
REVISION HISTOTY ..ttt st e st e e e bt e st et e e s me e e e e n b e e e s asn e e e snae e e e e beeeseanneeesanneeesanreeesannns 33

www.latticesemi.com/legal


http://www.latticesemi.com/legal

Lattice Sentry SMBus Mailbox IP Core — Propel Builder ....LATTICE

User Guide

Figures

Figure 1.1. SMBUS MailbDOX WIILE BYtE IMESSAZE .. .uvviiiiiieeeiiiieieiieeesetre e e sttt e e e stte e e seaaaeeesataeeeestaeessnsaeeesnsseeeassaeesanssneessseeenn
Figure 1.2. SMBus Mailbox Read Byte Message ....

Figure 1.3. MCTP over SIMBUS PACKET FOIMAL ....ccccuviiiiiiiee ettt e sttt e e et e e save e e e sataeeeesstaeeensaaeesnsseeeannsaeesanssaessnsseeean
Figure 2.1. SMBUS IP Core FUNCHIONAl DIagIami.....c.uiieiciiieeeiieieeeieeeeeiee e e stteeeette e e sataeeesataeeeestaeesnsaaeesnsseeeassaeesassneesnsseeean 9
Figure 2.2. 7-bit Addressable DEVICE RESPONSE .......iiiiiiiiieiiieitee sttt ettt ettt st e ettt e e bt e sab e e s bt e sabeeeaseesabeeeneenares 23
Figure 3.1. SMBus Controller Program FIOW INterrupt MOGe.......co.ueiiiiiiiiiiiieniieeee ettt s 26
Figure 4.1. MOdUIE/IP BIOCK WiIZAI ......ooueieieeieiieiieiesie ettt ettt st ste st et et et e e st e s besaeebe e st estensesaebesaeebesneeneensensesesaens 28
Figure 4.2. CoNfigUIING ParamEters ....cciueiiuiieiieeiiie ittt sttt ettt et e et e st e st e e s bt e e ab e st e e eabeesabeeeabeesabeeeabeesabeeenneesares 28
FIgUIe 4.3. VEIIFYING RESUILS ....eiiiiiiiie ettt e et e e et e e e st e e e et taeeeeasaeeesasaeee e staeeeanssaeesssaaeeantseeeastneesnnsnes 29
Figure 4.4. SPeCifying INSTANCE NAMIE ....c..uviiiiiiie e ceeee et e ettt e e e etr e e e st e e e e st taeeeesaeeessseeeaastaeeeanssaeesssaeeesntseeeanssaeesnsees 29
TVl T CTc o Tl =Y o =T [ 1 - ol TSRS 29

Tables

Table 2.1. Interface Signal Description
Table 2.2, AttriDULES DESCIIPTION ..ceitiietiietie ettt ettt b e st e e bt e e s bt e e b et e s ab e e bt e e bee e bt e e sbee e beeesseesbeeennneeneeas
Table 2.3. REGISTErS AQArESS IMAP......eiiiiiiiieeiee ettt ettt ettt ettt et et e s bt e s ate s be e e s bt e e bt e e saeeebe e e sbee e bt e e sbbeebeeesbeesnbeeenneeenneeas
Table 2.4. AcCeSS TYPE DEFINTLION .eeuviiiiiiiiie ettt e sb et e st e s bt e s bt e e bt e e s bbe e be e e saeesbeeesnneenneeas

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

4 FPGA-IPUG-02165-1.1


http://www.latticesemi.com/legal

= LATTICE

Lattice Sentry SMBus Mailbox IP Core — Propel Builder
User Guide

Acronyms in This Document

A list of acronyms used in this document.

Acronym Definition

AHB-Lite Advanced High-performance Bus — Lite
API Application Programming Interface
CPU Central Processing Unit

FPGA Field Programmable Gate Array

HDL Hardware Description Language

12C Inter-Integrated Circuit

IP Intellectual Property

LMMI Lattice Memory Mapped Interface
MCTP Management Component Transport Protocol
RoT Root of Trust

RTL Register Transfer Level

SMBus System Management Bus

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02165-1.1


http://www.latticesemi.com/legal

Lattice Sentry SMBus Mailbox IP Core — Propel Builder ....LATTICE

User Guide

1. Introduction

The System Management Bus (SMBus) is a two-wire interface through which simple system and power management
devices can communicate with the rest of the system. The protocol is compatible with the 12C bus protocol and is often
found in monitoring power conditions, temperature, and other sensors on a board. While the SMBus is derived from
12C, there are several major differences existing between the specifications of the two buses. The device that initiates
the transmission on the SMBus is commonly known as the Controller, while the device being addressed is called the
Target.

SMBus bus protocols support many kinds of formats, such as SMBus write byte, SMBus write word, SMBus read byte,
SMBus read word, SMBus write block, SMBus read block and so on. See SMBus Specification for more information.

SMBus Mailbox is an SMBus target, which is designed to communicate with SMBus host mailbox. It responds to the
standard SMBus Write Byte and Read Byte format messages, as shown in Figure 1.1 and Figure 1.2.

Targ Targ Targ

7 bit + 1 bit Wr Resp 8 bit Resp 8 bit from Controller Resp
S RoT Address - A RF Address A RF Data A P
Figure 1.1. SMBus Mailbox Write Byte Message

Targ Targ Targ Cont

7 bit + 1 bit Wr Resp 8 bit Resp 7 bit + 1 bit Rd Resp 8 bit from Target Resp
S RoT Address . A RF Address A | Sr RoT Address . A RF Data [\ P
Figure 1.2. SMBus Mailbox Read Byte Message

The MCTP over SMBus/12C transport binding defines how the MCTP packets are delivered over a physical SMBus or 12C
medium using SMBus transactions. All MCTP transactions are based on the SMBus Block Write bus protocol. The first
eight bytes make up the packet header. The first three fields—Destination Target Address, Command Code, and
Length—map directly to SMBus functional fields. The remaining header and payload fields map to SMBus Block Write
Data Byte fields, as indicated in Figure 1.1. Hence, the inclusion of the Source Target Address in the header is specified
by MCTP rather than SMBus. This is done to facilitate addressing required for establishing communications back to the
message originator.

+0 +1 +2 +3
7|6|s|al3|2|1]o]|7]|6|s|al3]2|1|o|7]6]s]|a|3]2]1]0]7]|6]5]a]3]2]1]0
Epmra
— E] Pkt
005 | resewed | vadon | enipomt comamo | 5/5) % o] e
wvos> ¢ wwnne ) e B et
Byte N >

Figure 1.3. MCTP over SMBus Packet Format

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

6 FPGA-IPUG-02165-1.1


http://www.latticesemi.com/legal
http://www.smbus.org/specs/

::LATT’CE Lattice Sentry SMBus Mailbox IP Core — Propel Builder

User Guide

1.1. Features

The soft IP has the following features:

e Compatible with SMBus Specification

e Compatible with AHB-Lite Specification

e  Supports SMBus controller

e  Supports SMBus target

e Supports SMBus mailbox

e  Supports MCTP over SMBus

e Supports 7-bit/10-bit addressing modes

e Supports Fairness arbitration SMBus arbitration mechanism
e  Clock stretching and wait state generation

e Timeout monitor for the Controller

e Interrupt flag generation

e Arbitration lost interrupt, with automatic transfer cancellation
e Bus busy detection

e Integrated glitch filter

1.2. Conventions

The nomenclature used in this document is based on Verilog HDL.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02165-1.1 7


http://www.latticesemi.com/legal

=LATTICE

2. Functional Descriptions

2.1. Overview

The functional diagram of this IP is shown in Figure 2.1, which contains two main blocks: one is the Target Core and the
other is the Controller Core.

The Target Core performs two operations:

e Normal SMBus transfer as a target

e  Register file transfer as SMBus Mailbox

The Controller Core can initiate SMBus transfer as an SMBus Controller.

The SMBus interface is connected to the external bus through SDA/SCL signals. The Controller Core connects through

the P1 interface and the Target Core connects through the PO interface. Therefore, a switch/mux is needed between

Controller and Target Cores. The switch is implemented in SMBus interface by the following method:

e |f the Controller Core does not initiate a transfer, PO is routed to the SMBus interface and P1 is switched off. The
SMBus target core can then exchange data using the SDA/SCL signals.

e |f the Controller Core initiates a transfer, P1 is routed to the SMBus interface and PO is switched off. The SMBus
Controller Core can then exchange data using the SDA/SCL signals.

The Controller Core can initiate SMBus transfer to access other SMBus Targets. The MCTP transfer is also controlled by
the Controller Core logic. The Controller Core supports multi-controller on one bus simultaneously. All the controllers
obey fairness arbitration rules to avoid any bus conflicts.

The Target Core makes sure the IP serves as an SMBus target device on the bus. The external controller writing
messages are routed to RX_FIFO. Reading messages may come from two data sources, TX_FIFO and Register File
according to register configuration. The Register File can only be updated by the external host writing through the
AHB-Lite port SO1. The IP responds to two target addresses: the configured 12C Target Address from IP attributes,
which can also be changed dynamically by the host, and the SMBus Device Default Address (7’b1100-001) as specified
by the SMBus Specification.

The host accesses the IP through the AHB-Lite port. From the system level, it only has one AHB-Lite subordinate port,
which can be connected to the host or another AHB-Lite Interconnect. The host can access Controller Core Register,
Target Core Register, and Register File by the different addresses.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

P sda_io
) sci_io 4
« - SMBus Interface
P smbalert_n_io
PO | P1 [
select
mux
A
Register File
RX FIFO TX FIFO 256x32 bits I
Target Core Controller Core
Register AHB-Lite Register
'Y Y
AHB-Lite AHB-Lite
clk_i
rst_n_i S00 So01 S02
< AHB-Lite N AHB-Lite Interface

Figure 2.1. SMBus IP Core Functional Diagram

2.2. Signals Description

Table 2.1. Interface Signal Description

Signal Name | Width ‘ Direction Reset Description

Clock and Reset

clk_i 1 input — System Clock

System Reset. The reset assertion can be
asynchronous but reset negation should be
rst_n_i 1 input — synchronous. This is an active low signal. When
asserted, output ports and registers are forced to
their reset values.

AHB-Lite Bus
AHB-Lite Select Signal
ahbl_hsel_slv_i 1 input — Indicates that the subordinate device is selected
and a data transfer is required.
ahbl_haddr_slv_i 32 input — The System Address Bus

3'b000: SINGLE Single Burst

3'pb001: INCR Incrementing burst of undefined
length (NOT supported)

3'b010: WRAP4 4-bit wrapping burst
ahbl_hburst_slv_i 3 input — 3'pb011: INCR4 4-bit incrementing burst
4'b100: WRAPS 8-bit wrapping burst

3'b101: INCRS8 8-bit incrementing burst
8'b110: WRAP16 16-bit wrapping burst
3'b111: INCR16 16-bit incrementing burst

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

Signal Name

Width

Direction

Reset

Description

ahbl_hprot_slv_i

input

ahbl_hprot_slv_i [0] :

e  1'b0 - opcode fetch.

e 1'bl-data access.
ahbl_hprot_slv_i [1]:

e  1'pb0—user access.

e  1'bl - privileged access.
ahbl_hprot_slv_i [2]:

e  1'b0 - non-bufferable.
e  1'bl - bufferable.
ahbl_hprot_slv_i [3]:

e  1'b0 - non-cacheable;
e 1'bl-cacheable.

ahbl_hsize_slv_i

input

3'b000: 1 byte
3'pb001: 2 bytes
3'b010: 4 bytes

ahbl_htrans_slv_i

input

Indicates the transfer type of the current
transfer. This can be:

2’b00: IDLE

2’b01: BUSY

2’b10: NONSEQUENTIAL

2’b11: SEQUENTIAL

ahbl_hwdata_slv_i

32

input

The write data bus.

ahbl_hwrite_slv_i

input

When this signal is HIGH, it indicates a write
transfer and when it is LOW, it indicates a read
transfer.

ahbl_hready_slv_i

input

This signal should come from AHB-Lite
Interconnect. When it is set to 1, it indicates the
previous transfer is complete.

ahbl_hrdata_slv_o

32

output

The read data bus

ahbl_hreadyout_slv_o

output

When this signal is HIGH, it indicates that a
transfer has finished on the bus. This signal can
be driven LOW to extend a transfer.

ahbl_hresp_slv_o

output

When this signal is LOW, it indicates that the
transfer status is OKAY. When it is HIGH, it
indicates that the transfer status is ERROR.

Interrupt Signal

int_o

output

Interrupt to host (CPU). The reset value is 1’b0.

SMBus Signal

scl_io

inout

Reset value is weak
high (pull-up).

SMBus Serial Clock

sda_io

inout

Reset value is weak
high (pull-up).

SMBus data signal

smbalert_n_o

output

0

SMBus alert (active low)

2.3. Attributes

The configurable attributes of the IP Core are shown in Table 2.2. The attributes can be configured through the IP
Catalog’s Module/IP wizard of the Lattice Propel™ Builder.

www.latticesemi.com/legal



http://www.latticesemi.com/legal

= LATTICE

Table 2.2. Attributes Description

Parameter

Value Range

Description

Enable Controller Function

Checkbox:
check, uncheck

Switch on/off controller function.
Check: enable the Controller Core;
Uncheck: disable the Controller Core. Target-only mode.

SMBus Mailbox Base Address

0—{AHB Lite Address
assignment designation}

Specify IP base address on AHB-Lite bus.

AHB-Lite Address bus number of bits

[1-32]

AHB-Lite bus address width

AHB-Lite Data Bus number of bits

[8-32]

AHB-Lite bus data width

Addressing Mode

7-bit, 10-bit

7-bit or 10-bit addressing selection

I12C Target Address: Ox

7-bit: Ox0—0x7f,
10-bit: Ox0-3ff

As a target device, it is the target address for external
controller to address.

Device Architecture

['LFMNX', 'MachX03D']

FPGA Architecture

System Clock Frequency (MHz)

[40-100]

System Clock Frequency

12C Frequency (kHz)

[100, 400, 1000]

12C bus frequency

2.4. Register Description

The register address map, shown in Table 2.3, specifies the available IP Core registers. The offset of each register
increments by four to allow easy interfacing with the Processor and System Buses. In this case, each register is 32-bit

wide.

Table 2.3. Registers Address Map

Offset Register Name

| Access | Reset

| Description

AHB-Lite S00: Each register is 32-bit wide wherein the upper bits [31:8] are reserved and the lower 8 bits [7:0] are used.

0x00 RD_DATA_REG RO Not guaranteed. Read Data Register
0x00 WR_DATA_REG \uYe} Not guaranteed. Write Data Register
[7]RSVD T t Add L Regist the 12C
0x04 | SLVADR_L _REG R/W | [6:0] 12C Target arget ACICress Lower negister, same as the
Target Address attribute.
Address[6:0]
[7:3] RSVD Target Address Higher Regist the 12C
0x08 | SLVADR_H_REG R/W | [2:0] 12C Target arget Acdress Higher Register, same as the
Target Address attribute.
Address[9:7]
Control Register
Field Name Access
[7:6] RSVD RSVD
[7:6] RSVD [5] dat_src_sw R/W
0x0C CONTROL_REG R/W {3]151 0 Addressing Mode | [4] nack_data R/W
ee ressing Mode in
Table 2.2. [3] nack_addr R/W
[2] reset WO
[1] clk_stretch_en R/W
[0] addr_10bit_en R/W
0x10 TGT_BYTE_CNT_REG R/W 8’h00 Target Byte Count Register

www.latticesemi.com/legal



http://www.latticesemi.com/legal

=LATTICE

Offset Register Name Access | Reset Description
Interrupt Status First Register
Field Name Access
[7] tr_cmp_int RW1C
[6] stop_det_int RW1C
[5] tx_fifo_full_int RW1C
0x14 INT_STATUS1_REG RW1C | 8h00 ] o_fifo. aempty_int RW1C
[3] tx_fifo_empty_int RW1C
[2] rx_fifo_full_int RW1C
[1] rx_fifo_afull_int RW1C
[0] rx_fifo_ready_int RW1C
Interrupt Enable First Register
Field Name Access
[7] tr_cmp_en R/W
[6] stop_det_en R/W
[5] tx_fifo_full_en R/W
0x18 INT_ENABLE1_REG R/W 8’h00 ] _fifo_aempty_en RIW
[3] tx_fifo_empty_en R/W
[2] rx_fifo_full_en R/W
[1] rx_fifo_afull_en R/W
[0] rx_fifo_ready_en R/W
Interrupt Set First Register
Field Name Access
[7] tr_cmp_set WO
[6] stop_det_set WO
, [5] tx_fifo_full_set WO
0x1C INT_SET1_REG WO 8’h00 4] tx_fifo_aempty_set WO
[3] tx_fifo_empty_set WO
[2] rx_fifo_full_set WO
[1] rx_fifo_afull_set WO
[0] rx_fifo_ready_set WO
Interrupt Status Second Register
Field Name Access
[7] reserved RSVD
[6] scl_h_to RW1C
[5] scl_|_to RW1C
0x20 INT_STATUS2_REG RW1C 8’h00 [4] SR_check_value RW1C
[3] SR_check_valid RW1C
[2] arp_cmd_det RW1C
[1] stop_err_int RW1C
[0] start_err_int RW1C

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

Offset Register Name Access | Reset Description
Interrupt Enable Second Register
Field Name Access
[7] reserved RSVD
[6] scl_h_to_en R/W
0x24 INT_ENABLE2_REG Rw | [72IRSVD 5] scl_Lto_en R/W
- - [1:0] 2’b00 [4] reserved RSVD
[3] SR_valid_en R/W
[2] arp_cmd_en R/W
[1] stop_err_en R/W
[0] start_err_en R/W
Interrupt Set Second Register
Field Name Access
[7] reserved RSVD
[6] sch_h_to_set wo
[7:2] RSVD [5] sch_|_to_set WO
0x28 INT_SET2_REG wo [1:0] 2’b00 [4] reserved RSVD
[3] SR_valid_set \Ye]
[2] arp_cmd_set WO
[1] stop_err_set WO
[0] start_err_set WO
FIFO Status Register
Field Name Access
[7:6] RSVD RSVD
(7:6] RSVD [5] tx_fifo_full RO
0x2C FIFO_STATUS_REG RO [5:0] 6'b011001 (4] tx_f!fo_aemptv RO
[3] tx_fifo_empty RO
[2] rx_fifo_full RO
[1] rx_fifo_afull RO
[0] rx_fifo_empty RO
Interrupt Enable Second Register
Field Name Access
0x2C FLUSH_FIFO WO 5(2)} ;‘C’lx) b [7:2] reserved RSVD
[1] rxfifo_flush wo
[0] txfifo_flush wo
SMBus Control and Status Register
[7:1] RSVD
[0] smb_alert: Transmits the alert interrupt to
[7:1] RSVD
0x30 SMB_CONTROL_REG | R/W (0] 1'b0 SMBus Contm"’er-
e  1'b0— No interrupt to Controller.
e 1'bl—-SMBus target sends alert interrupt to
Controller.
0x34- Reserved
0x3C Reserved RSVD RSVD Write access is ignored and 0 is returned on read

access.

www.latticesemi.com/legal



http://www.latticesemi.com/legal

=LATTICE

Offset Register Name | Access | Reset Description
AHB-Lite SO1
Registers File 256x32bits, SMBus Mailbox
Registers File.
Offset Dword Number
0x2000- . _ . 0x00 0
0x23ff Registers File R/W All ‘0’s 0x04 1
0x08 2
0x3fc 255
AHB-Lite S02: each register is 32-bit wide wherein the upper bits [31:8] are reserved and the lower 8 bits [7:0] are used.

Ox400 PRERIo R/W [31:8] RSVD Clock prescale register low-byte
[7:0] 8'hff 5xSCL frequency = clk_i / (PRERhi<<8 + PRERI0)
0x404 PRERhi R/W [31:8] ,RSVD Clock prescale register .high-byte.
[7:0] 8 hff 5xSCL frequency = clk_i / (PRERhi<<8 + PRERI0)
Control Register
Field Description
[31:8] RSVD [7] il\i—CCont'roIIerb(io(rje enable bit.
0x408 | CTR R/W | [7:6] 2'h00 o Core 'S Z,”a ble )
[5:0] RSVD = Core is disable
[6] IEN — interrupt enable bit.
1 = Interrupt is enabled
0 = Interrupt is disabled
Transmit Register
Field Description
(7:1] Next byte to be transmitted via
’ SMBus Controller Core
0x40c TXR WO [31:8] RSVD The byte’s LSB
[7:0] 8'h00 a) The byte’s LSB.
b) RW bit during target address
[0] transfer
1 = Reading from target
0 = Writing to target
[31:8] RSVD Receive Reglst.er
0x40c RXR RO , Last byte received through the SMBus Controller
[7:0] 8’h00
Core.
Command Register
Field Name
[7] STA — Generate (repeated) start
condition
[6] STO — Generate stop condition
[5] RD — Read from target
31:8] RSVD — Wri
0x410 | CR WO [31:8] ’ [4] WR — Write to target
[7:0] 8’h00 [3] ACK, when a receiver sends ACK
(ACK = 0) or NACK (ACK =1).
[2] When set, clears the timeout status
[1] Reserved
[0] IACK — Interrupt acknowledge.
When set, clears a pending
interrupt.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

Offset Register Name

Access

Reset

Description

0x410 SR

RO

[31:8] RSVD
[7:0] 8’h00

Status Register

Field

Name

(7]

RxACK — Received acknowledge
from addressed target.

1 = No acknowledge received.
0 = Acknowledge received.

(6]

Busy — Indicates that the SMBus bus
is busy.

1 =bus is busy.

0 =busisidle.

(5]

AL — Arbitration lost. This bit is set

when the core loses arbitration.

Arbitration is lost when:

e  ASTOP signal is detected, but
not requested.

e ASTART signal is detected, but
not requested.

e The controller drives SDA high,
but SDA is low.

e  Controller drive SCL high, but
SCL is low. Not clock stretch.

(4]

Reserved.

(3]

Timeout
1 =SCL and SDA line have been high
for 50 us.

(2]

Timeout
1 = SCL line has been low for 25 ms.

(1]

TIP — Transfer in Progress
1 = Transferring data.
0 = Transfer is complete.

(0]

IF — Interrupt Flag. This bit is set

when an interrupt is pending. The

int_o signal is asserted if the IEN bit

is set. The Interrupt Flag is set

when:

e One byte transfer has been
completed.

e  Target NACK.

e Arbitration is lost.

e  Controller changes from busy
to idle.

Table 2.4. Access Type Definition

Access Type Behaviour on Read Access Behaviour on Write Access

RO Returns register value. Ignores write access.

WO Returns 0. Updates register value.

RW Returns register value. Updates register value.

RW1C Returns register value. Wr?t?ng 1’bl on regfster bit .clt?ars the bit to 1'b0.
Writing 1’b0 on register bit is ignored.

RSVD Returns 0. Ignores write access.

www.latticesemi.com/legal



http://www.latticesemi.com/legal

=LATTICE

2.4.1. Target Core Register

AHB-Lite SO0 is the port to access Target Core Register. The offset address is 0. The detail description for every register
is shown below.
The RD_DATA_REG and WR_DATA_REG share the same offset. The Write access to this offset goes to WR_DATA_REG,
while the Read access goes to RD_DATA_REG. Write Data Register is the interface to Transmit FIFO (TX_FIFO). Writing
to WR_DATA_REG pushes a word to Transmit FIFO (TX_FIFO). When writing to WR_DATA_REG, the host should ensure
that Transmit FIFO (TX_FIFO) is not full. This can be done by reading FIFO_STATUS_REG. Data is popped from
WR_DATA_REG during 12C read transaction. When reset is performed, the contents of Transmit FIFO (TX_FIFO) are not
reset but the FIFO control logic is reset. Thus, the content is not guaranteed after reset. The Read Data register is the
interface to Receive FIFO (RX_FIFO). After a data is received from 12C bus during 12C write transaction, the received
data is pushed to Receive FIFO (RX_FIFO). Reading from RD_DATA_REG pops a word from Receive FIFO (RX_FIFO). The
host should ensure that Receive FIFO (RX_FIFO) has data before reading RD_DATA_REG, data is not guaranteed when
this register is read during Receive FIFO (RX_FIFO) empty condition. On the other hand, if Receive FIFO (RX_FIFO) is full
but 12C target continues to receive data, new data is lost. The Read FIFO_STATUS_REG to determine the status of
Receive FIFO (RX_FIFO). Similar to Transmit FIFO (TX_FIFO), the reset value of Receive FIFO (RX_FIFO) is also not
guaranteed after reset.
The Target Address Lower Register (TARGET_ADDRL_REG) is a 7-bit Target address. This is used for 7-bit and 10-bit
addressing mode as follows: for 7-bit Addressing Mode, it is the target address; for 10-bit Addressing Mode, it is the
lower seven bits of the Target address. The Target Address Higher Register (TARGET_ADDRH_REG) is the upper three
bits of 10-bit target address. This is not used in 7-bit addressing mode. The reset values of TARGET_ADDRL_REG and
TARGET_ADDRH_REG is set by the 12C Target Address attribute, as shown in Table 2.2.
Each bit of the Control Register (CONTROL_REG) controls the behavior of the Target Core.
e dat_src_sw

Data source switch. Select data source when external controller read routine.

e 1'b0 selects register file for mailbox.

e 1'b1 selects tx_fifo for normal external read.
e nack_data

NACK on Data Phase. Specifies ACK/NACK response on 12C data phase.

e 1’b0—Sends ACK to received data.

e 1’b1 —Sends NACK to received data.
e nack_addr

NACK on Address Phase. Specifies ACK/NACK response on 12C address phase.

e 1’b0-—Sends ACK to received address if it matches the programmed target address.

e 1’b1 —Sends NACK to received address.
e reset

Reset. Resets 12C Target IP Core for one clock cycle. The registers and LMMI interface are not affected by this reset.

This is write-only bit because it has auto-clear feature. It is cleared to 1'b0 after one clock cycle.

e 1’b0 - No action.

e 1’bl—Resets I12C Target IP Core.
o clk_stretch_en

Clock Stretch Enable. Enables clock stretching on ACK bit of data.

e 1'b0—12C Target IP Core releases SCL signal.

e 1’bl—12C Target IP Core pulls down SCL signal on the next ACK bit of data phase and keeps pulling-down until

the host writes 1'b0 on this bit.

e addr_10bit_en

10-bit Address Mode Enable. Enables the reception of 10-bit 12C address.

e 1’b0-12C Target IP Core rejects the 10-bit 12C address. It sends NACK.

e 1’b1-12C Target IP Core responds to 10-bit I12C address. If TARGET_ADDRH_REG is 3’'h0, it also responds to the

7-bit address.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

The desired number of bytes to transfer (read/write) in 12C bus should be written to this Target Byte Count Register
(TGT_BYTE_CNT_REG). This is used for Transfer Complete interrupt generation which asserts when the target byte
count is achieved.

The Interrupt Status Register (INT_STATUS1_REG and INT_STATUS2_REG) contains all the interrupts currently pending
in the Target Core. When an interrupt bit asserts, it remains asserted until it is cleared by the host by writing 1’b1 to
the corresponding bit.

The interrupt status bits are independent of the interrupt enable bits. In other words, status bits may indicate pending
interrupts, even though those interrupts are disabled in the Interrupt Enable Register, see the description of Interrupt
Enable Registers (INT_ENABLE1_REG, INT_ENABLE2_REG) below for details. The logic which handles interrupts should
mask (bitwise and logic) the contents of INT_STATUS1_REG and INT_ENABLE1_REG registers as well as
INT_STATUS2_REG and INT_ENABLE2_REG to determine the interrupts to service. The int_o interrupt signal is asserted
whenever both an interrupt status bit and the corresponding interrupt enable bits are set.
The corresponding bits of INT_STATUS1_REG are shown below:
e tr_cmp_int
Transfer Complete Interrupt Status. This interrupt status bit asserts when the number of bytes transferred in 12C
interface is equal to TGT_BYTE_CNT_REG.
e 1’b0 - No interrupt.
e 1’b1 —Interrupt pending.
e stop_det_int
STOP Condition Detected Interrupt Status. This interrupt status bit asserts when STOP condition is detected after
an ACK/NACK bit.
e 1’b0- No interrupt.
e 1’bl —Interrupt pending.
o tx_fifo_full_int
Transmit FIFO (TX_FIFO) Full Interrupt Status. This interrupt status bit asserts when Transmit FIFO (TX_FIFO)
changes from not full state to full state.
e 1’b0- No interrupt.
e 1’b1 - Interrupt pending.
o tx_fifo_aempty_int
Transmit FIFO (TX_FIFO) Almost Empty Interrupt Status. This interrupt status bit asserts when the amount of data
words in Transmit FIFO (TX_FIFO) changes from ‘TX FIFO Almost Empty Flag’ — 1 to ‘TX FIFO Almost Empty Flag’.
e 1’b0 - No interrupt.
e 1’b1 —Interrupt pending.
e tx_fifo_empty_int
Transmit FIFO (TX_FIFO) Empty Interrupt Status. This interrupt status bit asserts when the last data in Transmit
FIFO (TX_FIFO) is popped-out, causing the FIFO to become empty.
e 1’b0- No interrupt.
e 1’b1 —Interrupt pending.
o rx_fifo_full_int
Receive FIFO (RX_FIFO) Full Interrupt Status. This interrupt status bit asserts when RX FIFO full status changes from
not full to full state.
e 1’b0 - No interrupt.
e 1'b1 - Interrupt pending.
e rx_fifo_afull_int
Receive FIFO (RX_FIFO) Almost Full Interrupt Status. This interrupt status bit asserts when the amount of data
words in Receive FIFO (RX_FIFO) changes from ‘RX FIFO Almost Full Flag’ — 1 to ‘RX FIFO Almost Full Flag’.
e 1’b0 - No interrupt.
e 1’b1 - Interrupt pending.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

e rx_fifo_ready_int
Receive FIFO (RX_FIFO) Ready Interrupt Status. This interrupt status bit asserts when Receive FIFO (RX_FIFO) is
empty and receives a data word from 12C interface.
e 1’b0— No interrupt.
e 1’b1 —Interrupt pending.
The corresponding bit of INT_STATUS2_REG is shown below:
e scl_h_to
Timeout flag when SCL and SDA line have been high for 50 us in transfer mode.
e 1’b0 - No interrupt.
e 1’b1 - Interrupt pending.
scl_|_to
Timeout flag when SCL line has been low for 25 ms.
e 1’b0-No interrupt.

e 1’b1 - Interrupt pending.
e arp_cmd_det

Flag when 7’h61 is addressed.

e 1’b0 - No interrupt.

e 1’b1 —Interrupt pending.

SR_check_valid: repeat start check valid.
SR_check_value: repeat start value.

When SR_check_valid is valid (=1), then you know whether repeat start happens or not according to
SR_check_value (=1, happen; =0 not happen).

e stop_err_int
STOP Condition Error Interrupt Status. This interrupt status bit asserts after detecting a STOP condition when it is

not expected. STOP condition is expected to occur only after the ACK/NACK bit. The stop_err_int and stop_det_int
do not assert at the same time.

e 1’b0 - No interrupt.
e 1’b1 - Interrupt pending.
e start_err_int
START Condition Error Interrupt Status. This interrupt status bit asserts after detecting a START condition when it is

not expected. START condition is expected to occur only when 12C bus is idle and after receiving an ACK or a NACK
(repeated START condition).
e 1’b0 - Nointerrupt.
e 1’b1 —Interrupt pending.
INT_ENABLE1_REG/INT_ENABLE2_REG corresponds to interrupts status bits in INT_STATUS1_REG and
INT_STATUS2_REG. They do not affect the contents of the INT_STATUS1_REG and INT_STATUS2_REG. If one of the
INT_STATUS1_REG/INT_STATUS2_REG bits assert and the corresponding bit of INT_ENABLE1_REG/ INT_ENABLE2_REG
is 1’b1, the interrupt signal int_o asserts.
The corresponding bits of INT_ENABLE1_REG are shown below:
e tr_cmp_en
Transfer Complete Interrupt Enable. Interrupt enable bit corresponds to Transfer Complete Interrupt Status.
e  1’b0 - Interrupt disabled.
e 1’b1 - Interrupt enabled.
e stop_det_en
STOP Condition Detected Interrupt Enable. Interrupt enable bit corresponds to STOP Condition Detected Interrupt
Status.
e  1’b0 - Interrupt disabled.
e 1’b1 - Interrupt enabled.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

tx_fifo_full_en

Transmit FIFO Full Interrupt Enable. Interrupt enable bit corresponds to Transmit FIFO Full Interrupt Status.

e  1’b0 - Interrupt disabled.

e 1’b1 —Interrupt enabled.

tx_fifo_aempty_en

Transmit FIFO Almost Empty Interrupt Enable. Interrupt enable bit corresponds to Transmit FIFO Almost Empty
Interrupt Status.

e  1’b0 - Interrupt disabled.

e 1’b1 —Interrupt enabled.

tx_fifo_empty_en

Transmit FIFO Empty Interrupt Enable. Interrupt enable bit corresponds to Transmit FIFO Empty Interrupt Status.
e  1’b0 - Interrupt disabled.

e 1’bl —Interrupt enabled.

rx_fifo_full_en

Receive FIFO Full Interrupt Enable. Interrupt enable bit corresponds to Receive FIFO Full Interrupt Status.

e  1’b0 - Interrupt disabled.

e 1’bl —Interrupt enabled.

rx_fifo_afull_en

Receive FIFO Almost Full Interrupt Enable. Interrupt enable bit corresponds to Receive FIFO Almost Full Interrupt
Status.

e  1’b0 - Interrupt disabled.

e 1’b1 —Interrupt enabled.

rx_fifo_ready_en

Receive FIFO Ready Interrupt Enable. Interrupt enable bit corresponds to Receive FIFO Ready Interrupt Status.
e  1’b0 - Interrupt disabled.

e 1’bl —Interrupt enabled.

The corresponding bits of INT_ENABLE2_REG are shown below:

scl_h_to_en

Enable interrupt when SCL and SDA line have been high for 50 us in transfer mode.
e  1’b0 - Interrupt disabled.

e 1’b1 —Interrupt enabled.

scl_|_to_en

Enable interrupt when SCL line has been low for 25 ms.

e  1’b0 - Interrupt disabled.

e 1’b1 —Interrupt enabled.

SR_valid_en

Enable interrupt when repeat start check finish.

e  1’b0 - Interrupt disabled.

e 1’b1 - Interrupt enabled.

arp_cmd_en

Enable interrupt when 7°’h61 is addressed.

e  1'b0 - Interrupt disabled.

e 1'b1 - Interrupt enabled.

stop_err_en

STOP Condition Error Interrupt Enable. Interrupt enable bit corresponds to STOP Condition Error Interrupt Status.
e  1’b0 - Interrupt disabled.

e 1’b1 - Interrupt enabled.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

start_err_en

START Condition Error Interrupt Enable. Interrupt enable bit corresponds to START Condition Error Interrupt
Status.

e  1’b0 - Interrupt disabled.

e 1’b1 - Interrupt enabled.

INT_SET1_REG/INT_SET2_REG corresponds to interrupts status bits in INT_STATUS1_REG and INT_STATUS2_REG.
Writing 1'b1 to a register bit in INT_SET1_REG or INT_SET2_REG asserts the corresponding interrupts status bit in
INT_STATUS1_REG or INT_STATUS2_REG while writing 1’b0 is ignored. This is intended for testing purposes only.

The corresponding bit of INT_ SET1_REG shows below:

tr_cmp_set

Transfer Complete Interrupt Set. Interrupt set bit corresponds to Transfer Complete Interrupt Status.

e 1’b0- No action.

e 1’bl - Asserts INT_STATUS1_REG.tr_cmp_int.

stop_det_set

STOP Condition Detected Interrupt Set. Interrupt set bit corresponds to STOP Condition Detected Interrupt Status.
e 1’b0- No action.

e 1’bl—Asserts INT_STATUS1_REG.stop_det_int.

tx_fifo_full_set

Transmit FIFO Full Interrupt Set. Interrupt set bit corresponds to Transmit FIFO Full Interrupt Status.

e 1’b0- No action.

e 1’bl—Asserts INT_STATUS1_REG.tx_fifo_full_int.

tx_fifo_aempty_set

Transmit FIFO Almost Empty Interrupt Set. Interrupt set bit corresponds to Transmit FIFO Almost Empty Interrupt
Status.

e 1’b0- No action.

e 1’bl - Asserts INT_STATUS1_REG.tx_fifo_aempty_int.

tx_fifo_empty_set

Transmit FIFO Empty Interrupt Set. Interrupt set bit corresponds to Transmit FIFO Empty Interrupt Status.
e 1’b0 - No action.

e 1’bl—Asserts INT_STATUS1_REG.tx_fifo_empty_int.

rx_fifo_full_set

Receive FIFO Full Interrupt Set. Interrupt set bit corresponds to Receive FIFO Full Interrupt Status.

e 1’b0- No action.

e 1’bl—Asserts INT_STATUS1_REG.rx_fifo_full_int.

rx_fifo_afull_set

Receive FIFO Almost Full Interrupt Set. Interrupt set bit corresponds to Receive FIFO Almost Full Interrupt Status.
e 1’b0 - No action.

e 1’b1 - Asserts INT_STATUS1_REG.rx_fifo_afull_int.

rx_fifo_ready_set

Receive FIFO Ready Interrupt Set. Interrupt set bit corresponds to Receive FIFO Ready Interrupt Status.

e 1’b0-No action.

e 1’bl - Asserts INT_STATUS1_REG.rx_fifo_ready_int.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

The corresponding bits of INT_SET2_REG are shown below:
e scl_h_to_set
SCL and SDA line high timeout interrupt set. Interrupt set bit corresponds to scl_h_to bit in INT_STATUS2_REG.
e 0-No action.
e 1-Asserts INT_STATUS2_REG. scl_h_to.
e scl_|_to_set
SCL line low timeout interrupt set. Interrupt set bit corresponds to scl_|_to bit in INT_STATUS2_REG.
e 0-No action.
e 1-—Asserts INT_STATUS2_REG. scl_|_to.
e arp_cmd_det
7’h61 is addressed interrupt set. Interrupt set bit corresponds to arp_cmd_det bit in INT_STATUS2_REG.
e 0-No action.
e 1 —Asserts INT_STATUS2_REG. arp_cmd_det.
e stop_err_set
STOP Condition Error Interrupt Set. Interrupt set bit corresponds to STOP Condition Error Interrupt Status.
e 0-No action.
e 1-—Asserts INT_STATUS2_REG.stop_err_set.
e start_err_set
START Condition Error Interrupt Set. Interrupt set bit corresponds to START Condition Error Interrupt Status.
e 0-No action.
e 1-—Asserts INT_STATUS2_REG.start_err_set.
FIFO Status Register reflects the status of Transmit FIFO and Receive FIFO as shown blow.
o tx_fifo_full
Transmit FIFO Full. This bit reflects the full condition of Transmit FIFO.
e 1’b0 - Transmit FIFO is not full.
e 1’bl —Transmit FIFO is full.
o tx_fifo_aempty
Transmit FIFO Almost Empty. This bit reflects the almost empty condition of Transmit FIFO.
e  1’b0 - Data words in Transmit FIFO is greater than the TX FIFO Almost Empty Flag attribute.
e 1’b1 - Data words in Transmit FIFO is less than or equal to the TX FIFO Almost Empty Flag attribute.
o tx_fifo_empty
Transmit FIFO Empty. This bit reflects the empty condition of Transmit FIFO.
e  1’b0 - Transmit FIFO is not empty — has at least one data word.
e 1’b1 —Transmit FIFO is empty.
o rx_fifo_full
Receive FIFO Full. This bit reflects the full condition of Receive FIFO.
e  1’b0 - Receive FIFO is not full.
e 1’b1 —Receive FIFO is full.
o rx_fifo_afull
Receive FIFO Full. This bit reflects the almost full condition of Receive FIFO.
e 1'b0 - Data words in Receive FIFO is less than the RX FIFO Almost Full Flag attribute.
e 1’b1 - Data words in Receive FIFO is greater than or equal to the RX FIFO Almost Full Flag attribute.
o rx_fifo_empty
Receive FIFO Full. This bit reflects the empty condition of Receive FIFO.
e 1’b0 - Receive FIFO is not empty — has at least one data word.
e 1’bl - Receive FIFO is empty.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

The corresponding bits of FLUSH_FIFO are shown below:
o rxfifo_flush

Flush RX FIFO data.

e 0-No action.

e 1 -—Flush RX FIFO data to empty.
o txfifo_flush

Flush TX FIFO data.

e 0-No action.

e 1 -Flushes TX FIFO data to empty.

2.4.2. Registers File

The external SMBus controller initiates an SMBus Mailbox read transaction. The read byte data message is routed to
the Register File. The external SMBus controller cannot write message to the Register File. The external SMBus
controller writes message to the RX_FIFO. The host reads that message data from the RX_FIFO and write to the
Register File through the AHB-Lite port SO1. The Host can read and write to the Register File from the ABH_Lite port
SO1. The offset address is 0x2000.

2.4.3. Controller Core Register

AHB-Lite S02 is the port to access Controller Core Register. The offset address is 0x400.

The prescale register (offset = 0x00 and 0x04) is used to prescale the SCL clock line based on the system clock. This
design uses an internal clock enable signal, clk_en, to generate the SCL clock frequency. The frequency of clk_en is

calculated by the equation [clk_i frequency / (Prescale Register + 1)] and this frequency is five times SCL frequency.
The contents of the prescale register can only be modified when the core is not enabled.

Only two bits of the control register (offset = 0x08) are used for this design. The MSB of this register is the most critical
one because it enables or disables the entire SMBus core. The core does not respond to any command unless this bit is
set. If the bit is set, the Target Core to SMBus interface route is disabled.

The transmit register and the receive register share the same address (offset = 0x0C) depending on the direction of
data transfer. The data to be transmitted through the SMBus is stored in the transmit register, while the byte received
through the SMBus is available in the receive register.

The status register and the command register share the same address (offset = 0x10). The status register allows the
monitoring of the SMBus operations, while the command register stores the next command for the next SMBus
operation. Unlike the rest of the registers, the bits in the command register are cleared automatically after each
operation. Therefore, this register must be written for each start, write, read, or stop of the SMBus operation.

2.5. SMBus Alert Signal

The SMBus alert signal provides interrupt signal to the SMBus controller when pulled Low. A target device can signal
the controller through smbalert_n_o interrupt line that it wants to talk. The controller processes the interrupt and
simultaneously accesses all the smbalert devices through the Alert Response Address. Only the target device, which
pulled smbalert_n_o low, acknowledges the Alert Response address (0001 100b). The host performs a modified
Receive Byte operation. The 7-bit device address provided by the target transmit device is placed in the seven most
significant bits of the byte. The eighth bit can be zero or one.

If more than one device pulls smbalert_n_o low, the highest priority device (lowest address) device wins the
communication rights.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

After receiving an acknowledge (ACK) from the controller in response to its address, the device stops pulling down the
smbalert_n_o signal. If the controller still sees the smbalert_n_o low when the message transfer is complete, the same
process repeats again. The SMBus target core monitors the data bus to see if any other target is responding to the Alert
Response address. This can be achieved by checking the input and output of smbdat_io. When there is match, the

smb_alert register bit is cleared and the controller generates an interrupt signal to the host.

7 1 1

7

S | Alert Response Address | Rd A

Address

Figure 2.2. 7-bit Addressable Device Response

www.latticesemi.com/legal



http://www.latticesemi.com/legal

=LATTICE

3. Program Flow

The SMBus mailbox IP can be used as an SMBus controller and SMBus target simultaneously. But, the SMBus controller
function also can be disabled by unchecking the Enable Controller function attribute box when configuring the IP in
Lattice Propel Builder.

If both SMBus controller and SMBus target are enabled, when SMBus controller initiates a transfer, SMBus target logic
is halted, and it cannot receive external controller’s messages. When SMBus controller logic is complete and halts, the
SMBus target logic wakes up and is available for receiving messages from any controller.

The SMBus mailbox IP needs to be initialized for both SMBus controller and SMBus target core blocks to enable normal
operation.

3.1. SMBus Target Core Initialization

To perform initialization, load the following appropriate registers of the Target Core:

e TARGET_ADDRL_REG, TARGET_ADDRH_REG — This step is optional. In most cases, initial value set in I12C Target
Addresses attribute of the user interface does not need to be changed. Read access to the address by external
controller is routed to Register File, while write access to the address is routed to internal RX_FIFO.

e CONTROL_REG

e TGT_BYTE_CNT_REG - It is recommended to set this if the size of the data is known. Set this to 8'h00 if the number
of bytes to transfer is not known, that is, receiving unknown amount of data.

e INT_ENABLE1_REG - It is recommended to enable only the following interrupts when receiving commands from
controller.

e Transfer Complete Interrupt — If the size of data is known.
e  Receive FIFO Data Interrupt — if the size of data is unknown.
e INT_ENABLE2_REG - It is recommended to enable both error interrupts.

3.2. SMBus Controller Core Initialization

Write the appropriate data to the prescale register based on the frequency of SCL through the AHB-Lite bus S02.
The SCL frequency meets the equation: 5xSCL frequency = clk_i / (PRERhi<<8 + PRERI0).

3.3. SMBus Target Core Operation Flow

3.3.1. Data Transfer in Response to External Controller Read

As mentioned, the two target address for the IP are the normal SMBus target device data transfer and the SMBus
mailbox Register File access. According to the accessed address, there are two ways to respond to the external
controller read.

3.3.1.1. Normal SMBus Target Device Read Data Transfer

The following are the recommended steps to perform data transfer in response to the read request of the external
SMBus controller. This assumes that the amount of data to send is known.

To perform data transfer in response to read request of SMBus Controller:
1. Write data to WR_DATA_REG, amounting to < FIFO Depth.

2. Enable only Transfer Complete Interrupt. If transmit data > FIFO Depth, also enable TX FIFO Almost Empty interrupt
if there is no more data to transfer. Otherwise, proceed to step 7.

3.  Wait for TX FIFO Almost Empty Interrupt. If polling mode is desired, read INT_STATUS1_REG until
tx_fifo_aempty_int asserts. If interrupt mode is desired, simply wait for interrupt signal to assert, then read
INT_STATUS1_REG and check that tx_fifo_aempt_int is asserted. Also read INT_STATUS2_REG to check that no
error occurs.

Clear TX FIFO Almost Empty Interrupt. It is also okay to clear all interrupts.
Write data byte to WR_DATA_REG, amounting to less than or equal to FIFO Depth — TX FIFO Almost Empty Setting.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

If there are remaining data to transfer, go back to Step 3. Otherwise, disable TX FIFO Almost Empty Interrupt.
Wait for Transfer Complete Interrupt. If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts.

If interrupt mode is desired, simply wait for interrupt signal to assert. Then, read INT_STATUS1_REG and check that
tr_cmp_int is asserted. Also read INT_STATUS2_REG to check that no error occurred.

8. Clearall interrupts.

3.3.1.2. SMBus Mailbox Register File Read Data Transfer

If the accessed address is Register File, the SMBus Mailbox IP outputs the addressed data in Register File automatically.
The data format is shown in Figure 1.2.

3.3.2. Data Transfer in Response to External Controller Write

Similarly, the external SMBus controller can initiate a write transaction to two target addresses. One is routed to the
internal RX_FIFO logic and the other is to the Register File through RISC-V host.

3.3.2.1. Normal SMBus Target Device Write Data Transfer

The following are the recommended steps to perform data transfer in response to write request of SMBus Controller.
This assumes that the amount of data to receive is known.

To perform data transfer in response to write request of the SMBus Controller:

1. Enable only Transfer Complete Interrupt. If data to receive > FIFO Depth, also enable RX FIFO Almost Full interrupt.
If data to receive < FIFO Depth, proceed to Step 7.

2. Wait for RX FIFO Almost Full Interrupt. If polling mode is desired, read INT_STATUS2_REG until rx_fifo_afull_int
asserts. If interrupt mode is desired, simply wait for the interrupt signal to assert. Then, read INT_STATUS2_REG
and check that rx_fifo_afull_int is asserted. Also read INT_STATUS2_REG to check that no error occurs.

3. Clear RX FIFO Almost Full Interrupt. It is also okay to clear all interrupts.

Read data byte from RD_DATA_REG, amounting to less than or equal to FIFO Depth — TX FIFO Almost Empty
Setting.

If there are remaining data to receive, go back to Step 2. Otherwise, disable RX FIFO Almost Full Interrupt.
Wait for Transfer Complete Interrupt. If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts.

If interrupt mode is desired, simply wait for the interrupt signal to assert. Then, read INT_STATUS1_REG and check
that tr_cmp_int is asserted. Also, read INT_STATUS2_REG to check that no error occurs.

Clear all interrupts.
Read all data from RD_DATA_REG.

3.3.2.2. SMBus Mailbox Register File Write data transfer

If the accessed address is Register File, the external controller write data firstly inputs to RX_FIFO. The host reads out
the data and write it to the Register File according to the Register File address. The data format is shown in Figure 1.1.

3.4. SMBus Controller Core Operation Flow

Figure 3.1 shows the SMBus controller program flow in interrupt mode. The Controller Core can also be used in polling
mode. The polling mode is the same as interrupt mode except that the polling mode needs to poll the SR bit 0 instead
of being interrupted by int_o to check status. In the polling mode, set the CTR to 0x80.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

=LATTICE

Initialization

Set CTR with 0xCO
<

Ll

Yes and Read I Yes and Write

‘ Set TXR with ‘ ‘ Set TXR with ‘

<

Transfer fail with errors
No, int_o interrupt when SR=0

slave_addr|0x01 slave_addr&0xfe

Set CR with 0x90
>

int_o interrupt

Set SR with 0x05

Yes
If read .
Set SR with 0x01

Receive data from RXR if

CR has been set 0x20 in "

last loop !
I

All data done? Set CR with 0x40
int_o interrupt

No and Write

Set TXR with sent data
Set CR with 0x10
Set CR with 0x28 ‘ ‘ Set CR with 0x20 ‘

L 7

No and Read

Last data?

Yes
Set SR with 0x01

Figure 3.1. SMBus Controller Program Flow Interrupt Mode

3.4.1. Write Data to the SMBus Target

1.

vk W

Write 0x80 to the control register (CTR) to enable the SMBus Controller through the AHB-Lite bus. If enable
interrupt, the write data is 0xCO.

Read the status register (SR) through the AHB-Lite bus until all bits of the status register is 0.
Write the SMBus target address and write bit to the transmit register (TXR) through the AHB-Lite bus.
Write 0x90 to the command register (CR) through the AHB-Lite bus to start the SMBus write operation.

When using polling mode, read the status register (SR) until bit 0 of the status register is set and check if other bits
except bit 6 are Os. When using interrupt mode, if host is interrupted by the int_o signal, read the status register
(SR) and check if other bits except bit 0 and bit 6 are 0s. Both modes need to write 0x1 to CR to clear bit 0 of SR. If
other bits except bit 0 and bit 6 are not Os, there is an error. Write 0x5 to CR to clear SR and go back to step 2.

Write the byte which is sent to the SMBus target to the transmit register (TXR) through the AHB-Lite bus.
Write 0x10 to the CR through the AHB-Lite bus to set SMBus write operation.

When using polling mode, read the status register (SR) until bit O of the status register is set and check if other bits
except bit 6 are Os. When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR)
and check if other bits except bit 0 and bit 6 are 0s. Both modes need to write 0x1 to CR to clear bit 0 of SR. If other
bits except bit 0 and bit 6 are not Os, there is an error. Write 0x5 to CR to clear SR and go back to step 2. If there is
no error and there is another data to write, go back to step 6.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

= LATTICE

When all the bytes have been sent, write 0x40 to the command register (CR) through the AHB-Lite bus to stop the
SMBus write operation.

10. When using polling mode, read the status register (SR) until bit 0 of the status register is set and check if other bits

except bit 6 are Os. Bit 6 is set when other controllers use the bus at this time. Otherwise, it also should be 0. When
using interrupt mode, if the host is interrupted by the int_o signal, read the status register (SR) and check if other
bits except bit 0 and bit 6 are 0s. Both modes need to write 0x1 to CR to clear bit 0 of SR. If other bits except bit 0
and bit 6 are not Os, there is an error. Write 0x5 to CR to clear SR and go back to step 9.

3.4.2. Read Data from the SMBus Target

1.

vk N

Write 0x80 to the control register (CTR) to enable the SMBus Controller through the AHB-Lite bus. If enable
interrupt, the write data is OxCO.

Read the status register (SR) through the AHB-Lite bus until all bits of the status register is Os.
Write the SMBus target address and the read bit to the transmit register (TXR) through the AHB-Lite bus.
Write 0x90 to the command register (CR) through the AHB-Lite bus to start the SMBus read operation.

When using polling mode, read the status register (SR) until bit O of the status register is set and check if other bits
except bit 6 are Os. When using interrupt mode, if the host is interrupted by the int_o signal, read the status
register (SR) and check if other bits except bit 0 and bit 6 are 0s. Both modes need to write Ox1 to CR to clear bit 0
of SR. If other bits except bit 0 and bit 6 are not Os, there is an error. Write 0x5 to CR to clear SR and go back to
step 2.

Write 0x20 to command register (CR) through the AHB-Lite bus to read data from the target. If it is the last byte to
read, write 0x28 to command register (CR) to NACK last byte.

When using polling mode, read the status register (SR) until bit O of the status register is set and check if other bits
except bit 6 are 0s. When using interrupt mode, if host is interrupted by int_o signal, read the status register (SR)
and check if other bits except bit 0 and bit 6 are 0s. Both modes need to write 0x1 to CR to clear bit 0 of SR. If other
bits except bit 0 and bit 6 are not Os, there is an error, write 0x5 to CR to clear SR and go back to step 2.

Read data from the receive register (RXR) through the AHB-Lite bus. If no error and have another data to read, go
back to step 6.

When the read operation is finished, write 0x40 to the command register (CR) through the AHB-Lite bus to stop the
SMBus read operation.

10. When using polling mode, read the status register (SR) until bit 0 of the status register is set and check if other bits

except bit 6 are Os. Bit6 is set when other controller use the bus at this time, otherwise it also should be 0. When
using interrupt mode, if host is interrupted by int_o signal, read the status register (SR) and check if other bits
except bit 0 and bit 6 are 0s. Both modes need to write 0x1 to CR to clear bit 0 of SR. If other bits except bit 0 and
bit 6 are not Os, there is an error, write 0x5 to CR to clear SR and go back to step 9.

3.5. CCode API

Refer to the IP driver for the details.

www.latticesemi.com/legal


http://www.latticesemi.com/legal

Lattice Sentry SMBus Mailbox IP Core — Propel Builder ....LATTICE

User Guide

4. Generating the SMBus Mailbox IP

This section provides information on how to generate the SMBus Mailbox IP Core module using Lattice Propel Builder.
To generate the SMBus Mailbox IP Core module:

1. In Lattice Propel Builder, create a new design. Select the Lattice Sentry SMBus Mailbox in IP Catalog.

2. Enter the component name as shown in Figure 4.1. Click Next.

4 Module/IP Block Wizard
Generate Component from IP smbus_mailbox Version 1.1.0

This wizard will guide you through the configuration, generation and instantiation of this Module/IP. Enter the
following information to get started.

Component name:  smbus_mailbox_inst

Create in:

Next > Cancel
Figure 4.1. Module/IP Block Wizard
3. Configure the parameters as shown in Figure 4.2. Click Generate.
. Medule/IP Block Wizard x
Configure Component from IP smbus_mailbox Version 1.1.0
Set the following parameters to configure this component.
Diagram smbus_mailbex_inst Configure smbus_mailbex_inst:
Property Value
~ General
Enable Master Functicn ]
SMBus Mailbox Base Address: Ox 00020000
AHB Lite Address number of bits [1-32] |32
b 5 | b 3 t AHB Lite Bus Data number of bits [8-32] |32
Sm l"Is—rr'IaI OX—I ns Addressing Mode T-bit
12C Slave Address: Ox 51
TM . L System Clock Frequency (MHz) [40 - 1001 | 50
— HBL S0 - 12€ Frequency (KHz) 100
) scl_io—
—clk i .
_ sda_iol—
—rst_n_i
smbalert n_o—
smbus_mailbox
4 3 3 Mo DRC issues are found.
< Back Generate Cancel

Figure 4.2. Configuring Parameters

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

28 FPGA-IPUG-02165-1.1


http://www.latticesemi.com/legal

::LATT’CE Lattice Sentry SMBus Mailbox IP Core — Propel Builder

User Guide

4. Verify the information. Click Finish.

4, Module/IP Block Wizard

Check Generated Result
Check the generated component results in the panel below. Uncheck option Tnsert to project if you do not want to add this component to your design.

Component ‘smbus_mailbax_inst is suceessfully generated
IP: smbus_mailbox  Version: 1.1.0

Vendor: latticesemi.com

Language: Verilog

Generated files:
IP-XACT_compenent: componentaxml
IP-XACT_design: design.xml

black_box_verilog: rtl/smbus_mailbox_inst_bb.v
cfg: smbus_mailbox_inst.cfg

1P package file: smbus_mailbox_instipx
template_verilog: misc/smbus_mailbox_inst_tmpl.v
template_vhdl: misc/smbus_mailbex_inst_tmpl.vhd
top_level_verilog: rtlsmbus_mailbox_instv

Insert to project

< Back

Finish

Figure 4.3. Verifying Results

5. Confirm or modify the module instance name. Click OK.

4. Define Instance ? X

Instance Name: smbus_mailbox_inst_1
Instance Reference: smbus_mailbox_inst:1.1.0

oK Cancel

Figure 4.4. Specifying Instance Name

The CPU IP instance is successfully generated, as shown in Figure 4.5.

smbus_mailbox_inst_1
~ ™\

rgn
— AHBL_S0
e

—clk i
sda_io—
—rst n i
smbalert_ n_o}—

. J

Figure 4.5. Generated Instance

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02165-1.1

29


http://www.latticesemi.com/legal

Lattice Sentry SMBus Mailbox IP Core — Propel Builder ....LATTICE

User Guide

5. Applicable Devices

e MachX0O3D™
e Mach™-NX

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-IPUG-02165-1.1


http://www.latticesemi.com/legal

.IELATTICE Lattice Sentry SMBus Mailbox IP Core — Prosel B;il(.i;ar
ser Guide

References

Mach-NX User Guide Specification
AMBA 3 AHB-Lite Protocol Specification
SMBus Specification

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-IPUG-02165-1.1

31


http://www.latticesemi.com/legal
https://www.latticesemi.com/products/fpgaandcpld/mach-nx
http://eecs.umich.edu/courses/eecs373/readings/ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf
http://www.smbus.org/specs/

Lattice Sentry SMBus Mailbox IP Core — Propel Builder
User Guide

=LATTICE

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

32

FPGA-IPUG-02165-1.1


http://www.latticesemi.com/legal
https://latticesemiconductor4.sharepoint.com/sites/TechPubswithSoarex/Shared%20Documents/Shared%20Reviews/2024%20Q2/Certus-Mach-KH%20EAPR/www.latticesemi.com/Support/AnswerDatabase

::LATT’CE Lattice Sentry SMBus Mailbox IP Core — Propel Builder

User Guide

Revision History

Revision 1.1, August 2024
Section Change Summary

All Changed master to controller and slave to target globally.

Updated Figure 1.1. SMBus Mailbox Write Byte Message, Figure 1.2. SMBus Mailbox Read
Byte Message, and Figure 1.3. MCTP over SMBus Packet Format to reflect inclusive language.

Introduction

e  Updated Figure 2.1. SMBus IP Core Functional Diagram to reflect inclusive language.
e InTable 2.1. Interface Signal Description, updated Reset from O to O for the following
signals: ahbl_hrdata_slv_o, ahbl_hreadyout_slv_o, ahbl_hresp_slv_o, int_o, and

Functional Description smbalert_n_o.

e InTable 2.3. Registers Address Map, updated the Reset value of 0xOC from
[7:6] RSVD [4:1] 0 [0] See Addressing Mode in Table 2.2 to
[7:6] RSVD [5:1] 0 [0] See Addressing Mode in Table 2.2.

Updated Figure 4.1. Module/IP Block Wizard, Figure 4.2. Configuring Parameters,

Generating the SMBus Mailbox IP | Figure 4.3. Verifying Results, Figure 4.4. Specifying Instance Name, and
Figure 4.5. Generated Instance.

Technical Support Assistance Added the link to Lattice Answer Database.

Revision 1.0, December 2021
Section Change Summary
All Initial release.

© 2024 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice

FPGA-IPUG-02165-1.1 33


http://www.latticesemi.com/legal

s=LATTICE



	Lattice Sentry SMBus Mailbox IP Core – Propel Builder
	Acronyms in This Document
	1. Introduction
	1.1. Features
	1.2. Conventions

	2. Functional Descriptions
	2.1. Overview
	2.2. Signals Description
	2.3. Attributes
	2.4. Register Description
	2.4.1. Target Core Register
	2.4.2. Registers File
	2.4.3. Controller Core Register

	2.5. SMBus Alert Signal

	3. Program Flow
	3.1. SMBus Target Core Initialization
	3.2. SMBus Controller Core Initialization
	3.3. SMBus Target Core Operation Flow
	3.3.1. Data Transfer in Response to External Controller Read
	3.3.1.1. Normal SMBus Target Device Read Data Transfer
	3.3.1.2. SMBus Mailbox Register File Read Data Transfer

	3.3.2. Data Transfer in Response to External Controller Write
	3.3.2.1. Normal SMBus Target Device Write Data Transfer
	3.3.2.2. SMBus Mailbox Register File Write data transfer


	3.4. SMBus Controller Core Operation Flow
	3.4.1. Write Data to the SMBus Target
	3.4.2. Read Data from the SMBus Target

	3.5. C Code API

	4. Generating the SMBus Mailbox IP
	5. Applicable Devices
	References
	Technical Support Assistance
	Revision History
	Revision 1.1, August 2024
	Revision 1.0, December 2021





