

CrossLink-NX QVGA MobileNet Human
Identification Using VVML Board

Reference Design

FPGA-RD-02244-1.1

October 2023

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02244-1.1

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the
Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise
rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by
Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test
and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN
WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL
HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES,
INCLUDING PROVIDING APPROPRIATE REDUDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is
proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at
any time without notice.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 3

Contents
Contents ... 3
Acronyms in This Document ... 8
1. Introduction .. 9

1.1. Design Process Overview .. 9
2. Setting Up the Basic Environment .. 10

2.1. Tools and Hardware Requirements... 10
2.1.1. Lattice Tools .. 10
2.1.2. Hardware .. 10

2.2. Setting Up the Linux Environment for Machine Training .. 11
2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU 11

2.2.1.1. Installing the CUDA Toolkit .. 11
2.2.1.2. Installing the cuDNN .. 12

2.2.2. Setting Up the Environment for Training and Model Freezing Scripts ... 12
2.2.2.1. Installing the Anaconda Python ... 12

2.2.3. Installing the TensorFlow version 2.1.0 .. 14
2.2.4. Installing the Python Package ... 15

3. Dataset Preparation.. 17
3.1. Dataset Information .. 17

3.1.1. Training Set ... 17
3.1.2. Validation set .. 17
3.1.3. Test Set ... 17

4. Training Code Preparation .. 18
4.1. Training Code Structure .. 18
4.2. Neural Network Architecture .. 19

4.2.1. Neural Network Architecture ... 19
4.2.2. Face Identification Network Output ... 22
4.2.3. Training Code Overview .. 22

4.2.3.1. Model Configuration .. 22
4.2.3.2. Model Building ... 24
4.2.3.3. Training .. 26

4.3. Training from Scratch and/or Transfer Learning ... 26
5. Evaluating the Model .. 31

5.1. Running Inference on Test Set .. 31
6. Creating Binary File with Lattice sensAI .. 32
7. Hardware Implementation ... 36

7.1. Top Level Information ... 36
7.1.1. Block Diagram ... 36
7.1.2. Push Buttons for Face ID Demo .. 36
7.1.3. Operational Flow .. 37
7.1.4. Core Customization... 37

7.2. Architecture Details .. 38
7.2.1. SPI Flash Operation ... 38
7.2.2. Pre-processing CNN .. 39

7.2.2.1. Masking and Downscaling flow ... 39
7.2.2.2. Push Button Control .. 41

7.2.3. HyperRAM Operations .. 41
7.2.4. Post-Processing CNN ... 42

7.2.4.1. REG MODE ... 42
7.2.4.2. CHECK MODE ... 42
7.2.4.3. CLEAR MODE .. 43

7.2.5. Output Screen Display .. 43
7.2.5.1. USB Wrapper ... 43

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02244-1.1

7.2.5.2. Inference Time Calculation .. 43
7.2.5.3. Inference Time Display Management .. 45

8. Creating FPGA Bitstream File .. 48
8.1. Bitstream Generation Using Lattice Radiant Software ... 48

9. Programming the Demo ... 51
9.1. Package Folder Structure .. 51
9.2. Load Firmware in FX3 I2C EEPROM .. 51
9.3. Programming the CrossLink-NX Voice and Vision SPI Flash .. 52

9.3.1. Erasing the CrossLink-NX Voice and Vision SRAM Prior to Reprogramming .. 52
9.3.2. Programming the CrossLink-NX VVML Board ... 54
9.3.3. Programming sensAI Firmware Binary to the CrossLink-NX SPI Flash .. 55

10. Running the Demo .. 58
10.1. Ideal Conditions for Testing the Demo .. 58

Appendix A. Other Labeling Tools ... 59
References .. 60
Technical Support Assistance ... 61
Revision History .. 62

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 5

Figures
Figure 1.1. Lattice Machine Learning Design Flow ... 9
Figure 2.1. Lattice CrossLink-NX Voice and Vision Machine Learning (VVML) Board, Rev B .. 10
Figure 2.2. Download CUDA Repo .. 11
Figure 2.3. Install CUDA Repo ... 11
Figure 2.4. Fetch Keys ... 11
Figure 2.5. Update Ubuntu Packages Repositories... 11
Figure 2.6. CUDA Installation .. 12
Figure 2.7. cuDNN Library Installation .. 12
Figure 2.8. Anaconda Installation ... 13
Figure 2.9. Accept License Terms ... 13
Figure 2.10. Confirm/Edit Installation Location .. 13
Figure 2.11. Launch/Initialize Anaconda Environment on Installation Completion ... 13
Figure 2.12. Anaconda Environment Activation ... 14
Figure 2.13. TensorFlow Installation .. 14
Figure 2.14. TensorFlow Installation Confirmation .. 14
Figure 2.15. TensorFlow Installation Completion ... 14
Figure 2.16. Easydict Installation .. 15
Figure 2.17. Opencv Installation ... 15
Figure 2.18. Bcolz Installation ... 15
Figure 2.19. Tensorflow-addons Installation .. 16
Figure 2.20. Scikit-learn Installation ... 16
Figure 2.21. Tqdm Installation .. 16
Figure 2.22. Albumentations Installation ... 16
Figure 3.1. Dataset Format ... 17
Figure 4.1. Training Code Directory Structure .. 18
Figure 4.2. Training Code Flow Diagram ... 22
Figure 4.3. Code Snippet – Input Dataset Path Configuration .. 22
Figure 4.4. Code Snippet – Model Name and Log Directory... 23
Figure 4.5. Code Snippet – Input Image Size Configuration ... 23
Figure 4.6. Code Snippet – Model Features and Depth Configuration ... 23
Figure 4.7. Code Snippet – Training Parameters .. 23
Figure 4.8. Code Snippet – Pooling Structure ... 24
Figure 4.9. Code Snippet – Forward Graph Fire Layer .. 25
Figure 4.10. Code Snippet – Forward Graph Output Layer .. 25
Figure 4.11. Code Snippet – Forward Graph Triplet Loss ... 25
Figure 4.12. Code Snippet: Training .. 26
Figure 4.13. Training Code Snippet for Mean and Scale ... 26
Figure 4.14. Training Code Snippet for Identity Shuffling on Epoch End .. 27
Figure 4.15. Training Code Snippet for On the Fly Augmentation .. 27
Figure 4.16. Execute Run Script .. 28
Figure 4.17. TensorBoard – Generated Link ... 28
Figure 4.18. TensorBoard ... 29
Figure 4.19. Model Graph on TensorBoard .. 29
Figure 4.20. Example of Checkpoint Data Files at Log Folder ... 30
Figure 4.21. Set Pretrained Model Path to init Variable for Transfer Learning .. 30
Figure 5.1. Run Testing ... 31
Figure 6.1. sensAI – Home Screen .. 32
Figure 6.2. sensAI – Framework, Device, and Network File Selection .. 33
Figure 6.3. sensAI – Image Data File Selection ... 33
Figure 6.4. sensAI – Update Project Settings .. 34
Figure 6.5. Analyze Project ... 34
Figure 6.6. Q Format Settings for Each Layer ... 35

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02244-1.1

Figure 6.7. Compile Project ... 35
Figure 7.1. RTL Top Level Block Diagram .. 36
Figure 7.2. Push Buttons on CrossLink-NX VVML Board for Face ID Demo .. 36
Figure 7.3. SPI Read Command Sequence .. 39
Figure 7.4. Masking ... 40
Figure 7.5. Downscaling .. 40
Figure 7.6. HyperRAM Access Block Diagram ... 42
Figure 7.7. CNN Counter Design ... 43
Figure 7.8. Frame Counter Design for 16 CNN Frames Average ... 44
Figure 7.9. Average Inference Time Calculation ... 44
Figure 7.10. Inference Time in Millisecond ... 44
Figure 7.11. Average Inference Time Value to ASCII Conversion ... 45
Figure 7.12. CNN Count Values to ASCII Conversion .. 45
Figure 7.13. Inference Time in Millisecond Values to ASCII Conversion ... 46
Figure 7.14. Text Address Positions to Display Input Values .. 46
Figure 7.15. Address Locations to Display Individual Frame Time and Inference Time with String in PC 46
Figure 7.16. Bitmap Extraction from Font ROM ... 47
Figure 8.1. Radiant – Default Screen .. 48
Figure 8.2. Radiant – Open CrossLink-NX Voice and Vision Project File (.rdf) .. 48
Figure 8.3. Radiant – Design Load Check After Opening the Project File ... 49
Figure 8.4. Radiant – Trigger Bitstream Generation ... 49
Figure 8.5. Radiant – Bit File Generation Report Window .. 50
Figure 9.1. Demo Package Folder Structure ... 51
Figure 9.2. Selecting FX3 I2C EEPROM in USB Control Centre ... 51
Figure 9.3. Lattice Radiant Programmer Default Screen .. 52
Figure 9.4. Lattice Radiant Programmer- Device Selection .. 52
Figure 9.5. Lattice Radiant Programmer – Device Operation ... 53
Figure 9.6. Lattice Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing 54
Figure 9.7. Lattice Radiant Programmer – Output Console .. 55
Figure 9.8. Lattice Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing 56
Figure 9.9. Lattice Radiant Programmer – Output Console .. 57
Figure 10.1. Demo Camera Image .. 58

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 7

Tables
Table 4.1. Face Identification Training Network Topology ... 19
Table 7.1. Core Parameter .. 37
Table 7.2. Push Button Modes .. 41
Table 7.3. Post-Processing Parameters .. 42
Table 7.4. Signal Values to ASCII Conversion .. 45
Table A.1. Other Labeling Tools .. 59

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02244-1.1

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

CNN Convolutional Neural Network

EEPROM Electrically Erasable Programmable Read-Only Memory

FPGA Field-Programmable Gate Array

I2C Inter-Integrated Circuit

ML Machine Learning

MLE Machine Learning Engine

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

USB Universal Serial Bus

VVML Voice and Vision Machine Learning

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 9

1. Introduction
This reference design implements Convolutional Neural Network (CNN) based human face identification application on
a low power Lattice FPGA using an image sensor. The training process is completed on a GPU-powered machine to
sharpen the CNN to detect points of reference on a human face and measure them to distinguish the differences
between people. This design can be used for identification of other objects by modifying the training database.

1.1. Design Process Overview
The design process involves the following steps:

1. Training the model

• Setting up the basic environment

• Preparing the dataset

• Training the machine

• Training the machine and creating the checkpoint data

• Creating the frozen file (*. pb)

2. Compiling Neural Network

• Creating the filter and firmware binary files with Lattice sensAI™ 4.1 program

3. FPGA design

• Creating the FPGA Bitstream file

4. FPGA Bitstream and Quantized Weights and Instructions

• Flashing the binary and bitstream files to CrossLink™-NX Voice and Vision Machine Learning (VVML) hardware

Training Model

FPGA Design

NN Model

Training
Dataset

Training Scripts

ML Frameworks
(TensorFlow,

Keras, and Caffe)

NN IP

System
Interface

FPGA Tools
(Lattice Radiant

and Lattice
Diamond)

Trained
Model NN Complier

Lattice FPGA

Quantized Weights
and Instructions

FPGA Bitstream

Figure 1.1. Lattice Machine Learning Design Flow

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02244-1.1

2. Setting Up the Basic Environment

2.1. Tools and Hardware Requirements
This section describes the required tools and environment setup for training and model freezing.

2.1.1. Lattice Tools
• Lattice Radiant™ Tool version 2.2 – Refer to http://www.latticesemi.com/latticeradiant

• Lattice Radiant Programmer version 3.0 – Refer to http://www.latticesemi.com/latticeradiant

• Lattice sensAI Compiler version 4.1 – Refer to
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler

2.1.2. Hardware

This design uses the CrossLink-NX Voice and Vision board as shown in Figure 2.1.

• CrossLink-NX Voice and Vision Machine Learning (VVML) Board, Rev B Board.

Figure 2.1. Lattice CrossLink-NX Voice and Vision Machine Learning (VVML) Board, Rev B

http://www.latticesemi.com/legal
http://www.latticesemi.com/latticeradiant
http://www.latticesemi.com/latticeradiant
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 11

2.2. Setting Up the Linux Environment for Machine Training
This section describes the steps for NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS. NVIDIA library and
TensorFlow version is dependent on PC and Ubuntu/Windows version.

2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU

2.2.1.1. Installing the CUDA Toolkit

To install the CUDA toolkit, run the following commands in the order specified below:
$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-

repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.2. Download CUDA Repo

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.3. Install CUDA Repo

$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.

pub

Figure 2.4. Fetch Keys

$sudo apt-get update

Figure 2.5. Update Ubuntu Packages Repositories

http://www.latticesemi.com/legal
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02244-1.1

$ sudo apt-get install cuda-9-0

Figure 2.6. CUDA Installation

2.2.1.2. Installing the cuDNN

To install the cuDNN:

1. Create NVIDIA developer account: https://developer.nvidia.com.

2. Download cuDNN lib: https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

3. Execute below commands to install cuDNN
$ tar xvfcudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h/usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudochmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*

Figure 2.7. cuDNN Library Installation

2.2.2. Setting Up the Environment for Training and Model Freezing Scripts

This section describes the environment setup information for training and model freezing scripts for 64-bit Ubuntu
16.04. Anaconda provides one of the easiest ways to perform machine learning development and training on Linux.

2.2.2.1. Installing the Anaconda Python

To install the Anaconda and Python 3:

1. Go to https://www.anaconda.com/products/individual#download-section.

2. Download Python3 version of Anaconda for Linux.

3. Run the command below to install the Anaconda environment:
$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release.

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://www.anaconda.com/products/individual%23download-section

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 13

Figure 2.8. Anaconda Installation

4. Accept the license.

Figure 2.9. Accept License Terms

5. Confirm the installation path. Follow the instruction on screen if you want to change the default path.

Figure 2.10. Confirm/Edit Installation Location

6. After installation, enter No as shown in Figure 2.11.

Figure 2.11. Launch/Initialize Anaconda Environment on Installation Completion

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02244-1.1

2.2.3. Installing the TensorFlow version 2.1.0

To install the TensorFlow version 2.1.0:

1. Activate the conda environment by running the command below:
$ source <conda directory>/bin/activate

Figure 2.12. Anaconda Environment Activation

2. Install the TensorFlow by running the command below:
$ conda install tensorflow-gpu==2.1.0

Figure 2.13. TensorFlow Installation

3. After installation, enter Y as shown in Figure 2.14.

Figure 2.14. TensorFlow Installation Confirmation

Figure 2.15 shows TensorFlow installation is complete.

Figure 2.15. TensorFlow Installation Completion

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 15

2.2.4. Installing the Python Package

To install the Python package:

1. Install Easydict by running the command below:
$ conda install –c conda-forge easydict

Figure 2.16. Easydict Installation

2. Install opencv by running the command below:
$ conda install -c menpo opencv

Figure 2.17. Opencv Installation

3. Install bcolz by running the command below:
$ conda install bcolz

Figure 2.18. Bcolz Installation

4. Install tensorflow-addons by running the command below:
$ python -m pip install tensorflow-addons==0.9.1

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02244-1.1

Figure 2.19. Tensorflow-addons Installation

5. Install scikit-learn by running the command below:
$ conda install scikit-learn

Figure 2.20. Scikit-learn Installation

6. Install tqdm by running the command below:
$ conda install tqdm

Figure 2.21. Tqdm Installation

7. Install albumentations by running the command below:
$ pip install albumentations

Figure 2.22. Albumentations Installation

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 17

3. Dataset Preparation
This section describes the steps and guidelines used to prepare the dataset to train the Face ID Demo for CrossLink-NX
Voice and Vision Machine Learning (VVML) board. Note that this section is for the example reference. The following
sections provide the guidelines and/or example which can be used as reference for preparing dataset for given use
cases but in no case, Lattice is recommending and/or endorsing any dataset(s). Lattice strongly recommends customers
to gather and prepare their own datasets for their end applications.

3.1. Dataset Information
For Face ID, use the dataset in directory format used in the image classification problem. Each folder in dataset denotes
individual class which contains multiple images of that class.

Figure 3.1. Dataset Format

3.1.1. Training Set
• For the Face ID demo, use the MS-Celebs-1m dataset – https://www.microsoft.com/en-us/research/project/ms-

celeb-1m-challenge-recognizing-one-million-celebrities-real-world/ and https://github.com/EB-Dodo/C-MS-Celeb

• The original dataset does not have aligned faces. You can download the face aligned dataset in
https://drive.google.com/file/d/1X202mvYe5tiXFhOx82z4rPiPogXD435i/view, or align faces using the custom
scripts and cv2 operations.

3.1.2. Validation set
• The subset of MS-celebs dataset is used as validation set which has 64 identities, with total of 4472 images.

3.1.3. Test Set
• As test set, use the subset from the LFW Face dataset (http://vis-www.cs.umass.edu/lfw/).

• The test set contains total of 6000 pairs of images, where 3000 pairs are of same person and another 3000 pairs of
different persons.

http://www.latticesemi.com/legal
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/
https://github.com/EB-Dodo/C-MS-Celeb
https://drive.google.com/file/d/1X202mvYe5tiXFhOx82z4rPiPogXD435i/view
http://vis-www.cs.umass.edu/lfw/

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02244-1.1

4. Training Code Preparation

4.1. Training Code Structure
Download the Lattice Face ID demo training code. Figure 4.1 shows the directory structure of the Face ID demo:

Figure 4.1. Training Code Directory Structure

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 19

4.2. Neural Network Architecture

4.2.1. Neural Network Architecture

This section provides information on the Convolution Neural Network configuration of the Face Identification design.

Table 4.1. Face Identification Training Network Topology

Image Input (112 × 112 × 1)

Fire 1 DWConv3 – 40 Conv3 - # where:

• Conv3 = 3 × 3 Convolution filter Kernel size

• # = The number of filter

DWConv3 – 32- # where:

• DWConv3 = Depth wise convolution filter with 3 × 3 size

• # = The number of filter

Conv1 – 32- # where:

• Conv1 = 1 × 1 Convolution filter Kernel size

• # = The number of filter

For example, Conv3 – 16 = 16 3 × 3 convolution filters

BN – Batch Normalization

BN

ReLU

Maxpool

Conv1 – 40

BN

ReLU

Fire 2 DWConv3 – 40

BN

ReLU

Conv1 – 40

BN

ReLU

Fire 3 DWConv3 – 60

BN

ReLU

Maxpool

Conv1 – 60

BN

ReLU

Fire 4 DWConv3 – 60

BN

ReLU

Conv1 – 60

BN

ReLU

Fire 5 DWConv3 – 80

BN

ReLU

Maxpool

Conv1 – 80

BN

ReLU

Fire 6 DWConv3 – 80

BN

ReLU

Conv1 – 80

BN

ReLU

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02244-1.1

Image Input (112 × 112 × 1)

Fire 7 DWConv3 – 100

BN

ReLU

Maxpool

Conv1 – 100

BN

ReLU

Fire 8 DWConv3 – 40

BN

ReLU

Conv1 – 40

BN

ReLU

Dropout Dropout – 0.3

E_Dense Dense – 128

• In Table 4.1, the layer contains convolution (Conv), batch normalization (BN), ReLU, and pooling layers.

• Layer information

• Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels) which convolves with input layer/image and generates activation map (that is
feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each of these
filters can be thought of as feature identifiers, like straight edges, simple colors, curves, and other high-level
features. For example, the filters on the first layer convolve around the input image and “activate” (or compute
high values) when the specific feature (say curve) it is looking for is in the input volume.

• ReLU (Activation layer)

It is the convention to apply a nonlinear layer (or activation layer) immediately after each conv layer. The
purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear
operations during the conv layers (element wise multiplications and summations).In the past, nonlinear
functions like tanh and sigmoid were used, but researchers found out that ReLU layers work far better because
the network is able to train a lot faster (because of the computational efficiency) without making a significant
difference in accuracy. The ReLU layer applies the function f(x) = max (0, x) to all of the values in the input
volume. In basic terms, this layer just changes all the negative activations to 0.This layer increases the
nonlinear properties of the model and the overall network without affecting the receptive fields of the conv
layer.

• Pooling Layer

After some ReLU layers, you may choose to apply a pooling layer. It is also referred to as a down sampling layer.
In this category, there are also several layer options, with Maxpooling being the most popular. This basically
takes a filter (normally of size 2 × 2) and a stride of the same length. It then applies it to the input volume and
outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once we know that a specific feature is in the original input
volume (there is a high activation value), its exact location is not as important as its relative location to the
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost.

The second is that it controls over fitting. This term refers to when a model is so tuned to the training examples
that it is not able to generalize well for the validation and test sets. A symptom of over fitting is having a model
that gets 100% or 99% on the training set, but only 50% on the test data.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 21

• Batch Normalization Layer

Batch normalization layer reduces the internal covariance shift. To train a neural network, some preprocessing
to the input data are performed. For example, you could normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). This prevents the early saturation of non-linear
activation functions such as sigmoid, assures that all input data is in the same range of values, and others.

An issue, however, appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt them to
a new distribution in every training step. This is known as internal covariate shift.

Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following the process below during training:

a. Calculate the mean and variance of the layers input.

b. Normalize the layer inputs using the previously calculated batch statistics.

c. Scales and shifts in order to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be care-
free about weight initialization, works as regularization in place of dropout and other regularization
techniques.

• Drop-out layer

Dropout layers have a very specific function in neural networks. After training, the weights of the network are
so tuned to the training examples they are given that the network do not perform well when given new
examples. The idea of dropout is simplistic in nature. This layer drops out a random set of activations in that
layer by setting them to zero. It forces the network to be redundant. That means the network should be able to
provide the right classification or output for a specific example even if some of the activations are dropped
out. It makes sure that the network isn’t getting too fitted to the training data and thus helps alleviate the over
fitting problem. An important note is that this layer is only used during training, and not during test time.

• Fully connected layer

This layer basically takes an input volume (whatever the output is of the conv or ReLU or pool layer preceding
it) and outputs an N dimensional vector where N is the number of classes that the program must choose from.

• Quantization

Quantization is a method to bring the neural network to a reasonable size, while also achieving high
performance accuracy. This is especially important for on-device applications, where the memory size and
number of computations are necessarily limited. Quantization for deep learning is the process of
approximating a neural network that uses floating-point numbers by a neural network of low bit width
numbers. This dramatically reduces both the memory requirement and computational cost of using neural
networks.

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of the
network and control over fitting.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02244-1.1

4.2.2. Face Identification Network Output

The Face Identification model gives an output of 128 embeddings.

4.2.3. Training Code Overview

Model Building

Placeholders

Loss
Functions

CNN
Architecture

Data Preparation

Start Data Fetch
Threads

Train Model

Exit

Start

Figure 4.2. Training Code Flow Diagram

Training code can be divided into below parts:

• Model Configuration

• Model Building

• Data Preparation

• Training for overall execution flow

The details of each part can be found in the subsequent sections.

4.2.3.1. Model Configuration

The following is a summary of the configurable parameters in the config/create_config.py file:

• Dataset Configuration

Figure 4.3. Code Snippet – Input Dataset Path Configuration

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 23

• Model Properties

Figure 4.4. Code Snippet – Model Name and Log Directory

• Image Size

• Change cfg.IMAGE_WIDTH and cfg.IMAGE_HEIGHT to configure Image size (width and height) if required.

Figure 4.5. Code Snippet – Input Image Size Configuration

• Model Configuration

Figure 4.6. Code Snippet – Model Features and Depth Configuration

Figure 4.7. Code Snippet – Training Parameters

• You can configure the number of layers by adding and removing the number of depth in FILTER_DEPTHS.

• FEATURES denote how many values you need at embedding the layer.

• If you set S_CROP to true, images are zoomed in and used for training.

• REDUCELRONPLATEAU configures auto-reducing learning rate if loss is not reducing at some point.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02244-1.1

4.2.3.2. Model Building

SqueezeDet class constructor builds model, which is divided into the following sections:

Forward Graph

• The CNN architecture consists of Convolution, Batch Normalization, ReLU, and Maxpool layers.

• Forward graph consists of eight fire layers as described in Table 4.1.

• You can set the pooling structure in models/model.py as per the depth you selected.

Figure 4.8. Code Snippet – Pooling Structure

• You can mark the layer index True if you want pooling in that index.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 25

Figure 4.9. Code Snippet – Forward Graph Fire Layer

• Figure 4.10 shows the generated model using the model configuration you provided in the config file.

Figure 4.10. Code Snippet – Forward Graph Output Layer

• The output layer has dropout, followed by the dense layer with the number of features you set in the config file.
Note that the Dense layer is normalized by L2 normalization while training and it will be removed while freezing.

• The L2 Normalization calculates the distance of the vector coordinate from the origin of the vector space. The
result is positive distance value.

Loss Graph and Optimizer

Figure 4.11. Code Snippet – Forward Graph Triplet Loss

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02244-1.1

• The Tensorflow’s TrippletSemiHardLoss is used as loss to normalize embeddings.

• This block is responsible for training the model with the Adam optimizer to reduce all losses.

4.2.3.3. Training

Figure 4.12. Code Snippet: Training

The Fit-generator feeds the data and labels batches to the Keras network and optimizes the weights and biases.

4.3. Training from Scratch and/or Transfer Learning
To train the machine:

1. Go to the top/root directory of the Lattice training code from command prompt.

The Model works on 112 × 112 images.

Current Face ID training code uses mean = 0 and scale = 1/128 (0.0078125) in pre-processing step with grayscale
images. Mean and scale can be changed in training code @src/dataset/imdb.py as shown in Figure 4.13.

Figure 4.13. Training Code Snippet for Mean and Scale

The triplet data generator trains 10k identities on one epoch at a time and it shuffles the ids on each epoch end to
train with next 10k random identities.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 27

Figure 4.14. Training Code Snippet for Identity Shuffling on Epoch End

The data generator performs on the Fly augmentation using the Albumentation library. You are basically performing
contrast, brightness, and rotation (+-15’) for augmentations.

Figure 4.15. Training Code Snippet for On the Fly Augmentation

2. Execute the train.py file to start training.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02244-1.1

Figure 4.16. Execute Run Script

3. Start TensorBoard.
$ tensorboard –logdir=<log directory of training>

For example: tensorboard –logdir=’./logs/’.

4. Open the local host port on your web browser.

Figure 4.17. TensorBoard – Generated Link

5. Check the training status on TensorBoard.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 29

Figure 4.18. TensorBoard

Figure 4.19 shows the image menu of TensorBoard.

Figure 4.19. Model Graph on TensorBoard

6. Checkpoints are saved at the end of each epoch. At the end of training, code also saves the frozen graph with
original graph as shown in Figure 4.20.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02244-1.1

Figure 4.20. Example of Checkpoint Data Files at Log Folder

7. If you start training with the existing log file, the training resumes from the latest checkpoint. Alternatively, you can
specify the pretrained model in the config file. The model restores the weights from the pretrained model.

Note that while using the pretrained model for transfer learning, the learning-rate should be set low.

Figure 4.21. Set Pretrained Model Path to init Variable for Transfer Learning

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 31

5. Evaluating the Model
This section describes the procedure on how to calculate the model performance in terms of correct detection
percentage.

5.1. Running Inference on Test Set
The Face Identification code contains the testing.py script under root directory. It takes the input model and uses the
configuration created for training to run the testing on the test set.

$ python testing –model <Model Path>

Figure 5.1. Run Testing

The testing results also suggest optimal threshold for deployment.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02244-1.1

6. Creating Binary File with Lattice sensAI
This chapter describes how to generate the binary file using the Lattice sensAI version 4.1 program.

Figure 6.1. sensAI – Home Screen

To create the project in the sensAI tool:

1. Click File > New.

2. Enter the following settings:

• Project Name

• Framework – Keras

• Class – CNN

• Device – CrossLink-NX

3. Click Network File and select the network (h5) file.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 33

Figure 6.2. sensAI – Framework, Device, and Network File Selection

4. Click Image/Video/Audio Data and select the image input file.

Figure 6.3. sensAI – Image Data File Selection

5. Click Next.

6. Configure your project settings as shown in Figure 6.4.

• Mean Value for Data Pre-Processing – 0

• Scratch Pad Memory Block Size – 8192

• On-Chip Memory Block Size – 131072

• Scale Value for Data Pre-Processing – 0.0078125

• Data Selection Base Address – 4194304

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02244-1.1

Figure 6.4. sensAI – Update Project Settings

7. Click OK to create the project.

8. Double-click Analyze.

Figure 6.5. Analyze Project

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 35

9. Confirm the Q format of each layer as shown in Figure 6.6.

Figure 6.6. Q Format Settings for Each Layer

10. Double-click Compile to generate the firmware and filter binary file.

Figure 6.7. Compile Project

The Firmware bin file location is displayed in the compilation log. Use the generated firmware bin on hardware for
testing.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02244-1.1

7. Hardware Implementation

7.1. Top Level Information

7.1.1. Block Diagram

HyperRAM

External

Camera

HyperBus

CrossLink-NX Voice and Vision Board (Rev B)

AXI Slave CNN Accelerator

spi_loader_spram

crop_downscale_front_112×112csi2_to_parallel

External

SPI Flash

AXI Bus

axi2_hyperbus

osd_back_112×112_face_id

External Display

ml_out_proc

Video Path

1 2 3 4

1 × 4 External Keypad

1: Register Face ID

2: Guidelines On/Off

3: Clear Registration

4: Unused

ml_out_proc

Figure 7.1. RTL Top Level Block Diagram

7.1.2. Push Buttons for Face ID Demo

Figure 7.2 shows the CrossLink-NX VVML board (Rev B). As shown in Figure 7.2, the SW2 push button is used for
Registration and SW3 is used for clearing previously registered data. Refer to Push Button Control section for more
information.

Figure 7.2. Push Buttons on CrossLink-NX VVML Board for Face ID Demo

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 37

7.1.3. Operational Flow

• The CNN module is configured with the help of a binary (mcs) sequence command code file, which is generated by
the Lattice Machine Learning software tool.

• The command code is written to spi_loader_spram, which further stores it in HyperRAM through AXI before the
execution of CNN Accelerator IP Core starts.

• The external camera configured using i2c_single logic block captures the raw image and shares it to the
csi2_to_parallel module. This module separates the R, G, and B pixels from the raw data.

• The RGB data from the csi2_to_parallel module is downscaled to 112 × 112 image resolution by the
crop_downscale_front_112x112 module to match CNN’s input resolution. This data is written into HyperRAM
memory through axi2_hyperbus through the axi_ws2m AXI interface module.

• After the command code and input data are available to CNN Accelerator from HyperRAM, the IP Core starts
inference at the rising edge of ML start signal.

• The push button control logic is managed by the crop_downscale_front_112x112 module. The registered Face IDs
are stored by the ml_out_proc module.

• The output data of CNN is passed to ml_out_proc for post processing. ml_out_proc now compares the CNN results
with initially stored face identifications and passes valid detected Face ID/index and distance to external display
module osd_back_112x112_face_id through the crop downscale module. The output display can be observed in
the video player AMCap software.

7.1.4. Core Customization

Table 7.1. Core Parameter

Constant
Default

(Decimal)
Description

NUM_FEAT 128 Number of features available in CNN output

FRAC_POS 10 Fraction Part Width in Q-Format representation

DIST_THRESH 45 Indicates Distance Threshold value for Face ID detection output

EN_INF_TIME 0

Enable Timing measurement logic

By default, it is zero and the memory file used is face_id_dissplay.mem.

If assigned 1, timing measurement is enabled and the memory file used is
face_id_display_INF.mem.

In order to configure the respective memory file, follow the below steps

1. Open dpram8192x8.ipx from the File List in Radiant.

2. Click Browse Memory File from the Initialization section.

3. Update mem file path:

• For 0 – /src/jedi_common/face_id_display.mem

• For 1 – /src/jedi_common/face_id_display_INF.mem

INF_MULT_FAC 19883

Inference time multiplying factor calculated as per CNN clock frequency and
using Q-Format (Q1.31).

CNN Clock Frequency = 108 MHz

Hence, CNN clock period

= 1/(108 × 10-6) µs

= 0.000009259 ms

Now, Q1.31 = 0.000009259 × 231 = ~19883

FLASH_START_ADDR 24’h300000

SPI Flash Read Start Address (keep the same address in Programmer while
loading the firmware file)

For example, for the current start address, programmer address should be:
0x00300000.

FLASH_END_ADDR 24’h700000

SPI Flash Read End Address (keep the same address in Programmer while
loading the firmware file). The address must be in multiple of 512 bytes.

For example, for the current end address, programmer address should be:
0x00700000.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02244-1.1

Constant
Default

(Decimal)
Description

Constant Parameters (Not to be modified)

PIC_WIDTH 112 Picture Pixel Width (CNN Input)

PIC_HEIGHT 112 Picture Pixel Height (CNN Input)

HYPERRAM_BASEADDR 32’h400000
Indicates HyperRAM starting Base address location value. This should match in
the sensAI compiler while generating the firmware.

7.2. Architecture Details

7.2.1. SPI Flash Operation

The RTL module spi_loader_spram provides SPI Flash read operation and writes that data into HyperRAM through the
AXI interface. It reads from SPI Flash as soon as the board gets powered up, the .bit and .bin files are loaded in the
expected addresses.

• Expected Address for .bit file (Programmer) – 0x0000000 - 0x00110000

• Expected Address for Firmware file (Programmer) – FLASH_START_ADDR to FLASH_END_ADDR

Typical sequence of SPI Read commands for SPI Flash MX25L12833F is implemented using FSM in RTL as per below flow
of operation.

• After FPGA Reset, RELEASE FROM DEEP POWER DOWN command (0xAB) is passed to SPI Flash memory. RTL then
waits for 500 clock cycle for SPI flash to come into Stand By mode, if it is in Deep Power Down mode.

• RTL sends FAST READ command code (0x0B) on SPI MOSI signal for indication of Read Operation to SPI Flash.

• RTL sends three Bytes of Address on SPI MOSI channel which determines the location in SPI flash from the position
the data needs to be read.

• This SPI Flash has eight Dummy cycles as wait duration before read data appears on MISO channel. After waiting
for eight dummy cycles, the RTL code starts reading data.

• This read sequence is shown in Figure 7.3. The SPI Interface Signal Mapping with RTL signals are as follows

• CS (Chip Select) => SPI_CSS

• SCLK (Clock) => SPI_CLK

• SI (Slave In) => SPI_MOSI

• SI (Slave Out) => SPI_MISO

• The Read Data on MISO signal is stored in a FIFO in RTL, which then reads the data in multiple of 512 bytes. After
512 bytes chip select is deasserted, the AXI FSM state is activated.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 39

CS#

SCLK

SI

SO

CS#

SCLK

SI

SO

Mode 3 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31

Mode 0
Command 24-Bit Address

0Bh 23 22 21 3 2 1 0

High-Z

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Configurable
Dummy Cycle

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7

MSB MSB MSB

DATA OUT 1 DATA OUT 2

Figure 7.3. SPI Read Command Sequence

• AXI logic reads the data from FIFO in bursts of four on the AXI write channel, with each burst having 128 bytes.

• In accessing the HyperRAM, the axi_ws2m module is used as a Muxing module among the multiple input slave AXI
interfaces as shown in Figure 7.6. The spi_loader_spram module is considered as SLAVE 0 and given priority to
write into HyperRAM. The MASTER Interface connects to the axi2_hyperbus module, which provides output
interface for accessing HyperRAM.

• After writing to HyperRAM is complete, the 512 bytes are fetched from the SPI Flash using the same command
sequence as explained above until the FLASH_END_ADDR is reached.

7.2.2. Pre-processing CNN

The pre-processing operations are mainly handled by the crop_downscale_front_112x112 module as mentioned below:

• This module mainly crops the incoming image to 224 × 224 image data and further generates downscaled input of
112 × 112 image data for the CNN IP input.

• Manages the control logic for SW2 and SW3 push buttons.

• Provides content for the output screen display to the osc_back_112x112_face_id module

• Calculates the inference time of theCNN IP

The output screen display and inference time management are explained in the Output Screen Display section.

7.2.2.1. Masking and Downscaling flow

• Image data values for each pixel are fed serially line by line for an image frame from csi2_to_parallel block.

• These values are considered as valid only when horizontal and vertical masks are inactive. Mask parameters set to
mask out boundary area of VGA resolution 640x480 to 224x224 are shown below.

• Left masking start = 208

• Right masking end = 432 (Obtained as 208+224)

• Top masking start = 128

• Bottom masking end = 352 (Obtained as 128+224)

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02244-1.1

• Figure 7.4 shows the image obtained after masking.

640

480
224

224

Figure 7.4. Masking

• This 224 × 224 frame image is downscaled into a 112 × 112 resolution image as shown in the Figure 7.5 by
accumulating 2 × 2 pixels into single pixel. For example, 224/2 × 224/2 = 112 × 112.

224

224

Accumulating 2 × 2 Pixels in One Pixel

Figure 7.5. Downscaling

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 41

• The accumulated value is written in the Frame Buffer, which is a True Dual-Port RAM. The accumulated pixel
values for the 2 × 2 grids are stored in the same memory location. When data is read from memory, each RGB
value is divided by four (that is, the area of the 2 × 2 grid) to take the average of the 2 × 2 grid matrix.

The data from memory is read and stored in HyperRAM for CNN input through axi2_hyperbus, through the axi_w2sm
module which acts as an AXI interface to write data from slave (crop_downscale_front_112x112) to the master
HyperRAM. This process is described in the HyperRAM Operations section.

7.2.2.2. Push Button Control

The information of the SW2 and SW3 push buttons connected on CrossLink-NX VVML board is passed into this module.
Based on the button pressed, this module defines the following operational modes:

Table 7.2. Push Button Modes

Push
Buttons

Mode Description

SW2 REG Indicates Registration mode.

SW3 CLEAR Indicates Clear mode.

• The registration mode is used to register the user faces for identification purposes. A maximum eight user faces
can be registered.

• The check mode is used by the demo to check/identity the new face by comparing with the previously registered
face, by default, when no button is pressed.

• The green guide lines are always enabled in display. They mainly indicate the active area inside the 224 × 224
frame, where in you have to keep the face close to the camera for registration.

• The clear mode is used to clear all registrations and previous output results. Upon pressing the SW3 push button,
the values displayed in Output also gets cleared and you can now initiate new registration process again.

This module manages the logic to Calculate Inference time of CNN IP as per parameter EN_INF_TIME passed from
design top. It also collects the outputs from the post-processing module, inference time values, and shares the same
with the output screen display block for display in the AMCap video software.

7.2.3. HyperRAM Operations

The CrossLink-NX VVML board uses external HyperRAM for faster data transfer mechanism among the internal blocks
and enhances the system performance. The crop_downscale_front_112x112 module uses HyperRAM to store the
downscaled image data.

• The 640 × 480 image is distributed into 224 horizontal and 224 vertical lines, and each block consists of 2 × 2 pixels
as shown in Figure 7.5. Thus, there are total 112 × 112 pixel values for the downscaled image.

• Primarily, the crop_downscale_front_112x112 module stores 112 values into a local FIFO for all 112 horizontal
blocks. Later, this stored data is written to HyperRAM through the AXI write data channel.

• When final data is written out, 112 × 112 pixels are initially stored into HyperRAM starting from the base address
0x400000.

• The 112 × 112 pixel values stored in HyperRAM are serially obtained by the CNN engine after getting command
sequence through the AXI interface.

• In order for the crop_downscale_front_112x112 module to access HyperRAM for operations explained above, the
axi_ws2m module functions as a Muxing module for multiple input slave AXI interfaces as shown in Figure 7.6.

• For the internal blocks to access HyperRAM, the axi_ws2m module considers the spi_loader_spram module as
SLAVE 0, the cnn_opt module as SLAVE 1, crop_downscale_front_112x112 module as SLAVE2, and the MASTER
connects these slaves to the axi2_hyperbus module.

• The priority to select write channel is given, respectively, to the SPI loader slave, CNN slave, and crop-downscale
slave. Whenever valid address is available from the respective Slave on its write address channel, that slave is
given access of master channel if other priority slaves are not accessing it. Thus, when valid write address is
obtained from the crop_downscale_front_112x112 module, access is given to Slave 2 to use HyperRAM.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

42 FPGA-RD-02244-1.1

spi_loader

cnn_opt

crop
downscale

AXI Interface

axi_w2sm

Slave 0

Slave 1

Slave 2

Master

External
HyperRAM

hyperbus
I/O

axi2_
hyperbus

AXI wr channel

AXI wr channel

AXI wr channel

AXI wr channel

Figure 7.6. HyperRAM Access Block Diagram

7.2.4. Post-Processing CNN

The primary functionality of this block (ml_out_proc) is to capture the CNN valid output, detect, or register face
identification information and pass valid face index and distance back to the crop_downscale_front_112x112 module
for display.

Table 7.3. Post-Processing Parameters

Constant
Default

(Decimal)
Description

NUM_FEAT 128 Number of Features (values) provided by CNN for each processed frame

FRAC_POS 10 Fraction Part Width as per Q-Format 5.10 representation of last output layer

DIST_THRESH 45
Upper Threshold for Mean Squared Difference (distance) value calculated for
Face Features

CNN provides 128 values (16-bit each) representing the Face Features for each frame processed. These values are
processed according to the mode selected (REG/CHECK/CLEAR), as explained in further sections.

7.2.4.1. REG MODE

• This mode is used to register/store the values of face measurements provided by CNN into memory.

• The stored feature values are used as a reference while CHECK Mode is on.

• This module can store up to eight face identification measurements. Each Face Identification measurement uses
separate 8k RAM.

7.2.4.2. CHECK MODE

• This mode is used to detect the valid face identification matching with current face from the stored face
identifications in REG MODE.

• It compares the stored face identification (0-7) feature values with the current CNN output feature values and
performs mean square difference to estimate the average distance from actual values for each feature.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 43

• Final accumulated mean square difference value for each Face Identification is compared with each other and the
index with least difference value is selected.

• If the difference value is less than DIST_THRESH, the selected face index is valid and is having minimum distance
from current face.

• The matched face index and all distance values are passed to crop downscale module for display. If no face
identification matches (all calculated distance values > DIST_THRESH OR no face identification is registered by REG
MODE), then the output face index is passed with invalid value (0xF), displayed as “?”.

7.2.4.3. CLEAR MODE

When this mode is activated, all registered face index and distance information are cleared. You can now register new
faces using the REG mode.

7.2.5. Output Screen Display
• osd_back_112x112_face_id is responsible to manage output display. It has the lsc_osd_text module which

provides the bitmap (from rom_8x8font) of each ASCII character to be displayed with specified position on screen.
For the text display of result values, it receives inputs as number of registered Face IDs, valid Face ID detected,
distance of each entry, and inference time values (as per enabled/disabled) from the crop downscale module. The
texts obtained on the left side in display are pre-stored in the form of their respective ASCII Character values in the
(face_id_display.mem/face_id_display_INF.mem) files which are loaded in dpram8192x8 before exporting the bit
files.

• This sets an output signal (text_on) when text is displayed. When text_on is set, the value for that pixel location is
assigned FFF value (white color) and sent to the AMCap video display software through the FX3 USB Wrapper
module.

7.2.5.1. USB Wrapper

• The Wrapper_USB3 module is used for to transmit 16-bit data to the output 16-bit interface every clock cycle.

• This module takes the input data in YCbCr 24-bit format and gives output as 16-bit YCb and YCr format. This
module does not change or regenerate input timing parameters.

7.2.5.2. Inference Time Calculation

The time taken by a trained neural network model to infer/predict outputs after obtaining input data is called inference
time. The process of this calculation is managed by the crop downscale module explained as follows.

• The inference time is calculated by implementing a counter to store the count of CNN engine cycles per frame.

• When the i_rd_rdy signal (that is o_rd_rdy coming from CNN engine) is high, the CNN engine indicates that it is
ready to get input; and when it is low, the engine indicates that it is busy.

• When the i_rd_rdy signal is low, the CNN counter begins and stops when the i_rd_rdy signal goes high again
indicating that previous execution is over and the CNN is ready for new input.

• As shown in Figure 7.7, when rdy_h2l (ready high-to-low) pulse is asserted, the CNN Up-counter starts from 1 and
the count value increases until i_rd_rdy is not high again. The count value is stored in count.

• Similarly, when rdy_l2h (ready low-to-high) pulse is asserted, the Up-counter stops and the final CNN count value is
obtained cnn_count.

Figure 7.7. CNN Counter Design

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

44 FPGA-RD-02244-1.1

The methodology used to obtain stable inference time is to calculate inference time per frame and obtain the average
inference time value after 16 CNN frames are over as discussed below.

• After completion of every frame, the new count value cnn_count obtained, as explained above, is added to the
previous value and stored in cnn_adder.

• A frame counter monitors the frame count. After 16 frames, when the frame count is done, the cnn_adder value is
reset as shown in Figure 7.8.

Figure 7.8. Frame Counter Design for 16 CNN Frames Average

• To get the average inference time value avg_inf_time_hex after frame count is done, the final cnn_adder value is
divided by 16 as shown in Figure 7.9.

Figure 7.9. Average Inference Time Calculation

• Using the Lattice Multiplier library module, the average inference time value is multiplied by INF_MULT_FAC. A
parameter indicating inference multiplying factor explained in Table 7.1.

• The inference time in millisecond inf_time_ms is obtained by dividing the output obtained from this multiplier by
2^31 as per the Q-Format, shown in Figure 7.10.

• All the above obtained values namely the CNN count, the average inference time, and the inference time in
millisecond are passed on to the lsc_osd_text module for getting bitmap to the display characters.

Figure 7.10. Inference Time in Millisecond

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 45

7.2.5.3. Inference Time Display Management

The Inference Time Display Management module mainly consists of a DPRAM, which holds the characters at
pre-defined address positions indicated by text_addr and an 8 × 8 font ROM which provides the bitmap of these
characters for PC display.

This module basically functions by using two entities. One is the position of the character where it has to be displayed,
and the other is by reading the ASCII value of the character to be displayed.

For this purpose, once the CNN count, individual frame inference time and the inference time in millisecond values are
obtained, they are converted from hex into ASCII values as shown in Table 7.4.

The average inference time input value i_avg_inf_time_hex is converted from hex to ASCII values as shown below. To
display eight characters of this value on PC, this input is stored in the respective r_avginfhex_ch. The characters
obtained by adding 7’h30 and 7’h37 are shown in Figure 7.11.

Figure 7.11. Average Inference Time Value to ASCII Conversion

Table 7.4. Signal Values to ASCII Conversion

Characters for Display Value to be Added To Signal ASCII Hex Value ASCII Decimal Value

1 7’h30 31 49

2 7’h30 32 50

3 7’h30 33 51

4 7’h30 34 52

5 7’h30 35 53

6 7’h30 36 54

7 7’h30 37 55

A 7’h37 41 65

B 7’h37 42 66

C 7’h37 43 67

D 7’h37 44 68

E 7’h37 45 69

F 7’h37 46 70

To display eight characters of individual frame inference time, the input signal i_inf_time_hex is converted from hex to
ASCII and stored in respective r_infhex_ch signal as shown in Figure 7.12.

In the same way, to display four characters of inference time in ms, the input signal i_inf_ms is converted from hex to
ASCII and stored in the respective r_inf_ms signal as shown in Figure 7.13.

Figure 7.12. CNN Count Values to ASCII Conversion

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02244-1.1

Figure 7.13. Inference Time in Millisecond Values to ASCII Conversion

The positions where these values have to be displayed are given using the text_addr signal as shown in Figure 7.14. The
use of these locations is shown in Figure 7.14. A memory initialization file face_id_display_INF.mem is used by the Lattice
Radiant tool to store characters at address locations for display.

Figure 7.14. Text Address Positions to Display Input Values

The address location structure for displaying average inference time (of 16 CNN frames) and inference time in millisecond
values along with their strings are stored in face_id_display_INF.mem is shown in Figure 7.15.

Figure 7.15. Address Locations to Display Individual Frame Time and Inference Time with String in PC

To display the input values in address locations shown in Figure 7.15, the ASCII values obtained as shown in Table 7.4
are sent to the 8 × 8 font ROM with the help of the font_char signal to obtain the bitmap for display.

Similarly, like the inference time display, other text characters for the Face ID display like SW2 and SW3 push buttons
information, entries, and others are all present in both .mem files in the form of ASCII characters at the dedicated
address locations.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 47

Figure 7.16. Bitmap Extraction from Font ROM

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

48 FPGA-RD-02244-1.1

8. Creating FPGA Bitstream File
This section describes the steps to compile RTL bitstream using the Lattice Radiant tool.

8.1. Bitstream Generation Using Lattice Radiant Software
To create the FPGA bitstream file:

1. Open the Lattice Radiant software (v3.0.0.24.1). Default screen in shown in Figure 8.1.

Figure 8.1. Radiant – Default Screen

2. Go to File > Open > Project.

3. Open the Radiant project file (.rdf) for CrossLink-NX Voice and Vision Face ID Demo RTL. As shown in Figure 8.2, you
can also open project by triggering the yellow folder shown in the user interface.

Figure 8.2. Radiant – Open CrossLink-NX Voice and Vision Project File (.rdf)

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 49

4. After opening the project file, check the following points in Figure 8.3.

• Design loaded with zero errors message shown in the Output window below.

• Check for this information in project summary window.

• Part Number – LIFCL-40-7MG289I

• Family – LIFCL

• Device – LIFCL-40

• Package – CSBGA289

Figure 8.3. Radiant – Design Load Check After Opening the Project File

5. If the design is loaded without errors, click the Run button to trigger bitstream generation as shown below in
Figure 8.4.

Figure 8.4. Radiant – Trigger Bitstream Generation

6. The Lattice Radiant tool displays Saving bitstream in … message in the Reports window, as shown in Figure 8.5. The
bitstream is generated at Implementation Location, as shown in Figure 8.5.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

50 FPGA-RD-02244-1.1

Figure 8.5. Radiant – Bit File Generation Report Window

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 51

9. Programming the Demo

This document contains information to run the Face ID demo on the CrossLink-NX-VVML board.

9.1. Package Folder Structure
Figure 9.1 shows the demo folders and files after unzipping the package.

Figure 9.1. Demo Package Folder Structure

9.2. Load Firmware in FX3 I2C EEPROM
To load the firmware:

1. Connect the USB3 port of the CrossLink-NX VVML Board (Rev B) to the PC using the USB3 cable.

2. Connect the Jumper J13 on the board.

3. Open the USB Control Centre application. The Cypress FX3 SDK should be installed.

4. Press the SW2 button to reset the FX3 chip. Figure 9.2 shows the boot loader device screen.

Figure 9.2. Selecting FX3 I2C EEPROM in USB Control Centre

5. Select Cypress USB Bootloader.

6. Click Program > FX3 > I2C E2PROM.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

52 FPGA-RD-02244-1.1

7. Locate and select the FX3 image file for the 640 × 480p 60 Hz 16 bit configuration.

8. The Firmware is programmed in the I2C E2PROM.

9. After the operation is completed, a message acknowledging successful programming is shown at the bottom
taskbar.

10. Remove jumper J13.

11. Power OFF and then power ON the board.

12. The FX3 boots from I2C E2PROM.

9.3. Programming the CrossLink-NX Voice and Vision SPI Flash

9.3.1. Erasing the CrossLink-NX Voice and Vision SRAM Prior to Reprogramming

If the CrossLink-NX device is already programmed (either directly, or loaded from SPI Flash), follow this procedure first
to erase the CrossLink-NX SRAM memory before re-programming the SPI Flash. If you are doing this, keep the board
powered when reprogramming the SPI Flash (so it does not reload on reboot).

To erase the CrossLink-NX device:

1. Launch Lattice Radiant Programmer. In the Getting Started dialog box, select Create a new blank project.

Figure 9.3. Lattice Radiant Programmer Default Screen

2. Click OK.

3. In the Lattice Radiant Programmer main interface, select LIFCL for Device Family, as shown in Figure 9.4. Select
LIFCL for Device Vendor and LIFCL-40 for Device.

Figure 9.4. Lattice Radiant Programmer- Device Selection

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 53

4. Right-click and select Device Properties.

5. Select JTAG for Port Interface, Direct Programming for Access Mode, and Erase Only for Operation, as shown in
Figure 9.5.

Figure 9.5. Lattice Radiant Programmer – Device Operation

6. Click OK to close the Device Properties dialog box.

7. Press and hold SW5 until you see the Successful message in the Lattice Radiant log window.

8. In the Radiant Programmer main interface, click the Program button to start the erase operation.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54 FPGA-RD-02244-1.1

9.3.2. Programming the CrossLink-NX VVML Board

To program the CrossLink-NX Voice and Vision SPI Flash:

1. Ensure that the CrossLink-NX Voice and Vision device SRAM is erased by performing the steps in the Erasing the
CrossLink-NX Voice and Vision SRAM Prior to Reprogramming section.

2. In the Lattice Radiant Programmer main interface, right-click the CrossLink-NX Voice and Vision row and select
Device Properties.

3. In the Device Properties dialog box, apply the settings shown in Figure 9.6.

Figure 9.6. Lattice Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing

Notes:

• In Programming file, browse and select the CrossLink-NX Voice and Vision bit file (*.bit).

• Click Load from File to update the Data file size (bytes) value.

• Ensure that the following addresses are correct:

• Start Address (Hex) – 0x00000000

• End Address (Hex) – 0x00110000

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 55

4. Click OK.

5. Press and hold SW5 until you see the Successful message in the Lattice Radiant log window.

6. Click the Program button to start the programming operation.

7. After successful programming, the Output console displays the result, as shown in Figure 9.7.

Figure 9.7. Lattice Radiant Programmer – Output Console

9.3.3. Programming sensAI Firmware Binary to the CrossLink-NX SPI Flash

To program the CrossLink-NX SPI flash:

1. Ensure that the CrossLink-NX device SRAM is erased by performing the steps in the Erasing the CrossLink-NX Voice
and Vision SRAM Prior to Reprogramming section before flashing bitstream and sensAI firmware binary.

2. In the Lattice Radiant Programmer main interface, right-click the CrossLink-NX row and select Device Properties.

3. In the Device Properties dialog box, apply the settings as shown in Figure 9.8.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

56 FPGA-RD-02244-1.1

Figure 9.8. Lattice Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing

Notes:

• In Programming file, browse and select the CrossLink-NX sensAI firmware binary file after converting it to hex
(*.mcs).

• Click Load from File to update the Data file size (bytes) value.

• Ensure that the following addresses are correct:

• Start Address (Hex) – 0x00700000

• End Address (Hex) – 0x00700000

4. Click OK.

5. Press and hold SW5 until you see the Successful message in the Lattice Radiant log window.

6. Click the Program button to start the programming operation.

7. After successful programming, the Output console displays the result, as shown in Figure 9.9.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 57

Figure 9.9. Lattice Radiant Programmer – Output Console

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

58 FPGA-RD-02244-1.1

10. Running the Demo

To run the demo:

1. Power on the VVML board.

2. Make sure that the position of DIP SWITCH0 is ON to set FX3 to boot from I2C EEPROM.

3. Flash the .bit and .mcs files.

4. Connect the VVML board to the PC through the USB3 port.

5. Open the AMCap video display application and select the FX3 Device as source from under Devices.

6. The camera image is displayed as shown in Figure 10.1.

7. Press the SW2 push button to register the Face ID, and the registered values can be cleared using the SW3 push
button.

Figure 10.1. Demo Camera Image

If Inference time display is disabled, and .bit file is generated using face_id_display.mem. The text and values of
Inference Time Display are not displayed in the output. The output shown in Figure 10.1 is with the .bit file having
Inference time enabled using the face_id_display_INF.mem file.

10.1.Ideal Conditions for Testing the Demo

• Distance – The user's face should completely fit the guide lines.

• Lighting – Proper lighting is needed to efficiently run demo. Too low and direct light from a source may reduce the
performance quality of the demo.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 59

Appendix A. Other Labeling Tools
Table A.1 provides information on other labeling tools.

Table A.1. Other Labeling Tools

Software Platform License Reference Converts To Notes

annotate-
to-KITTI

Ubuntu/Wind
ows (Python
based utility)

No
License
(Open
source
GitHub
project)

https://github.com/SaiPrajwal95/annotate-to-
KITTI

KITTI Python
based CLI
utility. Just
clone it and
launch.
Simple and
Powerful.

LabelBox JavaScript,
HTML, CSS,
Python

Cloud or
On-
premise,
some
interfaces
are
Apache-
2.0

https://www.labelbox.com/ json, csv, coco,
voc

Web
application

LabelMe Perl,
JavaScript,
HTML, CSS, On
Web

MIT
License

http://labelme.csail.mit.edu/Release3.0/ xml Converts
only jpeg
images

Dataturks On web Apache
License
2.0

https://dataturks.com/ json Converts to
json format
but creates
single json
file for all
annotated
images

LabelImg ubuntu OSI
Approved
:: MIT
License

https://mlnotesblog.wordpress.com/2017/12/16/
how-to-install-labelimg-in-ubuntu-16-04/

xml Need to
install
dependenci
es given in
reference

Dataset_

annotator

Ubuntu 2018

George
Mason
University
Permissio
n is
hereby
granted,
Free of
charge

https://github.com/omenyayl/dataset-annotator json Need to
install
app_image
and run it by
changing
permissions

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

60 FPGA-RD-02244-1.1

References
• Google TensorFlow Object Detection GitHub

• Pretrained TensorFlow Model for Object Detection

• Python Sample Code for Custom Object Detection

• Train Model Using TensorFlow

• https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

For more information, refer to:

• CrossLink-NX Family Devices Web Page

• Lattice sensAI Solution Stack Web Page

• Lattice Radiant Software Web Page

• Lattice Insights for Training Series and Learning Plans

http://www.latticesemi.com/legal
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://pythonprogramming.net/creating-tfrecord-files-tensorflow-object-detection-api-tutorial/
https://www.tensorflow.org/tutorials/estimators/cnn
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.latticesemi.com/en/Products/FPGAandCPLD/CrossLink-NX
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/sensAI
https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
https://www.latticesemi-insights.com/

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
 Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02244-1.1 61

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

For frequently asked questions, please refer to the Lattice Answer Database at
www.latticesemi.com/Support/AnswerDatabase.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport
http://www.latticesemi.com/Support/AnswerDatabase

CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
Reference Design

© 2021-2023 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

62 FPGA-RD-02244-1.1

Revision History

Revision 1.1, October 2023

Section Change Summary

All Corrected the document number to FPGA-RD-02244.

Disclaimers Updated this section.

References
Added links to the CrossLink-NX Family Devices Web Page, Lattice sensAI Solution Stack Web
Page, Lattice Radiant Software Web Page, and Lattice Insights for Training Series and
Learning Plans.

Technical Support Assistance Added the link to Lattice Answer Database.

Revision 1.0, November 2021

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal
https://www.latticesemi.com/en/Products/FPGAandCPLD/CrossLink-NX
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/sensAI
https://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/sensAI
https://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/Radiant
https://www.latticesemi-insights.com/
https://www.latticesemi-insights.com/

www.latticesemi.com

http://www.latticesemi.com/

	CrossLink-NX QVGA MobileNet Human Identification Using VVML Board
	Contents
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting Up the Basic Environment
	2.1. Tools and Hardware Requirements
	2.1.1. Lattice Tools
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU
	2.2.1.1. Installing the CUDA Toolkit
	2.2.1.2. Installing the cuDNN

	2.2.2. Setting Up the Environment for Training and Model Freezing Scripts
	2.2.2.1. Installing the Anaconda Python

	2.2.3. Installing the TensorFlow version 2.1.0
	2.2.4. Installing the Python Package

	3. Dataset Preparation
	3.1. Dataset Information
	3.1.1. Training Set
	3.1.2. Validation set
	3.1.3. Test Set

	4. Training Code Preparation
	4.1. Training Code Structure
	4.2. Neural Network Architecture
	4.2.1. Neural Network Architecture
	4.2.2. Face Identification Network Output
	4.2.3. Training Code Overview
	4.2.3.1. Model Configuration
	4.2.3.2. Model Building
	Forward Graph
	Loss Graph and Optimizer

	4.2.3.3. Training

	4.3. Training from Scratch and/or Transfer Learning

	5. Evaluating the Model
	5.1. Running Inference on Test Set

	6. Creating Binary File with Lattice sensAI
	7. Hardware Implementation
	7.1. Top Level Information
	7.1.1. Block Diagram
	7.1.2. Push Buttons for Face ID Demo
	7.1.3. Operational Flow
	7.1.4. Core Customization

	7.2. Architecture Details
	7.2.1. SPI Flash Operation
	7.2.2. Pre-processing CNN
	7.2.2.1. Masking and Downscaling flow
	7.2.2.2. Push Button Control

	7.2.3. HyperRAM Operations
	7.2.4. Post-Processing CNN
	7.2.4.1. REG MODE
	7.2.4.2. CHECK MODE
	7.2.4.3. CLEAR MODE

	7.2.5. Output Screen Display
	7.2.5.1. USB Wrapper
	7.2.5.2. Inference Time Calculation
	7.2.5.3. Inference Time Display Management

	8. Creating FPGA Bitstream File
	8.1. Bitstream Generation Using Lattice Radiant Software

	9. Programming the Demo
	9.1. Package Folder Structure
	9.2. Load Firmware in FX3 I2C EEPROM
	9.3. Programming the CrossLink-NX Voice and Vision SPI Flash
	9.3.1. Erasing the CrossLink-NX Voice and Vision SRAM Prior to Reprogramming
	9.3.2. Programming the CrossLink-NX VVML Board
	9.3.3. Programming sensAI Firmware Binary to the CrossLink-NX SPI Flash

	10. Running the Demo
	10.1. Ideal Conditions for Testing the Demo

	Appendix A. Other Labeling Tools
	References
	Technical Support Assistance
	Revision History
	Revision 1.1, October 2023
	Revision 1.0, November 2021

