

1 to N MIPI CSI-2/DSI Duplicator with CertusPro-NX

Reference Design

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults, and all associated risk is the responsibility entirely of the Buyer. The information provided herein is for informational purposes only and may contain technical inaccuracies or omissions, and may be otherwise rendered inaccurate for many reasons, and Lattice assumes no obligation to update or otherwise correct or revise this information. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. LATTICE PRODUCTS AND SERVICES ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL SYSTEMS, HAZARDOUS ENVIRONMENTS, OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE PERFORMANCE, INCLUDING ANY APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM (COLLECTIVELY, "HIGH-RISK USES"). FURTHER, BUYER MUST TAKE PRUDENT STEPS TO PROTECT AGAINST PRODUCT AND SERVICE FAILURES, INCLUDING PROVIDING APPROPRIATE REDUNDANCIES, FAIL-SAFE FEATURES, AND/OR SHUT-DOWN MECHANISMS. LATTICE EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK USES. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Inclusive Language

This document was created consistent with Lattice Semiconductor's inclusive language policy. In some cases, the language in underlying tools and other items may not yet have been updated. Please refer to Lattice's inclusive language FAQ 6878 for a cross reference of terms. Note in some cases such as register names and state names it has been necessary to continue to utilize older terminology for compatibility.

Contents

Contents	3
Acronyms in This Document	5
1. Introduction	6
1.1. Supported Device and IP	6
1.2. Features	6
1.3. Block Diagram and Clocking Scheme	6
1.4. RX/TX Permutations	9
2. Parameters and Port List	10
2.1. Synthesis Directives	10
2.2. Simulation Directives	11
2.3. Top-Level I/O	12
3. Design and Module Description	14
3.1. rx_dphy	14
3.1.1. RX FIFO	16
3.2. mipi_parser	17
3.3. rx_buffer	18
3.4. tx_ctrl	20
3.5. tx_dphy_if	21
3.6. tx_dphy	22
3.7. Clock Distribution	25
4. Design and File Modifications	27
4.1. Top-Level RTL	27
5. Design Simulation	28
6. Known Limitations	31
7. Design Package and Project Setup	32
8. Resource Utilization	34
References	35
Technical Support Assistance	36
Revision History	37

Figures

Figure 1.1. 1 to N MIPI CSI-2/DSI Duplicator with CertusPro-NX Block Diagram	6
Figure 1.2. Clocking Scheme Example in RX Continuous Clock Mode for 2-Channel TX with External PLL Mode	7
Figure 1.3. Clocking Scheme Example in RX Non-Continuous Clock Mode for 2-Channel TX with External PLL Mode	
Figure 1.4. Bandwidth and Parameter Calculator	9
Figure 3.1. rx_dphy IP Creation in the Lattice Radiant Software	14
Figure 3.2. rx_dphy IP Creation Continued in the Lattice Radiant Software	15
Figure 3.3. Active Data Detection (CSI-2 Frame Start)	
Figure 3.4. End of Active Data Detection (CSI-2 Long Packet)	17
Figure 3.5. Short Packet Write and Read	18
Figure 3.6. rx_buffer Write/Read Example with Depth = 512, BD_RD_DLY = 400	19
Figure 3.7. rx_buffer FIFO Overflow with Depth = 512, BD_RD_DLY = 800	19
Figure 3.8. rx_buffer Successful Transactions with Depth = 1024, BD_RD_DLY = 1200	19
Figure 3.9. TX Bandwidth = 2 x RX Bandwidth with Depth = 1024, BD_RD_DLY = 1200	
Figure 3.10. Short Packet Transaction (NUM_TX_LANE_4, TX_GEAR_8)	20
Figure 3.11. End of Long Packet Transaction (NUM_RX_LANE_4, RX_GEAR_8 to NUM_TX_LANE_4, TX_GEAR_8)	20
Figure 3.12. Short Packet Transaction in Non-Continuous Clock Mode	
Figure 3.13. Global Sequence in Non-Continuous Clock Mode without KEEP_HS	22
Figure 3.14. Global Sequence in Non-Continuous Clock Mode with KEEP_HS	22
Figure 3.15. tx_dphy IP General Parameters Creation in the Lattice Radiant Software	23
Figure 3.16. tx_dphy IP Protocol Timing Parameters Creation in the Lattice Radiant Software	24
Figure 5.1. Script Modification #1	
Figure 5.2. Script Modification #2	
Figure 5.3. Functional Simulation Example of CSI-2 with Four Continuous Clock Mode TX Channels	30
Figure 7.1. Directory Structure	
Figure 7.2. Project Files in the Lattice Radiant Software	33

Tables

Table 1.1. Supported Device and IP	6
Table 1.2. Clock Resources in Case of RX Soft D-PHY with Continuous Clock Mode and Non-continuous Clock M	1ode8
Table 1.3. RX/TX Permutations	9
Table 2.1. Synthesis Directives	
Table 2.2. Simulation Directives	
Table 2.3. CSI-2/DSI Duplicator Top-Level I/O	
Table 8.1. Resource Utilization for the Reference Design	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
AP	Application Processor
CRC	Cyclic Redundancy Check
CSI-2	Camera Serial Interface 2
DDR	Double Data Rate
DSI	Display Serial Interface
EBR	Embedded Block RAM
ECC	Error Correction Code
FS	Frame Start
HS	High Speed
ID	Identification Data
LP	Low Power
MIPI	Mobile Industry Processor Interface
PLL	Phase Locked Loop
GPLL	General Purpose PLL
RX	Receiver
STA	Static Timing Analysis
TX	Transmitter
VC	Virtual Channel
VSS	Vsync Start
WC	Word Count

1. Introduction

Many new applications such as virtual reality, augmented reality, and digital cameras require expansion of the number of camera or display interface on application processors (AP). This often occurs when there is either not enough ports or some ports are used for other purposes on the AP.

The Lattice Semiconductor 1 to N MIPI® CSI-2/DSI Duplicator reference design with CertusPro™-NX devices can be configured for one to four duplicated outputs. MIPI D-PHY Soft IPs in the Lattice Radiant™ software can be configured as MIPI transmitter or receiver utilizing the general DDR modules.

1.1. Supported Device and IP

Table 1.1 indicates the device and compatible IP versions supported in this reference design.

Table 1.1. Supported Device and IP

Device Family	Part Number Compatible IP		
CertusPro-NX	LFCPNX-100	D-PHY Receiver IP version 1.9.0	
	LFCFINX-100	D-PHY Transmitter IP version 2.2.0	

1.2. Features

- MIPI CSI-2 or DSI stream on one RX channel is duplicated and sent out on one to four TX channels.
- RX channel can have one, two, or four lanes.
- Maximum RX bandwidth is 1.5 Gbps per lane using D-PHY Soft IP.
- Number of TX lanes can be one, two, or four. This is independent from the number of RX lanes.
- Maximum TX bandwidth is 1.5 Gbps per lane using D-PHY Soft IP.
- Non-continuous clock mode on RX channels is possible as long as a continuous clock is provided internally or from an external source.
- Non-continuous or continuous clock mode is possible for TX channels.

1.3. Block Diagram and Clocking Scheme

Figure 1.1 shows the block level diagram of the 1 to N MIPI CSI-2/DSI Duplicator with CertusPro-NX reference design with four TX channels.

Instead of using individual PLL in D-PHY TX IP, it is possible to use on-chip GPLL to generate a required high-speed clock and feed it to multiple D-PHY TX IP.

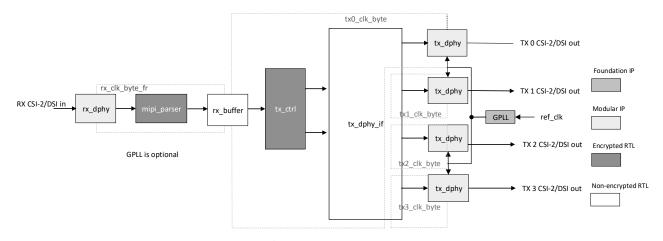


Figure 1.1. 1 to N MIPI CSI-2/DSI Duplicator with CertusPro-NX Block Diagram

The Clocking Scheme mainly depends on RX clock mode and TX PLL mode. In the case of Soft D-PHY TX, on-chip GPLL is assigned to provide a high-speed clock. The user-defined GPLL is used to generate the high-speed clock. In general, external PLL mode is preferred when multiple Soft D-PHY IPs are used on TX channels.

Figure 1.2 shows a clocking scheme example in RX continuous clock mode for two TX channels with external PLL configuration. In this case, GPLL is used to generate two high-speed clocks, txN_pll_clk and txN_pll2_clk, which are used in D-PHY TX. These clocks must be set to half speed for Soft D-PHY TX. The txN_pll2_clk has the same frequency as txN_pll_clk but the clock is 90-degree phase shifted from txN_pll_clk. The tx0_pll_clk, tx1_pll_clk, tx0_pll2_clk, and tx1_pll2_clk can be shared with tx0_dphy and tx1_dphy as they are the same D-PHY type (Soft D-PHY). tx_ref_clk is required. As the maximum clock frequency on GPLL output clock is 800 MHz, the maximum lane bandwidth for Soft D-PHY TX can operate up to 1500 Mbps regardless of external PLL mode.

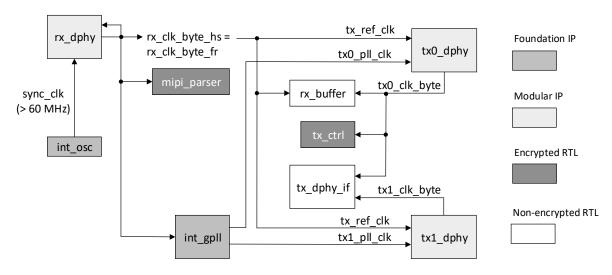


Figure 1.2. Clocking Scheme Example in RX Continuous Clock Mode for 2-Channel TX with External PLL Mode

Figure 1.3 shows a clocking scheme example in RX non-continuous clock mode for to two TX channel with external PLL configuration. An external clock is required to generate continuous RX byte clock and high-speed clocks for D-PHY TX. sync_clk can be shared with rx_clk_byte_fr when rx_clk_byte_fr is over 60 MHz. tx0_pll_clk, tx1_pll_clk, tx0_pll2_clk, and tx1_pll2_clk can be shared when tx0_dphy and tx1_dphy are same D-PHY type (Soft D-PHY).

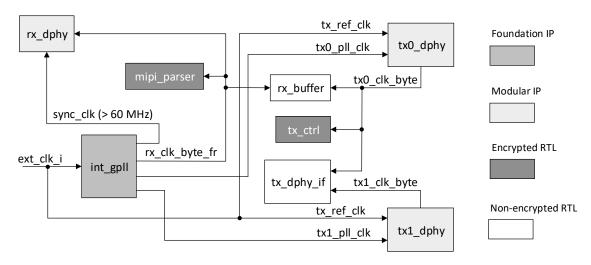


Figure 1.3. Clocking Scheme Example in RX Non-Continuous Clock Mode for 2-Channel TX with External PLL Mode

Table 1.2 shows typical clock resources for different configurations. GPLL output GPLL_clkop is assigned to the highest frequency, GPLL_clkos is assigned to the second, and so on. These are guidelines and you can change the clocking scheme as long as the design is functional.

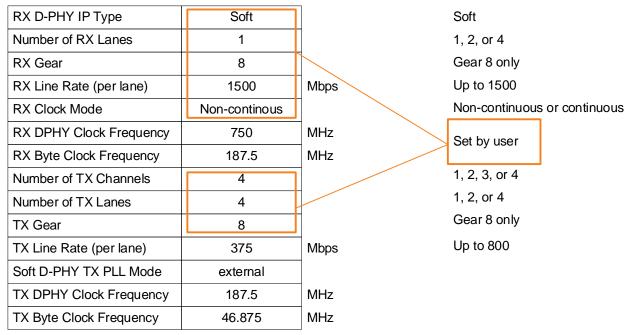
Table 1.2. Clock Resources in Case of RX Soft D-PHY with Continuous Clock Mode and Non-continuous Clock Mode

RX D-PHY IP	Soft			
Max RX Lane BW	1500			
RX_CLK_MODE	HS_ONLY (Continuous Clock)	HS_LP (Non–Continuous Clock)		
clk_lp_ctrl_i	NA	OSC		
sync_clk_i	OSC	OSC		
Use ext_clk_i	No	Yes		
Use GPLL	Yes	Yes		
GPLL ref_clk_i	rx_clk_byte_fr ext_clk_i			
rx_clk_byte_fr	FROM RX_DPHY			
TX D-PHY Type	Soft			
Max TX Lane BW	1500			
TX D-PHY IP	Soft			
TX PLL Mode	External			
tx_ref_clk	rx_clk_byte_fr ext_clk_i			
tx_pll_clk	pll_clkop pll_clkos			
Suitable Configuration	1:2, 1:3			

9

1.4. RX/TX Permutations

Table 1.3 shows the possible RX/TX permutations and Figure 1.4 shows the calculated bandwidth in the Excel sheet provided with this reference design. Some permutations are excluded due to bandwidth limitations. Soft D-PHY can support only Gear 8. The maximum lane bandwidth is 1500 Mbps. The permutations shown in Table 1.3 is based on the assumption that total bandwidth (lane bandwidth × number of lane) is equal between RX and one TX channel. In some cases, RX and TX total bandwidth could be different and the values shown in the table and figure might not directly apply. These cases are described in the rx_buffer section.


Table 1.3. RX/TX Permutations

Number of RX Lane	RX Gear ²	RX Lane Bandwidth ¹ x (Mbps)	Number of TX Lane	TX Gear ²	TX Lane Bandwidth ¹ y (Mbps)	TX Byte Clock/RX Byte Clock
		160 ≤ x ≤ ~1500	1		160 ≤ y ≤ ~1500	1
1		320 ≤ x ≤ ~1500	2		160 ≤ y ≤ ~750	0.5
		640 ≤ x ≤ ~1500	4		160 ≤ y ≤ ~375	0.25
	8	160 ≤ x ≤ ~750	1	8	320 ≤ y ≤ ~1500	2
2	٥	160 ≤ x ≤ ~1500	2	0	160 ≤ y ≤ ~1500	1
		320 ≤ x ≤ ~1500	4		160 ≤ y ≤ ~750	0.5
4		160 ≤ x ≤ ~750	2		320 ≤ y ≤ ~1500	2
		160 ≤ x ≤ ~1500	4		160 ≤ y ≤ ~1500	1

Notes:

- 1. The maximum lane bandwidth depends on the type of D-PHY IP (1500 Mbps: Soft D-PHY).
- 2. The CertusPro-NX supports Soft D-PHY only and hence it supports only Gear 8.

1 to N MIPI CSI-2/DSI Duplicator with CertusPro-NX Parameter Calculator

Soft D-PHY TX should be in external PLL mode.

Figure 1.4. Bandwidth and Parameter Calculator

The excel file for the parameter calculator is located to the design package source code. Just open the source code folder and locate the folder "docs" and locate "mipi_dup_RD_LFCPNX.xlsx".

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02240-1 2

2. Parameters and Port List

There are two directive files for this reference design:

- synthesis_directives.v used for design compilation by the Lattice Radiant software and for simulation.
- simulation_directives.v used for simulation.

You can modify these directives according to your own configuration. The settings in these files must match RX D-PHY IP, TX D-PHY IP, and other module settings described in the Design and Module Description section.

2.1. Synthesis Directives

Table 2.1 shows the synthesis directives that affect this reference design. These are used for both synthesis and simulation. As shown in Table 2.1 and Table 2.2, some parameter selections are restricted by other parameter settings.

Table 2.1. Synthesis Directives

Category	Directive	Remarks
DV D DHV Tupo	CSI2	Only one of those two directives must be defined
RX D-PHY Type	DSI	Only one of these two directives must be defined.
	NUM_RX_LANE_1	
RX channel lane count	NUM_RX_LANE_2	Number of lanes in each RX channel. Only one of these three directives must be defined.
	NUM_RX_LANE_4	must be defined.
RX DPHY Clock Gear	RX_GEAR_8	RX D-PHY clock Gear.
DV D DUV Clock Model 2	RX_CLK_MODE_HS_ONLY	DVD DILV Clark made. Only one of these two directives must be defined
RX D-PHY Clock Mode ^{1, 2}	RX_CLK_MODE_HS_LP	RX D-PHY Clock mode. Only one of these two directives must be defined.
RX DPHY FIFO	RX DPHY_FIFO_MISC_ON	Enable Rx DPHY FIFO Miscellaneous signals. Define this only if RX FIFO is enabled and RX FIFO Misc signals option is checked in the RX DPHY SOFT user interface.
Wait for FS/VSS	WAIT_FS	Wait for FS (Frame Start) or VSS (Vsync Start) to begin capturing RX data. Capturing begins with any data if not defined.
	RX_BUFFER_DEPTH_512	
DV Duffer Death	RX_BUFFER_DEPTH_1024	Depth of RX Buffer FIFO. Only one of these four directives must be defined. 4096 cannot be defined in case of (NUM RX LANE 4 and
RX Buffer Depth	RX_BUFFER_DEPTH_2048	RX GEAR 16) due to the limitation of available EBR.
	RX_BUFFER_DEPTH_4096	· · · · · · · · · · · · · · · ·
Byte Data Read Delay	BD_RD_DLY {value}	Byte Data Read Delay from RX Buffer in rx_byte_clk cycles. The value must be 1–8191.
	NUM_TX_CH_1	
TX Channel count	NUM_TX_CH_2	Number of TX channel. Only one of these four directives must be
TA CHaimer Count	NUM_TX_CH_3	defined.
	NUM_TX_CH_4	
	NUM_TX_LANE_1	Now have a file and in TV about 1 Oak and a file and have all the attentions and
TX channel lane count	NUM_TX_LANE_2	Number of lanes in TX channel. Only one of these three directives must be defined.
	NUM_TX_LANE_4	be defined.
TX D-PHY Clock Gear	TX_GEAR_8	TX D-PHY Clock Gear.
TX D-PHY Clock Mode ¹	TX_CLK_MODE_HS_ONLY	TX D-PHY Clock mode. Only one of these two directives must be defined.
IN D-FITT Clock Widde	TX_CLK_MODE_HS_LP	TA D-FITT Clock mode. Only one of these two directives must be defined.
Keep HS mode	KEEP_HS	Keep the clock lane in HS mode during the horizontal blanking periods of active video lines when defined. Effective when CSI2 and TX_CLK_MODE_HS_LP are defined.

Notes:

- 1. HS_LP mode means non-continuous clock mode and HS_ONLY means continuous clock mode.
- HS_LP mode works only if RX byte clock for corresponding RX channel can be generated internally or from an external source.
- 3. SOFT DPHY TX IP always uses external PLL mode.

2.2. Simulation Directives

Table 2.2 shows the simulation directives for this reference design.

Table 2.2. Simulation Directives

Category	Directive	Remarks	
Simulation	SIM	Select behavioral models for simulation.	
DCI Cuna Mada	DSI_SYNC_MODE_EVENT	Select non-burst with sync event or no-burst with sync pulse	
DSI Sync Mode	DSI_SYNC_MODE_PULSE	mode. Applicable when DSI is defined in synthesis_directives.v.	
EoTp insertion	ЕОТР	Insert EoTp (End of Transmission Packet) when defined. Applicable when DSI is defined in synthesis_directives.v.	
VSA length	VSA_LENGTH {value}	Number of Vsync active lines. Applicable when DSI is defined in synthesis_directives.v.	
VBP length	VBP_LENGTH {value}	Number of Vertical Back Porch lines. Applicable when DSI is defined in synthesis_directives.v.	
VFP length	VFP_LENGTH {value}	Number of Vertical Front Porch lines. Applicable when DSI is defined in synthesis_directives.v.	
HSA length	HSA_LENGTH {value}	Number of WC in Null Packet of Hsync active period. Applicable when DSI is defined in synthesis_directives.v.	
HBP length	HBP_LENGTH {value}	Number of WC in Blanking Packet of Horizontal Back Porch. Applicable when DSI is defined in synthesis_directives.v.	
HFP length	HFP_LENGTH {value}	Number of WC in Blanking Packet of Horizontal Front Porch. Applicable when DSI is defined in synthesis_directives.v.	
Reference clock period	REF_CLK_PERIOD {value}	Reference clock period in ps	
RX DPHY clock period	RX_DPHY_CLK_PERIOD {value}	RX Channel DPHY clock period in ps	
RX DPHY Byte clock period	RX_FREQ_TGT	RX DPHY byte clock in ps	
TX DPHY Byte clock period	TX_FREQ_TGT	TX DPHY byte clock in ps	
TX DPHY clock period	TX_DPHY_CLK_PERIOD {value}	TX Channel DPHY clock period in ps	
TX Wait less	TX_WAIT_LESS_15MS	_	
RX Virtual channel	RX_VC {value}	Virtual channel ID of the packet. Value is 0.	
Initial delay on RX channel	RX_DELAY {value}	Initial delay to activate RX Channel in ps	
Gap (LP) time between active lines on RX Channel	RX_DPHY_LPS_GAP {value}	Gap time on RX Channels in ps	
Gap (LP) time between Frame End and Frame Start on RX Channel	RX_DPHY_FRAME_GAP {value}	Gap time on RX Channels in ps	
	NUM_FRAMES {value}	Number of frames to feed.	
	NUM_LINES {value}	Number of active lines per frame.	
	NUM_PIXELS {value}	Number of pixels per active line.	
Video data configuration on	RAW8		
RX Channel*	RAW10	Data Type of the payload video data. Only one among RAW8,	
	RAW12	RAW10, RAW12 and RGB888 must be defined.	
	RGB888		
Initialization Time monitor	MISC_TINITDONE	Enables internal signal tx0_tinit_done monitored by the testbench. Enable this directive when <i>Bypass tINIT counter</i> is unchecked in TX D-PHY settings in Clarity for tx_dphy.	

*Note: RGB666, RGB565, RGB666_Ip, YCBCR420, RGB121212, RGB101010, YCBCR422_16, YCBCR422_24, YUV420_8, YUV420_10, YUV422_8 and YUV422_10 datatypes are also available for simulation and supported by testbench. RTL supports other data types as well.

2.3. Top-Level I/O

Table 2.3 shows the top-level I/O of this reference design. Actual I/O depends on your channel and lane configurations. Compiler directives automatically declare all necessary I/O ports.

Table 2.3. CSI-2/DSI Duplicator Top-Level I/O

Port Name	Direction	Description
Clocks and Re	sets	
ext_clk_i (optional)	I	External input reference clock. Used to feed a clock to GPL and TX D-PHY PLL. Recommended to be minimum. 24 MHz. This port is declared only when RX_CLK_MODE_HS_LP is defined in simulation_directives.v.
reset_n_i	I	Asynchronous active low system reset
CSI-2/DSI RX I	nterface	
rx_clk_p_i	1	Positive differential RX D-PHY input clock
rx_clk_n_i	1	Negative differential RX D-PHY input clock
rx_d0_p_i	I	Positive differential RX D-PHY input data 0
rx_d0_n_i	I	Negative differential RX D-PHY input data 0
rx_d1_p_i	I	Positive differential RX D-PHY input data 1 (in case of two-lane or four-lane configuration)
rx_d1_n_i	I	Negative differential RX D-PHY input data 1 (in case of two-lane or four-lane configuration)
rx_d2_p_i	I	Positive differential RX D-PHY input data 2 (in case of four-lane configuration)
rx_d2_n_i	I	Negative differential RX D-PHY input data 2 (in case of four-lane configuration)
rx_d3_p_i	I	Positive differential RX D-PHY input data 3 (in case of four-lane configuration)
rx_d3_n_i	I	Negative differential RX D-PHY input data 3 (in case of four-lane configuration)
CSI-2/DSI TX I	nterface	
tx0_clk_p_o	0	Positive differential TX D-PHY output clock on TX channel 0
tx0_clk_n_o	0	Negative differential TX D-PHY output clock on TX channel 0
tx0_d0_p_o	0	Positive differential TX D-PHY output data 0 on TX channel 0
tx0_d0_n_o	0	Negative differential TX D-PHY output data 0 on TX channel 0
tx0_d1_p_o	0	Positive differential TX D-PHY output data 1 on TX channel 0 (in case of two/four-lane configuration)
tx0_d1_n_o	0	Negative differential TX D-PHY output data 1 on TX channel 0 (in case of two/four-lane configuration)
tx0_d2_p_o	0	Positive differential TX D-PHY output data 2 on TX channel 0 (in case of four-lane configuration)
tx0_d2_n_o	0	Negative differential TX D-PHY output data 2 on TX channel 0 (in case of four-lane configuration)
tx0_d3_p_o	0	Positive differential TX D-PHY output data 3 on TX channel 0 (in case of four-lane configuration)
tx0_d3_n_o	0	Negative differential TX D-PHY output data 3 on TX channel 0 (in case of four-lane configuration)
tx1_clk_p_o	0	Positive differential TX D-PHY output clock on TX channel 1 (in case of 2 TX channel configuration)
tx1_clk_n_o	0	Negative differential TX D-PHY output clock on TX channel 1 (in case of 2 TX channel configuration)
tx1_d0_p_o	0	Positive differential TX D-PHY output data 0 on TX channel 1 (in case of 2 TX channel configuration)
tx1_d0_n_o	0	Negative differential TX D-PHY output data 0 on TX channel 1 (in case of 2 TX channel configuration)
tx1_d1_p_o	0	Positive differential TX D-PHY output data 1 on TX channel 1 (in case of 2 TX channel with two/four-lane configuration)
tx1_d1_n_o	0	Negative differential TX D-PHY output data 1 on TX channel 1 (in case of 2 TX channel with two/four-lane configuration)
tx1_d2_p_o	0	Positive differential TX D-PHY output data 2 on TX channel 1 (in case of 2 TX channel with four-lane configuration)
tx1_d2_n_o	0	Negative differential TX D-PHY output data 2 on TX channel 1 (in case of 2 TX channel with four-lane configuration)
tx1_d3_p_o	0	Positive differential TX D-PHY output data 3 on TX channel 1 (in case of 2 TX channel with four-lane configuration)
tx1_d3_n_o	0	Negative differential TX D-PHY output data 3 on TX channel 1 (in case of 2 TX channel with four-lane configuration)

Port Name	Direction	Description
tx2_clk_p_o	0	Positive differential TX D-PHY output clock on TX channel 2 (in case of 2 TX channel configuration)
tx2_clk_n_o	0	Negative differential TX D-PHY output clock on TX channel 2 (in case of 2 TX channel configuration)
tx2_d0_p_o	0	Positive differential TX D-PHY output data 0 on TX channel 2 (in case of 2 TX channel configuration)
tx2_d0_n_o	0	Negative differential TX D-PHY output data 0 on TX channel 2 (in case of 2 TX channel configuration)
tx2_d1_p_o	0	Positive differential TX D-PHY output data 1 on TX channel 2 (in case of 2 TX channel with two/four-lane configuration)
tx2_d1_n_o	0	Negative differential TX D-PHY output data 1 on TX channel 2 (in case of 2 TX channel with two/four-lane configuration)
tx2_d2_p_o	0	Positive differential TX D-PHY output data 2 on TX channel 2 (in case of 2 TX channel with four-lane configuration)
tx2_d2_n_o	0	Negative differential TX D-PHY output data 2 on TX channel 2 (in case of 2 TX channel with four-lane configuration)
tx2_d3_p_o	0	Positive differential TX D-PHY output data 3 on TX channel 2 (in case of 2 TX channel with four-lane configuration)
tx2_d3_n_o	0	Negative differential TX D-PHY output data 3 on TX channel 2 (in case of 2 TX channel with four-lane configuration)
tx3_clk_p_o	0	Positive differential TX D-PHY output clock on TX channel 3 (in case of 2 TX channel configuration)
tx3_clk_n_o	0	Negative differential TX D-PHY output clock on TX channel 3 (in case of 2 TX channel configuration)
tx3_d0_p_o	0	Positive differential TX D-PHY output data 0 on TX channel 3 (in case of 2 TX channel configuration)
tx3_d0_n_o	0	Negative differential TX D-PHY output data 0 on TX channel 3 (in case of 2 TX channel configuration)
tx3_d1_p_o	0	Positive differential TX D-PHY output data 1 on TX channel 3 (in case of 2 TX channel with two/four-lane configuration)
tx3_d1_n_o	0	Negative differential TX D-PHY output data 1 on TX channel 3 (in case of 2 TX channel with two/four-lane configuration)
tx3_d2_p_o	0	Positive differential TX D-PHY output data 2 on TX channel 3 (in case of 2 TX channel with four-lane configuration)
tx3_d2_n_o	0	Negative differential TX D-PHY output data 2 on TX channel 3 (in case of 2 TX channel with four-lane configuration)
tx3_d3_p_o	0	Positive differential TX D-PHY output data 3 on TX channel 3 (in case of 2 TX channel with four-lane configuration)
tx3_d3_n_o	0	Negative differential TX D-PHY output data 3 on TX channel 3 (in case of 2 TX channel with four-lane configuration)

3. Design and Module Description

The top-level design (mipi_duplicator_LFCPNX.v) consists of the following modules:

- rx_dphy
- mipi parser
- rx_buffer
- tx ctrl
- tx_dphy_if
- tx dphy

The top-level design has reset synchronization logic. In addition, GPLL may be added if necessary according to RX and TX configurations.

3.1. rx_dphy

This module must be created for RX channel according to channel conditions, such as the number of lanes, bandwidth, and others. Figure 3.1 shows an example of IP interface settings in the Lattice Radiant software for the CSI-2/DSI D-PHY Receiver Sub module IP version 1.9.0. Refer to CSI-2/DSI D-PHY Rx IP User Guide (FPGA-IPUG-02081) for details.

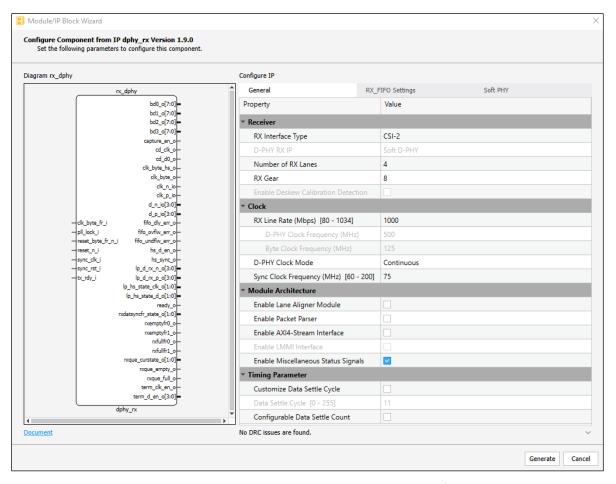


Figure 3.1. rx_dphy IP Creation in the Lattice Radiant Software

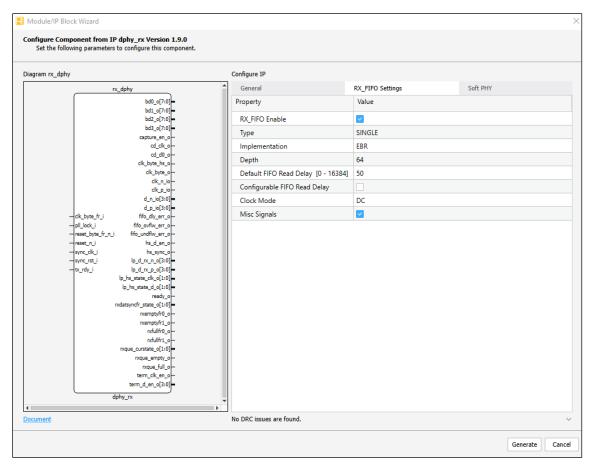


Figure 3.2. rx_dphy IP Creation Continued in the Lattice Radiant Software

The following shows the guidelines and the parameter settings required for this reference design:

- RX Interface Select CSI-2 or DSI.
- DPHY RX IP CertusPro-NX Supports only Soft DPHY type.
- Number of RX Lanes Set according to channel configuration. The value must match NUM RX LANE * setting.
- RX Gear Select 8.
- AXI Stream interface Always disable (unchecked) for SOFT DPHY channels.
- De-skew calibration detection Disable (unchecked) for SOFT DPHY channels when RX Line Rate is ≤ 1500 Mbps.
- RX Line Rate Set according to channel configuration.
- DPHY Clock Mode Select Continuous or Non-continuous. Must match RX_CLK_MODE_* setting (Continuous = HS_ONLY, Non-continuous = HS_LP).
- Data Settle cycle Recommended to use the suggested value. Try reducing this value one by one when RX D-PHY is not working as expected.
- Packet Parser Always disable (unchecked) for SOFT DPHY channels.
- Miscellaneous Status signals Always enable (checked) for SOFT DPHY channels.
- Lane Aligner Module Always disable (unchecked) for RX SOFT DPHY having two-lane and four-lane configurations. This option is not available for RX SOFT DPHY with one lane configuration.
- RX FIFO Set according to channel configuration. For RX SOFT DPHY it can be enabled or disabled.
- RX FIFO Memory implementation Set according to channel configuration.
- RX FIFO Depth Set according to channel configuration. Minimum value 16 is required.
- RX FIFO Type Set according to channel configuration.
- RX FIFO Packet delay Set according to channel configuration. Minimum value 1 is required.
- RX Clock mode Always set to DC (Dual clock) for RX SOFT DPHY.

- RX FIFO Misc Signals Always enable (checked) FIFO Miscellaneous signals for SOFT DPHY channels.
- In the Soft PHY tab, use the default settings with Edge Clock Centered Delay Mode.
- After configuring all required parameters, select Generate shown in the bottom right corner of the user interface.

3.1.1. RX FIFO

RX FIFO is useful especially in non-continuous clock mode and the continuous byte clock cannot have the exactly same frequency as the non-continuous byte clock used in D-PHY RX IP. It resides before the word aligner.

3.1.1.1. Soft D-PHY in Continuous Clock Mode

In this case, RX FIFO is not necessary and can be set to OFF.

3.1.1.2. Non-Continuous Clock Mode

In this case, RX FIFO configuration depends on the relationship between the non-continuous byte clock in D-PHY RX IP and the continuous byte clock, which is most likely generated by GPLL. The non-continuous byte clock is used to write the data to RX FIFO and the continuous byte clock is used to read the data from RX FIFO.

- Continuous byte clock = non-continuous byte clock
 In this case, the minimum configuration of RX FIFO is recommended (LUT based, Depth = 16, Type Implementation = SINGLE, Packet Delay = 1, Clock Implementation = DC).
- Continuous byte clock < non-continuous byte clock
 - In this case, *Type* Implementation = SINGLE and Packet Delay = 1 is recommended and others depend on the frequency ratio between these two clocks. When the clock speed difference is larger, the required depth of RX FIFO becomes larger. First, it is important to know the horizontal blanking period of the incoming RX channel. For example, in case that one-line active video period is 40 μ s and the horizontal blanking is 4 μ s, then we have 10 % of extra time to process the active data. This means the continuous byte clock can be as slow as ~-10% comparing to the non-continuous byte clock to avoid RX FIFO overflow.
- Continuous byte clock > non-continuous byte clock

There are two options in this case:

- Use Type Implementation = SINGLE with large Packet Delay
 - Set the Depth large enough to contain the necessary data to avoid RX FIFO underflow after FIFO read begins after the time specified by Packet Delay. In general, Packet Delay must be set close to the depth of the RX FIFO. This configuration can be used when there is enough time interval between the last active line and the frame end short packet so that the frame end short packet is not written to RX FIFO while it still contains the last active line of video data.
- Use Type Implementation = QUEUE with Number of Queue Entries = 2
 - This is useful when the time interval between the last active line and frame end short packet is short or unknown. Depth must be set large enough to contain one active line data (plus some more for short packet data). This mode is also useful when line start and the line end short packets exist in the incoming RX stream. In that case, Number of Queue Entries = 4 and extra depth is required (one line plus two short packet data). FIFO read begins after each HS data transaction is completed. EBR must be used. Counter Width is determined by the amount of the one-line video data plus extra overheads by preceding HS zero data and trail byte in the end of HS transmission.

• Frequency relationship is unknown when the continuous byte clock is within the certain range against the non-continuous byte clock (for example, two clocks come from different clock sources which have ppm tolerance), we have no idea which clock is faster. The simplest way is to use *Type* Implementation = SINGLE with setting Packet Delay to the midpoint of FIFO depth when the tolerance is in ppm level. For example, assuming the clock tolerance is within +/- 500 ppm for two lane Gear 8 RAW10 with 1920 horizontal pixels. The payload byte count is 1920 × 5/4 = 2400 so that each lane takes 1200 bytes. 1200 × 500 ppm = 0.6, which means small FIFO with middle point read delay (for example, FIFO depth = 16 with read delay of 8-byte clock cycles) works fine. Using LUT is preferable as long as FIFO depth is small since using EBR here might cause the shortage of EBR in line_buf modules. QUEUE can also be used as described above even though it requires more EBRs.

In case there is no detailed information regarding RX data (whether containing line start/end short packet, interval of the horizontal blanking period against active line period), the safest way is to set the continuous byte clock faster than the non-continuous byte clock. Use *Type* Implementation = QUEUE with Number of entries = 4 even though it might require more EBR resources comparing to *Type* Implementation = SINGLE, but ensure that total number of EBR used in the device do not exceed 20, the maximum number of EBRs available in CertusPro-NX.

3.2. mipi_parser

This module handles CSI-2/DSI protocol decoding. It detects the sync word (0xb8) and trailer bytes (0xff) to properly assert rx_bd_en, which indicates active packet data. Figure 3.3 shows an example of handling a CSI-2 Frame Start short packet. Data bytes b8 and ff are trimmed from the incoming data by the rx_bd_en assertion (Num_RX_LANE_4, RX GEAR 8). rx bd end indicates the end of the valid packet data.

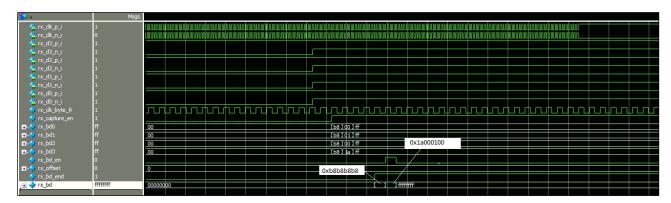


Figure 3.3. Active Data Detection (CSI-2 Frame Start)

Figure 3.4 shows the end of CSI-2 long packet detection. rx_bd_end is asserted in the last cycle of rx_bd_end . In this case, $rx_offset = 0$, which means LSB data (0x1c0d) is not considered as active in the last rx_bd_end data indicated by rx_bd_end and rx_bd_end = 1. MSB 1 byte (0xff) is a trailer byte.

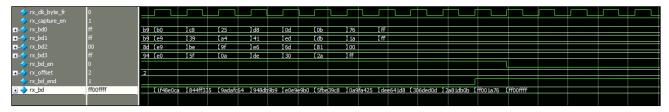


Figure 3.4. End of Active Data Detection (CSI-2 Long Packet)

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.3. rx_buffer

This module contains a dual clock FIFO using EBR to store valid packet data. Buffer depth is 512, 1024, 2048, or 4096 and data width is 32. This module itself with ready flag assertion reads out the first FIFO data. The FIFO has extra data width 32 to contain data end flag and offset data. Figure 3.5 shows the example of short packet write and read (NUM_RX_LANE = 4, FIFO data width is 32). rx_bd_en makes the FIFO write after the data width conversion from 16 bits to 32 bits and it also triggers the internal counter driven by rx_clk_byte_fr. When this counter reaches the value specified by BD_RD_DLY, the internal flag is asserted and that status is transferred to tx0_clk_byte domain, which makes buf_rdy = 1 to notify tx_ctrl module that the data are ready to be read. On the other hand, the first FIFO data is automatically read out by this module itself so that the first data is already available on buf_d when buf_rdy is asserted. In case of a short packet, the amount of active data is only 4 bytes and buf_d_end is also asserted along with short packet data of 0x1a000100 on buf_d. In this example BD_RD_DLY = 10 and buf_rdy is asserted soon after rx_bd_en = 1, but the data read (buf_re = 1) from the next module (tx_ctrl) does not begin due to LP to HS transition time on TX channel. This delay is expected to be \sim 1 μ s_in case that both clock and data lanes requires LP to HS transition.

In general, the small value of BD_RD_DLY is preferable to make a process delay shorter, but it makes sense to set a larger value when there is some frequency difference or tolerance between rx_clk_byte_fr and tx0_clk_byte. If the clock ratio between these two is not exactly same as shown in Table 1.3, this FIFO could be used to absorb the frequency difference. Concept-wise, it is similar to SINGLE mode of RX FIFO in rx_dphy. When the tx0_byte_clk is faster than rx_byte_clk, setting BD_RD_DLY to a higher value (close to the rx_byte_clk cycle count to complete the payload data write for long packet in active video lines) helps to avoid FIFO underflow as long as the clock tolerance is absorbed during the LP period. On the other hand, setting a small value helps avoid FIFO overflow when tx0_clk_byte is slower than rx_clk_byte_fr. If you are not clear on which clock is faster but tolerance is expected, then setting it close to the middle value makes sense. The minimum buffer depth is 512 and that requires two EBRs (for data width 32) or four EBRs (for data width 64). This depth is expandable to 1024, 2048, or 4096 as long as the total number of EBR does not exceed 20.

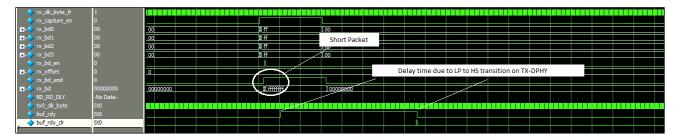


Figure 3.5. Short Packet Write and Read

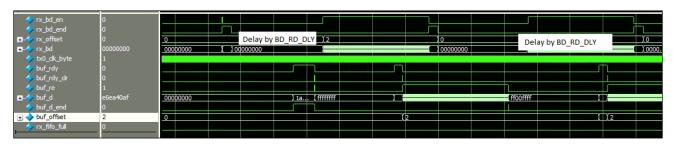


Figure 3.6 and Figure 3.7 show the difference by BD_RD_DLY in the same design. In this case, WC (payload byte count) is 2400, which means it takes 1200 rx_clk_byte_fr cycles to write all long packet payload data to FIFO. tx0_clk_byte exactly matches the derived clock ratio by Table 1.3. In case of BD_RD_DLY = 400, FIFO read (buf_re = 1) begins while FIFO has some room to be filled up. In case of BD_RD_DLY = 800, data is corrupted due to FIFO overflown shown by a spike of rx fifo full in Figure 3.7 inside a red box.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

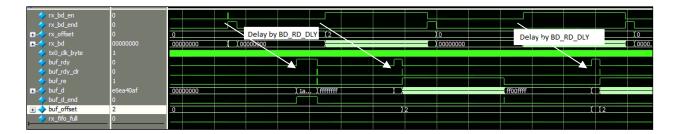


Figure 3.6. rx_buffer Write/Read Example with Depth = 512, BD_RD_DLY = 400

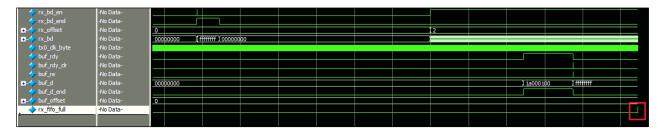


Figure 3.7. rx_buffer FIFO Overflow with Depth = 512, BD_RD_DLY = 800

The safest way to avoid FIFO overflow in case that total TX bandwidth > RX total bandwidth (byte clock ratio value is larger than the ratio shown in Table 1.3) is to set the FIFO depth larger than the size of long packet data. Figure 3.8 shows the successful transaction setting the FIFO depth to 1024 with BD_RD_DLY = 1200. buf_rdy is asserted almost at the same timing of the completion of the one-line video data write to the FIFO. The FIFO depth of 1024 is deep enough to store the whole one-line data $(1024 \times 4 \text{ (bytes)}) = (4 \text{ (Header)} + 2400 \text{ (payload)}) + 2 \text{ (CRC)})$ and FIFO overflow does not occur.

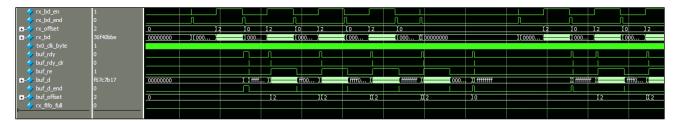


Figure 3.8. rx_buffer Successful Transactions with Depth = 1024, BD_RD_DLY = 1200

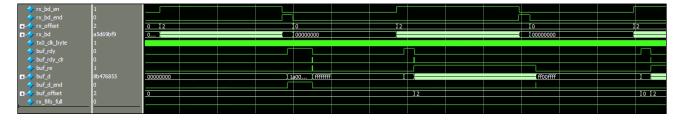


Figure 3.9 shows the example of successful transactions of (TX total bandwidth > RX total bandwidth). In this case, total TX bandwidth is twice RX. The FIFO read period (buf_re = 1) is half of FIFO write period (rx_bd_en = 1), which leads more LP mode time on TX channel. This method (setting BD_RD_DLY close to the end of payload data write, setting FIFO depth to cover the long packet data size) works for any TX bandwidth as long as it is faster than RX bandwidth and does not exceed the maximum lane bandwidth of 1.5 Gbps in case of CSI-2, which mandates the data lane goes into LP mode after every packet transaction.

In case of DSI which keeps the data lane in HS mode during the horizontal blanking periods using null or blanking packets, this method cannot apply and TX bandwidth has to be exactly same (or close enough) to avoid FIFO overflow/underflow.

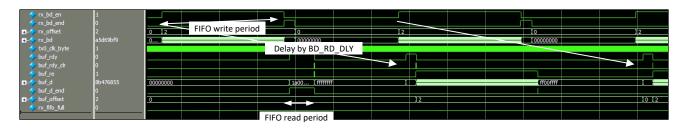


Figure 3.9. TX Bandwidth = 2 x RX Bandwidth with Depth = 1024, BD_RD_DLY = 1200

3.4. tx_ctrl

This module monitors the read ready flag of rx_buffer and then reads RX Buffer data. The read data are sent to tx_dphy through tx_dphy_if. Figure 3.10 shows an example of a short packet transaction. After receiving tx_bgn from tx_dphy_if, this module begins capturing buf_d and sends these on tx_bd with proceeding B8 (sync word) and appending 00 or FF (trailer byte).

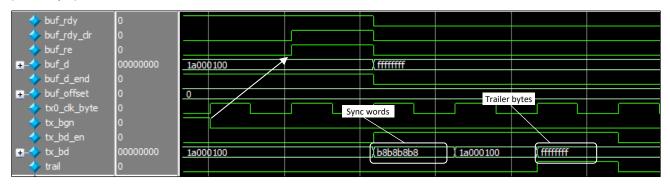


Figure 3.10. Short Packet Transaction (NUM TX LANE 4, TX GEAR 8)

Figure 3.11 shows an example of the end of long packet transaction. In this case, the lane configuration between RX and TX is different so that trailer bytes are recreated and appended by this module.

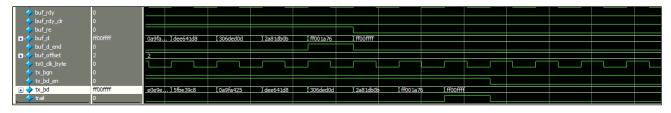


Figure 3.11. End of Long Packet Transaction (NUM_RX_LANE_4, RX_GEAR_8 to NUM_TX_LANE_4, TX_GEAR_8)

When TX D-PHY is set to non-continuous clock mode, it is possible to keep the clock lane in HS mode during the horizontal blanking periods. This is enabled when KEEP_HS is defined in synthesis_directives.v. This feature is useful when the horizontal blanking period is not long enough to have both clock and data lanes go into LP mode, which requires more overhead time. In that case, this module keeps clk_hs_en = 1 during the active video period including the horizontal blanking periods and makes clk_hs_en = 0 only during the vertical blanking period so that the clock lane goes into LP mode only during the vertical blanking period. This feature is available only for CSI-2.

3.5. tx_dphy_if

This module resides between tx_ctrl and tx_dphy to transfer control signals and data including data bus allocation and clock domain conversion in case of two or more channels TX outputs. Figure 3.12 shows an example of short packet transaction in non-continuous clock mode (only data lane 0 is shown in Figure 3.12).

- 1. Wait for buf rdy = 1
- 2. Check tx0_c2d_rdy = 1, then assert tx0_clk_hs_en and tx0_d_hs_en (at least one tx0_byte_clk cycle)
- 3. Clock lane goes into HS mode
- 4. Data lane goes into HS mode
- 5. Wait for tx0 d hs rdy = 1
- 6. Assert tx_bgn
- 7. FIFO read happens by tx_ctrl
- 8. Receive HS data by tx bd en
- 9. Send HS data to tx_dphy along with tx0_dphy_pkten = 1
- 10. HS data transmission by tx_dphy
- 11. After HS transmission is done, tx0_d_hs_rdy goes 0 and data lane goes into LP mode
- 12. Clock lane goes into LP mode
- 13. After all HS transaction ends, tx0_c2d_rdy becomes 1, which means tx_dphy is ready to handle the next HS transaction.

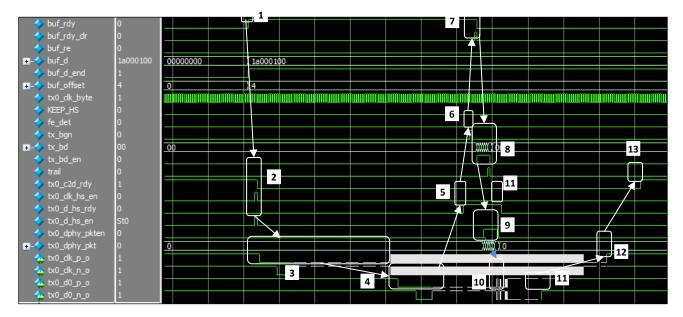


Figure 3.12. Short Packet Transaction in Non-Continuous Clock Mode

In case of CSI-2 in non-continuous clock mode, it is possible to keep clock lane in HS mode during the horizontal blanking periods by defining KEEP_HS in synthesis_directives.v. Figure 3.13 shows the global sequence without defining KEEP_HS and Figure 3.14 shows the case with KEEP_HS. When KEEP_HS is defined, the control logic for tx0_clk_hs_en takes fe_det (Frame End detect) and keeps tx0_clk_hs_en = 1 during the horizontal blanking periods.



Figure 3.13. Global Sequence in Non-Continuous Clock Mode without KEEP_HS

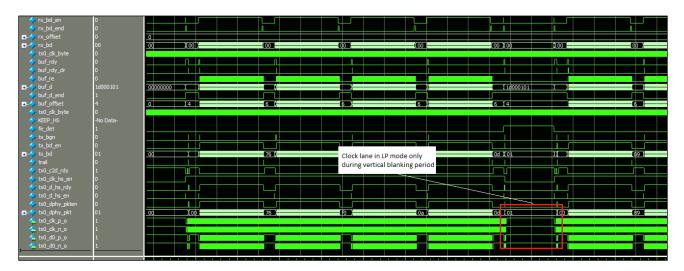


Figure 3.14. Global Sequence in Non-Continuous Clock Mode with KEEP_HS

This module takes care of four TX channels by communicating with four tx_dphy modules. Operations are almost similar to one TX channel output except for clock domain conversions, which lead to a few cycle delays in transactions.

3.6. tx_dphy

You must create this module according to channel conditions, such as number of lanes, bandwidth, and others. Figure 3.15 shows an example of IP interface setting in the Lattice Radiant software for the CSI-2/DSI D-PHY Transmitter Submodule IP. Refer to CSI-2/DSI D-PHY Tx IP User Guide (FPGA-IPUG-02080) for details.

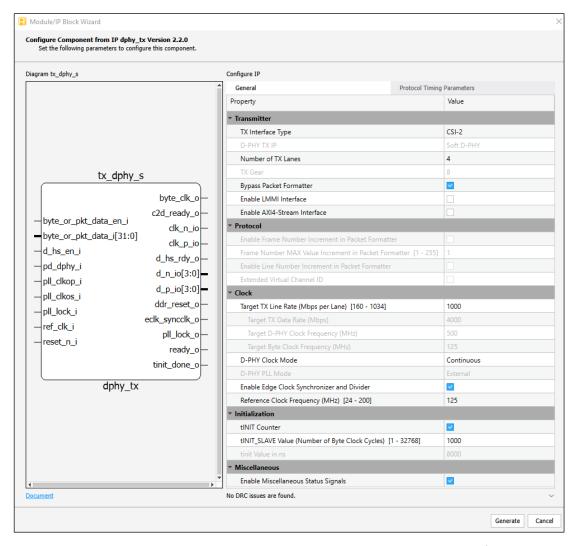


Figure 3.15. tx_dphy IP General Parameters Creation in the Lattice Radiant Software

The following are the guidelines for General parameter settings required for this reference design.

- TX Interface Type Select CSI-2 or DSI.
- DPHY TX IP CertusPro-NX Supports only Soft DPHY type.
- Number of TX Lanes Set according to channel configuration. Must match NUM TX LANE * setting.
- TX Gear Set according to TX Line Rate.
- Bypass packet formatter Always enable (checked) for SOFT DPHY channels.
- LMMI Interface Always disable (unchecked) for SOFT DPHY channels
- AXI Stream Interface Always disable (unchecked) for SOFT DPHY channels
- Periodic Skew calibration Always disable (unchecked) for SOFT DPHY channels
- Target TX Line Rate Set according to channel configuration. This value must be equal to or larger than (number of RX channel) × (RX channel bandwidth) / (number of TX lanes).
- D-PHY Clock Mode Set according to channel configuration. Select Continuous when the horizontal blanking period is short in DSI. In case of CSI-2, Non-continuous and defining KEEP_HS could be an option for short horizontal blanking.
- DPHY PLL Mode Set according to channel configuration.
- Reference Clock Frequency Set the appropriate value, which can be obtained from ext_clk_i pin, continuous rx_byte_clk_fr, or on-chip GPLL. This clock frequency must be in the range of 24–200 MHz.
- tINIT Counter Always enabled (checked) for SOFT DPHY channels.

- tINIT SLAVE Value Set to 1000 (default) is recommended.
- Miscellaneous status signals Always enabled (checked) for SOFT DPHY channels.
- After configuring required General parameters, select Generate shown in the bottom right corner of user interface.

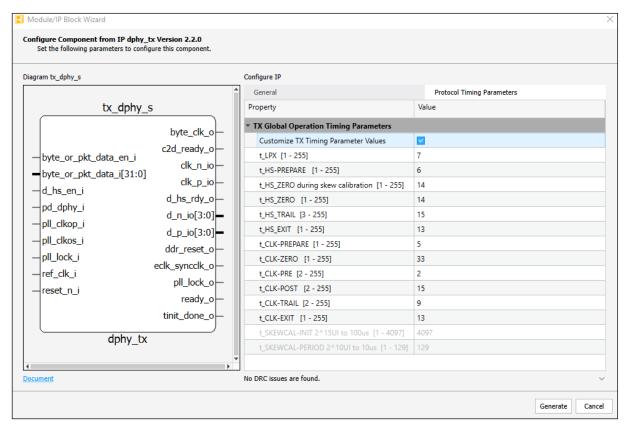


Figure 3.16. tx_dphy IP Protocol Timing Parameters Creation in the Lattice Radiant Software

The following are the guidelines for Protocol timing parameter settings required for this reference design.

- While generating a TX DPHY IP in the Lattice Radiant software, the Protocol timing parameters are set to appropriate values according to the TX DPHY General Clock settings as shown in Figure 3.16.
- If required to customize these values while creating TX DPHY IP, after configuring all General parameters, go to the Protocol Timing Parameters window, and enable (check) option Customize TX Timing Parameter Value. After changing the desired parameter value, Select Generate in user interface shown at the bottom left corner.
- For any configuration if DPHY LP00+HS00 transition Period is less than 300 ns, check t_CLK_ZERO value and modify such that (t_CLK_ZERO value × (TX Byte clock period in ns)) ≥ 300 ns. After changing the value, select Generate in user interface shown at the bottom right corner.
- For more information, refer to CSI-2/DSI D-PHY Tx IP User Guide (FPGA-IPUG-02080).

TX DPHY module takes the byte data and outputs DSI/CSI-2 data after serialization in HS mode. It is recommended to set the design name to tx and module name to tx for SOFT DPHY so that you do not need to modify the instance name of this IP in the top-level design as well as the simulation setup file. Otherwise, you need to modify the names accordingly.

General guideline of the TX Gear setting is to set it to 8 when the lane bandwidth is less than 900 Mbps, which means TX byte clock could be ~112 MHz. If this causes timing violations in Static Timing Analysis (STA), TX Gear should be changed to 16.

Be aware of the relationship between the reference clock and DPHY clock. DPHY clock is generated by the internal PLL of TX D-PHY IP. The following is the equation to generate DPHY clock:

$$TX_Line_Rate_per_lane = \frac{1}{NI} \times ref_clk_frequency \times \frac{M}{NO}$$

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

where NI = 1, 2, 3, 4, or 5; M = 16, 17, ..., or 255; NO = 1, 2, 4, or 8. The following restrictions also exist:

$$24MHz \leq \frac{1}{NI} \times ref_clk_frequency \leq 30 \; MHz,$$

$$640MHz \le \frac{1}{NI} \times ref_clk_frequency \times M \le 1500MHz$$

Set the appropriate TX Line Rate (per lane) which can be obtained by the above equations applying the given reference clock frequency.

3.7. Clock Distribution

In case of non-continuous clock (HS_LP) mode, two clock trees (non-continuous RX byte clock and continuous RX byte clock) exist in CertusPro-NX device. The following are possible candidates of the continuous clock in case of non-continuous clock mode:

- PLL outputs driven by the external reference clock
- Continuous clock by the external reference clock (either direct or after divider)

The sample design (mipi_duplicator_LFCPNX.v) has typical clock assignments to rx_clk_byte_fr and rx_clk_lp_ctrl according to the clock mode on RX channel. The code snippet is shown below. rx_clk_lp_ctrl (clock signal for LP and HS mode control module for clock lane) could be different from rx_clk_byte_fr (continuous byte clock for RX channel), but recommended to be the same to save the primary clock tree resources. *int_gpll* is the name used in this top-level design. This name has to be changed if the different name is used.


```
//// Clock distribution for Rx/Tx channels Byte clock
`ifdef RX CLK MODE HS ONLY
    assign rx clk byte fr = rx clk byte hs;
    assign rx clk lp ctrl = 1'b1;
`else
// User must provide the continuous RX byte clock from ext clk i or somewhere
    assign rx clk byte fr = pll clkop;
    assign rx clk byte fr = pll clkos;
//
    assign rx clk byte fr = pll clkos2;
    assign rx clk lp ctrl = ext clk i;
`endif
//// GPLL instantitation
`ifdef USE GPLL
    int gpll int gpll (
         .rstn i (1'b1),
    `ifdef RX CLK MODE HS LP
         .clki i (ext clk i),
    `else
         .clki i
                (rx clk byte fr),
    `endif
                (pll clkop),
         .clkop_o
    `ifdef RX CLK MODE HS LP
                          // Tx SOFT PLL clock
         .clkos o
                (pll clkos),
         .clkos2_o (pll_clkos2),
                          // Rx DPHY Byte clock
    `endif
//
         .clkos3 o (pll clkos3),
                          // Tx SOFT PLL clock (90-Degree)
         .lock o (gpll lock)
    );
endif
```

On TX side, using continuous or non-continuous clock mode does not affect the number of necessary clock trees (always uses one clock tree per TX channel). In general, using the same clock mode as RX side is recommended. Special care is needed when configured to use non-continuous mode on TX side while RX side uses continuous mode since LP-HS transition time on RX side might not be long enough to allow TX side to make LP-HS transitions, including the clock lane, which leads to FIFO overflow. To feed a clock to TX D-PHY IP, the external clock is necessary if continuous RX byte clock is not appropriate to generate the desired clock for TX D-PHY. The clock to TX D-PHY must be continuous and within the range 24–200 MHz.

4. Design and File Modifications

Depending on the clocking scheme, some modifications are required depending on your configuration in addition to two directive files (synthesis_directives.v, simulation_directives.v).

4.1. Top-Level RTL

The current top-level file (mipi_duplicator_LFCPNX.v) includes sample assignments and GPLL instantiation according to RX clock mode and external clock availability defined in synthesis_directives.v as described in the Clock Distribution section. This part may need to be modified depending on the clocking scheme.

In addition, instance names of RX/TX D-PHY (rx_dphy, tx_dphy_s) should be modified if you created these IP with different names.

5. Design Simulation

The script file (mipi_dup_LFCPNX_msim.do) and testbench files are provided to run the functional simulation using the QuestaSim Lattice Edition FPGA Edition software 2024.2. You have to launch the QuestaSim software from the Lattice Radiant software. If you follow the naming recommendations regarding design name and instance name when RX and TX D-PHY IPs are created by the Lattice Radiant software, the following are the only changes required in the script file.

- Lattice Radiant installation directory path
- Your project directory

Figure 5.1. Script Modification #1

```
### Compiling modules ###
vlog -sv -mfcu \
+incdir+"$project dir/int gpll/rtl/" \
+incdir+"$project dir/int osc/rtl/" \
+incdir+"$project dir/rx dphy/rtl/" \
+incdir+"$project dir/tx dphy s/rtl/" \
+incdir+"$project dir/source/verilog/lfcpnx/" \
+incdir+"$project dir/testbench/verilog/" \
$project dir/source/verilog/lfcpnx/synthesis directives.v \
$project dir/testbench/verilog/simulation directives.v \
$project dir/testbench/verilog/mipi duplicator LFCPNX tb.v \
$project dir/source/verilog/lfcpnx/mipi parser.v \
$project dir/source/verilog/lfcpnx/rx buffer.v \
$project dir/source/verilog/lfcpnx/tx ctrl.v \
$project dir/source/verilog/lfcpnx/tx dphy if.v \
$project dir/source/verilog/lfcpnx/clk xfer.v \
$project dir/rx dphy/rtl/rx dphy.v \
$project dir/source/verilog/lfcpnx/mipi duplicator LFCPNX.v \
$project dir/int osc/rtl/int osc.v \
$project dir/tx dphy s/rtl/tx dphy s.v \
$project dir/int gpll/rtl/int gpll.v \
vsim -voptargs=+acc=ap -t 10fs work.top -L pmi work -L ovi lfcpnx -c -do "add
wave -r top/* ;run -all; quit"
```

Figure 5.2. Script Modification #2

You need to modify simulation_directives.v according to your configuration (refer to Simulation Directives for details). By executing the script in the QuestaSim software, compilation and simulation are executed automatically. The testbench takes all data comparison between the expected data and output data from the RD, including VC, ECC and CRC data. It shows the following statements while running and doing data comparison.

```
# [19184968400] [DPHY_TX0_CHK] payload data = c1 e4 82 2e --- [19184968400] [DPHY_TX0_CHK] Data matches RX Data : c1 e4 82 2e

# [19185501600] [DPHY_TX3_CHK] payload data = 31 fb 51 f4 --- [19185501600] [DPHY_TX3_CHK] Data matches RX Data : 31 fb 51 f4

# [19185501600] [DPHY_TX2_CHK] payload data = 31 fb 51 f4 --- [19185501600] [DPHY_TX2_CHK] Data matches RX Data : 31 fb 51 f4

# [19185501600] [DPHY_TX1_CHK] payload data = 31 fb 51 f4 --- [19185501600] [DPHY_TX1_CHK] Data matches RX Data : 31 fb 51 f4

# [19185501600] [DPHY_TX0_CHK] payload data = 31 fb 51 f4 --- [19185501600] [DPHY_TX0_CHK] Data matches RX Data : 31 fb 51 f4

# [19186034800] [DPHY_TX3_CHK] payload data = 2e d0 0b bc --- [19186034800] [DPHY_TX3_CHK] Data matches RX Data : 2e d0 0b bc
```

When the simulation is finished, the following statements are shown:

```
# [19491025200] [DPHY TX3 CHK] Trail Bytes = ff ff ff ff --- Check OK
\# [19491025200][DPHY TX2 CHK] Trail Bytes = ff ff ff ff --- Check OK
# [19491025200] [DPHY TX1 CHK] Trail Bytes = ff ff ff ff --- Check OK
# [19491025200][DPHY TX0 CHK] Trail Bytes = ff ff ff ff --- Check OK
# [19502723100][DPHY TXO HS LP CHK] HS-TRAIL period is too short or too long on DO lane or clock lane is
not in HS mode!!! HS TRAIL period = 0 ns, must be between 62 and 112 ns!!!
# [19502723100][DPHY_TX1_HS_LP_CHK] HS-TRAIL period is too short or too long on D0 lane or clock lane is
not in HS mode!!! HS TRAIL period = 0 ns, must be between 62 and 112 ns!!!
# [19502723100][DPHY TX2 HS LP CHK] HS-TRAIL period is too short or too long on D0 lane or clock lane is
not in HS mode!!! HS TRAIL period = 0 ns, must be between 62 and 112 ns!!!
# [19502723100][DPHY TX3 HS LP CHK] HS-TRAIL period is too short or too long on D0 lane or clock lane is
not in HS mode!!! HS TRAIL period = 0 ns, must be between 62 and 112 ns!!!
          21666778200 DPHY RX CH CLK CONT : Driving CLK-Trail
          21672719800 TEST END
# TX CH #0 : 18 / 18 HS transmission completed successfully
\# TX CH \#2 : 18 / 18 HS transmission completed successfully
# TX CH #3 : 18 / 18 HS transmission completed successfully
### Simulation Completed ###
```

One HS transmission is most likely either Frame Start/End short packet or long packet of one active video line in case of CSI-2. In case of DSI, one HS transmission might include multiple short and long packets. The result is if the numerator is equal to denominator in the statements.

You should set small values in NUM_LINES and NUM_FRAMES directives in simulation_directives.v file, especially in the first simulation trial to minimize simulation time. On the other hand, it makes sense to set the actual value to NUM_PIXELS directives and RX_DPHY_LPS_GAP directives when TX bandwidth cannot have extra margin against total RX bandwidth. By setting realistic values, FIFO overflow is detected when the margin is not large enough.

Figure 5.3 shows an example of CSI-2 duplication of four TX channels with the RX channel in non-continuous clock mode and TX channels in continuous clock mode. RX and TX both are four-lane. RX and TX lane bandwidth is 1500 Mbps, which means total bandwidth of RX and TX channel is $(1500 \times 4 \text{ lane} = 6000 \text{ Mbps})$. In this case, BD_RD_DLY is set to 10. As shown in the figure for TX0 channel, similar behavior can be also seen for remaining three Channels TX1, TX2, and TX3.

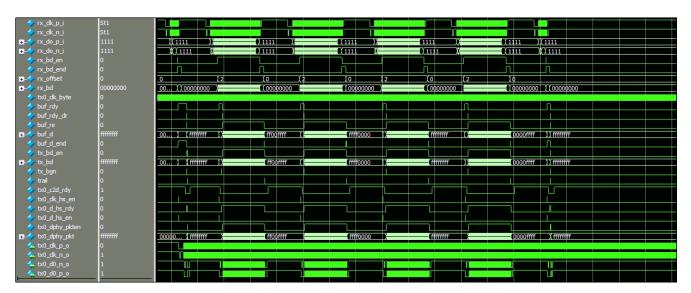


Figure 5.3. Functional Simulation Example of CSI-2 with Four Continuous Clock Mode TX Channels

6. Known Limitations

The following are the limitations of this reference design:

- Data lane(s) must go into LP (Low Power) mode during horizontal blanking periods.
- In case of two or more channel output, all the TX channels must have the same configuration.

Design Package and Project Setup

1 to N MIPI CSI-2/DSI Duplicator Reference Design for CertusPro-NX is available on the Lattice Semiconductor web page. Figure 7.1 shows the directory structure. The design is targeted for LFCPNX-100-7LFG672I. The reference design is to duplicate single MIPI CSI2 RX Channel to four MIPI CSI2 TX Channels. synthesis_directives.v and simulation_directives.v are set to configure single-lane RX and four-lane TX channels of the design as shown below:

- RX CH 4 lane with Soft D-PHY with Gear 8 in Non-continuous clock mode
- TX CH #0 4 lane with Soft D-PHY with Gear 8 in continuous clock mode using External PLL mode
- TX CH #1 4 lane with Soft D-PHY with Gear 8 in continuous clock mode using External PLL mode
- TX CH #2 4 lane with Soft D-PHY with Gear 8 in continuous clock mode using External PLL mode
- TX CH #3 4 lane with Soft D-PHY with Gear 8 in continuous clock mode using External PLL mode

You can modify the directives for own configuration.

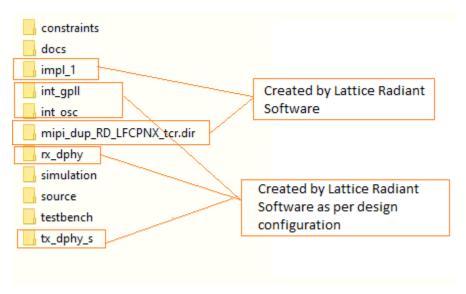


Figure 7.1. Directory Structure

The Lattice Radiant Design IP folders namely rx_dphy , tx_dphy_s , int_gpll and int_osc are included under your project directory when created from IP Catalog of the Lattice Radiant software.

For RX DPHY the closed-box files (*_bb.v) are contained in the rx_dphy/rtl/ folder. Similarly, for other IPs generated from the Lattice Radiant software IP Catalog, the closed-box files are present in their respective /rtl/ folder.

Figure 7.2 shows design files used in this Lattice Radiant project. The Lattice Radiant software creates five (.ipx) files. By keeping the synthesis_directives.v file on top in the Input Files Folder and specifying mipi_duplicator_LFCPNX.v as a top-level design, all necessary files are included and they can be seen in the Design hierarchy window only if the design is loaded without any errors. Required (.ipx) files must be added or generated from the Lattice Radiant software IP Catalog if necessary.

33

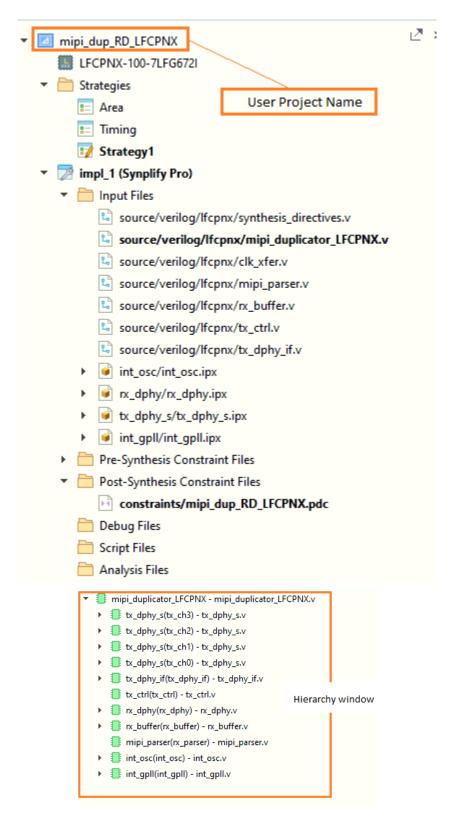


Figure 7.2. Project Files in the Lattice Radiant Software

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02240-1.2

8. Resource Utilization

Resource utilization depends on the configurations and IP version. Table 8.1 shows resource utilization of this Reference Design configuration. Actual usage may vary.

Table 8.1. Resource Utilization for the Reference Design

Configuration	LUT (Utilization/Total)	FF (Utilization/Total)	EBR (Utilization/Total)	I/O (Utilization/Total)
CSI2 RX channel with four-lane, Gear 8 to Four CSI2 TX channels with four lanes, Gear 8	2623/79872	2138/80769	1/208	52/299
CSI2 RX channel with one-lane, Gear 8 to Two CSI2 TX channels with one-lane, Gear 8	1142/79872	862/80769	1/208	13/299
DSI RX channel with four lanes, Gear 8 to Three DSI TX channels with four lanes, Gear 8	2199/79872	1826/80769	1/208	41/299
DSI RX channel with one-lane, Gear 8 to Three DSI TX channels with one lane, Gear 8	1289/79872	1003/80769	1/208	17/299

References

- MIPI Alliance Specification for D-PHY Version 1.2
- MIPI Alliance Specification for Camera Serial Interface 2 (CSI-2) Version 1.2
- MIPI Alliance Specification for Display Serial Interface (DSI) Version 1.2
- CSI-2/DSI D-PHY Rx IP User Guide (FPGA-IPUG-02081)
- CSI-2/DSI D-PHY Tx IP User Guide (FPGA-IPUG-02080)
- CertusPro-NX web page
- 1 to N MIPI CSI-2/DSI Duplicator Reference Design web page
- Lattice Radiant Software web page
- Lattice Insights for Lattice Semiconductor training courses and learning plans

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport. For frequently asked questions, refer to the Lattice Answer Database at www.latticesemi.com/Support/AnswerDatabase.

Revision History

Revision 1.2, March 2025

Section	Change Summary
All	Performed minor editorial fixes.
Disclaimers	Updated disclaimers.
Inclusive Language	Added inclusive language boilerplate.
Introduction	 Updated the compatible IP versions supported in Table 1.1. Supported Device and IP. Updated the description on clocking scheme examples for external PLL mode in the Block Diagram and Clocking Scheme section.
Design and Module Description	 Updated the rx_dphy section. Updated IP version. Removed CIL Bypass parameter settings. Added description on the Soft PHY tab. Updated the following figures: Figure 3.1. rx_dphy IP Creation in the Lattice Radiant Software Figure 3.2. rx_dphy IP Creation Continued in the Lattice Radiant Software Figure 3.15. tx_dphy IP General Parameters Creation in the Lattice Radiant Software Figure 3.16. tx_dphy IP Protocol Timing Parameters Creation in the Lattice Radiant Software Removed figure: tx_dphy IP General Parameters Creation Continued in Lattice Radiant Software. Removed CIL Bypass parameter settings in the tx_dphy section. Updated the code in the Clock Distribution section.
Design Simulation	Changed ModelSim to QuestaSim in the Design Simulation section.
Design Package and Project Setup	Changed blackbox to closed-box in the Design Package and Project Setup section.
Resource Utilization	Mentioned that the resource utilization depends on IP version.
References	Updated references.
Technical Support Assistance	Added link to the Lattice Answer Database.

Revision 1.1, September 2022

Section	Change Summary
Introduction	 In Table 1.1. Supported Device and IP: updated Compatible IP. In the RX/TX Permutations section:
	added a description of the excel file for the parameter calculator.
Design and Module Description	 Updated: Figure 3.1. rx_dphy IP Creation in Lattice Radiant Software; Figure 3.2. rx_dphy IP Creation Continued in Lattice Radiant Software; Figure 3.15. tx_dphy IP General Parameters Creation in Lattice Radiant Software; Figure 3.16. tx_dphy IP General Parameters Creation Continued in Lattice Radiant Software; Figure 3.17. tx_dphy IP Protocol Timing Parameters Creation in Lattice Radiant Software. In the tx_dphy_if section: changed tx_c2d_rdy = 1 to tx0_c2d_rdy = 1 in step 2.
Design Simulation	Updated Figure 5.1. Script Modification #1 and Figure 5.2. Script Modification #2.

Revision 1.0, September 2021

Section	Change Summary
All	Initial release.

www.latticesemi.com