
FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 1 of 17

Product Bulletin

Workaround for Lattice ECP5 (LFE5UM) Known Issue with
SerDes Interface Connections Due to Unstable Reset Soft Logic

Product Affected: All ECP5 and ECP5-5G with SerDes(LFE5UM and LFE5UM-5G) devices are

covered by this Product Bulletin.

Customers Affected: Only customers using SerDes/PCS-based designs. It potentially affects

several applications such as PCIe IP, g8B10B, and other PCS supported protocol. The

workaround is organized on a single channel basis, contact your local Lattice representative for

other use cases.

Background: The Lattice Semiconductor ECP5 FPGA devices may contain SerDes. These parts

with SerDes can be implemented through Clarity Designer by using the PCS module. The PCS

module comes with a custom soft logic reset, which helps users automatically reset the receiver

portion of the PCS.

Observation: Lattice found that in specific situations, the original soft logic reset is not as stable

as intended. Some unexpected behaviors include the Receiver CDR failing to lock and the

receiver data being unstable. This document provides the workaround procedure to resolve these

issues.

Detailed Workaround Description:

This workaround is organized on a single channel basis, contact your local Lattice representative

for other use cases.

Lattice developed a workaround procedure that implements ‘extended Reset Soft Logic = extRSL’
to bring-up the SerDes/PCS at a stable state. The workaround is to remove the current receiver
reset signals from the current RSL and add a new module that will drive the receiver reset signals
instead.

The new source code contains the necessary functions for a detailed signal monitoring and
controlled reset scenario. It is the single point of control for all the receiver resets in the PCS
portion of the design. The transmitter reset signals will still be driven by the original RSL.

It supports the controlled reset sequencing for the different blocks, such as:

▪ Default power-up situation: Enhanced power-up reset sequence for higher stability. (Refer
to Figure 10)

▪ Receiver Clock Data Recovery block is locked and stable. (Refer to Figure 11)
▪ PCS block is locked and stable. (Refer to Figure 12)

If these settings are detected, the design releases all resets, resulting to a stable design.

If any of the cases below occurs, the reset scenario starts from the beginning (Refer to Figure 13):

▪ Code violation error the FSM restarts the PCS again.
▪ RX loss of signal or the TX_PLL will lose its lock.

For the cascaded resets of different functions in the SerDes, the user can select default reset
periods as minimum step width. These variables are counter timers for specific portions of the
reset sequence and optimized for this workaround. The “Tplol” value is the amount of time

April 2024 FPGA-PB-02001

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 2 of 17

transmit PLL to lock, “Tcdr” is the amount of time receiver CDR has to lock and “Tviol” is the
amount of time to wait for code violation and disparity error before concluding the PCS is correct.
Note that depending on your design, these values might have to be adjusted. For example, if the
reference clock used for the Transmit PLL is more jittery, the “Tplol” might have to be adjusted to
a higher value. (Refer to Figure 14)

Note:
The extended Reset Soft Logic is instantiated into the PCS block generated from Clarity Designer.
Keep in mind that once “rx_rsl” is instantiated to the PCS block, every new generation in Clarity
overrides the user’s modification so make sure to save your work beforehand.

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 3 of 17

Overview Block Diagram of the Workaround:

Note:

1. Connected to the user logic. The signal should be added to the PCS module.
Example: can be connected to PLL lock.

2. Debug signal.

Signal Name Direction Description

refclk input Connected to TX PLL Reference Clock.

pll_lol input TX PLL Loss of Lock Output.

cdr_lol input CDR PLL Loss of Lock Output.

cv input Connect this to rx_cv_err_ch. This is a code violation signal to indicate an error was
detected with the associated data.

lsm input Connected to lsm_status_s.

los input Connected to rx_los_low_s.

disable_rx_pcs_rst input Test signal for debug purposes only.

rx_serdes_rst output Connected to the net of RX SerDes RSL signal (rsl_rx_serdes_rst_c)

rx_pcs_rst output Connected to the net of RX PCS RSL signal (rsl_rx_pcs_rst_c)

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 4 of 17

Issue Avoidance when using PCS IP:

To implement the new RSL Logic:

1. Start the PCS IP generation. After the generation, you should have the new PCS module
added to your design. Then, place the PCS Module in the desired location.

Figure 1: PCS IP assigned to DCU0 at Channel1

2. Add the new RSL logic file (rx_rsl.vhd) to the existing implementation/input files.

Figure 2: Addition of Source File for Extended RSL

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 5 of 17

3. Remove the current signals “rsl_rx_serdes_rst_c” and “rsl_rx_pcs_rst_c” from the PCS file and
add the “rx_rsl” module instead for the RX SerDes and PCS RSL. Connections are shown
below. Refer to the appendix for the source code and instantiation.

Figure 3: (a) Remove Current RSL (b) Add the rx_rsl to PCS module.

Figure 4: rx_rsl embedded into the PCS Block Generated from Clarity

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 6 of 17

Issue Avoidance when using PCIe IP:

To implement the new RSL Logic:

4. Start the PCIe IP generation. After the generation, you should have the new PCS module
added to your design. Then, place the PCS Module in the desired location.

Figure 5: PCIe IP assigned to DCU0 at Channel1

5. Add the new RSL logic file (rx_rsl.vhd) to the existing implementation/input files.

Figure 6: Addition of Source File for Extended RSL

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 7 of 17

6. Remove the current signals “rsl_rx_serdes_rst_c” and “rsl_rx_pcs_rst_c” from the PCS file and
add the “rx_rsl” module instead for the RX SerDes and PCS RSL. Connections are shown
below. Refer to the appendix for the source code and instantiation.

Figure 7: (a) Remove Current RSL (b) Add the rx_rsl to PCS module.

Figure 8: PCIe core to PCS sample hierarchy

Figure 9: rx_rsl embedded into the PCS Block of the PCIe IP

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 8 of 17

Customer Acknowledgement:

By using the affected devices, the customer acknowledges that single-channel SerDes/PCS

based designs have connection issues due to unstable reset soft logic and that instructions on

how to avoid this scenario has been provided.

Contact:

If you have any questions or require additional information, contact Lattice Technical Support through

www.latticesemi.com/techsupport.

http://www.latticesemi.com/techsupport

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 9 of 17

Source code:

--rx_rsl.vhd content

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity rx_rsl is
 port
 (
 rstn : in std_logic;
 refclk : in std_logic;
 pll_lol : in std_logic;
 cdr_lol : in std_logic;
 cv : in std_logic;
 lsm : in std_logic;
 los : in std_logic;
 disable_rx_pcs_rst : in std_logic;

 rx_serdes_rst : out std_logic;
 rx_pcs_rst : out std_logic
);
end rx_rsl;

architecture rx_rsl_arc of rx_rsl is

attribute syn_keep : boolean;

--
-- Constants Declaration --
--

constant Tplol : std_logic_vector (31 downto 0):=x"00100000";
constant Tcdr : std_logic_vector (31 downto 0):=x"00100000";
constant Tviol : std_logic_vector (31 downto 0):=x"00100000";

-- Internal Variables --

signal pll_lol_s : std_logic;
signal cdr_lol_s : std_logic;
signal cv_s : std_logic;
signal lsm_s : std_logic;
signal los_s : std_logic;

signal cnt : std_logic_vector (31 downto 0);

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 10 of 17

type rx_sm_state is (powerup, apply_cdr_rst, wait_cdr_lock, test_cdr, apply_rxpcs_rst, wait_rxpcs_lock,
test_rxpcs, idle);

signal rx_sm : rx_sm_state;
attribute syn_keep of rx_sm : signal is true;

begin

--
-- Begin Of The Design --
--

--
rx_reset_proc : process (rstn, refclk)
begin
if rstn = '0' then
 pll_lol_s <= '1';
 cdr_lol_s <= '1';
 cv_s <= '1';
 lsm_s <= '0';
 los_s <= '1';

 rx_serdes_rst <= '1';
 rx_pcs_rst <= '1';

 rx_sm <= powerup;
 cnt <= (others => '0');
elsif rising_edge(refclk) then
 pll_lol_s <= pll_lol;
 cdr_lol_s <= cdr_lol;
 cv_s <= cv;
 lsm_s <= lsm;
 los_s <= los;

 case rx_sm is
 when powerup =>
 rx_serdes_rst <= '1';
 rx_pcs_rst <= '1' AND NOT(disable_rx_pcs_rst);
 if (pll_lol_s = '1') or (los_s = '1') then
 cnt <= (others => '0');
 else
 if (cnt = Tplol) then
 cnt <= (others => '0');
 rx_sm <= apply_cdr_rst;
 else
 cnt <= cnt + '1';
 end if;
 end if;
--

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 11 of 17

 when apply_cdr_rst =>
 rx_serdes_rst <= '1';
 rx_pcs_rst <= '1' AND NOT(disable_rx_pcs_rst);
 if (cnt = x"00000007") then
 cnt <= (others => '0');
 rx_sm <= wait_cdr_lock;
 else
 cnt <= cnt + '1';
 end if;
 when wait_cdr_lock =>
 rx_serdes_rst <= '0';
 rx_pcs_rst <= '1' AND NOT(disable_rx_pcs_rst);
 if (cnt = Tcdr) then
 cnt <= (others => '0');
 rx_sm <= test_cdr;
 else
 cnt <= cnt + '1';
 end if;
 when test_cdr =>
 rx_serdes_rst <= '0';
 rx_pcs_rst <= '1' AND NOT(disable_rx_pcs_rst);
 if (cdr_lol_s = '1') then
 cnt <= (others => '0');
 rx_sm <= apply_cdr_rst;
 else
 if (cnt = Tcdr) then
 cnt <= (others => '0');
 rx_sm <= apply_rxpcs_rst;
 else
 cnt <= cnt + '1';
 end if;
 end if;
--
 when apply_rxpcs_rst =>
 rx_serdes_rst <= '0';
 rx_pcs_rst <= '1' AND NOT(disable_rx_pcs_rst);
 if (cnt = x"00000007") then
 cnt <= (others => '0');
 rx_sm <= wait_rxpcs_lock;
 else
 cnt <= cnt + '1';
 end if;
 when wait_rxpcs_lock =>
 rx_serdes_rst <= '0';
 rx_pcs_rst <= '0';
 if (cnt = Tviol) then
 cnt <= (others => '0');
 rx_sm <= test_rxpcs;
 else
 cnt <= cnt + '1';
 end if;

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 12 of 17

 when test_rxpcs =>
 rx_serdes_rst <= '0';
 rx_pcs_rst <= '0';
 if (lsm_s = '0') or (cv_s = '1') then
 cnt <= (others => '0');
 rx_sm <= apply_rxpcs_rst;
 else
 if (cnt = Tviol) then
 cnt <= (others => '0');
 rx_sm <= idle;
 else
 cnt <= cnt + '1';
 end if;
 end if;
--
 when idle =>
 rx_serdes_rst <= '0';
 rx_pcs_rst <= '0';
 if (lsm_s = '0') or (cv_s = '1') then
 rx_sm <= apply_rxpcs_rst;
 cnt <= (others => '0');
 end if;
 end case;

 if (pll_lol_s = '1') or (los_s = '1') then
 rx_sm <= powerup;
 cnt <= (others => '0');
 end if;

end if;
end process rx_reset_proc;
--

end rx_rsl_arc;

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 13 of 17

rx_rsl contents definitions:

Figure 10: Default Power-up Situations

Figure 11: Clock Data Recovery Block is Locked and Stable

▪ rx_rsl.vhd
▪ The controlled reset sequencing for the different

blocks such as:
▪ Default power up situation:

(PLL is stable and RX loss of signal is
detected)

▪ Clock data recovery block is locked and
stable.

▪ PCS block is locked and stable.
▪ If these settings are detected, the design releases

all resets and becomes stable.
▪ However, in case of any code violation error, the

FSM restarts the PCS again; and
▪ If any RX loss of signal or the TX_PLL will lose its

lock, then the reset scenario starts from the
beginning.

▪ rx_rsl.vhd
▪ The controlled reset sequencing for the different

blocks such as:
▪ Default power up situation:

(PLL is stable and RX loss of signal is
detected)

▪ Clock data recovery block is locked and
stable.

▪ PCS block is locked and stable.
▪ If these settings are detected, the design releases

all resets and becomes stable.
▪ However, in case of any code violation error, the

FSM restarts the PCS again; and
▪ If any RX loss of signal or the TX_PLL l its lock,

then the reset scenario starts from the beginning.

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 14 of 17

Figure 12: PCS Block is Locked and Stable

Figure 13: Use in Case of Any Code Violation Error

Figure 14: Reset Periods as Minimum Step Width

▪ rx_rsl.vhd
▪ The controlled reset sequencing for the different

blocks such as:
▪ Default power up situation:

(PLL is stable and RX loss of signal is
detected)

▪ Clock data recovery block is locked and
stable.

▪ PCS block is locked and stable.
▪ If these settings are detected, the design releases

all resets and becomes stable.
▪ However, in case of any code violation error, the

FSM restarts the PCS again; and
▪ If any RX loss of signal or the TX_PLL loses its

lock, then the reset scenario start from the
beginning.

▪ rx_rsl.vhd
▪ The controlled reset sequencing for the different

blocks such as:
▪ Default power up situation:

(PLL is stable and RX loss of signal is
detected)

▪ Clock data recovery block is locked and stable.
▪ PCS block is locked and stable.

▪ If these settings are detected, the design releases all
resets and becomes stable.

▪ However, in case of any code violation error, the FSM
restarts the PCS again; and

▪ If any RX loss of signal or the TX_PLL loses its lock,
then the reset scenario starts from the beginning.

▪ rx_rsl.vhd
▪ For the cascaded resets of different

functions in the SerDes, user can select
default reset periods as minimum step
width.

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 15 of 17

rx_rsl Instantiation:

rx_rsl rx_rsl (
 .rstn (~rsl_rst),
 .refclk (pll_refclki),
 .pll_lol (pll_lol),
 .cdr_lol (rx_cdr_lol_s),
 .cv (rx_cv_err[0]),
 .lsm (lsm_status_s),
 .los ((rx_los_low_s | rx_loss)),
 .disable_rx_pcs_rst (disable_rx_pcs_rst),

 .rx_serdes_rst (rsl_rx_serdes_rst_c),
 .rx_pcs_rst (rsl_rx_pcs_rst_c)
);

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 16 of 17

Revision History

Revision 1.1, April 2024

Section Change Summary

All • Updated the affected customers, parameter names, and some terminologies

• Added the block diagram of the workaround

• Separated the steps for PCS IP & PCIe IP

Revision 1.0, June 2021

Section Change Summary

All Initial release

FPGA-PB-02001 Workaround for Lattice ECP5 (LFE5UM)
Known Issue with SerDes Interface Connections Due to

Unstable Reset Soft Logic

Page 17 of 17

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is
entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have
been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify
the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in
this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to
any products at any time without notice.

