

CrossLink-NX VGA MobileNet Human
Counting on VVML Board

Reference Design

FPGA-RD-02231-1.0

June 2021

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02231-1.0

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 3

Contents
Acronyms in This Document ... 7
1. Introduction .. 8

1.1. Design Process Overview .. 8
2. Setting up the Basic Environment .. 9

2.1. Software and Hardware Requirements ... 9
2.1.1. Lattice Software ... 9
2.1.2. Hardware .. 9

2.2. Setting Up the Linux Environment for Machine Training .. 10
2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU 10
2.2.2. Setting Up the Environment for Training, Freezing, and Pruning .. 12
2.2.3. Installing TensorFlow version 1.14 ... 13
2.2.4. Installing the Python Package .. 14
2.2.5. Setting Up the Pruning Environment ... 14

3. Preparing the Dataset ... 15
3.1. Downloading the Dataset .. 15
3.2. Visualizing and Tuning/Cleaning Up the Dataset .. 17
3.3. Data Augmentation ... 18

3.3.1. Running the Augmentation .. 18
3.3.2. Generating Anchors from Dataset (Optional) .. 20

4. Training the Machine .. 21
4.1. Training Code Directory Structure .. 21
4.2. Neural Network Architecture .. 22

4.2.1. Human Count Training Network Layers ... 22
4.2.2. Human Count Detection Network Output ... 24
4.2.3. Training Code Overview ... 25

4.3. Pruning .. 34
4.4. Finding the Optimal Model ... 35
4.5. Training from Scratch and/or Transfer Learning ... 36

5. Evaluating the Model .. 40
5.1. Converting Keras Model to TensorFlow File ... 40
5.2. Running Inference on Test Set .. 40
5.3. Calculating mAP .. 41

6. Creating Binary File with Lattice sensAI .. 42
7. Hardware Implementation ... 46

7.1. Top Level Information ... 46
7.1.1. Block Diagram ... 46
7.1.2. Operational Flow .. 46
7.1.3. Core Customization .. 47
7.1.4. Architecture Details .. 48
7.1.5. Pre-processing CNN .. 49
7.1.6. HyperRAM Operations ... 49
7.1.7. Post Processing CNN .. 50

8. Creating FPGA Bitstream File .. 60
8.1. Generating Bitstream using Lattice Radiant Software .. 60
8.2. Configuring IP in Lattice Radiant Software .. 63

9. Programming the Demo ... 66
9.1. Load Firmware in FX3 I2C EEPROM ... 66
9.2. Programming the CrossLink-NX VVML Board, Rev B SPI Flash .. 67

9.2.1. Erasing the CrossLink-NX VVML Board, Rev B SRAM Prior to Reprogramming ... 67
9.2.2. Programming the CrossLink-NX VVML Board, Rev B Board ... 68
9.2.3. Programming sensAI Firmware Binary to the CrossLink-NX VVML SPI Flash ... 71

10. Running the Demo .. 73

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02231-1.0

Appendix A. Other Labeling Tools ... 74
References .. 75
Technical Support Assistance ... 76
Revision History .. 77

Figures
Figure 1.1.Lattice Machine Learning Design Flow .. 8
Figure 2.1. CrossLink-NX Voice and Vision Machine Learning Board, Rev B ... 9
Figure 2.2. CUDA Repo Download .. 10
Figure 2.3. CUDA Repo Installation ... 10
Figure 2.4. Fetch Keys ... 10
Figure 2.5. Updated Ubuntu Packages Repositories ... 11
Figure 2.6. CUDA Installation Completed ... 11
Figure 2.7. cuDNN Library Installation .. 11
Figure 2.8. Anaconda Installation ... 12
Figure 2.9. License Terms Acceptance .. 12
Figure 2.10. Installation Location .. 12
Figure 2.11. Launch/Initialization of Anaconda Environment .. 12
Figure 2.12. Anaconda Environment Activation ... 13
Figure 2.13. TensorFlow Installation ... 13
Figure 2.14. TensorFlow Installation Confirmation .. 13
Figure 2.15.TensorFlow Installation Completed ... 13
Figure 2.16. Easydict Installation .. 14
Figure 2.17. OpenCV Installation .. 14
Figure 2.18. setup_optimization_env Directory Structure ... 14
Figure 2.19. Setup Optimization Environment ... 14
Figure 3.1. Open Source Dataset Repository Cloning ... 15
Figure 3.2. OIDv4_Toolkit Directory Structure ... 15
Figure 3.3. Dataset Script Option/Help ... 16
Figure 3.4. Dataset Downloading Logs.. 16
Figure 3.5. Downloaded Dataset Directory Structure... 16
Figure 3.6. OIDv4 Label to KITTI Format Conversion .. 16
Figure 3.7. Toolkit Visualizer ... 17
Figure 3.8. Manual Annotation Tool – Cloning ... 17
Figure 3.9. Manual Annotation Tool – Directory Structure .. 17
Figure 3.10. Manual Annotation Tool – Launch .. 18
Figure 3.11. Augmentation Directory Structure ... 18
Figure 3.12. Running the Augmentation ... 18
Figure 3.13. Running the Script to Generate Anchors .. 20
Figure 4.1. Training Code Directory Structure .. 21
Figure 4.2. Training Code Flow Diagram ... 25
Figure 4.3. Code Snippet – Class Name .. 26
Figure 4.4. Code Snippet – Input Image Size Config ... 26
Figure 4.5. Code Snippet – Anchors Per Grid Config #1 (grid sizes) .. 26
Figure 4.6. Code Snippet – Anchors per Grid Config #3 .. 27
Figure 4.7. Code Snippet – Training Parameters .. 27
Figure 4.8. Code Snippet – Forward Graph Fire Layers .. 28
Figure 4.9. Code Snippet – Forward Graph Last Convolution Layer ... 28
Figure 4.10. Code Snippet: Input Image Size Configuration ... 29
Figure 4.11. Grid Output Visualization #2 ... 29
Figure 4.12. Code Snippet – Interpret Output Graph ... 30
Figure 4.13. Code Snippet – Bbox Loss ... 30
Figure 4.14. Code Snippet – Confidence Loss ... 31

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 5

Figure 4.15. Code Snippet – Class Loss ... 31
Figure 4.16. Code Snippet – Dataset Iterator ... 32
Figure 4.17. Code Snippet – Scale Image .. 32
Figure 4.18. Code Snippet – Reduce Learning rate on plateau .. 32
Figure 4.19. Code Snippet – Save ... 32
Figure 4.20. Code Snippet – Transfer Learning ... 33
Figure 4.21. Code Snippet – Freeze Layers ... 33
Figure 4.22. Code Snippet – Set Layer Sparsity .. 34
Figure 4.23. Code Snippet – Determine Pruned Channels ... 34
Figure 4.24. Relation Between # Layers Versus Accuracy Versus FPS .. 35
Figure 4.25. Training Input Parameter .. 36
Figure 4.26. Execute training Script .. 37
Figure 4.27. Execute training with transfer learning .. 37
Figure 4.28. Execute training with transfer learning + frozen layers .. 37
Figure 4.29. TensorBoard – Generated Link ... 37
Figure 4.30. TensorBoard ... 38
Figure 4.31. Backbone Graph ... 38
Figure 4.32. Example of Files at Log Folder .. 39
Figure 4.33. Example of Checkpoint and Trained Model .. 39
Figure 5.1. Keras to tf converter Directory ... 40
Figure 5.2. Inference Directory ... 40
Figure 5.3. Run Inference ... 40
Figure 5.4. Inference Output .. 40
Figure 5.5. mAP Directory Structure ... 41
Figure 5.6. mAP Calculation .. 41
Figure 6.1. sensAI Home Screen ... 42
Figure 6.2. sensAI –Network File Selection ... 43
Figure 6.3.sensAI –Image Data File Selection ... 43
Figure 6.4. sensAI – Project Settings ... 44
Figure 6.5. sensAI – Analyze Project ... 44
Figure 6.6. Q Format Settings for Each Layer ... 45
Figure 6.7. Compile Project .. 45
Figure 7.1. RTL Top Level Block Diagram .. 46
Figure 7.2. SPI Read Command Sequence .. 48
Figure 7.3. HyperRAM Memory Addressing ... 49
Figure 7.4. HyperRAM Access Block Diagram ... 50
Figure 7.5. CNN Output Data Format ... 51
Figure 7.6. Confidence Sorting ... 52
Figure 7.7. Intersection-Union Area NMS ... 54
Figure 7.8. CNN Counter Design ... 56
Figure 7.9. Frame Counter Design for 16 CNN Frames Average ... 56
Figure 7.10. Average Inference Time Calculation ... 56
Figure 7.11. Inference Time in Millisecond... 57
Figure 7.12. Average Inference Time Value to ASCII Conversion ... 57
Figure 7.13. CNN Count Values to ASCII Conversion .. 58
Figure 7.14. Inference time in millisecond values to ASCII conversion .. 58
Figure 7.15.Text Address Positions to Display Input Values ... 58
Figure 7.16. Address Locations to Display Individual Frame Time and Inference Time with String in Display 58
Figure 7.17. Address Locations to Display CNN Count Value and its String in Display Output ... 59
Figure 7.18. Bitmap Extraction from Font ROM ... 59
Figure 8.1. Lattice Radiant – Default Screen ... 60
Figure 8.2. Lattice Radiant – Open CrossLink-NX VVML Board, Rev B Project File (.rdf) .. 60
Figure 8.3. Lattice Radiant – Design load check after opening Project File .. 61
Figure 8.4. Lattice Radiant – Trigger Bitstream Generation ... 61

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02231-1.0

Figure 8.5. Lattice Radiant – Bit file Generation Report Window ... 62
Figure 8.6. Lattice Radiant – Uninstall Old IP .. 63
Figure 8.7. Lattice Radiant – Install New IP .. 64
Figure 8.8. Lattice Radiant – Select User IP Package .. 64
Figure 8.9. Lattice Radiant – IP License Agreement .. 65
Figure 9.1. Selecting FX3 I2C EEPROM in USB Control Center ... 66
Figure 9.2. Lattice Radiant Programmer – Default Screen ... 67
Figure 9.3. Lattice Radiant Programmer – Device Selection ... 67
Figure 9.4. Lattice Radiant Programmer – Device Operation ... 68
Figure 9.5. Lattice Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing 69
Figure 9.6. CrossLink-NX VVML Board Flashing Switch – SW5 Push Button ... 70
Figure 9.7. Lattice Radiant Programmer – Output Console .. 70
Figure 9.8. Lattice Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing 71
Figure 9.9. Lattice Radiant Programmer – Output Console .. 72
Figure 10.1. Running the Demo .. 73

Tables
Table 4.1. Convolution Network Configuration of Human Count Detection Design .. 22
Table 4.2. Model Performance Data with Models with Dw 1 × 1 Conv .. 35
Table 4.3. Model Performance Data with Dataset Augmentation ... 35
Table 7.1. Core Parameter .. 47
Table 7.2. Data Parameters of CNN Output .. 51
Table 7.3. Pre-Selected Width and Height of Anchor Boxes ... 53
Table 7.4. Grid Center Values (X, Y) for Anchor Boxes .. 54
Table 7.5. Signal Values to ASCII Conversion .. 57
Table A.1. Other Labeling Tools .. 74

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 7

 Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

CKPT Checkpoint

CNN Convolutional Neural Network

EVDK Embedded Vision Development Kit

FPGA Field-Programmable Gate Array

ML Machine Learning

MLE Machine Learning Engine

SPI Serial Peripheral Interface

VIP Video Interface Platform

VVML Voice and Vision Machine Learning

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02231-1.0

1. Introduction
This document describes the Human Counting Design process using the CrossLink™-NX Voice and Vision Machine
Learning (VVML) Board, Rev B platform. Human Counting is a subset of the generic Object Counting base design.

1.1. Design Process Overview
The design process involves the following steps:

1. Training Model

 Setting up the basic environment

 Preparing the dataset

 Preparing Images

 Labeling dataset of human bounding box

 Training the machine

 Training the machine and creating the checkpoint data

2. Neural Network Compiler

 Creating Binary file with Lattice sensAI™ 4.0 program

3. FPGA Design

 Creating FPGA Bitstream file

4. FPGA Bit stream and Quantized Weights and Instructions

 Flashing Binary and Bitstream files

 Binary File to Flash Memory on CrossLink-NX VVML Board, Rev B

 Bit stream to Flash Memory on CrossLink-NX VVML Board, Rev B

Figure 1.1. Lattice Machine Learning Design Flow

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 9

2. Setting up the Basic Environment

2.1. Software and Hardware Requirements
This section describes the required tools and environment setup for FPGA Bit stream and Flashing.

2.1.1. Lattice Software
 Lattice Radiant™ Tool v2.2 – Refer to http://www.latticesemi.com/LatticeRadiant.

 Lattice Radiant Programmer v2.2 – Refer to http://www.latticesemi.com/programmer.

 Lattice sensAI Compiler v4.0 – Refer to
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler.

2.1.2. Hardware

CrossLink-NX Voice and Vision Machine Learning (VVML) Board

Refer to https://www.latticesemi.com/products/developmentboardsandkits/crosslink-nxvoiceandvisionmachinelearning.

Figure 2.1. CrossLink-NX Voice and Vision Machine Learning Board, Rev B

http://www.latticesemi.com/legal
http://www.latticesemi.com/LatticeRadiant
http://www.latticesemi.com/programmer
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler
https://www.latticesemi.com/products/developmentboardsandkits/crosslink-nxvoiceandvisionmachinelearning

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02231-1.0

2.2. Setting Up the Linux Environment for Machine Training
This section describes the steps for NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS.

Note: The NVIDIA library and the TensorFlow versions are dependent on the PC and the Ubuntu/Windows version.

2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU

2.2.1.1. Installing the NVIDIA CUDA Toolkit

To install the NVIDIA CUDA toolkit, run the commands below:

1. Download the NVIDIA CUDA toolkit.
$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu

da-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.2. CUDA Repo Download

2. Install the deb package.
$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.3. CUDA Repo Installation

3. Proceed with the installation.
$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa

2af80.pub

Figure 2.4. Fetch Keys

http://www.latticesemi.com/legal
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 11

$sudo apt-get update

Figure 2.5. Updated Ubuntu Packages Repositories

$ sudo apt-get install cuda-9-0

Figure 2.6. CUDA Installation Completed

2.2.1.2. Installing the cuDNN

To install the cuDNN:

$ tar xvfcudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h/usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudochmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*

Figure 2.7. cuDNN Library Installation

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02231-1.0

2.2.2. Setting Up the Environment for Training, Freezing, and Pruning

This section describes the environment setup information for training and model freezing scripts for 64-bit Ubuntu
16.04. Anaconda provides one of the easiest ways to perform machine learning development and training on Linux.

2.2.2.1. Installing the Anaconda Python

To install the Anaconda Python 3:

1. Go to https://www.anaconda.com/products/individual#download.

2. Download the Python3 version of Anaconda for Linux.

3. Run the command below to install the Anaconda environment:

$ sh Anaconda3-2019.03-Linux-x86_64.sh

Figure 2.8. Anaconda Installation

4. Accept the license.

Figure 2.9. License Terms Acceptance

 5

Figure 2.10. Installation Location

Figure 2.11. Launch/Initialization of Anaconda Environment

.

6.

http://www.latticesemi.com/legal
https://www.anaconda.com/products/individual%23download-section

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 13

2.2.3. Installing TensorFlow version 1.14

To install TensorFlow version 1.14, run the commands below:

1. Activate the conda environment.

$ source <conda directory>/bin/activate

Figure 2.12. Anaconda Environment Activation

2. Install TensorFlow.

$ conda install tensorflow-gpu==1.14.0

Figure 2.13. TensorFlow Installation

3. After installation, enter Y as shown in Figure 2.14.

Figure 2.14. TensorFlow Installation Confirmation

Figure 2.15 shows that the TensorFlow installation is completed.

Figure 2.15.TensorFlow Installation Completed

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02231-1.0

2.2.4. Installing the Python Package

To install the Python package, run the commands below:

1. Install Easydict.

$ conda install –c conda-forge easydict

Figure 2.16. Easydict Installation

2. Install OpenCV.

$ conda install opencv

Figure 2.17. OpenCV Installation

2.2.5. Setting Up the Pruning Environment

The setup_env.py script is located under the setup_optimization_env directory with the VGA Code as shown in Figure
2.18.

Figure 2.18. setup_optimization_env Directory Structure

To set up the pruning environment, run the command below.

$ python setup_env.py

Figure 2.19. Setup Optimization Environment

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 15

3. Preparing the Dataset
This chapter describes how to create a dataset using examples from Google Open Image Dataset.

The Google Open Image Dataset version 4 (https://storage.googleapis.com/openimages/web/index.html) features
more than 600 classes of images. The Person class of images include human annotated and machine annotated labels
and bounding box. Annotations are licensed by Google Inc. under CC BY 4.0 and images are licensed under CC BY 2.0.

3.1. Downloading the Dataset
To download the dataset:

1. Clone the OIDv4_Toolkit repository by running the command below.

$ git clone https://github.com/EscVM/OIDv4_ToolKit.git

$ cd OIDv4_ToolKit

Figure 3.1. Open Source Dataset Repository Cloning

Figure 3.2. OIDv4_Toolkit Directory Structure

View the OIDv4 Toolkit Help menu by running the command below.

$ python3 main.py -h

http://www.latticesemi.com/legal
https://storage.googleapis.com/openimages/web/index.html

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02231-1.0

Figure 3.3. Dataset Script Option/Help

2. Use the OIDv4 Toolkit to download dataset. Download Person class images by running the command below.

$ python3 main.py downloader --classes Person --type_csv validation

Figure 3.4. Dataset Downloading Logs

Figure 3.5 shows the downloaded dataset directory structure.

Figure 3.5. Downloaded Dataset Directory Structure

3. Lattice training code uses KITTI (.txt) format. The downloaded dataset is not in the required KITTI format. Convert
the annotation to KITTI format.

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/validation/Person/Label/*

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/train/Person/Label/*

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/test/Person/Label/*

Figure 3.6. OIDv4 Label to KITTI Format Conversion

Note: KITTI Format: Person 0 0 0 324.61 69.90 814.56 681.90. It has class ID followed by truncated, occluded,
alpha, Xmin, Ymin, Xmax, Ymax. The code converts Xmin, Ymin, Xmax, Ymax into x, y, w, h while training as
bounding box rectangle coordinates.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 17

3.2. Visualizing and Tuning/Cleaning Up the Dataset
To visualize and annotate the dataset, run the commands below:

1. Visualize the labelled images.

$ python3 main.py visualizer

Figure 3.7. Toolkit Visualizer

2. Clone the manual annotation tool from the GitHub repository.

$ git clone https://github.com/SaiPrajwal95/annotate-to-KITTI.git

Figure 3.8. Manual Annotation Tool – Cloning

3. Go to the annotate-to-KITTI directory.

$ cd annotate-to-KITTI

$ ls

Figure 3.9. Manual Annotation Tool – Directory Structure

4. Install the dependencies (OpenCV 2.4).

$ sudo apt-get install python-opencv

5. Launch the utility.

$ python3 annotate-folder.py

6. Set the dataset path and default object label.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02231-1.0

Figure 3.10. Manual Annotation Tool – Launch

https://github.com/SaiPrajwal95/annotate-to-KITTI

3.3. Data Augmentation
Deep networks need a large amount of training data to achieve good performance. To train a neural network using
minimal training data, image augmentation is usually required to boost the performance. Image augmentation creates
training images through different processes such as random rotation, shifts, shears and flips, and others. Combinations
of multiple processes may also be used.

Figure 3.11. Augmentation Directory Structure

 data-to-vga.py: It is augmentations operations script.

 gen_anchors.py: It runs k-means on width and height of dataset boxes to find optimal anchor boxes.

3.3.1. Running the Augmentation

Run the augmentation using the following command:
$ python data-to-vga.py --input <input_dataset_path> --output

<output_dataset_path> --type kitti --output_dimension 640,480 --canvas_shift --

brightness --contrast

Figure 3.12. Running the Augmentation

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 19

The data-to-vga,py contains additional optional flags as described below.

Flags explanation:

 --input : Input Dataset Path

 --output : Output Dataset Path

 --canvas_shift : Flag to add Canvas shifting augmentation

 --brightness : Flag to add brightness augmentation

 --contrast : Flag to add contrast augmentation

 --pixel_shift : Number of pixel shift in canvas shift augmentation

 --type : (kitti/pascal) type of input dataset (default kitti)

 --output_dimension : Expected output dimension in form of x, y (Default 640, 480)

 --visualize : Flag that saves images in /tmp/visualize with drawn box (Optional)

 --canvas_shift_percentage : Percentage of dataset to apply canvas shift augmentation

 --brightness_percentage : Percentage of dataset to apply brightness augmentation

 --contrast_percentage: Percentage of dataset to apply contrast augmentation

 --apply_multiple_aug: flag to apply another augmentation on already augmented image

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02231-1.0

3.3.2. Generating Anchors from Dataset (Optional)

To run k-means on the dataset box width and height, execute the command below.
$ python gen_anchors.py –labels <label directory path> -output_dir <output path

to save anchors> -num_cluster 7

Arguments information:

 -labels: Label directory path

 -output_dir: Output path for generated anchors

 -num_cluster: Number of anchor boxes the script should generate, which is seven by default.

Figure 3.13. Running the Script to Generate Anchors

At the end of script, optimal centroids that can be used as anchor boxes are printed.

Based on the above example, the following seven anchors are created:

Note: It is a good practice to sort the anchors by size.

 [285, 281]

 [195, 220]

 [145, 177]

 [108, 143]

 [160, 89]

 [82, 107]

 [62, 74]

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 21

4. Training the Machine

4.1. Training Code Directory Structure

Figure 4.1. Training Code Directory Structure

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02231-1.0

4.2. Neural Network Architecture

4.2.1. Human Count Training Network Layers

This section provides information on the Convolution Network Configuration of the Human Count Detection design. The
Neural Network model of the Human Count Detection design uses MobileNetV1 NN base model and the detection layer
of SqueezeDet model.

Table 4.1. Convolution Network Configuration of Human Count Detection Design

Image Input (640 × 480 × 1)

Fire 1 DWConv3 – 32 Conv3 - # where:

 Conv3 = 3 × 3 Convolution filter Kernel size

 # = The number of filter

DWConv3 - 32- # where:

 DWConv3 = Depth wise convolution filter with 3 × 3 size

 # = The number of filter

Conv1 - 32- # where:

 Conv1 = 1 × 1 Convolution filter Kernel size

 # = The number of filter

For example, Conv3 - 16 = 16 3 × 3 convolution filters

BN – Batch Normalization

BN

Relu

Maxpool

Conv1 – 32

BN

Relu

Maxpool

Fire 2 DWConv3 – 32

BN

Relu

Maxpool

Conv1 – 32

BN

Relu

Maxpool

Fire 3 DWConv3 – 64

BN

Relu

Maxpool

Conv1 – 64

BN

Relu

Fire 4 DWConv3 – 64

BN

Relu

Conv1 – 64

BN

Relu

Fire 5 DWConv3 – 88

BN

Relu

Conv1 – 88

BN

Relu

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 23

Fire 6 DWConv3 – 128

BN

Relu

Conv1 – 128

BN

Relu

Conv12 Conv3 – 42

 Human Count Network structure consists of six fire layers followed by one convolution layer. A fire layer contains
convolution, depth wise convolution, batch normalization and relu layers with pooling layer only in fire1, fire 2,
and fire 3. Layers fire 4, fire 5, and fire 6 do not contain pooling.

 Note that fire 1 and fire 2 contain two maxpooling operations to reduce calculation complexity and model size.

 Table 4.1 details the contents of the fire layers: convolution (conv), batch normalization (bn), and relu.

 Layer information:

 Convolutional Layer
In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels), which convolves with input layer/image and generates activation map (such
as feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each of
these filters can be thought of as feature identifiers, like straight edges, simple colors, curves, and other high-
level features. For example, the filters on the first layer convolve around the input image and activate (or
compute high values) when the specific feature (such as curve) it is looking for is in the input volume.

 Relu (Activation layer)
After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward.
The purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear
operations during the conv layers (just element wise multiplications and summations).In the past, nonlinear
functions like tanh and sigmoid were used, but researchers found out that ReLU layers work far better because
the network is able to train a lot faster (because of the computational efficiency) without making a significant
difference to the accuracy. The ReLU layer applies the function f(x) = max (0, x) to all of the values in the input
volume. In basic terms, this layer just changes all the negative activations to 0.This layer increases the
nonlinear properties of the model and the overall network without affecting the receptive fields of the conv
layer.

 Pooling Layer
After some ReLU layers, programmers may choose to apply a pooling layer. It is also referred to as a down
sampling layer. In this category, there are also several layer options, with maxpooling being the most popular.
This basically takes a filter (normally of size 2 × 2) and a stride of the same length. It then applies it to the input
volume and outputs the maximum number in every sub region that the filter convolves around.
The intuitive reasoning behind this layer is that once it is known that a specific feature is in the original input
volume (there is a high activation value), its exact location is not as important as its relative location to the
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weight is reduced by 75%, thus lessening the computation cost. Second, itl controls
over fitting. This term refers to when a model is so tuned to the training examples that it is not able to
generalize well for the validation and test sets. A symptom of over fitting is having a model that gets 100% or
99% on the training set, but only 50% on the test data.

 BatchNorm
Batch normalization layer reduces the internal covariance shift. To train a neural network, perform some
preprocessing to the input data. For example, all data can be normalize so that it resembles a normal
distribution (that means, zero mean and a unitary variance). Reason being preventing the early saturation of
non-linear activation functions like the sigmoid function, assuring that all input data is in the same range of
values, and others.
But the problem appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt
themselves to a new distribution in every training step. This problem is known as internal covariate shift.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02231-1.0

Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following below process during training time:
Calculate the mean and variance of the layers input.
Normalize the layer inputs using the previously calculated batch statistics.
Scale Layer scales and shifts to obtain the output of the layer.
This makes the learning of layers in the network more independent of each other and allows you to be care
free about weight initialization, works as regularization in place of dropout and other regularization
techniques.

 Depth wise Convolution and 1 × 1 Convolution Layer
Depth wise convolutions are used to apply a single filter per each input channel (input depth). Pointwise
convolution, a simple 1 × 1 convolution, is then used to create a linear combination of the output of the depth
wise layer.
Depth wise convolution is extremely efficient relative to standard convolution. However it only filters input
channels, it does not combine them to create new features. So an additional layer that computes a linear
combination of the output of depth wise convolution through 1 × 1 convolution is needed to generate these
new features.
A 1 × 1 convolutional layer that compresses an input tensor with large channel size to one with the same batch
and spatial dimension, but smaller channel size. Given a 4D input tensor and a filter tensorshape [filter_height,
filter_width, in_channels, channel_multiplier] containing in_channels convolutional filters of depth 1,
depthwise_conv2d applies a different filter to each input channel, then concatenates the results together. The
output has in_channels * channel_multiplier channels.

The above architecture provide nonlinearities and preservation of dimension that helps to improve the robustness of the
network and control over fitting.

4.2.2. Human Count Detection Network Output

From the input image model first extracts feature maps, overlays them with a W × H grid and at each cell computes K
pre-computed bounding boxes called anchors. Each bounding box has the following:

 Four scalars (x, y, w, h)

 A confidence score (Pr(Object) ×IOU)

 C conditional class probability

 The current model architecture has a fixed output of W×H×K(4+1+C). Where,

 W, H = Grid size

 K = Number of anchor boxes

 C = Number of classes for which detection is required

 Based on the above description, the model has a total of 12600 output values. It is derived from following:

 20 × 15 grid with 7 anchor boxes per grid

6 values per anchor box. It consists of:

 4 bounding box coordinates (x, y, w, h)

 1 class probability

 1 confidence score

As a result, there is a total of 15 × 20 × 7 × 6 = 12600 output values.

If your images are smaller, it is recommended to stretch them to default size. You can also up-sample them
beforehand. Smaller image size, due to its sparser grid, may not produce accurate detections.

If your images are bigger and you are not satisfied with the results of the default image size, you can try using a denser
grid, as details might get lost during the downscaling.

.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 25

4.2.3. Training Code Overview

Load Training Data

Pre-Processing

Read Dataset

Create Config

Load Config File

Model Building

CNN Architecture

Loss Functions

Create Dataset Iterator

Load Checkpoints if already
exist

Compile and Train Model

Save Train Model

Pruning and Finetuning
Model

Save Pruned Model

Figure 4.2. Training Code Flow Diagram

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02231-1.0

Training code can be divided into below parts:

 Model configuration

 Model building

 Model freezing

 Data preparation

 Training

 Pruning

Details of each can be found in subsequent sections.

4.2.3.1. Model Configuration

Demo uses Kitti dataset and SqueezeDet model. kitti_squeezeDet_config.py maintains all the configurable parameters
for the model. Below is summary of configurable parameters:

 Training Object class

 Configure class name here for which you want to train model.

Figure 4.3. Code Snippet – Class Name

 Image size

 Change cfg.IMAGE_WIDTH and cfg.IMAGE_HEIGHT to configure Image size (width and height) in
main/config/create_config.py

 You can also pass flag –gray to train model with 1 channel.

Figure 4.4. Code Snippet – Input Image Size Config

 Grid Size

 Since there are 5 pooling layers grid dimension would be H = 15 and W = 20. Update it based on anchors per
grid size changes

Figure 4.5. Code Snippet – Anchors Per Grid Config #1 (grid sizes)

 To run the network on your own dataset, adjust the anchor sizes. Anchors are kind of prior distribution over
what shapes your boxes should have. The better these fit to the true distribution of boxes, the training
becomes faster and easier.

 To determine anchor shapes, first load all ground truth boxes and pictures. If your images are not of the same
size, adjust their height and width by the images’ height and width. All images are normalized before being fed
to the network. Do the same to the bounding boxes and consequently, the anchors.

 Second, perform a clustering on these normalized boxes. (I.e. you can just use k-means without feature
whitening and determine the number of clusters either by eyeballing or by using the elbow method.)

 Check for boxes that extend beyond the image or have a zero to negative width or height

http://www.latticesemi.com/legal
https://en.wikipedia.org/wiki/Elbow_method_%28clustering%29

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 27

Figure 4.6. Code Snippet – Anchors per Grid Config #3

 Code Snippet showed above is Configuring Anchor boxes as per input image size.

 If training with user data is not showing accurate results user can find out optimal Anchor Boxes Size for
Respective dataset with steps mentioned in section 3.3.2.

 Training parameters

 Other training related parameters like Batch size, learning rate, loss parameters and different thresholds can be
configured.

Figure 4.7. Code Snippet – Training Parameters

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02231-1.0

4.2.3.2. Model Building

SqueezeDet class constructor builds model which can be divided in below sections:

 Forward graph :

 File Path : main/model/SqueezeDet.py -> _create_model()

 CNN architecture consist of Convolution, Batch normalization, Relu, Maxpool and 1x1 depthwise convolution
layers

 Default Forward graph consists of 6 fire layers as described in below image.

 The length of network is generated based on argument depth, which consist number of filters for each layer.
Note: Minimum length supported is 6, Maximum length supported is 10

Figure 4.8. Code Snippet – Forward Graph Fire Layers

Note that layers have depth wise 2D Convolution.

Figure 4.9. Code Snippet – Forward Graph Last Convolution Layer

 Interpretation graph
This block interprets output from network and extracts predicted class probability, predicated confidence scores,
and bounding box values.
The output of the convnet is a 15 × 20 × 42 tensor - there are 42 channels of data for each of the cells in the grid
that is overlaid on the image and contains the bounding boxes and class predictions. This means the 42 channels
are not stored consecutively, but are scattered all over the place and needed to be sorted. Figure 4.10 and Figure
4.11 explain the details.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 29

15

20

42

Anchor 1

(6)

Anchor 2

(6)

Anchor 3

(6)

Anchor 4

(6)

Anchor 5

(6)

Anchor 6

(6)

Anchor 7

(6)

Figure 4.10. Code Snippet: Input Image Size Configuration

For each grid cell values are aligned like below diagram:

15

20

42 values = 7 × 6

Total values = 15 × 20 × 42

7 Anchors × P C Dx Dy Dw Dh

6 values

Figure 4.11. Grid Output Visualization #2

As shown in Figure 4.11, the output from conv12 layer (4D array of batch size × 15 × 20 × 42) needs to be sliced
with proper index to get all values of probability, confidence, and coordinates.
The code snippet interpret output is main/utils/utils.py -> slice_predictions().

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02231-1.0

Figure 4.12. Code Snippet – Interpret Output Graph

For confidence score, this must be a number between 0 and 1, so sigmoid is used.
For predicting the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Apply a
softmax to make it probability distribution.

 Bboxes – bboxes_from_deltas()
This block calculates bounding boxes based on anchor box and predicated bounding boxes.

 IOU – tensor_iou()
This block calculates Intersection over Union for detected bounding boxes and actual bounding boxes.

Loss graph

 File Path: main/model/SqueezeDet.py -> loss()

 This block calculates different types of losses which need to be minimized. To learn detection, localization and
classification, model defines a multi-task loss function. There are three types of losses which are considered for
calculation:

 Bounding box

This loss is regression of the scalars for the anchors

Figure 4.13. Code Snippet – Bbox Loss

 Confidence score

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 31

To obtain a meaningful confidence score, each box’s predicted value is regressed against the Intersection over Union of
the real and the predicted box. During training, compare ground truth bounding boxes with all anchors and assign them
to the anchors that have the largest overlap (IOU) with each of them.
The reason being, to select the closest anchor to match the ground truth box such that the transformation needed is
reduced to minimum. Equation evaluates to 1 if the kth anchor at position-(i, j) has the largest overlap with a ground
truth box, and to 0 if no ground truth is assigned to it. This way, you only include the loss generated by the responsible
anchors.
As there can be multiple objects per image, normalize the loss by dividing it by the number of objects.

Figure 4.14. Code Snippet – Confidence Loss

 Class
The last part of the loss function is just cross-entropy loss for classification for each box to do classification, as you
would for image classification.

Figure 4.15. Code Snippet – Class Loss

In one model architecture, you obtain the bounding box prediction, the classification, as well as, the confidence
score.

http://www.latticesemi.com/legal
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02231-1.0

4.2.3.3. Training

 Training Data Generator

 main/model/datageberator.py takes care of reading dataset and creates iterator that feeds data to the model
in batch size given.

Figure 4.16. Code Snippet – Dataset Iterator

 Data generator scales image pixel values from [0, 255] to [0, 2] as shown in below code. Also, it converts image
to gray scale if model is trained with –gray flag.

 Current human count training code uses mean = 0 and scale = 1/128 (0.0078125) in pre-processing step.

Figure 4.17. Code Snippet – Scale Image

 Training Callbacks

 Reduce learning Rate on Plateau:

Figure 4.18. Code Snippet – Reduce Learning rate on plateau

 Save Checkpoint

Figure 4.19. Code Snippet – Save

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 33

4.2.3.4. Transfer Learning and Freezing some layers

 Transfer Learning

You can pass the model checkpoint or saved keras model as argument in –init

Note: The architecture of checkpoint and model should match.

Checkpoints are also restored if you are using the log directory with existing training.

Figure 4.20. Code Snippet – Transfer Learning

 Freezing Layers

If you are using pre-trained checkpoint and you want to freeze model up to some layer, you can provide
flag freeze_landmark subset of the layer name. For example, --freeze_landmark=fire5.

Figure 4.21. Code Snippet – Freeze Layers

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02231-1.0

4.3. Pruning
Pruning takes place in two phases:

 Pruning – As part of pruning, the code determines the channels with the lowest impact on accuracy and remove
those channels.

 Fine Tuning – Create model with optimized number of channels, restore weights, and fine tune model.

Figure 4.22. Code Snippet – Set Layer Sparsity

The code snippet shown in Figure 4.22 sets sparsity to prune the layer. Based on the sparsity you set, the pruning is
implemented.

Note: There is no pruning in the first fire block, so sparsity is not set to first mobile block.

Figure 4.23. Code Snippet – Determine Pruned Channels

Figure 4.23 determines which channels to prune or not. Based on the number of non-pruned depths, the new model is
created and weights are transferred.

Fine-tuning is performed on the new model, and the final model is saved.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 35

4.4. Finding the Optimal Model
In the default code, the default depth of network is six. However, you can change the depth with respect to their use
case.

For example, if you need faster inference, you can decrease depth of network. However, it drops the accuracy.

If you need accuracy, increase the depth. However, this increases inference time.

The relation between network depth, accuracy, and inference FPS is shown Figure 4.24.

Note: The models have first layer as normal convolution and rest of the layers as depthwise and 1 × 1 convolution.

Table 4.2. Model Performance Data with Models with Dw 1 × 1 Conv

Layer Length Map FPS Count

6 Fire Layer 58% 31.5 4907286

7 Fire Layer 63% 28 5200822

Figure 4.24. Relation Between # Layers Versus Accuracy Versus FPS

Table 4.3 shows the dataset augmentation’s impact on model accuracy.

Table 4.3. Model Performance Data with Dataset Augmentation

Dataset Augmentation Accuracy on test set

D1: Canvas Shift 55%

D2: D1 + Brightness augmentation 58%

D3: D2 + Contrast augmentation 60%

Note: The Fps data contains information of model with only one pooling in one fire layer. The released model contains
two pooling in fire1 and fire2 to increase FPS.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02231-1.0

4.5. Training from Scratch and/or Transfer Learning
To train the machine:

1. Modify the training script. The training script @train.sh is used to trigger training. Figure 4.25 shows the input
parameters to be configured.

Figure 4.25. Training Input Parameter

Some of the options you can provide during training are the following:

 --dataset_path – Dataset directory path. /home/dataset/vga_dataset is example.

 --logdir – log directory where checkpoint files are generated while model is training.

 --val_set_size – Validation split percentage.

 --validation_freq – Validation frequency in terms of number of epochs.

 --gray – Add flag to train model with grayscale images.

 --early_pooling – Add flag to use early-pooling.

 --filterdepths – comma separated list of number of features for each layer. You can use depth length of 5 to 10
(default value is 7).

 --sparsity – List of fraction to prune layer channels.
Note: The first fire layer is not pruned, so length of sparsity list should be one less than length of filter depths.

 --epochs – Comma separated epoch list for training, pruning and fine-tuning.

 –gpuid – If the system has more than one gpu, it indicates the one to use.

 --configfile – Config file name. If file exist in logdir, the code reuses it. Otherwise, it creates a new file.

 --runpruning – Add flag to run pruning after training is completed.

 --usecov3 – Use Normal convolution as first layer instead of depthwise 1x1 conv layer.

 --usedefaultvalset – Add this flag if you want to reuse validation set images from val.txt. If flag is not present, the
code creates a new validation set.

 --freeze_landmark – If you want to freeze some layers in the network, input the subpart or layer name as an
argument and the code freezes weights up to the layer name mentioned in this argument. For example, Fire1,
Fire6, and so on.

 --init – If you want to specify pretrained model to load weights.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 37

2. Execute the train.sh script which starts training.

Figure 4.26. Execute training Script

Figure 4.27. Execute training with transfer learning

Figure 4.28. Execute training with transfer learning + frozen layers

Note: If model is not converging in pruning user can reduce sparsity and try again.

3. Start TensorBoard.
$ tensorboard –logdir=<log directory of training>

4. Open the local host port on your web browser.

Figure 4.29. TensorBoard – Generated Link

5. Check the training status on TensorBoard

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02231-1.0

Figure 4.30. TensorBoard

Figure 4.31. Backbone Graph

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 39

Figure 4.32. Example of Files at Log Folder

Figure 4.33. Example of Checkpoint and Trained Model

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02231-1.0

5. Evaluating the Model
This section describes the procedure to calculate model performance in terms of mAP.

5.1. Converting Keras Model to TensorFlow File
The VGA code contains the keras2tf.py file under the keras-to-tf-converter directory as shown in Figure 5.1.

Figure 5.1. Keras to tf converter Directory

Note: If you perform any quantization change in training code binary_ops.py, you need to replicate those changes in
binary_ops.py.

Run the command below to generate .pb file in the same path of the h5 file.

$ python keras2tf.py –kerasmodel <h5 model path>

The script saves the .pb file in the directory assigned to kerasmodel argument.

5.2. Running Inference on Test Set
The VGA code contains vga-inference.py under inference directory as shown in Figure 5.2.

Figure 5.2. Inference Directory

Note: If you performed any changes in the training code regarding image size, number of anchors, or grid size, you
need to replicate those changes in the inference script.

Run the command below to run inference on the test set.
$ python vga-inference.py –pb <converted pb path> --input_image <test set images

path>

Figure 5.3. Run Inference

The command above saves the images with bbox drawn in inference_output/image_output and resultant kitti output in
inference_output/predictions as shown in Figure 5.4.

Figure 5.4. Inference Output

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 41

5.3. Calculating mAP
The VGA code contains the main.py file under the mAP directory as shown in Figure 5.5.

Figure 5.5. mAP Directory Structure

Run the command below to calculate mAP using the predictions generated from inference and groundtruth from the
test set.
$ python main.py –input_images <input test set images path> --ground_truth

<input test set labels path> --predictions <path to prediction generated from

inference> --no-animation –no-plot

Figure 5.6. mAP Calculation

After successfully running the script, it shows the mAP for each class and the total mAP.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

42 FPGA-RD-02231-1.0

6. Creating Binary File with Lattice sensAI
This chapter describes how to generate binary file using the Lattice sensAI version 4.0 program.

Figure 6.1. sensAI Home Screen

To create the project in sensAI tool:

1. Click File > New.

2. Enter the following settings:

 Project name

 Framework– Keras

 Class–CNN

 Device– CrossLink-NX Voice and Vision Machine Learning (VVML) Board, Rev B

 ‘Compact Mode’ should be unchecked.

3. Click Network File and select the network (h5) file.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 43

Figure 6.2. sensAI –Network File Selection

4. Click Image/Video/Audio Data and select the image input file.

Figure 6.3.sensAI –Image Data File Selection

5. Click NEXT.

6. Configure your project settings.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

44 FPGA-RD-02231-1.0

Figure 6.4. sensAI – Project Settings

7. Scratch pad memory block size and data section base address should match the FPGA RTL code.

8. Set depth range. With this setting, the class probability values are not part of the output values.

9. Click OK to create the project.

10. Double-click Analyze.

Figure 6.5. sensAI – Analyze Project

11. Confirm the Q format of each layer as shown in Figure 6.6 and update the fractional bit for each layer by double
clicking on the values against each layer one by one.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 45

Figure 6.6. Q Format Settings for Each Layer

12. After changing the fractional bit, double click on Analyze again.

13. Double-click Compile to generate the Firmware file.

Figure 6.7. Compile Project

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02231-1.0

7. Hardware Implementation

7.1. Top Level Information

7.1.1. Block Diagram

Figure 7.1. RTL Top Level Block Diagram

7.1.2. Operational Flow

This section provides an overview of the data flow across the CrossLink-NX VVML Board, Rev B board.

 The CNN module is configured with the help of a binary (BIN) file stored in a SD card. The .bin file is a command
sequence code which is generated by the Lattice Machine Learning software tool.

 The command code is written in hyperRAM through AXI before the execution of CNN Accelerator IP Core starts.
CNN reads command code from hyperRAM during its execution and does calculation with it per command code.
Intermediate data may be transferred from/to hyperRAM per command code.

 The RAW8 data from csi2_to_parallel module is stored in 640 × 480 image resolution in crop_downscale_front_vga
module FIFO. This data is written into hyperRAM memory through rpc2_ctrl_controller through the axi_ws2m AXI
interface module.

 After command code and input data are available, CNN Accelerator IP Core starts calculation at the rising edge of
start signal.

 Output data of CNN is passed to det_out_filter for post processing. det_out_filter generates bounding box co-
ordinates X, Y, W, H associated with top 5 confidence value indexes for 640x480 image resolution.

 These co-ordinates are passed to osd_back_vga_human_count for resizing them to fit the actual image resolution
on PC.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 47

7.1.3. Core Customization

Table 7.1. Core Parameter

Constant Default (Decimal) Description

OVLP_TH_2X 5 Intersection Over Union Threshold (NMS)

NUM_FRAC 10 Fraction Part Width in Q-Format representation.

EN_INF_TIME 0

Enable Timing measurement logic

By default, it is zero and the memory file used is human_count.memI.

If assigned 1, timing measurement is enabled and the memory file
used is human_count_INF.mem.

To configure the respective memory file, follow the steps below:

 Open dpram8192x8_human_count.ipx from File List in Lattice
Radiant.

 Click on Browse Memory File from Initialization section.

 Update mem file path:

 For 0 – /src/jedi_common/human_count.mem

 For 1 – /src/jedi_common/human_count_INF.mem

INF_MULT_FAC 15907

Inference time multiplying factor calculated as per CNN clock
frequency and using Q-Format (Q1.31).

CNN clock frequency = 135 MHz

Hence, CNN clock period

= 1/(135 × 10-6) µs

= 0.000007407 ms

Now, Q1.31 = 0.000007407 × 231 = ~15907

FLASH_START_ADDR 24’h300000

SPI Flash Read Start address (keep same address in programmer while
loading Firmware file)

For example, for current start address, programmer address should be
0x00300000.

FLASH_END_ADDR 24’h400000

SPI Flash Read End address (keep same address in programmer while
loading firmware file). The address must be in multiple of 512 Bytes.

For example, for current end address, programmer address should be:
0x00400000.

Constant Parameters (Not to be modified)

NUM_ANCHOR 2100 Number of reference bounding boxes for all grids

NUM_GRID 300 Total number of Grids (X × Y)

NUM_X_GRID 20 Number of X Grids

NUM_Y_GRID 15 Number of Y Grids

PIC_WIDTH 640 Picture Pixel Width (CNN Input)

PIC_HEIGHT 480 Picture Pixel Height (CNN Input)

TOP_N_DET 10 Number of top confidence bounding boxes detection

HYPERRAM_BASEADDR 4194304
Indicates hyperRAM starting base address location value. This should
match in sensAI compiler while generating firmware.

RAW8_OFFSET 0 Indicates hyperRAM starting address location value to store RAW8

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

48 FPGA-RD-02231-1.0

7.1.4. Architecture Details

7.1.4.1. SPI Flash Operation

RTL module spi_loader_spram provides SPI Flash read operation and writes that data into HyperRAM through the AXI
interface. It reads from SPI Flash as soon as board gets powered up and .bit and .bin files are loaded in expected
addresses.

 Expected Address for BIT File (Programmer) – 0x0000000 - 0x00100000

 Expected Address for Firmware File (Programmer) – FLASH_START_ADDR - FLASH_END_ADDR

Typical sequence of SPI Read commands for SPI Flash MX25L12833F is implemented using FSM in RTL as per the flow of
operation below.

 After FPGA Reset, RELEASE FROM DEEP POWER DOWN command (0xAB) is passed to SPI Flash memory. Then RTL
waits for 500 clock cycle for SPI flash to come into Standby mode if it is in Deep Power Down mode.

 RTL sends FAST READ command code (0x0B) on SPI MOSI signal for indication of Read Operation to SPI Flash.

 RTL sends three bytes of address on SPI MOSI channel, which determines the location in SPI flash from where the
data needs to be read.

 This SPI Flash has eight dummy cycles as wait duration before read data appears on MISO channel. After waiting
for eight dummy cycles, the RTL code starts reading data.

 This read sequence is shown in Figure 7.2. The SPI Interface Signal Mapping with RTL signals are as follows:

 CS (Chip Select) => SPI_CSS

 SCLK (Clock) => SPI_CLK

 SI (Slave In) => SPI_MOSI

 SI (Slave Out) => SPI_MISO

 The Read Data on MISO signal is stored in a FIFO in RTL, which then reads the data in multiples of 512 bytes.
After 512 Bytes Chip Select is deasserted, the AXI FSM state is activated.

CS#

SCLK

SI

SO

CS#

SCLK

SI

SO

Mode 3 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31

Mode 0
Command 24-Bit Address

0Bh 23 22 21 3 2 1 0

High-Z

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Configurable
Dummy Cycle

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7

MSB MSB MSB

DATA OUT 1 DATA OUT 2

Figure 7.2. SPI Read Command Sequence

 AXI logic reads the data from FIFO in burst of four on AXI write channel, with each burst having 128 bytes.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 49

 In accessing HyperRAM, the axi_ws2m module is used as a Muxing module among multiple input slave AXI
interfaces as shown in Figure 7.4. The spi_loader_spram module is considered as SLAVE 0 and given priority to
write into HyperRAM. The Master interface connects to the axi2_hyperbus module, which provides output
interface for accessing HyperRAM.

 After writing into HyperRAM, the 512 bytes are fetched from the SPI Flash using same command sequence as
explained above until the FLASH_END_ADDR is reached.

7.1.5. Pre-processing CNN

The output from csi2_to_parallel module is a stream of RAW8 data that reflects the camera image, which is given to
crop_downscale_front_vga module.

The crop_downscale_front_vga module processes that image data and generates input of 640 × 480 image data
interface for CNN IP.

7.1.5.1. Pre-processing Flow:

RAW8 data values for each pixel are fed serially line by line for an image frame. This accumulated value is written into
Line Buffer. Line Buffer is a FIFO. Data from FIFO to be read depends on Pixel Count, which is calculated below.

In below example, FIFO Read cycles are calculated by two factors such as the Incoming Horizontal Pixels and the
Number of bytes read in one cycle. FIFO Read cycle can be written in the equation as (Incoming Horizontal
Pixels/Number of bytes read in one cycle)

FIFO Read Cycles = 640/80 = 80

Pixel Count >= Incoming Horizontal Pixels – ((FIFO Read Cycles × Pixel Clock Frequency)/Read Clock Frequency from
True Dual Port RAM)

For example: Pixel Count >= 640 – ((80 × 24)/81) ~= 616

Data from Memory is read and stored in HyperRAM for CNN input through rpc2_ctrl_controller, through the axi_w2sm
module which acts as an AXI interface to write data from slave (crop_downscale_front_vga) to master (axi2_hyperbus).
This process is described in the next section.

7.1.6. HyperRAM Operations

The CrossLink-NX VVML Board, Rev B board uses external HyperRAM for faster data transfer mechanism among the
internal blocks and enhances the system performance. The crop_downscale_front_vga module uses HyperRAM to
store the image data.

HyperRAM

RAW 8

HyperRAM BaseAddr +

RAW 8 Offset

Downscaled

640 × 480

RAW 8 Pixels

Figure 7.3. HyperRAM Memory Addressing

Primarily, crop_downscale_front_vga module stores 640 values of RAW8 into a local FIFO for all 480 horizontal blocks.
Later this stored data is written to HyperRAM through AXI write data channel.

Figure 7.3 shows, when final data is written out, 640x480 RAW8 pixels are stored into HyperRAM starting from
HyperRAM Base address location.

The 640 × 480 pixel values stored in HyperRAM are then obtained by CNN engine after getting command sequence
through AXI interface.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

50 FPGA-RD-02231-1.0

For the crop_downscale_front_vga module to access HyperRAM for above explained operations, axi_ws2m module
functions as a Muxing module for multiple input slave AXI interfaces as shown in block diagram Figure 7.4.

For the internal blocks to access HyperRAM, axi_ws2m considers spi_loader module as SLAVE 0, cnn_opt module as
SLAVE 1, crop_downscale_front_vga module as SLAVE2 and the MASTER connects these slaves to axi2_hyperbus
module.

The priority to select write channel is given to respectively spi_loader slave, cnn_opt slave and then crop-downscale
slave. Whenever valid address is available from the respective Slave on its write address channel, that slave is given
access of master channel if other priority slaves are not accessing it.

Thus, when valid write address is obtained from crop_downscale_front_vga module, access is given to Slave 2 to use
HyperRAM.

spi_loader

cnn_opt

crop
downscale

AXI INTERFACE

axi_w2sm

SLAVE 0

SLAVE 1

SLAVE 2

MASTER

External
HyperRAM

hyperbus
I/O

axi2_
hyperbus

AXI wr channel

AXI wr channel

AXI wr channel

AXI wr channel

Figure 7.4. HyperRAM Access Block Diagram

7.1.7. Post Processing CNN

CNN provides total of 10500 [2100 × 5 (C, X, Y, W, H)] values which are given to the det_out_filter module. The CNN
output data consists of the following parameters.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 51

Table 7.2. Data Parameters of CNN Output

Parameter Description

C

This parameter indicates the confidence of detected object class.

For each grid cell (20 × 15), one confidence value (16 bit) for each anchor box (7) is provided
making total values of confidence 20 × 15 × 7 = 2100 from CNN output.

X

This parameter indicates the relative X coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one relative X value (16 bit) for each anchor box is provided making total
values of 20 × 15 × 7 = 2100 for X from CNN output.

Y

This parameter indicates the relative Y coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one relative Y value (16 bit) for each anchor box is provided making total
values of 20 × 15 × 7 = 2100 for Y from CNN output.

W

This parameter indicates the relative W (Width) coordinate to transform the anchor box into a
predicted bounding box for detected object.

For each grid cell, one relative W value (16 bit) for each anchor box is provided making total
values of 20 × 15 × 7 = 2100 for W from CNN output.

H

This parameter indicates the relative H (Height) coordinate to transform the anchor box into a
predicted bounding box for detected object.

For each grid cell, one relative H value (16-bit) for each anchor box is provided making total
values of 20 × 15 × 7 = 2100 for H from CNN output.

Figure 7.5 shows the format of CNN output.

Figure 7.5. CNN Output Data Format

The primary functionality of the det_out_filter module is to capture the CNN valid output and modifying it to make it
work with the osd_back_vga_human_count module.

The det_out_filter module contains two sub-modules: det_sort_conf and det_st_bbox.

 2100 values of confidence are passed to det_sort_conf module. It sorts out top 10 highest confidence values and
stores their indexes. Index values are passed to det_st_bbox modules.

 2100 × 4 values of coordinates are passed to det_st_bbox module. It calculates the bounding box coordinates,
performs NMS and provides valid box bitmap.

The osd_back_vga_human_count module contains logic for post processing

 The draw_box_simple module calculates the box coordinates for 640 × 480 coordinates.

 The lsc_osd_text module generates character bitmap for showing text on the display.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

52 FPGA-RD-02231-1.0

7.1.7.1. Confidence Sorting

 All input confidence values (2100) are compared with threshold parameter CONF_THRESH value. Confidence
values which are greater than threshold are considered as valid for sorting.

 The det_sort_conf module implements an anchor counter (0–2099), which increments on each confidence value. It
provides the index of confidence value given by the CNN output.

 Two memory arrays are generated in this module: (1) Sorted top 10 (TOP_N_DET) confidence value array, and (2)
sorted top 10 confidence index array.

 For sorting, a standard sorting algorithm is followed. As input confidence values start arriving, each value is
compared with stored/initial value at each location of the confidence value array.

 If the input value is greater than stored/initial value on any array location and lesser than stored/initial value of
previous array location, the input value is updated on current array location. The previously stored value of current
location is shifted into the next array location.

 Refer to Figure 7.6 for sorting of new value of confidence into existing confidence value array. The calculated
confidence index (anchor count value) is also updated in the confidence index array along with confidence value
array.

35

41

66

0

0

30

20

10

0

0

(40>30) -> update = 1

(40>20) and !(40>30)
-> update = 0

-> Store Prev Value

(40>10) and !(40>20)
-> update = 0

-> Store Prev Value

(40>0) and !(40>10)
-> update = 0

-> Store Prev Value

40

30

20

10

0

110

35

41

66

0

OLD ARRAY UPDATED ARRAY

Confidence
Index Array

Confidence
Value Array

Confidence
Value Array

Confidence
Index Array

1

2

3

4

10

1

2

3

4

10

New Confidence Value = 40, Index = 110

Figure 7.6. Confidence Sorting

 This process is followed for all 2100 confidence values. This module provides 10 indexes (o_idx_00 to o_idx_09) as
output along with the count of valid indexes (o_num_conf). o_idx_00 contains highest confidence value index and
o_idx_09 contains lowest confidence value index.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 53

7.1.7.2. Bounding Box Calculation

The Neural Network for Object Detection is trained with seven reference boxes of pre-selected shapes having constant
W (Width) and H (Height). These reference boxes are typically referred as anchors.

Table 7.3. Pre-Selected Width and Height of Anchor Boxes

Anchor No. 1 2 3 4 5 6 7

W × H (pixel) 281x278 194x219 144x178 108x143 160x90 82x107 62x74

Anchors are centered around 20 × 15 grid cells of image. Therefore, each grid center has above seven anchors with pre-
selected shape. 20 × 15 are the number of grid centers along horizontal and vertical directions. The grid center (X, Y) pixel
values are shown in Table 7.3.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54 FPGA-RD-02231-1.0

Table 7.4. Grid Center Values (X, Y) for Anchor Boxes

Grid No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X (pixel) 30 61 91 122 152 183 213 244 274 305 335 366 396 427 457 488 518 549 579 610

Y (pixel) 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

CNN provides total 2100 (20 × 15 × 7) values of each relative coordinates X, Y, W, and H to transform the fixed size anchor
into a predicted bounding box. Input X, Y, W, and H values associated with top 10 sorted confidence indexes are used for
box calculation in the det_st_bbox module.

Each anchor is transformed to its new position and shape using the relative coordinates as shown in Logic 1.

LOGIC 1

X’ = X coordinate of Predicted Box

X = Grid Center X according to Grid number

W = Width of Anchor according to Anchor number

DeltaX = Relative coordinate for X (CNN output)

X’ = X + W × DeltaX

Y’ = Y + H × DeltaY

W’= W × DeltaW

H’ = H × DeltaH

The box coordinates are passed to the bbox2box module in jedi_human_count_top.v after NMS process.

NMS is implemented to make sure that in object detection, a particular object is identified only once. It filters out the
overlapping boxes using OVLP_TH_2X value.

NMS process is started when the CNN output data is completely received.

 The process starts from the box having the highest confidence coordinates: 0th location in X, Y, W, H array.

 These coordinates are compared against the second highest confidence coordinates: First location in X, Y, W, H
array. From this comparison, Intersection and Union coordinates are found.

 From these coordinates, Intersection and Union area are calculated between highest confidence box and the
second highest confidence box as shown in Figure 7.7.

Intersection

(X, Y)

Union

(X , Y)

W

H
Box1

Box2

H|

| |

W |

Figure 7.7. Intersection-Union Area NMS

 If Intersection Area × (OVLP_TH_2X/2) > Union Area, the box with lower confidence value is blocked in the final
output.

 This NMS calculation is performed between all the combinations of two boxes.

 After all combinations are checked, the output array o_bbox_bmap contains boxes, which are correctly overlapped
or non-overlapped. o_out_en provides valid pulse for bbox2box for further processing on these box coordinates.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 55

7.1.7.3. Bounding Box Upscaling

The process of upscaling bounding boxes for 640x480 resolution is accomplished by two different modules bbox2box
and draw_box_simple.

Initially bbox2box module in jedi_human_count_top.v obtains box coordinate outputs from det_out_filter.

Considering (X, Y) as center of the Box of Width W and Height H it calculates extreme ends of the Box (X1, X2 & Y1, Y2)
for 640x480 resolution. It also clamps the coordinate values so that the box remains out of masking area. This is shown
in logic 2.
LOGIC 2

X1 = If ((X’- W’/2) < 0) => 0 else (X’- W’/2)

Y1 = If ((Y’- H’/2) < 0) => 0 else (Y’- H’/2)

X2 = If ((X’+ W’/2) > 640) => 640 else (X’+ W’/2)

Y2 = If ((Y’+ H’/2) > 480) => 480 else (Y’+ H’/2)

The final calculated X1, X2, Y1 & Y2 values for all the boxes in bbox2box are then sent to draw_box_simple module
through osd_back_vga_human_count module

Pixel counter and Line counter keeps track of pixels of each line and Lines of each frame. Outer boundary of the box
and Inner boundary of the box are calculated when Pixel and Line counter reaches to co-ordinates (X1, X2) and (Y1, Y2)
respectively. Calculations are done as per logic 3.
LOGIC 3

Outer Box = (Pixel Count >= (X1 – 1)) & (Pixel Count <= (X2 + 1)) &

 (Line Count >= (Y1 – 1)) & (Line Count <= (Y2 + 1))

Inner Box = (Pixel Count > (X1 + 1)) & (Pixel Count < (X2 - 1)) &

 (Line Count > (Y1 + 1)) & (Line Count < (Y2 - 1))

Each Bounding Box is calculated by removing the intersecting area of the outer and the inner box. Box is only displayed
if Box-Bitmap for that box is set to 1 (From det_st_bbox through bbox2box module). Box on calculations are as done as
logic 4.
LOGIC 4

Box_on[1] = Outer Box[1] & ~Inner Box[1] & Box-Bitmap[1]

Box_on[2] = Outer Box[2] & ~Inner Box[2] & Box-Bitmap[2]

.

.

Box_on[20] = Outer Box[20] & ~Inner Box[20] & Box-Bitmap[20]

o_box_obj signal is asserted when any of the above Box_on signal is set which is then connected to green_on signal and
processed for Bounding Box display in the output.

7.1.7.4. OSD Text Display

lsc_osd_text module provides bitmap of each ASCII character to be displayed with specified position on screen. It takes
count of detected Humans.

It sets an output signal (text_on) when Text is to be displayed on the output screen through USB. When text_on is set,
YCbCr value for that pixel location is assigned FF, 7F, 7F respectively values (White color) and sent to USB output instead
of original pixel value.

7.1.7.5. USB Wrapper

The module Wrapper_USB3 is used to transmit 16 Bit data to the output 16 Bit interface every clock cycle.

This module takes input data in YCbCr 24 Bit format and gives output as 16 Bit YCb and YCr format. This module does not
change or regenerate input timing parameters.

7.1.7.6. Inference Time Calculation

The time taken by a trained neural network model to infer/predict outputs after obtaining input data is called inference
time. The process of this calculation is explained as follows.

Following logic is added in crop_downscale_vga_front.v

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

56 FPGA-RD-02231-1.0

The inference time is calculated by implementing a counter to store the count of CNN engine cycles per frame.

When signal i_rd_rdy (for example, o_rd_rdy coming from CNN engine) is high, the CNN engine indicates that it is ready
to get input and when it is low, the engine indicates that it is busy.

When i_rd_rdy signal is low, the CNN counter begins and stops when the i_rd_rdy signal goes high again indicating that
previous execution is over and the CNN is ready for new input.

As shown below in Figure 7.8 when rdy_h2l (ready high-to-low) pulse is asserted, the CNN Up-counter starts from 1 and
the count value increases till i_rd_rdy is not high again. The count value is stored in (count).

Similarly when rdy_l2h (ready low-to-high) pulse is asserted, the Up-counter stops and the final CNN count value is
obtained (cnn_count).

Figure 7.8. CNN Counter Design

The methodology used to obtain stable inference time is to calculate inference time per frame and obtain the average
inference time value after 16 CNN frames are over as discussed below.

After completion of every frame, the new count value (cnn_count) obtained as explained above is added to the previous
value and stored in (cnn_adder).

 A frame counter keeps monitoring the frame count and after 16 frames when the frame count is done, this cnn_adder
value is reset as shown in Figure 7.9.

Figure 7.9. Frame Counter Design for 16 CNN Frames Average

To get the average inference time value (avg_inf_time_hex) after frame count is done, the final cnn_adder value is
divided by 16 as shown in Figure 7.10.

Figure 7.10. Average Inference Time Calculation

Using Lattice Multiplier library module this average inference time value is multiplied by INF_MULT_FAC, a parameter
indicating inference multiplying factor explained in Table 7.1.

The inference time in millisecond (inf_time_ms) is obtained by dividing the output obtained from this multiplier by 2^31
as per the Q-Format, shown in below images.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 57

All the above obtained values, namely, the CNN count, the average inference time, and the inference time in millisecond
are passed on to lsc_osd_text_human_count module for getting bitmap to display characters.

Figure 7.11. Inference Time in Millisecond

7.1.7.7. Inference Time Display Management

This module lsc_osd_text_human_count.v mainly consists of a DPRAM, which holds the characters at pre-defined address
positions indicated by text_addr and an 8x8 font ROM which provides the bitmap of these characters for PC display.

This module basically functions by using two entities. One is the position of the character where it has to be displayed,
and other is by reading the ASCII value of the character to be displayed.

For this purpose, once the CNN count, individual frame inference time and the inference time in millisecond values are
obtained, they are converted from hex into ASCII values as shown below.

The average inference time input values (i_avg_inf_time_hex) are converted from hex to ASCII values as shown below.
To display 8 characters of this value on PC, this input is stored in respective r_avginfhex_ch. The characters obtained by
adding 7’h30 and 7’h37 are shown in Figure 7.12.

Figure 7.12. Average Inference Time Value to ASCII Conversion

Table 7.5. Signal Values to ASCII Conversion

Characters for Display Value to be Added to Signal ASCII HEX Value ASCII Decimal Value

1 7’h30 31 49

2 7’h30 32 50

3 7’h30 33 51

4 7’h30 34 52

5 7’h30 35 53

6 7’h30 36 54

7 7’h30 37 55

A 7’h37 41 65

B 7’h37 42 66

C 7’h37 43 67

D 7’h37 44 68

E 7’h37 45 69

 F 7’h37 46 70

 Similarly, to display eight characters of individual frame inference time, the input signal i_inf_time_hex is
converted from hex to ASCII and stored in respective r_infhex_ch signal as shown in Figure 7.13.

 In the same way, to display four characters of inference time in ms, the input signal i_inf_ms is converted from hex
to ASCII and stored in respective r_inf_ms signal as shown below.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

58 FPGA-RD-02231-1.0

Figure 7.13. CNN Count Values to ASCII Conversion

Figure 7.14. Inference time in millisecond values to ASCII conversion

The positions where these values have to be displayed are given using text_addr signal as shown in Figure 7.15. The use
of these locations is shown in and 7.17.A memory initialization file human_count_INF.mem is used by Lattice Radiant
tool to store characters at address locations for display.

Figure 7.15.Text Address Positions to Display Input Values

 The address location structure for displaying average inference time (of 16 CNN frames) and inference time in
millisecond values along with their strings are stored in human_count_INF.mem is shown in Figure 7.16.

Figure 7.16. Address Locations to Display Individual Frame Time and Inference Time with String in Display

 The address location structure for displaying individual frame inference time values along with the string are
stored in human_count_INF.mem is shown in Figure 7.17.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 59

Figure 7.17. Address Locations to Display CNN Count Value and its String in Display Output

 To display the input values in the address locations shown in Figure 7.16 and Figure 7.17, the ASCII values obtained
as shown in Figure 7.13, Figure 7.14, and Figure 7.15 are sent to the 8 × 8 font ROM with the help of font_char
signal to obtain the bitmap for display as shown in Figure 7.18.

Figure 7.18. Bitmap Extraction from Font ROM

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

60 FPGA-RD-02231-1.0

8. Creating FPGA Bitstream File

8.1. Generating Bitstream using Lattice Radiant Software

To create the FPGA bitstream file:

1. Open the Lattice Radiant software. Default screen in shown in Figure 8.1.

Figure 8.1. Lattice Radiant – Default Screen

2. Go to File > Open > Project.

3. Open the Lattice Radiant project file (.rdf) for the CrossLink-NX Voice and Vision Human Count Demo RTL. As
shown in Figure 8.2, you can also open project by triggering the yellow folder shown in the user interface.

Figure 8.2. Lattice Radiant – Open CrossLink-NX VVML Board, Rev B Project File (.rdf)

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 61

4. After opening the project file, check the following points shown in Figure 8.3.

 Design loaded with zero errors message shown in the Output window.

 Check for this information in Project Summary window.

 Part Number – LIFCL-40-9MG289I

 Family – LIFCL

 Device – LIFCL-40

 Package – CSBGA289

Figure 8.3. Lattice Radiant – Design load check after opening Project File

5. If the design is loaded without errors, click the Run button to trigger bitstream generation as shown in Figure 8.4.

Figure 8.4. Lattice Radiant – Trigger Bitstream Generation

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

62 FPGA-RD-02231-1.0

6. The Lattice Radiant tool displays Saving bitstream in … message in the Reports window. Bitstream is generated at
Implementation Location shown in Figure 8.5.

Figure 8.5. Lattice Radiant – Bit file Generation Report Window

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 63

8.2. Configuring IP in Lattice Radiant Software

After loading the design without any errors, perform the steps below to uninstall the old version of an existing IP or
to install the latest version of an IP.

1. Click IP Catalog and go to IP > DSP in the IP tree.

2. Select the IP to uninstall and click the delete option.

3. Click Yes as shown in Figure 8.6 to remove the IP from the tree.

Figure 8.6. Lattice Radiant – Uninstall Old IP

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

64 FPGA-RD-02231-1.0

To install a new IP:

1. Click the Install a User IP option as shown in Figure 8.7.

Figure 8.7. Lattice Radiant – Install New IP

2. Select and open the IP package (.ipk).

Figure 8.8. Lattice Radiant – Select User IP Package

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 65

3. The IP License Agreement window appears. Select Accept, and the IP is installed in the IP tree.

Figure 8.9. Lattice Radiant – IP License Agreement

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

66 FPGA-RD-02231-1.0

9. Programming the Demo

9.1. Load Firmware in FX3 I2C EEPROM

To load the firmware:

1. Connect the USB3 port of the CrossLink-NX VVML Board (Rev B) to the PC using the USB3 cable.

2. Open the USB Control Centre application. Cypress FX3 SDK should also be installed.

3. Use the CrossLink-NX VVML (Rev B) board and put the jumper on J13 to make the FX3 firmware programmable.

4. Connect the FX3 cable to PC.

5. Press the Push button SW2 to reset the FX3 chip. Figure 9.1 shows the boot loader device screen.

Figure 9.1. Selecting FX3 I2C EEPROM in USB Control Center

6. Select Cypress USB Bootloader.

7. Go to Program > FX3 > I2C E2PROM.

8. Open and select the FX3 image file for the 640×480p60 16-bit configuration, and the firmware is programmed in
the I2C E2PROM. Wait for the Programming Successful message to appear in the bottom taskbar.

9. After successfully programming the files, remove the J13 jumper.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 67

9.2. Programming the CrossLink-NX VVML Board, Rev B SPI Flash

9.2.1. Erasing the CrossLink-NX VVML Board, Rev B SRAM Prior to Reprogramming

If the CrossLink-NX VVML Board, Rev B device is already programmed (either directly, or loaded from SPI Flash), follow
this procedure to first erase the CrossLink-NX VVML Board, Rev B SRAM memory before re-programming the SPI Flash.
If you are doing this, keep the board powered when re-programming the SPI Flash (so it does not reload on reboot).

To erase CrossLink-NX VVML Board, Rev B:

1. Start Lattice Radiant Programmer. In the Getting Started dialog box, select Create a new blank project.

Figure 9.2. Lattice Radiant Programmer – Default Screen

2. Click OK.

3. Select LIFCL for Device Family and LIFCL-40 for Device as shown Figure 9.3.

Figure 9.3. Lattice Radiant Programmer – Device Selection

4. Right-click and select Device Properties.

5. Select JTAG for Port Interface, Direct Programming for Access Mode, and Erase Only for Operation as shown in
Figure 9.4.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

68 FPGA-RD-02231-1.0

Figure 9.4. Lattice Radiant Programmer – Device Operation

6. Click OK to close the Device Properties dialog box.

7. Press the SW5 push button switch. Click the Program button. Hold it until you see the Successful message in the
Lattice Radiant log window.

8. In the Lattice Radiant Programmer main interface, click the Program button to start the erase operation.

9.2.2. Programming the CrossLink-NX VVML Board, Rev B Board

To program the CrossLink-NX VVML Board, Rev B SPI flash:

1. Ensure that the CrossLink-NX VVML Board, Rev B device SRAM is erased by performing the steps in Programming
the CrossLink-NX VVML Board, Rev B SPI Flash

 Erasing the CrossLink-NX VVML Board, Rev B SRAM Prior to Reprogramming.

3. In the Radiant Programmer main interface, right click the CrossLink-NX Voice and Vision Machine Learning (VVML)
Board, Rev B row and select Device Properties to open the Device Properties dialog boxes as shown in Figure 9.5.

4. Select SPI FLASH for Access mode, JTAG2SPI for Port Interface, and Direct Programming for Access Mode.

5. For Programming File, browse and select the CrossLink-NX VVML Board, Rev B bitfile (*.bit).

6. For SPI Flash Options, make the selections in Figure 9.5 to select the Macronix 25L12833F device.

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 69

Figure 9.5. Lattice Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing

a. Click Load from File to update the Data file size (Bytes) value.

b. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00000000

 End Address (Hex) – 0x00100000

7. Click OK.

8. Press the SW5 push button switch before clicking Program button as shown in Figure 9.6. Hold it until you see the
Successful message in the Lattice Radiant log window.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

70 FPGA-RD-02231-1.0

GSRN
Push Button
SW4

PROGRAMN
Push Button
SW5

Figure 9.6. CrossLink-NX VVML Board Flashing Switch – SW5 Push Button

9. After successful programming, the Output console displays the result as shown in Figure 9.7.

Figure 9.7. Lattice Radiant Programmer – Output Console

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 71

9.2.3. Programming sensAI Firmware Binary to the CrossLink-NX VVML SPI Flash

9.2.3.1. Flash sensAI Firmware Hex to CrossLink-NX VVML SPI Flash

To program the CrossLink-NX SPI flash:

 Erasing the CrossLink-NX VVML Board, Rev B SRAM Prior to Reprogramming before flashing the bitstream and sensAI
firmware binary.

3. In the Lattice Radiant Programmer main interface, right-click the CrossLink-NX row and select Device Properties.

4. Apply the settings below:

a. Under Device Operation, select the options below:

 Port Interface – JTAG2SPI

 Target Memory – SPI FLASH

 Access Mode – Direct Programming

b. Under Programming Options, select the CrossLink-NX sensAI firmware binary file after converting it to hex
(*.mcs) for the Programming File.

c. For SPI Flash Options, make the selections as shown in Figure 9.8.

Figure 9.8. Lattice Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

72 FPGA-RD-02231-1.0

d. Click Load from File to update the data file size (bytes) value.

e. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00300000

 End Address (Hex) – 0x00400000

5. Click OK.

6. Press the SW5 push button switch. Click the Program button and hold it until you see the Successful message in
the Lattice Radiant log window.

7. After successful programming, the Output console displays the result as shown in Figure 9.9.

Figure 9.9. Lattice Radiant Programmer – Output Console

http://www.latticesemi.com/legal

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 73

10. Running the Demo

To run the demo:

1. Power on the CrossLink-NX VVML board. Make sure the position of SWITCH0 is ON to boot the device from
I2C EEPROM.

2. Connect the CrossLink-NX VVML board to the display monitor through the board’s USB3 port.

3. Open the AMCap or VLC application and select the FX3 device as source.

4. The camera image should be displayed on monitor as shown in Figure 10.1.

Figure 10.1. Running the Demo

5. The demo output contains the bounding boxes for detected humans in a given frame and it displays the total
number of detected humans in a given frame on the display.

http://www.latticesemi.com/legal

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

74 FPGA-RD-02231-1.0

Appendix A. Other Labeling Tools
Table A.1 provides information on other labeling tools.

Table A.1. Other Labeling Tools

Software Platform License Reference Converts To Notes

annotate-
to-KITTI

Ubuntu/Wind
ows (Python
based utility)

No
License
(Open
source
GitHub
project)

https://github.com/SaiPrajwal95/annotate-to-
KITTI

KITTI Python
based CLI
utility. Just
clone it and
launch.
Simple and
Powerful.

LabelBox JavaScript,
HTML, CSS,
Python

Cloud or
On-
premise,
some
interfaces
are
Apache-
2.0

https://www.labelbox.com/ json, csv, coco,
voc

Web
application

LabelMe Perl,
JavaScript,
HTML, CSS, On
Web

MIT
License

http://labelme.csail.mit.edu/Release3.0/ xml Converts
only jpeg
images

Dataturks On web Apache
License
2.0

https://dataturks.com/ json Converts to
json format
but creates
single json
file for all
annotated
images

LabelImg ubuntu OSI
Approved
:: MIT
License

https://mlnotesblog.wordpress.com/2017/12/16/
how-to-install-labelimg-in-ubuntu-16-04/

xml Need to
install
dependenci
es given in
reference

Dataset_

annotator

Ubuntu 2018

George
Mason
University
Permissio
n is
hereby
granted,
Free of
charge

https://github.com/omenyayl/dataset-annotator json Need to
install
app_image
and run it by
changing
permissions

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 75

References
 Google TensorFlow Object Detection GitHub

 Pretrained TensorFlow Model for Object Detection

 Python Sample Code for Custom Object Detection

 Train Model Using TensorFlow

http://www.latticesemi.com/legal
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://pythonprogramming.net/creating-tfrecord-files-tensorflow-object-detection-api-tutorial/
https://www.tensorflow.org/tutorials/estimators/cnn

CrossLink-NX VGA MobileNet Human Counting on VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

76 FPGA-RD-02231-1.0

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

 CrossLink-NX VGA MobileNet Human Counting on VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02231-1.0 77

Revision History

Revision 1.0, June 2021

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	CrossLink-NX VGA MobileNet Human Counting on VVML Board
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting up the Basic Environment
	2.1. Software and Hardware Requirements
	2.1.1. Lattice Software
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU
	2.2.1.1. Installing the NVIDIA CUDA Toolkit
	2.2.1.2. Installing the cuDNN

	2.2.2. Setting Up the Environment for Training, Freezing, and Pruning
	2.2.2.1. Installing the Anaconda Python

	2.2.3. Installing TensorFlow version 1.14
	2.2.4. Installing the Python Package
	2.2.5. Setting Up the Pruning Environment

	3. Preparing the Dataset
	3.1. Downloading the Dataset
	3.2. Visualizing and Tuning/Cleaning Up the Dataset
	3.3. Data Augmentation
	3.3.1. Running the Augmentation
	3.3.2. Generating Anchors from Dataset (Optional)

	4. Training the Machine
	4.1. Training Code Directory Structure
	4.2. Neural Network Architecture
	4.2.1. Human Count Training Network Layers
	4.2.2. Human Count Detection Network Output
	4.2.3. Training Code Overview
	4.2.3.1. Model Configuration
	4.2.3.2. Model Building
	Loss graph

	4.2.3.3. Training
	4.2.3.4. Transfer Learning and Freezing some layers

	4.3. Pruning
	4.4. Finding the Optimal Model
	4.5. Training from Scratch and/or Transfer Learning

	5. Evaluating the Model
	5.1. Converting Keras Model to TensorFlow File
	5.2. Running Inference on Test Set
	5.3. Calculating mAP

	6. Creating Binary File with Lattice sensAI
	7. Hardware Implementation
	7.1. Top Level Information
	7.1.1. Block Diagram
	7.1.2. Operational Flow
	7.1.3. Core Customization
	7.1.4. Architecture Details
	7.1.4.1. SPI Flash Operation

	7.1.5. Pre-processing CNN
	7.1.5.1. Pre-processing Flow:

	7.1.6. HyperRAM Operations
	7.1.7. Post Processing CNN
	7.1.7.1. Confidence Sorting
	7.1.7.2. Bounding Box Calculation
	7.1.7.3. Bounding Box Upscaling
	7.1.7.4. OSD Text Display
	7.1.7.5. USB Wrapper
	7.1.7.6. Inference Time Calculation
	7.1.7.7. Inference Time Display Management

	8. Creating FPGA Bitstream File
	8.1. Generating Bitstream using Lattice Radiant Software
	8.2. Configuring IP in Lattice Radiant Software

	9. Programming the Demo
	9.1. Load Firmware in FX3 I2C EEPROM
	9.2. Programming the CrossLink-NX VVML Board, Rev B SPI Flash
	9.2.1. Erasing the CrossLink-NX VVML Board, Rev B SRAM Prior to Reprogramming
	9.2.2. Programming the CrossLink-NX VVML Board, Rev B Board
	9.2.3. Programming sensAI Firmware Binary to the CrossLink-NX VVML SPI Flash
	9.2.3.1. Flash sensAI Firmware Hex to CrossLink-NX VVML SPI Flash

	10. Running the Demo
	Appendix A. Other Labeling Tools
	References
	Technical Support Assistance
	Revision History

