

CrossLink-NX QVGA MobileNet Human
Counting Using VVML Board

Reference Design

FPGA-RD-02219-1.0

May 2021

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

2 FPGA-RD-02219-1.0

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its
products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely
with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been
subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the
same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s
product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this
document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any
products at any time without notice.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 3

Contents
Acronyms in This Document ... 9
1. Introduction .. 10

1.1. Design Process Overview .. 10
2. Setting Up the Basic Environment .. 11

2.1. Software and Hardware Requirements ... 11
2.1.1. Lattice Software .. 11
2.1.2. Hardware .. 11

2.2. Setting Up the Linux Environment for Machine Training .. 12
2.2.1. Installing the CUDA Toolkit ... 12
2.2.2. Installing the cuDNN ... 13
2.2.3. Installing the Anaconda Python .. 13
2.2.4. Installing the TensorFlow v1.15 .. 14
2.2.5. Installing the Python Package ... 16
2.2.6. Setting the Pruning Environment ... 16

3. Preparing the Dataset ... 18
3.1. Downloading the Dataset .. 18
3.2. Visualizing and Tuning/Cleaning Up the Dataset .. 20
3.3. Data Augmentation ... 21

3.3.1. Running the Augmentation... 22
4. Training the Machine .. 23

4.1. Training Code Structure .. 23
4.2. Neural Network Architecture .. 24

4.2.1. Human Count Training Network Layers .. 24
4.2.2. Human Count Detection Network Output .. 27
4.2.3. Training Code Overview .. 28

4.2.3.1. Model Configuration .. 29
4.2.3.2. Model Building ... 31
4.2.3.3. Training .. 35
4.2.3.4. Transfer Learning and Freezing Layers .. 36

4.3. Pruning .. 37
4.4. Finding the Optimal Model ... 38
4.5. Training from Scratch and/or Transfer Learning ... 40

5. Model Evaluation .. 44
5.1. Convert Keras Model to TensorFlow File .. 44
5.2. Run Inference on test set .. 44
5.3. Calculate mAP ... 45

6. Creating Binary File with Lattice SensAI ... 46
7. Hardware Implementation ... 50

7.1. Top Level Information ... 50
7.1.1. Block Diagram ... 50
7.1.2. Operational Flow .. 50
7.1.3. Core Customization... 51

7.2. Architecture Details .. 52
7.2.1. SPI Flash Operation ... 52
7.2.2. Pre-processing CNN .. 53

7.2.2.1. Pre-processing Flow: .. 53
7.2.3. HyperRAM operations .. 54
7.2.4. Post-processing CNN ... 55

7.2.4.1. Confidence sorting ... 56
7.2.4.2. Bounding Box Calculation .. 57
7.2.4.3. Bounding Box Upscaling .. 59
7.2.4.4. OSD Text Display .. 59

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4 FPGA-RD-02219-1.0

7.2.4.5. USB Wrapper ... 60
7.2.4.6. Inference Time Calculation .. 60
7.2.4.7. Inference Time Display Management .. 61

8. Creating FPGA Bitstream File .. 65
8.1. Generating Bitstream using Lattice Radiant Software .. 65
8.2. Installing IP in Lattice Radiant Software .. 67

9. Programming the Demo ... 69
9.1. Load Firmware in FX3 I2C EEPROM .. 69
9.2. Programming the CrossLink-NX Voice and Vision SPI Flash .. 70

9.2.1. Erasing the CrossLink-NX Voice and Vision SRAM Prior to Reprogramming .. 70
9.2.2. Programming the CrossLink-NX Voice and Vision Board .. 71
9.2.3. Programming SensAI Firmware Binary to the CrossLink-NX Voice and Vision SPI Flash 74

9.2.3.1. Flash SensAI Firmware Hex to CrossLink-NX SPI Flash ... 74
10. Running the Demo .. 76
Appendix A. Other Labeling Tools ... 77
References .. 78
Technical Support Assistance ... 79
Revision History .. 80

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 5

Figures
Figure 1.1. Lattice Machine Learning Design Flow ... 10
Figure 2.1. Lattice CrossLink-NX Voice and Vision Board ... 11
Figure 2.2. Download CUDA Repo .. 12
Figure 2.3. CUDA Repo Installation ... 12
Figure 2.4. Fetch Keys ... 12
Figure 2.5. Update Ubuntu Packages Repositories... 12
Figure 2.6. CUDA Installation Completed ... 13
Figure 2.7. cuDNN Library Installation .. 13
Figure 2.8. Anaconda Installation ... 13
Figure 2.9. Accept License Terms ... 14
Figure 2.10. Confirm/Edit Installation Location .. 14
Figure 2.11. Launch/Initialize Anaconda Environment on Installation Completion ... 14
Figure 2.12. Anaconda Environment Activation ... 14
Figure 2.13. TensorFlow Installation .. 15
Figure 2.14. TensorFlow Installation Confirmation .. 15
Figure 2.15. TensorFlow Installation Completion ... 15
Figure 2.16. Easydict Installation .. 16
Figure 2.17. OpenCV Installation .. 16
Figure 2.18. Optimization ENV Directory Structure .. 16
Figure 2.19. Optimization Environment Setting ... 17
Figure 3.1. Open Source Dataset Repository Cloning ... 18
Figure 3.2. OIDv4_Toolkit Directory Structure ... 18
Figure 3.3. Dataset Script Option/Help ... 19
Figure 3.4. Dataset Downloading Logs ... 19
Figure 3.5. Downloaded Dataset Directory Structure .. 19
Figure 3.6. OIDv4 Label to KITTI Format Conversion .. 20
Figure 3.7. Toolkit Visualizer ... 20
Figure 3.8. Manual Annotation Tool – Cloning ... 20
Figure 3.9. Manual Annotation Tool – Directory Structure .. 21
Figure 3.10. Manual Annotation Tool – Launch ... 21
Figure 3.11. Augmentation Directory Structure ... 21
Figure 3.12. Running the Augmentation .. 22
Figure 4.1. Training Code Directory Structure .. 23
Figure 4.2. Training Code Flow Diagram ... 28
Figure 4.3. Code Snippet – Class Name .. 29
Figure 4.4. Code Snippet – Input Image Size Configuration ... 29
Figure 4.5. Code Snippet – Anchors Per Grid Configuration #1 (Grid Sizes) ... 29
Figure 4.6. Code Snippet – Anchors Per Grid Configuration #3 .. 30
Figure 4.7. Code Snippet – Training Parameters .. 30
Figure 4.8. Code Snippet – Forward Graph Fire Layers .. 31
Figure 4.9. Code Snippet – Forward Graph Last Convolution Layer ... 31
Figure 4.10. Grid Output Visualization #1 ... 32
Figure 4.11. Grid Output Visualization #2 ... 32
Figure 4.12. Code Snippet – Interpret Output Graph ... 33
Figure 4.13. Code Snippet – Bbox Loss ... 33
Figure 4.14. Code Snippet – Confidence Loss ... 34
Figure 4.15. Code Snippet – Class Loss ... 34
Figure 4.16. Code Snippet – Dataset Iterator ... 35
Figure 4.17. Code Snippet – Image Scale .. 35
Figure 4.18. Code Snippet – Reduce Learning Rate on Plateau .. 35
Figure 4.19. Code Snippet – Save ... 35
Figure 4.20. Code Snippet – Transfer Learning ... 36

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6 FPGA-RD-02219-1.0

Figure 4.21. Code Snippet – Freezing Layers .. 36
Figure 4.22. Code Snippet – Set Layer Sparsity ... 37
Figure 4.23. Code Snippet – Determine Pruned Channels .. 37
Figure 4.24. Relation Between Number of Layers Versus Accuracy Versus Cycle Count ... 38
Figure 4.25. Relation Between Number Layers Versus FPS .. 38
Figure 4.26. Relation Between Number Layers Versus Accuracy Versus FPS ... 39
Figure 4.27. Training Input Parameter .. 40
Figure 4.28. Execute Training Script ... 41
Figure 4.29. Execute Training with Transfer Learning .. 41
Figure 4.30. Execute Training with Transfer Learning and Frozen Layers .. 41
Figure 4.31. TensorBoard – Generated Link ... 41
Figure 4.32. TensorBoard .. 42
Figure 4.33. Backbone Graph .. 42
Figure 4.34. Example of Files at Log Folder .. 43
Figure 4.35. Example of Checkpoint and Trained Model .. 43
Figure 5.1. Keras to TensorFlow Converter Directory... 44
Figure 5.2. Inference Directory ... 44
Figure 5.3. Run Inference .. 44
Figure 5.4. Inference Output .. 45
Figure 5.5. mAP Directory Structure ... 45
Figure 5.6. mAP Calculation .. 45
Figure 6.1. SensAI Home Screen ... 46
Figure 6.2. SensAI – Network File Selection .. 47
Figure 6.3. SensAI – Image Data File Selection ... 47
Figure 6.4. SensAI – Project Settings... 48
Figure 6.5. SensAI – Analyze Project ... 48
Figure 6.6. Q Format Settings for Each Layer ... 49
Figure 6.7. Compile Project ... 49
Figure 7.1. RTL Top Level Block Diagram .. 50
Figure 7.2. SPI Read Command Sequence .. 52
Figure 7.3. Downscaling .. 53
Figure 7.4. HyperRAM Memory Addressing ... 54
Figure 7.5. HyperRAM Access Block Diagram ... 55
Figure 7.6. CNN Output Data Format ... 56
Figure 7.7. Confidence Sorting .. 57
Figure 7.8. Intersection–Union Area NMS .. 58
Figure 7.9. CNN Counter Design ... 60
Figure 7.10. Frame Counter Design for 16 CNN Frames Average ... 60
Figure 7.11. Average Inference Time Calculation ... 61
Figure 7.12. Inference Time in Millisecond ... 61
Figure 7.13. Average Inference Time Value to ASCII Conversion ... 61
Figure 7.14. CNN Count Values to ASCII Conversion .. 62
Figure 7.15. Inference Time in Millisecond Values to ASCII Conversion ... 62
Figure 7.16. Text Address Positions to Display Input Values .. 63
Figure 7.17. Address Locations to Display Individual Frame Time and Inference Time with String in Display 63
Figure 7.18. Address Locations to Display CNN Count Value and its String in Display Output ... 63
Figure 7.19. Bitmap Extraction from Font ROM ... 64
Figure 8.1. Radiant – Default Screen .. 65
Figure 8.2. Radiant – Open CrossLink-NX Voice and Vision Project File (.rdf) .. 65
Figure 8.3. Radiant – Design Load Check After Opening Project File .. 66
Figure 8.4. Radiant – Trigger Bitstream Generation ... 66
Figure 8.5. Radiant – Bit File Generation Report Window .. 67
Figure 8.6. Radiant – Uninstall Old IP ... 67
Figure 8.7. Radiant – IP on Server Tab .. 68

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 7

Figure 8.8. Radiant – IP License Agreement ... 68
Figure 9.1. Selecting FX3 I2C EEPROM in USB Control Center .. 69
Figure 9.2. Radiant Programmer – Default Screen ... 70
Figure 9.3. Radiant Programmer – Device Selection .. 70
Figure 9.4. Radiant Programmer – Device Operation ... 71
Figure 9.5. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing 72
Figure 9.6. CrossLink-NX Voice and Vision Flashing Switch – SW5 Push Button .. 73
Figure 9.7. Radiant Programmer – Output Console ... 73
Figure 9.8. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing 74
Figure 9.9. Radiant Programmer – Output Console ... 75
Figure 10.1. Running the Demo .. 76

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8 FPGA-RD-02219-1.0

Tables
Table 4.1. Human Counting Training Network Topology .. 24
Table 4.2. Model Performance Data with Conv3 .. 38
Table 4.3. Model Performance Data with Depthwise 1 × 1 Convolution ... 39
Table 4.4. Model Performance Data with Dataset Augmentation ... 39
Table 7.1. Core Parameter .. 51
Table 7.2. Data Parameters of CNN Output .. 55
Table 7.3. Pre-Selected Width and Height of Anchor Boxes ... 57
Table 7.4. Grid Center Values (X, Y) for Anchor Boxes .. 57
Table 7.5. Signal Values to ASCII Conversion .. 62
Table A.1. Other Labeling Tools .. 77

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 9

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

CNN Convolutional Neural Network

FPGA Field-Programmable Gate Array

I2C Inter-Integrated Circuit

ML Machine Learning

NMS Non Max Suppression

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

USB Universal Serial Bus

VVML Voice and Vision Machine Learning

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

10 FPGA-RD-02219-1.0

1. Introduction
This document describes the Human Counting Design process using the CrossLink™-NX Voice and Vision platform.
Human Counting is a subset of the generic Object Counting base design.

1.1. Design Process Overview
The design process involves the following steps:

1. Training Model

 Setting up the basic environment

 Preparing the dataset

 Preparing Images

 Labeling dataset of human bounding box

 Training the machine

 Training the machine and creating the checkpoint data

2. Neural Network Compiler

 Creating Binary file with Lattice SensAI™ 4.0 program

3. FPGA Design

 Creating FPGA Bitstream file

4. FPGA Bitstream and Quantized Weights and Instructions

 Flashing Binary and Bitstream files

 Binary File to Flash Memory on CrossLink-NX Voice and Vision board

 Bitstream to Flash Memory on CrossLink-NX Voice and Vision board

Figure 1.1. Lattice Machine Learning Design Flow

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 11

2. Setting Up the Basic Environment

2.1. Software and Hardware Requirements
This section describes the required tools and environment setup for FPGA Bitstream and Flashing.

2.1.1. Lattice Software
 Lattice Radiant™ Tool version 2.2 – Refer to http://www.latticesemi.com/LatticeRadiant.

 Lattice Radiant Programmer version 2.2 – Refer to http://www.latticesemi.com/programmer.

 Lattice SensAI Compiler version 4.0 – Refer to
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler.

2.1.2. Hardware
 CrossLink-NX Voice and Vision Board

Figure 2.1. Lattice CrossLink-NX Voice and Vision Board

http://www.latticesemi.com/legal
http://www.latticesemi.com/LatticeRadiant
http://www.latticesemi.com/programmer
https://www.latticesemi.com/Products/DesignSoftwareAndIP/AIML/NeuralNetworkCompiler

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

12 FPGA-RD-02219-1.0

2.2. Setting Up the Linux Environment for Machine Training
This section describes the steps for NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS.NVIDIA library and
TensorFlow version is dependent on PC and Ubuntu/Windows version.

2.2.1. Installing the CUDA Toolkit

To install the CUDA toolkit, run the following commands in the order specified below:

$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-

repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.2. Download CUDA Repo

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.deb

Figure 2.3. CUDA Repo Installation

$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.

pub

Figure 2.4. Fetch Keys

$sudo apt-get update

Figure 2.5. Update Ubuntu Packages Repositories

http://www.latticesemi.com/legal
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 13

$ sudo apt-get install cuda-9-0

Figure 2.6. CUDA Installation Completed

2.2.2. Installing the cuDNN

To install the cuDNN:

1. Create Nvidia developer account: https://developer.nvidia.com.

2. Download cuDNN lib: https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1.

3. Execute the commands below to install cuDNN:

$ tar xvfcudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h/usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudochmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*

Figure 2.7. cuDNN Library Installation

2.2.3. Installing the Anaconda Python

To install the Anaconda and Python 3:

1. Go to https://www.anaconda.com/products/individual#download-section.

2. Download Python3 version of Anaconda for Linux.

3. Install the Anaconda environment by running the command below:
$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release.

Figure 2.8. Anaconda Installation

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://www.anaconda.com/products/individual%23download-section

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

14 FPGA-RD-02219-1.0

4. Accept the license.

Figure 2.9. Accept License Terms

5. Confirm the installation path. Follow the instruction on the screen if you want to change the default path.

Figure 2.10. Confirm/Edit Installation Location

6. After installation, enter No as shown in Figure 2.11.

Figure 2.11. Launch/Initialize Anaconda Environment on Installation Completion

2.2.4. Installing the TensorFlow v1.15

To install the TensorFlow v1.15:

1. Activate the conda environment by running the command below:

$ source <conda directory>/bin/activate

Figure 2.12. Anaconda Environment Activation

2. Install the TensorFlow by running the command below:

$ conda install tensorflow-gpu==1.15.0

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 15

Figure 2.13. TensorFlow Installation

3. After installation, enter Y as shown in Figure 2.14.

Figure 2.14. TensorFlow Installation Confirmation

Figure 2.15 shows TensorFlow installation is complete.

Figure 2.15. TensorFlow Installation Completion

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16 FPGA-RD-02219-1.0

2.2.5. Installing the Python Package

To install the Python package:

1. Install Easydict by running the command below:

$ conda install –c conda-forge easydict

Figure 2.16. Easydict Installation

2. Install OpenCV by running the command below:

$ conda install opencv

Figure 2.17. OpenCV Installation

2.2.6. Setting the Pruning Environment

To set up the pruning environment:

1. Select the setup_env.py script, under the setup_optimization_env directory, with QVGA code as shown in
Figure 2.18.

Figure 2.18. Optimization ENV Directory Structure

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 17

2. Run the command below to set up pruning environment.
$ python setup_env.py

Figure 2.19. Optimization Environment Setting

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

18 FPGA-RD-02219-1.0

3. Preparing the Dataset
This chapter describes how to create a dataset using Google Open Image Dataset as an example.

The Google Open Image Dataset version 4 (https://storage.googleapis.com/openimages/web/index.html) features
more than 600 classes of images. The Person class of images includes human annotated and machine annotated labels
and bounding box. Annotations are licensed by Google Inc. under CC BY 4.0 and images are licensed under CC BY 2.0.

3.1. Downloading the Dataset
To download the dataset, run the commands below:

1. Clone the OIDv4_Toolkit repository:

$ git clone https://github.com/EscVM/OIDv4_ToolKit.git

$ cd OIDv4_ToolKit

Figure 3.1. Open Source Dataset Repository Cloning

Figure 3.2 shows the OIDv4 code directory structure.

Figure 3.2. OIDv4_Toolkit Directory Structure

View the OIDv4 Toolkit Help menu:

$ python3 main.py –h

http://www.latticesemi.com/legal
https://storage.googleapis.com/openimages/web/index.html
https://github.com/EscVM/OIDv4_ToolKit.git

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 19

Figure 3.3. Dataset Script Option/Help

2. Use the OIDv4 Toolkit to download dataset. Download the Person class images:
$ python3 main.py downloader --classes Person --type_csv validation

Figure 3.4. Dataset Downloading Logs

Figure 3.5 shows the downloaded dataset directory structure.

Figure 3.5. Downloaded Dataset Directory Structure

3. Lattice training code uses KITTI (.txt) format. Since the downloaded dataset is not in exact KITTI format, convert the
annotation to KITTI format.

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/validation/Person/Label/*

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/train/Person/Label/*

$ sed -i -- 's/Person/Person 0 0 0/g' OID/Dataset/test/Person/Label/*

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

20 FPGA-RD-02219-1.0

Figure 3.6. OIDv4 Label to KITTI Format Conversion

Note:

KITTI Format: Person 0 0 0324.6169.90814.56681.90

It has class ID followed by truncated, occluded, alpha, Xmin, Ymin, Xmax, Ymax.

The code converts Xmin, Ymin, Xmax, Ymax into x, y, w, h while training bounding box rectangle coordinates.

3.2. Visualizing and Tuning/Cleaning Up the Dataset
To visualize and annotate the dataset, run the command below:

1. Visualize the labeled images.

$ python3 main.py visualizer

Figure 3.7. Toolkit Visualizer

2. Clone the manual annotation tool from the GitHub repository.

$ git clone https://github.com/SaiPrajwal95/annotate-to-KITTI.git

Figure 3.8. Manual Annotation Tool – Cloning

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI.git

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 21

3. Go to annotate to KITTI.

$ cd annotate-to-KITTI

$ ls

Figure 3.9. Manual Annotation Tool – Directory Structure

4. Install the dependencies (OpenCV 2.4).

$ sudo apt-get install python-opencv

5. Launch the utility.

$ python3 annotate-folder.py

6. Set the dataset path and default object label.

Figure 3.10. Manual Annotation Tool – Launch

7. For annotation, run the script provided in the website below.

https://github.com/SaiPrajwal95/annotate-to-KITTI

For information on other labeling tools, see Table A.1.

3.3. Data Augmentation
Deep networks need large amount of training data to achieve good performance. To train a neural network using little
training data, image augmentation is usually required to boost the performance. Image augmentation creates training
images through different ways of processing or combination of multiple processing, such as random rotation, shifts,
shear and flips, and others.

Figure 3.11. Augmentation Directory Structure

 Data_to_qvga.py – Contains the augmentations operation script.

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

22 FPGA-RD-02219-1.0

3.3.1. Running the Augmentation

Run the augmentation by running the following command:
$ python data_to_qvga.py --input <input_dataset_path> --output

<output_dataset_path> --type kitti --output_dimension 320,240 --canvas_shift --

brightness --contrast --pixel_shift 15 --canvas_shift_percentage 40 --

brightness_percentage 30 --contrast_percentage 30

Figure 3.12. Running the Augmentation

Note: data_to_qvga.py contains more optional flags as described below:

 --input – Input Dataset Path

 --output – Output Dataset Path

 --canvas_shift – Flag to add Canvas shifting augmentation

 --brightness – Flag to add brightness augmentation

 --contrast – Flag to add contrast augmentation

 --pixel_shift – Number of pixel shift in canvas shift augmentation

 --type – (kitti/pascal) type of input dataset (default kitti)

 --output_dimension – Expected output dimension in form of x, y (default values: 320, 240)

 --visualize – Flag that saves images in /tmp/visualize with drawn box (optional)

 --canvas_shift_percentage – Percentage of dataset to apply canvas shift augmentation

 --brightness_percentage – Percentage of dataset to apply brightness augmentation

 --contrast_percentage – Percentage of dataset to apply contrast augmentation

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 23

4. Training the Machine

4.1. Training Code Structure

Figure 4.1. Training Code Directory Structure

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

24 FPGA-RD-02219-1.0

4.2. Neural Network Architecture

4.2.1. Human Count Training Network Layers

This section provides information on the Convolution Network Configuration of the Human Count Detection design. The
Neural Network model of the Human Count Detection design uses MobileNetV1 NN base model and the detection layer
of SqueezeDet model.

Table 4.1. Human Counting Training Network Topology

Image Input (320 × 240 × 1)

Fire 1

DWConv3–32 Conv3 – # where:

 Conv3 = 3 × 3 Convolution filter Kernel size

 # = The number of filter

DWConv3–32 – # where:

 DWConv3 = Depth-wise convolution filter with 3 × 3 size

 # = The number of filter

Conv1–32 – # where:

 Conv1 = 1 × 1 Convolution filter Kernel size

 # = The number of filter

For example, Conv3–16 = 16 3 × 3 convolution filters

BN – Batch Normalization

BN

ReLU

Maxpool

Conv1–32

BN

ReLU

Maxpool

Fire 2

DWConv3–32

BN

ReLU

Conv1–32

BN

ReLU

Fire 3

DWConv3–32

BN

ReLU

Maxpool

Conv1–32

BN

ReLU

Fire 4

DWConv3–64

BN

ReLU

Maxpool

Conv1–64

BN

ReLU

Fire 5

DWConv3–64

BN

ReLU

Conv1–64

BN

ReLU

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 25

Image Input (320 × 240 × 1)

Fire 6

DWConv3–128

BN

ReLU

Conv1–128

BN

ReLU

Fire 7

DWConv3–128

BN

ReLU

Conv1–128

BN

ReLU

Conv12 Conv3–42

 Human Count Network structure consists of seven fire layers followed by one convolution layer. A fire layer
contains convolution, depth wise convolution, batch normalization, and ReLU layers. Pooling layers are only in
Fire 1, Fire 3, and Fire 4. Fire 2, Fire 5, Fire 6, and Fire 7 do not contain pooling layers.

 Note that Fire 1 contains two Maxpooling operations to reduce calculation complexity and model size.

 In Table 4.1, the layer contains convolution (Conv), batch normalization (BN) and ReLU ayers.

 Layer information:

 Convolutional Layer

In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters
(sometimes referred as kernels) which convolves with input layer/image and generates activation map
(that is, feature map). This filter is an array of numbers (the numbers are called weights or parameters). Each
of these filters can be thought of as feature identifiers, such as straight edges, simple colors, curves, and other
high-level features. For example, the filters on the first layer convolve around the input image and activate (or
compute high values) when the specific feature it is looking for (such as curve, for example) is in the input
volume.

 ReLU (Activation layer)

It is the convention to apply a nonlinear layer (or activation layer) immediately after each conv layer. The
purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear
operations during the conv layers (element wise multiplications and summations).In the past, nonlinear
functions like tanh and sigmoid were used, but researchers found out that ReLU layers work far better because
the network is able to train a lot faster (because of the computational efficiency) without making a significant
difference in accuracy. The ReLU layer applies the function f(x) = max (0, x) to all of the values in the input
volume. In basic terms, this layer just changes all the negative activations to 0.This layer increases the
nonlinear properties of the model and the overall network without affecting the receptive fields of the conv
layer.

 Pooling Layer

After some ReLU layers, you may choose to apply a pooling layer. It is also referred to as a down sampling layer.
In this category, there are also several layer options, with Maxpooling being the most popular. This basically
takes a filter (normally of size 2 × 2) and a stride of the same length. It then applies it to the input volume and
outputs the maximum number in every sub region that the filter convolves around.

The intuitive reasoning behind this layer is that once we know that a specific feature is in the original input
volume (there is a high activation value), its exact location is not as important as its relative location to the
other features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the
width change but not the depth) of the input volume. This serves two main purposes. The first is that the
number of parameters or weights is reduced by 75%, thus lessening the computation cost.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

26 FPGA-RD-02219-1.0

The second is that it controls over fitting. This term refers to when a model is so tuned to the training examples
that it is not able to generalize well for the validation and test sets. A symptom of over fitting is having a model
that gets 100% or 99% on the training set, but only 50% on the test data.

 Batch Normalization Layer

Batch normalization layer reduces the internal covariance shift. To train a neural network, some preprocessing to
the input data are performed. For example, you could normalize all data so that it resembles a normal distribution
(that means, zero mean and a unitary variance). This prevents the early saturation of non-linear activation
functions such as sigmoid, assures that all input data is in the same range of values, and others.

An issue, however, appears in the intermediate layers because the distribution of the activations is constantly
changing during training. This slows down the training process because each layer must learn to adapt them to a
new distribution in every training step. This is known as internal covariate shift.

Batch normalization layer forces the input of every layer to have approximately the same distribution in every
training step by following the process below during training:

a. Calculate the mean and variance of the layers input.

b. Normalize the layer inputs using the previously calculated batch statistics.

c. Scales and shifts in order to obtain the output of the layer.

This makes the learning of layers in the network more independent of each other and allows you to be care-free
about weight initialization, works as regularization in place of dropout and other regularization techniques.

 Depthwise Convolution and 1 × 1 Convolution Layer

Depth wise convolutions are used to apply a single filter per each input channel (input depth). Pointwise
convolution, a simple 1 × 1 convolution, is then used to create a linear combination of the output of the depth wise
layer.

Depth wise convolution is extremely efficient relative to standard convolution. However, it only filters input
channels and does not combine them to create new features. An additional layer that computes a linear
combination of the output of depth wise convolution through 1 × 1 convolution is needed in order to generate
these new features.

A 1 × 1 convolutional layer compresses an input tensor with large channel size to one with the same batch and
spatial dimension, but smaller channel size. Given a 4D input tensor and a filter tensorshape [filter_height,
filter_width, in_channels, channel_multiplier] containing in_channels convolutional filters of depth 1,
depthwise_conv2d applies a different filter to each input channel, then concatenates the results together. The
output has in_channels multiply with channel_multiplier channels.

The architecture above provides nonlinearities and preservation of dimension that help to improve the robustness of the
network and control over fitting.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 27

4.2.2. Human Count Detection Network Output

From the input image model, it extracts feature maps first and overlays them with a W × H grid. Each cell then computes
K pre-computed bounding boxes called anchors. Each bounding box has the following:

 Four scalars (x, y, w, h)

 A confidence score (Pr(Object) × IOU)

 C conditional classes

 The current model architecture has a fixed output of W × H × K × (4 + 1 + C) where:

 W, H = Grid Size

 K = Number of Anchor boxes

 C = Number of classes for which you want detection

 The model has a total of 12600 output values, which are derived from the following:

 20 × 15 grid

 Seven anchor boxes per grid

 Six values per anchor box. It consists of:

 Four bounding box coordinates (x, y, w, h)

 One class probability

 One confidence score

As a result, there is a total of 15 × 20 × 7 × 6 = 12600 output values.

If your images are smaller, it is recommended to stretch them to default size. You can also up-sample them
beforehand. Smaller image size, due to its sparser grid, may not produce accurate detections.

If your images are bigger and you are not satisfied with the results of the default image size, you can try using a denser
grid, as details might get lost during the downscaling.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

28 FPGA-RD-02219-1.0

4.2.3. Training Code Overview

Load Training Data

Pre-Processing

Read Dataset

Create Config

Load Config File

Model Building

CNN Architecture

Loss Functions

Create Dataset Iterator

Load Checkpoints if already
exist

Compile and Train Model

Save Train Model

Pruning and Finetuning
Model

Save Pruned Model

Figure 4.2. Training Code Flow Diagram

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 29

Training code is divided into the following parts:

 Model Configuration

 Model Building

 Data Pre-Processing

 Training

 Pruning

The details of each part can be found in subsequent sections.

4.2.3.1. Model Configuration

The design uses Kitti dataset and SqueezeDet main/config/create_config.py maintains all the configurable parameters
for the model. Below is summary of configurable parameters:

 Training Object Class

 The class for which you want to train the model, configure that class name here.

Figure 4.3. Code Snippet – Class Name

 Image Size

 Change cfg.IMAGE_WIDTH and cfg.IMAGE_HEIGHT to configure image size (width and height) in
main/config/create_config.py.

 Also, you can pass flag–gray to train model with one channel.

Figure 4.4. Code Snippet – Input Image Size Configuration

 Grid Size

 Since there are four pooling layers, grid dimension would be H = 15 and W = 20. Update it based on anchors
per grid size changes

Figure 4.5. Code Snippet – Anchors Per Grid Configuration #1 (Grid Sizes)

 To run the network on your own dataset, adjust the anchor sizes. Anchors are kind of prior distribution over
what shapes your boxes should have. The better this fits to the true distribution of boxes, the faster and easier
your training is going to be.

 To determine anchor shapes, first load all ground truth boxes and pictures, and if your images do not have all
the same size, normalize their height and width by the images’ height and width. All images are normalized
before being fed to the network, so you need to do the same to the bounding boxes and consequently, the
anchors.

 Second, perform a clustering on these normalized boxes (use k-means without feature whitening and
determine the number of clusters either by eyeballing or by using the elbow method).

http://www.latticesemi.com/legal
https://en.wikipedia.org/wiki/Elbow_method_%28clustering%29

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

30 FPGA-RD-02219-1.0

 Check for boxes that extend beyond the image or have a zero to negative width or height

Figure 4.6. Code Snippet – Anchors Per Grid Configuration #3

 Code Snippet showed above is Configuring Anchor boxes as per input image size.

 Training Parameters

 Other training related parameters like batch size, learning rate, loss parameters, and different thresholds can
be configured.

Figure 4.7. Code Snippet – Training Parameters

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 31

4.2.3.2. Model Building

SqueezeDet class constructor builds model, which is divided into the following sections:

Forward Graph

 File Path – main/model/SqueezeDet.py -> _create_model()

 The CNN architecture consist of Convolution, Batch Normalization, ReLU, Maxpool, and 1 × 1 Depthwise
convolution layers.

 The default forward graph consists of seven fire layers as described in Figure 4.8.

 The length of network is generated based on argument depth, which consists the number of filters for each
layer.

Note: Minimum length supported is 5 and maximum length supported is 10.

Figure 4.8. Code Snippet – Forward Graph Fire Layers

 Note that layers have depth wise 2D Convolution.

Figure 4.9. Code Snippet – Forward Graph Last Convolution Layer

Interpretation Graph

 The Interpretation Graph consists of the following sub-blocks:

 Interpret_output

This block interprets output from network and extracts predicted class probability, predicated confidence
scores, and bounding box values.

The output of the convnet is a 15 × 20 × 42 tensor - there are 42 channels of data for each of the cells in the
grid that is overlaid on the image and contains the bounding boxes and class predictions. This means the 42
channels are not stored consecutively, but are scattered all over the place and needed to be sorted. Figure 4.10
and Figure 4.11 explain the details.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-RD-02219-1.0

15

20

42

Anchor 1

(6)

Anchor 2

(6)

Anchor 3

(6)

Anchor 4

(6)

Anchor 5

(6)

Anchor 6

(6)

Anchor 7

(6)

Figure 4.10. Grid Output Visualization #1

For each grid cell, values are aligned as shown in Figure 4.11.

15

20

42 values = 7 × 6

Total values = 15 × 20 × 42

7 Anchors × P C Dx Dy Dw Dh

6 values

Figure 4.11. Grid Output Visualization #2

As shown in Figure 4.12, the output from conv12 layer (4D array of batch size × 15 × 20 × 42) needs to be sliced
with proper index to get all values of probability, confidence, and coordinates.

The code snippet interpret output is main/utils/utils.py -> slice_predictions().

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 33

Figure 4.12. Code Snippet – Interpret Output Graph

For confidence score, this must be a number between 0 and 1, so sigmoid is used.

For predicting the class probabilities, there is a vector of NUM_CLASS values at each bounding box. Apply a
softmax to make it probability distribution.

 Bboxes – bboxes_from_deltas()

This block calculates bounding boxes based on anchor box and predicated bounding boxes.

 IOU – tensor_iou()

This block calculates Intersection over Union for detected bounding boxes and actual bounding boxes.

Loss graph

 File Path – main/model/SqueezeDet.py -> loss()

 This block calculates different types of losses which need to be minimized. In order to learn detection, localization
and classification, model defines a multi-task loss function. There are three types of losses which are considered
for calculation:

 Bounding box

This loss is regression of the scalars for the anchors

Figure 4.13. Code Snippet – Bbox Loss

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

34 FPGA-RD-02219-1.0

 Confidence score

 To obtain meaningful confidence score, each box’s predicted value is regressed against the real and the
predicted box. During training, compare ground truth bounding boxes with all anchors and assign them to
the anchors that have the largest overlap (IOU) with each of them.

 Select the closest anchor to match the ground truth box such that the transformation needed is reduced
to minimum. Equation evaluates to 1 if the k-th anchor at position-(i, j) has the largest overlap with a
ground truth box, and to 0 if no ground truth is assigned to it. This way, you only include the loss
generated by the responsible anchors.

 As there can be multiple objects per image, normalize the loss by dividing it by the number of objects.

Figure 4.14. Code Snippet – Confidence Loss

 Class

The last part of the loss function is just cross-entropy loss for classification for each box to do classification, as
you would for image classification.

Figure 4.15. Code Snippet – Class Loss

In one model architecture, you obtain the bounding box prediction, the classification, as well as, the confidence
score.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 35

4.2.3.3. Training

 Training Data Generator

 main/model/datageberator.py takes care of reading dataset and creates iterator that feeds data to the model
in batch size given.

Figure 4.16. Code Snippet – Dataset Iterator

 Data generator scales image pixel values from [0, 255] to [0, 2] as shown in Figure 4.17. It also converts image
to gray scale if model is trained with –gray flag.

 The current human count training code uses mean = 0 and scale = 1/128 (0.0078125) in the pre-processing
step.

Figure 4.17. Code Snippet – Image Scale

 Training Callbacks

 Figure 4.8 shows reduction in learning rate on the plateau.

Figure 4.18. Code Snippet – Reduce Learning Rate on Plateau

 Figure 4.19 shows how to save checkpoints.

Figure 4.19. Code Snippet – Save

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

36 FPGA-RD-02219-1.0

4.2.3.4. Transfer Learning and Freezing Layers

 Transfer Learning

You can pass the model checkpoint or saved keras model as argument in –init

Note: The architecture of checkpoint and model should match.

Checkpoints are also restored if you are using the log directory with existing training.

Figure 4.20. Code Snippet – Transfer Learning

 Freezing Layers

If you are using pre-trained checkpoint and you want to freeze model up to some layer, you can provide
flag freeze_landmark subset of the layer name. For example, --freeze_landmark=fire5.

Figure 4.21. Code Snippet – Freezing Layers

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 37

4.3. Pruning
Pruning takes place in two phases:

 Pruning – As part of pruning, the code determines the channels with the lowest impact on accuracy and remove
those channels.

 Fine Tuning – Create model with optimized number of channels, restore weights, and fine tune model.

Figure 4.22. Code Snippet – Set Layer Sparsity

Figure 4.22 sets sparsity to prune the layer. Based on the sparsity you set, the pruning is implemented.

Note: There is no pruning in the first fire block, so sparsity is not set to first mobile block.

Figure 4.23. Code Snippet – Determine Pruned Channels

Figure 4.23 determines which channels to prune or not. Based on the number of non-pruned depths, the new model is
created and weights are transferred.

Fine-tuning is performed on the new model, and the final model is saved.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

38 FPGA-RD-02219-1.0

4.4. Finding the Optimal Model
In the default code, the default depth of network is 7. However, you can change the depth with respect to their use
case. For example, if you need faster inference, it can be achieved by decreasing the depth of the network. However, it
drops the accuracy.

If you need accuracy, it can be achieved by increasing the depth; but, it increases the inference time. The relation
between network depth, accuracy, and inference FPS is shown in Figure 4.24, Figure 4.25, and Figure 4.26.

Note: The models have first layer as normal convolution and rest of the layers as depthwise and 1 × 1 convolution.

Table 4.2. Model Performance Data with Conv3

Layer Length Map FPS CNN Engine Cycle Count

7 Fire Layer 58% 35.71 4502790

8 Fire Layer 59% 28.5 4874094

9 Fire Layer 65% 22.22 7443976

Figure 4.24. Relation Between Number of Layers Versus Accuracy Versus Cycle Count

Figure 4.25. Relation Between Number Layers Versus FPS

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 39

Table 4.3 lists the model with all layers as depth wise 1 × 1 convolution.

Table 4.3. Model Performance Data with Depthwise 1 × 1 Convolution

Layer Length Map FPS CNN Engine Cycle Count

6 Fire Layer 47.61% 52.63 3154057

7 Fire Layer 56% 45.45 3715150

8 Fire Layer 56% 38.46 4209770

Figure 4.26. Relation Between Number Layers Versus Accuracy Versus FPS

Table 4.4 shows the dataset augmentation’s impact on model accuracy.

Table 4.4. Model Performance Data with Dataset Augmentation

Dataset Augmentation Accuracy on Test Set

D1: Canvas Shift 51%

D2: D1 + Brightness augmentation 56%

D3: D2 + Contrast augmentation 56%

Note: The FPS data in Table 4.4 contains information of the model with only one pooling in one fire layer, whereas the
released model contains two pooling in first fire layer to increase FPS.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

40 FPGA-RD-02219-1.0

4.5. Training from Scratch and/or Transfer Learning
To train the machine:

1. Modify the training script. The training script @train.sh is used to trigger training. Figure 4.27 shows the input
parameters to be configured.

Figure 4.27. Training Input Parameter

Some of the options you can provide during training are the following:

 --dataset_path – Dataset directory path. /home/dataset/qvga_dataset is example.

 --logdir – log directory where checkpoint files are generated while model is training.

 --val_set_size – Validation split percentage.

 --validation_freq – Validation frequency in terms of number of epochs.

 --gray – Add flag to train model with grayscale images.

 --early_pooling – Add flag to use early-pooling.

 --filterdepths – comma separated list of number of features for each layer. You can use depth length of 5 to 10
(default value is 7).

 --sparsity – List of fraction to prune layer channels.
Note: The first fire layer is not pruned, so length of sparsity list should be one less than length of filter depths.

 --epochs – Comma separated epoch list for training, pruning and fine-tuning.

 –gpuid – If the system has more than one gpu, it indicates the one to use.

 --configfile – Config file name. If file exist in logdir, the code reuses it. Otherwise, it creates a new file.

 --runpruning – Add flag to run pruning after training is completed.

 --usecov3 – Use Normal convolution as first layer instead of depthwise 1x1 conv layer.

 --usedefaultvalset – Add this flag if you want to reuse validation set images from val.txt. If flag is not present,
the code creates a new validation set.

 --freeze_landmark – If you want to freeze some layers in the network, input the subpart or layer name as an
argument and the code freezes weights up to the layer name mentioned in this argument. For example, Fire1,
Fire6, and so on.

 --init – If you want to specify pretrained model to load weights.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 41

2. Execute the train.sh script to start the training.

Figure 4.28. Execute Training Script

Figure 4.29. Execute Training with Transfer Learning

Figure 4.30. Execute Training with Transfer Learning and Frozen Layers

Note: If model is not converging in pruning, you can reduce sparsity and try again.

3. Start TensorBoard.

$ tensorboard –logdir=<log directory of training>

For example: tensorboard –logdir=’./logs/train/tensorboard’.

4. Open the local host port on your web browser.

Figure 4.31. TensorBoard – Generated Link

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

42 FPGA-RD-02219-1.0

5. Check the training status on TensorBoard

Figure 4.32. TensorBoard

Figure 4.32 shows the backbone graph.

Figure 4.33. Backbone Graph

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 43

Figure 4.34. Example of Files at Log Folder

Figure 4.35. Example of Checkpoint and Trained Model

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

44 FPGA-RD-02219-1.0

5. Model Evaluation
This section describes the procedure to calculate model performance in terms of mAP.

5.1. Convert Keras Model to TensorFlow File
The QVGA code contains keras2tf.py under keras-to-tf-converter directory as shown in Figure 5.1.

Figure 5.1. Keras to TensorFlow Converter Directory

Note: If you performes any quantization change in training code binary_ops.py, you need to replicate those changes in
binary_ops.py.

Run the command below to generate .pb file in the same path of the h5 file.

$ python keras2tf.py –kerasmodel <h5 model path>

The script saves the .pb file in the directory assigned to kerasmodel argument.

5.2. Run Inference on test set
The QVGA code contains the qvga_inference_320x240.py under the inference directory as shown in Figure 5.2.

Figure 5.2. Inference Directory

Note: If you performed any changes in the training code regarding image size, number of anchors, or grid size, you
need to replicate those changes in the inference script.

Run the command below to run inference on the test set.

$ python qvga_inference_320x240.py –pb <converted pb path> --input_image <test set

images path>

Figure 5.3. Run Inference

The command above saves the images with bbox drawn in inference_output/image_output and resultant kitti output in
inference_output/predictions as shown in Figure 5.4.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 45

Figure 5.4. Inference Output

5.3. Calculate mAP
The QVGA code contains the qvga_inference_320x240.py in the inference directory as shown in Figure 5.5.

Figure 5.5. mAP Directory Structure

Run the command below to calculate mAP using the predictions generated from inference and groundtruth from the
test set.

$ python main.py –input_images <input test set images path> --ground_truth <input

test set labels path> --predictions <path to prediction generated from inference> -

-no-animation –no-plot

Figure 5.6. mAP Calculation

After successfully running the script, it shows the mAP for each class and the total mAP.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

46 FPGA-RD-02219-1.0

6. Creating Binary File with Lattice SensAI
This chapter describes how to generate binary file using the Lattice SensAI version 4.0 program.

Figure 6.1. SensAI Home Screen

To create the project in SensAI tool:

1. Click File > New.

2. Enter the following settings:

 Project Name

 Framework – Keras

 Class – CNN

 Device – CrossLink-NX

 ‘Compact Mode’ should be unchecked.

3. Click Network File and select the network (h5) file.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 47

Figure 6.2. SensAI – Network File Selection

4. Click Image/Video/Audio Data and select the image input file.

Figure 6.3. SensAI – Image Data File Selection

5. Click NEXT.

6. Configure your project settings.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

48 FPGA-RD-02219-1.0

Figure 6.4. SensAI – Project Settings

7. Scratch pad memory block size, and data section base address should match with the FPGA RTL code.

8. Set the depth range. With this setting, the class probability values are not part of the output values.

9. Click OK to create project.

10. Double-click Analyze.

Figure 6.5. SensAI – Analyze Project

The tool generates the Q format for each layer based on range analysis, which is based on input image and other
parameters.

11. Confirm the Q format of each layer as shown in Figure 6.6 and update the fractional bit for each layer by double-
clicking on the values against each layer one by one.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 49

Figure 6.6. Q Format Settings for Each Layer

12. After changing the fractional bit, double-click on Analyze again.

13. Double-click Compile to generate the Firmware file.

Figure 6.7. Compile Project

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

50 FPGA-RD-02219-1.0

7. Hardware Implementation

7.1. Top Level Information

7.1.1. Block Diagram

HyperRAM

External Flash Memory
(ML Firmware/Bitstream)

HM 0360 Camera
(640×480P60

Monochrome)

CrossLink-NX

hyperbus
I/O

AXI
Slave

(axi2hyperbus)

SD Loader
(sd_spi)

ML Engine

640/2 × 480/2 =

320 × 240

640

480

CYUSB3014 PC

480P60, YUY2

USB2.0 UVC

FW

AXI BUS

Result Processing

Video Path

USB2.0 UVC

csi2_parallel crop_downscale_front_qvga osd

det_out_filter bbox2box

Frame Data Box Information

Figure 7.1. RTL Top Level Block Diagram

7.1.2. Operational Flow

This section provides a brief idea about the data flow across CrossLink-NX board.

 The CNN module is configured with the help of a binary (.bin) file stored in a SD card. The .bin file is a command
sequence code, which is generated by the Lattice Machine Learning software tool.

 The command code is written in hyperRAM through AXI before the execution of CNN Accelerator IP Core starts.
CNN reads command code from hyperRAM during its execution and does calculation with it per command code.
Intermediate data may be transferred from/to hyperRAM per command code.

 The RAW8 data from csi2_to_parallel module is downscaled to 320 × 240 image resolution by the
crop_downscale_front_qvga module to match CNN’s input resolution. This data is written into hyperRAM memory
through axi2_hyperbus through the axi_ws2m AXI interface module.

 After the command code and input data are available, the CNN Accelerator IP Core starts calculation at the rising
edge of start signal.

 The output data of CNN is passed to det_out_filter for post processing. det_out_filter generates bounding box
coordinates X, Y, W, and H associated with top five confidence value indexes for 320 × 240 image resolution.

 These coordinates are passed to osd_back_qvga_human_count for resizing to fit the actual image resolution on
the display.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 51

7.1.3. Core Customization

Table 7.1. Core Parameter

Constant
Default

(Decimal)
Description

OVLP_TH_2X 5 Intersection Over Union Threshold (NMS)

NUM_FRAC 10 Fraction Part Width in Q-Format representation.

EN_INF_TIME 0

Enable Timing measurement logic

By default, it is zero and the memory file used is human_count.memI.

If assigned 1, timing measurement is enabled and the memory file
used is human_count_INF.mem.

In order to configure the respective memory file, follow the steps
below:

1. Open dpram8192x8_human_count.ipx from File List in Radiant.

2. Click on Browse Memory File from Initialization section.

3. Update mem file path:

 For 0 – /src/jedi_common/human_count.mem

 For 1 – /src/jedi_common/human_count_INF.mem

INF_MULT_FAC 15907

Inference time multiplying factor calculated as per CNN clock
frequency and using Q-Format (Q1.31).

CNN clock frequency = 135 MHz

Hence, CNN clock period

= 1/(135 × 10-6) µs

= 0.000007407 ms

Now, Q1.31 = 0.000007407 × 231 = ~15907

FLASH_START_ADDR 24’h300000

SPI Flash Read Start address (keep same address in programmer while
loading Firmware file)

For example, for current start address, programmer address should be
0x00300000.

FLASH_END_ADDR 24’h400000

SPI Flash Read End address (keep same address in programmer while
loading firmware file). The address must be in multiple of 512 Bytes.

For example, for current end address, programmer address should be:
0x00400000.

Constant Parameters (Not to be modified)

NUM_ANCHOR 2100 Number of reference bounding boxes for all grids

NUM_GRID 300 Total number of Grids (X × Y)

NUM_X_GRID 20 Number of X Grids

NUM_Y_GRID 15 Number of Y Grids

PIC_WIDTH 320 Picture Pixel Width (CNN Input)

PIC_HEIGHT 240 Picture Pixel Height (CNN Input)

TOP_N_DET 10 Number of top confidence bounding boxes detection

HYPERRAM_BASEADDR 4194304
Indicates hyperRAM starting base address location value. This should
match in SensAI compiler while generating firmware.

RAW8_OFFSET 0 Indicates hyperRAM starting address location value to store RAW8

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

52 FPGA-RD-02219-1.0

7.2. Architecture Details

7.2.1. SPI Flash Operation

RTL module spi_loader_spram provides SPI Flash read operation and writes that data into HyperRAM through the AXI
interface. It reads from SPI Flash as soon as board gets powered up and .bit and .bin files are loaded in expected
addresses.

 Expected Address for BIT File (Programmer) – 0x0000000 - 0x00100000

 Expected Address for Firmware File (Programmer) – FLASH_START_ADDR - FLASH_END_ADDR

Typical sequence of SPI Read commands for SPI Flash MX25L12833F is implemented using FSM in RTL as per the flow of
operation below.

 After FPGA Reset, RELEASE FROM DEEP POWER DOWN command (0xAB) is passed to SPI Flash memory. Then RTL
waits for 500 clock cycle for SPI flash to come into Standby mode if it is in Deep Power Down mode.

 RTL sends FAST READ command code (0x0B) on SPI MOSI signal for indication of Read Operation to SPI Flash.

 RTL sends three bytes of address on SPI MOSI channel, which determines the location in SPI flash from where the
data needs to be read.

 This SPI Flash has eight dummy cycles as wait duration before read data appears on MISO channel. After waiting
for eight dummy cycles, the RTL code starts reading data.

 This read sequence is shown in Figure 7.2. The SPI Interface Signal Mapping with RTL signals are as follows:

 CS (Chip Select) => SPI_CSS

 SCLK (Clock) => SPI_CLK

 SI (Slave In) => SPI_MOSI

 SI (Slave Out) => SPI_MISO

 The Read Data on MISO signal is stored in a FIFO in RTL, which then reads the data in multiples of 512 bytes.

After 512 Bytes Chip Select is deasserted, the AXI FSM state is activated.

CS#

SCLK

SI

SO

CS#

SCLK

SI

SO

Mode 3 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31

Mode 0
Command 24-Bit Address

0Bh 23 22 21 3 2 1 0

High-Z

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Configurable
Dummy Cycle

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7

MSB MSB MSB

DATA OUT 1 DATA OUT 2

Figure 7.2. SPI Read Command Sequence

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 53

 AXI logic reads the data from FIFO in burst of four on AXI write channel, with each burst having 128 bytes.

 In accessing HyperRAM, the axi_ws2m module is used as a Muxing module among multiple input slave AXI
interfaces as shown in block diagram Figure 7.5. The spi_loader_spram module is considered as SLAVE 0 and given
priority to write into HyperRAM. The Master interface connects to the axi2_hyperbus module, which provides
output interface for accessing HyperRAM.

 After writing into HyperRAM, the 512 bytes are fetched from the SPI Flash using same command sequence as
explained above until the FLASH_END_ADDR is reached.

7.2.2. Pre-processing CNN

The output from csi2_to_parallel module is a stream of RAW8 data that reflects the camera image, which is given to
crop_downscale_front_qvga module.

The crop_downscale_front_qvga module processes that image data and generates input of 320 × 240 image data
interface for CNN IP.

7.2.2.1. Pre-processing Flow:

 RAW8 data values for each pixel are fed serially line by line for an image frame.

 This 640 × 480 frame block is downscaled into 320 × 240 resolution image as shown in Figure 7.3 by accumulating
2 × 2 pixels into single pixel (that is, 640/2 × 480/2 = 320 × 240).

2

2
480

640

Accumulation into
Single Pixel

Figure 7.3. Downscaling

 This accumulated value is written into Line Buffer. Line Buffer is a True Dual-Port RAM. Accumulated RAW8 pixel
values for 2 × 2 grids are stored in the same memory location.

 The data from True Dual Port RAM to be read depends on the pixel count, which is calculated as Pixel Count =
Incoming Horizontal Pixels – ((CNN Horizontal Pixels × Pixel Clock Frequency)/Read Clock Frequency from True Dual
Port RAM). For example, Pixel Count = 640 – ((320 × 24)/135) ~= 583I.

 After the pixel count is completed, the data is read from True Dual Port RAM.

 When data is read from memory, the RAW8 value is divided by 4 (that is, the area of 2 × 2 grid) to take the average
of 2 × 2 grid matrix.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

54 FPGA-RD-02219-1.0

 The data from memory is read and stored in HyperRAM for CNN input through axi2_hyperbus, via axi_w2sm
module, which acts as an AXI interface to write data from slave (crop_downscale_front_qvga) to master
(axi2_hyperbus). This process is described in the next section.

7.2.3. HyperRAM operations

The CrossLink-NX Voice and Vision board uses external HyperRAM for faster data transfer mechanism among the
internal blocks and enhances the system performance. The crop_downscale_front_qvga module uses HyperRAM to
store the downscaled image data.

HyperRAM

RAW 8

HyperRAM BaseAddr +

RAW 8 Offset

Downscaled

320 × 240

RAW 8 Pixels

Figure 7.4. HyperRAM Memory Addressing

 The 640 × 480 image is distributed into 320 horizontal and 240 vertical lines, and each block consists of 2 × 2 pixels
as shown in Figure 7.3. Thus, there are total 320 × 240 pixel values for the downscaled image.

 Primarily, the crop_downscale_front_qvga module stores 320 values of RAW8 into a local FIFO for all 240
horizontal blocks. Later, this stored data is written to HyperRAM through AXI write data channel.

 As shown in Figure 7.4, when final data is written out, 320 × 240 RAW8 pixels are stored into HyperRAM starting
from HyperRAM Base address location.

 The 320 × 240 pixel values stored in HyperRAM are serially obtained by the CNN engine after getting command
sequence through AXI interface.

 In order for the crop_downscale_front_qvga module to access HyperRAM for the operations explained above, the
axi_ws2m module functions as a Muxing module for multiple input slave AXI interfaces as shown in block diagram
Figure 7.5.

 For the internal blocks to access HyperRAM, the axi_ws2m module considers the spi_loader module as SLAVE 0,
the cnn_opt module as SLAVE 1, the crop_downscale_front_qvga module as SLAVE 2, and the MASTER connects
these slaves to the axi2_hyperbus module.

 The priority to select the write channel is given respectively to the spi_loader slave, cnn_opt slave, and the crop-
downscale slave. Whenever valid address is available from the respective SLAVE on its write address channel, that
slave is given access to the master channel if other priority slaves are not accessing it. Thus, when valid write
address is obtained from the crop_downscale_front_qvga module, access is given to SLAVE 2 to use HyperRAM.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 55

spi_loader

cnn_opt

crop
downscale

AXI INTERFACE

axi_w2sm

SLAVE 0

SLAVE 1

SLAVE 2

MASTER

External
HyperRAM

hyperbus
I/O

axi2_
hyperbus

AXI wr channel

AXI wr channel

AXI wr channel

AXI wr channel

Figure 7.5. HyperRAM Access Block Diagram

7.2.4. Post-processing CNN

CNN provides total of 10500 [2100 × 5 (C, X, Y, W, H)] values which are given to the det_out_filter module. The CNN
output data consists of the following parameters.

Table 7.2. Data Parameters of CNN Output

Parameter Description

C

This parameter indicates the confidence of detected object class.

For each grid cell (20 × 15), one confidence value (16 bit) for each anchor box (7) is provided
making total values of confidence 20 × 15 × 7 = 2100 from CNN output.

X

This parameter indicates the relative X coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one relative X value (16 bit) for each anchor box is provided making total
values of 20 × 15 × 7 = 2100 for X from CNN output.

Y

This parameter indicates the relative Y coordinate to transform the anchor box into a predicted
bounding box for detected object.

For each grid cell, one relative Y value (16 bit) for each anchor box is provided making total
values of 20 × 15 × 7 = 2100 for Y from CNN output.

W

This parameter indicates the relative W (Width) coordinate to transform the anchor box into a
predicted bounding box for detected object.

For each grid cell, one relative W value (16 bit) for each anchor box is provided making total
values of 20 × 15 × 7 = 2100 for W from CNN output.

H

This parameter indicates the relative H (Height) coordinate to transform the anchor box into a
predicted bounding box for detected object.

For each grid cell, one relative H value (16-bit) for each anchor box is provided making total
values of 20 × 15 × 7 = 2100 for H from CNN output.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

56 FPGA-RD-02219-1.0

Figure 7.6 shows the format of CNN output.

Figure 7.6. CNN Output Data Format

The primary functionality of the det_out_filter module is to capture the CNN valid output and modifying it to make it
work with the osd_back_qvga_human_count module.

The det_out_filter module contains two sub-modules: det_sort_conf and det_st_bbox.

 2100 values of confidence are passed to det_sort_conf module. It sorts out top 10 highest confidence values and
stores their indexes. Index values are passed to det_st_bbox modules.

 2100 × 4 values of coordinates are passed to det_st_bbox module. It calculates the bounding box coordinates,
performs NMS and provides valid box bitmap.

The osd_back_qvga_human_count module contains logic for post processing

 The draw_box_simple module calculates the box coordinates for 640 × 480 image from 320 × 240 coordinates.

 The lsc_osd_text module generates character bitmap for showing text on the display.

7.2.4.1. Confidence sorting

 All input confidence values (2100) are compared with threshold parameter CONF_THRESH value. Confidence
values which are greater than threshold are considered as valid for sorting.

 The det_sort_conf module implements an anchor counter (0–2099), which increments on each confidence value. It
provides the index of confidence value given by the CNN output.

 Two memory arrays are generated in this module: (1) Sorted top 10 (TOP_N_DET) confidence value array, and (2)
sorted top 10 confidence index array.

 For sorting, a standard sorting algorithm is followed. As input confidence values start arriving, each value is
compared with stored/initial value at each location of the confidence value array.

 If the input value is greater than stored/initial value on any array location and lesser than stored/initial value of
previous array location, the input value is updated on current array location. The previously stored value of current
location is shifted into the next array location.

 Refer to Figure 7.7 for sorting of new value of confidence into existing confidence value array. The calculated
confidence index (anchor count value) is also updated in the confidence index array along with confidence value
array.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 57

35

41

66

0

0

30

20

10

0

0

(40>30) -> update = 1

(40>20) and !(40>30)
-> update = 0

-> Store Prev Value

(40>10) and !(40>20)
-> update = 0

-> Store Prev Value

(40>0) and !(40>10)
-> update = 0

-> Store Prev Value

40

30

20

10

0

110

35

41

66

0

OLD ARRAY UPDATED ARRAY

Confidence
Index Array

Confidence
Value Array

Confidence
Value Array

Confidence
Index Array

1

2

3

4

10

1

2

3

4

10

New Confidence Value = 40, Index = 110

Figure 7.7. Confidence Sorting

 This process is followed for all 2100 confidence values. This module provides 10 indexes (o_idx_00 to o_idx_09) as
output along with the count of valid indexes (o_num_conf). o_idx_00 contains highest confidence value index and
o_idx_09 contains lowest confidence value index.

7.2.4.2. Bounding Box Calculation

The Neural Network for Object Detection is trained with seven reference boxes of pre-selected shapes having constant
W (Width) and H (Height). These reference boxes are typically referred as anchors.

Table 7.3. Pre-Selected Width and Height of Anchor Boxes

Anchor No. 1 2 3 4 5 6 7

W × H (pixel) 262 × 197 197 × 147 131 × 98 98 × 73 65 × 49 49 × 36 32 × 24

Anchors are centered around 20 × 15 grid cells of image. Therefore, each grid center has above seven anchors with
pre-selected shape. 20 × 15 are the number of grid centers along horizontal and vertical directions. The grid center (X, Y)
pixel values are shown in Table 7.3.

Table 7.4. Grid Center Values (X, Y) for Anchor Boxes

Grid
No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X
(pixel)

15 30 46 61 76 90 107 122 137 152 168 183 198 213 229 244 259 274 290 305

Y
(pixel)

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 — — — — —

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

58 FPGA-RD-02219-1.0

CNN provides total 2100 (20 × 15 × 7) values of each relative coordinates X, Y, W, and H to transform the fixed size anchor
into a predicted bounding box. Input X, Y, W, and H values associated with top 10 sorted confidence indexes are used for
box calculation in the det_st_bbox module.

Each anchor is transformed to its new position and shape using the relative coordinates as shown in Logic 1.

LOGIC 1

X’ = X coordinate of Predicted Box

X = Grid Center X according to Grid number

W = Width of Anchor according to Anchor number

DeltaX = Relative coordinate for X (CNN output)

X’ = X + W × DeltaX

Y’ = Y + H × DeltaY

W’= W × DeltaW

H’ = H × DeltaH

The box coordinates are passed to the bbox2box module in jedi_human_count_top.v after NMS process.

NMS is implemented to make sure that in object detection, a particular object is identified only once. It filters out the
overlapping boxes using OVLP_TH_2X value.

NMS process is started when the CNN output data is completely received.

 The process starts from the box having the highest confidence coordinates: 0th location in X, Y, W, H array.

 These coordinates are compared against the second highest confidence coordinates: First location in X, Y, W, H
array. From this comparison, Intersection and Union coordinates are found.

 From these coordinates, Intersection and Union area are calculated between highest confidence box and the
second highest confidence box as shown in Figure 7.8.

Intersection

(X, Y)

Union

(X , Y)

W

H
Box1

Box2

H|

| |

W |

Figure 7.8. Intersection–Union Area NMS

 If Intersection Area × (OVLP_TH_2X/2) > Union Area, the box with lower confidence value is blocked in the final
output.

 This NMS calculation is performed between all the combinations of two boxes.

 After all combinations are checked, the output array o_bbox_bmap contains boxes, which are correctly overlapped
or non-overlapped. o_out_en provides valid pulse for bbox2box for further processing on these box coordinates.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 59

7.2.4.3. Bounding Box Upscaling

The process of upscaling bounding boxes for 640 × 480 resolution is accomplished by two different modules, bbox2box
and draw_box_simple.

Initially, the bbox2box module in jedi_human_count_top.v obtains box coordinate outputs from det_out_filter.

Considering (X, Y) as center of the box of width (W) and height (H), it calculates extreme ends of the box (X1, X2 and
Y1, Y2) for 320 × 240 resolution. It also clamps the coordinate values so that the box remains out of masking area. This
is shown in Logic 2.

LOGIC 2

X1 = If ((X’- W’/2) < 0) => 0 else (X’- W’/2)

Y1 = If ((Y’- H’/2) < 0) => 0 else (Y’- H’/2)

X2 = If ((X’+ W’/2) > 320) => 320 else (X’+ W’/2)

Y2 = If ((Y’+ H’/2) > 240) => 240 else (Y’+ H’/2)

The final calculated X1, X2, Y1, and Y2 values for all the boxes in bbox2box are then sent to the draw_box_simple
module through the osd_back_qvga_human_count module. The draw_box_simple module converts these input
coordinates provided for 320 × 240 resolution into 640 × 480 resolution as shown in Logic 3.

LOGIC 3

X1’ = (X1) × 2

Y1’ = (Y1) × 2

X2’ = (X2) × 2

Y2’ = (Y2) × 2

For converting from 320 × 240 to 640 × 480, the coordinates are multiplied with 2. X1, X2 and Y1, Y2 coordinates are
calculated for each box.

Pixel Counter and Line Counter keeps track of pixels of each line and lines of each frame. The outer boundary of the
box and inner boundary of the box are calculated when pixel and line counter reaches to coordinates (X1, X2) and (Y1,
Y2) respectively. Calculations are done as per Logic 4.
LOGIC 4

Outer Box = (Pixel Count >= (X1 – 1)) and (Pixel Count <= (X2 + 1)) and

 (Line Count >= (Y1 – 1)) and (Line Count <= (Y2 + 1))

Inner Box = (Pixel Count > (X1 + 1)) and (Pixel Count < (X2 - 1)) and

 (Line Count > (Y1 + 1)) and (Line Count < (Y2 - 1))

Each bounding bBox is calculated by removing the intersecting area of outer and inner box. The box is only displayed if
the Box-Bitmap for that box is set to 1(from the det_st_bbox through the bbox2box module). Box on calculations are as
done as Logic 5.

LOGIC 5

Box_on[1] = Outer Box[1] and ~Inner Box[1] and Box-Bitmap[1]

Box_on[2] = Outer Box[2] and ~Inner Box[2] and Box-Bitmap[2]

.

.

Box_on[20] = Outer Box[20] and ~Inner Box[20] and Box-Bitmap[20]

The o_box_obj signal is asserted when any of the above the box_on signal is set which is then connected to green_on
signal and processed for bounding box display in the output.

7.2.4.4. OSD Text Display

 The lsc_osd_text module provides bitmap of each ASCII character to be displayed with specified position on screen.
It takes count of detected Humans value as input.

 It sets an output signal (text_on) when text is to be displayed on the output screen through the USB. When text_on
is set, the YCbCr value for that pixel location is assigned FF, 7F, and 7F respectively (white color) and sent to the
USB output instead of original pixel value.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

60 FPGA-RD-02219-1.0

7.2.4.5. USB Wrapper

 The Wrapper_USB3 module is used to transmit 16-bit data to the output 16-bit interface every clock cycle.

 This module takes the input data in YCbCr 24-bit format and gives the output as 16-bit YCb and YCr format. This
module does not change or regenerate input timing parameters.

7.2.4.6. Inference Time Calculation

 The time taken by a trained neural network model to infer/predict outputs after obtaining input data is called
inference time. The process of this calculation is explained as follows.

 The logic described in the following points is added in crop_downscale_qvga_front.v.

 The inference time is calculated by implementing a counter to store the count of CNN engine cycles per frame.

 When signal i_rd_rdy (that is, o_rd_rdy coming from CNN engine) is high, the CNN engine indicates that it is ready
to get input and when it is low, the engine indicates that it is busy.

 When i_rd_rdy signal is low, the CNN counter begins and stops when the i_rd_rdy signal goes high again indicating
that previous execution is over and the CNN is ready for new input.

 As shown in Figure 7.9 when rdy_h2l (ready high-to-low) pulse is asserted, the CNN Up-counter starts from 1 and
the count value increases until i_rd_rdy is not high again. The count value is stored in (count).

 Similarly, when rdy_l2h (ready low-to-high) pulse is asserted, the Up-counter stops and the final CNN count value is
obtained (cnn_count).

Figure 7.9. CNN Counter Design

 The methodology used to obtain stable inference time is to calculate inference time per frame and obtain the
average inference time value after 16 CNN frames are over, as discussed below.

 After completion of every frame, the new count value (cnn_count) obtained, as explained above, is added to the
previous value and stored in (cnn_adder).

 A frame counter keeps monitoring the frame count and after 16 frames when the frame count is done, this
cnn_adder value is reset as shown in Figure 7.10.

Figure 7.10. Frame Counter Design for 16 CNN Frames Average

 To get the average inference time value (avg_inf_time_hex) after frame count is done, the final cnn_adder value is
divided by 16 as shown in Figure 7.11.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 61

Figure 7.11. Average Inference Time Calculation

 Using Lattice Multiplier library module, this average inference time value is multiplied by INF_MULT_FAC, a
parameter indicating inference multiplying factor explained in Table 7.1.

 The inference time in millisecond (inf_time_ms) is obtained by dividing the output obtained from this multiplier by
2^31 as per the Q-Format, shown in Figure 7.12.

 All the above obtained values, namely the CNN count, the average inference time, and the inference time in
millisecond are passed on to the lsc_osd_text_human_count module for getting bitmap to display characters.

Figure 7.12. Inference Time in Millisecond

7.2.4.7. Inference Time Display Management

 The lsc_osd_text_human_count.v module mainly consists of a DPRAM, which holds the characters at pre-defined
address positions indicated by text_addr and an 8 × 8 font ROM which provides the bitmap of these characters for
the display.

 This module basically functions by using two entities. One is the position of the character where it has to be
displayed, and other is by reading the ASCII value of the character to be displayed.

 For this purpose, once the CNN count, individual frame inference time and the inference time in millisecond values
are obtained, they are converted from hex into ASCII values as shown in Figure 7.13.

 The average inference time input values (i_avg_inf_time_hex) are converted from hex to ASCII values as shown in
Figure 7.13. To display eight characters of this value on the display, this input is stored in respective
r_avginfhex_ch. The characters obtained by adding 7’h30 and 7’h37 are shown in Table 7.5.

Figure 7.13. Average Inference Time Value to ASCII Conversion

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

62 FPGA-RD-02219-1.0

Table 7.5. Signal Values to ASCII Conversion

CHARACTERS FOR DISPLAY VALUE TO BE ADDED TO SIGNAL ASCII HEX VALUE ASCII DECIMAL VALUE

1 7’h30 31 49

2 7’h30 32 50

3 7’h30 33 51

4 7’h30 34 52

5 7’h30 35 53

6 7’h30 36 54

7 7’h30 37 55

A 7’h37 41 65

B 7’h37 42 66

C 7’h37 43 67

D 7’h37 44 68

E 7’h37 45 69

F 7’h37 46 70

 Similarly, to display eight characters of individual frame inference time, the input signal i_inf_time_hex is
converted from hex to ASCII and stored in respective r_infhex_ch signal as shown in Figure 7.14.

 In the same way, to display four characters of inference time in ms, the input signal i_inf_ms is converted from hex
to ASCII and stored in respective r_inf_ms signal as shown in Figure 7.15.

Figure 7.14. CNN Count Values to ASCII Conversion

Figure 7.15. Inference Time in Millisecond Values to ASCII Conversion

 The positions where these values have to be displayed are given using text_addr signal as shown in Figure 7.16.
The use of these locations is shown in Figure 7.16 and Figure 7.17. A memory initialization file
human_count_INF.mem is used by Lattice Radiant tool to store characters at address locations for display.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 63

Figure 7.16. Text Address Positions to Display Input Values

 The address location structure for displaying average inference time (of 16 CNN frames) and inference time in
millisecond values along with their strings are stored in human_count_INF.mem is shown in Figure 7.17.

Figure 7.17. Address Locations to Display Individual Frame Time and Inference Time with String in Display

 The address location structure for displaying individual frame inference time values along with the string are
stored in human_count_INF.mem is shown in Figure 7.18.

Figure 7.18. Address Locations to Display CNN Count Value and its String in Display Output

 To display the input values in address locations shown in Figure 7.17 and Figure 7.18, the ASCII values obtained as
shown in Figure 7.14, Figure 7.15, and Figure 7.16 are sent to the 8 × 8 font ROM with the help of font_char signal
to obtain the bitmap for display as shown in Figure 7.19.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

64 FPGA-RD-02219-1.0

Figure 7.19. Bitmap Extraction from Font ROM

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 65

8. Creating FPGA Bitstream File

This section describes the steps to compile RTL bitstream using Lattice Radiant tool.

8.1. Generating Bitstream using Lattice Radiant Software
To create the FPGA bitstream file:

1. Open the Lattice Radiant software. Default screen in shown in Figure 8.1.

Figure 8.1. Radiant – Default Screen

2. Go to File > Open > Project.

3. Open the Radiant project file (.rdf) for CrossLink-NX Voice and Vision Human Count Demo RTL. As shown in
Figure 8.2, you can also open project by triggering the yellow folder shown in the user interface.

Figure 8.2. Radiant – Open CrossLink-NX Voice and Vision Project File (.rdf)

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

66 FPGA-RD-02219-1.0

4. After opening the project file, check the following points shown in Figure 8.3.

 Design loaded with zero errors message shown in the Output window.

 Check for this information in Project Summary window.

 Part Number – LIFCL-40-7MG289I

 Family – LIFCL

 Device – LIFCL-40

 Package – CSBGA289

Figure 8.3. Radiant – Design Load Check After Opening Project File

5. If design is loaded without errors, click the Run button to trigger bitstream generation as shown in Figure 8.4.

Figure 8.4. Radiant – Trigger Bitstream Generation

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 67

6. The Lattice Radiant tool displays Saving bitstream in … message in the Reports window. Bitstream is generated at
Implementation Location shown in Figure 8.5.

Figure 8.5. Radiant – Bit File Generation Report Window

8.2. Installing IP in Lattice Radiant Software

After loading the design without any errors, perform the steps below to uninstall the old version of an existing IP or
to install the latest version of an IP.

To uninstall an existing IP:

1. Click IP Catalog and go to IP > DSP in the IP tree.

2. Select the IP you want to uninstall and click the delete option.

3. Click Yes as shown in Figure 8.6 to remove the IP from the tree.

Figure 8.6. Radiant – Uninstall Old IP

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

68 FPGA-RD-02219-1.0

To install a new IP:

1. Click the IP on Server tab, as shown in Figure 8.7, and select the blue arrow on CNN_Plus_Accelerator version 1.1.1.

Figure 8.7. Radiant – IP on Server Tab

2. The IP License Agreement window appears. Select Accept, and the IP is installed in the IP tree.

Figure 8.8. Radiant – IP License Agreement

Once the IP is installed, you can access the IP on the IP on Local Tab.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 69

9. Programming the Demo

9.1. Load Firmware in FX3 I2C EEPROM

To load the firmware:

1. Connect the USB3 port of the CrossLink-NX Voice and Vision Machine Learning Board (Rev B) to the display monitor
using the USB3 cable.

2. Open the USB Control Centre application. Cypress FX3 SDK should also be installed.

3. Use the CrossLink-NX Voice and Vision Machine Learning (Rev B) board and put the jumper on J13 to make the FX3
firmware programmable.

4. Connect the FX3 cable to the display monitor.

5. Press the Push button SW2 to reset the FX3 chip. Figure 9.1 shows the boot loader device screen.

Figure 9.1. Selecting FX3 I2C EEPROM in USB Control Center

6. Select Cypress USB Bootloader.

7. Go to Program > FX3 > I2C E2PROM.

8. Open and select the FX3 image file for the 640×480p60 16-bit configuration, and the firmware is programmed in
the I2C E2PROM. Wait for the Programming Successful message to appear in the bottom taskbar.

9. After successfully programming the files, remove the J13 jumper.

10. Power off and power on the board to boot the FX3 from I2C E2PROM.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

70 FPGA-RD-02219-1.0

9.2. Programming the CrossLink-NX Voice and Vision SPI Flash

9.2.1. Erasing the CrossLink-NX Voice and Vision SRAM Prior to Reprogramming

If the CrossLink-NX Voice and Vision device is already programmed (either directly, or loaded from SPI Flash), follow this
procedure to first erase the CrossLink-NX Voice and Vision SRAM memory before re-programming the CrossLink-NX Voice
and Vision’s SPI Flash. If you are doing this, keep the board powered when re-programming the SPI Flash (so it does not
reload on reboot).

To erase the CrossLink-NX Voice and Vision:

1. Start Lattice Radiant Programmer. In the Getting Started dialog box, select Create a new blank project.

Figure 9.2. Radiant Programmer – Default Screen

2. Click OK.

3. Select LIFCL for Device Family and LIFCL-40 for Device as shown in Figure 9.3.

Figure 9.3. Radiant Programmer – Device Selection

4. Right-click and select Device Properties.

5. Select JTAG for Port Interface, Direct Programming for Access Mode, and Erase Only for Operation as shown in
Figure 9.4.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 71

Figure 9.4. Radiant Programmer – Device Operation

6. Click OK to close the Device Properties dialog box.

7. Press the SW5 push button switch. Click the Program button. Hold it until you see the Successful message in the
Radiant log window.

8. In the Radiant Programmer main interface, click the Program button to start the erase operation.

9.2.2. Programming the CrossLink-NX Voice and Vision Board

To program the CrossLink-NX Voice and Vision SPI flash:

1. Ensure that the CrossLink-NX Voice and Vision device SRAM is erased by performing the steps in Erasing the
CrossLink-NX Voice and Vision SRAM Prior to Reprogramming.

2. In the Radiant Programmer main interface, right-click the CrossLink-NX Voice and Vision row and select Device
Properties.

3. Apply the settings below:

a. Under Device Operation, select the options below:

 Port Interface – JTAG2SPI

 Target Memory – SPI FLASH

 Access Mode – Direct Programming

 Operation – Erase, Program, Verify

b. Under Programming Options, select the CrossLink-NX Voice and Vision bit file (*.bit) for the Programming File.

c. For SPI Flash Options, make the selections as shown in Figure 9.5.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

72 FPGA-RD-02219-1.0

Figure 9.5. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing

d. Click Load from File to update the data file size (Bytes) value.

e. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00000000

 End Address (Hex) – 0x00100000

4. Click OK.

5. Press the SW5 push button switch before clicking the Program button as shown in Figure 9.6. Hold it until you see
the Successful message in the Radiant log window.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 73

GSRN
Push Button
SW4

PROGRAMN
Push Button
SW5

Figure 9.6. CrossLink-NX Voice and Vision Flashing Switch – SW5 Push Button

6. Click the Program button to start the programming operation.

7. After successful programming, the Output console displays the result as shown in Figure 9.7.

Figure 9.7. Radiant Programmer – Output Console

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

74 FPGA-RD-02219-1.0

9.2.3. Programming SensAI Firmware Binary to the CrossLink-NX Voice and Vision SPI Flash

9.2.3.1. Flash SensAI Firmware Hex to CrossLink-NX SPI Flash

To program the CrossLink-NX SPI flash:

1. Ensure that the CrossLink-NX device SRAM is erased by performing the steps in Erasing the CrossLink-NX Voice and
Vision SRAM Prior to Reprogramming before flashing the bitstream and SensAI firmware binary.

2. In the Radiant Programmer main interface, right-click the CrossLink-NX row and select Device Properties.

3. Apply the settings below:

a. Under Device Operation, select the options below:

 Port Interface – JTAG2SPI

 Target Memory – SPI FLASH

 Access Mode – Direct Programming

 Operation – Erase, Program, Verify

b. Under Programming Options, select the CrossLink-NX SensAI firmware binary file after converting it to hex
(*.mcs) for the Programming File.

c. For SPI Flash Options, make the selections as shown in Figure 9.8.

Figure 9.8. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Flashing

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 75

d. Click Load from File to update the data file size (bytes) value.

e. Ensure that the following addresses are correct:

 Start Address (Hex) – 0x00300000

 End Address (Hex) – 0x00400000

4. Click OK.

5. Press the SW5 push button switch. Click the Program button and hold it until you see the Successful message in the
Radiant log window.

6. Click the Program button to start the programming operation.

7. After successful programming, the Output console displays the result as shown in Figure 9.9.

Figure 9.9. Radiant Programmer – Output Console

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

76 FPGA-RD-02219-1.0

10. Running the Demo

To run the demo:

1. Power on the Voice and Vision board. Make sure the position of SWITCH0 is ON to boot the device from
I2C EEPROM.

2. Connect the Voice and Vision board to the display monitor through the board’s USB3 port.

3. Open the AMCap or VLC application and select the FX3 device as source.

4. The camera image should be displayed on monitor as shown in Figure 10.1.

Figure 10.1. Running the Demo

5. The demo output contains the bounding boxes for detected humans in a given frame and it displays the total
number of detected humans in a given frame on the display.

http://www.latticesemi.com/legal

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 77

Appendix A. Other Labeling Tools
Table A.1 provides information on other labeling tools.

Table A.1. Other Labeling Tools

Software Platform License Reference Converts To Notes

annotate-
to-KITTI

Ubuntu/Wind
ows (Python
based utility)

No
License
(Open
source
GitHub
project)

https://github.com/SaiPrajwal95/annotate-to-
KITTI

KITTI Python
based CLI
utility. Just
clone it and
launch.
Simple and
Powerful.

LabelBox JavaScript,
HTML, CSS,
Python

Cloud or
On-
premise,
some
interfaces
are
Apache-
2.0

https://www.labelbox.com/ json, csv, coco,
voc

Web
application

LabelMe Perl,
JavaScript,
HTML, CSS, On
Web

MIT
License

http://labelme.csail.mit.edu/Release3.0/ xml Converts
only jpeg
images

Dataturks On web Apache
License
2.0

https://dataturks.com/ json Converts to
json format
but creates
single json
file for all
annotated
images

LabelImg ubuntu OSI
Approved
:: MIT
License

https://mlnotesblog.wordpress.com/2017/12/16/
how-to-install-labelimg-in-ubuntu-16-04/

xml Need to
install
dependenci
es given in
reference

Dataset_

annotator

Ubuntu 2018

George
Mason
University
Permissio
n is
hereby
granted,
Free of
charge

https://github.com/omenyayl/dataset-annotator json Need to
install
app_image
and run it by
changing
permissions

http://www.latticesemi.com/legal
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://github.com/SaiPrajwal95/annotate-to-KITTI
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/
https://mlnotesblog.wordpress.com/2017/12/16/how-to-install-labelimg-in-ubuntu-16-04/

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

78 FPGA-RD-02219-1.0

References
 Google TensorFlow Object Detection GitHub

 Pretrained TensorFlow Model for Object Detection

 Python Sample Code for Custom Object Detection

 Train Model Using TensorFlow

 https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

http://www.latticesemi.com/legal
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://pythonprogramming.net/creating-tfrecord-files-tensorflow-object-detection-api-tutorial/
https://www.tensorflow.org/tutorials/estimators/cnn

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
 Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02219-1.0 79

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
Reference Design

© 2021 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

80 FPGA-RD-02219-1.0

Revision History

Revision 1.0, May 2021

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	CrossLink-NX QVGA MobileNet Human Counting Using VVML Board
	Acronyms in This Document
	1. Introduction
	1.1. Design Process Overview

	2. Setting Up the Basic Environment
	2.1. Software and Hardware Requirements
	2.1.1. Lattice Software
	2.1.2. Hardware

	2.2. Setting Up the Linux Environment for Machine Training
	2.2.1. Installing the CUDA Toolkit
	2.2.2. Installing the cuDNN
	2.2.3. Installing the Anaconda Python
	2.2.4. Installing the TensorFlow v1.15
	2.2.5. Installing the Python Package
	2.2.6. Setting the Pruning Environment

	3. Preparing the Dataset
	3.1. Downloading the Dataset
	3.2. Visualizing and Tuning/Cleaning Up the Dataset
	3.3. Data Augmentation
	3.3.1. Running the Augmentation

	4. Training the Machine
	4.1. Training Code Structure
	4.2. Neural Network Architecture
	4.2.1. Human Count Training Network Layers
	4.2.2. Human Count Detection Network Output
	4.2.3. Training Code Overview
	4.2.3.1. Model Configuration
	4.2.3.2. Model Building
	Forward Graph
	Interpretation Graph
	Loss graph

	4.2.3.3. Training
	4.2.3.4. Transfer Learning and Freezing Layers

	4.3. Pruning
	4.4. Finding the Optimal Model
	4.5. Training from Scratch and/or Transfer Learning

	5. Model Evaluation
	5.1. Convert Keras Model to TensorFlow File
	5.2. Run Inference on test set
	5.3. Calculate mAP

	6. Creating Binary File with Lattice SensAI
	7. Hardware Implementation
	7.1. Top Level Information
	7.1.1. Block Diagram
	7.1.2. Operational Flow
	7.1.3. Core Customization

	7.2. Architecture Details
	7.2.1. SPI Flash Operation
	7.2.2. Pre-processing CNN
	7.2.2.1. Pre-processing Flow:

	7.2.3. HyperRAM operations
	7.2.4. Post-processing CNN
	7.2.4.1. Confidence sorting
	7.2.4.2. Bounding Box Calculation
	7.2.4.3. Bounding Box Upscaling
	7.2.4.4. OSD Text Display
	7.2.4.5. USB Wrapper
	7.2.4.6. Inference Time Calculation
	7.2.4.7. Inference Time Display Management

	8. Creating FPGA Bitstream File
	8.1. Generating Bitstream using Lattice Radiant Software
	8.2. Installing IP in Lattice Radiant Software

	9. Programming the Demo
	9.1. Load Firmware in FX3 I2C EEPROM
	9.2. Programming the CrossLink-NX Voice and Vision SPI Flash
	9.2.1. Erasing the CrossLink-NX Voice and Vision SRAM Prior to Reprogramming
	9.2.2. Programming the CrossLink-NX Voice and Vision Board
	9.2.3. Programming SensAI Firmware Binary to the CrossLink-NX Voice and Vision SPI Flash
	9.2.3.1. Flash SensAI Firmware Hex to CrossLink-NX SPI Flash

	10. Running the Demo
	Appendix A. Other Labeling Tools
	References
	Technical Support Assistance
	Revision History
	Revision 1.0, May 2021

