

CrossLink-NX VGA MobileNet Human Counting on VVML Board Demonstration

User Guide

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS and with all faults, and all risk associated with such information is entirely with Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronyms in This Document	4
1. Introduction	5
2. Functional Description	5
3. Demo Setup	7
3.1. Hardware Requirements	7
3.2. Software Requirements	7
4. Programming the Demo	8
4.1. Load Firmware in FX3 I ² C EEPROM	8
4.2. Programming the CrossLink-NX Voice and Vision Machine Learning (Rev B) SPI Flash	9
4.2.1. Erasing the CrossLink-NX Voice and Vision Machine Learning (Rev B) SRAM Prior to Reprogramming	9
4.2.2. Programming the CrossLink-NX Voice and Vision Machine Learning (Rev B) Board	10
4.2.3. Programming SensAl Firmware Binary to the CrossLink-NX Voice and Vision Machine Learning	
(Rev B) SPI Flash	13
4.2.3.1. Flash SensAl Firmware Hex to CrossLink-NX Voice and Vision Machine Learning (Rev B) SPI Flash	
5. Running the Demo	
Technical Support Assistance	17
Revision History	18
Figures	
Figure 2.1. Top View of CrossLink-NX Voice and Vision Machine Learning Board	5
Figure 2.2. Bottom View of CrossLink-NX Voice and Vision Machine Learning Board	6
Figure 3.1. Lattice CrossLink-NX Voice and Vision Machine Learning Board, Rev B	7
Figure 4.1. Selecting FX3 I ² C EEPROM in USB Control Centre	8
Figure 4.2. Radiant Programmer – Default Screen	9
Figure 4.3. Radiant Programmer – Device Selection	9
Figure 4.4. Radiant Programmer – Device Operation	10
Figure 4.5. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Voice and Vision Machine	
Learning (Rev B) Flashing	11
Figure 4.6. CrossLink-NX Voice and Vision Machine Learning (Rev B) Flashing Switch – SW5 Push Button	12
Figure 4.7. Radiant Programmer – Output Console	12
Figure 4.8. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Voice and Vision Machine	
Learning (Rev B) Flashing	
Figure 4.9. Radiant Programmer – Output Console	15
Figure 5.1. Punning the Demo	16

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
FPGA	Field-Programmable Gate Array
ML	Machine Learning
SD	Secure Digital
SPI	Serial Peripheral Interface
SRAM	Static Random Access Memory
USB	Universal Serial Bus

1. Introduction

This document describes the Human Counting Demo process using the CrossLink™-NX Voice and Vision Machine Learning (VVML) Board, Rev B platform. Human Counting is a subset of the generic Object Counting base design.

2. Functional Description

The Human Counting Demo is designed to utilize the Lattice Voice and Vision Machine Learning board. Figure 2.1 and Figure 2.2 show the top view and bottom view of the Voice and Vision board used in this demonstration.

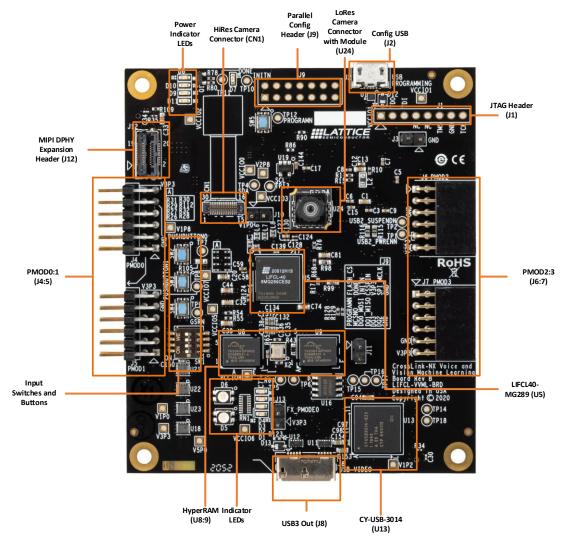


Figure 2.1. Top View of CrossLink-NX Voice and Vision Machine Learning Board

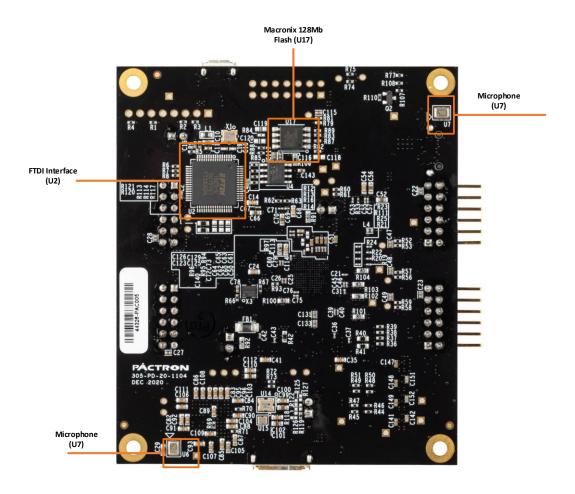


Figure 2.2. Bottom View of CrossLink-NX Voice and Vision Machine Learning Board

3. Demo Setup

This section describes the demo setup.

3.1. Hardware Requirements

• Crosslink-NX Voice and Vision Board

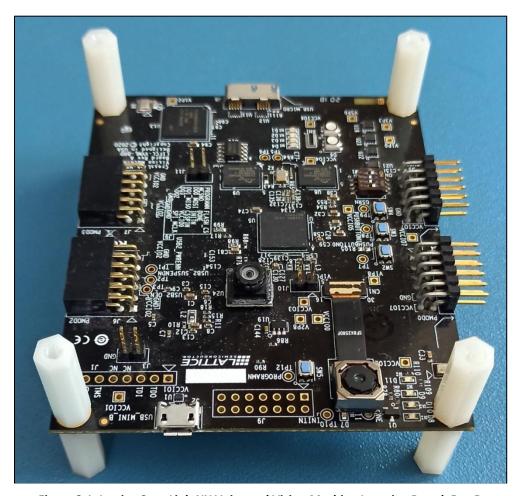


Figure 3.1. Lattice CrossLink-NX Voice and Vision Machine Learning Board, Rev B

3.2. Software Requirements

• Lattice Radiant™ Programmer version 2.2 (Refer to http://www.latticesemi.com/programmer)

4. Programming the Demo

4.1. Load Firmware in FX3 I²C EEPROM

To load the firmware:

- 1. Connect the USB3 port of the CrossLink-NX Voice and Vision Machine Learning Board (Rev B) to the display monitor using the USB3 cable.
- 2. Open the USB Control Centre application. Cypress FX3 SDK should also be installed.
- 3. Use the CrossLink-NX Voice and Vision Machine Learning (Rev B) board and put the jumper on **J13** to make the FX3 firmware programmable.
- 4. Connect the **FX3** cable to the display monitor.
- 5. Press the **Push** button **SW2** to reset the FX3 chip. Figure 4.1 shows the boot loader device screen.

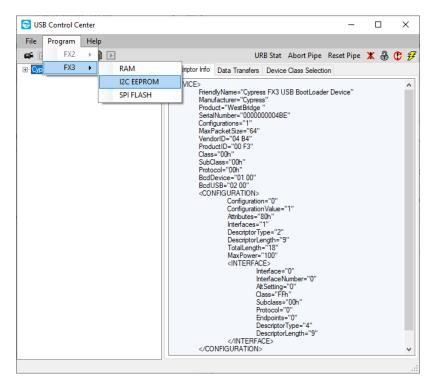


Figure 4.1. Selecting FX3 I²C EEPROM in USB Control Centre

6. Select Cypress USB Bootloader.

8

- 7. Go to Program > FX3 > I2C E2PROM.
- 8. Open and select the FX3 image file for the 640×480p60 16-bit configuration, and the firmware is programmed in the I²C E2PROM. Wait for the *Programming Successful* message to appear in the bottom taskbar.
- 9. After successfully programming the files, remove the J13 jumper.
- 10. Power off and power on the board to boot the FX3 from I²C E2PROM.

4.2. Programming the CrossLink-NX Voice and Vision Machine Learning (Rev B) SPI Flash

4.2.1. Erasing the CrossLink-NX Voice and Vision Machine Learning (Rev B) SRAM Prior to Reprogramming

If the CrossLink-NX Voice and Vision Machine Learning (Rev B) device is already programmed (either directly, or loaded from SPI Flash), follow this procedure to first erase the CrossLink-NX Voice and Vision Machine Learning (Rev B) SRAM memory before re-programming the CrossLink-NX Voice and Vision's SPI Flash. If you are doing this, keep the board powered when re-programming the SPI Flash (so it does not reload on reboot).

To erase the CrossLink-NX Voice and Vision Machine Learning (Rev B) board:

1. Start Lattice Radiant Programmer. In the Getting Started dialog box, select Create a new blank project.

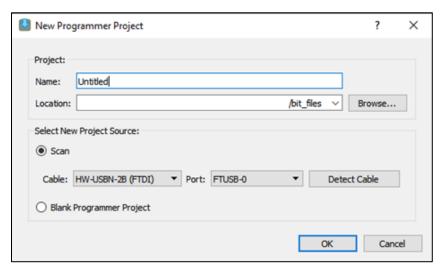


Figure 4.2. Radiant Programmer - Default Screen

- 2. Click OK.
- Select LIFCL for Device Family and LIFCL-40 for Device as shown in Figure 4.3.

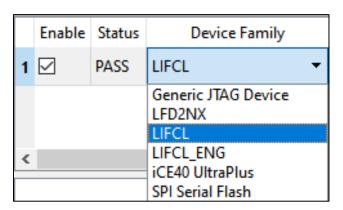


Figure 4.3. Radiant Programmer - Device Selection

- 4. Right-click and select **Device Properties**.
- 5. Select **JTAG** for **Port Interface**, **Direct Programming** for **Access Mode**, and **Erase Only** for **Operation** as shown in Figure 4.4.

9

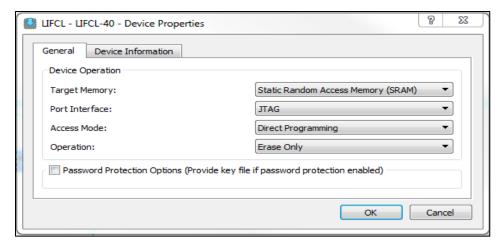


Figure 4.4. Radiant Programmer - Device Operation

- 6. Click **OK** to close the Device Properties dialog box.
- 7. Press the **SW5** push button switch. Click the **Program** button. Hold it until you see the *Successful message* in the Radiant log window.
- 8. In the Radiant Programmer main interface, click the **Program** button to start the erase operation.

4.2.2. Programming the CrossLink-NX Voice and Vision Machine Learning (Rev B) Board

To program the CrossLink-NX Voice and Vision Machine Learning (Rev B) SPI flash:

- 1. Ensure that the CrossLink-NX Voice and Vision Machine Learning (Rev B) device SRAM is erased by performing the steps in Erasing the CrossLink-NX Voice and Vision Machine Learning (Rev B) SRAM Prior to Reprogramming.
- 2. In the Radiant Programmer main interface, right-click the CrossLink-NX Voice and Vision Machine Learning (Rev B) row and select **Device Properties**.
- 3. Apply the settings below:
 - a. Under Device Operation, select the options below:
 - Port Interface JTAG2SPI
 - Target Memory SPI FLASH
 - Access Mode Direct Programming
 - Operation Erase, Program, Verify
 - b. Under Programming Options, select the CrossLink-NX Voice and Vision bit file (*.bit) for the Programming File.
 - c. For **SPI Flash Options**, make the selections as shown in Figure 4.5.

10

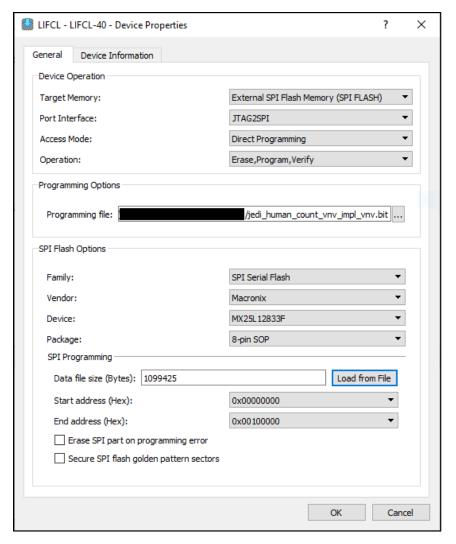


Figure 4.5. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Voice and Vision Machine Learning (Rev B) Flashing

- d. Click Load from File to update the data file size (Bytes) value.
- e. Ensure that the following addresses are correct:
 - Start Address (Hex) 0x00000000
 - End Address (Hex) 0x00100000
- 4. Click OK.
- 5. Press the **SW5** push button switch before clicking **Program** button as shown in Figure 4.6. Hold it until you see the *Successful message* in the Radiant log window.

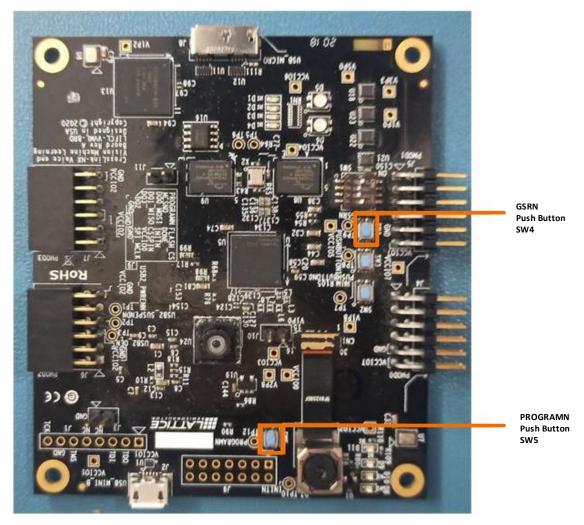


Figure 4.6. CrossLink-NX Voice and Vision Machine Learning (Rev B) Flashing Switch – SW5 Push Button

- 6. Click the **Program** button to start the programming operation.
- 7. After successful programming, the **Output** console displays the result as shown in Figure 4.7.

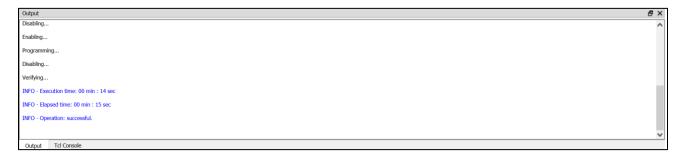


Figure 4.7. Radiant Programmer - Output Console

4.2.3. Programming SensAl Firmware Binary to the CrossLink-NX Voice and Vision Machine Learning (Rev B) SPI Flash

4.2.3.1. Flash SensAI Firmware Hex to CrossLink-NX Voice and Vision Machine Learning (Rev B) SPI Flash

To program the CrossLink-NX Voice and Vision Machine Learning (Rev B) SPI flash:

- 1. Ensure that the CrossLink-NX Voice and Vision Machine Learning (Rev B) device SRAM is erased by performing the steps in Erasing the CrossLink-NX Voice and Vision Machine Learning (Rev B) SRAM Prior to Reprogramming before flashing the bitstream and the Lattice SensAl™ firmware binary.
- 2. In the Radiant Programmer main interface, right-click the CrossLink-NX Voice and Vision Machine Learning (Rev B) row and select **Device Properties**.
- 3. Apply the settings below:
 - a. Under Device Operation, select the options below:
 - Port Interface JTAG2SPI
 - Target Memory SPI FLASH
 - Access Mode Direct Programming
 - Operation Erase, Program, Verify
 - b. Under Programming Options, select the CrossLink-NX Voice and Vision Machine Learning (Rev B) SensAl firmware binary file after converting it to hex (*.mcs) for the **Programming File**.
 - c. For SPI Flash Options, make the selections as shown in Figure 4.8.

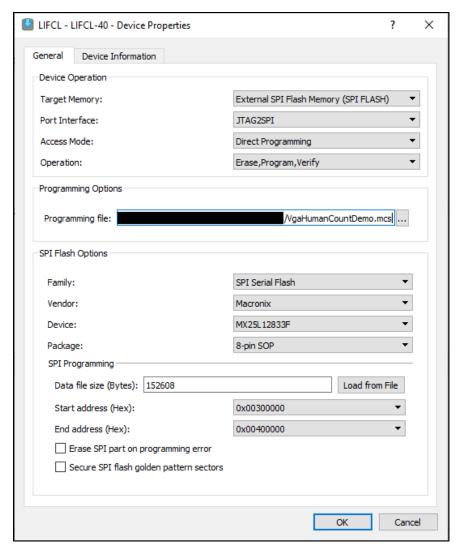


Figure 4.8. Radiant Programmer – Selecting Device Properties Options for CrossLink-NX Voice and Vision Machine Learning (Rev B) Flashing

- d. Click **Load from File** to update the data file size (bytes) value.
- e. Ensure that the following addresses are correct:
 - Start Address (Hex) 0x00300000
 - End Address (Hex) 0x00400000
- 4. Click OK.
- 5. Press the **SW5** push button switch. Click the **Program** button and hold it until you see the *Successful* message in the Radiant log window.
- 6. Click the **Program** button to start the programming operation.
- 7. After successful programming, the **Output** console displays the result as shown in Figure 4.9.

14



Figure 4.9. Radiant Programmer – Output Console

5. Running the Demo

To run the demo:

- 1. Power on the CrossLink-NX Voice and Vision Machine Learning (Rev B) board. Make sure the position of SWITCH0 is ON to boot the device from I²C EEPROM.
- 2. Connect the CrossLink-NX Voice and Vision Machine Learning (Rev B) board to the display monitor through the board's USB3 port.
- 3. Open the AMCap or VLC application and select the FX3 device as source.
- 4. The camera image should be displayed on the monitor as shown in Figure 5.1.

Figure 5.1. Running the Demo

5. The demo output contains the bounding boxes for detected humans in a given frame and it displays the total number of detected humans in a given frame on the display.

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Revision 1.0, May 2021

Section	Change Summary
All	Initial release

www.latticesemi.com