

Automate Stack 2.0

Reference Design

FPGA-RD-02255-1.0

June 2022

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 2

Disclaimers
Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products
for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not
rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the
Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in
conjunction with mission- or safety-critical or any other application in which the failure of Lattice’s product could create a situation where personal injury,
death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and
Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 3

Contents
Acronyms in This Document ... 11
1. Introduction ... 12

1.1. Components .. 13
2. Design Overview ... 14

2.1. Theory of Operation .. 14
2.2. FPGA Design .. 15

2.2.1. Main System ... 15
2.2.2. Node System ... 18

2.3. EtherControl IP .. 20
2.3.1. Features .. 21
2.3.2. EtherControl Master ... 22
2.3.3. Register Description ... 23
2.3.4. EtherControl Slave .. 42

2.4. RISC-V to PCIe Bridge .. 45
2.5. FIFO DMA .. 48
2.6. PCIe DMA IP Design Details ... 51

2.6.1. Descriptor Field Format .. 52
2.6.2. Status Field Format ... 53
2.6.3. Triggering the DMA Operation ... 53
2.6.4. PCIe DMA Register Space ... 54

2.7. SPI Flash Controller (QSPI Streamer) ... 56
2.8. CNN Co-Processor Unit (CCU) ... 56
2.9. Motor Control and PDM Data Collector .. 59
2.10. SPI Master IP Design Details .. 68

2.10.1. Overview ... 68
2.10.2. SPI Master Register Map .. 69
2.10.3. Programming Flow ... 69

2.11. I2C Master IP Design Details .. 70
2.11.1. Overview ... 71
2.11.2. I2C Master Register Map ... 71
2.11.3. Programming Flow ... 72

2.12. UART IP Design Details .. 73
2.12.1. Overview ... 74
2.12.2. Programming Flow ... 75

3. Resource Utilization .. 77
4. Software APIs .. 78

4.1. Main System APIs .. 78
4.1.1. Tasks of the Main System ... 78
4.1.2. Key Functions ... 79

4.2. Node System APIs .. 84
4.2.1. Tasks of the Node System .. 84
4.2.2. Key Functions ... 84

4.3. PCie Driver ... 86
4.3.1. Linux Device Driver Design ... 86
4.3.2. User-Space to Kernel-Space Access .. 86
4.3.3. File Operation and API Description .. 87
4.3.4. PCIeProbe ... 88
4.3.5. PCIeRemove .. 88
4.3.6. Bus Master DMA Overview and Implementation... 89

4.4. Programming the DMA Write/Read .. 90
4.4.1. Supported Operating System ... 90
4.4.2. Package Requirements ... 91

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 4

4.4.3. Installing the Package ... 92
4.4.4. Manual Installation and Setup.. 93
4.4.5. Automatic Installation and Setup ... 93

5. Communications ... 94
5.1. Communication between Host and Main System ... 94

5.1.1. Messages from Host to Main System ... 94
5.1.2. Messages from Main System to Host ... 94

5.2. Communication between Main System and Node System(s) ... 94
5.2.1. Messages from Main System to Node System ... 94
5.2.2. Messages from Node System to Main System ... 94

6. Demo Package Directory Structure ... 95
6.1. Automate Stack Demonstration .. 95

6.1.1. Documentation ... 95
7. Summary ... 96
Appendix A. Predictive Maintenance with TensorFlow Lite ... 97

A.1. Setting Up the Linux Environment for Neural Network Training .. 97
A.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU 97
A.1.2. Setting Up the Environment for Training and Model Freezing Scripts ... 99
A.1.3. Installing the TensorFlow version 1.15 ...100
A.1.4. Installing the Python Package ...101

A.2. Creating the TensorFlow Lite Conversion Environment .. 102
A.3. Preparing the Dataset ... 102

A.3.1. Dataset Information ...103
A.4. Preparing the Training Code .. 103

A.4.1. Training Code Structure ..103
A.4.2. Generating tfrecords from Augmented Dataset ..104
A.4.3 Neural Network Architecture ...104
A.4.4. Training Code Overview ...106
A.4.5. Training from Scratch and/or Transfer Learning ..114

A.5. Creating Frozen File ... 116
A.5.1. Generating .pbtxt File for Inference ...116
A.5.2. Generating the Frozen (.pb) File ...116

A.6. TensorFlow Lite Conversion and Evaluation ... 117
A.6.1. Converting Frozen Model to TensorFlow Lite ..117
A.6.2. Evaluating TensorFlow Lite model ..118
A.6.3. Converting TensorFlow Lite To C-Array ..118

Appendix B. Setting up the Auto-Bootable MQTT-Based Client ... 119
B.1. Unzipping the Folder .. 119
B.2. OpenSSL Error .. 119
B.3. Making the New Server Executable ... 119
B.4. Installing the Mosquitto Broker ... 119
B.5. Automating the Application ... 120
B.6. Setting Up the IPV4 Address and Router on Raspberry Pi ... 120

Technical Support Assistance ... 122
Revision History .. 123

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 5

Figures
Figure 1.1. Top Level Block Diagram of Automate Stack 2.0 ... 12
Figure 2.1. Automate Stack 2.0 Architecture ... 14
Figure 2.2. Main System Architecture ... 16
Figure 2.3. Node System Architecture ... 19
Figure 2.4. EtherControl Block Diagram... 20
Figure 2.5. EtherControl Master Block Diagram .. 22
Figure 2.6. EtherControl Slave ... 42
Figure 2.7. Top Level Architecture of PCIe DMA IP Design .. 51
Figure 2.8. FPGA Device Memory Segregation .. 54
Figure 2.9. Motor Controller Interface with Motor ... 59
Figure 2.10. SPI Master IP Core Block Diagram.. 68
Figure 2.11. I2C Master IP Core Functional Diagram .. 71
Figure 2.12. UART IP Core Functional Block Diagram .. 74
Figure 2.13. UART Data Format ... 76
Figure 4.1. Main Function .. 80
Figure 4.2. User-Space and Kernel-Space Access Diagram .. 86
Figure 4.3. Top-level Block Diagram .. 89
Figure 4.4. BMD with Descriptor and Fixed Physical Memory in RAM .. 90
Figure 4.5. Make FIle .. 91
Figure 4.6. GCC Command ... 91
Figure 4.7. G++ Command ... 92
Figure 4.8. Kernel Version Command .. 92
Figure A.1. Download CUDA Repo ... 97
Figure A.2. Install CUDA Repo .. 97
Figure A.3. Fetch Keys .. 97
Figure A.4. Update Ubuntu Packages Repositories ... 98
Figure A.5. CUDA Installation ... 98
Figure A.6. cuDNN Library Installation ... 98
Figure A.7. Anaconda Installation .. 99
Figure A.8. Accept License Terms .. 99
Figure A.9. Confirm/Edit Installation Location ... 99
Figure A.10. Launch/Initialize Anaconda Environment on Installation Completion .. 100
Figure A.11. Anaconda Environment Activation .. 100
Figure A.12. TensorFlow Installation ... 100
Figure A.13. TensorFlow Installation Confirmation ... 100
Figure A.14. TensorFlow Installation Completion .. 101
Figure A.15. Easydict Installation ... 101
Figure A.16. Joblib Installation ... 101
Figure A.17. Keras Installation ... 101
Figure A.18. OpenCV Installation ... 102
Figure A.19. Pillow Installation .. 102
Figure A.20. Predictive Maintenance Dataset ... 103
Figure A.21. Training Code Directory Structure ... 103
Figure A.22. Training Code Flow Diagram .. 106
Figure A.23. Code Snippet: Hyper Parameters .. 107
Figure A.24. Code Snippet: Build Input .. 107
Figure A.25. Code Snippet: Parse tfrecords ... 108
Figure A.26. Code Snippet: Convert Image to Gray Scale .. 108
Figure A.27. Code Snippet: Convert Image to BGR and Scale the Image ... 108
Figure A.28. Code Snippet: Create Queue ... 108
Figure A.29. Code Snippet: Add Queue Runners ... 109
Figure A.30. Code Snippet: Create Model.. 109

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 6

Figure A.31. Code Snippet: Fire Layer .. 109
Figure A.32. Code Snippet: Convolution Block .. 110
Figure A.33. Code Snippet: Feature Depth Array for Fire Layers ... 110
Figure A.34. Code Snippet: Forward Graph Fire Layers ... 111
Figure A.35. Code Snippet: Loss Function .. 111
Figure A.36. Code Snippet: Optimizers .. 111
Figure A.37. Code Snippet: Restore Checkpoints .. 112
Figure A.38. Code Snippet: Save .pbtxt .. 112
Figure A.39. Code Snippet: Training Loop .. 112
Figure A.40. Code Snippet: _ LearningRateSetterHook ... 113
Figure A.41. Code Snippet: Save Summary for Tensorboard ... 113
Figure A.42. Code Snippet: logging hook ... 113
Figure A.43. Predictive Maintenance – Run Script .. 114
Figure A.44. Predictive Maintenance – Trigger Training .. 114
Figure A.45. Predictive Maintenance – Trigger Training with Transfer Learning .. 114
Figure A.46. Predictive Maintenance – Training Logs .. 115
Figure A.47. Predictive Maintenance – Confusion Matrix ... 115
Figure A.48. TensorBoard – Launch ... 115
Figure A.49. TensorBoard – Link Default Output in Browser ... 115
Figure A.50. Checkpoint Storage Directory Structure .. 116
Figure A.51. Generated ‘.pbtxt’ for Inference ... 116
Figure A.52. Run genpb.py To Generate Inference .pb ... 117
Figure A.53. Frozen Inference .pb Output ... 117
Figure B.1. IPV4 Address Setting .. 120
Figure B.2. Network Preferences Settings ... 120
Figure B.3. IP Configuration ... 121

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 7

Tables
Table 2.1. Main System Memory Map (RISC-V) ... 17
Table 2.2. Main System Memory Map (PCIe) .. 17
Table 2.3. Node System Memory Map .. 19
Table 2.4. EtherControl Interfaces ... 20
Table 2.5. EtherControl Master Global Register Map (RISC-V) .. 23
Table 2.6. EtherControl Master Local Chain 1 Register Map (RISC-V) ... 23
Table 2.7. EtherControl Master Local Chain 2 Register Map (RISC-V) ... 23
Table 2.8. DMA FIFO Enable/AHBL Disable Register .. 24
Table 2.9. PHY Link Status Register .. 24
Table 2.10. Active Nodes Register ... 25
Table 2.11. FIFO Status Register for PDM Data ... 25
Table 2.12. Clear Interrupt Received Register ... 25
Table 2.13. Interrupt Polling Register .. 25
Table 2.14. Start Transaction in All Chains... 26
Table 2.15. IP Busy Register ... 26
Table 2.16. AHBL_TOUT_R ... 26
Table 2.17. Chain 1 Start Transaction Register .. 26
Table 2.18. Chain 1 Packet Head Register ... 26
Table 2.19. Chain 1 Frame Number Register ... 27
Table 2.20. Chain 1 Number of Node Register .. 27
Table 2.21. Chain 1 Node Data Length Register .. 27
Table 2.22. Chain 1 Node Request Data Burst Register ... 27
Table 2.23. Chain 1 Node Request Type Register .. 27
Table 2.24. Chain 1 Node Address Register ... 28
Table 2.25. Chain 1 CRC Count Register ... 28
Table 2.26. Chain 1 Interrupt Info Register .. 28
Table 2.27. Chain 1 FIFO Status Register Request Data ... 28
Table 2.28. Chain 1 Node Motor Status Register ... 29
Table 2.29. Chain 1 Node Delay Register ... 29
Table 2.30. Chain 2 Start Transaction Register .. 29
Table 2.31. Chain 2 Packet Head Register ... 29
Table 2.32. Chain 2 Frame Number Register ... 29
Table 2.33. Chain 2 Number of Node Register .. 30
Table 2.34. Chain 2 Node Data Length Register .. 30
Table 2.35. Chain 2 Node Request Data Burst Register ... 30
Table 2.36. Chain 2 Node Request Type Register .. 30
Table 2.37. Chain 2 Node Address Register ... 30
Table 2.38. Chain 2 CRC Count Register ... 31
Table 2.39. Interrupt Info Register... 31
Table 2.40. Chain 2 FIFO Status Register Request Data ... 31
Table 2.41. Chain 2 Node Motor Status Register ... 32
Table 2.42. Chain 2 Node Delay Register ... 32
Table 2.43. EtherControl Master Global Register Map (PCIe) ... 32
Table 2.44. EtherControl Master Local Chain 1 Register Map (PCIe) ... 32
Table 2.45. EtherControl Master Local Chain 2 Register Map (PCIe) ... 33
Table 2.46. DMA FIFO Enable/AHBL Disable Register.. 33
Table 2.47. PHY Link Status Register .. 33
Table 2.48. Active Nodes Register ... 34
Table 2.49. FIFO Status Register for PDM Data ... 34
Table 2.50. Interrupt Polling Register .. 34
Table 2.51. Clear Interrupt Received Register ... 34
Table 2.52. Start Transaction in All Chains... 35

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 8

Table 2.53. IP Busy Register ... 35
Table 2.54. AHBL Bus Timeout Count Register .. 35
Table 2.55. Node Response PDM Data Register .. 35
Table 2.56. Chain 1 Start Transaction Register .. 36
Table 2.57. Chain 1 Packet Head Register ... 36
Table 2.58. Chain 1 Frame Number Register ... 36
Table 2.59. Chain 1 Number of Node Register .. 36
Table 2.60. Chain 1 Node Data Length Register .. 36
Table 2.61. Chain 1 FIFO Status Register Request Data ... 37
Table 2.62. Chain 1 Node Request Type Register .. 37
Table 2.63. Chain 1 Node Address Register ... 37
Table 2.64. Chain 1 CRC Count Register ... 37
Table 2.65. Chain 1 Interrupt Info Register .. 37
Table 2.66. Chain 1 FIFO Status Register Request Data ... 38
Table 2.67. Chain 1 Node Request Burst Register ... 38
Table 2.68. Chain 1 Node Motor Status Register ... 38
Table 2.69. Chain 1 Node Delay Register ... 39
Table 2.70. Chain 2 Start Transaction Register .. 39
Table 2.71. Chain 2 Packet Head Register ... 39
Table 2.72. Chain 2 Frame Number Register ... 39
Table 2.73. Chain 2 Number of Node Register .. 39
Table 2.74. Chain 2 Node Data Length Register .. 40
Table 2.75. Chain 2 FIFO Status Register Request Data ... 40
Table 2.76. Chain 2 Node Request Type Register .. 40
Table 2.77. Chain 2 Node Address Register ... 40
Table 2.78. Chain 2 CRC Count Register ... 41
Table 2.79. Interrupt Info Register... 41
Table 2.80. Chain 2 Node Request Burst Register ... 41
Table 2.81. Chain 2 Node Motor Status Register ... 41
Table 2.82. Chain 2 Node Delay Register ... 42
Table 2.83. EtherControl Slave Register Map .. 42
Table 2.84. DMA Control Register ... 43
Table 2.85. FIFO Data Register ... 43
Table 2.86. Motor Status Register ... 43
Table 2.87. DMA Done Indication Register .. 43
Table 2.88. Interrupt Status Register ... 43
Table 2.89. Motor Config/Status Address Register (or) PDM Data Transfer Size Register .. 44
Table 2.90. Motor Configuration Data Register ... 44
Table 2.91. FIFO Error Register .. 44
Table 2.92. Clear Interrupt Received Register ... 44
Table 2.93. RISC-V to PCIe Register Map ... 45
Table 2.94. RISC-V Config Register 1 .. 45
Table 2.95. RISC-V Config Register 2 .. 45
Table 2.96. FIFO Error Register .. 46
Table 2.97. RISC-V Bulk Data Register .. 46
Table 2.98. PCIe Config Register 1 @ RISC-V Clock .. 46
Table 2.99. PCIe Config Register 2 @ RISC-V Clock .. 46
Table 2.100. PCIe Bulk Data Register @ RISC-V Clock .. 47
Table 2.101. PCIe Config Register 1 ... 47
Table 2.102. PCIe Config Register 2 ... 47
Table 2.103. PCIe FIFO Status Register .. 47
Table 2.104. PCIe Bulk Data Register ... 48
Table 2.105. RISC-V Config Register 1 @ PCIe Clock .. 48
Table 2.106. RISC-V Config Register 2 @ PCIe Clock .. 48

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 9

Table 2.107. RISC-V Bulk Data Register @ PCIe Clock .. 48
Table 2.108. FIFO DMA Register Map .. 49
Table 2.109. FIFO DMA Control Registers .. 49
Table 2.110. DEST_BASE_ADDR Register ... 49
Table 2.111. DEST_END_ADDR Register .. 49
Table 2.112. PING Ready Address Register .. 49
Table 2.113. PONG Ready Address Register .. 50
Table 2.114. PING PONG Index Register .. 50
Table 2.115. Write Status Register .. 50
Table 2.116. Read Status Register ... 50
Table 2.117. Descriptor Format ... 52
Table 2.118. Status Format .. 53
Table 2.119. Register Address (0x0) .. 54
Table 2.120. Register Address (0x4) .. 55
Table 2.121. Register Address (0x8) .. 55
Table 2.122. Register Address (0xC) .. 55
Table 2.123. Register Address (0x10) .. 55
Table 2.124. Register Address (0x14) .. 55
Table 2.125. Register Address (0x18) .. 55
Table 2.126. Register Address (0x1C) .. 56
Table 2.127. Register Address (0x20) .. 56
Table 2.128. Register Address (0x24) .. 56
Table 2.129. Register Address (0x28) .. 56
Table 2.130. CNN Co-Processor Unit Registers .. 57
Table 2.131. CNN Co-Processor unit control register .. 57
Table 2.132. CNN Co-Processor Unit Register ... 57
Table 2.133. Sign Select Configuration Register .. 57
Table 2.134. Input Offset Configuration Register .. 58
Table 2.135. Filter Offset Configuration Register .. 58
Table 2.136. Filter Offset Configuration Register .. 58
Table 2.137. Input Depth Configuration Register .. 58
Table 2.138. Input Data Address Configuration Register ... 58
Table 2.139. Filter Data Address Configuration Register ... 59
Table 2.140. CNN Co-Processor Unit Output Register ... 59
Table 2.141. Predictive Maintenance and Motor Control Registers.. 60
Table 2.142. Motor Control 0 – Minimum RPM .. 60
Table 2.143. Motor Control 1 – Maximum RPM .. 60
Table 2.144. Motor Control 2 – RPM PI Control Loop Integrator Gain (kI) .. 61
Table 2.145. Motor Control 3 – RPM PI Control Loop Proportional Gain (kP) ... 61
Table 2.146. Motor Control 4 – Torque PI Control Loop Integrator Gain (kI) .. 61
Table 2.147. Motor Control 5 – Torque PI Control Loop Proportional Gain (kP) ... 61
Table 2.148. Motor Control 6 – Synchronization Delay and Control ... 62
Table 2.149. Motor Control Register 7 – Target RPM .. 63
Table 2.150. Motor Control Register 8 – Target Location.. 63
Table 2.151. Motor Control Register 9 – Current Location .. 63
Table 2.152. Motor Status Register 0 – RPM ... 63
Table 2.153. Motor Status Register 1 .. 63
Table 2.154. Predictive Maintenance Control Register 0 .. 64
Table 2.155. Predictive Maintenance Control Register 1 .. 65
Table 2.156. Predictive Maintenance Status Register ... 65
Table 2.157. Predictive Maintenance Current/Voltage Data Register ... 66
Table 2.158. Predictive Maintenance Current/Voltage Data Register ... 66
Table 2.159. Versa Board Switch Status Register .. 66
Table 2.160. Versa Board LED & PMOD Control Register .. 67

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 10

Table 2.161. SPI Master Register Map ... 69
Table 2.162. I2C Master IP Core Registers Summary ... 71
Table 2.163. UART Register Map ... 75
Table 3.1. Main System Resource Utilization .. 77
Table 3.2. Node System Resource Utilization .. 77
Table 4.1. Types of UART Commands .. 78
Table 4.2. Types of GPIO Commands ... 79
Table A.1. Predictive Maintenance Training Network Topology ... 104

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 11

Acronyms in This Document
A list of acronyms used in this document.

Acronym Definition

AHBL Advanced High-performance Bus-Lite

AI Artificial Intelligence

API Application Programming Interface

BLDC Brushless DC

CCU CNN Co-Processor Unit

CNN Convolutional Neural Network

CPU Central Processing Unit

DMA Direct Memory Access

FIFO First-In-First-Out

ISR Interrupt Service Routines

ML Machine Learning

QSPI Quad Serial Peripheral Interface

RISC-V Reduced Instruction Set Computer-V

RTL Register-Transfer Level

UART Universal Asynchronous Receiver-Transmitter

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 12

1. Introduction
Lattice Automate stack provides a solution for industrial automation that includes predictive maintenance using ML/AI,
communication over Ethernet cable and a BLDC motor control IP implemented in RTL. The solution enables user to control
multiple motors connected to node systems that are chained using Ethernet cable. The main system that synchronizes
operations of node system also runs neural network trained using RISC-V and CNN Co-Processor for predictive
maintenance. The entire solution can work with or without external host. We provide reference design with a user interface
that runs on host and controls motor operations. The user interface also displays the status of motor and alerts user when
motor requires maintenance. User can use all APIs provided with this reference design and can implement entire system
without host system. In this case C/C++ code running on RISC-V sends required commands to control motors. The entire
system with all sub-components are shown in further sections.

Lattice Automate Stack 1.0 supports web-based user interface which is running on host (system PC) and single chain of
nodes for controlling the motors.

Lattice Automate Stack 1.1 supports two chains of nodes which can be connected to 1 main system board. All the nodes are
synchronized physically. Main system supports dynamic pulse based system synchronization scheme, in which it checks
nodes disconnection during runtime and compensate clock ppm to calculate synchronization delay. It supports OPC UA
server/client-based user interface which is running on host PC and client are running on Raspberry Pi board.

Lattice Automate Stack 2.0 supports all features of Lattice Automate Stack 1.1. It supports MQTT broker/client-based host
application, Python Interface as host control, and also supports PCIe® interface as host for high speed applications. In the
node side, it has motor IP for motor-based features and also has standard SPI Master, UART Interface (Modbus) and I2C
Master interfaces to connect various peripherals (sensors) into system.

Figure 1.1 shows the Automate Stack solution and its sub components.

Figure 1.1. Top Level Block Diagram of Automate Stack 2.0

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 13

1.1. Components
The Automate Stack 2.0 release includes the following components:

 System on Chip (SOC)

 Main System IPs
EtherControl IP (With SGMII/RGMII (phy or sfp)), FIFO DMA, CNN Co-Processor Unit (CCU) and SPI Flash Controller,
PCIe DMA, PCIe-to-RISC-V Bridge and Reset Synchronizer.

 Node System IPs
EtherControl IP (With SGMII/RGMII (phy or sfp)), FIFO DMA, BLDC motor control IP, Data collector for predictive
maintenance, UART for Modbus, I2C Master and SPI Master.

 Software

 Firmware (APIs)
APIs to send instructions to motor control IP, collect status of motors and collect data for predictive maintenance
Compiled TensorFlow-Lite C++ library for RISC-V (Required for neural network inference).

 Machine Learning
Trained Neural Network for predictive maintenance, script to train network with user collected data.

 User Interface
Controls motor, collects status and data for predictive maintenance, displays warning when maintenance required.

Note: The generic RISC-V subsystem components are excluded from the list of components.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 14

2. Design Overview

2.1. Theory of Operation
The overall architecture is shown in Figure 2.1. The automate stack consists of one Main System (MS) with multiple
EtherControl master and multiple Node Systems (NS). A host R-pi board is connected to the MS through Uart port and
another host is connected to MS through PCIe cable .An application software with user interface that can send commands
to the MS and receive motor maintenance data from the system for AI training. The MS can propagate the commands to NS
for motor control and gather maintenance data from NS.

The Certus™-NX versa board and CertusPro™-NX versa board are used for basic demo of complete system.

Automate

Main System

Automate

Node System

Automate

Node System

Automate

Node System

Automate

Node System

Automate

Node System

Automate

Node System

Automate

Node System

Automate

Node System

Raspberry Pi

(MQTT Client/Python

Inf)

(Host-1)

Desktop Client

(Running on same

network as R-Pi)

(User Interface-MQTT-

Broker)

Ethernet Cable

Ethernet Cable

Ethernet Cable

Ethernet Cable

Ethernet Cable

Ethernet Cable

Ethernet Cable

Ethernet Cable

UART Cable

PCIe Cable

Ubuntu PC

(Host-2 PCIe

Based)

Figure 2.1. Automate Stack 2.0 Architecture

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 15

2.2. FPGA Design

2.2.1. Main System

The Main System architecture is shown in Figure 2.2. The AHBL Interconnect has four masters and nineslaves:

The following are the AHBL Interconnect masters:

 RISC-V CPU Instruction Cache

 RISC-V CPU Data Cache

 CNN Co-Processor Unit

 FIFO DMA

The following are the AHBL Interconnect slaves:

 ISR RAM

 Data RAM (port S0 and S1)

 CNN Co-Processor Unit

 FIFO DMA

 EtherControl

 AHBL2APB Bridge

 PCIe-to-RISC-V Bridge

 QSPI Memory Controller with prefetch buffer (SPI Flash Controller)

The RISC-V CPU, CNN Co-Processor Unit, and FIFO DMA access data to the shared memory Data RAM, EtherControl, UART,
and QSPI through the AHBL2APB bridge. The UART, SPI Flash Controller, and EtherControl generate interrupts to the RISC-V
CPU.

For performance and nearly deterministic latency (DL), it uses port S0 of the Data RAM exclusively for RISC-V CPU access.
The other two masters, CNN Co-Processor Unit and FIFO DMA, access port S1 of the Data RAM. This way, the contention is
avoided.

EtherControl Master has two AHBL bus interfaces. One interface is used to connect EtherControl master to RISC-V based
host path and another interface is used to connect EtherControl master to PCIe DMA based high speed host path.

PCIe DMA AHBL interconnect interfaces EtherControl Master, PCIe-to-RISC-V Bridge and PCIe DMA IPs. PCIe DMA IP
supports PCIe-based host interface which can be connected to Linux-based PC.

Both the host path are independent of each other and both can perform same operation on nodes. But through PCIe-to-
RISC-V Bridge information can be exchanged between RISC-V and PCIe DMA IP.
Note: Physically there is only one piece of shared memory but with two independent ports. In the memory map, S0 is
assigned with a lower base address and S1 is assigned with a higher base address. In real terms, these refer to the same
physical address. The two different address spaces for S0 and S1 allow the AHBL Interconnect to route the transaction to
the right port.

For better performance and nearly deterministic latency, EtherControl port supports two physical interface (two master
port) and it allows system to maintain two different chains of node and each chain can support up to 8 nodes.

The main firmware is stored in the external SPI flash. The ISR RAM contains the initial boot code for RISC-V as well as the
interrupt service routines (ISRs) and other performance-critical functions. There are two implementation options:

 During boot, the bootloader copies the ISR code from the external flash to internal ISR RAM. It then sets up the ISR
function pointer to this internal memory address.

 The ISR code is integrated in the bitstream and firm the ISR code in the ISR RAM as ROM code.

The first option can be used during initial development for debugging. The second option can be used in the final
production release since it does not increase any system boot time.

The system is working at CPU frequency of 75 MHz, the protocol is working at 125 MHz and PCIe based host @
62.5 MHz.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 16

RISC-V
Data RAM

QSPI
Memory Controller +

Prefetch Buffer

M SM

ISR_RAM

S S

AHBL2 APB

S

M S

GPIO UART

APB Interconnect

AHBL Interconnect

DMA FIFOCNN Processor

SM SM

EtherControl Main

S

S

SGMII/RGMII SGMII/RGMII

A
H

B
L
 I

n
te

rc
o
n

n
e
c
t

PCIe to RISC-V

Bridge

PCIe + DMA

HOST PC

S

M

S

M

IRQ-0

IRQ-1

IRQ-2

Figure 2.2. Main System Architecture

RISC-V-Based Path

The firmware binary is stored in the external QSPI flash. When RISC-V at the Main System boots up, it sets the registers at
QSPI Memory Controller (SPI Flash Controller). Then RISC_V jumps to the loaded firmware and executes the binary.

The application software at the host PC sends an interrupt through the UART port. Then RISC-V CPU fetches the commands
and data from the host through UART by accessing APB port through the AHBL Interconnect, AHBL2APB bridge, and APB
Interconnect.

RISC-V CPU sets the registers inside the CNN Co-Processor Unit and starts PDA operation. RISC-V CPU polls another register
in the CNN Co-Processor Unit to check its operation status. RISC-V CPU requests for the new data for predictive
maintenance from the slave PDM data collector by sending instruction through EtherControl IP. The data received from the
slave through EtherConnect is transferred to data memory with DMA operation or sent to the host PC through UART.

For the motor control commands from the host PC, RISC-V CPU fetches them from UART and then sends them to
EtherControl, which performs packetization and sends them to the downstream Node System.

The information is written/read to/from peripherals connected to Nodes through SPI Master/I2C Master/ Modbus same as
information is written (config)/read to (status)/from motor control IP.

RISC-V CPU gathers predictive maintenance data from downstream Node Systems through EtherControl and sends this data
to the host PC through UART. RISC-V CPU reads data from EtherControl through its AHBL Slave port, performs data
processing, stores the data in the Data RAM, and then sends it to UART through APB. Alternatively, EtherControl can send
downstream data to the FIFO DMA through its FIFO port, and FIFO DMA can write the data to the Data RAM or UART
directly.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 17

User can press buttons on the board that generate an interrupt by the GPIO block to RISC-V CPU. The interrupt service
route firmware queries the interrupt status of the GPIO block and performs corresponding actions such as sending
commands to start, stop, accelerate or decelerate all motors downstream.

At the end of every predictive maintenance cycle in software running on RISC-V, an update is sent to the host PC through
UART.

PCIe DMA-Based Path

The application software running Linux PC connected to main system through the PCIe interface can check if EtherControl
Path is engaged by other host(R-Pi). Linux PC can send/receive data to/from PCIe DMA module. PCIe DMA module can send
data to EtherControl module to set certain register of EtherControl to send commands to nodes for motor controlling and
different peripherals controlling connected to SPI/I2C/UART interfaces. PCIe DMA module can also receive data from node
through the EtherControl module for training purpose. The PCIe DMA based host path is faster than RISC-V based host path.

Figure 2.2 shows that EtherControl block have two Ethernet ports (port 0 and port 1) in downstream direction. It means
EtherControl master supports two master to support two split chains of nodes to improve performance.

Both chains can be synchronized and both the ethernet ports have options to select RGMII/SGMII physical interfaces. Both
ports have options to select PHY or SFP IC for MII-to-RJ45 conversion.

2.2.1.1. Memory Map

The Main System memory map is defined in Table 2.1 and Table 2.1.

Table 2.1. Main System Memory Map (RISC-V)

Base Address End Address
Range
(Bytes)

Range
(Bytes in hex)

Size (kB) Block

00190000 0197FFFF 32768 8000 32 CPU instruction RAM

00080000 000807FF 2048 800 2 CPU PIC TIMER

00080800 00080BFF 1024 400 1 GPIO

00080C00 0009FFFF 128000 1F400 125 RESERVED

000A0000 000A03FF 1024 400 1 CNN Co-Processor Unit (CCU)

000C0000 000FFFFF 262144 40000 256 CPU Data Ram
Port S0: base address 0x000C0000
Port S1: base address: 0x000E0000

00100000 00107FFF 32768 8000 32 FIFO DMA

00108000 0010FFFF 32768 8000 32 EtherControl

00110000 0017FFFF 458752 70000 448 RESERVED

00000000 0007FFFF 512000 7D000 512 SPI FLASH CONTROLLER

00182000 001823FF 1024 400 1 UART

00184000 00FFFFFF 1.5E+07 E7C000 14832 RESERVED

01000000 01FFFFFF 1.7E+07 1000000 16384 External SPI flash

00110000 00117FFF 32768 8000 32 PCIe to RISC-V Bridge

Table 2.2. Main System Memory Map (PCIe)

Base Address End Address
Range
(Bytes)

Range
(Bytes in hex)

Size (kB) Block

00108000 0010FFFF 32768 8000 32 EtherControl

00110000 00117FFF 32768 8000 32 PCIe to RISC-V Bridge

Note: The above address are for PCIe DMA IP (AHBL Master) to Slaves. But from host to PCIe DMA, the IP addressing is defined in further
sections. Host use 0x0000 base address for PCIe register space, 0x1000 base address for descriptor memory and 0x3000 base address for
application IPs (EtherControl and PCIe-to-RISC-V Bridge).

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 18

2.2.2. Node System

The Node System architecture is shown in Figure 2.3. It consists of one AHBL Interconnect with three masters and eight
slaves.

The following are the Node System masters:

 RISC-V CPU Instruction Cache

 RISC-V CPU Data Cache

 FIFO DMA

The following are the Node System slaves:

 ISR RAM

 Data RAM (port S0 and S1)

 Motor Control and PDM Data Collector (port S0 and S1)

 FIFO DMA

 EtherControl

 QSPI Memory Controller with prefect buffer(SPI Flash Controller)

 AHBL2APB bridge.

 SPI Master

 I2C Master

AHBL2APB bridge is connected to APB Interconnect which is having 3 APB interface based slaves SPI Master, I2C Master and
UART to interface different peripherals in the system (for example, sensors).

For Data RAM with two AHBL slave ports, see the description in the previous section. For Motor Control and PDM Data
Collector, it has two AHBL slave ports (S0 and S1). Port S0 is used to access the Motor Control and PDM registers while port
S1 is used to access the data collected by PDM Data Collector.

The main firmware is stored in the external SPI flash. The ISR RAM contains the initial boot code for RISC-V as well as the
interrupt service routines (ISRs) and other performance-critical functions. There are two implementation options:

 During boot, the bootloader copies the ISR code from the external flash to internal ISR RAM. It then sets up the ISR
function pointer to this internal memory address.

 The ISR code is integrated in the bitstream and firm the ISR code in the ISR RAM as ROM code.

The first option can be used during initial development for debugging. The second option can be used in the
final production release since it does not increase any system boot time.

The system is working at frequency of 75 MHz while the protocol is working at 125 MHz.

The CPU can access data from the Data RAM, access the register file inside EtherControl, and control the registers at FIFO
DMA and QSPI Memory Controller. Either RISC-V CPU or FIFO DMA can move the data stored at the register file inside
EtherControl to Motor Control block. They can also move the data collected by PDM Data Collector back to EtherControl
and send out through the Ethernet upstream port.

There is one feature added in EtherControl IP in protocol layer. It supports additional frame/packet type 10 which enables
the system to enhance performance while fetching bulk data. More details is given in the EtherControl user guide.

There is no major changes in EtherControl Slave module, but it has three more slave addition for different applications.
RISC-V CPU can also send/receive data to/from different peripherals connected to system through SPI Master/I2C
Master/UART (modbus).

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 19

IR
Q

3

IR
Q

0

IR
Q

1

IR
Q

2

UART I2C SPI

APB Interconnect

ISR
RAM

S

I D

RISC V CPU

M M

Data RAM

S0 S1

SPI
Flash Controller

S

AHBL2APB
Bridge

S

AHBL Interconnect

S0 S1 M S S

Motor Control &
PDM Data Collector FIFO DMA Ethercontrol Node Ethernet

(UPSTREAM)

Ethernet
(DOWNSTREAM)

Figure 2.3. Node System Architecture

2.2.2.1. Node System Memory Map of Node System

The Node System memory map is defined in Table 2.3.

Table 2.3. Node System Memory Map

Base Address End Address Range (Bytes)
Range

(Bytes in hex)
Size (Kbytes) Block

00190000 00197FFF 32768 8000 32 CPU instruction RAM

00080000 000807FF 2048 800 2 CPU PIC TIMER

00080800 000BFFFF 260096 3F800 254 RESERVED

000C0000 000FFFFF 262144 40000 256 CPU Data Ram
Port S0 base address: 0x000C0000
Port S1 base address: 0x000E0000

00100000 00107FFF 32768 8000 32 FIFO DMA

00108000 0010FFFF 32768 8000 32 EtherControl

00110000 0017FFFF 458752 70000 448 RESERVED

00000000 0007FFFF 512000 7D000 512 SPI Flash Controller

001864000 001867FF 1024 400 2 UART

00184000 00185FFF 8192 2000 8 Motor Control & PDM Data Collector
Port S0 base address: 0x00184000
Port S1 base address: 0x00185000

00186000 00FFFFFF 15179776 E7A000 14824 RESERVED

01400000 01FFFFFF 16777216 1000000 16384 External SPI flash

001868000 00186BFF 1024 400 1 SPI Master

00186000 001863FF 1024 400 1 I2C Master

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 20

2.3. EtherControl IP
The EtherControl block is needed in both Main System and Node System. There is a Verilog parameter SYSTEM_TYPE, which
sets this block as either Main System or Node System. For the Main System, there is no Ethernet Upstream; only two
Ethernet downstream ports. For Node System, it is has both Ethernet Upstream(1) and Ethernet Downstream(1) ports. For
the last Node System, the Ethernet Downstream port can be disabled. Input/Output FIFO interface is selected using
SYSTEM_TYPE parameter.

In the main system, the EtherControl IP has an output FIFO interface to send bulk data to DMA FIFO block while in the node
system, the EtherControl block has an input FIFO interface to receive bulk data from DMA FIFO module, which is coming
from the Data Collector IP. The AHBL interface 0 (AHBL_S_0) is used to support one host along with FIFO interface for bulk
data. The AHBL interface 1 (AHBL_S_1) is used to support another host without FIFO interface to control same operations of
IP as AHBL_S_0. The AHBL_S_1 interface is used to read/write bulk data from/to IP as well.

Both AHBL interfaces are used independently from user end, but user needs to check each time if IP is engaged by another
AHBL interface.

Two AHBL interfaces are available for EtherControl Master only, depending on the System Type parameter.

The Sync Pulse generator block is available in the EtherControl master only. It is used to generate pulse for dynamically
synchronization of nodes.

The EtherControl consists of an existing IP block, EtherConnect, register file, and glue logic as shown in Figure 2.4.

S0 S1

Register File

Global Registers

Local Registers
1 2

EtherConnect
1

EtherConnect
2

Sync Pulse Generator

IRQ

AHBL_S_0 AHBL_S_1
Ethernet
(upstream)

FIFO In

FIFO Out

Ethernet1
(downstream)

Ethernet2
(downstream)

Figure 2.4. EtherControl Block Diagram

Table 2.4. EtherControl Interfaces

Interface Direction Description

IRQ Output Interrupt to RISC-V CPU

FIFO Output FIFO output to FIFO DMA

FIFO Input FIFO input to EtherControl

AHBL Slave 0 Input and Output AHBL slave port for host 1 along with FIFO output interface to control IP.

AHBL Slave 1 Input and Output
AHBL slave port for host 2 independent of FIFO and AHBL 0 interface to control
IP.

Ethernet Upstream Input and Output
Send Ethernet packets to Main System or Upper Node System
This interface is disabled for Main System EtherControl.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 21

Interface Direction Description

Ethernet 1 Downstream Input and Output
Send ethernet packets to lower Node Systems
This interface is disabled for the last Node System EtherControl.

Ethernet 2 Downstream Input and Output
Send ethernet packets to lower Node Systems
This interface is disabled for the last Node System EtherControl.

2.3.1. Features

The key features of the EtherControl IP include:

 Real time Ethernet network support

 Two chain support

 Full Duplex data communication support

 RGMII interface support

 SGMII interface support

 AHBL Node interfaces for controlling IP from AHBL based master block

 FIFO Interface for bulk data transfer (both normal and extended mode)(only for AHBL Bus 0)

 Runtime Cable Break Detection Support

 Propagation Delay adjustment(Synchronization) Support

 Parameter based Main and Node Selection

 Maximum of 32 nodes support

 Two AHBL Bus support for EtherControl Master

 Max 256 bytes data length support

 Random Node access support – EtherControl Master

 RGMII/SGMII Selection

 1G(125 MHz) physical interface support- RGMII/SGMII PHY, SFP support

 Dynamic/Runtime node scanning

 4 kB Rx and Tx data buffers support

 Configuration Write(Motor Configuration) , Status Read(Motor Status), Bulk data read(PDM data) – Normal and
Extended

 Interrupt support (only for AHBL Bus 0)

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 22

2.3.2. EtherControl Master

Master Top

RISC V
Interrupt

DMA
FIFO

Interface

Enabled By Default

AHBL_slave_0_bus_control

PCIE_ENABLE = 1

AHBL_slave_1_bus_control

PCIE_ENABLE = 1

ahbl_bus_data_arbitration

(control signals are selected on the basis of
ahbl_bus_busy signal)

SFP_ENABLE = 1

I2C_Master
LMMI app

Application Layer CH1

Data
generator

Data
capture

Arbitrator
CH1

Arbitrator
CH2 Application Layer CH2

Data
generator

Data
capture

Sync_pulse
generator

Protocol
Layer CH1

Protocol
Layer CH2

Physical
Layer CH1

Physical
Layer CH2

Data to be transferred
with links

Data to be transferred
with links

Figure 2.5. EtherControl Master Block Diagram

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 23

2.3.3. Register Description

2.3.3.1. EtherControl Master (RISC-V)

The register address map for AHBL Bus 0 (RISC-V) shown in Table 2.5 specifies the available IP Core registers for the main
system configuration. The offset of each register increments by four to allow easy interfacing with the processor and
System Buses. In this case, each register is 32-bit wide wherein the used and unused bits are mentioned. The unused bits
are treated as reserved – read access returns 0. The registers are divided into Global and Local ones. The global registers are
common for all the chains, while the local ones are local to the respective chains.

Table 2.5. EtherControl Master Global Register Map (RISC-V)

EtherControl Register Name Register Function Base Address (0x00108000) Access

DMACTR_R DMA FIFO Enable/AHBL Disable Register Base + 0x00 Read/Write

PHLNK_R PHY Link Status Register Base + 0x04 Read

NDACT_R Active Nodes Register Base + 0x08 Read

FSRPDM_R FIFO Status Register for PDM Data CDC Base + 0x0C Read

ETHINTR_R Interrupt Poll Register Base + 0x10 Read

CLRCVD_R Clear Interrupt Received Register Base + 0x14 Read/Write

TX_ALL_STRT_R Transaction start for all chains Base + 0x18 Read/Write

DTOUT_R Node Response PDM Data Register Base + 0x1C Read

IP_STATUS_R IP Busy Status Base + 0x20 Read/Write

AHBL_TOUT_R AHBL Bus Timeout Count Register Base + 0x28 Write

Table 2.6. EtherControl Master Local Chain 1 Register Map (RISC-V)

EtherControl Register Name Register Function Base Address (0x0010800) Access

TXSTR_R_1 Start Transaction Register Base + 0x00 Read/Write

PKTHD_R_1 Packet Head Register Base + 0x04 Read/Write

FRNUM_R_1 Frame Number Register Base + 0x08 Read/Write

NDCNT_R_1 Number of Node Register Base + 0x0C Read/Write

NDLN_R_1 Node Data Length Register Base + 0x10 Read/Write

MTDT_R_1 Node Request Data Burst Register Base + 0x14 Read/Write

RQDT_R_1 Node Request Type Register Base + 0x18 Read/Write

RQAD_R_1 Node Address Register Base + 0x1C Read/Write

CRCNT_R_1 CRC Count Register Base + 0x20 Read

INTR_R_1 Interrupt Info Register Base + 0x24 Read

FSRREQD_R_1 FIFO Status Register Request Data Base + 0x28 Read

MTRST_R_1 Node Motor Status Register Base + 0x100 to 0x1FC Read

DLY_R_1 Node Delay Register Base + 0x200 to 0x2FC Read

Table 2.7. EtherControl Master Local Chain 2 Register Map (RISC-V)

EtherControl Register Name Register Function Base Address (0x00108400) Access

TXSTR_R_2 Start Transaction Register Base + 0x00 Read/Write

PKTHD_R_2 Packet Head Register Base + 0x04 Read/Write

FRNUM_R_2 Frame Number Register Base + 0x08 Read/Write

NDCNT_R_2 Number of Node Register Base + 0x0C Read/Write

NDLN_R_2 Node Data Length Register Base + 0x10 Read/Write

MTDT_R_2 Node Request Data Burst Register Base + 0x14 Read/Write

RQDT_R_2 Node Request Type Register Base + 0x18 Read/Write

RQAD_R_2 Node Address Register Base + 0x1C Read/Write

CRCNT_R_2 CRC Count Register Base + 0x20 Read

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 24

EtherControl Register Name Register Function Base Address (0x00108400) Access

INTR_R_2 Interrupt Info Register Base + 0x24 Read

FSRREQD_R_2 FIFO Status Register Request Data Base + 0x28 Read

MTRST_R_2 Node Motor Status Register Base + 0x100 to 0x1FC Read

DLY_R_2 Node Delay Register Base + 0x200 to 0x2FC Read

The Global register description is given below:

Table 2.8. DMA FIFO Enable/AHBL Disable Register

DMACTR_R Base + 0x00

Byte 3 2 1 0

Name DMACTR_R

Default Reserved Reserved Reserved 0

Access R/W

DMACTR_R[0]: 0: DMA FIFO enabled, AHBL disabled | 1: DMA FIFO disabled, AHBL enabled

Table 2.9. PHY Link Status Register

PHLNK_R Base + 0x04

Byte 3 2 1 0

Name Physical Link Chain 2 Physical Chain 1

Default 0 0 0 0

Access R

PHLNK_R[0]: 1: Main System PHY link established for chain 1 and 0: Main System PHY link not established for chain 1

PHLNK_R[15:1]: Each bit from bit 1 to bit 15 shows the link status of the respective nodes in chain 1

PHLNK_R[16]: 1: Main System PHY link established for chain 2 and 0: Main System PHY link not established for chain 2

PHLNK_R[31:17]: Each bit from bit 17 to bit 31 shows the link status of the respective nodes in chain 2

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 25

Table 2.10. Active Nodes Register

NDACT_R Base + 0x08

Byte 3 2 1 0

Name Active Node Chain 1+2 Active Node Chain 1+2 Active Node Chain 2 Active Node Chain 1

Default 0 0 0 0

Access R

NDACT_R[7:0]: Gives number of nodes actually connected physically to the system

NDACT_R[15:8]: Gives number of nodes actually connected physically to the system in chain 2

NDACT_R[31:16]: Gives total number of physically connected nodes in both chains

Table 2.11. FIFO Status Register for PDM Data

FSRPDM_R Base + 0x0C

Byte 3 2 1 0

Name FSRPDM_R

Default Reserved Reserved Reserved 0

Access R

FSRPDM_R[0]: Empty signal of RX FIFO

FSRPDM_R[1]: Full signal of RX FIFO

FSRPDM_R[2]: Overflow error of RX FIFO

FSRPDM_R[3]: Underflow error of RX FIFO

FSRPDM_R[4]: Reserved

FSRPDM_R[5]: Reserved

FSRPDM_R[6]: Reserved

FSRPDM_R[7]: Reserved

Table 2.12. Clear Interrupt Received Register

CLRCVD_R Base + 0x10

Byte 3 2 1 0

Name CLRCVD_R

Default Reserved Reserved Reserved 0

Access R/W

CLRCVD_R[0] : Received clr bit from CPU

CLRCVD_R[7:1] : Reserved

CLRCVD_R[31:8] : Reserved

Table 2.13. Interrupt Polling Register

ETHINTR_R Base + 0x14

Byte 3 2 1 0

Name Ethernet Interrupt from Chain 2 Ethernet Interrupt from Chain 1

Default Reserved 0 Reserved 0

Access R/W

ETHINTR_R[0]: Interrupt bit from Chain 1

ETHINTR_R[7:1]: Reserved

ETHINTR_R[15:8]: Reserved

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 26

ETHINTR_R[16]: Interrupt bit from Chain 2

ETHINTR_R[31:17]: Reserved

Table 2.14. Start Transaction in All Chains

TX_ALL_STRT_R Base + 0x18

Byte 3 2 1 0

Name TX_ALL_STRT_R

Default Reserved Reserved Reserved 0

Access R/W

TX_ALL_START_R[0]: Received clr bit from CPU

TX_ALL_START_R[7:1]: Reserved

Table 2.15. IP Busy Register

IP_BUSY_R Base + 0x20

Byte 3 2 1 0

Name AHBL_Busy_R

Default Reserved Reserved Reserved 0

Access R/W

AHBL_BUSY_R[0]: 1 : AHBL Bus 0 Busy | 0: AHBL 0 bus Free (Only for reading)

AHBL_BUSY_R[1]: 1 : AHBL Bus 1 Busy | 0: AHBL 1 bus Free

AHBL_BUSY_R[7:2]: Reserved

Table 2.16. AHBL_TOUT_R

IP_BUSY_R Base + 0x28

Byte 3 2 1 0

Name AHBL_TOUT_R

Default 0 0 0 0

Access W

AHBL_TOUT_R[31:0]: Sets the value of AHBL timeout count to free the bus

The local register 1 description is given below:

Table 2.17. Chain 1 Start Transaction Register

TXSTR_R_1 Base + 0x00

Byte 3 2 1 0

Name TXSTR_R_1

Default Reserved Reserved Reserved 0

Access R/W

TXSTR_R_1[0]: 1: Start the transaction | 0: No transaction

Table 2.18. Chain 1 Packet Head Register

PKTHD_R_1 Base + 0x04

Byte 3 2 1 0

Name PKTHD_R_1

Default Reserved Reserved Reserved 0

Access R/W

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 27

PKTHD_R_1[0]: 1: User values are updated | 0: No update

Table 2.19. Chain 1 Frame Number Register

FRNUM_R_1 Base + 0x08

Byte 3 2 1 0

Name FRNUM_R_1

Default Reserved Reserved Reserved 0

Access R/W

FRNUM_R_1[7:0]: Frame number for the current frame

Table 2.20. Chain 1 Number of Node Register

NDCNT_R_1 Base + 0x0C

Byte 3 2 1 0

Name NDCNT_R_1

Default Reserved Reserved Reserved 0

Access R/W

NDCNT_R_1[7:0]: Number of nodes configured by the user

Table 2.21. Chain 1 Node Data Length Register

NDLN_R_1 Base + 0x10

Byte 3 2 1 0

Name NDLN_R_1

Default Reserved Reserved Reserved 0

Access R/W

NDLN_R_1[7:0]: Data length of nodes to be configured by the user

Table 2.22. Chain 1 Node Request Data Burst Register

MTDT_R_1 Base + 0x14

Byte 3 2 1 0

Name MTDT_R_1

Default Reserved Reserved Reserved 0

Access R/W

MTDT_R_1[7:0]: Data to be send from the Main System to Node Systems by the user

Table 2.23. Chain 1 Node Request Type Register

RQDT_R_1 Base + 0x18

Byte 3 2 1 0

Name RQDT_R_1

Default Reserved Reserved Reserved 0

Access R/W

RQDT_R_1[7:0]: Type of data requested by the user

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 28

Table 2.24. Chain 1 Node Address Register

RQAD_R_1 Base + 0x1C

Byte 3 2 1 0

Name RQAD_R_1

Default Reserved Reserved Reserved 0

Access R/W

RQAD_R_1[7:0]: Address requested by the user

Table 2.25. Chain 1 CRC Count Register

CRCNT_R_1 Base + 0x20

Byte 3 2 1 0

Name CRCNT_R_1

Default Reserved Reserved Reserved 0

Access R

CRCNT_R_1[7:0]: Gives the count of error generated by doing CRC on the data

Table 2.26. Chain 1 Interrupt Info Register

INTR_R_1 Base + 0x24

Byte 3 2 1 0

Name INTR_R_1

Default Reserved Reserved Reserved 0

Access R

INTR_R_1[31:0]: Gives the type of interrupt generated according to type of available data

0x01 : Motor Configuration

0x02 : Motor Status

0x03 : PDM Data

0x04 : Training Pkt

0x05 : Pkt Head

0x06 : Extended PDM Data

Table 2.27. Chain 1 FIFO Status Register Request Data

FSRREQD_R_1 Base + 0x28

Byte 3 2 1 0

Name FSRREQD_R_1

Default Reserved Reserved Reserved 0

Access R

FSRREQD_R_1[0]: Overflow error of TX 1 FIFO

FSRREQD_R_1[1]: Underflow error of TX 1 FIFO

FSRREQD_R_1[2]: Empty signal of TX 1 FIFO

FSRREQD_R_1[3]: Full signal of TX 1 FIFO

FSRREQD_R_1[4]: Reserved

FSRREQD_R_1[5]: Reserved

FSRREQD_R_1[6]: Reserved

FSRREQD_R_1[7]: Reserved

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 29

Table 2.28. Chain 1 Node Motor Status Register

MTRST_R_1 Base + 0x100 - 0x1FC

Byte 3 2 1 0

Name MTRST_R_1

Default 0 0 0 0

Access R

Base + 0x100 : Node 1 status

Base + 0x104 : Node 2 status ……..(will progress like this for other nodes)

Table 2.29. Chain 1 Node Delay Register

DLY_1 Base +0x200 - 0x2FC

Byte 3 2 1 0

Name DLY_1

Default 0 0 0 0

Access R

Base + 0x200 : Node 1 Delay

Base + 0x204 : Node 2 Delay ……..(will progress like this for other nodes)

The local register 2 description is given below:

Table 2.30. Chain 2 Start Transaction Register

TXSTR_R_2 Base +0x00

Byte 3 2 1 0

Name TXSTR_R_2

Default Reserved Reserved Reserved 0

Access R/W

TXSTR_R_2[0]: 1: Start the transaction | 0: No transaction

Table 2.31. Chain 2 Packet Head Register

PKTHD_R_2 Base +0x04

Byte 3 2 1 0

Name PKTHD_R_2

Default Reserved Reserved Reserved 0

Access R/W

PKTHD_R_2[0]: 1: User values are updated | 0: No update

Table 2.32. Chain 2 Frame Number Register

FRNUM_R_2 Base +0x08

Byte 3 2 1 0

Name FRNUM_R_2

Default Reserved Reserved Reserved 0

Access R/W

FRNUM_R_2[7:0]: Frame number for the current frame

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 30

Table 2.33. Chain 2 Number of Node Register

NDCNT_R_2 Base +0x0C

Byte 3 2 1 0

Name NDCNT_R_2

Default Reserved Reserved Reserved 0

Access R/W

NDCNT_R_2[7:0]: Number of nodes configured by the user

Table 2.34. Chain 2 Node Data Length Register

NDLN_R_2 Base +0x10

Byte 3 2 1 0

Name NDLN_R_2

Default Reserved Reserved Reserved 0

Access R/W

NDLN_R_2[7:0]: Data length of nodes to be configured by the user

Table 2.35. Chain 2 Node Request Data Burst Register

MTDT_R_2 Base +0x14

Byte 3 2 1 0

Name MTDT_R_2

Default Reserved Reserved Reserved 0

Access R/W

MTDT_R_2[7:0]: Data to be send from the Main System to Node Systems by the user

Table 2.36. Chain 2 Node Request Type Register

RQDT_R_2 Base +0x18

Byte 3 2 1 0

Name RQDT_R_1

Default Reserved Reserved Reserved 0

Access R/W

RQDT_R_2[7:0]: Type of data requested by the user

Table 2.37. Chain 2 Node Address Register

RQAD_R_2 Base +0x1C

Byte 3 2 1 0

Name RQAD_R_1

Default Reserved Reserved Reserved 0

Access R/W

RQAD_R_2[7:0]: Address requested by the user

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 31

Table 2.38. Chain 2 CRC Count Register

CRCNT_R_2 Base +0x20

Byte 3 2 1 0

Name CRCNT_R_2

Default 0 0 0 0

Access R

CRCNT_R_2[7:0]: Gives the count of error generated by doing CRC on the data

Table 2.39. Interrupt Info Register

INTR_R_2 Base +0x24

Byte 3 2 1 0

Name INTR_R_2

Default 0 0 0 0

Access R

INTR_R_2[31:0]: Gives the type of interrupt generated according to type of available data

0x01: Motor Configuration

0x02: Motor Status

0x03: PDM Data

0x04: Training Pkt

0x05: Pkt Head

0x06: Extended PDM Data

Table 2.40. Chain 2 FIFO Status Register Request Data

FSRREQD_R_2 Base +0x28

Byte 3 2 1 0

Name FSRREQD_R_2

Default Reserved Reserved Reserved 0

Access R

FSRREQD_R_2[0]: Overflow error of TX 1 FIFO

FSRREQD_R_2[1]: Underflow error of TX 1 FIFO

FSRREQD_R_2[2]: Empty signal of TX 1 FIFO

FSRREQD_R_2[3]: Full signal of TX 1 FIFO

FSRREQD_R_2[4]: Reserved

FSRREQD_R_2[5]: Reserved

FSRREQD_R_2[6]: Reserved

FSRREQD_R_2[7]: Reserved

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 32

Table 2.41. Chain 2 Node Motor Status Register

MTRST_R_2 Base +0x100 – 0x1FC

Byte 3 2 1 0

Name MTRST_R_2

Default 0 0 0 0

Access R

Base + 0x100 : Node 1 status

Base + 0x104 : Node 2 status ……..(will progress like this for other nodes)

Table 2.42. Chain 2 Node Delay Register

DLY_R_2 Base +0x200 – 0x2FC

Byte 3 2 1 0

Name DLY_R_2

Default 0 0 0 0

Access R

Base + 0x200 : Node 1 Delay

Base + 0x204 : Node 2 Delay ……..(will progress like this for other nodes)

2.3.3.2. EtherControl Master (PCIe)

The register address map for AHBL Bus 1 (PCIe) shown in Table 2.43 specifies the available IP Core registers for main system
configuration. The offset of each register increments by eight to allow easy interfacing with the Processor and System
Buses. In this case, each register is 64-bit wide wherein the used and unused bits are mentioned. The unused bits are
treated as reserved – read access returns 0. The registers are divided into Global and Local ones. The global registers are
common for all the chains while the local ones are local to the respective chains.

Table 2.43. EtherControl Master Global Register Map (PCIe)

PCIe Register Name Register Function
Base Address
(0x00108000)

Access Used Bits

DMACTR_P DMA FIFO Enable/AHBL Disable Register Base + 0x00 Read/Write [31:0]

PHLNK_P Phy Link Status Register Base + 0x00 Read [63:32]

NDACT_P Active Nodes Register Base + 0x08 Read [31:0]

FSRPDM_P FIFO Status Register for PDM Data CDC Base + 0x08 Read [63:32]

ETHINTR_P Interrupt Poll Register Base + 0x10 Read [31:0]

CLRCVD_P Clear Interrupt Received Register Base + 0x10 Read/Write [63:32]

TX_ALL_STRT_P Transaction start for all chains Base + 0x18 Read/Write [31:0]

IP_STATUS_P IP Busy Status Base + 0x20 Read/Write [31:0]

AHBL_TOUT_P AHBL Bus Timeout Count Register Base + 0x28 Write [31:0]

DTOUT_P Node Response PDM Data Register 0x00108400 + 0x40 Read [63:0]

Note: For PCIe based path, the PDM data goes through the AHBL interface to the DMACTR register that needs to be controlled.

Table 2.44. EtherControl Master Local Chain 1 Register Map (PCIe)

PCIe Register Name Register Function
Base Address
(0x00108100)

Access Used Bits

TXSTR_P_1 Start Transaction Register Base + 0x00 Read/Write [31:0]

PKTHD_P_1 Packet Head Register Base + 0x00 Read/Write [63:32]

FRNUM_P_1 Frame Number Register Base + 0x08 Read/Write [31:0]

NDCNT_P_1 Number of Node Register Base + 0x08 Read/Write [63:32]

NDLN_P_1 Node Data Length Register Base + 0x10 Read/Write [31:0]

FSRREQD_P_1 FIFO Status Register Request Data Base + 0x10 Read [63:32]

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 33

PCIe Register Name Register Function
Base Address
(0x00108100)

Access Used Bits

RQDT_P_1 Node Request Type Register Base + 0x18 Read/Write [31:0]

RQAD_P_1 Node Address Register Base + 0x18 Read/Write [63:32]

CRCNT_P_1 CRC Count Register Base + 0x20 Read [31:0]

INTR_P_1 Interrupt Info Register Base + 0x20 Read [63:32]

MTDT_P_1 Node Request Data Burst Register Base + 0x28 Read/Write [63:0]

MTRST_P_1 Node Motor Status Register Base + 0x100 to 0x1FC Read [63:0]

DLY_P_1 Node Delay Register Base + 0x200 to 0x2FC Read [63:0]

Table 2.45. EtherControl Master Local Chain 2 Register Map (PCIe)

PCIe Register Name Register Function
Base Address
(0x00108400)

Access Used Bits

TXSTR_P_2 Start Transaction Register Base + 0x00 Read/Write [31:0]

PKTHD_P_2 Packet Head Register Base + 0x00 Read/Write [63:32]

FRNUM_P_2 Frame Number Register Base + 0x08 Read/Write [31:0]

NDCNT_P_2 Number of Node Register Base + 0x08 Read/Write [63:32]

NDLN_P_2 Node Data Length Register Base + 0x10 Read/Write [31:0]

FSRREQD_P_2 FIFO Status Register Request Data Base + 0x10 Read/Write [63:32]

RQDT_P_2 Node Request Type Register Base + 0x18 Read/Write [31:0]

RQAD_P_2 Node Address Register Base + 0x18 Read/Write [63:32]

CRCNT_P_2 CRC Count Register Base + 0x20 Read]31:0]

INTR_P_2 Interrupt Info Register Base + 0x20 Read [63:32]

MTDT_P_2 Node Request Data Burst Register Base + 0x28 Read [63:0]

MTRST_P_2 Node Motor Status Register Base + 0x100 to 0x1FC Read [63:0]

DLY_P_2 Node Delay Register Base + 0x200 to 0x2FC Read [63:0]

The Global register description is given below:

Table 2.46. DMA FIFO Enable/AHBL Disable Register

DMACTR_P Base + 0x00

Byte 3 2 1 0

Name DMACTR_P

Default Reserved Reserved Reserved 0

Access R/W

DMACTR_P[0]: 0: DMA FIFO enabled, AHBL disabled | 1: DMA FIFO disabled, AHBL enabled

Table 2.47. PHY Link Status Register

PHLNK_P Base + 0x00

Byte 7 6 5 4

Name Physical Link Chain 2 Physical Chain 1

Default 0 0 0 0

Access R

PHLNK_P[32]: 1: Main System PHY link established for chain 1 and 0: Main System PHY link not established for chain 1

PHLNK_P[47:33]: Each bit from bit 33 to bit 47 shows the link status of the respective nodes in chain 1

PHLNK_P[48]: 1: Main System PHY link established for chain 2 and 0: Main System PHY link not established for chain 2

PHLNK_P[63:49]: Each bit from bit 49to bit 63 shows the link status of the respective nodes in chain 2

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 34

Table 2.48. Active Nodes Register

NDACT_P Base + 0x08

Byte 3 2 1 0

Name Active Node Chain 1+2 Active Node Chain 1+2 Active Node Chain 2 Active Node Chain 1

Default 0 0 0 0

Access R

NDACT_P[7:0]: Gives number of nodes actually connected physically to the system

Table 2.49. FIFO Status Register for PDM Data

FSRPDM_P Base + 0x08

Byte 7 6 5 4

Name FSRPDM_P

Default Reserved Reserved Reserved 0

Access R

FSRPDM_P[32]: Empty signal of RX FIFO

FSRPDM_P[33]: Full signal of RX FIFO

FSRPDM_P[34]: Overflow error of RX FIFO

FSRPDM_P[35]: Underflow error of RX FIFO

FSRPDM_P[36]: Reserved

FSRPDM_P[37]: Reserved

FSRPDM_P[38]: Reserved

FSRPDM_P[39]: Reserved

Table 2.50. Interrupt Polling Register

ETHINTR_P Base + 0x10

Byte 3 2 1 0

Name Ethernet Interrupt from Chain 2 Ethernet Interrupt from Chain 1

Default Reserved 0 Reserved 0

Access R/W

ETHINTR_P[0] : Interrupt bit from Chain 1

ETHINTR[7:1] : Reserved

ETHINTR[15:8] : Reserved

ETHINTR[16] : Interrupt bit from Chain 2

ETHINTR[31:17] : Reserved

Table 2.51. Clear Interrupt Received Register

CLRCVD_P Base + 0x10

Byte 7 6 5 4

Name CLRCVD

Default Reserved Reserved Reserved 0

Access R/W

CLRCVD[39]: Received CLR bit from CPU

CLRCVD[39:33]: Reserved

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 35

Table 2.52. Start Transaction in All Chains

TX_ALL_STRT_P Base + 0x18

Byte 3 2 1 0

Name TX_ALL_STRT_P

Default Reserved Reserved Reserved 0

Access R/W

TX_ALL_STRT_P [0]: 1: Start the transaction | 0: No transaction

Table 2.53. IP Busy Register

IP_Busy_P Base + 0x20

Byte 3 2 1 0

Name AHBL_Bus_P

Default Reserved Reserved Reserved 0

Access R/W

AHBL_BUSY_P[0]: 1 : AHBL Bus 0 Busy | 0: AHBL 0 bus Free (only for reading)

AHBL_BUSY_P[1]: 1 : AHBL Bus 1 Busy | 0: AHBL 1 bus Free

AHBL_BUSY_P[7:2]: Reserved

Table 2.54. AHBL Bus Timeout Count Register

AHBL_TOUT_P Base + 0x28

Byte 3 2 1 0

Name AHBL_TOUT_P

Default Reserved Reserved Reserved 0

Access W

AHBL_TOUT_P[31:0]: Sets the value of AHBL timeout count to free the bus

Table 2.55. Node Response PDM Data Register

DTOUT_P 0x00108400 + 0x40

Byte 7 6 5 4 3 2 1 0

Name DTOUT_P

Default 0 0 0 0 0 0 0 0

 R

DTOUT_P[63:0]: PDM Data out from the nodes which is requested by the user

The local register 1 description is given below:

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 36

Table 2.56. Chain 1 Start Transaction Register

TXSTR_P_1 Base + 0x00

Byte 3 2 1 0

Name TXSTR_P_1

Default Reserved Reserved Reserved 0

Access R/W

TXSTR_P_1[0]: 1: Start the transaction | 0: No transaction

Table 2.57. Chain 1 Packet Head Register

PKTHD_P_1 Base + 0x00

Byte 7 6 5 4

Name PKTHD_P_1

Default Reserved Reserved Reserved 0

Access R/W

PKTHD_P_1[32]: 1: User values are updated | 0: No update

Table 2.58. Chain 1 Frame Number Register

FRNUM_P_1 Base + 0x08

Byte 3 2 1 0

Name FRNUM_P_1

Default Reserved Reserved Reserved 0

Access R/W

FRNUM_P_1[7:0]: Frame number for the current frame

Table 2.59. Chain 1 Number of Node Register

NDCNT_P_1 Base + 0x08

Byte 7 6 5 4

Name NDCNT_P_1

Default Reserved Reserved Reserved 0

Access R/W

NDCNT_P_1[39:32]: Number of nodes configured by the user

Table 2.60. Chain 1 Node Data Length Register

NDLN_P_1 Base + 0x10

Byte 3 2 1 0

Name NDLN_P_1

Default Reserved Reserved Reserved 0

Access R/W

NDLN_1[7:0]: Data length of nodes to be configured by user

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 37

Table 2.61. Chain 1 FIFO Status Register Request Data

FSRREQD_P_1 Base + 0x10

Byte 7 6 5 4

Name FSRREQD_P_1

Default Reserved Reserved Reserved 0

Access R

FSRREQD_P_1[32]: Overflow error of TX 1 FIFO

FSRREQD_P_1[33]: Underflow error of TX 1 FIFO

FSRREQD_P_1[34]: Empty signal of TX 1 FIFO

FSRREQD_P_1[35]: Full signal of TX 1 FIFO

FSRREQD_P_1[36]: Reserved

FSRREQD_P_1[37]: Reserved

FSRREQD_P_1[38]: Reserved

FSRREQD_P_1[39]: Reserved

Table 2.62. Chain 1 Node Request Type Register

RQDT_P_1 Base + 0x18

Byte 3 2 1 0

Name RQDT_P_1

Default Reserved Reserved Reserved 0

Access R/W

RQDT_1[7:0]: Type of data requested by the user

Table 2.63. Chain 1 Node Address Register

RQAD_P_1 Base + 0x18

Byte 3 2 1 0

Name RQAD_1

Default Reserved Reserved Reserved 0

Access R/W

RQAD_P_1[39:32]: Address requested by the user

Table 2.64. Chain 1 CRC Count Register

CRCNT_P_1 Base + 0x20

Byte 3 2 1 0

Name CRCNT_P_1

Default Reserved Reserved Reserved 0

Access R

CRCNT_P_1[7:0]: Gives the count of error generated by doing CRC on the data

Table 2.65. Chain 1 Interrupt Info Register

INTR_P_1 Base + 0x24

Byte 7 6 5 4

Name INTR_P_1

Default Reserved Reserved Reserved 0

Access R

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 38

INTR_P_1[63:32]: Gives the type of interrupt generated according to type of available data

0x01: Motor Configuration

0x02: Motor Status

0x03: PDM Data

0x04: Training Pkt

0x05: Pkt Head

0x06: Extended PDM Data

Table 2.66. Chain 1 FIFO Status Register Request Data

FSRREQD_1 Base + 0x28

Byte 3 2 1 0

Name FSRREQD_1

Default Reserved Reserved Reserved 0

Access R

FSRREQD_1[0]: Overflow error of TX 1 FIFO

FSRREQD_1[1]: Underflow error of TX 1 FIFO

FSRREQD_1[2]: Empty signal of TX 1 FIFO

FSRREQD_1[3]: Full signal of TX 1 FIFO

FSRREQD_1[4]: Reserved

FSRREQD_1[5]: Reserved

FSRREQD_1[6]: Reserved

FSRREQD_1[7]: Reserved

Table 2.67. Chain 1 Node Request Burst Register

MTDT_P_1 Base + 0x28

Byte 7 6 5 4 3 2 1 0

Name MTDT_P_1

Default 0 0 0 0 0 0 0 0

 R/W

MTDT_P_1[63:0]: Data to be send from the master to nodes by the user

Table 2.68. Chain 1 Node Motor Status Register

MTRST_P_1 Base + 0x100 – 0x1FC

Byte 7 6 5 4 3 2 1 0

Name MTRST_P_1

Default 0 0 0 0 0 0 0 0

 R

Base + 0x100: Node 1 status

Base + 0x104: Node 2 status …….. (will progress like this for other nodes)

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 39

Table 2.69. Chain 1 Node Delay Register

DLY_P_1 Base + 0x200 – 0x1FC

Byte 7 6 5 4 3 2 1 0

Name DLY_P_1

Default 0 0 0 0 0 0 0 0

 R

Base + 0x200: Node 1 Delay

Base + 0x204: Node 2 Delay …….. (will progress like this for other nodes)

The local register 2 description is given below:

Table 2.70. Chain 2 Start Transaction Register

TXSTR_P_2 Base +0x00

Byte 3 2 1 0

Name TXSTR_P_2

Default Reserved Reserved Reserved 0

Access R/W

TXSTR_P_2[0]: 1: Start the transaction | 0: No transaction

Table 2.71. Chain 2 Packet Head Register

PKTHD_P_2 Base +0x00

Byte 7 6 5 4

Name PKTHD_P_2

Default Reserved Reserved Reserved 0

Access R/W

PKTHD_P_2[32]: 1: User values are updated | 0: No update

Table 2.72. Chain 2 Frame Number Register

FRNUM_P_2 Base +0x08

Byte 3 2 1 0

Name FRNUM_P_2

Default Reserved Reserved Reserved 0

Access R/W

FRNUM_P_2[7:0]: Frame number for the current frame

Table 2.73. Chain 2 Number of Node Register

NDCNT_P_2 Base +0x08

Byte 7 6 5 4

Name NDCNT_P_2

Default Reserved Reserved Reserved 0

Access R/W

NDCNT_P_2[39:32]: Number of nodes configured by the user

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 40

Table 2.74. Chain 2 Node Data Length Register

NDLN_P_2 Base +0x10

Byte 3 2 1 0

Name NDLN_P_2

Default Reserved Reserved Reserved 0

Access R/W

NDLN_P_2[7:0]: Data length of nodes to be configured by the user

Table 2.75. Chain 2 FIFO Status Register Request Data

FSRREQD_P_2 Base +0x10

Byte 7 6 5 4

Name FSRREQD_P_2

Default Reserved Reserved Reserved 0

Access R

FSRREQD_P_2[32]: Overflow error of TX 1 FIFO

FSRREQD_P_2[33]: Underflow error of TX 1 FIFO

FSRREQD_P_2[34]: Empty signal of TX 1 FIFO

FSRREQD_P_2[35]: Full signal of TX 1 FIFO

FSRREQD_P_2[36]: Reserved

FSRREQD_P_2[37]: Reserved

FSRREQD_P_2[38]: Reserved

FSRREQD_P_2[39]: Reserved

Table 2.76. Chain 2 Node Request Type Register

RQDT_P_2 Base + 0x14

Byte 3 2 1 0

Name RQDT_P_1

Default Reserved Reserved Reserved 0

Access R/W

RQDT_P_2[7:0]: Type of data requested by the user

Table 2.77. Chain 2 Node Address Register

RQAD_P_2 Base + 0x14

Byte 7 6 5 4

Name RQAD_P_2

Default Reserved Reserved Reserved 0

Access R/W

RQAD_P_2[39:32]: Address requested by the user

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 41

Table 2.78. Chain 2 CRC Count Register

CRCNT_P_2 Base + 0x20

Byte 3 2 1 0

Name CRCNT_P_2

Default Reserved Reserved Reserved 0

Access R

CRCNT_P_2[7:0]: Gives the count of error generated by doing CRC on the data

Table 2.79. Interrupt Info Register

INTR_P_2 Base + 0x20

Byte 7 6 5 4

Name INTR_P_2

Default 0 0 0 0

Access R

INTR_P_2[63:32]: Gives the type of interrupt generated according to type of available data

0x01: Motor Configuration

0x02: Motor Status

0x03: PDM Data

0x04: Training Pkt

0x05: Pkt Head

0x06: Extended PDM Data

Table 2.80. Chain 2 Node Request Burst Register

MTDT_P_2 Base + 0x28

Byte 7 6 5 4 3 2 1 0

Name MTDT_P_1

Default 0 0 0 0 0 0 0 0

Access R/W

MTDT_P_2[63:0]: Data to be send from the master to nodes by the user

Table 2.81. Chain 2 Node Motor Status Register

MTRST_P_2 Base + 0x100 – 0x1FC

Byte 7 6 5 4 3 2 1 0

Name MTRST_P_2

Default 0 0 0 0 0 0 0 0

Access R

Base + 0x100: Node 1 status

Base + 0x104: Node 2 status ……..(will progress like this for other nodes)

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 42

Table 2.82. Chain 2 Node Delay Register

DLY_P_2 Base + 0x200 – 0x2FC

Byte 7 6 5 4 3 2 1 0

Name DLY_P_2

Default 0 0 0 0 0 0 0 0

Access R

Base + 0x200: Node 1 status

Base + 0x204: Node 2 status ……..(will progress like this for other nodes)

2.3.4. EtherControl Slave

FPGA (SYSTEM_TYPE == 1)

PHY PHY
RGMII/
SGMII

RGMII/
SGMII

Downstream
Rx

Downstream
Tx

Upstream
Rx

Upstream
Tx

Sync
Generate

User Logic

User Logic

User Logic

Ethernet

(Not in last slave)

Ethernet

Figure 2.6. EtherControl Slave

Table 2.83. EtherControl Slave Register Map

EtherControl Register Name Register Function Address Access

DMACTR DMA control Register Base + 0x00 Read/Write

FFDT FIFO data Register Base + 0x04 Write

RCMTR Motor Status Register Base + 0x08 Write

DMST DMA Done Indication Register Base + 0x0C Write

INTST Interrupt Status Register Base + 0x10 Read

MTAD Motor Config/Status Address Register

or PDM Data Transfer Size Register

Base + 0x14 Read

MTDT Motor Config Data Register Base + 0x18 Read

FFER FIFO error Register Base + 0x1C Read

CLRCVD Clear Interrupt Received Register Base + 0x3C Read/Write

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 43

Table 2.84. DMA Control Register

DMACTR Base +0x00

Byte 3 2 1 0

Name DMACTR

Default Reserved Reserved Reserved 0

Access R/W

DMACTR[0]: 0: DMA FIFO enabled, AHBL disabled | 1: DMA FIFO disabled, AHBL enabled

Table 2.85. FIFO Data Register

FFDT Base +0x04

Byte 3 2 1 0

Name FFDT

Default Reserved Reserved Reserved 0

Access R/W

FFDT[7:0]: Data incoming to the FIFO present in EtherControl Node System

Table 2.86. Motor Status Register

RCMTR Base +0x08

Byte 3 2 1 0

Name RCMTR

Default Reserved Reserved Reserved 0

Access R/W

RCMTR[7:0]: Motor status

Table 2.87. DMA Done Indication Register

DMST Base +0x0C

Byte 3 2 1 0

Name DMST

Default Reserved Reserved Reserved 0

Access R/W

DMST[7:0]: DMA done status

Table 2.88. Interrupt Status Register

INTST Base +0x10

Byte 3 2 1 0

Name INTST

Default Reserved Reserved Reserved 0

Access R/W

INTST[7:0]: Gives the type of interrupt thrown by the node system

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 44

Table 2.89. Motor Config/Status Address Register (or) PDM Data Transfer Size Register

MTAD Base +0x14

Byte 3 2 1 0

Name MTAD

Default 0 0 0 0

Access R

MTAD[31:0]: Gives the config/status address or PDM data transfer size

Table 2.90. Motor Configuration Data Register

MCDR Base +0x18

Byte 3 2 1 0

Name MCDR

Default 0 0 0 0

Access R

MCDR[31:0]: Gives the data available for motor configuration

Table 2.91. FIFO Error Register

FFER Base +0x1C

Byte 3 2 1 0

Name FFER

Default Reserved Reserved Reserved 0

Access R/W

FFER[0]: Overflow error of FIFO

FFER[1]: Underflow error of FIFO

FFER[2]: Downstream sync signal for particular node

FFER[3]: Empty status of FIFO

FFER[4]: Full status of FIFO

FFER[5]: Reserved

FFER[6]: Reserved

FFER[7]: Reserved

Table 2.92. Clear Interrupt Received Register

CLRCVD Base +0x3C

Byte 3 2 1 0

Name CLRCVD

Default Reserved Reserved Reserved 0

Access R/W

CLRCVD[0] : Received clr bit from CPU

CLRCVD[7:1] : Reserved

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 45

2.4. RISC-V to PCIe Bridge
This IP acts as a bridge between RISC-V (AHBL Bus 0) and PCIe (AHBL Bus 1). Information/status of AHBL bus 0 can be read
by AHBL bus 1 and vice versa. The registers of AHBL bus 0 are of 32 bits whereas registers of AHBL Bus 1 are of 64 bits. The
register map is shown in Table 2.93.

Table 2.93. RISC-V to PCIe Register Map

Bridge Register Name Register Function
Base Address
(0x00110000)

Access

RISC-V Registers

REG_R_1 RISC-V Config Register 1 Base + 0x00 Read / Write

REG_R_2 RISC-V Config Register 2 Base + 0x04 Read / Write

FIFO_R RISC-V FIFO Status Register Base + 0x08 Read

BULK_R RISC-V Bulk Data Register Base + 0x20 Read /Write

PCIe_SYNC_1_R PCIe Config Register 1 synced @ RISC-V clock Base + 0x100 Read

PCIe_SYNC_2_R PCIe Config Register 2 synced @ RISC-V clock Base + 0x104 Read

PCIe_SYNC_BULK_R PCIe bulk Data Register synced @ RISC-V clock Base + 0x200 Read

PCIe Registers

REG_P_1 PCIe Config Register 1 Base + 0x00 Read / Write

REG_P_2 PCIe Config Register 2 Base + 0x00 Read / Write

FIFO_P PCIe FIFO Status Register Base + 0x08 Read

BULK_P PCIe Bulk Data Register Base + 0x20 Read /Write

RISC_SYNC_1_P RISC-V Config Register 1 synced @ PCIe clock Base + 0x100 Read

RISC_SYNC_2_P RISC-V Config Register 2 synced @ PCIe clock Base + 0x100 Read

RISC_SYNC_BULK_P RISC-V bulk Data Register synced @ PCIe clock Base + 0x200 Read

Table 2.94. RISC-V Config Register 1

REG_R_1 Base +0x00

Byte 3 2 1 0

Name REG_R_1

Default 0 0 0 0

Access R/W

REG_R_1[31:0]: RISC-V Config Register 1

Table 2.95. RISC-V Config Register 2

REG_R_2 Base +0x04

Byte 3 2 1 0

Name REG_R_2

Default 0 0 0 0

Access R/W

REG_R_2[31:0]: RISC-V Config Register 2

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 46

Table 2.96. FIFO Error Register

FIFO_R Base +0x08

Byte 3 2 1 0

Name FIFO_R

Default Reserved Reserved Reserved 0

Access R

FIFO_R[0]: RISC-V FIFO Full

FIFO_R[1]: PCIe FIFO Empty

FIFO_R[2]: Reserved

FIFO_R[3]: Reserved

FIFO_R[4]: Reserved

FIFO_R[5]: Reserved

FIFO_R[6]: Reserved

FIFO_R[7]: Reserved

Table 2.97. RISC-V Bulk Data Register

BULK_R Base +0 x20

Byte 3 2 1 0

Name BULK_R

Default 0 0 0 0

Access R/W

BULK_R[31:0]: RISC-V Bulk Data Register

Table 2.98. PCIe Config Register 1 @ RISC-V Clock

PCIe_SYNC_1_R Base + 0x100

Byte 3 2 1 0

Name PCIe_SYNC_1_R

Default 0 0 0 0

Access R

PCIe_SYNC_1_R[31:0]: PCIe Config 1 synced @ RISC-V clock

Table 2.99. PCIe Config Register 2 @ RISC-V Clock

PCIe_SYNC_2_R Base + 0x104

Byte 3 2 1 0

Name PCIe_SYNC_2_R

Default 0 0 0 0

Access R

PCIe_SYNC_2_R[31:0]: PCIe Data 2 synced at RISC-V clock

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 47

Table 2.100. PCIe Bulk Data Register @ RISC-V Clock

PCIe_SYNC_BULK_R Base + 0x200

Byte 3 2 1 0

Name PCIe_SYNC_BULK_R

Default 0 0 0 0

Access R

PCIe_SYNC_BULK_R[31:0]: PCIe bulk Data synced at RISC-V clock

Table 2.101. PCIe Config Register 1

REG_P_1 Base + 0x00

Byte 3 2 1 0

Name REG_P_1

Default 0 0 0 0

Access R/W

REG_P_1[31:0]: PCIe Config Register 1

Table 2.102. PCIe Config Register 2

REG_P_2 Base + 0x00

Byte 7 6 5 4

Name REG_P_2

Default 0 0 0 0

Access R/W

REG_P_1[31:0]: PCIe Config Register 2

Table 2.103. PCIe FIFO Status Register

FIFO_P Base + 0x08

Byte 3 2 1 0

Name FIFO_P

Default Reserved Reserved Reserved 0

Access R

FIFO_P[0]: PCIe FIFO Full

FIFO_P[1]: RISC-V FIFO empty

FIFO_P[2]: Reserved

FIFO_P[3]: Reserved

FIFO_P[4]: Reserved

FIFO_P[5]: Reserved

FIFO_P[6]: Reserved

FIFO_P[7]: Reserved

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 48

Table 2.104. PCIe Bulk Data Register

BULK_P Base + 0x20

Byte 7 6 5 4 3 2 1 0

Name BULK_P

Default 0 0 0 0 0 0 0 0

Access R/W

BULK_P[63:0]: PCIe Bulk Data Register

Table 2.105. RISC-V Config Register 1 @ PCIe Clock

RISC_SYNC_1_P Base + 0x100

Byte 3 2 1 0

Name RISC_SYNC_1_P

Default 0 0 0 0

Access R

RISC_SYNC_1_P[31:0]: RISC-V Config 1 synced @ PCIe clock

Table 2.106. RISC-V Config Register 2 @ PCIe Clock

RISC_SYNC_2_P Base + 0x100

Byte 7 6 5 4

Name RISC_SYNC_2_P

Default 0 0 0 0

Access R

RISC_SYNC_2_P[63:32]: RISC-V Config 2 synced @ PCIe clock

Table 2.107. RISC-V Bulk Data Register @ PCIe Clock

RISC_SYNC_BULK_P Base + 0x200

Byte 7 6 5 4 3 2 1 0

Name RISC_SYNC_BULK_P

Default 0 0 0 0 0 0 0 0

Access R

RISC_SYNC_BULK_P[63:0]: RISC-V bulk Data synced @ PCIe clock

2.5. FIFO DMA
This block has two FIFO interfaces, one is active when it is used in the main system to collect the PDM data received by the
EtherControl master Bus 0. The other interface is active for node and has the pdm data from the motor control data
collector block.

This block also has an AHBL slave and master interface. The register space for this block is as shown in Table 2.108.

The AHBL Slave interface is used to control DMA operations by external master (which is CPU) and AHBL master interface is
used to perform for DMA operations.

More information about this IP is given FIFO DMA user guide.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 49

Table 2.108. FIFO DMA Register Map

Register Name Register Function Address Access

CNTR FIFO DMA Control Register Base + 0x00 Read/ Write

DEST_BASE_ADDR Destination Base Address Register Base + 0x04 Read/ Write

DEST_END_ADDR Destination End Address Register Base + 0x08 Read/ Write

PING_READY_ADDR Ping Ready Address Register Base + 0x10 Read/ Write

PONG_READY_ADDR Pong Ready Address Register Base + 0x14 Read/ Write

SET_PING_PONG_INDEX Ping Pong Index Register Base + 0x18 Read/ Write

STATUS Write Status Register Base + 0x0C Read

STATUS_RD Read Status Register Base + 0x1C Read

Table 2.109. FIFO DMA Control Registers

CNTR Base +0x00

Byte 3 2 1 0

Name CNTR

Default Reserved Reserved Reserved 0

Access R/W

CNTR[0]: Used to control read operation.

CNTR[1]: Used to reset the destination register to destination base address.

CNTR[2-7]: Reserved

Table 2.110. DEST_BASE_ADDR Register

DEST_BASE_ADDR Base +0x04

Byte 3 2 1 0

Name DEST_BASE_ADDR

Default 0 0 0 0

Access R/W

DEST_BASE_ADDR[31:0]: Base Address Location

Table 2.111. DEST_END_ADDR Register

DEST_END_ADDR Base +0x08

Byte 3 2 1 0

Name DEST_END_ADDR

Default 0 0 0 0

Access R/W

DEST_END_ADDR[31:0]: END Address Location

Table 2.112. PING Ready Address Register

PING_RDY_ADDR Base +0x10

Byte 3 2 1 0

Name PING_RDY_ADDR

Default 0 0 0 0

Access R/W

PING_RDY_ADDR[31:0]: PING Ready Address Location

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 50

Table 2.113. PONG Ready Address Register

PONG_RDY_ADDR Base +0x14

Byte 3 2 1 0

Name PONG_RDY_ADDR

Default 0 0 0 0

Access R/W

PONG_RDY_ADDR[31:0]: PONG Ready address Location

Table 2.114. PING PONG Index Register

SET_PING_PONG_INDEX Base +0x18

Byte 3 2 1 0

Name SET_PING_PONG_INDEX

Default Reserved Reserved Reserved 0

Access R/W

SET_PING_PONG_INDEX[0]: Setting index for PING PONG memory access.

1: Use PONG memory

0: Use PING memory

SET_PING_PONG_INDEX[1:7]: Reserved

Table 2.115. Write Status Register

STATUS Base +0x0C

Byte 3 2 1 0

Name STATUS

Default Reserved Reserved Reserved 0

Access R

STATUS[2:0] : Write Status

STATUS[3:31] : Reserved

Table 2.116. Read Status Register

STATUS_RD Base +0x1C

Byte 3 2 1 0

Name STATUS_RD

Default Reserved Reserved Reserved 0

Access R

STATUS_RD[2:0] : Read Status

STATUS_RD[3:31] : Reserved

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 51

2.6. PCIe DMA IP Design Details
The PCIe DMA IP is used to integrate in main system as defined in previous sections of this document. This IP is used to
connect EtherControl master IP or main system to PCIe interface based high speed host. In this application, Linux-based PC
is used as host, which has the software application to control main system’s EtherControl IP operations and to control
nodes through the main system.

This section only provides minimum details on the PCIe DMA IP required for integration and controlling. For more details,
refer to the PCIe DMA IP user guide.

APB Interconnect of PCIe

AHBL Interconnect of PCIe

apb_master_wrapper

re-config
memory

space

Register Space

memory

Desc Queue

Status Queue AHB Arbiter

PCIe soft IP

Soft IP
Register
Spaces

DMA

PCIe hard IP

PCIe_DMA

APB Interface

AHB
master0

AHB
master1

AHB
master0

AHB
master1

AHB
master0

AHB
master1

AHB
master0

AHB
master1

Tx TLP

Rx TLP

LMMI

UCFG

PCIe X1 lane

Figure 2.7. Top Level Architecture of PCIe DMA IP Design

Figure 2.7 shows the top-level architecture of FPGA design.

DMA support is and option provided by Lattice soft IP to enable more efficient data transfer when endpoint is acting as
initiator or master. This feature is only available when AHB lite data interface is selected.

To transfer a data through DMA the core requires source address, destination address and transfer control i.e. length and
direction of transfer, this information is collectively called descriptor.

To store the descriptor, two queues are implemented in a local memory: descriptor queue and status queue. When data
transfer is completed or aborted, the status which contains the done flag, error flag, length of transfer, and data address
offset is written into the status queue.

The description of each block of PCIe DMA design architecture is given below.

 AHB Arbiter
This block selects the three blocks, which is APB master, system memory, and FIFO wrapper block, depending on the
address received in the TLP (see memory segregation for address range of different block).
The user can select the address range by modifying the parameter in AHB_arbiter.v file. AHB master0 port is being used
for receiving side (Rx TLP) and AHB master1 port is being used for transmitting side (Tx TLP).

 APB master
APB slave port is available to access the registers of soft IP or hard IP. To access the registers through software/driver,
the user needs the APB master. This block is used to make the APB master interface. Initial reconfiguration of Soft IP
and Hard IP is done through this APB master. A config space is implemented in the design which stores all the
configuration values required for the PCIe IP.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 52

 Desc Queue
As this DMA implementation is based on the descriptors. So to store the descriptors a queue is implemented. The
pointer of the descriptor queue is to be updated by the driver/software after/before writing the descriptors in the
descriptors queue. Descriptors are fetched by the DMA soft IP in order serve the descriptors and corresponding read
pointer is updated by the DMA core.

 Status Queue
After one descriptor is served by the DMA Engine its status is to be stored somewhere, so to report the status of a
transfer a status queue is implemented. The status of each descriptor or transfer is stored in this queue.

 Register Space
A register space is implemented in the design to configure the DMA or to get the status of transfer and throughput
achieved.

2.6.1. Descriptor Field Format

Table 2.117 lists the descriptor format.

Table 2.117. Descriptor Format

DW DW name Field name Bit offset Size Description

0 desc_ctrl

length 0 13
Size of data transfer in bytes. (4096 bytes
maximum)

direction
13 1

Direction of transfer. 0 – AHB-Lite to
PCIe 1 – PCIe to AHB-Lite

14 10 Reserved

desc_id 24 8
Optional descriptor ID. If the parameter
EN_DESC_ID == “Enable” the Core adds
this information in the Status entry.

1 desc_src addr_offset 0 32 Source address/ offset

2 desc_dst addr_offset 0 32 Destination address/offset

3 desc_hdr

requester_id 0 16

Requester ID to be used in TLP Header
requester_id [7:0] – bus number[7:0]
requester_id [10:8] – function
number[2:0] requester_id [15:11] –
device number[4:0]

traffic_class 16 3 Traffic Class to be used in TLP Header

use_requestor_id
19 1

When set, indicates that the
requester_id field is valid and should be
used in TLP header. Otherwise, the Core
uses the captured configuration ID of
function 0 as the default requester ID.

20 12 Reserved

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 53

2.6.2. Status Field Format

Table 2.118 lists the status field format.

Table 2.118. Status Format

DW DW name Field name Bit offset Size Description

1 stat_flag

done 0 1
If this bit is asserted, it indicates that the
transfer has been completed

with_error 1 1
If this bit is asserted, it Indicates an error
occurred during transfer.

aborted 2 1
If this bit is asserted, it indicates the
transfer was terminated before it
completes the specified length.

direction
3 1

Direction of transfer. 0 – AHB-Lite to
PCIe 1 – PCIe to AHB-Lite

4 4 Reserved

desc_id 8 8
Optional descriptor ID. Available if the
parameter EN_DESC_ID == “Enable”

length
16 13

Size of data transfer in bytes. (maximum
of 4096 bytes)

29 3 Reserved

2 stat_buff addr 0 32
Data Address. This is the local memory
address where the data is stored
(direction==1) or fetched (direction==0).

2.6.3. Triggering the DMA Operation

Before proceeding with the procedure below, ensure that the user is aware of the descriptor and status queue.

To trigger/start the DMA operation:

1. Write the Descriptors starting from address 0x1000 (note that one descriptor needs four DW (32-bit) space, see
Table 2.117, if first descriptor is written at 0x1000 then next descriptor should be written at 0x1010 address).

2. Write the number of descriptors at 0x8.

3. Write 0x1 at address 0x1 to start the DMA operation

Note: Soft reset is being asserted and de-asserted automatically when the DMA Done is asserted.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 54

2.6.4. PCIe DMA Register Space

2.6.4.1. FPGA Device Memory Segregation

1 MB BAR
memory

register space (0x0 – 0x10)

reserved (0x0014 – 0x0FFF)

Descriptor queue (0x1000 – 0x1FFF)

Status queue (0x2000 – 0x2FFF)

FIFO Wrapper
(0x3000 – 0xFFFFF)

0x0000

0x1000

0x3000

0x000FFFFF

Figure 2.8. FPGA Device Memory Segregation

2.6.4.2. Register Address (0x0)

Table 2.119. Register Address (0x0)

31:6 7 6 5 4 3 2 1 0

Reserved
DMA Read
operation

done
Reserved Reserved Reserved

DMA
aborted in

one
iteration

Error in
one

iteration

DMA write
Operation

done
Reserved

Read Only

—

DMA read
operation

is
completed

Reserved Reserved —
DMA

iteration is
aborted

DMA
iteration is
completed
with error

DMA write
iteration is
completed

—

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 55

2.6.4.3. Register Address (0x4)

Table 2.120. Register Address (0x4)

31:0

Throughput Counter Value

Read Only

Multiply this counter value by 8 to get the total time (in ns) of one iteration

2.6.4.4. Register Address (0x8)

Table 2.121. Register Address (0x8)

31:8
Reserved

7:0

Reserved
Number of descriptors written in one iteration; valid values are

between 1-255

Read Only Write Only

2.6.4.5. Register Address (0xC)

Table 2.122. Register Address (0xC)

31:2 1 0

Reserved Start DMA read operation Start DMA write operation

Write Only

— Write 1 to start the DMA read operation Write 1 to start the DMA write operation

2.6.4.6. Register Address (0x10)

Table 2.123. Register Address (0x10)

31:0

Not Implemented

Read Only

2.6.4.7. Register Address (0x14)

Table 2.124. Register Address (0x14)

31:0

FPGA Version register; upper 8-bit [31:24] is indicating the date in decimal, next 8-bit [23:16] is indicating month in decimal, next 8-bit
[15:8] is indicating the hour in 24 hour format, next 8-bit [7:0] is indicating the minute;

Read Only

2.6.4.8. Register Address (0x18)

Table 2.125. Register Address (0x18)

31:0

Not Implemented

Read Only

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 56

2.6.4.9. Register Address (0x1C)

Table 2.126. Register Address (0x1C)

31:0

Software Read /Write register, it can be used to read / write any information from software.

Read/Write

2.6.4.10. Register Address (0x20)

Table 2.127. Register Address (0x20)

31:0

DMA write size in DW, this indicates how much DWs users have to write in DMA write operation

Read/Write

2.6.4.11. Register Address (0x24)

Table 2.128. Register Address (0x24)

31:0

DMA write size in DW, this indicates how much DWs users have to write in DMA read operation

Read/Write

2.6.4.12. Register Address (0x28)

Table 2.129. Register Address (0x28)

31:1 0

Reserved Data type

Read ONLY 0 means fixed pattern, 1 means incremental pattern.

2.7. SPI Flash Controller (QSPI Streamer)
This module is designed to stream data from external flash to FPGA using quad SPI data lines. It support max 100 MHz for
LFD2NX and LFCL devices. It has prefetch buffer to enable cache feature for internal block of FPGA. Register space for this
block is defined in register map section. This block does not have any configuration register to control it. There are basic
settings (static configuration) which needs to be selected during build generation. As per register map complete SPI flash
memory is directly accessible through AHBL interface. AHBL interface supports both code and data reading feature. This
block does not support flash data write operation. This module is used in both main system and node system SOCs. This
module only supports Micron, Macronix, and Winbond flash only.

In main system it is used to steam instructions and static data into RISC-V from external SPI flash and other parts of data
section is stored in data ram.

At node end, it is used to stream instruction only into RISC-V from external SPI flash.

2.8. CNN Co-Processor Unit (CCU)
This block has an AHBL Master interface so that it can retrieve data directly from Data RAM or EtherControl block. This
block can also fetch data from UART. For example, after the host PC has processed the training data and come up with a
new set of weights, the CCU can get the new weights through UART.

This block also has an AHBL slave interface so that RISC-V CPU can control CNN Co-Processor Unit (CCU) through its
registers.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 57

Table 2.130. CNN Co-Processor Unit Registers

CCU Register Name Register Function Address Access

PDMACR CCU Control Register Base + 0x00 Read/Write

PDMASR CCU Status Register Base + 0x04 Read

SIGSELR Sign Select Configuration Register Base + 0x08 Read/Write

INOFFSETCR Input Offset Configuration Register Base + 0x0C Read/Write

FILOFFSETCR Filter Offset Configuration Register Base + 0x10 Read/Write

INDEPTHCR Input Depth Configuration Register Base + 0x14 Read/Write

INADDRCR Input Data Address Configuration Register Base + 0x18 Read/Write

FILADDRCR Filter Data Address Configuration Register Base + 0x1C Read/Write

ACCOUTR CCU Output Register Base + 0x20 Read

Table 2.131. CNN Co-Processor unit control register

PDMACR Base + 0x00

Bits Others 0

Name Unused START

Default Unused 0

Access Unused R/W

START: Setting 1’b1 to this register triggers the start of CCU process

Table 2.132. CNN Co-Processor Unit Register

PDMASR Base + 0x04

Bits Others 0

Name Unused DONE

Default Unused 0

Access Unused R

DONE :

1’b0: CCU process is NOT completed

1’b1: CCU process is completed

Table 2.133. Sign Select Configuration Register

SIGSELR Base + 0x08

Bits Others 0

Name Unused SIGN_SEL

Default Unused 0

Access Unused R/W

SIGN_SEL: Sign selector of input and filter values

1’b0: Unsigned (TinyML HPD)

1’b1: Signed (ours)

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 58

Table 2.134. Input Offset Configuration Register

INOFFSETCR Base + 0x0C

Bits Others 8 : 0

Name Unused INPUT_OFFSET

Default Unused 0

Access Unused R/W

INPUT_OFFSET: Input offset (2s complement - signed number [–256 ~ 255])

Table 2.135. Filter Offset Configuration Register

FILOFFSETCR Base + 0x10

Bits Others 8 : 0

Name Unused FILTER_OFFSET

Default Unused 0

Access Unused R/W

FILTER_OFFSET: Filter offset (2s complement - signed number [–256 ~ 255])

Table 2.136. Filter Offset Configuration Register

FILOFFSETCR Base + 0x10

Bits Others 8 : 0

Name Unused FILTER_OFFSET

Default Unused 0

Access Unused R/W

Table 2.137. Input Depth Configuration Register

INDEPTHCR Base + 0x14

Bits Others 9 : 0

Name Unused INPUT_DEPTH_BY_2_M1

Default Unused 0

Access Unused R/W

INPUT_DEPTH_BY_2_M1: Input depth × 2 – 1 (0 ~ 1023); cover 512 depth

Table 2.138. Input Data Address Configuration Register

INADDRCR Base + 0x18

Bits Others 16 : 0

Name Unused INPUT_DATA_ADDR

Default Unused 0

Access Unused R/W

INPUT_DATA_ADDR: Address to INPUT_DATA – start point of blob

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 59

Table 2.139. Filter Data Address Configuration Register

FILADDRCR Base + 0x1C

Bits Others 16 : 0

Name Unused FILTER_DATA_ADDR

Default Unused 0

Access Unused R/W

FILTER_DATA_ADDR: Address to FILTER_DATA – start point of filter

Table 2.140. CNN Co-Processor Unit Output Register

ACCOUTR Base + 0x20

Bits Others 31 : 0

Name Unused ACC_OUT

Default Unused 0

Access Unused R

ACC_OUT: Accelerator output data

2.9. Motor Control and PDM Data Collector
This block has two AHBL slave interfaces that reside in the Node System. It provides direct control to motors through its
logic and interface to power electronics. It also collects predictive maintenance data from the motors.

This block is used only in the Node Systems. The top level of the Node System has an AHBL wrapper which has two AHBL
slave ports. Mainly it consists of Motor Control and Predictive Maintenance (MC/PDM) Registers, Motor Control logic, and
PDM Data Collector as shown in Figure 2.9.

24 Volt @ 4.5 Amps
DC Power Supply

BLDC Motor

Trenz – TEP0002
Motor Diver

Drivers

ADCs
(SPI)

SVPWM
20 kHz

Quadrature
Generator

q

d

A

B

C

Vector
Generator

θ

Error
PI

Control

Target
RPM

Target
Power

PDM
Status and

Control

A
H

B
L_

S0
In

te
rf

ac
e

BLDC Motor Control and Predictive Maintenance IP

Signal
Processing

PDM
Memory

Motor
Status and

Control

A
H

B
L_

S1

In
te

rf
ac

e

Figure 2.9. Motor Controller Interface with Motor

The Motor Control and PDM Registers interface with the AHB-L bus to configure, control, and monitor the Motor Control IP.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 60

Table 2.141. Predictive Maintenance and Motor Control Registers

PDM/Motor Register Name Register Function Address Access

MTRCR0 Motor Control Register 0 – Min RPM Base + 0x00 Read/Write

MTRCR1 Motor Control Register 1 – Max RPM Base + 0x04 Read/Write

MTRCR2 Motor Control Register 2 – RPM PI kI Base + 0x08 Read/Write

MTRCR3 Motor Control Register 3 – RPM PI kP Base + 0x0C Read/Write

MTRCR4 Motor Control Register 4 – Torque PI kI Base + 0x10 Read/Write

MTRCR5 Motor Control Register 5 – Torque PI kP Base + 0x14 Read/Write

MTRCR6 Motor Control Register 6 – Sync Delay & Control Base + 0x18 Read/Write

MTRCR7 Motor Control Register 7 – Target RPM Base + 0x1C Read/Write

MTRCR8 Motor Control Register 8 – Target Location Base + 0x20 Read/Write

MTRCR9 Motor Control Register 9 – Location Base + 0x24 Read/Write

MTRSR0 Motor Status Register 0 - RPM Base + 0x28 Read

MTRSR1 Motor Status Register 1 – Limit SW & System Status Base + 0x2C Read

PDMCR0 Predictive Maintenance Control Register 0 Base + 0x30 Read/Write

PDMCR1 Predictive Maintenance Control Register 1 Base + 0x34 Read/Write

PDMSR Predictive Maintenance Status Register Base + 0x38 Read

PDMDDR Predictive Maintenance ADC Data Register Base + 0x3C Read

PDMQDR Predictive Maintenance ADC Data Register Base + 0x40 Read

BRDSW DIP and Push Button Switches Base + 0x50 Read

BRDLEDS LEDs and 7-Segment Base + 0x54 Read/Write

Table 2.142. Motor Control 0 – Minimum RPM

MTRCR0 Base + 0x00

Byte 3 2 1 0

Name PI_DELAY MTRPOLES MINRPM

Default 0 0 0 0

Access R/W

MTRCR0[15:0]: MINRPM – Minimum RPM is the initial open loop motor starting RPM. Valid values are 10 to (216 -1).

MTRCR0[23:16]: MTRPOLES : Number of motor stator poles. Valid values are 1 to 255.

MTRCR0[31:24]: PI_DELAY : Is the RPM PI update rate. Valid values are 1 to 255.

Table 2.143. Motor Control 1 – Maximum RPM

MTRCR1 Base + 0x04

Byte 3 2 1 0

Name tbd MAXRPM

Default 0 0 0 0

Access R/W

MTRCR1[15:0]: MAXRPM – Maximum RPM is the upper limit RPM. Valid values are MINRPM to (216 -1).

MTRCR1[31:16]: TBD

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 61

Table 2.144. Motor Control 2 – RPM PI Control Loop Integrator Gain (kI)

MTRCR2 Base + 0x08

Byte 3 2 1 0

Name RPMINT_MIN RPMINTK

Default 0 0 0 0

Access R/W

MTRCR2[15:0]: RPMINTK – Is the gain of the Integrator part of the RPM PI control loop. Valid values are 1 to (216 -1).

MTRCR2[31:16]: RPMINT_MIN – Is the Integrator Anti-Windup Threshold. Valid values are 1 to (216 -1).

Table 2.145. Motor Control 3 – RPM PI Control Loop Proportional Gain (kP)

MTRCR3 Base + 0x0C

Byte 3 2 1 0

Name RPMINT_LIM RPMPRPK

Default 0 0 0 0

Access R/W

MTRCR3[15:0]: RPMPRPK – Is the gain of the Proportional part of the RPM PI control loop. Valid values are 1 to (216 -1).

MTRCR3[31:16]: RPMINT_LIM – Is the Integrator Anti-Windup Clamp. Valid values are 1 to (216 -1).

Table 2.146. Motor Control 4 – Torque PI Control Loop Integrator Gain (kI)

MTRCR4 Base + 0x10

Byte 3 2 1 0

Name TRQINT_MIN TRQINTK

Default 0 0 0 0

Access R/W

MTRCR4[15:0]: TRQINTK – Is the gain of the Integrator part of the Torque PI control loop. Valid values are 1 to (216 -1).

MTRCR4[31:16]: TRQINT_MIN – Is the Integrator Anti-Windup Threshold. Valid values are 1 to (216 -1).

Table 2.147. Motor Control 5 – Torque PI Control Loop Proportional Gain (kP)

MTRCR5 Base + 0x14

Byte 3 2 1 0

Name TRQINT_LIM TRQPRPK

Default 0 0 0 0

Access R/W

MTRCR5[15:0]: TRQPRPK – Motor Power or Torque PI Proportional Gain, depends on value of MTRCR6[2].

MTRCR6[2] = 0 : Motor Power - valid values are 0 to 1023.

MTRCR6[2] = 1 : Torque PI Proportional Gain - valid values are 1 to (216-1).1

MTRCR5[31:16]: TRQINT_LIM – Is the Integrator Anti-Windup Clamp. Valid values are 1 to (216 -1).

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 62

Table 2.148. Motor Control 6 – Synchronization Delay and Control

MTRCR6 Base + 0x18

Byte 3 2 1 0

Name MTRCTRL SYNCDLY

Default 0 0 0 0

Access R/W

MTRCR6[21:0]: SYNCDLY1 – Is the Motor control delay to compensate for Ethernet daisy-chain and processing delay. Used
to synchronize starting and stopping of multiple motors simultaneously. Valid values are 0 to (222 -1).

MTRCR6[23:22]: MTRCTRL_SYNDLYSF1 – Sync Delay Scale Factor

 00 = Disable Sync Delay (single motor control or sync not used).

 01 = Sync Delay Units is nano-seconds (10-9)

 10 = Reserved

 11 = Reserved

MTRCR6[24]: RESET_PI – Reset the RPM PI Control

 0 = Normal Operation

 1 = Force the output to match the input (zero input values force the output to default of
 120 rpm)

MTRCR6[25]: STOP – Hold the Motor in Position

 0 = Normal Operation

 1 = Stop the motor rotation

MTRCR6[26]: TRQPI_MODE – Torque Control Mode controls how MTRCR5[15:0] : TRQPRPK is used:

 0 = Open Loop Mode – TRQPRPK value specifies Motor Power.

 1 = Closed Loop Mode – TRQPRPK value specifies the gain of the Proportional part of the Torque
 PI control loop.1

MTRCR6[27]: ESTOP – Emergency Stop

 0 = Normal Operation.

 1 = Engage E-Brakes without sync delay or MTR_ENGAGE.1

MTRCR6[28]: ENABLE – Enable Motor Drivers

 0 = Disable Motor Drivers

 1 = Enable Motor Drivers

MTRCR6[29]: MTR_MODE

 0 = RPM Control – Slew to target RPM and continue to run until stop or change in RPM target

 1 = Location Control – Rotate specified number of degrees or turns then stop. Ramp up from zero
 to Max RPM, run as needed, then ramp back down to zero.1

MTRCR6[30]: DIRECTION

 0 = Clockwise Rotation

 1 = Counter-Clockwise Rotation

MTRCR6[31]: ENGAGE – Sync Signal to latch all Control Registers from AHBL clock domain (50–100 MHz) to Motor clock
domain (24–25 MHz). Write to all other control registers first (including this one with this bit off). Write to this register
(read-modify-write) to set this bit. It can also be used to synchronize multiple nodes.

 0 = No Updates to Motor or PDM Control registers.

 1 = Transfer all control register from AHBL holding registers to Motor PDM active registers.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 63

Table 2.149. Motor Control Register 7 – Target RPM

MTRCR7 Base + 0x1C

Byte 3 2 1 0

Name tbd TRGRPM

Default 0 0 0 0

Access R/W

MTRCR7[15:0]: TRGRPM – Target RPM. Valid values are 0 to (216 -1).

MTRCR7 [31:16]: tbd

Table 2.150. Motor Control Register 8 – Target Location

MTRCR8 Base + 0x20

Byte 3 2 1 0

Name TRGLOC

Default 0 0 0 0

Access R/W

MTRCR8[31:0]: TRGLOC – Target Location. Valid values are -2,147,483,648 (-232) to 2,147,483,647 (232 -1).1

 Approximately 24.8 hours @ 4,000 RPM counting each degree.

Table 2.151. Motor Control Register 9 – Current Location

MTRCR9 Base + 0x24

Byte 3 2 1 0

Name MTRLOC

Default 0 0 0 0

Access R

MTRCR9[31:0]: MTRLOC – Motor Location. Valid values are -2,147,483,648 (-232) to 2,147,483,647 (232 -1).1

Table 2.152. Motor Status Register 0 – RPM

MTRSR0 Base + 0x28

Byte 3 2 1 0

Name tbd MTRSTRPM

Default 0 0 0 0

Access R

MTRSR0[15:0]: MTRSTRPM – Current Motor RPM. Valid values are 0 to (216 -1).1

MTRSR0[31:16]: tbd.

Table 2.153. Motor Status Register 1

MTRSR1 Base + 0x2C

Byte 3 2 1 0

Name MTRSR1

Default 0 0 0 0

Access R

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 64

MTRSR1[0] : MTRSTR_MOV – Motor Moving

 0 = Motor Stopped or coasting

1 = Motor Moving under control

MTRSR1[1]: ACCEL – Motor Accelerating

0 = Motor Not Accelerating

1 = Motor Accelerating

MTRSR1[2]: DECL - Motor Deaccelerating

0 = Motor Not Deaccelerating

1 = Motor Deaccelerating

MTRSR1[3]: RPM_LOCK - Motor At Target RPM

0 = Motor Not @ Target RPM

1 = Motor @ Target RPM

MTRSR1[4]: MTRSTR_STOP

0 = Motor not stopped

1 = Motor at zero RPM

MTRSR1[5]: MTRSTR_VLD_RPM

0 = RPM to Theta period calculation is still in process or invalid RPM request

1 = RPM to Theta period calculation is complete

MTRSR1[31:6]: tbd

Table 2.154. Predictive Maintenance Control Register 0

PDMCR0 Base + 0x30

Byte 3 2 1 0

Name PDMCR0

Default 0 0 0 0

Access R/W

PDMCR0[0]: START – Start PDM data collection.

0 = Collection not started

1 = Collection started

PDMCR0[1]: PKDTEN – PDM Normalization Peak Detect Enable

0 = PDM Peak Detect is Disabled

1 = PDM Peak Detect is Enabled

PDMCR0[2]: FOLDEN – Enable Single Folding of PDM data

0 = Single Fold disabled

1 = Single Fold enabled

PDMCR0[3]: 2FOLDEN – Enable Double Folding of PDM data. All PDM training data was captured using Double Folding.

0 = Double Folding disabled

1 = Double Folding enabled

PDMCR0[4]: CONTINUOUS – Collect data as long as START = 1.

0 = Fixed – Collect PDM data for set number of rotations

1 = Continuous – Collect PDM data continuously (counting rotations in status reg)

PDMCR0[5]: TBD

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 65

PDMCR0[6]: CALIB – ADC offset calibration

0 = Normal operation

1 = Calibrate ADC offsets (motor not running)

PDMCR0[7]: ADCH – ADC Channel Select for PDMDDR and PDMQDR registers

0 = ADC Channel = Amps

1 = ADC Channel = Volts

PDMCR0[15:8]: PREREVS – Pre Data Collection Revolutions

 Number of Theta (Field Vector) revolutions to ignore before Data Collection. All PDM training data was captured
 using a value of 15.

PDMCR0[31:16]: DCREVS – Data Collection Revolutions

 Theta (Field Vector) revolutions to capture PDM data (armature revs scale based on number of motor stator poles.
 The motor used for training has 4-poles – 16 Theta rotations equate to four motor shaft rotations). Valid values 1
 to 65,536. All PDM training data was captured using 200 rotations.

Table 2.155. Predictive Maintenance Control Register 1

PDMCR1 Base + 0x34

Byte 3 2 1 0

Name PDMCR1

Default 0 0 0 0

Access R/W

PDMCR1: TBD

Table 2.156. Predictive Maintenance Status Register

PDMSR Base + 0x38

Byte 3 2 1 0

Name PDMSR

Default 0 0 0 0

Access R

PDMSR[0]: DONE – PDM activity status

 0 = PDM is not done with collecting data

 1 = PDM is done with collecting data

PDMSR[1]: BUSY – PDM activity status

 0 = PDM is not active

 1 = PDM is busy collecting data

PDMSR[2]: CAL_DONE – ADC Offset Calibration status

 0 = Offset calibration is not done

 1 = Offset calibration is done

PDMSR[3]: READY – PDM Data Collector status

 0 = Not ready to collect data

 1 = Ready to collect data

PDMSR[15:4]: TBD

PDMSR[31:16]: PDMSR_ROT – Current count of Theta rotations PDM data has been collected for.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 66

Table 2.157. Predictive Maintenance Current/Voltage Data Register

PDMDDR Base + 0x3C

Byte 3 2 1 0

Name ADC1 ADC0

Default 0 0 0 0

Access R

PDMDDR[15:0]: ADC0 Voltage or Current reading Phase A1

PDMDDR[31:16]: ADC1 Voltage or Current reading Phase B1

Table 2.158. Predictive Maintenance Current/Voltage Data Register

PDMQDR Base + 0x40

Byte 3 2 1 0

Name ADC3 ADC2

Default 0 0 0 0

Access R

PDMQDR[15:0]: ADC2 Voltage or Current reading Phase C1

PDMQDR[31:16]: ADC3 Voltage or Current reading of DC supply1

Table 2.159. Versa Board Switch Status Register

BRDSW Base + 0x50

Byte 3 2 1 0

Name TBD PMOD2 DIPSW PBSW

Default 0 0 0 0

Access R

PBSW[0]: SW5 – Pushbutton 2

 0 = Switch active (pressed)

 1 = Switch inactive

PBSW[1]: SW3 – Pushbutton 1

 0 = Switch active (pressed)

 1 = Switch inactive

PBSW[2]: SW2 – Pushbutton 3

 0 = Switch active (pressed)

 1 = Switch inactive

PBSW[7:3]: n/c - undefined

DIPSW[3:0]: SW10 – DIP Switch

 0 = Switch closed

 1 = Switch open

DIPSW[7:4]: n/c – undefined

PMOD2[0]: J8 Pin 1 I/O

PMOD2[1]: J8 Pin 2 I/O

PMOD2[2]: J8 Pin 3 I/O

PMOD2[3]: J8 Pin 4 I/O

PMOD2[4]: J8 Pin 7 I/O

PMOD2[5]: J8 Pin 8 I/O

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 67

PMOD2[6]: J8 Pin 9 I/O

PMOD2[7]: J8 Pin 10 I/O

Table 2.160. Versa Board LED & PMOD Control Register

BRDLEDS Base + 0x54

Byte 3 2 1 0

Name PMOD2DIR PMOD2 7SEG LED

Default 0xF 0xF 0xF 0xF

Access R/W

LED[0]: LED D18 – 0 = On, 1 = Off

LED[1]: LED D19 – 0 = On, 1 = Off

LED[2]: LED D20 – 0 = On, 1 = Off

LED[3]: LED D21 – 0 = On, 1 = Off

LED[4]: LED D22 – 0 = On, 1 = Off

LED[5]: LED D23 – 0 = On, 1 = Off

LED[6]: LED D24 – 0 = On, 1 = Off

LED[7]: LED D25 – 0 = On, 1 = Off

7SEG[0]: D36 Segment a – 0 = On, 1 = Off

7SEG[1]: D36 Segment b – 0 = On, 1 = Off

7SEG[2]: D36 Segment c – 0 = On, 1 = Off

7SEG[3]: D36 Segment d – 0 = On, 1 = Off

7SEG[4]: D36 Segment e – 0 = On, 1 = Off

7SEG[5]: D36 Segment f – 0 = On, 1 = Off

7SEG[6]: D36 Segment g – 0 = On, 1 = Off

7SEG[7]: D36 Segment dp – 0 = On, 1 = Off

PMOD2[0]: J8 Pin 1 I/O

PMOD2[1]: J8 Pin 2 I/O

PMOD2[2]: J8 Pin 3 I/O

PMOD2[3]: J8 Pin 4 I/O

PMOD2[4]: J8 Pin 7 I/O

PMOD2[5]: J8 Pin 8 I/O

PMOD2[6]: J8 Pin 9 I/O

PMOD2[7]: J8 Pin 10 I/O

PMOD2DIR[0]: J8 Pin 1 Direction – 0 = Input, 1 = Output

PMOD2DIR[1]: J8 Pin 2 Direction – 0 = Input, 1 = Output

PMOD2DIR[2]: J8 Pin 3 Direction – 0 = Input, 1 = Output

PMOD2DIR[3]: J8 Pin 4 Direction – 0 = Input, 1 = Output

PMOD2DIR[4]: J8 Pin 7 Direction – 0 = Input, 1 = Output

PMOD2DIR[5]: J8 Pin 8 Direction – 0 = Input, 1 = Output

PMOD2DIR[6]: J8 Pin 9 Direction – 0 = Input, 1 = Output

PMOD2DIR[7]: J8 Pin 10 Direction – 0 = Input, 1 = Output

Note:

1. Register function is not supported in the initial release.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 68

2.10. SPI Master IP Design Details
The Serial Peripheral Interface (SPI) is a high-speed synchronous, serial, full-duplex interface that allows a serial bitstream of
configured length (8, 16, 24, and 32 bits) to be shifted into and out of the device at a programmed bit transfer rate. The
Lattice SPI Master IP Core is normally used to communicate with external SPI slave devices such as display drivers, SPI
EPROMS, and analog-to-digital converters.

The SPI Master IP is used to be integrated in node system SOC design as defined in node system top level architectural
diagram. This IP can be controlled by C/C++ APIs of node system CPU to read/write data from/to certain SPI based
peripheral/sensor. These C/C++ based APIs can be controlled by main system as well.

This section only provides minimum details on the SPI Master IP required for integration and controlling. For more details,
refer SPI Master IP user guide.

2.10.1. Overview

The SPI Master IP Core allows the CPU inside the FPGA to communicate with multiple external SPI Slave devices. The data
size of the SPI transaction can be configured to be 8, 16, 24, or 32 bits. This IP is designed to use an internal FIFO of
configurable depth to minimize the host intervention during data transfer. SPI Master IP Core supports all SPI clocking
modes – combinations of Clock Polarity (CPOL) and Clock Phase (CPHA) to match the settings of external devices.

The SPI Master IP provides a bridge between LMMI/AHB-Lite/APB and standard external SPI bus interfaces (functional
diagram is shown in Figure 2.10). On the external, off-chip side the SPI Master Controller IP has a standard SPI bus interface.
On the internal, on-chip side, the SPI Master Controller IP has LMMI/AHB-Lite/APB slave interface depending on the
Interface attribute settings.

LMMI Device

SLV_SEL_REG

CFG_REG

CLK_PRESCL_REG

CLK_PRESCH_REG

INT_STATUS_REG

INT_ENABLE_REG

INT_SET_REG

BYTE_COUNT_REG

BYTE_RST_REG

WR_DATA_REG
RD_DATA_REG

Clock
Generator

Control
Logic

LMMI/LINTR

LMMI2AHB-Lite
Bridge

LMMI2APB BridgeAPB INTERFACE
(Optional)

AHB-Lite INTERFACE
(Optional)

Write
FIFO

Read
FIFO

SPI Master IP

SPI Top

SPI Master

SPI Slave

LINTR

Data Path

Shift Register

sclk_o

ss_o[n-1:0)

miso_o

mosi_i

Figure 2.10. SPI Master IP Core Block Diagram

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 69

2.10.2. SPI Master Register Map

Table 2.161. SPI Master Register Map

Offset LMMI
Offset

APB/AHBL
Register Name Access Type Description

0x0 0x00 WR_DATA_REG WO Write Data Register

0x0 0x00 RD_DATA_REG RO Read Data Register

0x1 0x04 SLV_SEL_REG RW Slave Select Register

0x2 0x08 CFG_REG RW Configuration Register

0x3 0x0C CLK_PRESCL_REG RW Clock Pre-Scaler Low Register

0x4 0x10 CLK_PRESCH_REG RW Clock Pre-Scaler High Register

0x5 0x14 INT_STATUS_REG RW1C Interrupt Status Register

0x6 0x18 INT_ENABLE_REG RW Interrupt Enable Register

0x7 0x1C INT_SET_REG WO Interrupt Set Register

0x8 0x20 WORD_CNT_REG RO Word Count Register

0x9 0x24 WORD_CNT_RST_REG WO Word Count Reset Register

0xA 0x28 TGT_WORD_CNT_REG RW Target Word Count Register

0xB 0x2C FIFO_RST_REG WO FIFO Reset Register

0xC 0x30 SLV_SEL_POL_REG RW Slave Select Polarity Register

0xD 0x34 FIFO_STATUS_REG RO FIFO Status Register

0xE

0xF
0x38-0x3C Reserved RSVD

Reserved. Write access is ignored and 0 is
returned on read access.

Table 2.161 lists the address map and specifies the registers available to the user. The offset of each register is dependent
on the Interface attribute setting as follows:

 Interface selected to be LMMI: the offset increments by one

 Interface selected to be either AHBL or APB: the offset increments by four to allow easy interfacing with the Processor
and System Buses. In this mode, each register is 32-bit wide wherein the upper unused bits are reserved and the lower
bits are described in each register description.

Note:

1. For more details on the registers above, refer to the SPI Master IP Core – Lattice Radiant Software User Guide (FPGA-
IPUG-02069).

2. The RD_DATA_REG and WR_DATA_REG share the same offset. Write access to this offset goes to WR_DATA_REG while
read access goes to RD_DATA_REG.

2.10.3. Programming Flow

2.10.3.1. Initialization

The following SPI Master registers should be set properly before performing SPI transaction:

 SLV_SEL_REG – Set 1’b1 to the bit for the target slave. Set 1’b0 to other bits.

 SLV_SEL_POL_REG – may be configured once after reset since this setting is usually fixed.

 CLK_PRESCL_REG – Set based on target sclk_o frequency.

 CLK_PRESCH_REG – Set based on target sclk_o frequency.

The CPU needs to update the above registers only when SPI Master is switching to different slave device. This means there
is no need to perform initialization again if the next transaction is for the currently selected slave device.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52473

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 70

2.10.3.2. Transmit/Receive Operation

The following are the recommended steps on performing the SPI transaction. This assumes that the module is not currently
performing any operation.

1. Set the following CFG_REG fields according to the target Slave settings: cpha, cpol, ssnp and lsb_first. Set the only_write
field based on the current transaction. If CFG_REG.only_write is 1’b0, SPI Master performs both transmit and receive
operations (full-duplex). On the other hand, if CFG_REG.only_write is 1’b1, SPI Master IP Core performs Transmit
operation only.

2. Set TGT_WORD_CNT_REG according to the number of words to transfer.

3. Reset WORD_CNT_REG by writing 8’hFF to Word Count Reset Register

4. Write data words to WR_DATA_REG, amounting to ≤ FIFO Depth.

Optional: If interrupt mode is desired, enable target interrupts in INT_ENABLE_REG If number of words to transfer is
≤ FIFO Depth, set tr_cmp_en = 1’b1.If number of words to transfer is > FIFO Depth, set the following:
tx_fifo_aempty_en = 1’b1 and tr_cmp_en = 1’b1. Other interrupts not specified above are disabled.

5. If total number of words to transfer > FIFO Depth, wait for Transmit FIFO Almost Empty Interrupt.

a. If polling mode is desired, read INT_STATUS_REG until tx_fifo_aempty_int asserts.

b. If interrupt mode is desired, simply wait for interrupt signal to assert, then read INT_STATUS_REG and check that
tx_fifo_aempt_int is asserted.

6. Clear Transmit FIFO Almost Empty Interrupt by writing 1’b1 to INT_STATUS_REG.tx_fifo_aempty_int. Clearing all
interrupts by writing 8’hFF to INT_STATUS_REG is also okay since the user is not interested in other interrupts for this
recommended sequence.

7. Write data words to WR_DATA_REG, amounting to less than or equal to (FIFO Depth – TX FIFO Almost Empty Flag).

8. If CFG_REG.only_write = 1’b0, read all the data in RD_DATA_REG. It is expected that Receive FIFO has (FIFO Depth – TX
FIFO Almost Empty Flag - 1) amount of data words. Read INT_STATUS_REG.rx_fifo_ready_int to check if RD_DATA_REG
is already empty.

9. If there is remaining data to transfer, go back to Step 6. Note that you can read Word Count Register to determine the
number of words already transferred in SPI interface.

10. Wait for Transfer Complete Interrupt.

a. If polling mode is desired, read INT_STATUS_REG until tr_cmp_int asserts.

b. If interrupt mode is desired, set INT_ENABLE_REG = 8’h80 then wait for interrupt signal to assert. Then read
INT_STATUS_REG and check that tr_cmp_int is asserted.

11. Clear all interrupts by writing 8’hFF to INT_STATUS_REG.

12. If CFG_REG.ONLY_WRITE = 1’b0, read all the data in RD_DATA_REG. Read INT_STATUS_REG.rx_fifo_ready_int to check if
RD_DATA_REG is already empty

2.11. I2C Master IP Design Details
The I2C (Inter-Integrated Circuit) bus is a simple, low-bandwidth, short-distance protocol. It is often seen in systems with
peripheral devices that are accessed intermittently. It is commonly used in short-distance systems, where the number of
traces on the board should be minimized. The device that initiates the transmission on the I2C bus is commonly known as
the Master, while the device being addressed is called the Slave.

The I2C Master IP is used to be integrated in node system SOC design as defined in node system top level architectural
diagram. This IP can be controlled by C/C++ APIs of node system CPU to read/write data from/to certain I2C based
peripheral/sensor. These C/C++ based APIs can be controlled by main system as well.

This section only provides minimum details of the I2C Master IP required for the integration and controlling. Refer to the I2C
Master IP user guide for more details.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 71

2.11.1. Overview

The I2C Master IP Core accepts commands from LMMI/APB interface through the register programming. These commands
are decoded into I2C read/write transactions to the external I2C slave device. The I2C bus transactions can be configured to
be 1 to 256 bytes in length.

The I2C Master Controller can operate in interrupt or polling mode. This means that the CPU can choose to poll the I2C
Master for a change in status at periodic intervals (Polling Mode) or wait to be interrupted by the I2C Master Controller
when data needs to be read or written (Interrupt Mode).

Figure 2.11 shows the functional diagram of the I2C Master Controller.

APB2LMMI
Bridge

I²C
Master IP

To Slaves

A
P

B
 IN

T
E

R
FA

C
E

(O
p

ti
o

n
a

l)

LM
M

I I
N

T
E

R
F

A
C

E

I²C
 IN

TE
R

FA
C

E

apb_paddr_i[15:0]

apb_psel_i

apb_penable_i

apb_pwrite_i

apb_pwdata_i[31:0]

apb_pready_o

apb_prdata_o[31:0]

apb_psleverr_o

dk_i

rst_n_i

lmmi_request_i

lmmi_wr_rdn_i

lmmi_offset_i[3:0]

lmmi_wdata_i[7:0]

lmmi_rdata_o[7:0]

lmmi_data_valid_o

lmmi_ready_o

int_o

scl_io

sda_io

Figure 2.11. I2C Master IP Core Functional Diagram

2.11.2. I2C Master Register Map

The CPU can control the I2C Master IP Core by writing to and reading from the configuration registers. The I2C Master IP
Core configuration registers can be performed at the run-time.

Table 2.162 lists the address map and specifies the registers available to you. The offset of each register is dependent on
attribute APB Mode Enable setting as follows:

 APB Mode Enable is Unchecked – the offset increments by 1

 APB Mode Enable is Checked – the offset increments by 4 to allow easy interfacing with the Processor and System
Buses. In this mode, each register is 32-bit wide wherein the upper bits [31:8] are reserved and the lower 8 bits [7:0]
are described in the Programming Flow section.

The RD_DATA_REG and WR_DATA_REG share the same offset. Write access to this offset goes to WR_DATA_REG while
read access goes to RD_DATA_REG.

Table 2.162. I2C Master IP Core Registers Summary

Offset LMMI
Offset

APB/AHBL
Register Name Access Type Description

0x0 0x00 WR_DATA_REG WO Write Data Register

0x0 0x00 RD_DATA_REG RO Read Data Register

0x1 0x04 SLAVE_ADDRL_REG RW Slave Address Lower Register

0x2 0x08 SLAVE_ADDRH_REG RW Slave Address Higher Register

0x3 0x0C CONTROL_REG WO Control Register

0x4 0x10 TGT_BYTE_CNT_REG RW Byte Count Register

0x5 0x14 MODE_REG RW Mode Register

0x6 0x18 CLK_PRESCL_REG RW Clock Prescaler Low Register

0x7 0x1C INT_STATUS1_REG RW1C First Interrupt Status Register

0x8 0x20 INT_ENABLE1_REG RO First Interrupt Enable Register

0x9 0x24 INT_SET1_REG WO First Interrupt Set Register

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 72

Offset LMMI
Offset

APB/AHBL
Register Name Access Type Description

0xA 0x28 INT_STATUS2_REG RW1C Second Interrupt Status Register

0xB 0x2C INT_ENABLE2_REG RO Second Interrupt Enable Register

0xC 0x30 INT_SET2_REG WO Second Interrupt Set Register

0xD 0x34 FIFO_STATUS_REG RO FIFO Status Register

0xE 0x38 SCL_TIMEOUT_REG RW SCL Timeout Register

0xF
0x3C Reserved RSVD

Reserved. Write access is ignored and 0 is
returned on read access.

Note: RW1C (Writing 1’b1 on register bit clears the bit to 1’b0. Writing 1’b0 on register bit is ignored). For more details on the registers
above, refer to I2C Master IP Core – Lattice Radiant Software User Guide (FPGA-IPUG-02071).

2.11.3. Programming Flow

2.11.3.1. Initialization

The following I2C Master registers can be set outside of the actual transaction sequence. These should be set properly
before starting an I2C transaction:

 SLAVE_ADDRL_REG, SLAVE_ADDRH_REG – Set the address of the target Slave Device

 CLK_PRESCL_REG – Set based on target scl_io frequency. The upper bits, MODE_REG. clk_presc_high are set during
transaction because they are grouped with mode register.

 SCL_TIMEOUT_REG – Set to 8’h00 if the user does not want to check the SCL timeout or set to desired timeout value.

 INT_ENABLE2_REG – it is recommended to enable all interrupts in this register to check for error/unexpected event.

When accessing multiple devices, the SLAVE_ADDRL_REG or SLAVE_ADDRH_REG registers should be set prior to
transaction.

2.11.3.2. Writing to the Slave Device

The following are the recommended steps for performing I2C write transaction, this assumes that the module is not
currently performing any operation and initialization is completed.

To perform I2C write transaction:

1. Set the following MODE_REG fields according to the desired transfer mode: bus_speed_mode, addr_mode, ack_mode,
clk_presc_high. Set the trx_mode field to 1’b0 for write transaction.

2. Set TGT_BYTE_CNT_REG according to the number of bytes to transfer.

3. Write data to WR_DATA_REG, amounting to ≤ FIFO Depth.

4. Set CONTROL_REG.start to 1’b1 to start the I2C transaction.

Optional: If interrupt mode is desired, Enable target interrupts in INT_ENABLE1_REG. If number of words to transfer is
≤ FIFO Depth, set tr_cmp_en = 1’b1 If number of words to transfer is > FIFO Depth, set the following:
tx_fifo_aempty_en = 1’b1 and tr_cmp_en = 1’b1. Other interrupts in this register are disabled.

5. If total number of bytes to transfer > FIFO Depth, wait for Transmit FIFO Almost Empty Interrupt. If polling mode is
desired, read INT_STATUS1_REG until tx_fifo_aempty_int asserts. If interrupt mode is desired, simply wait for interrupt
signal to assert, then read INT_STATUS1_REG and check that tx_fifo_aempt_int is asserted. In both cases, read also
INT_STATUS2_REG to ensure that the transfer is good. I2C Master IP Core

6. Clear Transmit Buffer Almost Empty Interrupt by writing 1’b1 to INT_STATUS1_REG.tx_fifo_aempty_int. Clearing all
interrupts in this register by writing 8’hFF to INT_STATUS1_REG is also okay since the user is not interested in other
interrupts for this recommended sequence.

7. Write data to WR_DATA_REG, amounting to less than or equal to (FIFO Depth – TX FIFO Almost Empty Flag).

8. If there is remaining data to transfer, go back to Step 6.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52458

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 73

9. Wait for Transfer Complete Interrupt.

a. If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts. If interrupt mode is desired, set
INT_ENABLE1_REG = 8’h80 then wait for interrupt signal to assert. Read INT_STATUS1_REG and if tr_cmp_int is
asserted.

10. Clear all interrupts by writing 8’hFF to INT_STATUS1_REG.

2.11.3.3. Reading from the Slave Device

The following are the recommended steps for performing I2C read transaction, assuming that the module is currently not
performing any operation and if initialization is completed.

To perform I2C read transaction:

1. Set the following MODE_REG fields according to the desired transfer mode: bus_speed_mode, addr_mode, ack_mode,
clk_presc_high. Set the trx_mode field to 1’b1 for read transaction.

2. Set TGT_BYTE_CNT_REG according to the number of bytes to transfer.

3. Set CONTROL_REG.start to 1’b1 to start the I2C transaction.

Optional: If interrupt mode is desired, Enable target interrupts in INT_ENABLE1_REG If number of words to transfer is
≤ FIFO Depth, set tr_cmp_en = 1’b1.

4. If number of words to transfer is > FIFO Depth, set the following: rx_fifo_afull_en = 1’b1 and tr_cmp_en = 1’b1. Other
interrupts in this register are disabled.

5. If total number of bytes to receive > FIFO Depth, wait for Receive FIFO Almost Full Interrupt. If polling mode is desired,
read INT_STATUS1_REG until rx_fifo_afull_int asserts. If interrupt mode is desired, wait for the interrupt signal to assert,
and then read INT_STATUS1_REG and check if rx_fifo_afull_int is asserted. In both cases, read also INT_STATUS2_REG to
ensure that the transfer is good.

6. Clear Receive FIFO Almost Full Interrupt by writing 1’b1 to INT_STATUS1_REG.rx_fifo_afull_int. Clearing all interrupts in
this register by writing 8’hFF to INT_STATUS1_REG is also okay since the user is not interested in other interrupts for this
recommended sequence.

7. Read all data from RD_DATA_REG. It is expected the amount of received data is less than or equal to (FIFO Depth – TX
FIFO Almost Empty Flag). Read FIFO_STATUS_REG to confirm if Receive FIFO is emptied.

8. If there is remaining data to receive, go back to Step 5.

9. Wait for Transfer Complete Interrupt. If polling mode is desired, read INT_STATUS1_REG until tr_cmp_int asserts If
interrupt mode is desired, set INT_ENABLE1_REG = 8’h80 and wait for the interrupt signal to assert. Read
INT_STATUS1_REG and check that tr_cmp_int is asserted.

10. Clear all interrupts by writing 8’hFF to INT_STATUS1_REG.

11. Read all the remaining data from RD_DATA_REG.

2.12. UART IP Design Details
The Lattice Semiconductor UART (Universal Asynchronous Receiver/Transmitter) IP Core is designed for use in serial
communication, supporting the RS-232.

The UART IP is used to be integrated in the node system SOC design as defined in node system top level architectural
diagram. This IP can be controlled by C/C++ APIs of node system CPU to read/write data from/to certain UART/modbus
based peripheral/sensor. These C/C++ based APIs can be controlled by main system as well.

This sections only provides minimum details of the UART IP required for the integration and controlling. Refer to the UART
IP user guide for more details.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 74

2.12.1. Overview

The UART IP Core performs two main functions:

 Serial-to-parallel conversion on data characters received from an external UART device; and

 Parallel-to-serial conversion on data characters received from the Host located in the FPGA

The CPU can read the complete status of the UART at any time during the functional operation. Status information reported
includes the type and condition of the transfer operations being performed by the UART IP Core, as well as any error
conditions (parity, overrun, framing, or break interrupt).

The UART IP has implemented a processor-interrupt system similar to UART 16450. Interrupts can be programmed to your
requirements, minimizing the computing required to handle the communications link. The UART IP currently does not
implement the MODEM-control feature of UART 16450.

The registers of UART IP Core are accessed by the CPU (FPGA internal components) through an AMBA APB interface. The
functional block diagram of UART IP Core is shown in Figure 2.12. The dashed lines in the figure are optional
components/signals, which means they may not be available in the IP when disabled in the attribute.

UART 16450
Register Set

TXMTT

THR/
XMIT
FIFO

TX
FSM

RXCVER

RBR/
RCVR
FIFO

RX
FSM

UART IP Core

int_o

APB I/F

tx_ready_n_o

txd_o

rx_ready_n_o

rxd_o

Figure 2.12. UART IP Core Functional Block Diagram

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 75

2.12.1.1. UART Register Description
The register address map, shown in Table 2.163, specifies the available IP Core registers. This is based on register set of UART
16450 but the offset address is changed to simplify the access to each registers. The offset of each register increments by
four to allow easy interfacing with the Processor and System Buses. In this case, each register is 32-bit wide wherein the lower
8 bits are used and the upper 24 bits are unused. The unused bits are treated as reserved – write access is ignored and read
access returns 0.

Table 2.163. UART Register Map

Offset Register Name Access Type Description

0x00 RBR RO Receive Buffer Register

0x00 THR WO Transmitter Holding Register

0x04 IER RW Interrupt Enable Register

0x08 IIR RO Interrupt Identification Register

0x0C LCR RW Line Control Register

0x10 Reserved RSVD Reserved

0x14 LSR RO Line Status Register

0x18-0x1C Reserved RSVD Reserved

0x20 DLR_LSB WO Divisor Latch Register LSB

0x24 DLR_MSB WO Divisor Latch Register MSB

0x28-0x3C Reserved RSVD Reserved

Note: Details of Registers is given in UART IP Core – Lattice Propel Builder User Guide (FPGA-IPUG-02105).

2.12.2. Programming Flow

2.12.2.1. Initialization

The following UART register fields should be set properly before performing UART transaction:

 Line Control Register – even_parity_sel, parity_en, stop_bit_ctrl, char_len_sel

 Divisor Latch Registers – divisor_msb, divisor_lsb

These should match the corresponding setting in the communicating UART for the serial transaction to be successful.

Note that reset values of these register fields are configurable during IP generation. Thus in some applications, initialization
step is not necessary when attributes are properly set.

2.12.2.2. Transmit Operation

The following are the steps for transmitting character data through the UART IP Core. This is assuming that the IP is not
performing transmit operation or at least the XMIT FIFO is empty.

Transmit Operation – Interrupt Mode

To perform transmit operation in interrupt mode:

1. Write the data to THR. In FIFO mode, user can write up to 16-character data.

2. Set IER.thre_int_en=1’b1 to enable Transmit Holding Register Empty interrupt.

3. Wait for Transmit Holding Register Empty interrupt to assert.

4. Wait for interrupt assertion and check that IIR[3:0]= 4’b0010.

5. If the user needs to send more characters, repeat Steps 1-3 until all characters are sent.

When using interrupt, set IER.thre_int_en=1’b0 to disable the interrupt.

Transmit Operation – Polling Mode

To perform transmit operation in polling mode:

1. Write a data to THR. It is recommended not to enable FIFO for polling mode to save resource.

2. Read LSR until the thr_empty bit asserts.

3. If the user needs to send more characters, repeat Steps 1 and 2 until all characters are sent.

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=52880

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 76

2.12.2.3. Receive Operation

The following are the steps for the receiving character data through the UART IP Core. This is assuming that the IP core is
not performing receive operation.

Receive Operation – Interrupt Mode

To perform receive operation in interrupt mode:

1. Enable the following interrupts:

a. Received Data Available Interrupt (IER.rda_int_en=1’b1) – to notify the host that a data is received.

b. Receiver Line Status interrupt (IER.rls_int_en=1’b1) – to notify the host of receive status such as error and break
condition.

2. Wait for interrupt assertion and check that IIR[2:0]= 3’b100 (Receive Data Available). If Receiver Line Status Interrupt
asserts (IIR[2:0]=3’b110), read the LSR to determine the cause.

3. If Receiver Line Status Interrupt does not occur, read the character data from RBR:

a. If Receive Data Available Interrupt occurs, read a data from RBR.

b. If Character Timeout Interrupt occurs, read LSR. If LSR.data_rdy=1’b1, read RBR.

4. Repeat Steps 2-3 until all expected data are received.

Receive Operation – Polling Mode

To perform receive operation in polling mode:

1. Read LSR until the thr_empty bit asserts. Also, check that no error status bits are asserted.

2. Read RBR if there is no error.

3. If the user needs to receive more characters, repeat Steps 1 and 2 until all characters are received.

2.12.2.4. Data Format
The character data written to THR and read from RBR is in little endian format as shown in Figure 2.13.

0 D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

7-Bit Data

8-Bit Data

Figure 2.13. UART Data Format

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 77

3. Resource Utilization
The resource utilization for the Main System is shown in Table 3.2.

Table 3.1. Main System Resource Utilization

Blocks LUTs EBRs LRAMs DSPs Comments

RISC-V CPU 2462 2 — — —

ISR RAM 61 16 — — —

Data RAM (System Memory) 151 — 2 — —

AHBL Interconnect 0 2041 — — — —

AHBL Interconnect 1 218 — — — —

FIFO DMA 927 16 — — —

EtherControl 34630 52 — — —

UART 257 — — — —

SPI Flash Controller 232 1 — — —

AHBL2APB 141 0 — — —

APB Interconnect 13 0 — — —

CNN Coprocessor Unit (CCU) 1040 — — 4 —

PCIe DMA 18973 40 — — —

PCIe RISCV Bridge 1117 16 — — —

Reset Sync 78 — — — —

Top-level 1 — — — —

Total 62462 143 2 4 —

The resource utilization for the Node System is shown in Table 3.2.

Table 3.2. Node System Resource Utilization

Blocks LUTs EBRs LRAMs
DSP

MULT
Comments

RISC-V CPU 2537 2 — — —

ISR RAM 51 16 — — —

Data RAM (System Memory) 155 0 2 — —

AHBL Interconnect 1721 — — — —

APB Interconnect 14 — — — —

FIFO DMA 754 16 — — —

EtherControl 4209 11 — — —

SPI Flash Controller 229 1 — — —

AHBL2APB 148 — — — —

Motor Control Data Collector 4152 17 — 15.5 —

UART 261 — — — —

I2C Master 585 — — — —

SPI Master 398 — — — —

Top-level 2 — — — —

Total 15216 63 2 15.5 —

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 78

4. Software APIs

4.1. Main System APIs

4.1.1. Tasks of the Main System

The Main System acts as an interface between the user interface and the node-system, which controls the motor IP. It
communicates with the user interface and receives commands based on your requirements through UART. The commands
are then sent to the nodes for configuration through EtherConnect. The Main System also enables the user interface to
monitor various parameters of the motors. The system also receives commands from the GPIO switches attached on the
board and sends these commands to the nodes for configuration through EtherConnect as well.

The tasks to be carried out by the Main System can be categorized as follows:

 System Initialization
This API is used to configure the EtherControl and establish communication between the Main system and nodes. This
takes place as soon as there is a power cycle or reset is pressed.

 Handle all the interrupts (GPIO, UART, EtherConnect) and respond to the interrupts by taking appropriate actions.
Communication with the host system, Node System, and mechanical switches occur through interrupts and the Main
System takes appropriate actions based on the interrupts caused. The priority order of all the interrupts is
GPIO > UART > EtherConnect.

 Switch Configuration over GPIO
User can Start, Stop, Accelerate, and Decelerate the motors with the help of switches provided. The Main System
configures the node motor IP as per the switch configuration.

 Communicate with host system user interface over UART
The host system user interface sends configuration data and status check commands to the Main System, and the Main
System responds based on the command.

 Communicate with Node System and motor IP over EtherConnect
As per the commands received by the Main System, it creates particular burst packets to send to the Node System, that
the Node System then receives and implements them. This communication between the main and Node System
happens over EtherConnect and at a given time, a maximum of 256 bytes can only be transmitted from either direction.

4.1.1.1. UART Commands

Table 4.1. Types of UART Commands

Command Description Remarks

Motor Config
(Data Write)

The command specifies the register and value of the Motor IP
to be updated.

High Priority Command. Can only be
interrupted by GPIO configuration update.

Motor Status
(Data Read)

The command specifies the status register of the Motor IP to
be read from the Node System. The status data is stored at the
Main System level, which the interface can read later.

High Priority Command. Can only be
interrupted by GPIO configuration update.

Data Memory Reg
Update
(Data Write)

This command is used to update some registers that are not
present at the Motor IP level but at the Main System level. For
example, Node Select Reg, Node Addr Reg, Data Size Reg and
others.

High Priority Command. Can only be
interrupted by GPIO configuration update.

Data Memory
Status Read (Data
Read)

The command is called when the Main System needs to read
the status data of any particular node, which it had asked the
Main System to fetch earlier.

High Priority Command. Can only be
interrupted by GPIO configuration update.

PDM Data Fetch
(Data Read)

The PDM data fetch command asks the Main System to fetch
the bulk maintenance data from the Node System and send it
forward to the user interface system.

Can run in the background and has the least
priority. It can be interrupted any time for
any of the above four commands and GPIO
switch configurations.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 79

4.1.1.2. GPIO Commands

Table 4.2. Types of GPIO Commands

Command Description

Dip SW1 (0 to 1) Start the motors

Dip SW2 (0 to 1) Stop the motors

Dip SW3 (0 to 1) Accelerate the motors

Dip SW4 (0 to 1) Decelerate the motors

4.1.2. Key Functions
 Main () function

int main (void)
Upon a power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts
(GPIO, UART, EtherConnect). It also is tasked with the responsibility of calling the system_initialization API so that the
communication between the Main System and the Node System can be established. Once the initialization is done, the
Main System calls a power_on sequence function which configures the motor IP with default values.
The ISR sets the flag, captures the data from UART and GPIO and stores it into global variables. After all the initialization
tasks, the main function then monitors the flags and based on the data captured, calls appropriate functions.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 80

main {} function for the Master System

Start
(Power up cycle/Reset)

Initialize UART
Initialize GPIO

Initialize EtherConnect

call system Initialization (API 1)

while (true)
False

exit

True

UART
interrupt

flag
set?

True

True

False

False

False

False

False

True

True

True

call command parsing function
clear the UART interrupt flag

switch case
(which switch is

turned from 0 to 1)

GPIO
interrupt

flag
set?*

SW1

SW2

SW3

SW4

Switch on the motors

Switch off the motors

Accelerate the motors

Decelarate the motors

Figure 4.1. Main Function

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 81

 ISR1_GPIO1
static void gpio_isr (void *ctx)

The interrupt service routine for GPIO is called every time there is a transition from 0 to 1 in the four switches that are
connected to the Main System. After the 0 to 1 interrupt (rising edge), the gpio_interrupt_flag is set. In a given global
variable, it stores a value which indicates the gpio switch that is triggered. The ISR then can acknowledges the interrupt
and returns an integer value. The IRQ value for GPIO is IRQ1. This ISR is present in the gpio.c file.

 ISR2_UART
static void uart_isr (void *ctx)

The interrupt service routine for UART is called every time it receives a byte in its buffer module. The maximum size of
the buffer is 16 bytes. The ISR then validates the command by checking the total size of data received and the data
itself. It sets the uart_interrupt_flag once, only after confirmation. The data captured, if valid, is stored into a global
variable so that it can be accessed later by the command parsing function. The IRQ value for UART is IRQ2. The ISR then
acknowledges the interrupt and returns an integer value. This ISR is present in the uart.c file.

 ISR3_EtherConnect
static void etherConnect_isr (void *ctx)

The primary function of the EtherConnect ISR function is to set the interrupt flag, acknowledge the interrupt, and
return a value. The EtherConnect interrupt is used as an acknowledgement of the completion of a single transaction of
a command sent by the Main System to the Node System. The IRQ value for EtherConnect is IRQ3.

 System Initialisation API
int system_initialisation (void)

This API is present in the main.c file. It does not take any parameter and returns an integer value. It returns 0 if
everything is successfully completed or a – 1 if there is an error.

This API is used to establish communication between the Main System and the Node System. It enables the DMA FIFO
module and sends 10 broadcast packets to detect the number of nodes available and active in the whole setup. By
reading the PHY Link Status register, it affirms whether the communication is established or not, and accordingly, turns
ON the Main System LEDs. This API then sends three training packets and one normal packet to the Node System
through the EtherConnect in order to affirm the connection establishment with the Node System.

 Motor Configuration API
int motor_config_api(uint32_t address, uint32_t data, uint32_t multi)

This API is present in the main.c file. It needs three parameters namely:

 address: signifies a register in the Motor Control IP

 data: what needs to be written in that register

 multi: data to be transmitted on multiple chains or selected chain only

It returns the following integer values:

 0: if everything is correct

 –1: if there was any error

The API is called when there is a requirement to configure a register in the Motor Control IP of the Node System. This
occurs in two cases:

 when there is an ON switch on any GPIO

 when the command parsing function decodes a UART command wishing to configure the motors
The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst packet
indicates that a particular packet is for Motor Configuration and for which nodes this packet is intended. Once the burst
packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start Transaction
Register. After the Node System completes the task successfully, the Main System receives an interrupt and validates
the value of the interrupt info register. Upon the confirmation of the value of the interrupt info register, this API
returns a 0 value or a –1 if there is an error.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 82

 Motor Status API
int motor_status_api(uint32_t address, uint32_t multi)
This API is present in the main.c file. It needs one parameter:

 address: signifies a register in the Motor Control IP

 multi: etherconnet packet to be transmitted on multiple chains or selected chain only

It returns the following integer values:

 0: if all tasks are successfully completed

 –1: if there is an error
The API is called when there is a requirement to read a register in the Motor Control IP of the Node System. This
happens when the command parsing function decodes a UART command wishing to read the status of the motors.
The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst packet
indicates that a particular packet is for Motor Status Read and for which nodes this packet intended. Once the burst
packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start Transaction
Register. After the Node System has taken appropriate actions successfully, the Main System receives an interrupt and
it validates the value of the interrupt info register. Upon the confirmation of the value of the interrupt info register, this
API returns a 0 value or a –1 if there is an error.

 PDM Data Fetch API
int pdm_data_fetch_api(uint32_t total_size, uint32_t node_addr)
The API is present in the main.c file. It needs one parameter:

 total_size: the size of the PDM data required from user interface

 node_addr: node select value sent in packet
It returns the following integer values:

 0: if all tasks are successfully completed

 –1: if there is an error
The API is called when there is a requirement to read a bulk maintenance data from the Motor Control IP of the Node
System. This happens when the command parsing function decodes a UART command wishing to read the bulk PDM
data.
The maximum data that can be transferred in a single transaction from node to Main System is 256 bytes. Therefore, if
the total_size is larger than 256 bytes, chunks of 256 bytes are requested one by one until the total_size requirement is
met.
This API first configures the DMA register by writing the destination base and destination end address in specific
registers. The API creates burst packets which are sent to the Node System over EtherConnect. The header in the burst
packet indicates that a particular packet is for PDM Data Fetch and for which particular node this packet intended.
Once the burst packet is written in a FIFO module, it is sent to the Node System by a trigger of 1 to 0 signal in a Start
Transaction Register. After the Node System completes the task successfully, the Main System receives an
EtherConnect interrupt and it validates the value of the interrupt info register. The value of the DMA status register is
to be validated as confirmation of the same. A successful validation signifies that a single chunk of data is successfully
written into the Main System memory. This process is repeated until all the chunks are received by the Main System.
A final EtherConnect interrupt is then received from the Node System signifying the completion of the PDM data fetch
command for the total_size. Upon confirmation of the value of the interrupt info register, this API returns with 0 value.

 PDM bulk Data Fetch API
int pdm_bulk_data_fetch_api (uint32_t total_size, uint32_t node_addr)
The API is present in the main.c file. It needs two parameter:

 total_size: the size of the PDM data required from user interface

 node_addr : node select value sent in packet
It returns the following integer values:

 0: if all tasks are successfully completed

 –1: if there is an error

The API is called when there is a requirement to read a bulk maintenance data from the Motor Control IP of the Node
System. This happens when the command parsing function decodes a UART command wishing to read the bulk PDM
data.
This API is extended version of PDM Data Fetch API, as total size of data fetch depends on number of active nodes
present in that chain.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 83

 UART Command Parsing Function
int uart_cmd_parse_func (char *cmd_packet)
The API is present in the main.c file. It needs 1 parameter namely:

 *cmd_packet: buffer pointer to the command received from UART
It returns the following integer values:

 0: if all tasks are successfully completed

 –1: if there is an error
This function is used to decode the incoming UART command packet and take actions accordingly. This function checks
the validity of the command, and based on the UART commands in Table 4.1, it categorizes the command into one of
the five different types. According to the decoded command, it calls/performs the corresponding APIs/actions. The APIs
called or the actions performed are expected to return 0 int value in case of successful completion. If a –1 is returned,
the operation is considered erroneous. This function then calls the UART response function passing over the error/no-
error value so that the user interface can be informed of the same. After getting a successful response from the UART
response function, this function returns to the main function from where it is called, completing the cycle.

 UART Response Function
int uart_response_func (int function_type, uint32_t error_value, uint32_t data)
The API is present in the main.c file. It needs two parameters namely:

 function_type: signifies which type of response needs to be sent

 error_value: indicates if there is an error or everything is successfully completed
A third parameter, which is data, is only used in the case of Data Memory Status Read (Data Read) command. It returns
the following integer values:

 0: if all tasks are successfully completed

 –1: if there is an error
This function is used to send a response packet to the user interface over UART. The UART Command Parsing calls the
UART Response after the required actions are executed. While the response to Motor Config Write, Motor Status, and
Data Memory Reg Update commands only returns an acknowledgement of either a successful or unsuccessful
execution, the Data Memory Status Read and PDM Data Fetch commands have data in the response packet from the
12th byte. The Data Memory Status Read writes the data variable sent as a parameter to the function while the PDM
Data Response reads memory registers from the base address. It writes the response packet to the UART buffers and
returns to the command parsing function.

 Power UP Sequence Function
int power_up_sequence (void)
The API is present in the main.c file. It does not require any parameters. It returns the following integer values:

 0: if all tasks are successfully completed

 –1: if there is an error
After a power cycle or reset, the main function calls the Power UP Sequence Function to initialize the Motor control IP
registers with default values. The Motor Config API is called to implement this requirement. The Power UP Sequence
Function also calls the Motor Status API to read a particular register, and afterwards, calls the PDM Data Fetch API with
a default size of 64 bytes.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 84

4.2. Node System APIs

4.2.1. Tasks of the Node System

The Node System acts as a way to control the Motor IP and get its status as commanded by the Main System. It
communicates with the Main System by receiving commands through EtherConnect. It performs the actions and responds
to the Main System with interrupts as acknowledgement for the tasks executed.

The tasks to be carried out by a master system can be categorized as follows:

 Communicate with the master system over EtherConnect
As per the commands sent by the Main System, the Node System is supposed to either configure the motor, share the
motor status or share the bulk PDM data

 Perform key functions

4.2.2. Key Functions
 Main () function

int main (void)
Upon a power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts
(EtherConnect, UART).
The main function then waits for the ether_interrupt_flag to get high. The EtherConnect ISR sets the flag,
ether_interrupt_flag when a command is received from the Main System. When the main function finds that the flag is
set, it reads the INTERRUPT STATUS register to decode which command is received. Based on the value of this register,
the main function calls the appropriate functions.

 Node Perpherials init

u08 general_init (void)
Upon a power on or a reset of the board, it is the job of the main function to initialize and configure the interrupts for
UART, EtherConnect. It also initializes Modbus, SPI, and I2C protocols.

 ISR1_EtherConnect
static void etherConnect_isr (void *ctx)
The primary function of the EtherConnect ISR function is to set the interrupt flag, acknowledge/clear the interrupt and
return an integer value. The EtherConnect interrupts are used as indicators of the receipt of a command sent by the
Main System to the Node System. The IRQ value for EtherConnect is 0.

 Node Configuration API
int node_config_api(void)
The API is present in the main.c file. It does not require any parameter.
It returns the following integer values:

 0: if all tasks are successfully completed

 –1: if there is an error
The API is called when the main function receives a Node Config command in its Interrupt Status Register. This API
reads the NODE ADDRESS register. This register contains an address of the peripheral (I2C, Modbus, SPI, and Motor IP)
which is supposed to be configured. Next, the NODE CONFIG DATA register is read. This register has the configuration
data. This data is then written into the address. If there is a read or write error, the API returns a –1 value. Once
completed, the API returns a 0 value.

 Node Status API
int node_status_api(void)
The API is present in the main.c file. It does not require any parameter. This returns the following integer values:

 0: if all tasks are successfully completed

 –1: if there is an error

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 85

The API is called whenever the main function receives a Node Status command in its Interrupt Status Register. This API
reads the NODE ADDRESS register. This register contains an address of the Node peripherial (Modbus, SPI, I2C, Motor
IP) whose configuration value is supposed to be read. This address is then read and stored in a local variable data. This
data is then written into the NODE STATUS register. If there is any read or write error, the API sends –1 value back. If
everything goes okay, the API returns 0 value.

 PDM Data Fetch API
int pdm_data_fetch_api(void)
The API is present in the main.c file. It does not require any parameter. This returns the following integer values:

 0: if all tasks are successfully completed

 –1: if there is an error
The API first reads the size of PDM data required from the PDM ADDRESS register. It then writes the base address value
and the end address (base address + size) value at the designated registers in the FIFO DMA Module. It then enables
the FIFO DMA module by sending writing 0x00000003 first and then 0x00000000 to the FIFO DMA CONTROL register.
Once done, it polls the DMA STATUS register for the indication of completion of the PDM data fetch. Once it receives
the done value, it sets the DMA DONE INDICATE register. If there is any read or write error, the API sends –1 value
back. If everything goes okay, the API returns 0 value.

 Node Peripherial APIs

 I2C Master
The following are the I2C BSP functions used in the main.c file for writing and reading the I2C slave data:

 uint8_t i2c_master_write(struct i2cm_instance × this_i2cm, uint16_t address,uint8_t data_size, uint8_t ×
data_buffer)

 uint8_t i2c_master_read(struct i2cm_instance × this_i2cm, uint16_t address,uint8_t read_length, uint8_t ×
data_buffer)

 SPI Master
The following are the SPI BSP functions used in the main.c file for writing and reading SPI slave data:

 uint8_t spi_master_write(struct spim_instance × this_spim,uint8_t data_size, uint8_t × data_buffer)

 uint8_t spi_master_read(struct spim_instance × this_spim,uint8_t read_length, uint8_t × data_buffer)

 Modbus RTU Master
The following are the Modbus module functions used in the main.c file for writing and reading Modbus RTU slave
data:

 eMBErrorCode eMBMasterInit(eMBMode eMode, void *dHUART, ULONG ulBaudRate, void *dHTIM)
This functions initializes the ASCII or RTU module and calls the init functions of the porting layer to prepare the
hardware. Note that the receiver is still disabled and no Modbus frames are processed until eMBMasterEnable() is
called.

 eMBErrorCode eMBMasterPoll(void)
This function must be called periodically. The timer interval required is given by the application dependent Modbus
slave timeout. Internally thefunction calls xMBMasterPortEventGet() and waits for an event from the receiver or
transmitter state machines.

 unsigned int modbus_req (unsigned int mod_addr, unsigned int mod_data)
This function parse the data received from Main system and fetch slave id command type and data from it. This calls
the functions below based on the command type.

 eMBMasterReqWriteHoldingRegister (slaveid, regnum, regdata, timeout)

 eMBMasterReqWriteCoil (slaveid, regnum, regdata, timeout)

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 86

4.3. PCie Driver

4.3.1. Linux Device Driver Design

When developing Linux kernel features, it is a good practice to expose the necessary details to user-space to enable
extensibility. This allows the development of new features and sophisticated configurations from user-space. Commonly,
software developers have to face the task of looking for a good way to communicate between kernel and user-space in
Linux. This documents introduces you to char driver read/write operation, a flexible and extensible messaging so system
that provides communication between kernel and user-space. In order to continue to see in details first see layer of which
shown in below image to understand these driver API working.

Kernel Interfaces are key parts of operating systems. The more flexible the interface to communicate kernel and user-space
is, the more likely tasks can be efficiently implemented in user-space. As a result, this can reduce the common bloat of
adding every new feature into kernel-space.

4.3.2. User-Space to Kernel-Space Access

Figure 4.2 shows the communication details between kernel-space and user-space. The diagram also shows how the
application and library interact with the kernel space.

Application

Read/Write Library

VFS

Kernel space

open close ioctl read write

PCIeOpen PCIeRelease PCIeIOCTL PCIeRead PCIeWrite

Figure 4.2. User-Space and Kernel-Space Access Diagram

When user calls open system call, PCIeOpen api of the driver code is invoked, for close system call PCIeRelease api is invoked
and for ioctl PCIeIOCTL hits, for read PCIeRead hits and write system call invokes the PCIeWrite function of the driver code.

In order to access these functions, the user must register the character driver in the kernel. To register character driver,
kernel provides some APIs these are mentioned below. For more information, go to:
https://www.kernel.org/doc/html/latest/driver-api/index.html.

http://www.latticesemi.com/legal
https://www.kernel.org/doc/html/latest/driver-api/index.html

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 87

 alloc_chrdev_region(&brd.ldev_node, 0, 1,gDrvrName);

 cdev_alloc().

 cdev_init(brd.lattice_cdev, &PCIeFileOpt);

 class_create(THIS_MODULE,gDrvrName).

 class_create(THIS_MODULE,gDrvrName).

4.3.3. File Operation and API Description

Currently in this driver, only below mentioned file operation is implemented.
struct file_operations PCIeFileOpt = {

 .read = PCIeRead,

 .write = PCIeWrite,

 .unlocked_ioctl = PCIeIOCTL,

 .open = PCIeOpen,

 .release = PCIeRelease,

};

4.3.3.1. PCIeRead

API is used to read data from device, on the call of the read system call this API hits. In order to take data from the device to
the PC, this function does DMA configuration, waits for the DMA operation to finish, and then reads the system memory
once DMA completes. After receiving data from the device, it returns data to user-space on success and it returns error on
error.

4.3.3.2. PCIeWrite

API is used to write data from the user space to the device. This function does DMA configuration to write data on the
device from the PC, on the success it returns written data size and on erro,r it returns an error.

4.3.3.3. PCIeIOCTL

API is used to do read and write register space of device.

4.3.3.4. PCIeOpen

API is used to open device file to access the read/write and ioctl API, it does common and one-time configuration to use the
device. It hits when user calls open system call on the driver file.

4.3.3.5. PCIeRelease

API is used to release resource it hits when the user calls the close API.

4.3.3.6. Driver API Description

Driver registration process in the kernel is shown below. When the user runs the insmod command, the driver entry
function module_init(PCIeInit) is called. This is the first function which gets called when the user inserts the driver in the
kernel. Inside the pci_register_driver (&lattice_driver) function, is called to register the driver. This API takes the pci_driver
structure as input, and this structure should contain the correct information about the device. Each field of the structure is
described below.
static struct pci_driver lattice_driver = {

 .name = "lthru_demo",

 .id_table = lattice_pci_id_tbl,

 .probe = PCIeProbe,

 .remove = PCIeRemove,

};

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 88

The following is the description of the structure elements:

 name
This is the driver’s name.

 id_table
This is the pointer to the device ID table the driver is interested. Below is the table structure.

struct pci_device_id {

 __u32 vendor, device;

 __u32 subvendor, subdevice;

 __u32 class, class_mask;

 kernel_ulong_t driver_data;

};

 probe
This probing function gets called (during execution of pci_register_driver() for already existing devices or later if a new device
gets inserted) for all PCI devices which match the ID table and are not owned by the other drivers yet. This function gets
passed a struct pci_dev* for each device whose entry in the ID table matches the device. The probe function returns zero
when the driver chooses to take ownership of the device or an error code (negative number) otherwise.

 remove
The remove() function gets called whenever a device being handled by this driver is removed (either during deregistration
of the driver).

4.3.4. PCIeProbe

This function is called during the device registration or on the insertion of device. This function also does all the
initializations which are required to get accessed from the user space. On successful registration, it gets the pci_dev
structure. This structure contains all the required information which is used in the probe function to get the details of the
device.
The Probe function does the below steps. For details on all bus driver APIs, go to:
https://www.kernel.org/doc/html/latest/PCI/pci.html.

 Get bus start address for the given region using the pci_resource_start(brd.pPciDev,barno); API.

 Get bus end address for the given region for the device using the pci_resource_end(brd.pPciDev, barno); API.

 Get the length in byte of pci region using the pci_resource_len(brd.pPciDev,barno) API;

 Get virtual memory for read/write operation on device using the ioremap(start_addr,len) API.

 Initialize device before it's used by a driver. It asks the low-level code to enable I/O and memory. Wake up the device if
it was suspended by using the pci_enable_device(brd.pPciDev) API.

 request_mem_region(pci_start,size,”driver_name”); informs the kernel that your driver is going to use this range of I/O
addresses, which prevents other drivers to make any overlapping call to the same region through.

 pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_handle); function allocates a DMA buffer,
generates its bus address, and returns the associated kernel virtual address. The first two arguments respectively hold
the PCI device structure (which is discussed later) and the size of the requested DMA buffer.

 Enable pcie master using pci_set_master().

 Register interrupt handler.

 Create character device node to provide interface to access from user-space. At this stage, it register the user interface
API like open, close, read, write, and ioctl.

4.3.5. PCIeRemove

The PCIeRemove function is called whenever the user tries to unload the driver. It deallocates all allocated resource and
destroys character unregistered the character driver.

http://www.latticesemi.com/legal
https://www.kernel.org/doc/html/latest/PCI/pci.html

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 89

4.3.6. Bus Master DMA Overview and Implementation

The term Bus Master, used in the context of PCI express, indicates the ability of a PCIe port to initiate PCIe transactions,
typically Memory Read and Write transactions. The most common application for Bus Mastering Endpoints is for DMA.
DMA is a technique used for efficient transfer of data to and from host CPU system memory. DMA implementations have
many advantages over standard programmed input/output (PIO) data transfers. PIO data transfers are executed directly by
the CPU and are typically limited to one (or in some cases two) DWORDs at a time. For large data transfers, DMA
implementations result in higher data throughput because the DMA hardware engine is not limited to one or two DWORD
transfers. In addition, the DMA engine offloads the CPU from directly transferring the data, resulting in better overall
system performance through lower CPU utilization. There are two basic types of DMA hardware implementations found in
systems using PCI express: System DMA implementation and Bus Master DMA (BMD) implementation. System DMA
implementations typically consist of a shared DMA engine that resides in a central location on the bus and can be used by
any device that resides on the bus. System DMA implementations are not commonly found anymore and very few root
complexes and operating systems support their use. A BMD implementation is by far the most common type of DMA found
in systems based on PCI express. BMD implementations reside within the Endpoint device and are called Bus Masters
because they initiate the movement of data to (Memory Writes) and from (Memory Reads) system memory. Figure 4.3
shows a typical system architecture that includes a root complex, PCI express switch device, and an integrated Endpoint
block for PCI express. A DMA transfer either transfers data from an integrated Endpoint block for PCI express buffer into
system memory or from system memory into the integrated Endpoint block for PCI express buffer. Instead of the CPU
having to initiate the transactions needed to move the data, the BMD relieves the processor and allows other processing
activities to occur while the data is moved. The DMA request is always initiated by the integrated Endpoint block for PCI
express after receiving instructions and buffer location information from the application driver.

Main Memory Memory Controller CPU

Root Port

PCIe Switch

PCIe Endpoint

DMA Memory

Host PC

PCIe Lane/Edge Connector

FPGA Board

Figure 4.3. Top-level Block Diagram

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 90

In addition to the data-throughput advantages of DMA versus PIO transactions for large data transfers, many other
variables can affect data throughput in PCI express systems. For example, link width and speed, receive buffer sizing, return
credit latency, end-to-end latency, and congestion within switches and root complexes. For these reasons, the use of PCI
express for high data-throughput applications requires a BMD engine.

Users use BMD with descriptor and Fix Physical memory design as shown in Figure 4.4.

B3

4 kB

B2

4 kB

B1

4 kB

B0

4 kB

16 kB

FPGA SGDMA Physical RAM User Buffer

0xFFFF

0x0000

BD[0] 4 kB

BD[1] 4 kB

BD[2] 4 kB

BD[3] 4 kB

Figure 4.4. BMD with Descriptor and Fixed Physical Memory in RAM

4.4. Programming the DMA Write/Read
To program the DMA Write/Read:

1. Program descriptor in specific format as discussed in the Main System APIs section. Below are some examples for
pseudo code to program first descriptor is mentioned,

 Descriptor queue base address 0x1000.

 (baseaddr+0) for ((srcAddr << 32) | configuration).

 (baseaddr+8) for destination address.

The next descriptor location is baseaddr+16Byte because one descriptor size is 16byte.

2. Program all required descriptor. Maximum 256 descriptor supported in current design.

3. Program descriptor pointer register with number of descriptors.

4. Trigger the DMA start.

4.4.1. Supported Operating System
 Distributor ID: Ubuntu
 Description: Ubuntu 18.04.3 LTS
 Release: 18.04.
 OS Type: 64 bit
 Codename: bionic

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 91

4.4.2. Package Requirements

To check whether packages are installed or not, run the following commands as shown in the images below.

 make

Figure 4.5. Make FIle

 GCC

Figure 4.6. GCC Command

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 92

 G++

Figure 4.7. G++ Command

 kernel version

Figure 4.8. Kernel Version Command

4.4.3. Installing the Package

To install the package, run the command below:
sudo apt update.

sudo apt install build-essential.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 93

4.4.4. Manual Installation and Setup

Ensure to build the driver first before installing it. To build the driver, perform the following steps:

1. Go to the Demonstration/Linux directory.

2. Run the sudo chmod 777 -R Source_Code command.

3. Go to the Source_Code directory.

4. Run the sudo make clean and sudo make commands to build the driver, API library, and console test application.

5. In the Source_Code/wrapper/build_wrapper.py file on line 7, replace the python version if the user has a different
python version than 3.7. For instance, if the installed python version is 3.6, then update the version from 3.6 to 3.7 as
shown below:
"-o {1}`python3.6-config --extension-suffix` "

Python version can be found by running this command:
python3 –V

6. Run the command below before starting the demo:
python3 Source_Code/wrapper/build_wrapper.py

This command creates the python binding over the C shared library libmem_rw.so and is a one-time step.

7. Install the driver using the insmod command. Make sure the driver is not installed before doing this step.

8. Run the command below to remove the driver.
sudo rmmod lthruput_main.ko

9. To install the driver, go to ithe /drv_src/lthruput_drv/ directory and run the command below.
sudo insmod lthruput_main.ko”

10. Run the python script.
sudo python3 script/script.py

4.4.5. Automatic Installation and Setup

To setup the demo in automatic mode, perform the following steps:

1. Go to the Demonstration/Linux directory.

2. Change the permission of script.sh file by running the command below:
sudo chmod 777 script.sh

3. Run the sudo ./script.sh to build the driver’s API library, console application, and install the PCIe driver.

4. To uninstall the driver, run the sudo ./uninstall.sh command.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 94

5. Communications
This section describes the communications between the host to the Main System and the communication between the
Main System and the Node Systems. Detailed breakdown of message vocabulary and packet structure may be covered in a
separate document.

5.1. Communication between Host and Main System
Initially, this connection is implemented using a USB-2 cable and a UART interface. Most of the messages should be ASCII to
facilitate debugging using a terminal program on the Host.

5.1.1. Messages from Host to Main System
 Motor Configuration and Control

 PDM Configuration and Control

 Request Motor Status

 Request PDM Status

 Request PDM Data - Normal

 Request PDM Data - Extended

5.1.2. Messages from Main System to Host
 System Information (Link Status, Connected Nodes, Local Delay of Nodes, and others)

 Motor Status

 PDM Status

 PDM Data - Normal

 PDM Data - Extended

5.2. Communication between Main System and Node System(s)
The physical connection between the Main System and Node System is implemented using Ethernet Cat-5 cables. The physical
connection between the first Node System and subsequent Node System(s) also uses Ethernet Cat-5 cables, in a daisy-chain
fashion for both chains.

5.2.1. Messages from Main System to Node System
 Motor Configuration and Control

 PDM Configuration and Control

 Request Motor Status

 Request PDM Status

 Request PDM Data - Normal

 Request PDM Data - Extended

5.2.2. Messages from Node System to Main System
 Node Information(Link Status, Connected Nodes, Local Delay etc)

 Motor Status

 PDM Status

 PDM Data - Normal

 PDM Data - Extended

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 95

6. Demo Package Directory Structure
The directory structure of the Automate Stack Demo Package is listed below.

6.1. Automate Stack Demonstration
 Documentation

 Executables

 Main System

a. PDM_DataSection.mem

b. PDM_ISRCodeSection.mem

c. riscv-pdm.bin

d. soc_main_system_impl_1.bit

 Node System

a. NodeSystem_AS2_001.bin

b. NodeSystem_AS2_001.bit

 Host PC

 User Interface

 PciScript

 Raspberrypi

 Mqtt_Lattice_Automate_2.0.zip

 Readme.txt

 Script

 Lattice_Automate_Stack_2_0_Docklight.ptp

6.1.1. Documentation

Below is the brief description of the main directories.

 The Automate Stack Demonstration folder is the parent folder for all the files. It has three sub folders:

 Images

 Project

 Documentation.

 The Images sub-folder has the FPGA Images (bit files) and Binary Images (Firmware) for both Main System and node.

 The Project sub-folder contains the whole project package and files for both Main System and node. The FPGA project
can be accessed in the soc_main_system/soc_node section and firmware project can be accessed in the
c_main_system/c_node section.

 The documentation subfolder contains the user guide for the project.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 96

7. Summary
The Lattice Automate Stack 2.0 reference design demonstrates the use of Lattice FPGA devices for industrial motor control
and predictive maintenance using ML/AI. It includes foundational IPs from Lattice and firmware for fast development and
validation.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 97

Appendix A. Predictive Maintenance with TensorFlow Lite

A.1. Setting Up the Linux Environment for Neural Network Training
This section describes the steps for setting up NVIDIA GPU drivers and/or libraries for 64-bit Ubuntu 16.04 OS. The NVIDIA
library and TensorFlow version is dependent on the PC and Ubuntu/Windows version.

A.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU

A.1.1.1. Installing the CUDA Toolkit

To install the CUDA toolkit, run the following commands in the order specified below:
$ curl -O

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-

repo-ubuntu1604_10.1.105-1_amd64.deb

Figure A.1. Download CUDA Repo

$ sudo dpkg –I ./cuda-repo-ubuntu1604_10.1.105-1_amd64.debA

Figure A.2. Install CUDA Repo

$ sudo apt-key adv --fetch-keys

http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.p

ub

Figure A.3. Fetch Keys

http://www.latticesemi.com/legal
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cu
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 98

$sudo apt-get update

Figure A.4. Update Ubuntu Packages Repositories

$ sudo apt-get install cuda-9-0

Figure A.5. CUDA Installation

A.1.1.2. Installing the cuDNN

To install the cuDNN:

1. Create NVIDIA developer account: https://developer.nvidia.com.

2. Download cuDNN lib: https://developer.nvidia.com/compute/machine-
learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

3. Execute the commands below to install cuDNN
$ tar xvfcudnn-9.0-linux-x64-v7.1.tgz

$ sudo cp cuda/include/cudnn.h/usr/local/cuda/include

$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

$ sudochmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*

Figure A.6. cuDNN Library Installation

http://www.latticesemi.com/legal
https://developer.nvidia.com/
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1
https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.1.4/prod/9.0_20180516/cudnn-9.0-linux-x64-v7.1

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 99

A.1.2. Setting Up the Environment for Training and Model Freezing Scripts

This section describes the environment setup information for training and model freezing scripts for 64-bit Ubuntu 16.04.
Anaconda provides one of the easiest ways to perform machine learning development and training on Linux.

A.1.2.1. Installing the Anaconda Python

To install the Anaconda and Python 3:

1. Go to the https://www.anaconda.com/products/individual#download web page.

2. Download Python3 version of Anaconda for Linux.

3. Run the command below to install the Anaconda environment:
$ sh Anaconda3-2019.03-Linux-x86_64.sh

Note: Anaconda3-<version>-Linux-x86_64.sh, version may vary based on the release.

Figure A.7. Anaconda Installation

4. Accept the license.

Figure A.8. Accept License Terms

5. Confirm the installation path. Follow the instruction onscreen if you want to change the default path.

Figure A.9. Confirm/Edit Installation Location

6. After installation, enter no as shown in Figure A.10.

http://www.latticesemi.com/legal
https://www.anaconda.com/products/individual#download

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 100

Figure A.10. Launch/Initialize Anaconda Environment on Installation Completion

A.1.3. Installing the TensorFlow version 1.15

To install the TensorFlow version 1.15:

1. Activate the Anaconda environment by running the command below:
$ source <conda directory>/bin/activate

Figure A.11. Anaconda Environment Activation

2. Install the TensorFlow by running the command below:
$ conda install tensorflow-gpu==1.15.0

Figure A.12. TensorFlow Installation

3. After installation, enter Y as shown in Figure A.13.

Figure A.13. TensorFlow Installation Confirmation

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 101

Figure A.14 shows TensorFlow installation is complete.

Figure A.14. TensorFlow Installation Completion

A.1.4. Installing the Python Package

To install the Python package:

1. Install Easydict by running the command below:
$ conda install –c conda-forge easydict

Figure A.15. Easydict Installation

2. Install Joblib by running the command below:
$ conda install joblib

Figure A.16. Joblib Installation

3. Install Keras by running the command below:
$ conda install keras

Figure A.17. Keras Installation

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 102

4. Install OpenCV by running the command below:
$ conda install opencv

Figure A.18. OpenCV Installation

5. Install Pillow by running the command below:
$ conda install pillow

Figure A.19. Pillow Installation

A.2. Creating the TensorFlow Lite Conversion Environment
To create a new Anaconda environment and install tensorflow=2.2.0:

1. Create a new Anaconda environment.
$ conda create -n <New Environment Name> python=3.6

2. Activate new created environment.
$ conda activate <New Environment Name>

3. Install Tensorflow 2.2.0.

Note: We have noticed output difference in Tensorflow(2.2.0) and Tensorflow-gpu(2.2.0) in terms of tflite size.

It is recommended to use TensorFlow (2.2.0).
$ conda install tensorflow=2.2.0

4. Install opencv.
$conda install opencv

A.3. Preparing the Dataset
This section describes the steps and guidelines used to prepare the dataset for training the predictive maintenance.

Note: In the following sections, Lattice provides guidelines and/or examples that can be used as references for preparing the
dataset for the given use cases. Lattice is not recommending and/or endorsing any dataset(s). It is recommended that
customers gather and prepare their own datasets for their specific end applications.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 103

A.3.1. Dataset Information

In the predictive maintenance demonstration, there are three classes: bad, Normal, and unknown. The dataset should be
organized as shown in below Fig. 35 0 contains bad motor data and 1 contains normal motor data.

Figure A.20. Predictive Maintenance Dataset

A.4. Preparing the Training Code
Notes:

 Training and freezing code uses Tensorflow 1.15.0 since some of the APIs used in training code are not available in
Tensorflow 2.x.

 For the TensorFlow Lite conversion in the TensorFlow Lite Conversion and Evaluation section, TensorFlow 2.2.0 is used.

A.4.1. Training Code Structure

Download the Lattice predictive maintenance demo training code. Its directory structure is shown in Fig. 36

Figure A.21. Training Code Directory Structure

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 104

A.4.2. Generating tfrecords from Augmented Dataset

This demo only takes tfrecords of a specific format for input. As susch, generate the tfrecords first. Run the command below
to generate tfrecords from input dataset.
$ python tfrecord-gen.py -i <Input_augmented_dataset_root> -o <Output_tfrecord_path>

The input directory should follow the structure shown in Figure A.21.

A.4.3 Neural Network Architecture

This section provides information on the Convolution Neural Network Configuration of the Predictive Maintenance design.

Table A.1. Predictive Maintenance Training Network Topology

Input Gray Scale Image (64×64×1)

Fire1

Conv3x3 – 8 Conv3×3 - # where:

 Conv3×3 – 3 × 3 Convolution filter Kernel size

 # - The number of filters

For example, Conv3×3 - 8 = 8 3 × 3 convolution filter

Batchnorm: Batch Normalization

FC - # where:

 FC – Fully connected layer

 # - The number of outputs

Batchnorm

ReLU

Maxpool

Fire2

Conv3×3 – 8

Batchnorm

ReLU

Fire3

Conv3×3 – 16

Batchnorm

ReLU

Maxpool

Fire4

Conv3×3 – 16

Batchnorm

ReLU

Fire5

Conv3×3 – 16

Batchnorm

ReLU

Maxpool

Fire6

Conv3×3 – 22

Batchnorm

ReLU

Fire7

Conv3×3 – 24

Batchnorm

ReLU

Maxpool

Dropout Dropout - 0.80

logit FC – (3)

In Table A.1, Layer contains Convolution (conv), batch normalization (BN), ReLU, pooling, and dropout layers. Output of layer
logit is (Broken [0], Normal [1], Unknown [2]) 3 values.

 Layer information

 Convolutional Layer
In general, the first layer in a CNN is always a convolutional layer. Each layer consists of number of filters (sometimes
referred as kernels) which convolves with input layer/image and generates activation map (such as feature map). This
filter is an array of numbers (the numbers are called weights or parameters). Each of these filters can be thought of
as feature identifiers, like straight edges, simple colors, and curves and other high-level features. For example, the
filters on the first layer convolve around the input image and “activate” (or compute high values) when the specific
feature (say curve) it is looking for is in the input volume.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 105

 ReLU (Activation Layer)
After each conv layer, it is convention to apply a nonlinear layer (or activation layer) immediately afterward. The
purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear operations
during the conv layers (just element wise multiplications and summations).In the past, nonlinear functions like tanh
and sigmoid were used, but researchers found out that ReLU layers work far better because the network is able to
train a lot faster (because of the computational efficiency) without making a significant difference to the accuracy.
The ReLU layer applies the function f(x) = max (0, x) to all of the values in the input volume. In basic terms, this layer
just changes all the negative activations to 0. This layer increases the nonlinear properties of the model and the
overall network without affecting the receptive fields of the conv layer.

 Pooling Layer
After some ReLU layers, programmers may choose to apply a pooling layer. It is also referred to as a down sampling
layer. In this category, there are also several layer options, with Maxpooling being the most popular. This basically
takes a filter (normally of size 2×2) and a stride of the same length. It then applies it to the input volume and outputs
the maximum number in every sub region that the filter convolves around.
The intuitive reasoning behind this layer is that once the user knows that a specific feature is in the original input
volume (a high activation value results), its exact location is not as important as its relative location to the other
features. As you can imagine, this layer drastically reduces the spatial dimension (the length and the width change
but not the depth) of the input volume. This serves two main purposes. The first is that the number of parameters
or weights is reduced by 75%, thus lessening the computation cost. The second is that it controls over fitting. This
term refers to when a model is so tuned to the training examples that it is not able to generalize well for the validation
and test sets. A symptom of over fitting is having a model that gets 100% or 99% on the training set, but only 50% on
the test data.

 Batchnorm Layer
Batch normalization layer reduces the internal covariance shift. In order to train a neural network, perform
pre-processing to the input data. For example, the user can normalize all data so that it resembles a normal
distribution (that means, zero mean and a unitary variance). Reason being preventing the early saturation of non-
linear activation functions like the sigmoid function, assuring that all input data is in the same range of values, etc.
But the problem appears in the intermediate layers because the distribution of the activations is constantly changing
during training. This slows down the training process because each layer must learn to adapt themselves to a new
distribution in every training step. This problem is known as internal covariate shift.
Batch normalization layer forces the input of every layer to have approximately the same distribution in every training
step by following below process during training time:

 Calculate the mean and variance of the layers input.

 Normalize the layer inputs using the previously calculated batch statistics.

 Scales and shifts in order to obtain the output of the layer.
This makes the learning of layers in the network more independent of each other and allows you to be care free
about weight initialization, works as regularization in place of dropout and other regularization techniques.

 Drop-out Layer
Dropout layers have a very specific function in neural networks. After training, the weights of the network are so
tuned to the training examples they are given that the network doesn’t perform well when given new examples. The
idea of dropout is simplistic in nature. This layer drops out a random set of activations in that layer by setting them
to zero. It forces the network to be redundant. That means the network should be able to provide the right
classification or output for a specific example even if some of the activations are dropped out. It makes sure that the
network is not getting too “fitted” to the training data and thus helps alleviate the over fitting problem. An important
note is that this layer is only used during training, and not during test time.

 Fully connected Layer
This layer basically takes an input volume (whatever the output is of the conv or ReLU or pool layer preceding it) and
outputs an N dimensional vector where N is the number of classes that the program must choose from.

 Quantization
Quantization is a method to bring the neural network to a reasonable size, while also achieving high performance
accuracy. This is especially important for on-device applications, where the memory size and number of
computations are necessarily limited. Quantization for deep learning is the process of approximating a neural
network that uses floating-point numbers by a neural network of low bit width numbers. This dramatically reduces
both the memory requirement and computational cost of using neural networks.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 106

The above architecture provides nonlinearities and preservation of dimension that help to improve the robustness of the
network and control over fitting.

A.4.4. Training Code Overview

resnet_main.py

Mode is
Evaluation?

No Yes

Create training
data input pipeline

Build model

Restore
checkpoint if

available

Build evaluation
model

Restore
checkpoints

Run evaluation
on given batches
and print states

Mode is
Freeze?

Save inference
.pbtxt

Exit

Training loop

No

Yes

Train model

Save
checkpoints

Create input FIFO
queue

Create input pipe
with augmentation

operations

Read TFrecords

Create evaluation
data input pipeline

Create input FIFO
queue

Read TFrecords

Figure A.22. Training Code Flow Diagram

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 107

A.4.4.1. Configuring Hyper-Parameters

Figure A.23. Code Snippet: Hyper Parameters

 Set number of class in num_classes (default = 3).

 Change batch size for specific mode if required.

 hps: it contains list of hyper parameters for custom resnet backbone and optimizer.

A.4.4.2. Creating Training Data Input Pipeline

Figure A.24. Code Snippet: Build Input

 build_input () from cifer_input.py reads Tfrecords and creates some augmentation operations before pushing the input
data to FIFO queue.

 FLAGS.dataset : dataset type (signlang)

 FLAGS.train_data_path: input path to tfrecords

 FLAGS.batch_size: training batch size

 FLAGS.mode: train or eval

 FLAGS.gray: True if model is of 1 channel otherwise False

 hps[1]: num_classes configured in model hyper parameters

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 108

Read tfrecords

Figure A.25. Code Snippet: Parse tfrecords

 Above snippet reads tfrecord files and parse its features that are height, width, label and image.

Converting Image to Grayscale and Scaling the Image

Figure A.26. Code Snippet: Convert Image to Gray Scale

 Convert RGB image to gray scale if gray flag is true.

Figure A.27. Code Snippet: Convert Image to BGR and Scale the Image

 Unstack channel layers and convert to BGR format if the image mode is not gray. The RGB is converted to BGR because
the iCE40 works on BGR image.

 Divide every element on image with 128 so that the values can be scaled to 0-2 range.

Creating Input Queue

Figure A.28. Code Snippet: Create Queue

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 109

 tf.RandomShuffleQueue is queue implementation that dequeues elements in random order.

Figure A.29. Code Snippet: Add Queue Runners

 Above snippet enqueues images and labels to the RandomShuffleQueue and add queue runners. This directly feeds
data to network.

A.4.4.3. Model Building

CNN Architecture

Figure A.30. Code Snippet: Create Model

 Build_graph () method creates training graph or training model using given configuration.

 Build_graph creates model with seven fire layers followed by dropout layer and fully connected layers. Where each
fire layer contains convolution, relu as activation, batch normalization, and max pooling (in Fire 1, 3, 5 & 7 only).
Fully connected layer provides the final output.

Figure A.31. Code Snippet: Fire Layer

Arguments of _vgg_layer:

 First argument is name of the block.

 Second argument is input node to new fire block.

 oc: output channels is the number of filters of the convolution.

 freeze: setting weighs are trainable or not.

 w_bin: Quantization parameter for convolution

 a_bin: quantization parameter for activation binarization(relu).

 pool_en: flag to include Maxpool in firelayer.

 min_rng, max_rng: Setting maximum and minimum values of quantized activation. Default values for min_rng = 0.0
and max_rng = 2.0.

 bias_on: Sets bias add operation in graph if true.

 phase_train: Argument to generate graph for inference and training.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 110

Figure A.32. Code Snippet: Convolution Block

 In the resnet_model.py file, the basic network construction blocks are implemented in specific functions as below:

 Convolution – _conv_layer

 Batch normalization – _batch_norm_tensor2

 ReLU – binary_wrapper

 Maxpool – _pooling_layer

 _conv_layer

 Contains code to create convolution block. Which contains kernel variable, variable initializer, quantization
code, convolution operation and ReLU if argument relu is True.

 _batch_norm_tensor2

 Contains code to create batch-normalization operation for both training and inference phase.

 Binary_wrapper

 Used for quantized activation with ReLU.

 _pooling_layer

 Adds Max pooling with given kernel-size and stride size to training and inference graph.

Feature Depth of Fire Layer

Figure A.33. Code Snippet: Feature Depth Array for Fire Layers

 List depth contains feature depth for seven fire layers in network.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 111

Figure A.34. Code Snippet: Forward Graph Fire Layers

Loss Function and Optimizers

Figure A.35. Code Snippet: Loss Function

 Model uses softmax_cross_entropy_with_logitds because the labels are in form of class index.

Figure A.36. Code Snippet: Optimizers

 Here, there are four options for selecting optimizers. In this model, use the mom optimizer as default.

A.4.4.4. Restore Checkpoints

Checkpoints are restored from log directory and then starts training from that checkpoint if checkpoints exist in log
directory.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 112

Figure A.37. Code Snippet: Restore Checkpoints

A.4.4.5. Saving .pbtxt

If mode is freeze it saves the inference graph (model) as .pbtxt file. The .pbtxt file is used later for freezing.

Figure A.38. Code Snippet: Save .pbtxt

A.4.4.6. Training Loop

Figure A.39. Code Snippet: Training Loop

 MonitoredTrainingSession utility sets proper session initializer/restorer. It also creates hooks related to checkpoint and
summary saving. For workers, this utility sets proper session creator which waits for the chief to initialize/restore. Refer
to tf.compat.v1.train.MonitoredSession for more information.

 _LearningRateSetterHook:

http://www.latticesemi.com/legal
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/MonitoredSession

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 113

Figure A.40. Code Snippet: _ LearningRateSetterHook

 This hook sets learning rate based on training steps performed.

 Summary_hook

Figure A.41. Code Snippet: Save Summary for Tensorboard

 Saves tensorboard summary for every 100 steps.

 Logging_hook

Figure A.42. Code Snippet: logging hook

 Prints logs after every 100 iterations.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 114

A.4.5. Training from Scratch and/or Transfer Learning

A.4.5.1. Training

Open the run script and edit parameters as required.

Figure A.43. Predictive Maintenance – Run Script

To start training run the run script as mentioned below.
$./run

Figure A.44. Predictive Maintenance – Trigger Training

A.4.5.2. Transfer Learning

Figure A.45. Predictive Maintenance – Trigger Training with Transfer Learning

 To restore checkpoints, no additional action is required. Run the same command again with the same log directory. if the
checkpoints are present in log path where it is be restored and continue training from that step.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 115

A.4.5.3. Training Status

 Training status can be checked in logs by observing different terminologies like loss, precision and confusion matrix.

Figure A.46. Predictive Maintenance – Training Logs

Figure A.47. Predictive Maintenance – Confusion Matrix

 You can use TensorBoard utility for checking training status.

 Start TensorBoard by below command:
$ tensorboard –logdir=<log directory of training>

Figure A.48. TensorBoard – Launch

 This command provides the link, which needs to be copied and open in any browser such as Chrome, Firefox, and
others or right click on the link and click on Open Link.

Figure A.49. TensorBoard – Link Default Output in Browser

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 116

 Similarly, other graphs can be investigated from the available list.

 Check if the checkpoint, data, meta and index files are created at the log directory. These files are used for creating the
frozen file (*.pb).

Figure A.50. Checkpoint Storage Directory Structure

A.5. Creating Frozen File
This section describes the procedure for freezing the model, which is aligned with the Lattice SensAI tool. Perform the steps
below to generate the frozen protobuf file:

A.5.1. Generating .pbtxt File for Inference

Once the training is completed run below command to generate inference .pbtxt file.

Note: Do not modify config.sh after training.
$ python resnet_main.py --train_data_path=<TFRecord_root_path> --

log_root=<Logging_Checkpoint_Path> --train_dir=<tensorboard_summary_path> --

dataset='signlang' --image_size=64 --num_gpus=<num_GPUs> --mode=freeze

Figure A.51. Generated ‘.pbtxt’ for Inference

 It generates the .pbtxt file for inference under the train log directory.

A.5.2. Generating the Frozen (.pb) File
$ python genpb.py --ckpt_dir <COMPLETE_PATH_TO_LOG_DIRECTORY>

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 117

Figure A.52. Run genpb.py To Generate Inference .pb

 genpb.py uses .pbtxt generated by procedure in the Generating .pbtxt File for Inference section and latest checkpoint in
train directory to generate frozen .pb file.

 Once the genpb.py is executed successfully, the <ckpt-prefix>_frozenforinference.pb becomes available in the log
directory as shown in below figure

Figure A.53. Frozen Inference .pb Output

A.6. TensorFlow Lite Conversion and Evaluation
This section contains information for converting frozen pb to TensorFlow Lite model, quantize the model and evaluate on test
dataset.

Note: It is recommended to use Tensorflow 2.2.0 (CPU Only) instead Tensorflow 1.15.0 In TensorFlow Lite conversion flow.

Use Environment created from the Creating the TensorFlow Lite Conversion Environment section.

A.6.1. Converting Frozen Model to TensorFlow Lite

User can find “gen_tflite_and_quant.py” under training code which converts frozen model to TensorFlow Lite and also
quantize it with INT8 quantization.
$ python gen_tflite_and_quant.py --input_path <sample images path> --tflite_path

<output tflite path> --pb <frozen pb file>

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 118

Arguments information:

 --input_path: sample images that are used for quantization.

 --tflite_path: (default motor-model.tflite) output tflite path

 --pb: Frozen pb path

The command saves TensorFlow Lite at given path.

A.6.2. Evaluating TensorFlow Lite model
$ python evaluate_tflite.py --dataset_path <dataset_path> --tflite_path <tflite

path>

Argument information:

 --dataset_path: Test set path. Note that the labels should be (0, 1) for predictive maintenance.

 --tflite_path: tflite model path

The command shows accuracy on both classes.

A.6.3. Converting TensorFlow Lite To C-Array
$ xxd -i your-tflite-model-path.tflite > out_c_array.cc

The command generates c array at path given by user.

For detailed instructions on setting the Raspberry Pi, compiling the code, installing the client-end application, automating
stack 2.0 bit file and generating binary, programming the Automate Stack on SPI Flash memory, troubleshooting the main
system board, debugging using Docklight, OPCUA Modeler, and CSV file, refer to Automate Stack 2.0 Demo User Guide
(FPGA-UG-02164).

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53597
https://www.latticesemi.com/view_document?document_id=53597

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 119

Appendix B. Setting up the Auto-Bootable MQTT-Based Client
To set up the auto-bootable MQTT-based client, perform the steps in the sections below.

B.1. Unzipping the Folder
To unzip the folder:

1. Open the terminal.S.

2. Unzip the bundle.

3. Run the command: unzip Mqtt_Lattice_AutomateStack_2_0.zip.

After unzipping the folder, perform the steps below:

1. Run the command: cd Mqtt_Lattice_AutomateStack_2_0/ lib/paho.mqtt.c/.

2. Run the command to clean the old package: sudo make clean.

3. Run the command for compilation: sudo make && sudo make install.

B.2. OpenSSL Error
Run the commands below if you get the Open SSL error:
sudo apt-get install libssl-dev

sudo make && sudo make install

B.3. Making the New Server Executable
To make the new server executable, run the following commands:
cd Mqtt_Lattice_AutomateStack_2_0/Scripts/

sudo make clean

sudo make

B.4. Installing the Mosquitto Broker
To run the mosquito broker, perform the steps below:

1. Run the commands below:
sudo apt update && sudo apt upgrade

sudo apt install -y mosquitto mosquitto-clients

sudo systemctl enable mosquitto.service

sudo nano /etc/mosquitto/mosquitto.conf

2. The mosquitto.conf file opens. Copy the two lines below at the end of this file.
listener 1883

allow_anonymous true

3. To save and close the file, press ctrl+x, type y and press Enter.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 120

B.5. Automating the Application
To automate the application:

1. Run the command: sudo crontab -e

2. Type 1 and press Enter to select the nano editor. The crontab opens.

3. Copy the line below and paste it in the crontab at the end of the file.
@reboot /home/pi/Mqtt_Lattice_AutomateStack_2_0/Scripts/autoapp.sh

4. Press ctrl+x, type y and press Enter.

B.6. Setting Up the IPV4 Address and Router on Raspberry Pi
To set up the IPV4 address and router:

1. Right-click on at the right side of the window, and then click on Wireless and Wired Network Settings.

Figure B.1. IPV4 Address Setting

2. The Network Preferences screen is displayed. Select the eth0 from the drop-down menu.

Figure B.2. Network Preferences Settings

3. Untick the Automatically configure empty options box.

4. Enter the IP address and router as shown in Figure B.3 and click Apply.

 IPV4 Address – 10.0.1.112

 Router – 192.168.1.1

Note: Router value same as the value of Default gateway in your laptop.

http://www.latticesemi.com/legal

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 121

Figure B.3. IP Configuration

5. Run this command to reboot the Raspberry Pi: sudo reboot.

For details on connecting the laptop with the Raspberry Pi, refer to Automate Stack 2.0 Demo User Guide (FPGA-UG-02164).

http://www.latticesemi.com/legal
https://www.latticesemi.com/view_document?document_id=53597

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 122

Technical Support Assistance
Submit a technical support case through www.latticesemi.com/techsupport.

http://www.latticesemi.com/legal
http://www.latticesemi.com/techsupport

Automate Stack 2.0
Reference Design

© 2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-RD-02255-1.0 123

Revision History

Revision 1.0, June 2022

Section Change Summary

All Initial release.

http://www.latticesemi.com/legal

www.latticesemi.com

http://www.latticesemi.com/

	Automate Stack 2.0
	Acronyms in This Document
	1. Introduction
	1.1. Components

	2. Design Overview
	2.1. Theory of Operation
	2.2. FPGA Design
	2.2.1. Main System
	RISC-V-Based Path
	PCIe DMA-Based Path
	2.2.1.1. Memory Map

	2.2.2. Node System
	2.2.2.1. Node System Memory Map of Node System

	2.3. EtherControl IP
	2.3.1. Features
	2.3.2. EtherControl Master
	2.3.3. Register Description
	2.3.3.1. EtherControl Master (RISC-V)
	2.3.3.2. EtherControl Master (PCIe)

	2.3.4. EtherControl Slave

	2.4. RISC-V to PCIe Bridge
	2.5. FIFO DMA
	2.6. PCIe DMA IP Design Details
	2.6.1. Descriptor Field Format
	2.6.2. Status Field Format
	2.6.3. Triggering the DMA Operation
	2.6.4. PCIe DMA Register Space
	2.6.4.1. FPGA Device Memory Segregation
	2.6.4.2. Register Address (0x0)
	2.6.4.3. Register Address (0x4)
	2.6.4.4. Register Address (0x8)
	2.6.4.5. Register Address (0xC)
	2.6.4.6. Register Address (0x10)
	2.6.4.7. Register Address (0x14)
	2.6.4.8. Register Address (0x18)
	2.6.4.9. Register Address (0x1C)
	2.6.4.10. Register Address (0x20)
	2.6.4.11. Register Address (0x24)
	2.6.4.12. Register Address (0x28)

	2.7. SPI Flash Controller (QSPI Streamer)
	2.8. CNN Co-Processor Unit (CCU)
	2.9. Motor Control and PDM Data Collector
	2.10. SPI Master IP Design Details
	2.10.1. Overview
	2.10.2. SPI Master Register Map
	2.10.3. Programming Flow
	2.10.3.1. Initialization
	2.10.3.2. Transmit/Receive Operation

	2.11. I2C Master IP Design Details
	2.11.1. Overview
	2.11.2. I2C Master Register Map
	2.11.3. Programming Flow
	2.11.3.1. Initialization
	2.11.3.2. Writing to the Slave Device
	2.11.3.3. Reading from the Slave Device

	2.12. UART IP Design Details
	2.12.1. Overview
	2.12.1.1. UART Register Description

	2.12.2. Programming Flow
	2.12.2.1. Initialization
	2.12.2.2. Transmit Operation
	Transmit Operation – Interrupt Mode
	Transmit Operation – Polling Mode

	2.12.2.3. Receive Operation
	Receive Operation – Interrupt Mode
	Receive Operation – Polling Mode

	2.12.2.4. Data Format

	3. Resource Utilization
	4. Software APIs
	4.1. Main System APIs
	4.1.1. Tasks of the Main System
	4.1.1.1. UART Commands
	4.1.1.2. GPIO Commands

	4.1.2. Key Functions

	4.2. Node System APIs
	4.2.1. Tasks of the Node System
	4.2.2. Key Functions

	4.3. PCie Driver
	4.3.1. Linux Device Driver Design
	4.3.2. User-Space to Kernel-Space Access
	4.3.3. File Operation and API Description
	4.3.3.1. PCIeRead
	4.3.3.2. PCIeWrite
	4.3.3.3. PCIeIOCTL
	4.3.3.4. PCIeOpen
	4.3.3.5. PCIeRelease
	4.3.3.6. Driver API Description

	4.3.4. PCIeProbe
	4.3.5. PCIeRemove
	4.3.6. Bus Master DMA Overview and Implementation

	4.4. Programming the DMA Write/Read
	4.4.1. Supported Operating System
	4.4.2. Package Requirements
	4.4.3. Installing the Package
	4.4.4. Manual Installation and Setup
	4.4.5. Automatic Installation and Setup

	5. Communications
	5.1. Communication between Host and Main System
	5.1.1. Messages from Host to Main System
	5.1.2. Messages from Main System to Host

	5.2. Communication between Main System and Node System(s)
	5.2.1. Messages from Main System to Node System
	5.2.2. Messages from Node System to Main System

	6. Demo Package Directory Structure
	6.1. Automate Stack Demonstration
	6.1.1. Documentation

	7. Summary
	Appendix A. Predictive Maintenance with TensorFlow Lite
	A.1. Setting Up the Linux Environment for Neural Network Training
	A.1.1. Installing the NVIDIA CUDA and cuDNN Library for Machine Learning Training on GPU
	A.1.1.1. Installing the CUDA Toolkit
	A.1.1.2. Installing the cuDNN

	A.1.2. Setting Up the Environment for Training and Model Freezing Scripts
	A.1.2.1. Installing the Anaconda Python

	A.1.3. Installing the TensorFlow version 1.15
	A.1.4. Installing the Python Package

	A.2. Creating the TensorFlow Lite Conversion Environment
	A.3. Preparing the Dataset
	A.3.1. Dataset Information

	A.4. Preparing the Training Code
	A.4.1. Training Code Structure
	A.4.2. Generating tfrecords from Augmented Dataset
	A.4.3 Neural Network Architecture
	A.4.4. Training Code Overview
	A.4.4.1. Configuring Hyper-Parameters
	A.4.4.2. Creating Training Data Input Pipeline
	Read tfrecords
	Converting Image to Grayscale and Scaling the Image
	Creating Input Queue
	 tf.RandomShuffleQueue is queue implementation that dequeues elements in random order.

	A.4.4.3. Model Building
	CNN Architecture
	Feature Depth of Fire Layer
	Loss Function and Optimizers

	A.4.4.4. Restore Checkpoints
	A.4.4.5. Saving .pbtxt
	A.4.4.6. Training Loop

	A.4.5. Training from Scratch and/or Transfer Learning
	A.4.5.1. Training
	A.4.5.2. Transfer Learning
	A.4.5.3. Training Status

	A.5. Creating Frozen File
	A.5.1. Generating .pbtxt File for Inference
	A.5.2. Generating the Frozen (.pb) File

	A.6. TensorFlow Lite Conversion and Evaluation
	A.6.1. Converting Frozen Model to TensorFlow Lite
	A.6.2. Evaluating TensorFlow Lite model
	A.6.3. Converting TensorFlow Lite To C-Array

	Appendix B. Setting up the Auto-Bootable MQTT-Based Client
	B.1. Unzipping the Folder
	B.2. OpenSSL Error
	B.3. Making the New Server Executable
	B.4. Installing the Mosquitto Broker
	B.5. Automating the Application
	B.6. Setting Up the IPV4 Address and Router on Raspberry Pi

	Technical Support Assistance
	Revision History
	Revision 1.0, June 2022

